Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/gup.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/kernel.h>
3
#include <linux/errno.h>
4
#include <linux/err.h>
5
#include <linux/spinlock.h>
6
7
#include <linux/mm.h>
8
#include <linux/memfd.h>
9
#include <linux/memremap.h>
10
#include <linux/pagemap.h>
11
#include <linux/rmap.h>
12
#include <linux/swap.h>
13
#include <linux/swapops.h>
14
#include <linux/secretmem.h>
15
16
#include <linux/sched/signal.h>
17
#include <linux/rwsem.h>
18
#include <linux/hugetlb.h>
19
#include <linux/migrate.h>
20
#include <linux/mm_inline.h>
21
#include <linux/pagevec.h>
22
#include <linux/sched/mm.h>
23
#include <linux/shmem_fs.h>
24
25
#include <asm/mmu_context.h>
26
#include <asm/tlbflush.h>
27
28
#include "internal.h"
29
#include "swap.h"
30
31
struct follow_page_context {
32
struct dev_pagemap *pgmap;
33
unsigned int page_mask;
34
};
35
36
static inline void sanity_check_pinned_pages(struct page **pages,
37
unsigned long npages)
38
{
39
if (!IS_ENABLED(CONFIG_DEBUG_VM))
40
return;
41
42
/*
43
* We only pin anonymous pages if they are exclusive. Once pinned, we
44
* can no longer turn them possibly shared and PageAnonExclusive() will
45
* stick around until the page is freed.
46
*
47
* We'd like to verify that our pinned anonymous pages are still mapped
48
* exclusively. The issue with anon THP is that we don't know how
49
* they are/were mapped when pinning them. However, for anon
50
* THP we can assume that either the given page (PTE-mapped THP) or
51
* the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52
* neither is the case, there is certainly something wrong.
53
*/
54
for (; npages; npages--, pages++) {
55
struct page *page = *pages;
56
struct folio *folio;
57
58
if (!page)
59
continue;
60
61
folio = page_folio(page);
62
63
if (is_zero_page(page) ||
64
!folio_test_anon(folio))
65
continue;
66
if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67
VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
68
else
69
/* Either a PTE-mapped or a PMD-mapped THP. */
70
VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
71
!PageAnonExclusive(page), page);
72
}
73
}
74
75
/*
76
* Return the folio with ref appropriately incremented,
77
* or NULL if that failed.
78
*/
79
static inline struct folio *try_get_folio(struct page *page, int refs)
80
{
81
struct folio *folio;
82
83
retry:
84
folio = page_folio(page);
85
if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
86
return NULL;
87
if (unlikely(!folio_ref_try_add(folio, refs)))
88
return NULL;
89
90
/*
91
* At this point we have a stable reference to the folio; but it
92
* could be that between calling page_folio() and the refcount
93
* increment, the folio was split, in which case we'd end up
94
* holding a reference on a folio that has nothing to do with the page
95
* we were given anymore.
96
* So now that the folio is stable, recheck that the page still
97
* belongs to this folio.
98
*/
99
if (unlikely(page_folio(page) != folio)) {
100
folio_put_refs(folio, refs);
101
goto retry;
102
}
103
104
return folio;
105
}
106
107
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108
{
109
if (flags & FOLL_PIN) {
110
if (is_zero_folio(folio))
111
return;
112
node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113
if (folio_has_pincount(folio))
114
atomic_sub(refs, &folio->_pincount);
115
else
116
refs *= GUP_PIN_COUNTING_BIAS;
117
}
118
119
folio_put_refs(folio, refs);
120
}
121
122
/**
123
* try_grab_folio() - add a folio's refcount by a flag-dependent amount
124
* @folio: pointer to folio to be grabbed
125
* @refs: the value to (effectively) add to the folio's refcount
126
* @flags: gup flags: these are the FOLL_* flag values
127
*
128
* This might not do anything at all, depending on the flags argument.
129
*
130
* "grab" names in this file mean, "look at flags to decide whether to use
131
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
132
*
133
* Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
134
* time.
135
*
136
* Return: 0 for success, or if no action was required (if neither FOLL_PIN
137
* nor FOLL_GET was set, nothing is done). A negative error code for failure:
138
*
139
* -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
140
* be grabbed.
141
*
142
* It is called when we have a stable reference for the folio, typically in
143
* GUP slow path.
144
*/
145
int __must_check try_grab_folio(struct folio *folio, int refs,
146
unsigned int flags)
147
{
148
if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
149
return -ENOMEM;
150
151
if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
152
return -EREMOTEIO;
153
154
if (flags & FOLL_GET)
155
folio_ref_add(folio, refs);
156
else if (flags & FOLL_PIN) {
157
/*
158
* Don't take a pin on the zero page - it's not going anywhere
159
* and it is used in a *lot* of places.
