Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/filemap.c
26135 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/mm/filemap.c
4
*
5
* Copyright (C) 1994-1999 Linus Torvalds
6
*/
7
8
/*
9
* This file handles the generic file mmap semantics used by
10
* most "normal" filesystems (but you don't /have/ to use this:
11
* the NFS filesystem used to do this differently, for example)
12
*/
13
#include <linux/export.h>
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
22
#include <linux/mm.h>
23
#include <linux/swap.h>
24
#include <linux/swapops.h>
25
#include <linux/syscalls.h>
26
#include <linux/mman.h>
27
#include <linux/pagemap.h>
28
#include <linux/file.h>
29
#include <linux/uio.h>
30
#include <linux/error-injection.h>
31
#include <linux/hash.h>
32
#include <linux/writeback.h>
33
#include <linux/backing-dev.h>
34
#include <linux/pagevec.h>
35
#include <linux/security.h>
36
#include <linux/cpuset.h>
37
#include <linux/hugetlb.h>
38
#include <linux/memcontrol.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44
#include <linux/page_idle.h>
45
#include <linux/migrate.h>
46
#include <linux/pipe_fs_i.h>
47
#include <linux/splice.h>
48
#include <linux/rcupdate_wait.h>
49
#include <linux/sched/mm.h>
50
#include <linux/sysctl.h>
51
#include <asm/pgalloc.h>
52
#include <asm/tlbflush.h>
53
#include "internal.h"
54
55
#define CREATE_TRACE_POINTS
56
#include <trace/events/filemap.h>
57
58
/*
59
* FIXME: remove all knowledge of the buffer layer from the core VM
60
*/
61
#include <linux/buffer_head.h> /* for try_to_free_buffers */
62
63
#include <asm/mman.h>
64
65
#include "swap.h"
66
67
/*
68
* Shared mappings implemented 30.11.1994. It's not fully working yet,
69
* though.
70
*
71
* Shared mappings now work. 15.8.1995 Bruno.
72
*
73
* finished 'unifying' the page and buffer cache and SMP-threaded the
74
* page-cache, 21.05.1999, Ingo Molnar <[email protected]>
75
*
76
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
77
*/
78
79
/*
80
* Lock ordering:
81
*
82
* ->i_mmap_rwsem (truncate_pagecache)
83
* ->private_lock (__free_pte->block_dirty_folio)
84
* ->swap_lock (exclusive_swap_page, others)
85
* ->i_pages lock
86
*
87
* ->i_rwsem
88
* ->invalidate_lock (acquired by fs in truncate path)
89
* ->i_mmap_rwsem (truncate->unmap_mapping_range)
90
*
91
* ->mmap_lock
92
* ->i_mmap_rwsem
93
* ->page_table_lock or pte_lock (various, mainly in memory.c)
94
* ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
95
*
96
* ->mmap_lock
97
* ->invalidate_lock (filemap_fault)
98
* ->lock_page (filemap_fault, access_process_vm)
99
*
100
* ->i_rwsem (generic_perform_write)
101
* ->mmap_lock (fault_in_readable->do_page_fault)
102
*
103
* bdi->wb.list_lock
104
* sb_lock (fs/fs-writeback.c)
105
* ->i_pages lock (__sync_single_inode)
106
*
107
* ->i_mmap_rwsem
108
* ->anon_vma.lock (vma_merge)
109
*
110
* ->anon_vma.lock
111
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
112
*
113
* ->page_table_lock or pte_lock
114
* ->swap_lock (try_to_unmap_one)
115
* ->private_lock (try_to_unmap_one)
116
* ->i_pages lock (try_to_unmap_one)
117
* ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118
* ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119
* ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120
* ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121
* bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122
* ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123
* bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124
* ->inode->i_lock (zap_pte_range->set_page_dirty)
125
* ->private_lock (zap_pte_range->block_dirty_folio)
126
*/
127
128
static void page_cache_delete(struct address_space *mapping,
129
struct folio *folio, void *shadow)
130
{
131
XA_STATE(xas, &mapping->i_pages, folio->index);
132
long nr = 1;
133
134
mapping_set_update(&xas, mapping);
135
136
xas_set_order(&xas, folio->index, folio_order(folio));
137
nr = folio_nr_pages(folio);
138
139
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140
141
xas_store(&xas, shadow);
142
xas_init_marks(&xas);
143
144
folio->mapping = NULL;
145
/* Leave folio->index set: truncation lookup relies upon it */
146
mapping->nrpages -= nr;
147
}
148
149
static void filemap_unaccount_folio(struct address_space *mapping,
150
struct folio *folio)
151
{
152
long nr;
153
154
VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155
if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156
pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157
current->comm, folio_pfn(folio));
158
dump_page(&folio->page, "still mapped when deleted");
159
dump_stack();
160
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161
162
if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163
int mapcount = folio_mapcount(folio);
164
165
if (folio_ref_count(folio) >= mapcount + 2) {
166
/*
167
* All vmas have already been torn down, so it's
168
* a good bet that actually the page is unmapped
169
* and we'd rather not leak it: if we're wrong,
170
* another bad page check should catch it later.
171
*/
172
atomic_set(&folio->_mapcount, -1);
173
folio_ref_sub(folio, mapcount);
174
}
175
}
176
}
177
178
/* hugetlb folios do not participate in page cache accounting. */
179
if (folio_test_hugetlb(folio))
180
return;
181
182
nr = folio_nr_pages(folio);
183
184
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185
if (folio_test_swapbacked(folio)) {
186
__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187
if (folio_test_pmd_mappable(folio))
188
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189
} else if (folio_test_pmd_mappable(folio)) {
190
__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191
filemap_nr_thps_dec(mapping);
192
}
193
194
/*
195
* At this point folio must be either written or cleaned by
196
* truncate. Dirty folio here signals a bug and loss of
197
* unwritten data - on ordinary filesystems.
198
*
199
* But it's harmless on in-memory filesystems like tmpfs; and can
200
* occur when a driver which did get_user_pages() sets page dirty
201
* before putting it, while the inode is being finally evicted.
202
*
203
* Below fixes dirty accounting after removing the folio entirely
204
* but leaves the dirty flag set: it has no effect for truncated
205
* folio and anyway will be cleared before returning folio to
206
* buddy allocator.
207
*/
208
if (WARN_ON_ONCE(folio_test_dirty(folio) &&
209
mapping_can_writeback(mapping)))
210
folio_account_cleaned(folio, inode_to_wb(mapping->host));
211
}
212
213
/*
214
* Delete a page from the page cache and free it. Caller has to make
215
* sure the page is locked and that nobody else uses it - or that usage
216
* is safe. The caller must hold the i_pages lock.
217
*/
218
void __filemap_remove_folio(struct folio *folio, void *shadow)
219
{
220
struct address_space *mapping = folio->mapping;
221
222
trace_mm_filemap_delete_from_page_cache(folio);
223
filemap_unaccount_folio(mapping, folio);
224
page_cache_delete(mapping, folio, shadow);
225
}
226
227
void filemap_free_folio(struct address_space *mapping, struct folio *folio)
228
{
229
void (*free_folio)(struct folio *);
230
231
free_folio = mapping->a_ops->free_folio;
232
if (free_folio)
233
free_folio(folio);
234
235
folio_put_refs(folio, folio_nr_pages(folio));
236
}
237
238
/**
239
* filemap_remove_folio - Remove folio from page cache.
240
* @folio: The folio.
241
*
242
* This must be called only on folios that are locked and have been
243
* verified to be in the page cache. It will never put the folio into
244
* the free list because the caller has a reference on the page.
245
*/
246
void filemap_remove_folio(struct folio *folio)
247
{
248
struct address_space *mapping = folio->mapping;
249
250
BUG_ON(!folio_test_locked(folio));
251
spin_lock(&mapping->host->i_lock);
252
xa_lock_irq(&mapping->i_pages);
253
__filemap_remove_folio(folio, NULL);
254
xa_unlock_irq(&mapping->i_pages);
255
if (mapping_shrinkable(mapping))
256
inode_add_lru(mapping->host);
257
spin_unlock(&mapping->host->i_lock);
258
259
filemap_free_folio(mapping, folio);
260
}
261
262
/*
263
* page_cache_delete_batch - delete several folios from page cache
264
* @mapping: the mapping to which folios belong
265
* @fbatch: batch of folios to delete
266
*
267
* The function walks over mapping->i_pages and removes folios passed in
268
* @fbatch from the mapping. The function expects @fbatch to be sorted
269
* by page index and is optimised for it to be dense.
270
* It tolerates holes in @fbatch (mapping entries at those indices are not
271
* modified).
272
*
273
* The function expects the i_pages lock to be held.
274
*/
275
static void page_cache_delete_batch(struct address_space *mapping,
276
struct folio_batch *fbatch)
277
{
278
XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
279
long total_pages = 0;
280
int i = 0;
281
struct folio *folio;
282
283
mapping_set_update(&xas, mapping);
284
xas_for_each(&xas, folio, ULONG_MAX) {
285
if (i >= folio_batch_count(fbatch))
286
break;
287
288
/* A swap/dax/shadow entry got inserted? Skip it. */
289
if (xa_is_value(folio))
290
continue;
291
/*
292
* A page got inserted in our range? Skip it. We have our
293
* pages locked so they are protected from being removed.
294
* If we see a page whose index is higher than ours, it
295
* means our page has been removed, which shouldn't be
296
* possible because we're holding the PageLock.
297
*/
298
if (folio != fbatch->folios[i]) {
299
VM_BUG_ON_FOLIO(folio->index >
300
fbatch->folios[i]->index, folio);
301
continue;
302
}
303
304
WARN_ON_ONCE(!folio_test_locked(folio));
305
306
folio->mapping = NULL;
307
/* Leave folio->index set: truncation lookup relies on it */
308
309
i++;
310
xas_store(&xas, NULL);
311
total_pages += folio_nr_pages(folio);
312
}
313
mapping->nrpages -= total_pages;
314
}
315
316
void delete_from_page_cache_batch(struct address_space *mapping,
317
struct folio_batch *fbatch)
318
{
319
int i;
320
321
if (!folio_batch_count(fbatch))
322
return;
323
324
spin_lock(&mapping->host->i_lock);
325
xa_lock_irq(&mapping->i_pages);
326
for (i = 0; i < folio_batch_count(fbatch); i++) {
327
struct folio *folio = fbatch->folios[i];
328
329
trace_mm_filemap_delete_from_page_cache(folio);
330
filemap_unaccount_folio(mapping, folio);
331
}
332
page_cache_delete_batch(mapping, fbatch);
333
xa_unlock_irq(&mapping->i_pages);
334
if (mapping_shrinkable(mapping))
335
inode_add_lru(mapping->host);
336
spin_unlock(&mapping->host->i_lock);
337
338
for (i = 0; i < folio_batch_count(fbatch); i++)
339
filemap_free_folio(mapping, fbatch->folios[i]);
340
}
341
342
int filemap_check_errors(struct address_space *mapping)
343
{
344
int ret = 0;
345
/* Check for outstanding write errors */
346
if (test_bit(AS_ENOSPC, &mapping->flags) &&
347
test_and_clear_bit(AS_ENOSPC, &mapping->flags))
348
ret = -ENOSPC;
349
if (test_bit(AS_EIO, &mapping->flags) &&
350
test_and_clear_bit(AS_EIO, &mapping->flags))
351
ret = -EIO;
352
return ret;
353
}
354
EXPORT_SYMBOL(filemap_check_errors);
355
356
static int filemap_check_and_keep_errors(struct address_space *mapping)
357
{
358
/* Check for outstanding write errors */
359
if (test_bit(AS_EIO, &mapping->flags))
360
return -EIO;
361
if (test_bit(AS_ENOSPC, &mapping->flags))
362
return -ENOSPC;
363
return 0;
364
}
365
366
/**
367
* filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
368
* @mapping: address space structure to write
369
* @wbc: the writeback_control controlling the writeout
370
*
371
* Call writepages on the mapping using the provided wbc to control the
372
* writeout.
373
*
374
* Return: %0 on success, negative error code otherwise.
375
*/
376
int filemap_fdatawrite_wbc(struct address_space *mapping,
377
struct writeback_control *wbc)
378
{
379
int ret;
380
381
if (!mapping_can_writeback(mapping) ||
382
!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
383
return 0;
384
385
wbc_attach_fdatawrite_inode(wbc, mapping->host);
386
ret = do_writepages(mapping, wbc);
387
wbc_detach_inode(wbc);
388
return ret;
389
}
390
EXPORT_SYMBOL(filemap_fdatawrite_wbc);
391
392
/**
393
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
394
* @mapping: address space structure to write
395
* @start: offset in bytes where the range starts
396
* @end: offset in bytes where the range ends (inclusive)
397
* @sync_mode: enable synchronous operation
398
*
399
* Start writeback against all of a mapping's dirty pages that lie
400
* within the byte offsets <start, end> inclusive.
401
*
402
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
403
* opposed to a regular memory cleansing writeback. The difference between
404
* these two operations is that if a dirty page/buffer is encountered, it must
405
* be waited upon, and not just skipped over.
406
*
407
* Return: %0 on success, negative error code otherwise.
408
*/
409
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
410
loff_t end, int sync_mode)
411
{
412
struct writeback_control wbc = {
413
.sync_mode = sync_mode,
414
.nr_to_write = LONG_MAX,
415
.range_start = start,
416
.range_end = end,
417
};
418
419
return filemap_fdatawrite_wbc(mapping, &wbc);
420
}
421
422
static inline int __filemap_fdatawrite(struct address_space *mapping,
423
int sync_mode)
424
{
425
return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
426
}
427
428
int filemap_fdatawrite(struct address_space *mapping)
429
{
430
return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
431
}
432
EXPORT_SYMBOL(filemap_fdatawrite);
433
434
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
435
loff_t end)
436
{
437
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
438
}
439
EXPORT_SYMBOL(filemap_fdatawrite_range);
440
441
/**
442
* filemap_fdatawrite_range_kick - start writeback on a range
443
* @mapping: target address_space
444
* @start: index to start writeback on
445
* @end: last (inclusive) index for writeback
446
*
447
* This is a non-integrity writeback helper, to start writing back folios
448
* for the indicated range.
449
*
450
* Return: %0 on success, negative error code otherwise.
451
*/
452
int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
453
loff_t end)
454
{
455
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
456
}
457
EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
458
459
/**
460
* filemap_flush - mostly a non-blocking flush
461
* @mapping: target address_space
462
*
463
* This is a mostly non-blocking flush. Not suitable for data-integrity
464
* purposes - I/O may not be started against all dirty pages.
465
*
466
* Return: %0 on success, negative error code otherwise.
467
*/
468
int filemap_flush(struct address_space *mapping)
469
{
470
return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
471
}
472
EXPORT_SYMBOL(filemap_flush);
473
474
/**
475
* filemap_range_has_page - check if a page exists in range.
476
* @mapping: address space within which to check
477
* @start_byte: offset in bytes where the range starts
478
* @end_byte: offset in bytes where the range ends (inclusive)
479
*
480
* Find at least one page in the range supplied, usually used to check if
481
* direct writing in this range will trigger a writeback.
482
*
483
* Return: %true if at least one page exists in the specified range,
484
* %false otherwise.
485
*/
486
bool filemap_range_has_page(struct address_space *mapping,
487
loff_t start_byte, loff_t end_byte)
488
{
489
struct folio *folio;
490
XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
491
pgoff_t max = end_byte >> PAGE_SHIFT;
492
493
if (end_byte < start_byte)
494
return false;
495
496
rcu_read_lock();
497
for (;;) {
498
folio = xas_find(&xas, max);
499
if (xas_retry(&xas, folio))
500
continue;
501
/* Shadow entries don't count */
502
if (xa_is_value(folio))
503
continue;
504
/*
505
* We don't need to try to pin this page; we're about to
506
* release the RCU lock anyway. It is enough to know that
507
* there was a page here recently.
508
*/
509
break;
510
}
511
rcu_read_unlock();
512
513
return folio != NULL;
514
}
515
EXPORT_SYMBOL(filemap_range_has_page);
516
517
static void __filemap_fdatawait_range(struct address_space *mapping,
518
loff_t start_byte, loff_t end_byte)
519
{
520
pgoff_t index = start_byte >> PAGE_SHIFT;
521
pgoff_t end = end_byte >> PAGE_SHIFT;
522
struct folio_batch fbatch;
523
unsigned nr_folios;
524
525
folio_batch_init(&fbatch);
526
527
while (index <= end) {
528
unsigned i;
529
530
nr_folios = filemap_get_folios_tag(mapping, &index, end,
531
PAGECACHE_TAG_WRITEBACK, &fbatch);
532
533
if (!nr_folios)
534
break;
535
536
for (i = 0; i < nr_folios; i++) {
537
struct folio *folio = fbatch.folios[i];
538
539
folio_wait_writeback(folio);
540
}
541
folio_batch_release(&fbatch);
542
cond_resched();
543
}
544
}
545
546
/**
547
* filemap_fdatawait_range - wait for writeback to complete
548
* @mapping: address space structure to wait for
549
* @start_byte: offset in bytes where the range starts
550
* @end_byte: offset in bytes where the range ends (inclusive)
551
*
552
* Walk the list of under-writeback pages of the given address space
553
* in the given range and wait for all of them. Check error status of
554
* the address space and return it.
555
*
556
* Since the error status of the address space is cleared by this function,
557
* callers are responsible for checking the return value and handling and/or
558
* reporting the error.
559
*
560
* Return: error status of the address space.
561
*/
562
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
563
loff_t end_byte)
564
{
565
__filemap_fdatawait_range(mapping, start_byte, end_byte);
566
return filemap_check_errors(mapping);
567
}
568
EXPORT_SYMBOL(filemap_fdatawait_range);
569
570
/**
571
* filemap_fdatawait_range_keep_errors - wait for writeback to complete
572
* @mapping: address space structure to wait for
573
* @start_byte: offset in bytes where the range starts
574
* @end_byte: offset in bytes where the range ends (inclusive)
575
*
576
* Walk the list of under-writeback pages of the given address space in the
577
* given range and wait for all of them. Unlike filemap_fdatawait_range(),
578
* this function does not clear error status of the address space.
579
*
580
* Use this function if callers don't handle errors themselves. Expected
581
* call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
582
* fsfreeze(8)
583
*/
584
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
585
loff_t start_byte, loff_t end_byte)
586
{
587
__filemap_fdatawait_range(mapping, start_byte, end_byte);
588
return filemap_check_and_keep_errors(mapping);
589
}
590
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
591
592
/**
593
* file_fdatawait_range - wait for writeback to complete
594
* @file: file pointing to address space structure to wait for
595
* @start_byte: offset in bytes where the range starts
596
* @end_byte: offset in bytes where the range ends (inclusive)
597
*
598
* Walk the list of under-writeback pages of the address space that file
599
* refers to, in the given range and wait for all of them. Check error
600
* status of the address space vs. the file->f_wb_err cursor and return it.
601
*
602
* Since the error status of the file is advanced by this function,
603
* callers are responsible for checking the return value and handling and/or
604
* reporting the error.
605
*
606
* Return: error status of the address space vs. the file->f_wb_err cursor.
607
*/
608
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
609
{
610
struct address_space *mapping = file->f_mapping;
611
612
__filemap_fdatawait_range(mapping, start_byte, end_byte);
613
return file_check_and_advance_wb_err(file);
614
}
615
EXPORT_SYMBOL(file_fdatawait_range);
616
617
/**
618
* filemap_fdatawait_keep_errors - wait for writeback without clearing errors
619
* @mapping: address space structure to wait for
620
*
621
* Walk the list of under-writeback pages of the given address space
622
* and wait for all of them. Unlike filemap_fdatawait(), this function
623
* does not clear error status of the address space.
624
*
625
* Use this function if callers don't handle errors themselves. Expected
626
* call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
627
* fsfreeze(8)
628
*
629
* Return: error status of the address space.
630
*/
631
int filemap_fdatawait_keep_errors(struct address_space *mapping)
632
{
633
__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
634
return filemap_check_and_keep_errors(mapping);
635
}
636
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
637
638
/* Returns true if writeback might be needed or already in progress. */
639
static bool mapping_needs_writeback(struct address_space *mapping)
640
{
641
return mapping->nrpages;
642
}
643
644
bool filemap_range_has_writeback(struct address_space *mapping,
645
loff_t start_byte, loff_t end_byte)
646
{
647
XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
648
pgoff_t max = end_byte >> PAGE_SHIFT;
649
struct folio *folio;
650
651
if (end_byte < start_byte)
652
return false;
653
654
rcu_read_lock();
655
xas_for_each(&xas, folio, max) {
656
if (xas_retry(&xas, folio))
657
continue;
658
if (xa_is_value(folio))
659
continue;
660
if (folio_test_dirty(folio) || folio_test_locked(folio) ||
661
folio_test_writeback(folio))
662
break;
663
}
664
rcu_read_unlock();
665
return folio != NULL;
666
}
667
EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
668
669
/**
670
* filemap_write_and_wait_range - write out & wait on a file range
671
* @mapping: the address_space for the pages
672
* @lstart: offset in bytes where the range starts
673
* @lend: offset in bytes where the range ends (inclusive)
674
*
675
* Write out and wait upon file offsets lstart->lend, inclusive.
676
*
677
* Note that @lend is inclusive (describes the last byte to be written) so
678
* that this function can be used to write to the very end-of-file (end = -1).
679
*
680
* Return: error status of the address space.
681
*/
682
int filemap_write_and_wait_range(struct address_space *mapping,
683
loff_t lstart, loff_t lend)
684
{
685
int err = 0, err2;
686
687
if (lend < lstart)
688
return 0;
689
690
if (mapping_needs_writeback(mapping)) {
691
err = __filemap_fdatawrite_range(mapping, lstart, lend,
692
WB_SYNC_ALL);
693
/*
694
* Even if the above returned error, the pages may be
695
* written partially (e.g. -ENOSPC), so we wait for it.
696
* But the -EIO is special case, it may indicate the worst
697
* thing (e.g. bug) happened, so we avoid waiting for it.
698
*/
699
if (err != -EIO)
700
__filemap_fdatawait_range(mapping, lstart, lend);
701
}
702
err2 = filemap_check_errors(mapping);
703
if (!err)
704
err = err2;
705
return err;
706
}
707
EXPORT_SYMBOL(filemap_write_and_wait_range);
708
709
void __filemap_set_wb_err(struct address_space *mapping, int err)
710
{
711
errseq_t eseq = errseq_set(&mapping->wb_err, err);
712
713
trace_filemap_set_wb_err(mapping, eseq);
714
}
715
EXPORT_SYMBOL(__filemap_set_wb_err);
716
717
/**
718
* file_check_and_advance_wb_err - report wb error (if any) that was previously
719
* and advance wb_err to current one
720
* @file: struct file on which the error is being reported
721
*
722
* When userland calls fsync (or something like nfsd does the equivalent), we
723
* want to report any writeback errors that occurred since the last fsync (or
724
* since the file was opened if there haven't been any).
725
*
726
* Grab the wb_err from the mapping. If it matches what we have in the file,
727
* then just quickly return 0. The file is all caught up.
728
*
729
* If it doesn't match, then take the mapping value, set the "seen" flag in
730
* it and try to swap it into place. If it works, or another task beat us
731
* to it with the new value, then update the f_wb_err and return the error
732
* portion. The error at this point must be reported via proper channels
733
* (a'la fsync, or NFS COMMIT operation, etc.).
734
*
735
* While we handle mapping->wb_err with atomic operations, the f_wb_err
736
* value is protected by the f_lock since we must ensure that it reflects
737
* the latest value swapped in for this file descriptor.
738
*
739
* Return: %0 on success, negative error code otherwise.
740
*/
741
int file_check_and_advance_wb_err(struct file *file)
742
{
743
int err = 0;
744
errseq_t old = READ_ONCE(file->f_wb_err);
745
struct address_space *mapping = file->f_mapping;
746
747
/* Locklessly handle the common case where nothing has changed */
748
if (errseq_check(&mapping->wb_err, old)) {
749
/* Something changed, must use slow path */
750
spin_lock(&file->f_lock);
751
old = file->f_wb_err;
752
err = errseq_check_and_advance(&mapping->wb_err,
753
&file->f_wb_err);
754
trace_file_check_and_advance_wb_err(file, old);
755
spin_unlock(&file->f_lock);
756
}
757
758
/*
759
* We're mostly using this function as a drop in replacement for
760
* filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
761
* that the legacy code would have had on these flags.
762
*/
763
clear_bit(AS_EIO, &mapping->flags);
764
clear_bit(AS_ENOSPC, &mapping->flags);
765
return err;
766
}
767
EXPORT_SYMBOL(file_check_and_advance_wb_err);
768
769
/**
770
* file_write_and_wait_range - write out & wait on a file range
771
* @file: file pointing to address_space with pages
772
* @lstart: offset in bytes where the range starts
773
* @lend: offset in bytes where the range ends (inclusive)
774
*
775
* Write out and wait upon file offsets lstart->lend, inclusive.
776
*
777
* Note that @lend is inclusive (describes the last byte to be written) so
778
* that this function can be used to write to the very end-of-file (end = -1).
779
*
780
* After writing out and waiting on the data, we check and advance the
781
* f_wb_err cursor to the latest value, and return any errors detected there.
782
*
783
* Return: %0 on success, negative error code otherwise.
784
*/
785
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
786
{
787
int err = 0, err2;
788
struct address_space *mapping = file->f_mapping;
789
790
if (lend < lstart)
791
return 0;
792
793
if (mapping_needs_writeback(mapping)) {
794
err = __filemap_fdatawrite_range(mapping, lstart, lend,
795
WB_SYNC_ALL);
796
/* See comment of filemap_write_and_wait() */
797
if (err != -EIO)
798
__filemap_fdatawait_range(mapping, lstart, lend);
799
}
800
err2 = file_check_and_advance_wb_err(file);
801
if (!err)
802
err = err2;
803
return err;
804
}
805
EXPORT_SYMBOL(file_write_and_wait_range);
806
807
/**
808
* replace_page_cache_folio - replace a pagecache folio with a new one
809
* @old: folio to be replaced
810
* @new: folio to replace with
811
*
812
* This function replaces a folio in the pagecache with a new one. On
813
* success it acquires the pagecache reference for the new folio and
814
* drops it for the old folio. Both the old and new folios must be
815
* locked. This function does not add the new folio to the LRU, the
816
* caller must do that.
817
*
818
* The remove + add is atomic. This function cannot fail.
819
*/
820
void replace_page_cache_folio(struct folio *old, struct folio *new)
821
{
822
struct address_space *mapping = old->mapping;
823
void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
824
pgoff_t offset = old->index;
825
XA_STATE(xas, &mapping->i_pages, offset);
826
827
VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
828
VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
829
VM_BUG_ON_FOLIO(new->mapping, new);
830
831
folio_get(new);
832
new->mapping = mapping;
833
new->index = offset;
834
835
mem_cgroup_replace_folio(old, new);
836
837
xas_lock_irq(&xas);
838
xas_store(&xas, new);
839
840
old->mapping = NULL;
841
/* hugetlb pages do not participate in page cache accounting. */
842
if (!folio_test_hugetlb(old))
843
__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
844
if (!folio_test_hugetlb(new))
845
__lruvec_stat_add_folio(new, NR_FILE_PAGES);
846
if (folio_test_swapbacked(old))
847
__lruvec_stat_sub_folio(old, NR_SHMEM);
848
if (folio_test_swapbacked(new))
849
__lruvec_stat_add_folio(new, NR_SHMEM);
850
xas_unlock_irq(&xas);
851
if (free_folio)
852
free_folio(old);
853
folio_put(old);
854
}
855
EXPORT_SYMBOL_GPL(replace_page_cache_folio);
856
857
noinline int __filemap_add_folio(struct address_space *mapping,
858
struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
859
{
860
XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
861
bool huge;
862
long nr;
863
unsigned int forder = folio_order(folio);
864
865
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
866
VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
867
VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
868
folio);
869
mapping_set_update(&xas, mapping);
870
871
VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
872
huge = folio_test_hugetlb(folio);
873
nr = folio_nr_pages(folio);
874
875
gfp &= GFP_RECLAIM_MASK;
876
folio_ref_add(folio, nr);
877
folio->mapping = mapping;
878
folio->index = xas.xa_index;
879
880
for (;;) {
881
int order = -1;
882
void *entry, *old = NULL;
883
884
xas_lock_irq(&xas);
885
xas_for_each_conflict(&xas, entry) {
886
old = entry;
887
if (!xa_is_value(entry)) {
888
xas_set_err(&xas, -EEXIST);
889
goto unlock;
890
}
891
/*
892
* If a larger entry exists,
893
* it will be the first and only entry iterated.
894
*/
895
if (order == -1)
896
order = xas_get_order(&xas);
897
}
898
899
if (old) {
900
if (order > 0 && order > forder) {
901
unsigned int split_order = max(forder,
902
xas_try_split_min_order(order));
903
904
/* How to handle large swap entries? */
905
BUG_ON(shmem_mapping(mapping));
906
907
while (order > forder) {
908
xas_set_order(&xas, index, split_order);
909
xas_try_split(&xas, old, order);
910
if (xas_error(&xas))
911
goto unlock;
912
order = split_order;
913
split_order =
914
max(xas_try_split_min_order(
915
split_order),
916
forder);
917
}
918
xas_reset(&xas);
919
}
920
if (shadowp)
921
*shadowp = old;
922
}
923
924
xas_store(&xas, folio);
925
if (xas_error(&xas))
926
goto unlock;
927
928
mapping->nrpages += nr;
929
930
/* hugetlb pages do not participate in page cache accounting */
931
if (!huge) {
932
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
933
if (folio_test_pmd_mappable(folio))
934
__lruvec_stat_mod_folio(folio,
935
NR_FILE_THPS, nr);
936
}
937
938
unlock:
939
xas_unlock_irq(&xas);
940
941
if (!xas_nomem(&xas, gfp))
942
break;
943
}
944
945
if (xas_error(&xas))
946
goto error;
947
948
trace_mm_filemap_add_to_page_cache(folio);
949
return 0;
950
error:
951
folio->mapping = NULL;
952
/* Leave folio->index set: truncation relies upon it */
953
folio_put_refs(folio, nr);
954
return xas_error(&xas);
955
}
956
ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
957
958
int filemap_add_folio(struct address_space *mapping, struct folio *folio,
959
pgoff_t index, gfp_t gfp)
960
{
961
void *shadow = NULL;
962
int ret;
963
964
ret = mem_cgroup_charge(folio, NULL, gfp);
965
if (ret)
966
return ret;
967
968
__folio_set_locked(folio);
969
ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
970
if (unlikely(ret)) {
971
mem_cgroup_uncharge(folio);
972
__folio_clear_locked(folio);
973
} else {
974
/*
975
* The folio might have been evicted from cache only
976
* recently, in which case it should be activated like
977
* any other repeatedly accessed folio.
978
* The exception is folios getting rewritten; evicting other
979
* data from the working set, only to cache data that will
980
* get overwritten with something else, is a waste of memory.
981
*/
982
WARN_ON_ONCE(folio_test_active(folio));
983
if (!(gfp & __GFP_WRITE) && shadow)
984
workingset_refault(folio, shadow);
985
folio_add_lru(folio);
986
}
987
return ret;
988
}
989
EXPORT_SYMBOL_GPL(filemap_add_folio);
990
991
#ifdef CONFIG_NUMA
992
struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
993
{
994
int n;
995
struct folio *folio;
996
997
if (cpuset_do_page_mem_spread()) {
998
unsigned int cpuset_mems_cookie;
999
do {
1000
cpuset_mems_cookie = read_mems_allowed_begin();
1001
n = cpuset_mem_spread_node();
1002
folio = __folio_alloc_node_noprof(gfp, order, n);
1003
} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1004
1005
return folio;
1006
}
1007
return folio_alloc_noprof(gfp, order);
1008
}
1009
EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1010
#endif
1011
1012
/*
1013
* filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1014
*
1015
* Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1016
*
1017
* @mapping1: the first mapping to lock
1018
* @mapping2: the second mapping to lock
1019
*/
1020
void filemap_invalidate_lock_two(struct address_space *mapping1,
1021
struct address_space *mapping2)
1022
{
1023
if (mapping1 > mapping2)
1024
swap(mapping1, mapping2);
1025
if (mapping1)
1026
down_write(&mapping1->invalidate_lock);
1027
if (mapping2 && mapping1 != mapping2)
1028
down_write_nested(&mapping2->invalidate_lock, 1);
1029
}
1030
EXPORT_SYMBOL(filemap_invalidate_lock_two);
1031
1032
/*
1033
* filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1034
*
1035
* Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1036
*
1037
* @mapping1: the first mapping to unlock
1038
* @mapping2: the second mapping to unlock
1039
*/
1040
void filemap_invalidate_unlock_two(struct address_space *mapping1,
1041
struct address_space *mapping2)
1042
{
1043
if (mapping1)
1044
up_write(&mapping1->invalidate_lock);
1045
if (mapping2 && mapping1 != mapping2)
1046
up_write(&mapping2->invalidate_lock);
1047
}
1048
EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1049
1050
/*
1051
* In order to wait for pages to become available there must be
1052
* waitqueues associated with pages. By using a hash table of
1053
* waitqueues where the bucket discipline is to maintain all
1054
* waiters on the same queue and wake all when any of the pages
1055
* become available, and for the woken contexts to check to be
1056
* sure the appropriate page became available, this saves space
1057
* at a cost of "thundering herd" phenomena during rare hash
1058
* collisions.
1059
*/
1060
#define PAGE_WAIT_TABLE_BITS 8
1061
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1062
static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1063
1064
static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1065
{
1066
return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1067
}
1068
1069
/* How many times do we accept lock stealing from under a waiter? */
1070
static int sysctl_page_lock_unfairness = 5;
1071
static const struct ctl_table filemap_sysctl_table[] = {
1072
{
1073
.procname = "page_lock_unfairness",
1074
.data = &sysctl_page_lock_unfairness,
1075
.maxlen = sizeof(sysctl_page_lock_unfairness),
1076
.mode = 0644,
1077
.proc_handler = proc_dointvec_minmax,
1078
.extra1 = SYSCTL_ZERO,
1079
}
1080
};
1081
1082
void __init pagecache_init(void)
1083
{
1084
int i;
1085
1086
for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1087
init_waitqueue_head(&folio_wait_table[i]);
1088
1089
page_writeback_init();
1090
register_sysctl_init("vm", filemap_sysctl_table);
1091
}
1092
1093
/*
1094
* The page wait code treats the "wait->flags" somewhat unusually, because
1095
* we have multiple different kinds of waits, not just the usual "exclusive"
1096
* one.
1097
*
1098
* We have:
1099
*
1100
* (a) no special bits set:
1101
*
1102
* We're just waiting for the bit to be released, and when a waker
1103
* calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1104
* and remove it from the wait queue.
1105
*
1106
* Simple and straightforward.
1107
*
1108
* (b) WQ_FLAG_EXCLUSIVE:
1109
*
1110
* The waiter is waiting to get the lock, and only one waiter should
1111
* be woken up to avoid any thundering herd behavior. We'll set the
1112
* WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1113
*
1114
* This is the traditional exclusive wait.
1115
*
1116
* (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1117
*
1118
* The waiter is waiting to get the bit, and additionally wants the
1119
* lock to be transferred to it for fair lock behavior. If the lock
1120
* cannot be taken, we stop walking the wait queue without waking
1121
* the waiter.
1122
*
1123
* This is the "fair lock handoff" case, and in addition to setting
1124
* WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1125
* that it now has the lock.
1126
*/
1127
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1128
{
1129
unsigned int flags;
1130
struct wait_page_key *key = arg;
1131
struct wait_page_queue *wait_page
1132
= container_of(wait, struct wait_page_queue, wait);
1133
1134
if (!wake_page_match(wait_page, key))
1135
return 0;
1136
1137
/*
1138
* If it's a lock handoff wait, we get the bit for it, and
1139
* stop walking (and do not wake it up) if we can't.
1140
*/
1141
flags = wait->flags;
1142
if (flags & WQ_FLAG_EXCLUSIVE) {
1143
if (test_bit(key->bit_nr, &key->folio->flags))
1144
return -1;
1145
if (flags & WQ_FLAG_CUSTOM) {
1146
if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1147
return -1;
1148
flags |= WQ_FLAG_DONE;
1149
}
1150
}
1151
1152
/*
1153
* We are holding the wait-queue lock, but the waiter that
1154
* is waiting for this will be checking the flags without
1155
* any locking.
1156
*
1157
* So update the flags atomically, and wake up the waiter
1158
* afterwards to avoid any races. This store-release pairs
1159
* with the load-acquire in folio_wait_bit_common().
1160
*/
1161
smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1162
wake_up_state(wait->private, mode);
1163
1164
/*
1165
* Ok, we have successfully done what we're waiting for,
1166
* and we can unconditionally remove the wait entry.
1167
*
1168
* Note that this pairs with the "finish_wait()" in the
1169
* waiter, and has to be the absolute last thing we do.
1170
* After this list_del_init(&wait->entry) the wait entry
1171
* might be de-allocated and the process might even have
1172
* exited.