160
*/
161
if (is_zero_folio(folio))
162
return 0;
163
164
/*
165
* Increment the normal page refcount field at least once,
166
* so that the page really is pinned.
167
*/
168
if (folio_has_pincount(folio)) {
169
folio_ref_add(folio, refs);
170
atomic_add(refs, &folio->_pincount);
171
} else {
172
folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
173
}
174
175
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
176
}
177
178
return 0;
179
}
180
181
/**
182
* unpin_user_page() - release a dma-pinned page
183
* @page: pointer to page to be released
184
*
185
* Pages that were pinned via pin_user_pages*() must be released via either
186
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187
* that such pages can be separately tracked and uniquely handled. In
188
* particular, interactions with RDMA and filesystems need special handling.
189
*/
190
void unpin_user_page(struct page *page)
191
{
192
sanity_check_pinned_pages(&page, 1);
193
gup_put_folio(page_folio(page), 1, FOLL_PIN);
194
}
195
EXPORT_SYMBOL(unpin_user_page);
196
197
/**
198
* unpin_folio() - release a dma-pinned folio
199
* @folio: pointer to folio to be released
200
*
201
* Folios that were pinned via memfd_pin_folios() or other similar routines
202
* must be released either using unpin_folio() or unpin_folios().
203
*/
204
void unpin_folio(struct folio *folio)
205
{
206
gup_put_folio(folio, 1, FOLL_PIN);
207
}
208
EXPORT_SYMBOL_GPL(unpin_folio);
209
210
/**
211
* folio_add_pin - Try to get an additional pin on a pinned folio
212
* @folio: The folio to be pinned
213
*
214
* Get an additional pin on a folio we already have a pin on. Makes no change
215
* if the folio is a zero_page.
216
*/
217
void folio_add_pin(struct folio *folio)
218
{
219
if (is_zero_folio(folio))
220
return;
221
222
/*
223
* Similar to try_grab_folio(): be sure to *also* increment the normal
224
* page refcount field at least once, so that the page really is
225
* pinned.
226
*/
227
if (folio_has_pincount(folio)) {
228
WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229
folio_ref_inc(folio);
230
atomic_inc(&folio->_pincount);
231
} else {
232
WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233
folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
234
}
235
}
236
237
static inline struct folio *gup_folio_range_next(struct page *start,
238
unsigned long npages, unsigned long i, unsigned int *ntails)
239
{
240
struct page *next = nth_page(start, i);
241
struct folio *folio = page_folio(next);
242
unsigned int nr = 1;
243
244
if (folio_test_large(folio))
245
nr = min_t(unsigned int, npages - i,
246
folio_nr_pages(folio) - folio_page_idx(folio, next));
247
248
*ntails = nr;
249
return folio;
250
}
251
252
static inline struct folio *gup_folio_next(struct page **list,
253
unsigned long npages, unsigned long i, unsigned int *ntails)
254
{
255
struct folio *folio = page_folio(list[i]);
256
unsigned int nr;
257
258
for (nr = i + 1; nr < npages; nr++) {
259
if (page_folio(list[nr]) != folio)
260
break;
261
}
262
263
*ntails = nr - i;
264
return folio;
265
}
266
267
/**
268
* unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269
* @pages: array of pages to be maybe marked dirty, and definitely released.
270
* @npages: number of pages in the @pages array.
271
* @make_dirty: whether to mark the pages dirty
272
*
273
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
274
* variants called on that page.
275
*
276
* For each page in the @pages array, make that page (or its head page, if a
277
* compound page) dirty, if @make_dirty is true, and if the page was previously
278
* listed as clean. In any case, releases all pages using unpin_user_page(),
279
* possibly via unpin_user_pages(), for the non-dirty case.
280
*
281
* Please see the unpin_user_page() documentation for details.
282
*
283
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284
* required, then the caller should a) verify that this is really correct,
285
* because _lock() is usually required, and b) hand code it:
286
* set_page_dirty_lock(), unpin_user_page().
287
*
288
*/
289
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
290
bool make_dirty)
291
{
292
unsigned long i;
293
struct folio *folio;
294
unsigned int nr;
295
296
if (!make_dirty) {
297
unpin_user_pages(pages, npages);
298
return;
299
}
300
301
sanity_check_pinned_pages(pages, npages);
302
for (i = 0; i < npages; i += nr) {
303
folio = gup_folio_next(pages, npages, i, &nr);
304
/*
305
* Checking PageDirty at this point may race with
306
* clear_page_dirty_for_io(), but that's OK. Two key
307
* cases:
308
*
309
* 1) This code sees the page as already dirty, so it
310
* skips the call to set_page_dirty(). That could happen
311
* because clear_page_dirty_for_io() called
312
* folio_mkclean(), followed by set_page_dirty().