1173
*/
1174
list_del_init_careful(&wait->entry);
1175
return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1176
}
1177
1178
static void folio_wake_bit(struct folio *folio, int bit_nr)
1179
{
1180
wait_queue_head_t *q = folio_waitqueue(folio);
1181
struct wait_page_key key;
1182
unsigned long flags;
1183
1184
key.folio = folio;
1185
key.bit_nr = bit_nr;
1186
key.page_match = 0;
1187
1188
spin_lock_irqsave(&q->lock, flags);
1189
__wake_up_locked_key(q, TASK_NORMAL, &key);
1190
1191
/*
1192
* It's possible to miss clearing waiters here, when we woke our page
1193
* waiters, but the hashed waitqueue has waiters for other pages on it.
1194
* That's okay, it's a rare case. The next waker will clear it.
1195
*
1196
* Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1197
* other), the flag may be cleared in the course of freeing the page;
1198
* but that is not required for correctness.
1199
*/
1200
if (!waitqueue_active(q) || !key.page_match)
1201
folio_clear_waiters(folio);
1202
1203
spin_unlock_irqrestore(&q->lock, flags);
1204
}
1205
1206
/*
1207
* A choice of three behaviors for folio_wait_bit_common():
1208
*/
1209
enum behavior {
1210
EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1211
* __folio_lock() waiting on then setting PG_locked.
1212
*/
1213
SHARED, /* Hold ref to page and check the bit when woken, like
1214
* folio_wait_writeback() waiting on PG_writeback.
1215
*/
1216
DROP, /* Drop ref to page before wait, no check when woken,
1217
* like folio_put_wait_locked() on PG_locked.
1218
*/
1219
};
1220
1221
/*
1222
* Attempt to check (or get) the folio flag, and mark us done
1223
* if successful.
1224
*/
1225
static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1226
struct wait_queue_entry *wait)
1227
{
1228
if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1229
if (test_and_set_bit(bit_nr, &folio->flags))
1230
return false;
1231
} else if (test_bit(bit_nr, &folio->flags))
1232
return false;
1233
1234
wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1235
return true;
1236
}
1237
1238
static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1239
int state, enum behavior behavior)
1240
{
1241
wait_queue_head_t *q = folio_waitqueue(folio);
1242
int unfairness = sysctl_page_lock_unfairness;
1243
struct wait_page_queue wait_page;
1244
wait_queue_entry_t *wait = &wait_page.wait;
1245
bool thrashing = false;
1246
unsigned long pflags;
1247
bool in_thrashing;
1248
1249
if (bit_nr == PG_locked &&
1250
!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1251
delayacct_thrashing_start(&in_thrashing);
1252
psi_memstall_enter(&pflags);
1253
thrashing = true;
1254
}
1255
1256
init_wait(wait);
1257
wait->func = wake_page_function;
1258
wait_page.folio = folio;
1259
wait_page.bit_nr = bit_nr;
1260
1261
repeat:
1262
wait->flags = 0;
1263
if (behavior == EXCLUSIVE) {
1264
wait->flags = WQ_FLAG_EXCLUSIVE;
1265
if (--unfairness < 0)
1266
wait->flags |= WQ_FLAG_CUSTOM;
1267
}
1268
1269
/*
1270
* Do one last check whether we can get the
1271
* page bit synchronously.
1272
*
1273
* Do the folio_set_waiters() marking before that
1274
* to let any waker we _just_ missed know they
1275
* need to wake us up (otherwise they'll never
1276
* even go to the slow case that looks at the
1277
* page queue), and add ourselves to the wait
1278
* queue if we need to sleep.
1279
*
1280
* This part needs to be done under the queue
1281
* lock to avoid races.
1282
*/
1283
spin_lock_irq(&q->lock);
1284
folio_set_waiters(folio);
1285
if (!folio_trylock_flag(folio, bit_nr, wait))
1286
__add_wait_queue_entry_tail(q, wait);
1287
spin_unlock_irq(&q->lock);
1288
1289
/*
1290
* From now on, all the logic will be based on
1291
* the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1292
* see whether the page bit testing has already
1293
* been done by the wake function.
1294
*
1295
* We can drop our reference to the folio.
1296
*/
1297
if (behavior == DROP)
1298
folio_put(folio);
1299
1300
/*
1301
* Note that until the "finish_wait()", or until
1302
* we see the WQ_FLAG_WOKEN flag, we need to
1303
* be very careful with the 'wait->flags', because
1304
* we may race with a waker that sets them.
1305
*/
1306
for (;;) {
1307
unsigned int flags;
1308
1309
set_current_state(state);
1310
1311
/* Loop until we've been woken or interrupted */
1312
flags = smp_load_acquire(&wait->flags);
1313
if (!(flags & WQ_FLAG_WOKEN)) {
1314
if (signal_pending_state(state, current))
1315
break;
1316
1317
io_schedule();
1318
continue;
1319
}
1320
1321
/* If we were non-exclusive, we're done */
1322
if (behavior != EXCLUSIVE)
1323
break;
1324
1325
/* If the waker got the lock for us, we're done */
1326
if (flags & WQ_FLAG_DONE)
1327
break;
1328
1329
/*
1330
* Otherwise, if we're getting the lock, we need to
1331
* try to get it ourselves.
1332
*
1333
* And if that fails, we'll have to retry this all.
1334
*/
1335
if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1336
goto repeat;
1337
1338
wait->flags |= WQ_FLAG_DONE;
1339
break;
1340
}
1341
1342
/*
1343
* If a signal happened, this 'finish_wait()' may remove the last
1344
* waiter from the wait-queues, but the folio waiters bit will remain
1345
* set. That's ok. The next wakeup will take care of it, and trying
1346
* to do it here would be difficult and prone to races.
1347
*/
1348
finish_wait(q, wait);
1349
1350
if (thrashing) {
1351
delayacct_thrashing_end(&in_thrashing);
1352
psi_memstall_leave(&pflags);
1353
}
1354
1355
/*
1356
* NOTE! The wait->flags weren't stable until we've done the
1357
* 'finish_wait()', and we could have exited the loop above due
1358
* to a signal, and had a wakeup event happen after the signal
1359
* test but before the 'finish_wait()'.
1360
*
1361
* So only after the finish_wait() can we reliably determine
1362
* if we got woken up or not, so we can now figure out the final
1363
* return value based on that state without races.
1364
*
1365
* Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1366
* waiter, but an exclusive one requires WQ_FLAG_DONE.
1367
*/
1368
if (behavior == EXCLUSIVE)
1369
return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1370
1371
return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1372
}
1373
1374
#ifdef CONFIG_MIGRATION
1375
/**
1376
* migration_entry_wait_on_locked - Wait for a migration entry to be removed
1377
* @entry: migration swap entry.
1378
* @ptl: already locked ptl. This function will drop the lock.
1379
*
1380
* Wait for a migration entry referencing the given page to be removed. This is
1381
* equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1382
* this can be called without taking a reference on the page. Instead this
1383
* should be called while holding the ptl for the migration entry referencing
1384
* the page.
1385
*
1386
* Returns after unlocking the ptl.
1387
*
1388
* This follows the same logic as folio_wait_bit_common() so see the comments
1389
* there.
1390
*/
1391
void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1392
__releases(ptl)
1393
{
1394
struct wait_page_queue wait_page;
1395
wait_queue_entry_t *wait = &wait_page.wait;
1396
bool thrashing = false;
1397
unsigned long pflags;
1398
bool in_thrashing;
1399
wait_queue_head_t *q;
1400
struct folio *folio = pfn_swap_entry_folio(entry);
1401
1402
q = folio_waitqueue(folio);
1403
if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1404
delayacct_thrashing_start(&in_thrashing);
1405
psi_memstall_enter(&pflags);
1406
thrashing = true;
1407
}
1408
1409
init_wait(wait);
1410
wait->func = wake_page_function;
1411
wait_page.folio = folio;
1412
wait_page.bit_nr = PG_locked;
1413
wait->flags = 0;
1414
1415
spin_lock_irq(&q->lock);
1416
folio_set_waiters(folio);
1417
if (!folio_trylock_flag(folio, PG_locked, wait))
1418
__add_wait_queue_entry_tail(q, wait);
1419
spin_unlock_irq(&q->lock);
1420
1421
/*
1422
* If a migration entry exists for the page the migration path must hold
1423
* a valid reference to the page, and it must take the ptl to remove the
1424
* migration entry. So the page is valid until the ptl is dropped.
1425
*/
1426
spin_unlock(ptl);
1427
1428
for (;;) {
1429
unsigned int flags;
1430
1431
set_current_state(TASK_UNINTERRUPTIBLE);
1432
1433
/* Loop until we've been woken or interrupted */
1434
flags = smp_load_acquire(&wait->flags);
1435
if (!(flags & WQ_FLAG_WOKEN)) {
1436
if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1437
break;
1438
1439
io_schedule();
1440
continue;
1441
}
1442
break;
1443
}
1444
1445
finish_wait(q, wait);
1446
1447
if (thrashing) {
1448
delayacct_thrashing_end(&in_thrashing);
1449
psi_memstall_leave(&pflags);
1450
}
1451
}
1452
#endif
1453
1454
void folio_wait_bit(struct folio *folio, int bit_nr)
1455
{
1456
folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1457
}
1458
EXPORT_SYMBOL(folio_wait_bit);
1459
1460
int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1461
{
1462
return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1463
}
1464
EXPORT_SYMBOL(folio_wait_bit_killable);
1465
1466
/**
1467
* folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1468
* @folio: The folio to wait for.
1469
* @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1470
*
1471
* The caller should hold a reference on @folio. They expect the page to
1472
* become unlocked relatively soon, but do not wish to hold up migration
1473
* (for example) by holding the reference while waiting for the folio to
1474
* come unlocked. After this function returns, the caller should not
1475
* dereference @folio.
1476
*
1477
* Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1478
*/
1479
static int folio_put_wait_locked(struct folio *folio, int state)
1480
{
1481
return folio_wait_bit_common(folio, PG_locked, state, DROP);
1482
}
1483
1484
/**
1485
* folio_unlock - Unlock a locked folio.
1486
* @folio: The folio.
1487
*
1488
* Unlocks the folio and wakes up any thread sleeping on the page lock.
1489
*
1490
* Context: May be called from interrupt or process context. May not be
1491
* called from NMI context.
1492
*/
1493
void folio_unlock(struct folio *folio)
1494
{
1495
/* Bit 7 allows x86 to check the byte's sign bit */
1496
BUILD_BUG_ON(PG_waiters != 7);
1497
BUILD_BUG_ON(PG_locked > 7);
1498
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1499
if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1500
folio_wake_bit(folio, PG_locked);
1501
}
1502
EXPORT_SYMBOL(folio_unlock);
1503
1504
/**
1505
* folio_end_read - End read on a folio.
1506
* @folio: The folio.
1507
* @success: True if all reads completed successfully.
1508
*
1509
* When all reads against a folio have completed, filesystems should
1510
* call this function to let the pagecache know that no more reads
1511
* are outstanding. This will unlock the folio and wake up any thread
1512
* sleeping on the lock. The folio will also be marked uptodate if all
1513
* reads succeeded.
1514
*
1515
* Context: May be called from interrupt or process context. May not be
1516
* called from NMI context.
1517
*/
1518
void folio_end_read(struct folio *folio, bool success)
1519
{
1520
unsigned long mask = 1 << PG_locked;
1521
1522
/* Must be in bottom byte for x86 to work */
1523
BUILD_BUG_ON(PG_uptodate > 7);
1524
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525
VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1526
1527
if (likely(success))
1528
mask |= 1 << PG_uptodate;
1529
if (folio_xor_flags_has_waiters(folio, mask))
1530
folio_wake_bit(folio, PG_locked);
1531
}
1532
EXPORT_SYMBOL(folio_end_read);
1533
1534
/**
1535
* folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1536
* @folio: The folio.
1537
*
1538
* Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1539
* it. The folio reference held for PG_private_2 being set is released.
1540
*
1541
* This is, for example, used when a netfs folio is being written to a local
1542
* disk cache, thereby allowing writes to the cache for the same folio to be
1543
* serialised.
1544
*/
1545
void folio_end_private_2(struct folio *folio)
1546
{
1547
VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1548
clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1549
folio_wake_bit(folio, PG_private_2);
1550
folio_put(folio);
1551
}
1552
EXPORT_SYMBOL(folio_end_private_2);
1553
1554
/**
1555
* folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1556
* @folio: The folio to wait on.
1557
*
1558
* Wait for PG_private_2 to be cleared on a folio.
1559
*/
1560
void folio_wait_private_2(struct folio *folio)
1561
{
1562
while (folio_test_private_2(folio))
1563
folio_wait_bit(folio, PG_private_2);
1564
}
1565
EXPORT_SYMBOL(folio_wait_private_2);
1566
1567
/**
1568
* folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1569
* @folio: The folio to wait on.
1570
*
1571
* Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1572
* received by the calling task.
1573
*
1574
* Return:
1575
* - 0 if successful.
1576
* - -EINTR if a fatal signal was encountered.
1577
*/
1578
int folio_wait_private_2_killable(struct folio *folio)
1579
{
1580
int ret = 0;
1581
1582
while (folio_test_private_2(folio)) {
1583
ret = folio_wait_bit_killable(folio, PG_private_2);
1584
if (ret < 0)
1585
break;
1586
}
1587
1588
return ret;
1589
}
1590
EXPORT_SYMBOL(folio_wait_private_2_killable);
1591
1592
static void filemap_end_dropbehind(struct folio *folio)
1593
{
1594
struct address_space *mapping = folio->mapping;
1595
1596
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1597
1598
if (folio_test_writeback(folio) || folio_test_dirty(folio))
1599
return;
1600
if (!folio_test_clear_dropbehind(folio))
1601
return;
1602
if (mapping)
1603
folio_unmap_invalidate(mapping, folio, 0);
1604
}
1605
1606
/*
1607
* If folio was marked as dropbehind, then pages should be dropped when writeback
1608
* completes. Do that now. If we fail, it's likely because of a big folio -
1609
* just reset dropbehind for that case and latter completions should invalidate.
1610
*/
1611
static void filemap_end_dropbehind_write(struct folio *folio)
1612
{
1613
if (!folio_test_dropbehind(folio))
1614
return;
1615
1616
/*
1617
* Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1618
* but can happen if normal writeback just happens to find dirty folios
1619
* that were created as part of uncached writeback, and that writeback
1620
* would otherwise not need non-IRQ handling. Just skip the
1621
* invalidation in that case.
1622
*/
1623
if (in_task() && folio_trylock(folio)) {
1624
filemap_end_dropbehind(folio);
1625
folio_unlock(folio);
1626
}
1627
}
1628
1629
/**
1630
* folio_end_writeback - End writeback against a folio.
1631
* @folio: The folio.
1632
*
1633
* The folio must actually be under writeback.
1634
*
1635
* Context: May be called from process or interrupt context.
1636
*/
1637
void folio_end_writeback(struct folio *folio)
1638
{
1639
VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1640
1641
/*
1642
* folio_test_clear_reclaim() could be used here but it is an
1643
* atomic operation and overkill in this particular case. Failing
1644
* to shuffle a folio marked for immediate reclaim is too mild
1645
* a gain to justify taking an atomic operation penalty at the
1646
* end of every folio writeback.
1647
*/
1648
if (folio_test_reclaim(folio)) {
1649
folio_clear_reclaim(folio);
1650
folio_rotate_reclaimable(folio);
1651
}
1652
1653
/*
1654
* Writeback does not hold a folio reference of its own, relying
1655
* on truncation to wait for the clearing of PG_writeback.
1656
* But here we must make sure that the folio is not freed and
1657
* reused before the folio_wake_bit().
1658
*/
1659
folio_get(folio);
1660
if (__folio_end_writeback(folio))
1661
folio_wake_bit(folio, PG_writeback);
1662
1663
filemap_end_dropbehind_write(folio);
1664
acct_reclaim_writeback(folio);
1665
folio_put(folio);
1666
}
1667
EXPORT_SYMBOL(folio_end_writeback);
1668
1669
/**
1670
* __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1671
* @folio: The folio to lock
1672
*/
1673
void __folio_lock(struct folio *folio)
1674
{
1675
folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1676
EXCLUSIVE);
1677
}
1678
EXPORT_SYMBOL(__folio_lock);
1679
1680
int __folio_lock_killable(struct folio *folio)
1681
{
1682
return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1683
EXCLUSIVE);
1684
}
1685
EXPORT_SYMBOL_GPL(__folio_lock_killable);
1686
1687
static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1688
{
1689
struct wait_queue_head *q = folio_waitqueue(folio);
1690
int ret;
1691
1692
wait->folio = folio;
1693
wait->bit_nr = PG_locked;
1694
1695
spin_lock_irq(&q->lock);
1696
__add_wait_queue_entry_tail(q, &wait->wait);
1697
folio_set_waiters(folio);
1698
ret = !folio_trylock(folio);
1699
/*
1700
* If we were successful now, we know we're still on the
1701
* waitqueue as we're still under the lock. This means it's
1702
* safe to remove and return success, we know the callback
1703
* isn't going to trigger.
1704
*/
1705
if (!ret)
1706
__remove_wait_queue(q, &wait->wait);
1707
else
1708
ret = -EIOCBQUEUED;
1709
spin_unlock_irq(&q->lock);
1710
return ret;
1711
}
1712
1713
/*
1714
* Return values:
1715
* 0 - folio is locked.
1716
* non-zero - folio is not locked.
1717
* mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1718
* vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1719
* FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1720
*
1721
* If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1722
* with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1723
*/
1724
vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1725
{
1726
unsigned int flags = vmf->flags;
1727
1728
if (fault_flag_allow_retry_first(flags)) {
1729
/*
1730
* CAUTION! In this case, mmap_lock/per-VMA lock is not
1731
* released even though returning VM_FAULT_RETRY.
1732
*/
1733
if (flags & FAULT_FLAG_RETRY_NOWAIT)
1734
return VM_FAULT_RETRY;
1735
1736
release_fault_lock(vmf);
1737
if (flags & FAULT_FLAG_KILLABLE)
1738
folio_wait_locked_killable(folio);
1739
else
1740
folio_wait_locked(folio);
1741
return VM_FAULT_RETRY;
1742
}
1743
if (flags & FAULT_FLAG_KILLABLE) {
1744
bool ret;
1745
1746
ret = __folio_lock_killable(folio);
1747
if (ret) {
1748
release_fault_lock(vmf);
1749
return VM_FAULT_RETRY;
1750
}
1751
} else {
1752
__folio_lock(folio);
1753
}
1754
1755
return 0;
1756
}
1757
1758
/**
1759
* page_cache_next_miss() - Find the next gap in the page cache.
1760
* @mapping: Mapping.