313
* However, now the page is going to get written back,
314
* which meets the original intention of setting it
315
* dirty, so all is well: clear_page_dirty_for_io() goes
316
* on to call TestClearPageDirty(), and write the page
317
* back.
318
*
319
* 2) This code sees the page as clean, so it calls
320
* set_page_dirty(). The page stays dirty, despite being
321
* written back, so it gets written back again in the
322
* next writeback cycle. This is harmless.
323
*/
324
if (!folio_test_dirty(folio)) {
325
folio_lock(folio);
326
folio_mark_dirty(folio);
327
folio_unlock(folio);
328
}
329
gup_put_folio(folio, nr, FOLL_PIN);
330
}
331
}
332
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
333
334
/**
335
* unpin_user_page_range_dirty_lock() - release and optionally dirty
336
* gup-pinned page range
337
*
338
* @page: the starting page of a range maybe marked dirty, and definitely released.
339
* @npages: number of consecutive pages to release.
340
* @make_dirty: whether to mark the pages dirty
341
*
342
* "gup-pinned page range" refers to a range of pages that has had one of the
343
* pin_user_pages() variants called on that page.
344
*
345
* For the page ranges defined by [page .. page+npages], make that range (or
346
* its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347
* page range was previously listed as clean.
348
*
349
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350
* required, then the caller should a) verify that this is really correct,
351
* because _lock() is usually required, and b) hand code it:
352
* set_page_dirty_lock(), unpin_user_page().
353
*
354
*/
355
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
356
bool make_dirty)
357
{
358
unsigned long i;
359
struct folio *folio;
360
unsigned int nr;
361
362
for (i = 0; i < npages; i += nr) {
363
folio = gup_folio_range_next(page, npages, i, &nr);
364
if (make_dirty && !folio_test_dirty(folio)) {
365
folio_lock(folio);
366
folio_mark_dirty(folio);
367
folio_unlock(folio);
368
}
369
gup_put_folio(folio, nr, FOLL_PIN);
370
}
371
}
372
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
373
374
static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
375
{
376
unsigned long i;
377
struct folio *folio;
378
unsigned int nr;
379
380
/*
381
* Don't perform any sanity checks because we might have raced with
382
* fork() and some anonymous pages might now actually be shared --
383
* which is why we're unpinning after all.
384
*/
385
for (i = 0; i < npages; i += nr) {
386
folio = gup_folio_next(pages, npages, i, &nr);
387
gup_put_folio(folio, nr, FOLL_PIN);
388
}
389
}
390
391
/**
392
* unpin_user_pages() - release an array of gup-pinned pages.
393
* @pages: array of pages to be marked dirty and released.
394
* @npages: number of pages in the @pages array.
395
*
396
* For each page in the @pages array, release the page using unpin_user_page().
397
*
398
* Please see the unpin_user_page() documentation for details.
399
*/
400
void unpin_user_pages(struct page **pages, unsigned long npages)
401
{
402
unsigned long i;
403
struct folio *folio;
404
unsigned int nr;
405
406
/*
407
* If this WARN_ON() fires, then the system *might* be leaking pages (by
408
* leaving them pinned), but probably not. More likely, gup/pup returned
409
* a hard -ERRNO error to the caller, who erroneously passed it here.
410
*/
411
if (WARN_ON(IS_ERR_VALUE(npages)))
412
return;
413
414
sanity_check_pinned_pages(pages, npages);
415
for (i = 0; i < npages; i += nr) {
416
if (!pages[i]) {
417
nr = 1;
418
continue;
419
}
420
folio = gup_folio_next(pages, npages, i, &nr);
421
gup_put_folio(folio, nr, FOLL_PIN);
422
}
423
}
424
EXPORT_SYMBOL(unpin_user_pages);
425
426
/**
427
* unpin_user_folio() - release pages of a folio
428
* @folio: pointer to folio to be released
429
* @npages: number of pages of same folio
430
*
431
* Release npages of the folio
432
*/
433
void unpin_user_folio(struct folio *folio, unsigned long npages)
434
{
435
gup_put_folio(folio, npages, FOLL_PIN);
436
}
437
EXPORT_SYMBOL(unpin_user_folio);
438
439
/**
440
* unpin_folios() - release an array of gup-pinned folios.