1761
* @index: Index.
1762
* @max_scan: Maximum range to search.
1763
*
1764
* Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1765
* gap with the lowest index.
1766
*
1767
* This function may be called under the rcu_read_lock. However, this will
1768
* not atomically search a snapshot of the cache at a single point in time.
1769
* For example, if a gap is created at index 5, then subsequently a gap is
1770
* created at index 10, page_cache_next_miss covering both indices may
1771
* return 10 if called under the rcu_read_lock.
1772
*
1773
* Return: The index of the gap if found, otherwise an index outside the
1774
* range specified (in which case 'return - index >= max_scan' will be true).
1775
* In the rare case of index wrap-around, 0 will be returned.
1776
*/
1777
pgoff_t page_cache_next_miss(struct address_space *mapping,
1778
pgoff_t index, unsigned long max_scan)
1779
{
1780
XA_STATE(xas, &mapping->i_pages, index);
1781
unsigned long nr = max_scan;
1782
1783
while (nr--) {
1784
void *entry = xas_next(&xas);
1785
if (!entry || xa_is_value(entry))
1786
return xas.xa_index;
1787
if (xas.xa_index == 0)
1788
return 0;
1789
}
1790
1791
return index + max_scan;
1792
}
1793
EXPORT_SYMBOL(page_cache_next_miss);
1794
1795
/**
1796
* page_cache_prev_miss() - Find the previous gap in the page cache.
1797
* @mapping: Mapping.
1798
* @index: Index.
1799
* @max_scan: Maximum range to search.
1800
*
1801
* Search the range [max(index - max_scan + 1, 0), index] for the
1802
* gap with the highest index.
1803
*
1804
* This function may be called under the rcu_read_lock. However, this will
1805
* not atomically search a snapshot of the cache at a single point in time.
1806
* For example, if a gap is created at index 10, then subsequently a gap is
1807
* created at index 5, page_cache_prev_miss() covering both indices may
1808
* return 5 if called under the rcu_read_lock.
1809
*
1810
* Return: The index of the gap if found, otherwise an index outside the
1811
* range specified (in which case 'index - return >= max_scan' will be true).
1812
* In the rare case of wrap-around, ULONG_MAX will be returned.
1813
*/
1814
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1815
pgoff_t index, unsigned long max_scan)
1816
{
1817
XA_STATE(xas, &mapping->i_pages, index);
1818
1819
while (max_scan--) {
1820
void *entry = xas_prev(&xas);
1821
if (!entry || xa_is_value(entry))
1822
break;
1823
if (xas.xa_index == ULONG_MAX)
1824
break;
1825
}
1826
1827
return xas.xa_index;
1828
}
1829
EXPORT_SYMBOL(page_cache_prev_miss);
1830
1831
/*
1832
* Lockless page cache protocol:
1833
* On the lookup side:
1834
* 1. Load the folio from i_pages
1835
* 2. Increment the refcount if it's not zero
1836
* 3. If the folio is not found by xas_reload(), put the refcount and retry
1837
*
1838
* On the removal side:
1839
* A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1840
* B. Remove the page from i_pages
1841
* C. Return the page to the page allocator
1842
*
1843
* This means that any page may have its reference count temporarily
1844
* increased by a speculative page cache (or GUP-fast) lookup as it can
1845
* be allocated by another user before the RCU grace period expires.
1846
* Because the refcount temporarily acquired here may end up being the
1847
* last refcount on the page, any page allocation must be freeable by
1848
* folio_put().
1849
*/
1850
1851
/*
1852
* filemap_get_entry - Get a page cache entry.
1853
* @mapping: the address_space to search
1854
* @index: The page cache index.
1855
*
1856
* Looks up the page cache entry at @mapping & @index. If it is a folio,
1857
* it is returned with an increased refcount. If it is a shadow entry
1858
* of a previously evicted folio, or a swap entry from shmem/tmpfs,
1859
* it is returned without further action.
1860
*
1861
* Return: The folio, swap or shadow entry, %NULL if nothing is found.
1862
*/
1863
void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1864
{
1865
XA_STATE(xas, &mapping->i_pages, index);
1866
struct folio *folio;
1867
1868
rcu_read_lock();
1869
repeat:
1870
xas_reset(&xas);
1871
folio = xas_load(&xas);
1872
if (xas_retry(&xas, folio))
1873
goto repeat;
1874
/*
1875
* A shadow entry of a recently evicted page, or a swap entry from
1876
* shmem/tmpfs. Return it without attempting to raise page count.
1877
*/
1878
if (!folio || xa_is_value(folio))
1879
goto out;
1880
1881
if (!folio_try_get(folio))
1882
goto repeat;
1883
1884
if (unlikely(folio != xas_reload(&xas))) {
1885
folio_put(folio);
1886
goto repeat;
1887
}
1888
out:
1889
rcu_read_unlock();
1890
1891
return folio;
1892
}
1893
1894
/**
1895
* __filemap_get_folio - Find and get a reference to a folio.
1896
* @mapping: The address_space to search.
1897
* @index: The page index.
1898
* @fgp_flags: %FGP flags modify how the folio is returned.
1899
* @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1900
*
1901
* Looks up the page cache entry at @mapping & @index.
1902
*
1903
* If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1904
* if the %GFP flags specified for %FGP_CREAT are atomic.
1905
*
1906
* If this function returns a folio, it is returned with an increased refcount.
1907
*
1908
* Return: The found folio or an ERR_PTR() otherwise.
1909
*/
1910
struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1911
fgf_t fgp_flags, gfp_t gfp)
1912
{
1913
struct folio *folio;
1914
1915
repeat:
1916
folio = filemap_get_entry(mapping, index);
1917
if (xa_is_value(folio))
1918
folio = NULL;
1919
if (!folio)
1920
goto no_page;
1921
1922
if (fgp_flags & FGP_LOCK) {
1923
if (fgp_flags & FGP_NOWAIT) {
1924
if (!folio_trylock(folio)) {
1925
folio_put(folio);
1926
return ERR_PTR(-EAGAIN);
1927
}
1928
} else {
1929
folio_lock(folio);
1930
}
1931
1932
/* Has the page been truncated? */
1933
if (unlikely(folio->mapping != mapping)) {
1934
folio_unlock(folio);
1935
folio_put(folio);
1936
goto repeat;
1937
}
1938
VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1939
}
1940
1941
if (fgp_flags & FGP_ACCESSED)
1942
folio_mark_accessed(folio);
1943
else if (fgp_flags & FGP_WRITE) {
1944
/* Clear idle flag for buffer write */
1945
if (folio_test_idle(folio))
1946
folio_clear_idle(folio);
1947
}
1948
1949
if (fgp_flags & FGP_STABLE)
1950
folio_wait_stable(folio);
1951
no_page:
1952
if (!folio && (fgp_flags & FGP_CREAT)) {
1953
unsigned int min_order = mapping_min_folio_order(mapping);
1954
unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1955
int err;
1956
index = mapping_align_index(mapping, index);
1957
1958
if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1959
gfp |= __GFP_WRITE;
1960
if (fgp_flags & FGP_NOFS)
1961
gfp &= ~__GFP_FS;
1962
if (fgp_flags & FGP_NOWAIT) {
1963
gfp &= ~GFP_KERNEL;
1964
gfp |= GFP_NOWAIT | __GFP_NOWARN;
1965
}
1966
if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1967
fgp_flags |= FGP_LOCK;
1968
1969
if (order > mapping_max_folio_order(mapping))
1970
order = mapping_max_folio_order(mapping);
1971
/* If we're not aligned, allocate a smaller folio */
1972
if (index & ((1UL << order) - 1))
1973
order = __ffs(index);
1974
1975
do {
1976
gfp_t alloc_gfp = gfp;
1977
1978
err = -ENOMEM;
1979
if (order > min_order)
1980
alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1981
folio = filemap_alloc_folio(alloc_gfp, order);
1982
if (!folio)
1983
continue;
1984
1985
/* Init accessed so avoid atomic mark_page_accessed later */
1986
if (fgp_flags & FGP_ACCESSED)
1987
__folio_set_referenced(folio);
1988
if (fgp_flags & FGP_DONTCACHE)
1989
__folio_set_dropbehind(folio);
1990
1991
err = filemap_add_folio(mapping, folio, index, gfp);
1992
if (!err)
1993
break;
1994
folio_put(folio);
1995
folio = NULL;
1996
} while (order-- > min_order);
1997
1998
if (err == -EEXIST)
1999
goto repeat;
2000
if (err) {
2001
/*
2002
* When NOWAIT I/O fails to allocate folios this could
2003
* be due to a nonblocking memory allocation and not
2004
* because the system actually is out of memory.
2005
* Return -EAGAIN so that there caller retries in a
2006
* blocking fashion instead of propagating -ENOMEM
2007
* to the application.
2008
*/
2009
if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2010
err = -EAGAIN;
2011
return ERR_PTR(err);
2012
}
2013
/*
2014
* filemap_add_folio locks the page, and for mmap
2015
* we expect an unlocked page.
2016
*/
2017
if (folio && (fgp_flags & FGP_FOR_MMAP))
2018
folio_unlock(folio);
2019
}
2020
2021
if (!folio)
2022
return ERR_PTR(-ENOENT);
2023
/* not an uncached lookup, clear uncached if set */
2024
if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2025
folio_clear_dropbehind(folio);
2026
return folio;
2027
}
2028
EXPORT_SYMBOL(__filemap_get_folio);
2029
2030
static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2031
xa_mark_t mark)
2032
{
2033
struct folio *folio;
2034
2035
retry:
2036
if (mark == XA_PRESENT)
2037
folio = xas_find(xas, max);
2038
else
2039
folio = xas_find_marked(xas, max, mark);
2040
2041
if (xas_retry(xas, folio))
2042
goto retry;
2043
/*
2044
* A shadow entry of a recently evicted page, a swap
2045
* entry from shmem/tmpfs or a DAX entry. Return it
2046
* without attempting to raise page count.
2047
*/
2048
if (!folio || xa_is_value(folio))
2049
return folio;
2050
2051
if (!folio_try_get(folio))
2052
goto reset;
2053
2054
if (unlikely(folio != xas_reload(xas))) {
2055
folio_put(folio);
2056
goto reset;
2057
}
2058
2059
return folio;
2060
reset:
2061
xas_reset(xas);
2062
goto retry;
2063
}
2064
2065
/**
2066
* find_get_entries - gang pagecache lookup
2067
* @mapping: The address_space to search
2068
* @start: The starting page cache index
2069
* @end: The final page index (inclusive).
2070
* @fbatch: Where the resulting entries are placed.
2071
* @indices: The cache indices corresponding to the entries in @entries
2072
*
2073
* find_get_entries() will search for and return a batch of entries in
2074
* the mapping. The entries are placed in @fbatch. find_get_entries()
2075
* takes a reference on any actual folios it returns.
2076
*
2077
* The entries have ascending indexes. The indices may not be consecutive
2078
* due to not-present entries or large folios.
2079
*
2080
* Any shadow entries of evicted folios, or swap entries from
2081
* shmem/tmpfs, are included in the returned array.
2082
*
2083
* Return: The number of entries which were found.
2084
*/
2085
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2086
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2087
{
2088
XA_STATE(xas, &mapping->i_pages, *start);
2089
struct folio *folio;
2090
2091
rcu_read_lock();
2092
while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2093
indices[fbatch->nr] = xas.xa_index;
2094
if (!folio_batch_add(fbatch, folio))
2095
break;
2096
}
2097
2098
if (folio_batch_count(fbatch)) {
2099
unsigned long nr;
2100
int idx = folio_batch_count(fbatch) - 1;
2101
2102
folio = fbatch->folios[idx];
2103
if (!xa_is_value(folio))
2104
nr = folio_nr_pages(folio);
2105
else
2106
nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2107
*start = round_down(indices[idx] + nr, nr);
2108
}
2109
rcu_read_unlock();
2110
2111
return folio_batch_count(fbatch);
2112
}
2113
2114
/**
2115
* find_lock_entries - Find a batch of pagecache entries.
2116
* @mapping: The address_space to search.
2117
* @start: The starting page cache index.
2118
* @end: The final page index (inclusive).
2119
* @fbatch: Where the resulting entries are placed.
2120
* @indices: The cache indices of the entries in @fbatch.
2121
*
2122
* find_lock_entries() will return a batch of entries from @mapping.
2123
* Swap, shadow and DAX entries are included. Folios are returned
2124
* locked and with an incremented refcount. Folios which are locked
2125
* by somebody else or under writeback are skipped. Folios which are
2126
* partially outside the range are not returned.
2127
*
2128
* The entries have ascending indexes. The indices may not be consecutive
2129
* due to not-present entries, large folios, folios which could not be
2130
* locked or folios under writeback.
2131
*
2132
* Return: The number of entries which were found.
2133
*/
2134
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2135
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2136
{
2137
XA_STATE(xas, &mapping->i_pages, *start);
2138
struct folio *folio;
2139
2140
rcu_read_lock();
2141
while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2142
unsigned long base;
2143
unsigned long nr;
2144
2145
if (!xa_is_value(folio)) {
2146
nr = folio_nr_pages(folio);
2147
base = folio->index;
2148
/* Omit large folio which begins before the start */
2149
if (base < *start)
2150
goto put;
2151
/* Omit large folio which extends beyond the end */
2152
if (base + nr - 1 > end)
2153
goto put;
2154
if (!folio_trylock(folio))
2155
goto put;
2156
if (folio->mapping != mapping ||
2157
folio_test_writeback(folio))
2158
goto unlock;
2159
VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2160
folio);
2161
} else {
2162
nr = 1 << xas_get_order(&xas);
2163
base = xas.xa_index & ~(nr - 1);
2164
/* Omit order>0 value which begins before the start */
2165
if (base < *start)
2166
continue;
2167
/* Omit order>0 value which extends beyond the end */
2168
if (base + nr - 1 > end)
2169
break;
2170
}
2171
2172
/* Update start now so that last update is correct on return */
2173
*start = base + nr;
2174
indices[fbatch->nr] = xas.xa_index;
2175
if (!folio_batch_add(fbatch, folio))
2176
break;
2177
continue;
2178
unlock:
2179
folio_unlock(folio);
2180
put:
2181
folio_put(folio);
2182
}
2183
rcu_read_unlock();
2184
2185
return folio_batch_count(fbatch);
2186
}
2187
2188
/**
2189
* filemap_get_folios - Get a batch of folios
2190
* @mapping: The address_space to search
2191
* @start: The starting page index
2192
* @end: The final page index (inclusive)
2193
* @fbatch: The batch to fill.
2194
*
2195
* Search for and return a batch of folios in the mapping starting at
2196
* index @start and up to index @end (inclusive). The folios are returned
2197
* in @fbatch with an elevated reference count.
2198
*
2199
* Return: The number of folios which were found.
2200
* We also update @start to index the next folio for the traversal.
2201
*/
2202
unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2203
pgoff_t end, struct folio_batch *fbatch)
2204
{
2205
return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2206
}
2207
EXPORT_SYMBOL(filemap_get_folios);
2208
2209
/**
2210
* filemap_get_folios_contig - Get a batch of contiguous folios
2211
* @mapping: The address_space to search
2212
* @start: The starting page index
2213
* @end: The final page index (inclusive)
2214
* @fbatch: The batch to fill
2215
*
2216
* filemap_get_folios_contig() works exactly like filemap_get_folios(),
2217
* except the returned folios are guaranteed to be contiguous. This may
2218
* not return all contiguous folios if the batch gets filled up.
2219
*
2220
* Return: The number of folios found.
2221
* Also update @start to be positioned for traversal of the next folio.
2222
*/
2223
2224
unsigned filemap_get_folios_contig(struct address_space *mapping,
2225
pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2226
{
2227
XA_STATE(xas, &mapping->i_pages, *start);
2228
unsigned long nr;
2229
struct folio *folio;
2230
2231
rcu_read_lock();
2232
2233
for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2234
folio = xas_next(&xas)) {
2235
if (xas_retry(&xas, folio))
2236
continue;
2237
/*
2238
* If the entry has been swapped out, we can stop looking.
2239
* No current caller is looking for DAX entries.
2240
*/
2241
if (xa_is_value(folio))
2242
goto update_start;
2243
2244
/* If we landed in the middle of a THP, continue at its end. */
2245
if (xa_is_sibling(folio))
2246
goto update_start;
2247
2248
if (!folio_try_get(folio))
2249
goto retry;
2250
2251
if (unlikely(folio != xas_reload(&xas)))
2252
goto put_folio;
2253
2254
if (!folio_batch_add(fbatch, folio)) {
2255
nr = folio_nr_pages(folio);
2256
*start = folio->index + nr;
2257
goto out;
2258
}
2259
xas_advance(&xas, folio_next_index(folio) - 1);
2260
continue;
2261
put_folio:
2262
folio_put(folio);
2263
2264
retry:
2265
xas_reset(&xas);
2266
}
2267
2268
update_start:
2269
nr = folio_batch_count(fbatch);
2270
2271
if (nr) {
2272
folio = fbatch->folios[nr - 1];
2273
*start = folio_next_index(folio);
2274
}
2275
out:
2276
rcu_read_unlock();
2277
return folio_batch_count(fbatch);
2278
}
2279
EXPORT_SYMBOL(filemap_get_folios_contig);
2280
2281
/**
2282
* filemap_get_folios_tag - Get a batch of folios matching @tag
2283
* @mapping: The address_space to search
2284
* @start: The starting page index
2285
* @end: The final page index (inclusive)
2286
* @tag: The tag index
2287
* @fbatch: The batch to fill
2288
*
2289
* The first folio may start before @start; if it does, it will contain
2290
* @start. The final folio may extend beyond @end; if it does, it will
2291
* contain @end. The folios have ascending indices. There may be gaps
2292
* between the folios if there are indices which have no folio in the
2293
* page cache. If folios are added to or removed from the page cache
2294
* while this is running, they may or may not be found by this call.
2295
* Only returns folios that are tagged with @tag.
2296
*
2297
* Return: The number of folios found.
2298
* Also update @start to index the next folio for traversal.
2299
*/
2300
unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2301
pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2302
{
2303
XA_STATE(xas, &mapping->i_pages, *start);
2304
struct folio *folio;
2305
2306
rcu_read_lock();
2307
while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2308
/*
2309
* Shadow entries should never be tagged, but this iteration
2310
* is lockless so there is a window for page reclaim to evict
2311
* a page we saw tagged. Skip over it.
2312
*/
2313
if (xa_is_value(folio))
2314
continue;
2315
if (!folio_batch_add(fbatch, folio)) {
2316
unsigned long nr = folio_nr_pages(folio);
2317
*start = folio->index + nr;
2318
goto out;
2319
}
2320
}
2321
/*
2322
* We come here when there is no page beyond @end. We take care to not
2323
* overflow the index @start as it confuses some of the callers. This
2324
* breaks the iteration when there is a page at index -1 but that is
2325
* already broke anyway.
2326
*/
2327
if (end == (pgoff_t)-1)
2328
*start = (pgoff_t)-1;
2329
else
2330
*start = end + 1;
2331
out:
2332
rcu_read_unlock();
2333
2334
return folio_batch_count(fbatch);
2335
}
2336
EXPORT_SYMBOL(filemap_get_folios_tag);
2337
2338
/*
2339
* CD/DVDs are error prone. When a medium error occurs, the driver may fail
2340
* a _large_ part of the i/o request. Imagine the worst scenario:
2341
*
2342
* ---R__________________________________________B__________
2343
* ^ reading here ^ bad block(assume 4k)
2344
*
2345
* read(R) => miss => readahead(R...B) => media error => frustrating retries
2346
* => failing the whole request => read(R) => read(R+1) =>
2347
* readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2348
* readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2349
* readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2350
*
2351
* It is going insane. Fix it by quickly scaling down the readahead size.
2352
*/
2353
static void shrink_readahead_size_eio(struct file_ra_state *ra)
2354
{
2355
ra->ra_pages /= 4;
2356
}
2357
2358
/*
2359
* filemap_get_read_batch - Get a batch of folios for read
2360
*
2361
* Get a batch of folios which represent a contiguous range of bytes in
2362
* the file. No exceptional entries will be returned. If @index is in
2363
* the middle of a folio, the entire folio will be returned. The last
2364
* folio in the batch may have the readahead flag set or the uptodate flag
2365
* clear so that the caller can take the appropriate action.
2366
*/
2367
static void filemap_get_read_batch(struct address_space *mapping,
2368
pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2369
{
2370
XA_STATE(xas, &mapping->i_pages, index);
2371
struct folio *folio;
2372
2373
rcu_read_lock();
2374
for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2375
if (xas_retry(&xas, folio))
2376
continue;
2377
if (xas.xa_index > max || xa_is_value(folio))
2378
break;
2379
if (xa_is_sibling(folio))
2380
break;
2381
if (!folio_try_get(folio))
2382
goto retry;
2383
2384
if (unlikely(folio != xas_reload(&xas)))
2385
goto put_folio;
2386
2387
if (!folio_batch_add(fbatch, folio))
2388
break;
2389
if (!folio_test_uptodate(folio))
2390
break;
2391
if (folio_test_readahead(folio))
2392
break;
2393
xas_advance(&xas, folio_next_index(folio) - 1);
2394
continue;
2395
put_folio:
2396
folio_put(folio);
2397
retry:
2398
xas_reset(&xas);
2399
}
2400
rcu_read_unlock();
2401
}
2402
2403
static int filemap_read_folio(struct file *file, filler_t filler,
2404
struct folio *folio)
2405
{
2406
bool workingset = folio_test_workingset(folio);
2407
unsigned long pflags;
2408
int error;
2409
2410
/* Start the actual read. The read will unlock the page. */
2411
if (unlikely(workingset))
2412
psi_memstall_enter(&pflags);
2413
error = filler(file, folio);
2414
if (unlikely(workingset))
2415
psi_memstall_leave(&pflags);
2416
if (error)
2417
return error;
2418
2419
error = folio_wait_locked_killable(folio);
2420
if (error)
2421
return error;
2422
if (folio_test_uptodate(folio))
2423
return 0;
2424
if (file)
2425
shrink_readahead_size_eio(&file->f_ra);
2426
return -EIO;
2427
}
2428
2429
static bool filemap_range_uptodate(struct address_space *mapping,
2430
loff_t pos, size_t count, struct folio *folio,
2431
bool need_uptodate)
2432
{
2433
if (folio_test_uptodate(folio))
2434
return true;
2435
/* pipes can't handle partially uptodate pages */
2436
if (need_uptodate)
2437
return false;
2438
if (!mapping->a_ops->is_partially_uptodate)
2439
return false;
2440
if (mapping->host->i_blkbits >= folio_shift(folio))
2441
return false;
2442
2443
if (folio_pos(folio) > pos) {
2444
count -= folio_pos(folio) - pos;
2445
pos = 0;
2446
} else {
2447
pos -= folio_pos(folio);
2448
}
2449
2450
return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2451
}
2452
2453
static int filemap_update_page(struct kiocb *iocb,
2454
struct address_space *mapping, size_t count,
2455
struct folio *folio, bool need_uptodate)
2456
{
2457
int error;
2458
2459
if (iocb->ki_flags & IOCB_NOWAIT) {
2460
if (!filemap_invalidate_trylock_shared(mapping))
2461
return -EAGAIN;
2462
} else {
2463
filemap_invalidate_lock_shared(mapping);
2464
}
2465
2466
if (!folio_trylock(folio)) {
2467
error = -EAGAIN;
2468
if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2469
goto unlock_mapping;
2470
if (!(iocb->ki_flags & IOCB_WAITQ)) {
2471
filemap_invalidate_unlock_shared(mapping);
2472
/*
2473
* This is where we usually end up waiting for a
2474
* previously submitted readahead to finish.
2475
*/
2476
folio_put_wait_locked(folio, TASK_KILLABLE);
2477
return AOP_TRUNCATED_PAGE;
2478
}
2479
error = __folio_lock_async(folio, iocb->ki_waitq);
2480
if (error)
2481
goto unlock_mapping;
2482
}
2483
2484
error = AOP_TRUNCATED_PAGE;
2485
if (!folio->mapping)
2486
goto unlock;
2487
2488
error = 0;
2489
if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2490
need_uptodate))
2491
goto unlock;
2492
2493
error = -EAGAIN;
2494
if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2495
goto unlock;
2496
2497
error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2498
folio);
2499
goto unlock_mapping;
2500
unlock:
2501
folio_unlock(folio);
2502
unlock_mapping:
2503
filemap_invalidate_unlock_shared(mapping);
2504
if (error == AOP_TRUNCATED_PAGE)
2505
folio_put(folio);
2506
return error;
2507
}
2508
2509
static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2510
{
2511
struct address_space *mapping = iocb->ki_filp->f_mapping;
2512
struct folio *folio;
2513
int error;
2514
unsigned int min_order = mapping_min_folio_order(mapping);
2515
pgoff_t index;
2516
2517
if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2518
return -EAGAIN;
2519
2520
folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2521
if (!folio)
2522
return -ENOMEM;
2523
if (iocb->ki_flags & IOCB_DONTCACHE)
2524
__folio_set_dropbehind(folio);
2525
2526
/*
2527
* Protect against truncate / hole punch. Grabbing invalidate_lock
2528
* here assures we cannot instantiate and bring uptodate new
2529
* pagecache folios after evicting page cache during truncate
2530
* and before actually freeing blocks. Note that we could
2531
* release invalidate_lock after inserting the folio into
2532
* the page cache as the locked folio would then be enough to
2533
* synchronize with hole punching. But there are code paths
2534
* such as filemap_update_page() filling in partially uptodate
2535
* pages or ->readahead() that need to hold invalidate_lock
2536
* while mapping blocks for IO so let's hold the lock here as
2537
* well to keep locking rules simple.
2538
*/
2539
filemap_invalidate_lock_shared(mapping);
2540
index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2541
error = filemap_add_folio(mapping, folio, index,
2542
mapping_gfp_constraint(mapping, GFP_KERNEL));
2543
if (error == -EEXIST)
2544
error = AOP_TRUNCATED_PAGE;
2545
if (error)
2546
goto error;
2547
2548
error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2549
folio);
2550
if (error)
2551
goto error;
2552
2553
filemap_invalidate_unlock_shared(mapping);
2554
folio_batch_add(fbatch, folio);
2555
return 0;
2556
error:
2557
filemap_invalidate_unlock_shared(mapping);
2558
folio_put(folio);
2559
return error;
2560
}
2561
2562
static int filemap_readahead(struct kiocb *iocb, struct file *file,
2563
struct address_space *mapping, struct folio *folio,
2564
pgoff_t last_index)
2565
{
2566
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2567
2568
if (iocb->ki_flags & IOCB_NOIO)
2569
return -EAGAIN;
2570
if (iocb->ki_flags & IOCB_DONTCACHE)
2571
ractl.dropbehind = 1;
2572
page_cache_async_ra(&ractl, folio, last_index - folio->index);
2573
return 0;
2574
}
2575
2576
static int filemap_get_pages(struct kiocb *iocb, size_t count,
2577
struct folio_batch *fbatch, bool need_uptodate)
2578
{
2579
struct file *filp = iocb->ki_filp;
2580
struct address_space *mapping = filp->f_mapping;
2581
pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2582
pgoff_t last_index;
2583
struct folio *folio;
2584
unsigned int flags;
2585
int err = 0;
2586
2587
/* "last_index" is the index of the page beyond the end of the read */
2588
last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2589
retry:
2590
if (fatal_signal_pending(current))
2591
return -EINTR;
2592
2593
filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2594
if (!folio_batch_count(fbatch)) {
2595
DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2596
2597
if (iocb->ki_flags & IOCB_NOIO)
2598
return -EAGAIN;
2599
if (iocb->ki_flags & IOCB_NOWAIT)
2600
flags = memalloc_noio_save();
2601
if (iocb->ki_flags & IOCB_DONTCACHE)
2602
ractl.dropbehind = 1;
2603
page_cache_sync_ra(&ractl, last_index - index);
2604
if (iocb->ki_flags & IOCB_NOWAIT)
2605
memalloc_noio_restore(flags);
2606
filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2607
}
2608
if (!folio_batch_count(fbatch)) {
2609
err = filemap_create_folio(iocb, fbatch);
2610
if (err == AOP_TRUNCATED_PAGE)
2611
goto retry;
2612
return err;
2613
}
2614
2615
folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2616
if (folio_test_readahead(folio)) {
2617
err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2618
if (err)
2619
goto err;
2620
}
2621
if (!folio_test_uptodate(folio)) {
2622
if ((iocb->ki_flags & IOCB_WAITQ) &&
2623
folio_batch_count(fbatch) > 1)
2624
iocb->ki_flags |= IOCB_NOWAIT;
2625
err = filemap_update_page(iocb, mapping, count, folio,
2626
need_uptodate);
2627
if (err)
2628
goto err;
2629
}
2630
2631
trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2632
return 0;
2633
err:
2634
if (err < 0)
2635
folio_put(folio);
2636
if (likely(--fbatch->nr))
2637
return 0;
2638
if (err == AOP_TRUNCATED_PAGE)
2639
goto retry;
2640
return err;
2641
}
2642
2643
static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2644
{
2645
unsigned int shift = folio_shift(folio);
2646
2647
return (pos1 >> shift == pos2 >> shift);
2648
}
2649
2650
static void filemap_end_dropbehind_read(struct folio *folio)
2651
{
2652
if (!folio_test_dropbehind(folio))
2653
return;
2654
if (folio_test_writeback(folio) || folio_test_dirty(folio))
2655
return;
2656
if (folio_trylock(folio)) {
2657
filemap_end_dropbehind(folio);
2658
folio_unlock(folio);
2659
}
2660
}
2661
2662
/**
2663
* filemap_read - Read data from the page cache.
2664
* @iocb: The iocb to read.
2665
* @iter: Destination for the data.
2666
* @already_read: Number of bytes already read by the caller.
2667
*
2668
* Copies data from the page cache. If the data is not currently present,
2669
* uses the readahead and read_folio address_space operations to fetch it.
2670
*
2671
* Return: Total number of bytes copied, including those already read by
2672
* the caller. If an error happens before any bytes are copied, returns
2673
* a negative error number.
2674
*/
2675
ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2676
ssize_t already_read)
2677
{
2678
struct file *filp = iocb->ki_filp;
2679
struct file_ra_state *ra = &filp->f_ra;
2680
struct address_space *mapping = filp->f_mapping;
2681
struct inode *inode = mapping->host;
2682
struct folio_batch fbatch;
2683
int i, error = 0;
2684
bool writably_mapped;
2685
loff_t isize, end_offset;
2686
loff_t last_pos = ra->prev_pos;
2687
2688
if (unlikely(iocb->ki_pos < 0))
2689
return -EINVAL;
2690
if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2691
return 0;
2692
if (unlikely(!iov_iter_count(iter)))
2693
return 0;
2694
2695
iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2696
folio_batch_init(&fbatch);
2697
2698
do {
2699
cond_resched();
2700
2701
/*
2702
* If we've already successfully copied some data, then we
2703
* can no longer safely return -EIOCBQUEUED. Hence mark
2704
* an async read NOWAIT at that point.
2705
*/
2706
if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2707
iocb->ki_flags |= IOCB_NOWAIT;
2708
2709
if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2710
break;
2711
2712
error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2713
if (error < 0)
2714
break;
2715
2716
/*
2717
* i_size must be checked after we know the pages are Uptodate.
2718
*
2719
* Checking i_size after the check allows us to calculate
2720
* the correct value for "nr", which means the zero-filled
2721
* part of the page is not copied back to userspace (unless
2722
* another truncate extends the file - this is desired though).
2723
*/
2724
isize = i_size_read(inode);
2725
if (unlikely(iocb->ki_pos >= isize))
2726
goto put_folios;
2727
end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2728
2729
/*
2730
* Once we start copying data, we don't want to be touching any
2731
* cachelines that might be contended:
2732
*/
2733
writably_mapped = mapping_writably_mapped(mapping);
2734
2735
/*
2736
* When a read accesses the same folio several times, only
2737
* mark it as accessed the first time.
2738
*/
2739
if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2740
fbatch.folios[0]))
2741
folio_mark_accessed(fbatch.folios[0]);
2742
2743
for (i = 0; i < folio_batch_count(&fbatch); i++) {
2744
struct folio *folio = fbatch.folios[i];
2745
size_t fsize = folio_size(folio);
2746
size_t offset = iocb->ki_pos & (fsize - 1);
2747
size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2748
fsize - offset);
2749
size_t copied;
2750
2751
if (end_offset < folio_pos(folio))
2752
break;
2753
if (i > 0)
2754
folio_mark_accessed(folio);
2755
/*
2756
* If users can be writing to this folio using arbitrary
2757
* virtual addresses, take care of potential aliasing
2758
* before reading the folio on the kernel side.
2759
*/
2760
if (writably_mapped)
2761
flush_dcache_folio(folio);
2762
2763
copied = copy_folio_to_iter(folio, offset, bytes, iter);
2764
2765
already_read += copied;
2766
iocb->ki_pos += copied;
2767
last_pos = iocb->ki_pos;
2768
2769
if (copied < bytes) {
2770
error = -EFAULT;
2771
break;
2772
}
2773
}
2774
put_folios:
2775
for (i = 0; i < folio_batch_count(&fbatch); i++) {
2776
struct folio *folio = fbatch.folios[i];
2777
2778
filemap_end_dropbehind_read(folio);
2779
folio_put(folio);
2780
}
2781
folio_batch_init(&fbatch);
2782
} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2783
2784
file_accessed(filp);
2785
ra->prev_pos = last_pos;
2786
return already_read ? already_read : error;
2787
}
2788
EXPORT_SYMBOL_GPL(filemap_read);
2789
2790
int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2791
{
2792
struct address_space *mapping = iocb->ki_filp->f_mapping;
2793
loff_t pos = iocb->ki_pos;
2794
loff_t end = pos + count - 1;
2795
2796
if (iocb->ki_flags & IOCB_NOWAIT) {
2797
if (filemap_range_needs_writeback(mapping, pos, end))
2798
return -EAGAIN;
2799
return 0;
2800
}
2801
2802
return filemap_write_and_wait_range(mapping, pos, end);
2803
}
2804
EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2805
2806
int filemap_invalidate_pages(struct address_space *mapping,
2807
loff_t pos, loff_t end, bool nowait)
2808
{
2809
int ret;
2810
2811
if (nowait) {
2812
/* we could block if there are any pages in the range */
2813
if (filemap_range_has_page(mapping, pos, end))
2814
return -EAGAIN;
2815
} else {
2816
ret = filemap_write_and_wait_range(mapping, pos, end);
2817
if (ret)
2818
return ret;
2819
}
2820
2821
/*
2822
* After a write we want buffered reads to be sure to go to disk to get
2823
* the new data. We invalidate clean cached page from the region we're
2824
* about to write. We do this *before* the write so that we can return
2825
* without clobbering -EIOCBQUEUED from ->direct_IO().
2826
*/
2827
return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2828
end >> PAGE_SHIFT);
2829
}
2830
2831
int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2832
{
2833
struct address_space *mapping = iocb->ki_filp->f_mapping;
2834
2835
return filemap_invalidate_pages(mapping, iocb->ki_pos,
2836
iocb->ki_pos + count - 1,
2837
iocb->ki_flags & IOCB_NOWAIT);
2838
}
2839
EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2840
2841
/**
2842
* generic_file_read_iter - generic filesystem read routine
2843
* @iocb: kernel I/O control block
2844
* @iter: destination for the data read
2845
*
2846
* This is the "read_iter()" routine for all filesystems
2847
* that can use the page cache directly.
2848
*
2849
* The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2850
* be returned when no data can be read without waiting for I/O requests
2851
* to complete; it doesn't prevent readahead.
2852
*
2853
* The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2854
* requests shall be made for the read or for readahead. When no data
2855
* can be read, -EAGAIN shall be returned. When readahead would be
2856
* triggered, a partial, possibly empty read shall be returned.
2857
*
2858
* Return:
2859
* * number of bytes copied, even for partial reads
2860
* * negative error code (or 0 if IOCB_NOIO) if nothing was read
2861
*/
2862
ssize_t
2863
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2864
{
2865
size_t count = iov_iter_count(iter);
2866
ssize_t retval = 0;
2867
2868
if (!count)
2869
return 0; /* skip atime */
2870
2871
if (iocb->ki_flags & IOCB_DIRECT) {
2872
struct file *file = iocb->ki_filp;
2873
struct address_space *mapping = file->f_mapping;
2874
struct inode *inode = mapping->host;
2875
2876
retval = kiocb_write_and_wait(iocb, count);
2877
if (retval < 0)
2878
return retval;
2879
file_accessed(file);
2880
2881
retval = mapping->a_ops->direct_IO(iocb, iter);
2882
if (retval >= 0) {
2883
iocb->ki_pos += retval;
2884
count -= retval;
2885
}
2886
if (retval != -EIOCBQUEUED)
2887
iov_iter_revert(iter, count - iov_iter_count(iter));
2888
2889
/*
2890
* Btrfs can have a short DIO read if we encounter
2891
* compressed extents, so if there was an error, or if
2892
* we've already read everything we wanted to, or if
2893
* there was a short read because we hit EOF, go ahead
2894
* and return. Otherwise fallthrough to buffered io for
2895
* the rest of the read. Buffered reads will not work for
2896
* DAX files, so don't bother trying.