441
* @folios: array of folios to be marked dirty and released.
442
* @nfolios: number of folios in the @folios array.
443
*
444
* For each folio in the @folios array, release the folio using gup_put_folio.
445
*
446
* Please see the unpin_folio() documentation for details.
447
*/
448
void unpin_folios(struct folio **folios, unsigned long nfolios)
449
{
450
unsigned long i = 0, j;
451
452
/*
453
* If this WARN_ON() fires, then the system *might* be leaking folios
454
* (by leaving them pinned), but probably not. More likely, gup/pup
455
* returned a hard -ERRNO error to the caller, who erroneously passed
456
* it here.
457
*/
458
if (WARN_ON(IS_ERR_VALUE(nfolios)))
459
return;
460
461
while (i < nfolios) {
462
for (j = i + 1; j < nfolios; j++)
463
if (folios[i] != folios[j])
464
break;
465
466
if (folios[i])
467
gup_put_folio(folios[i], j - i, FOLL_PIN);
468
i = j;
469
}
470
}
471
EXPORT_SYMBOL_GPL(unpin_folios);
472
473
/*
474
* Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475
* lifecycle. Avoid setting the bit unless necessary, or it might cause write
476
* cache bouncing on large SMP machines for concurrent pinned gups.
477
*/
478
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
479
{
480
if (!test_bit(MMF_HAS_PINNED, mm_flags))
481
set_bit(MMF_HAS_PINNED, mm_flags);
482
}
483
484
#ifdef CONFIG_MMU
485
486
#ifdef CONFIG_HAVE_GUP_FAST
487
static int record_subpages(struct page *page, unsigned long sz,
488
unsigned long addr, unsigned long end,
489
struct page **pages)
490
{
491
struct page *start_page;
492
int nr;
493
494
start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495
for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496
pages[nr] = nth_page(start_page, nr);
497
498
return nr;
499
}
500
501
/**
502
* try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503
* @page: pointer to page to be grabbed
504
* @refs: the value to (effectively) add to the folio's refcount
505
* @flags: gup flags: these are the FOLL_* flag values.
506
*
507
* "grab" names in this file mean, "look at flags to decide whether to use
508
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
509
*
510
* Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511
* same time. (That's true throughout the get_user_pages*() and
512
* pin_user_pages*() APIs.) Cases:
513
*
514
* FOLL_GET: folio's refcount will be incremented by @refs.
515
*
516
* FOLL_PIN on large folios: folio's refcount will be incremented by
517
* @refs, and its pincount will be incremented by @refs.
518
*
519
* FOLL_PIN on single-page folios: folio's refcount will be incremented by
520
* @refs * GUP_PIN_COUNTING_BIAS.
521
*
522
* Return: The folio containing @page (with refcount appropriately
523
* incremented) for success, or NULL upon failure. If neither FOLL_GET
524
* nor FOLL_PIN was set, that's considered failure, and furthermore,
525
* a likely bug in the caller, so a warning is also emitted.
526
*
527
* It uses add ref unless zero to elevate the folio refcount and must be called
528
* in fast path only.
529
*/
530
static struct folio *try_grab_folio_fast(struct page *page, int refs,
531
unsigned int flags)
532
{
533
struct folio *folio;
534
535
/* Raise warn if it is not called in fast GUP */
536
VM_WARN_ON_ONCE(!irqs_disabled());
537
538
if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
539
return NULL;
540
541
if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
542
return NULL;
543
544
if (flags & FOLL_GET)
545
return try_get_folio(page, refs);
546
547
/* FOLL_PIN is set */
548
549
/*
550
* Don't take a pin on the zero page - it's not going anywhere
551
* and it is used in a *lot* of places.
552
*/
553
if (is_zero_page(page))
554
return page_folio(page);
555
556
folio = try_get_folio(page, refs);
557
if (!folio)
558
return NULL;
559
560
/*
561
* Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562
* right zone, so fail and let the caller fall back to the slow
563
* path.
564
*/
565
if (unlikely((flags & FOLL_LONGTERM) &&
566
!folio_is_longterm_pinnable(folio))) {
567
folio_put_refs(folio, refs);
568
return NULL;
569
}
570
571
/*
572
* When pinning a large folio, use an exact count to track it.
573
*
574
* However, be sure to *also* increment the normal folio
575
* refcount field at least once, so that the folio really
576
* is pinned. That's why the refcount from the earlier
577
* try_get_folio() is left intact.
578
*/
579
if (folio_has_pincount(folio))
580
atomic_add(refs, &folio->_pincount);
581
else
582
folio_ref_add(folio,
583
refs * (GUP_PIN_COUNTING_BIAS - 1));
584
/*
585
* Adjust the pincount before re-checking the PTE for changes.