2897
*/
2898
if (retval < 0 || !count || IS_DAX(inode))
2899
return retval;
2900
if (iocb->ki_pos >= i_size_read(inode))
2901
return retval;
2902
}
2903
2904
return filemap_read(iocb, iter, retval);
2905
}
2906
EXPORT_SYMBOL(generic_file_read_iter);
2907
2908
/*
2909
* Splice subpages from a folio into a pipe.
2910
*/
2911
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2912
struct folio *folio, loff_t fpos, size_t size)
2913
{
2914
struct page *page;
2915
size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2916
2917
page = folio_page(folio, offset / PAGE_SIZE);
2918
size = min(size, folio_size(folio) - offset);
2919
offset %= PAGE_SIZE;
2920
2921
while (spliced < size && !pipe_is_full(pipe)) {
2922
struct pipe_buffer *buf = pipe_head_buf(pipe);
2923
size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2924
2925
*buf = (struct pipe_buffer) {
2926
.ops = &page_cache_pipe_buf_ops,
2927
.page = page,
2928
.offset = offset,
2929
.len = part,
2930
};
2931
folio_get(folio);
2932
pipe->head++;
2933
page++;
2934
spliced += part;
2935
offset = 0;
2936
}
2937
2938
return spliced;
2939
}
2940
2941
/**
2942
* filemap_splice_read - Splice data from a file's pagecache into a pipe
2943
* @in: The file to read from
2944
* @ppos: Pointer to the file position to read from
2945
* @pipe: The pipe to splice into
2946
* @len: The amount to splice
2947
* @flags: The SPLICE_F_* flags
2948
*
2949
* This function gets folios from a file's pagecache and splices them into the
2950
* pipe. Readahead will be called as necessary to fill more folios. This may
2951
* be used for blockdevs also.
2952
*
2953
* Return: On success, the number of bytes read will be returned and *@ppos
2954
* will be updated if appropriate; 0 will be returned if there is no more data
2955
* to be read; -EAGAIN will be returned if the pipe had no space, and some
2956
* other negative error code will be returned on error. A short read may occur
2957
* if the pipe has insufficient space, we reach the end of the data or we hit a
2958
* hole.
2959
*/
2960
ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2961
struct pipe_inode_info *pipe,
2962
size_t len, unsigned int flags)
2963
{
2964
struct folio_batch fbatch;
2965
struct kiocb iocb;
2966
size_t total_spliced = 0, used, npages;
2967
loff_t isize, end_offset;
2968
bool writably_mapped;
2969
int i, error = 0;
2970
2971
if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2972
return 0;
2973
2974
init_sync_kiocb(&iocb, in);
2975
iocb.ki_pos = *ppos;
2976
2977
/* Work out how much data we can actually add into the pipe */
2978
used = pipe_buf_usage(pipe);
2979
npages = max_t(ssize_t, pipe->max_usage - used, 0);
2980
len = min_t(size_t, len, npages * PAGE_SIZE);
2981
2982
folio_batch_init(&fbatch);
2983
2984
do {
2985
cond_resched();
2986
2987
if (*ppos >= i_size_read(in->f_mapping->host))
2988
break;
2989
2990
iocb.ki_pos = *ppos;
2991
error = filemap_get_pages(&iocb, len, &fbatch, true);
2992
if (error < 0)
2993
break;
2994
2995
/*
2996
* i_size must be checked after we know the pages are Uptodate.
2997
*
2998
* Checking i_size after the check allows us to calculate
2999
* the correct value for "nr", which means the zero-filled
3000
* part of the page is not copied back to userspace (unless
3001
* another truncate extends the file - this is desired though).
3002
*/
3003
isize = i_size_read(in->f_mapping->host);
3004
if (unlikely(*ppos >= isize))
3005
break;
3006
end_offset = min_t(loff_t, isize, *ppos + len);
3007
3008
/*
3009
* Once we start copying data, we don't want to be touching any
3010
* cachelines that might be contended:
3011
*/
3012
writably_mapped = mapping_writably_mapped(in->f_mapping);
3013
3014
for (i = 0; i < folio_batch_count(&fbatch); i++) {
3015
struct folio *folio = fbatch.folios[i];
3016
size_t n;
3017
3018
if (folio_pos(folio) >= end_offset)
3019
goto out;
3020
folio_mark_accessed(folio);
3021
3022
/*
3023
* If users can be writing to this folio using arbitrary
3024
* virtual addresses, take care of potential aliasing
3025
* before reading the folio on the kernel side.
3026
*/
3027
if (writably_mapped)
3028
flush_dcache_folio(folio);
3029
3030
n = min_t(loff_t, len, isize - *ppos);
3031
n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3032
if (!n)
3033
goto out;
3034
len -= n;
3035
total_spliced += n;
3036
*ppos += n;
3037
in->f_ra.prev_pos = *ppos;
3038
if (pipe_is_full(pipe))
3039
goto out;
3040
}
3041
3042
folio_batch_release(&fbatch);
3043
} while (len);
3044
3045
out:
3046
folio_batch_release(&fbatch);
3047
file_accessed(in);
3048
3049
return total_spliced ? total_spliced : error;
3050
}
3051
EXPORT_SYMBOL(filemap_splice_read);
3052
3053
static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3054
struct address_space *mapping, struct folio *folio,
3055
loff_t start, loff_t end, bool seek_data)
3056
{
3057
const struct address_space_operations *ops = mapping->a_ops;
3058
size_t offset, bsz = i_blocksize(mapping->host);
3059
3060
if (xa_is_value(folio) || folio_test_uptodate(folio))
3061
return seek_data ? start : end;
3062
if (!ops->is_partially_uptodate)
3063
return seek_data ? end : start;
3064
3065
xas_pause(xas);
3066
rcu_read_unlock();
3067
folio_lock(folio);
3068
if (unlikely(folio->mapping != mapping))
3069
goto unlock;
3070
3071
offset = offset_in_folio(folio, start) & ~(bsz - 1);
3072
3073
do {
3074
if (ops->is_partially_uptodate(folio, offset, bsz) ==
3075
seek_data)
3076
break;
3077
start = (start + bsz) & ~((u64)bsz - 1);
3078
offset += bsz;
3079
} while (offset < folio_size(folio));
3080
unlock:
3081
folio_unlock(folio);
3082
rcu_read_lock();
3083
return start;
3084
}
3085
3086
static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3087
{
3088
if (xa_is_value(folio))
3089
return PAGE_SIZE << xas_get_order(xas);
3090
return folio_size(folio);
3091
}
3092
3093
/**
3094
* mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3095
* @mapping: Address space to search.
3096
* @start: First byte to consider.
3097
* @end: Limit of search (exclusive).
3098
* @whence: Either SEEK_HOLE or SEEK_DATA.
3099
*
3100
* If the page cache knows which blocks contain holes and which blocks
3101
* contain data, your filesystem can use this function to implement
3102
* SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3103
* entirely memory-based such as tmpfs, and filesystems which support
3104
* unwritten extents.
3105
*
3106
* Return: The requested offset on success, or -ENXIO if @whence specifies
3107
* SEEK_DATA and there is no data after @start. There is an implicit hole
3108
* after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3109
* and @end contain data.
3110
*/
3111
loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3112
loff_t end, int whence)
3113
{
3114
XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3115
pgoff_t max = (end - 1) >> PAGE_SHIFT;
3116
bool seek_data = (whence == SEEK_DATA);
3117
struct folio *folio;
3118
3119
if (end <= start)
3120
return -ENXIO;
3121
3122
rcu_read_lock();
3123
while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3124
loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3125
size_t seek_size;
3126
3127
if (start < pos) {
3128
if (!seek_data)
3129
goto unlock;
3130
start = pos;
3131
}
3132
3133
seek_size = seek_folio_size(&xas, folio);
3134
pos = round_up((u64)pos + 1, seek_size);
3135
start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3136
seek_data);
3137
if (start < pos)
3138
goto unlock;
3139
if (start >= end)
3140
break;
3141
if (seek_size > PAGE_SIZE)
3142
xas_set(&xas, pos >> PAGE_SHIFT);
3143
if (!xa_is_value(folio))
3144
folio_put(folio);
3145
}
3146
if (seek_data)
3147
start = -ENXIO;
3148
unlock:
3149
rcu_read_unlock();
3150
if (folio && !xa_is_value(folio))
3151
folio_put(folio);
3152
if (start > end)
3153
return end;
3154
return start;
3155
}
3156
3157
#ifdef CONFIG_MMU
3158
#define MMAP_LOTSAMISS (100)
3159
/*
3160
* lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3161
* @vmf - the vm_fault for this fault.
3162
* @folio - the folio to lock.
3163
* @fpin - the pointer to the file we may pin (or is already pinned).
3164
*
3165
* This works similar to lock_folio_or_retry in that it can drop the
3166
* mmap_lock. It differs in that it actually returns the folio locked
3167
* if it returns 1 and 0 if it couldn't lock the folio. If we did have
3168
* to drop the mmap_lock then fpin will point to the pinned file and
3169
* needs to be fput()'ed at a later point.
3170
*/
3171
static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3172
struct file **fpin)
3173
{
3174
if (folio_trylock(folio))
3175
return 1;
3176
3177
/*
3178
* NOTE! This will make us return with VM_FAULT_RETRY, but with
3179
* the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3180
* is supposed to work. We have way too many special cases..
3181
*/
3182
if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3183
return 0;
3184
3185
*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3186
if (vmf->flags & FAULT_FLAG_KILLABLE) {
3187
if (__folio_lock_killable(folio)) {
3188
/*
3189
* We didn't have the right flags to drop the
3190
* fault lock, but all fault_handlers only check
3191
* for fatal signals if we return VM_FAULT_RETRY,
3192
* so we need to drop the fault lock here and
3193
* return 0 if we don't have a fpin.
3194
*/
3195
if (*fpin == NULL)
3196
release_fault_lock(vmf);
3197
return 0;
3198
}
3199
} else
3200
__folio_lock(folio);
3201
3202
return 1;
3203
}
3204
3205
/*
3206
* Synchronous readahead happens when we don't even find a page in the page
3207
* cache at all. We don't want to perform IO under the mmap sem, so if we have
3208
* to drop the mmap sem we return the file that was pinned in order for us to do
3209
* that. If we didn't pin a file then we return NULL. The file that is
3210
* returned needs to be fput()'ed when we're done with it.
3211
*/
3212
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3213
{
3214
struct file *file = vmf->vma->vm_file;
3215
struct file_ra_state *ra = &file->f_ra;
3216
struct address_space *mapping = file->f_mapping;
3217
DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3218
struct file *fpin = NULL;
3219
vm_flags_t vm_flags = vmf->vma->vm_flags;
3220
unsigned short mmap_miss;
3221
3222
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3223
/* Use the readahead code, even if readahead is disabled */
3224
if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3225
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3226
ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3227
ra->size = HPAGE_PMD_NR;
3228
/*
3229
* Fetch two PMD folios, so we get the chance to actually
3230
* readahead, unless we've been told not to.
3231
*/
3232
if (!(vm_flags & VM_RAND_READ))
3233
ra->size *= 2;
3234
ra->async_size = HPAGE_PMD_NR;
3235
ra->order = HPAGE_PMD_ORDER;
3236
page_cache_ra_order(&ractl, ra);
3237
return fpin;
3238
}
3239
#endif
3240
3241
/*
3242
* If we don't want any read-ahead, don't bother. VM_EXEC case below is
3243
* already intended for random access.
3244
*/
3245
if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3246
return fpin;
3247
if (!ra->ra_pages)
3248
return fpin;
3249
3250
if (vm_flags & VM_SEQ_READ) {
3251
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3252
page_cache_sync_ra(&ractl, ra->ra_pages);
3253
return fpin;
3254
}
3255
3256
/* Avoid banging the cache line if not needed */
3257
mmap_miss = READ_ONCE(ra->mmap_miss);
3258
if (mmap_miss < MMAP_LOTSAMISS * 10)
3259
WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3260
3261
/*
3262
* Do we miss much more than hit in this file? If so,
3263
* stop bothering with read-ahead. It will only hurt.
3264
*/
3265
if (mmap_miss > MMAP_LOTSAMISS)
3266
return fpin;
3267
3268
if (vm_flags & VM_EXEC) {
3269
/*
3270
* Allow arch to request a preferred minimum folio order for
3271
* executable memory. This can often be beneficial to
3272
* performance if (e.g.) arm64 can contpte-map the folio.
3273
* Executable memory rarely benefits from readahead, due to its
3274
* random access nature, so set async_size to 0.
3275
*
3276
* Limit to the boundaries of the VMA to avoid reading in any
3277
* pad that might exist between sections, which would be a waste
3278
* of memory.
3279
*/
3280
struct vm_area_struct *vma = vmf->vma;
3281
unsigned long start = vma->vm_pgoff;
3282
unsigned long end = start + vma_pages(vma);
3283
unsigned long ra_end;
3284
3285
ra->order = exec_folio_order();
3286
ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3287
ra->start = max(ra->start, start);
3288
ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3289
ra_end = min(ra_end, end);
3290
ra->size = ra_end - ra->start;
3291
ra->async_size = 0;
3292
} else {
3293
/*
3294
* mmap read-around
3295
*/
3296
ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3297
ra->size = ra->ra_pages;
3298
ra->async_size = ra->ra_pages / 4;
3299
ra->order = 0;
3300
}
3301
3302
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3303
ractl._index = ra->start;
3304
page_cache_ra_order(&ractl, ra);
3305
return fpin;
3306
}
3307
3308
/*
3309
* Asynchronous readahead happens when we find the page and PG_readahead,
3310
* so we want to possibly extend the readahead further. We return the file that
3311
* was pinned if we have to drop the mmap_lock in order to do IO.
3312
*/
3313
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3314
struct folio *folio)
3315
{
3316
struct file *file = vmf->vma->vm_file;
3317
struct file_ra_state *ra = &file->f_ra;
3318
DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3319
struct file *fpin = NULL;
3320
unsigned short mmap_miss;
3321
3322
/* If we don't want any read-ahead, don't bother */
3323
if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3324
return fpin;
3325
3326
mmap_miss = READ_ONCE(ra->mmap_miss);
3327
if (mmap_miss)
3328
WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3329
3330
if (folio_test_readahead(folio)) {
3331
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3332
page_cache_async_ra(&ractl, folio, ra->ra_pages);
3333
}
3334
return fpin;
3335
}
3336
3337
static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3338
{
3339
struct vm_area_struct *vma = vmf->vma;
3340
vm_fault_t ret = 0;
3341
pte_t *ptep;
3342
3343
/*
3344
* We might have COW'ed a pagecache folio and might now have an mlocked
3345
* anon folio mapped. The original pagecache folio is not mlocked and
3346
* might have been evicted. During a read+clear/modify/write update of
3347
* the PTE, such as done in do_numa_page()/change_pte_range(), we
3348
* temporarily clear the PTE under PT lock and might detect it here as
3349
* "none" when not holding the PT lock.
3350
*
3351
* Not rechecking the PTE under PT lock could result in an unexpected
3352
* major fault in an mlock'ed region. Recheck only for this special
3353
* scenario while holding the PT lock, to not degrade non-mlocked
3354
* scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3355
* the number of times we hold PT lock.
3356
*/
3357
if (!(vma->vm_flags & VM_LOCKED))
3358
return 0;
3359
3360
if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3361
return 0;
3362
3363
ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3364
&vmf->ptl);
3365
if (unlikely(!ptep))
3366
return VM_FAULT_NOPAGE;
3367
3368
if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3369
ret = VM_FAULT_NOPAGE;
3370
} else {
3371
spin_lock(vmf->ptl);
3372
if (unlikely(!pte_none(ptep_get(ptep))))
3373
ret = VM_FAULT_NOPAGE;
3374
spin_unlock(vmf->ptl);
3375
}
3376
pte_unmap(ptep);
3377
return ret;
3378
}
3379
3380
/**
3381
* filemap_fault - read in file data for page fault handling
3382
* @vmf: struct vm_fault containing details of the fault
3383
*
3384
* filemap_fault() is invoked via the vma operations vector for a
3385
* mapped memory region to read in file data during a page fault.
3386
*
3387
* The goto's are kind of ugly, but this streamlines the normal case of having
3388
* it in the page cache, and handles the special cases reasonably without
3389
* having a lot of duplicated code.
3390
*
3391
* vma->vm_mm->mmap_lock must be held on entry.
3392
*
3393
* If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3394
* may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3395
*
3396
* If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3397
* has not been released.
3398
*
3399
* We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3400
*
3401
* Return: bitwise-OR of %VM_FAULT_ codes.
3402
*/
3403
vm_fault_t filemap_fault(struct vm_fault *vmf)
3404
{
3405
int error;
3406
struct file *file = vmf->vma->vm_file;
3407
struct file *fpin = NULL;
3408
struct address_space *mapping = file->f_mapping;
3409
struct inode *inode = mapping->host;
3410
pgoff_t max_idx, index = vmf->pgoff;
3411
struct folio *folio;
3412
vm_fault_t ret = 0;
3413
bool mapping_locked = false;
3414
3415
max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3416
if (unlikely(index >= max_idx))
3417
return VM_FAULT_SIGBUS;
3418
3419
trace_mm_filemap_fault(mapping, index);
3420
3421
/*
3422
* Do we have something in the page cache already?
3423
*/
3424
folio = filemap_get_folio(mapping, index);
3425
if (likely(!IS_ERR(folio))) {
3426
/*
3427
* We found the page, so try async readahead before waiting for
3428
* the lock.
3429
*/
3430
if (!(vmf->flags & FAULT_FLAG_TRIED))
3431
fpin = do_async_mmap_readahead(vmf, folio);
3432
if (unlikely(!folio_test_uptodate(folio))) {
3433
filemap_invalidate_lock_shared(mapping);
3434
mapping_locked = true;
3435
}
3436
} else {
3437
ret = filemap_fault_recheck_pte_none(vmf);
3438
if (unlikely(ret))
3439
return ret;
3440
3441
/* No page in the page cache at all */
3442
count_vm_event(PGMAJFAULT);
3443
count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3444
ret = VM_FAULT_MAJOR;
3445
fpin = do_sync_mmap_readahead(vmf);
3446
retry_find:
3447
/*
3448
* See comment in filemap_create_folio() why we need
3449
* invalidate_lock
3450
*/
3451
if (!mapping_locked) {
3452
filemap_invalidate_lock_shared(mapping);
3453
mapping_locked = true;
3454
}
3455
folio = __filemap_get_folio(mapping, index,
3456
FGP_CREAT|FGP_FOR_MMAP,
3457
vmf->gfp_mask);
3458
if (IS_ERR(folio)) {
3459
if (fpin)
3460
goto out_retry;
3461
filemap_invalidate_unlock_shared(mapping);
3462
return VM_FAULT_OOM;
3463
}
3464
}
3465
3466
if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3467
goto out_retry;
3468
3469
/* Did it get truncated? */
3470
if (unlikely(folio->mapping != mapping)) {
3471
folio_unlock(folio);
3472
folio_put(folio);
3473
goto retry_find;
3474
}
3475
VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3476
3477
/*
3478
* We have a locked folio in the page cache, now we need to check
3479
* that it's up-to-date. If not, it is going to be due to an error,
3480
* or because readahead was otherwise unable to retrieve it.