586
* This is essentially a smp_mb() and is paired with a memory
587
* barrier in folio_try_share_anon_rmap_*().
588
*/
589
smp_mb__after_atomic();
590
591
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
592
593
return folio;
594
}
595
#endif /* CONFIG_HAVE_GUP_FAST */
596
597
/* Common code for can_follow_write_* */
598
static inline bool can_follow_write_common(struct page *page,
599
struct vm_area_struct *vma, unsigned int flags)
600
{
601
/* Maybe FOLL_FORCE is set to override it? */
602
if (!(flags & FOLL_FORCE))
603
return false;
604
605
/* But FOLL_FORCE has no effect on shared mappings */
606
if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
607
return false;
608
609
/* ... or read-only private ones */
610
if (!(vma->vm_flags & VM_MAYWRITE))
611
return false;
612
613
/* ... or already writable ones that just need to take a write fault */
614
if (vma->vm_flags & VM_WRITE)
615
return false;
616
617
/*
618
* See can_change_pte_writable(): we broke COW and could map the page
619
* writable if we have an exclusive anonymous page ...
620
*/
621
return page && PageAnon(page) && PageAnonExclusive(page);
622
}
623
624
static struct page *no_page_table(struct vm_area_struct *vma,
625
unsigned int flags, unsigned long address)
626
{
627
if (!(flags & FOLL_DUMP))
628
return NULL;
629
630
/*
631
* When core dumping, we don't want to allocate unnecessary pages or
632
* page tables. Return error instead of NULL to skip handle_mm_fault,
633
* then get_dump_page() will return NULL to leave a hole in the dump.
634
* But we can only make this optimization where a hole would surely
635
* be zero-filled if handle_mm_fault() actually did handle it.
636
*/
637
if (is_vm_hugetlb_page(vma)) {
638
struct hstate *h = hstate_vma(vma);
639
640
if (!hugetlbfs_pagecache_present(h, vma, address))
641
return ERR_PTR(-EFAULT);
642
} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643
return ERR_PTR(-EFAULT);
644
}
645
646
return NULL;
647
}
648
649
#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650
/* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
651
static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652
struct vm_area_struct *vma,
653
unsigned int flags)
654
{
655
/* If the pud is writable, we can write to the page. */
656
if (pud_write(pud))
657
return true;
658
659
return can_follow_write_common(page, vma, flags);
660
}
661
662
static struct page *follow_huge_pud(struct vm_area_struct *vma,
663
unsigned long addr, pud_t *pudp,
664
int flags, struct follow_page_context *ctx)
665
{
666
struct mm_struct *mm = vma->vm_mm;
667
struct page *page;
668
pud_t pud = *pudp;
669
unsigned long pfn = pud_pfn(pud);
670
int ret;
671
672
assert_spin_locked(pud_lockptr(mm, pudp));
673
674
if (!pud_present(pud))
675
return NULL;
676
677
if ((flags & FOLL_WRITE) &&
678
!can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
679
return NULL;
680
681
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
682
page = pfn_to_page(pfn);
683
684
if (!pud_write(pud) && gup_must_unshare(vma, flags, page))
685
return ERR_PTR(-EMLINK);
686
687
ret = try_grab_folio(page_folio(page), 1, flags);
688
if (ret)
689
page = ERR_PTR(ret);
690
else
691
ctx->page_mask = HPAGE_PUD_NR - 1;
692
693
return page;
694
}
695
696
/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
697
static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
698
struct vm_area_struct *vma,
699
unsigned int flags)
700
{
701
/* If the pmd is writable, we can write to the page. */
702
if (pmd_write(pmd))
703
return true;
704
705
if (!can_follow_write_common(page, vma, flags))
706
return false;
707
708
/* ... and a write-fault isn't required for other reasons. */
709
if (pmd_needs_soft_dirty_wp(vma, pmd))
710
return false;
711
return !userfaultfd_huge_pmd_wp(vma, pmd);
712
}
713
714
static struct page *follow_huge_pmd(struct vm_area_struct *vma,
715
unsigned long addr, pmd_t *pmd,
716
unsigned int flags,
717
struct follow_page_context *ctx)
718
{
719
struct mm_struct *mm = vma->vm_mm;
720
pmd_t pmdval = *pmd;
721
struct page *page;
722
int ret;
723
724
assert_spin_locked(pmd_lockptr(mm, pmd));
725
726
page = pmd_page(pmdval);
727
if ((flags & FOLL_WRITE) &&
728
!can_follow_write_pmd(pmdval, page, vma, flags))
729
return NULL;
730
731