3481
*/
3482
if (unlikely(!folio_test_uptodate(folio))) {
3483
/*
3484
* If the invalidate lock is not held, the folio was in cache
3485
* and uptodate and now it is not. Strange but possible since we
3486
* didn't hold the page lock all the time. Let's drop
3487
* everything, get the invalidate lock and try again.
3488
*/
3489
if (!mapping_locked) {
3490
folio_unlock(folio);
3491
folio_put(folio);
3492
goto retry_find;
3493
}
3494
3495
/*
3496
* OK, the folio is really not uptodate. This can be because the
3497
* VMA has the VM_RAND_READ flag set, or because an error
3498
* arose. Let's read it in directly.
3499
*/
3500
goto page_not_uptodate;
3501
}
3502
3503
/*
3504
* We've made it this far and we had to drop our mmap_lock, now is the
3505
* time to return to the upper layer and have it re-find the vma and
3506
* redo the fault.
3507
*/
3508
if (fpin) {
3509
folio_unlock(folio);
3510
goto out_retry;
3511
}
3512
if (mapping_locked)
3513
filemap_invalidate_unlock_shared(mapping);
3514
3515
/*
3516
* Found the page and have a reference on it.
3517
* We must recheck i_size under page lock.
3518
*/
3519
max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3520
if (unlikely(index >= max_idx)) {
3521
folio_unlock(folio);
3522
folio_put(folio);
3523
return VM_FAULT_SIGBUS;
3524
}
3525
3526
vmf->page = folio_file_page(folio, index);
3527
return ret | VM_FAULT_LOCKED;
3528
3529
page_not_uptodate:
3530
/*
3531
* Umm, take care of errors if the page isn't up-to-date.
3532
* Try to re-read it _once_. We do this synchronously,
3533
* because there really aren't any performance issues here
3534
* and we need to check for errors.
3535
*/
3536
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3537
error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3538
if (fpin)
3539
goto out_retry;
3540
folio_put(folio);
3541
3542
if (!error || error == AOP_TRUNCATED_PAGE)
3543
goto retry_find;
3544
filemap_invalidate_unlock_shared(mapping);
3545
3546
return VM_FAULT_SIGBUS;
3547
3548
out_retry:
3549
/*
3550
* We dropped the mmap_lock, we need to return to the fault handler to
3551
* re-find the vma and come back and find our hopefully still populated
3552
* page.
3553
*/
3554
if (!IS_ERR(folio))
3555
folio_put(folio);
3556
if (mapping_locked)
3557
filemap_invalidate_unlock_shared(mapping);
3558
if (fpin)
3559
fput(fpin);
3560
return ret | VM_FAULT_RETRY;
3561
}
3562
EXPORT_SYMBOL(filemap_fault);
3563
3564
static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3565
pgoff_t start)
3566
{
3567
struct mm_struct *mm = vmf->vma->vm_mm;
3568
3569
/* Huge page is mapped? No need to proceed. */
3570
if (pmd_trans_huge(*vmf->pmd)) {
3571
folio_unlock(folio);
3572
folio_put(folio);
3573
return true;
3574
}
3575
3576
if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3577
struct page *page = folio_file_page(folio, start);
3578
vm_fault_t ret = do_set_pmd(vmf, folio, page);
3579
if (!ret) {
3580
/* The page is mapped successfully, reference consumed. */
3581
folio_unlock(folio);
3582
return true;
3583
}
3584
}
3585
3586
if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3587
pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3588
3589
return false;
3590
}
3591
3592
static struct folio *next_uptodate_folio(struct xa_state *xas,
3593
struct address_space *mapping, pgoff_t end_pgoff)
3594
{
3595
struct folio *folio = xas_next_entry(xas, end_pgoff);
3596
unsigned long max_idx;
3597
3598
do {
3599
if (!folio)
3600
return NULL;
3601
if (xas_retry(xas, folio))
3602
continue;
3603
if (xa_is_value(folio))
3604
continue;
3605
if (!folio_try_get(folio))
3606
continue;
3607
if (folio_test_locked(folio))
3608
goto skip;
3609
/* Has the page moved or been split? */
3610
if (unlikely(folio != xas_reload(xas)))
3611
goto skip;
3612
if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3613
goto skip;
3614
if (!folio_trylock(folio))
3615
goto skip;
3616
if (folio->mapping != mapping)
3617
goto unlock;
3618
if (!folio_test_uptodate(folio))
3619
goto unlock;
3620
max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3621
if (xas->xa_index >= max_idx)
3622
goto unlock;
3623
return folio;
3624
unlock:
3625
folio_unlock(folio);
3626
skip:
3627
folio_put(folio);
3628
} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3629
3630
return NULL;
3631
}
3632
3633
/*
3634
* Map page range [start_page, start_page + nr_pages) of folio.
3635
* start_page is gotten from start by folio_page(folio, start)
3636
*/
3637
static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3638
struct folio *folio, unsigned long start,
3639
unsigned long addr, unsigned int nr_pages,
3640
unsigned long *rss, unsigned short *mmap_miss)
3641
{
3642
vm_fault_t ret = 0;
3643
struct page *page = folio_page(folio, start);
3644
unsigned int count = 0;
3645
pte_t *old_ptep = vmf->pte;
3646
3647
do {
3648
if (PageHWPoison(page + count))
3649
goto skip;
3650
3651
/*
3652
* If there are too many folios that are recently evicted
3653
* in a file, they will probably continue to be evicted.
3654
* In such situation, read-ahead is only a waste of IO.
3655
* Don't decrease mmap_miss in this scenario to make sure
3656
* we can stop read-ahead.
3657
*/
3658
if (!folio_test_workingset(folio))
3659
(*mmap_miss)++;
3660
3661
/*
3662
* NOTE: If there're PTE markers, we'll leave them to be
3663
* handled in the specific fault path, and it'll prohibit the
3664
* fault-around logic.
3665
*/
3666
if (!pte_none(ptep_get(&vmf->pte[count])))
3667
goto skip;
3668
3669
count++;
3670
continue;
3671
skip:
3672
if (count) {
3673
set_pte_range(vmf, folio, page, count, addr);
3674
*rss += count;
3675
folio_ref_add(folio, count);
3676
if (in_range(vmf->address, addr, count * PAGE_SIZE))
3677
ret = VM_FAULT_NOPAGE;
3678
}
3679
3680
count++;
3681
page += count;
3682
vmf->pte += count;
3683
addr += count * PAGE_SIZE;
3684
count = 0;
3685
} while (--nr_pages > 0);
3686
3687
if (count) {
3688
set_pte_range(vmf, folio, page, count, addr);
3689
*rss += count;
3690
folio_ref_add(folio, count);
3691
if (in_range(vmf->address, addr, count * PAGE_SIZE))
3692
ret = VM_FAULT_NOPAGE;
3693
}
3694
3695
vmf->pte = old_ptep;
3696
3697
return ret;
3698
}
3699
3700
static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3701
struct folio *folio, unsigned long addr,
3702
unsigned long *rss, unsigned short *mmap_miss)
3703
{
3704
vm_fault_t ret = 0;
3705
struct page *page = &folio->page;
3706
3707
if (PageHWPoison(page))
3708
return ret;
3709
3710
/* See comment of filemap_map_folio_range() */
3711
if (!folio_test_workingset(folio))
3712
(*mmap_miss)++;
3713
3714
/*
3715
* NOTE: If there're PTE markers, we'll leave them to be
3716
* handled in the specific fault path, and it'll prohibit
3717
* the fault-around logic.
3718
*/
3719
if (!pte_none(ptep_get(vmf->pte)))
3720
return ret;
3721
3722
if (vmf->address == addr)
3723
ret = VM_FAULT_NOPAGE;
3724
3725
set_pte_range(vmf, folio, page, 1, addr);
3726
(*rss)++;
3727
folio_ref_inc(folio);
3728
3729
return ret;
3730
}
3731
3732
vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3733
pgoff_t start_pgoff, pgoff_t end_pgoff)
3734
{
3735
struct vm_area_struct *vma = vmf->vma;
3736
struct file *file = vma->vm_file;
3737
struct address_space *mapping = file->f_mapping;
3738
pgoff_t file_end, last_pgoff = start_pgoff;
3739
unsigned long addr;
3740
XA_STATE(xas, &mapping->i_pages, start_pgoff);
3741
struct folio *folio;
3742
vm_fault_t ret = 0;
3743
unsigned long rss = 0;
3744
unsigned int nr_pages = 0, folio_type;
3745
unsigned short mmap_miss = 0, mmap_miss_saved;
3746
3747
rcu_read_lock();
3748
folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3749
if (!folio)
3750
goto out;
3751
3752
if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3753
ret = VM_FAULT_NOPAGE;
3754
goto out;
3755
}
3756
3757
addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3758
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3759
if (!vmf->pte) {
3760
folio_unlock(folio);
3761
folio_put(folio);
3762
goto out;
3763
}
3764
3765
file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3766
if (end_pgoff > file_end)
3767
end_pgoff = file_end;
3768
3769
folio_type = mm_counter_file(folio);
3770
do {
3771
unsigned long end;
3772
3773
addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3774
vmf->pte += xas.xa_index - last_pgoff;
3775
last_pgoff = xas.xa_index;
3776
end = folio_next_index(folio) - 1;
3777
nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3778
3779
if (!folio_test_large(folio))
3780
ret |= filemap_map_order0_folio(vmf,
3781
folio, addr, &rss, &mmap_miss);
3782
else
3783
ret |= filemap_map_folio_range(vmf, folio,
3784
xas.xa_index - folio->index, addr,
3785
nr_pages, &rss, &mmap_miss);
3786
3787
folio_unlock(folio);
3788
folio_put(folio);
3789
} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3790
add_mm_counter(vma->vm_mm, folio_type, rss);
3791
pte_unmap_unlock(vmf->pte, vmf->ptl);
3792
trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3793
out:
3794
rcu_read_unlock();
3795
3796
mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3797
if (mmap_miss >= mmap_miss_saved)
3798
WRITE_ONCE(file->f_ra.mmap_miss, 0);
3799
else
3800
WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3801
3802
return ret;
3803
}
3804
EXPORT_SYMBOL(filemap_map_pages);
3805
3806
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3807
{
3808
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3809
struct folio *folio = page_folio(vmf->page);
3810
vm_fault_t ret = VM_FAULT_LOCKED;
3811
3812
sb_start_pagefault(mapping->host->i_sb);
3813
file_update_time(vmf->vma->vm_file);
3814
folio_lock(folio);
3815
if (folio->mapping != mapping) {
3816
folio_unlock(folio);
3817
ret = VM_FAULT_NOPAGE;
3818
goto out;
3819
}
3820
/*
3821
* We mark the folio dirty already here so that when freeze is in
3822
* progress, we are guaranteed that writeback during freezing will
3823
* see the dirty folio and writeprotect it again.
3824
*/
3825
folio_mark_dirty(folio);
3826
folio_wait_stable(folio);
3827
out:
3828
sb_end_pagefault(mapping->host->i_sb);
3829
return ret;
3830
}
3831
3832
const struct vm_operations_struct generic_file_vm_ops = {
3833
.fault = filemap_fault,
3834
.map_pages = filemap_map_pages,
3835
.page_mkwrite = filemap_page_mkwrite,
3836
};
3837
3838
/* This is used for a general mmap of a disk file */
3839
3840
int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3841
{
3842
struct address_space *mapping = file->f_mapping;
3843
3844
if (!mapping->a_ops->read_folio)
3845
return -ENOEXEC;
3846
file_accessed(file);
3847
vma->vm_ops = &generic_file_vm_ops;
3848
return 0;
3849
}
3850
3851
int generic_file_mmap_prepare(struct vm_area_desc *desc)
3852
{
3853
struct file *file = desc->file;
3854
struct address_space *mapping = file->f_mapping;
3855
3856
if (!mapping->a_ops->read_folio)
3857
return -ENOEXEC;
3858
file_accessed(file);
3859
desc->vm_ops = &generic_file_vm_ops;
3860
return 0;
3861
}
3862
3863
/*
3864
* This is for filesystems which do not implement ->writepage.
3865
*/
3866
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3867
{
3868
if (vma_is_shared_maywrite(vma))
3869
return -EINVAL;
3870
return generic_file_mmap(file, vma);
3871
}
3872
3873
int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3874
{
3875
if (is_shared_maywrite(desc->vm_flags))
3876
return -EINVAL;
3877
return generic_file_mmap_prepare(desc);
3878
}
3879
#else
3880
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3881
{
3882
return VM_FAULT_SIGBUS;
3883
}
3884
int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3885
{
3886
return -ENOSYS;
3887
}
3888
int generic_file_mmap_prepare(struct vm_area_desc *desc)
3889
{
3890
return -ENOSYS;
3891
}
3892
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3893
{
3894
return -ENOSYS;
3895
}
3896
int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3897
{
3898
return -ENOSYS;
3899
}
3900
#endif /* CONFIG_MMU */
3901
3902
EXPORT_SYMBOL(filemap_page_mkwrite);
3903
EXPORT_SYMBOL(generic_file_mmap);
3904
EXPORT_SYMBOL(generic_file_mmap_prepare);
3905
EXPORT_SYMBOL(generic_file_readonly_mmap);
3906
EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
3907
3908
static struct folio *do_read_cache_folio(struct address_space *mapping,
3909
pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3910
{
3911
struct folio *folio;
3912
int err;
3913
3914
if (!filler)
3915
filler = mapping->a_ops->read_folio;
3916
repeat:
3917
folio = filemap_get_folio(mapping, index);
3918
if (IS_ERR(folio)) {
3919
folio = filemap_alloc_folio(gfp,
3920
mapping_min_folio_order(mapping));
3921
if (!folio)
3922
return ERR_PTR(-ENOMEM);
3923
index = mapping_align_index(mapping, index);
3924
err = filemap_add_folio(mapping, folio, index, gfp);
3925
if (unlikely(err)) {
3926
folio_put(folio);
3927
if (err == -EEXIST)
3928
goto repeat;
3929
/* Presumably ENOMEM for xarray node */
3930
return ERR_PTR(err);
3931
}
3932
3933
goto filler;
3934
}
3935
if (folio_test_uptodate(folio))
3936
goto out;
3937
3938
if (!folio_trylock(folio)) {
3939
folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3940
goto repeat;
3941
}
3942
3943
/* Folio was truncated from mapping */
3944
if (!folio->mapping) {
3945
folio_unlock(folio);
3946
folio_put(folio);
3947
goto repeat;
3948
}
3949
3950
/* Someone else locked and filled the page in a very small window */
3951
if (folio_test_uptodate(folio)) {
3952
folio_unlock(folio);
3953
goto out;
3954
}
3955
3956
filler:
3957
err = filemap_read_folio(file, filler, folio);
3958
if (err) {
3959
folio_put(folio);
3960
if (err == AOP_TRUNCATED_PAGE)
3961
goto repeat;
3962
return ERR_PTR(err);
3963
}
3964
3965
out:
3966
folio_mark_accessed(folio);
3967
return folio;
3968
}
3969
3970
/**
3971
* read_cache_folio - Read into page cache, fill it if needed.
3972
* @mapping: The address_space to read from.
3973
* @index: The index to read.
3974
* @filler: Function to perform the read, or NULL to use aops->read_folio().
3975
* @file: Passed to filler function, may be NULL if not required.
3976
*
3977
* Read one page into the page cache. If it succeeds, the folio returned
3978
* will contain @index, but it may not be the first page of the folio.
3979
*
3980
* If the filler function returns an error, it will be returned to the
3981
* caller.
3982
*
3983
* Context: May sleep. Expects mapping->invalidate_lock to be held.
3984
* Return: An uptodate folio on success, ERR_PTR() on failure.
3985
*/
3986
struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3987
filler_t filler, struct file *file)
3988
{
3989
return do_read_cache_folio(mapping, index, filler, file,
3990
mapping_gfp_mask(mapping));
3991
}
3992
EXPORT_SYMBOL(read_cache_folio);
3993
3994
/**
3995
* mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3996
* @mapping: The address_space for the folio.
3997
* @index: The index that the allocated folio will contain.
3998
* @gfp: The page allocator flags to use if allocating.
3999
*
4000
* This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4001
* any new memory allocations done using the specified allocation flags.
4002
*
4003
* The most likely error from this function is EIO, but ENOMEM is
4004
* possible and so is EINTR. If ->read_folio returns another error,
4005
* that will be returned to the caller.
4006
*
4007
* The function expects mapping->invalidate_lock to be already held.
4008
*
4009
* Return: Uptodate folio on success, ERR_PTR() on failure.
4010
*/
4011
struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4012
pgoff_t index, gfp_t gfp)
4013
{
4014
return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4015
}
4016
EXPORT_SYMBOL(mapping_read_folio_gfp);
4017
4018
static struct page *do_read_cache_page(struct address_space *mapping,
4019
pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4020
{
4021
struct folio *folio;
4022
4023
folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4024
if (IS_ERR(folio))
4025
return &folio->page;
4026
return folio_file_page(folio, index);
4027
}
4028
4029
struct page *read_cache_page(struct address_space *mapping,
4030
pgoff_t index, filler_t *filler, struct file *file)
4031
{
4032
return do_read_cache_page(mapping, index, filler, file,
4033
mapping_gfp_mask(mapping));
4034
}
4035
EXPORT_SYMBOL(read_cache_page);
4036
4037
/**
4038
* read_cache_page_gfp - read into page cache, using specified page allocation flags.
4039
* @mapping: the page's address_space
4040
* @index: the page index
4041
* @gfp: the page allocator flags to use if allocating
4042
*
4043
* This is the same as "read_mapping_page(mapping, index, NULL)", but with
4044
* any new page allocations done using the specified allocation flags.
4045
*
4046
* If the page does not get brought uptodate, return -EIO.
4047
*
4048
* The function expects mapping->invalidate_lock to be already held.
4049
*
4050
* Return: up to date page on success, ERR_PTR() on failure.
4051
*/
4052
struct page *read_cache_page_gfp(struct address_space *mapping,
4053
pgoff_t index,
4054
gfp_t gfp)
4055
{
4056
return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4057
}
4058
EXPORT_SYMBOL(read_cache_page_gfp);
4059
4060
/*
4061
* Warn about a page cache invalidation failure during a direct I/O write.
4062
*/
4063
static void dio_warn_stale_pagecache(struct file *filp)
4064
{
4065
static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4066
char pathname[128];
4067
char *path;
4068
4069
errseq_set(&filp->f_mapping->wb_err, -EIO);
4070
if (__ratelimit(&_rs)) {
4071
path = file_path(filp, pathname, sizeof(pathname));
4072
if (IS_ERR(path))
4073
path = "(unknown)";
4074
pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4075
pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4076
current->comm);
4077
}
4078
}
4079
4080
void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4081
{
4082
struct address_space *mapping = iocb->ki_filp->f_mapping;
4083
4084
if (mapping->nrpages &&
4085
invalidate_inode_pages2_range(mapping,
4086
iocb->ki_pos >> PAGE_SHIFT,
4087
(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4088
dio_warn_stale_pagecache(iocb->ki_filp);
4089
}
4090
4091
ssize_t
4092
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4093
{
4094
struct address_space *mapping = iocb->ki_filp->f_mapping;
4095
size_t write_len = iov_iter_count(from);
4096
ssize_t written;
4097
4098
/*
4099
* If a page can not be invalidated, return 0 to fall back
4100
* to buffered write.
4101
*/
4102
written = kiocb_invalidate_pages(iocb, write_len);
4103
if (written) {
4104
if (written == -EBUSY)
4105
return 0;
4106
return written;
4107
}
4108
4109
written = mapping->a_ops->direct_IO(iocb, from);
4110
4111
/*
4112
* Finally, try again to invalidate clean pages which might have been
4113
* cached by non-direct readahead, or faulted in by get_user_pages()
4114
* if the source of the write was an mmap'ed region of the file
4115
* we're writing. Either one is a pretty crazy thing to do,
4116
* so we don't support it 100%. If this invalidation
4117
* fails, tough, the write still worked...
4118
*
4119
* Most of the time we do not need this since dio_complete() will do
4120
* the invalidation for us. However there are some file systems that
4121
* do not end up with dio_complete() being called, so let's not break
4122
* them by removing it completely.
4123
*
4124
* Noticeable example is a blkdev_direct_IO().
4125
*
4126
* Skip invalidation for async writes or if mapping has no pages.
4127
*/
4128
if (written > 0) {
4129
struct inode *inode = mapping->host;
4130
loff_t pos = iocb->ki_pos;
4131
4132
kiocb_invalidate_post_direct_write(iocb, written);
4133
pos += written;
4134
write_len -= written;
4135
if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4136
i_size_write(inode, pos);
4137
mark_inode_dirty(inode);
4138
}
4139
iocb->ki_pos = pos;
4140
}
4141
if (written != -EIOCBQUEUED)
4142
iov_iter_revert(from, write_len - iov_iter_count(from));
4143
return written;
4144
}
4145
EXPORT_SYMBOL(generic_file_direct_write);
4146
4147
ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4148
{
4149
struct file *file = iocb->ki_filp;
4150
loff_t pos = iocb->ki_pos;
4151
struct address_space *mapping = file->f_mapping;
4152
const struct address_space_operations *a_ops = mapping->a_ops;
4153
size_t chunk = mapping_max_folio_size(mapping);
4154
long status = 0;
4155
ssize_t written = 0;
4156
4157
do {
4158
struct folio *folio;
4159
size_t offset; /* Offset into folio */
4160
size_t bytes; /* Bytes to write to folio */
4161
size_t copied; /* Bytes copied from user */
4162
void *fsdata = NULL;
4163
4164
bytes = iov_iter_count(i);
4165
retry:
4166
offset = pos & (chunk - 1);
4167
bytes = min(chunk - offset, bytes);
4168
balance_dirty_pages_ratelimited(mapping);
4169
4170
if (fatal_signal_pending(current)) {
4171
status = -EINTR;
4172
break;
4173
}
4174
4175
status = a_ops->write_begin(iocb, mapping, pos, bytes,
4176
&folio, &fsdata);
4177
if (unlikely(status < 0))
4178
break;
4179
4180
offset = offset_in_folio(folio, pos);
4181
if (bytes > folio_size(folio) - offset)
4182
bytes = folio_size(folio) - offset;
4183
4184
if (mapping_writably_mapped(mapping))
4185
flush_dcache_folio(folio);
4186
4187
/*
4188
* Faults here on mmap()s can recurse into arbitrary
4189
* filesystem code. Lots of locks are held that can
4190
* deadlock. Use an atomic copy to avoid deadlocking
4191
* in page fault handling.
4192
*/
4193
copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4194
flush_dcache_folio(folio);
4195
4196
status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4197
folio, fsdata);
4198
if (unlikely(status != copied)) {
4199
iov_iter_revert(i, copied - max(status, 0L));
4200
if (unlikely(status < 0))
4201
break;
4202
}
4203
cond_resched();
4204
4205
if (unlikely(status == 0)) {
4206
/*
4207
* A short copy made ->write_end() reject the
4208
* thing entirely. Might be memory poisoning
4209
* halfway through, might be a race with munmap,
4210
* might be severe memory pressure.
4211
*/
4212
if (chunk > PAGE_SIZE)
4213
chunk /= 2;
4214
if (copied) {
4215
bytes = copied;
4216
goto retry;
4217
}
4218
4219
/*
4220
* 'folio' is now unlocked and faults on it can be
4221
* handled. Ensure forward progress by trying to
4222
* fault it in now.
4223
*/
4224
if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4225
status = -EFAULT;
4226
break;
4227
}
4228
} else {
4229
pos += status;
4230
written += status;
4231
}
4232
} while (iov_iter_count(i));
4233
4234
if (!written)
4235
return status;
4236
iocb->ki_pos += written;
4237
return written;
4238
}
4239
EXPORT_SYMBOL(generic_perform_write);
4240
4241
/**
4242
* __generic_file_write_iter - write data to a file
4243
* @iocb: IO state structure (file, offset, etc.)
4244
* @from: iov_iter with data to write
4245
*
4246
* This function does all the work needed for actually writing data to a
4247
* file. It does all basic checks, removes SUID from the file, updates
4248
* modification times and calls proper subroutines depending on whether we
4249
* do direct IO or a standard buffered write.
4250
*
4251
* It expects i_rwsem to be grabbed unless we work on a block device or similar
4252
* object which does not need locking at all.
4253
*
4254
* This function does *not* take care of syncing data in case of O_SYNC write.
4255
* A caller has to handle it. This is mainly due to the fact that we want to
4256
* avoid syncing under i_rwsem.
4257
*
4258
* Return:
4259
* * number of bytes written, even for truncated writes
4260
* * negative error code if no data has been written at all
4261
*/
4262
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4263
{
4264
struct file *file = iocb->ki_filp;
4265
struct address_space *mapping = file->f_mapping;
4266
struct inode *inode = mapping->host;
4267
ssize_t ret;
4268
4269
ret = file_remove_privs(file);
4270
if (ret)
4271
return ret;
4272
4273
ret = file_update_time(file);
4274
if (ret)
4275
return ret;
4276
4277
if (iocb->ki_flags & IOCB_DIRECT) {
4278
ret = generic_file_direct_write(iocb, from);
4279
/*
4280
* If the write stopped short of completing, fall back to
4281
* buffered writes. Some filesystems do this for writes to
4282
* holes, for example. For DAX files, a buffered write will
4283
* not succeed (even if it did, DAX does not handle dirty
4284
* page-cache pages correctly).
4285
*/
4286
if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4287
return ret;
4288
return direct_write_fallback(iocb, from, ret,
4289
generic_perform_write(iocb, from));
4290
}
4291
4292
return generic_perform_write(iocb, from);
4293
}
4294
EXPORT_SYMBOL(__generic_file_write_iter);
4295
4296
/**
4297
* generic_file_write_iter - write data to a file
4298
* @iocb: IO state structure
4299
* @from: iov_iter with data to write
4300
*
4301
* This is a wrapper around __generic_file_write_iter() to be used by most
4302
* filesystems. It takes care of syncing the file in case of O_SYNC file
4303
* and acquires i_rwsem as needed.
4304
* Return:
4305
* * negative error code if no data has been written at all of
4306
* vfs_fsync_range() failed for a synchronous write
4307
* * number of bytes written, even for truncated writes
4308
*/
4309
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4310
{
4311
struct file *file = iocb->ki_filp;
4312
struct inode *inode = file->f_mapping->host;
4313
ssize_t ret;
4314
4315
inode_lock(inode);
4316
ret = generic_write_checks(iocb, from);
4317
if (ret > 0)
4318
ret = __generic_file_write_iter(iocb, from);
4319
inode_unlock(inode);
4320
4321
if (ret > 0)
4322
ret = generic_write_sync(iocb, ret);
4323
return ret;
4324
}
4325
EXPORT_SYMBOL(generic_file_write_iter);
4326
4327
/**
4328
* filemap_release_folio() - Release fs-specific metadata on a folio.
4329
* @folio: The folio which the kernel is trying to free.
4330
* @gfp: Memory allocation flags (and I/O mode).
4331
*
4332
* The address_space is trying to release any data attached to a folio
4333
* (presumably at folio->private).
4334
*
4335
* This will also be called if the private_2 flag is set on a page,
4336
* indicating that the folio has other metadata associated with it.
4337
*
4338
* The @gfp argument specifies whether I/O may be performed to release
4339
* this page (__GFP_IO), and whether the call may block
4340
* (__GFP_RECLAIM & __GFP_FS).
4341
*
4342
* Return: %true if the release was successful, otherwise %false.
4343
*/
4344
bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4345
{
4346
struct address_space * const mapping = folio->mapping;
4347
4348
BUG_ON(!folio_test_locked(folio));
4349
if (!folio_needs_release(folio))
4350
return true;
4351
if (folio_test_writeback(folio))
4352
return false;
4353
4354
if (mapping && mapping->a_ops->release_folio)
4355
return mapping->a_ops->release_folio(folio, gfp);
4356
return try_to_free_buffers(folio);
4357
}
4358
EXPORT_SYMBOL(filemap_release_folio);
4359
4360
/**
4361
* filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4362
* @inode: The inode to flush
4363
* @flush: Set to write back rather than simply invalidate.
4364
* @start: First byte to in range.
4365
* @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4366
* onwards.
4367
*
4368
* Invalidate all the folios on an inode that contribute to the specified
4369
* range, possibly writing them back first. Whilst the operation is
4370
* undertaken, the invalidate lock is held to prevent new folios from being
4371
* installed.
4372
*/
4373
int filemap_invalidate_inode(struct inode *inode, bool flush,
4374
loff_t start, loff_t end)
4375
{
4376
struct address_space *mapping = inode->i_mapping;
4377
pgoff_t first = start >> PAGE_SHIFT;
4378
pgoff_t last = end >> PAGE_SHIFT;
4379
pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4380
4381
if (!mapping || !mapping->nrpages || end < start)
4382
goto out;
4383
4384
/* Prevent new folios from being added to the inode. */
4385
filemap_invalidate_lock(mapping);
4386
4387
if (!mapping->nrpages)
4388
goto unlock;
4389
4390
unmap_mapping_pages(mapping, first, nr, false);
4391
4392
/* Write back the data if we're asked to. */
4393
if (flush) {
4394
struct writeback_control wbc = {
4395
.sync_mode = WB_SYNC_ALL,
4396
.nr_to_write = LONG_MAX,
4397
.range_start = start,
4398
.range_end = end,
4399
};
4400
4401
filemap_fdatawrite_wbc(mapping, &wbc);
4402
}
4403
4404
/* Wait for writeback to complete on all folios and discard. */
4405
invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4406
4407
unlock:
4408
filemap_invalidate_unlock(mapping);
4409
out:
4410
return filemap_check_errors(mapping);
4411
}
4412
EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4413
4414
#ifdef CONFIG_CACHESTAT_SYSCALL
4415
/**
4416
* filemap_cachestat() - compute the page cache statistics of a mapping
4417
* @mapping: The mapping to compute the statistics for.
4418
* @first_index: The starting page cache index.
4419
* @last_index: The final page index (inclusive).
4420
* @cs: the cachestat struct to write the result to.
4421
*
4422
* This will query the page cache statistics of a mapping in the
4423
* page range of [first_index, last_index] (inclusive). The statistics
4424
* queried include: number of dirty pages, number of pages marked for
4425
* writeback, and the number of (recently) evicted pages.
4426
*/
4427
static void filemap_cachestat(struct address_space *mapping,
4428
pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4429
{
4430
XA_STATE(xas, &mapping->i_pages, first_index);
4431
struct folio *folio;
4432
4433
/* Flush stats (and potentially sleep) outside the RCU read section. */
4434
mem_cgroup_flush_stats_ratelimited(NULL);
4435
4436
rcu_read_lock();
4437
xas_for_each(&xas, folio, last_index) {
4438
int order;
4439
unsigned long nr_pages;
4440
pgoff_t folio_first_index, folio_last_index;
4441
4442
/*
4443
* Don't deref the folio. It is not pinned, and might
4444
* get freed (and reused) underneath us.
4445
*
4446
* We *could* pin it, but that would be expensive for
4447
* what should be a fast and lightweight syscall.
4448
*
4449
* Instead, derive all information of interest from
4450
* the rcu-protected xarray.
4451
*/
4452
4453
if (xas_retry(&xas, folio))
4454
continue;
4455
4456
order = xas_get_order(&xas);
4457
nr_pages = 1 << order;
4458
folio_first_index = round_down(xas.xa_index, 1 << order);
4459
folio_last_index = folio_first_index + nr_pages - 1;
4460
4461
/* Folios might straddle the range boundaries, only count covered pages */
4462
if (folio_first_index < first_index)
4463
nr_pages -= first_index - folio_first_index;
4464
4465
if (folio_last_index > last_index)
4466
nr_pages -= folio_last_index - last_index;
4467
4468
if (xa_is_value(folio)) {
4469
/* page is evicted */
4470
void *shadow = (void *)folio;
4471
bool workingset; /* not used */
4472
4473
cs->nr_evicted += nr_pages;
4474
4475
#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4476
if (shmem_mapping(mapping)) {
4477
/* shmem file - in swap cache */
4478
swp_entry_t swp = radix_to_swp_entry(folio);
4479
4480
/* swapin error results in poisoned entry */
4481
if (non_swap_entry(swp))
4482
goto resched;
4483
4484
/*
4485
* Getting a swap entry from the shmem
4486
* inode means we beat
4487
* shmem_unuse(). rcu_read_lock()
4488
* ensures swapoff waits for us before
4489
* freeing the swapper space. However,
4490
* we can race with swapping and
4491
* invalidation, so there might not be
4492
* a shadow in the swapcache (yet).
4493
*/
4494
shadow = get_shadow_from_swap_cache(swp);
4495
if (!shadow)
4496
goto resched;
4497
}
4498
#endif
4499
if (workingset_test_recent(shadow, true, &workingset, false))
4500
cs->nr_recently_evicted += nr_pages;
4501
4502
goto resched;
4503
}
4504
4505
/* page is in cache */
4506
cs->nr_cache += nr_pages;
4507
4508
if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4509
cs->nr_dirty += nr_pages;
4510
4511
if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4512
cs->nr_writeback += nr_pages;
4513
4514
resched:
4515
if (need_resched()) {
4516
xas_pause(&xas);
4517
cond_resched_rcu();
4518
}
4519
}
4520
rcu_read_unlock();
4521
}
4522
4523
/*
4524
* See mincore: reveal pagecache information only for files
4525
* that the calling process has write access to, or could (if
4526
* tried) open for writing.
4527
*/
4528
static inline bool can_do_cachestat(struct file *f)
4529
{
4530
if (f->f_mode & FMODE_WRITE)
4531
return true;
4532
if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4533
return true;
4534
return file_permission(f, MAY_WRITE) == 0;
4535
}
4536
4537
/*
4538
* The cachestat(2) system call.
4539
*
4540
* cachestat() returns the page cache statistics of a file in the
4541
* bytes range specified by `off` and `len`: number of cached pages,
4542
* number of dirty pages, number of pages marked for writeback,
4543
* number of evicted pages, and number of recently evicted pages.
4544
*
4545
* An evicted page is a page that is previously in the page cache
4546
* but has been evicted since. A page is recently evicted if its last
4547
* eviction was recent enough that its reentry to the cache would
4548
* indicate that it is actively being used by the system, and that
4549
* there is memory pressure on the system.
4550
*
4551
* `off` and `len` must be non-negative integers. If `len` > 0,
4552
* the queried range is [`off`, `off` + `len`]. If `len` == 0,
4553
* we will query in the range from `off` to the end of the file.
4554
*
4555
* The `flags` argument is unused for now, but is included for future
4556
* extensibility. User should pass 0 (i.e no flag specified).
4557
*
4558
* Currently, hugetlbfs is not supported.
4559
*
4560
* Because the status of a page can change after cachestat() checks it
4561
* but before it returns to the application, the returned values may
4562
* contain stale information.
4563
*
4564
* return values:
4565
* zero - success
4566
* -EFAULT - cstat or cstat_range points to an illegal address
4567
* -EINVAL - invalid flags
4568
* -EBADF - invalid file descriptor
4569
* -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4570
*/
4571
SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4572
struct cachestat_range __user *, cstat_range,
4573
struct cachestat __user *, cstat, unsigned int, flags)
4574
{
4575
CLASS(fd, f)(fd);
4576
struct address_space *mapping;
4577
struct cachestat_range csr;
4578
struct cachestat cs;
4579
pgoff_t first_index, last_index;
4580
4581
if (fd_empty(f))
4582
return -EBADF;
4583
4584
if (copy_from_user(&csr, cstat_range,
4585
sizeof(struct cachestat_range)))
4586
return -EFAULT;
4587
4588
/* hugetlbfs is not supported */
4589
if (is_file_hugepages(fd_file(f)))
4590
return -EOPNOTSUPP;
4591
4592
if (!can_do_cachestat(fd_file(f)))
4593
return -EPERM;
4594
4595
if (flags != 0)
4596
return -EINVAL;
4597
4598
first_index = csr.off >> PAGE_SHIFT;
4599
last_index =
4600
csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4601
memset(&cs, 0, sizeof(struct cachestat));
4602
mapping = fd_file(f)->f_mapping;
4603
filemap_cachestat(mapping, first_index, last_index, &cs);
4604
4605
if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4606
return -EFAULT;
4607
4608
return 0;
4609
}
4610
#endif /* CONFIG_CACHESTAT_SYSCALL */
4611
4612