/* Avoid dumping huge zero page */
732
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
733
return ERR_PTR(-EFAULT);
734
735
if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
736
return NULL;
737
738
if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
739
return ERR_PTR(-EMLINK);
740
741
VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
742
!PageAnonExclusive(page), page);
743
744
ret = try_grab_folio(page_folio(page), 1, flags);
745
if (ret)
746
return ERR_PTR(ret);
747
748
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
749
if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
750
touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
751
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
752
753
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
754
ctx->page_mask = HPAGE_PMD_NR - 1;
755
756
return page;
757
}
758
759
#else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
760
static struct page *follow_huge_pud(struct vm_area_struct *vma,
761
unsigned long addr, pud_t *pudp,
762
int flags, struct follow_page_context *ctx)
763
{
764
return NULL;
765
}
766
767
static struct page *follow_huge_pmd(struct vm_area_struct *vma,
768
unsigned long addr, pmd_t *pmd,
769
unsigned int flags,
770
struct follow_page_context *ctx)
771
{
772
return NULL;
773
}
774
#endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
775
776
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
777
pte_t *pte, unsigned int flags)
778
{
779
if (flags & FOLL_TOUCH) {
780
pte_t orig_entry = ptep_get(pte);
781
pte_t entry = orig_entry;
782
783
if (flags & FOLL_WRITE)
784
entry = pte_mkdirty(entry);
785
entry = pte_mkyoung(entry);
786
787
if (!pte_same(orig_entry, entry)) {
788
set_pte_at(vma->vm_mm, address, pte, entry);
789
update_mmu_cache(vma, address, pte);
790
}
791
}
792
793
/* Proper page table entry exists, but no corresponding struct page */
794
return -EEXIST;
795
}
796
797
/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
798
static inline bool can_follow_write_pte(pte_t pte, struct page *page,
799
struct vm_area_struct *vma,
800
unsigned int flags)
801
{
802
/* If the pte is writable, we can write to the page. */
803
if (pte_write(pte))
804
return true;
805
806
if (!can_follow_write_common(page, vma, flags))
807
return false;
808
809
/* ... and a write-fault isn't required for other reasons. */
810
if (pte_needs_soft_dirty_wp(vma, pte))
811
return false;
812
return !userfaultfd_pte_wp(vma, pte);
813
}
814
815
static struct page *follow_page_pte(struct vm_area_struct *vma,
816
unsigned long address, pmd_t *pmd, unsigned int flags,
817
struct dev_pagemap **pgmap)
818
{
819
struct mm_struct *mm = vma->vm_mm;
820
struct folio *folio;
821
struct page *page;
822
spinlock_t *ptl;
823
pte_t *ptep, pte;
824
int ret;
825
826
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
827
if (!ptep)
828
return no_page_table(vma, flags, address);
829
pte = ptep_get(ptep);
830
if (!pte_present(pte))
831
goto no_page;
832
if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
833
goto no_page;
834
835
page = vm_normal_page(vma, address, pte);
836
837
/*
838
* We only care about anon pages in can_follow_write_pte().
839
*/
840
if ((flags & FOLL_WRITE) &&
841
!can_follow_write_pte(pte, page, vma, flags)) {
842
page = NULL;
843
goto out;
844
}
845
846
if (unlikely(!page)) {
847
if (flags & FOLL_DUMP) {
848
/* Avoid special (like zero) pages in core dumps */
849
page = ERR_PTR(-EFAULT);
850
goto out;
851
}
852
853
if (is_zero_pfn(pte_pfn(pte))) {
854
page = pte_page(pte);
855
} else {
856
ret = follow_pfn_pte(vma, address, ptep, flags);
857
page = ERR_PTR(ret);
858
goto out;
859
}
860
}
861
folio = page_folio(page);
862
863
if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
864
page = ERR_PTR(-EMLINK);
865
goto out;
866
}
867
868
VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
869
!PageAnonExclusive(page), page);
870
871
/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
872
ret = try_grab_folio(folio, 1, flags);
873
if (unlikely(ret)) {
874
page = ERR_PTR(ret);
875
goto out;
876
}
877
878
/*
879
* We need to make the page accessible if and only if we are going
880
* to access its content (the FOLL_PIN case). Please see
881
* Documentation/core-api/pin_user_pages.rst for details.
882
*/
883
if (flags & FOLL_PIN) {
884
ret = arch_make_folio_accessible(folio);
885
if (ret) {
886
unpin_user_page(page);
887
page = ERR_PTR(ret);
888
goto out;
889
}
890
}
891
if (flags & FOLL_TOUCH) {
892
if ((flags & FOLL_WRITE) &&
893
!pte_dirty(pte) && !folio_test_dirty(folio))
894
folio_mark_dirty(folio);
895
/*
896
* pte_mkyoung() would be more correct here, but atomic care
897
* is needed to avoid losing the dirty bit: it is easier to use
898
* folio_mark_accessed().
899
*/
900
folio_mark_accessed(folio);
901
}
902
out:
903
pte_unmap_unlock(ptep, ptl);
904
return page;
905
no_page:
906
pte_unmap_unlock(ptep, ptl);
907
if (!pte_none(pte))
908
return NULL;
909
return no_page_table(vma, flags, address);
910
}
911
912
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
913
unsigned long address, pud_t *pudp,
914
unsigned int flags,
915
struct follow_page_context *ctx)
916
{
917
pmd_t *pmd, pmdval;
918
spinlock_t *ptl;
919
struct page *page;
920
struct mm_struct *mm = vma->vm_mm;
921
922
pmd = pmd_offset(pudp, address);
923
pmdval = pmdp_get_lockless(pmd);
924
if (pmd_none(pmdval))
925
return no_page_table(vma, flags, address);
926
if (!pmd_present(pmdval))
927
return no_page_table(vma, flags, address);
928
if (likely(!pmd_leaf(pmdval)))
929
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
930
931
if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
932
return no_page_table(vma, flags, address);
933
934
ptl = pmd_lock(mm, pmd);
935
pmdval = *pmd;
936
if (unlikely(!pmd_present(pmdval))) {
937
spin_unlock(ptl);
938
return no_page_table(vma, flags, address);
939
}
940
if (unlikely(!pmd_leaf(pmdval))) {
941
spin_unlock(ptl);
942
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
943
}
944
if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
945
spin_unlock(ptl);
946
split_huge_pmd(vma, pmd, address);
947
/* If pmd was left empty, stuff a page table in there quickly */
948
return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
949
follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
950
}
951
page = follow_huge_pmd(vma, address, pmd, flags, ctx);
952
spin_unlock(ptl);
953
return page;
954
}
955
956
static struct page *follow_pud_mask(struct vm_area_struct *vma,
957
unsigned long address, p4d_t *p4dp,
958
unsigned int flags,
959
struct follow_page_context *ctx)
960
{
961
pud_t *pudp, pud;
962
spinlock_t *ptl;
963
struct page *page;
964
struct mm_struct *mm = vma->vm_mm;
965
966
pudp = pud_offset(p4dp, address);
967
pud = READ_ONCE(*pudp);
968
if (!pud_present(pud))
969
return no_page_table(vma, flags, address);
970
if (pud_leaf(pud)) {
971
ptl = pud_lock(mm, pudp);
972
page = follow_huge_pud(vma, address, pudp, flags, ctx);
973
spin_unlock(ptl);
974
if (page)
975
return page;
976
return no_page_table(vma, flags, address);
977
}
978
if (unlikely(pud_bad(pud)))
979
return no_page_table(vma, flags, address);
980
981
return follow_pmd_mask(vma, address, pudp, flags, ctx);
982
}
983
984
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
985
unsigned long address, pgd_t *pgdp,
986
unsigned int flags,
987
struct follow_page_context *ctx)
988
{
989
p4d_t *p4dp, p4d;
990
991
p4dp = p4d_offset(pgdp, address);
992
p4d = READ_ONCE(*p4dp);
993
BUILD_BUG_ON(p4d_leaf(p4d));
994
995
if (!p4d_present(p4d) || p4d_bad(p4d))
996
return no_page_table(vma, flags, address);
997
998
return follow_pud_mask(vma, address, p4dp, flags, ctx);
999
}
1000
1001
/**
1002
* follow_page_mask - look up a page descriptor from a user-virtual address
1003
* @vma: vm_area_struct mapping @address
1004
* @address: virtual address to look up
1005
* @flags: flags modifying lookup behaviour
1006
* @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1007
* pointer to output page_mask
1008
*
1009
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
1010
*
1011
* When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1012
* the device's dev_pagemap metadata to avoid repeating expensive lookups.
1013
*
1014
* When getting an anonymous page and the caller has to trigger unsharing
1015
* of a shared anonymous page first, -EMLINK is returned. The caller should
1016
* trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1017
* relevant with FOLL_PIN and !FOLL_WRITE.
1018
*
1019
* On output, the @ctx->page_mask is set according to the size of the page.
1020
*
1021
* Return: the mapped (struct page *), %NULL if no mapping exists, or
1022
* an error pointer if there is a mapping to something not represented
1023
* by a page descriptor (see also vm_normal_page()).
1024
*/
1025
static struct page *follow_page_mask(struct vm_area_struct *vma,
1026
unsigned long address, unsigned int flags,
1027
struct follow_page_context *ctx)
1028
{
1029
pgd_t *pgd;
1030
struct mm_struct *mm = vma->vm_mm;
1031
struct page *page;
1032
1033
vma_pgtable_walk_begin(vma);
1034
1035
ctx->page_mask = 0;
1036
pgd = pgd_offset(mm, address);
1037
1038
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1039
page = no_page_table(vma, flags, address);
1040
else
1041
page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1042
1043
vma_pgtable_walk_end(vma);
1044
1045
return page;
1046
}
1047
1048
static int get_gate_page(struct mm_struct *mm, unsigned long address,
1049
unsigned int gup_flags, struct vm_area_struct **vma,
1050
struct page **page)
1051
{
1052
pgd_t *pgd;
1053
p4d_t *p4d;
1054
pud_t *pud;
1055
pmd_t *pmd;
1056
pte_t *pte;
1057
pte_t entry;
1058
int ret = -EFAULT;
1059
1060
/* user gate pages are read-only */
1061
if (gup_flags & FOLL_WRITE)
1062
return -EFAULT;
1063
pgd = pgd_offset(mm, address);
1064
if (pgd_none(*pgd))
1065
return -EFAULT;
1066
p4d = p4d_offset(pgd, address);
1067
if (p4d_none(*p4d))
1068
return -EFAULT;
1069
pud = pud_offset(p4d, address);
1070
if (pud_none(*pud))
1071
return -EFAULT;
1072
pmd = pmd_offset(pud, address);
1073
if (!pmd_present(*pmd))
1074
return -EFAULT;
1075
pte = pte_offset_map(pmd, address);
1076
if (!pte)
1077
return -EFAULT;
1078
entry = ptep_get(pte);
1079
if (pte_none(entry))
1080
goto unmap;
1081
*vma = get_gate_vma(mm);
1082
if (!page)
1083
goto out;
1084
*page = vm_normal_page(*vma, address, entry);
1085
if (!*page) {
1086
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1087
goto unmap;
1088
*page = pte_page(entry);
1089
}
1090
ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1091
if (unlikely(ret))
1092
goto unmap;
1093
out:
1094
ret = 0;
1095
unmap:
1096
pte_unmap(pte);
1097
return ret;
1098
}
1099
1100
/*
1101
* mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1102
* FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1103
* to 0 and -EBUSY returned.
1104
*/
1105
static int faultin_page(struct vm_area_struct *vma,
1106
unsigned long address, unsigned int flags, bool unshare,
1107
int *locked)
1108
{
1109
unsigned int fault_flags = 0;
1110
vm_fault_t ret;
1111
1112
if (flags & FOLL_NOFAULT)
1113
return -EFAULT;
1114
if (flags & FOLL_WRITE)
1115
fault_flags |= FAULT_FLAG_WRITE;
1116
if (flags & FOLL_REMOTE)
1117
fault_flags |= FAULT_FLAG_REMOTE;
1118
if (flags & FOLL_UNLOCKABLE) {
1119
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1120
/*
1121
* FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1122
* FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1123
* That's because some callers may not be prepared to
1124
* handle early exits caused by non-fatal signals.
1125
*/
1126
if (flags & FOLL_INTERRUPTIBLE)
1127
fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1128
}
1129
if (flags & FOLL_NOWAIT)
1130
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1131
if (flags & FOLL_TRIED) {
1132
/*
1133
* Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1134
* can co-exist
1135
*/
1136
fault_flags |= FAULT_FLAG_TRIED;
1137
}
1138
if (unshare) {
1139
fault_flags |= FAULT_FLAG_UNSHARE;
1140
/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1141
VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1142
}
1143
1144
ret = handle_mm_fault(vma, address, fault_flags, NULL);
1145
1146
if (ret & VM_FAULT_COMPLETED) {
1147
/*
1148
* With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1149
* mmap lock in the page fault handler. Sanity check this.
1150
*/
1151
WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1152
*locked = 0;
1153
1154
/*
1155
* We should do the same as VM_FAULT_RETRY, but let's not
1156
* return -EBUSY since that's not reflecting the reality of
1157
* what has happened - we've just fully completed a page
1158
* fault, with the mmap lock released. Use -EAGAIN to show
1159
* that we want to take the mmap lock _again_.
1160
*/
1161
return -EAGAIN;
1162
}
1163
1164
if (ret & VM_FAULT_ERROR) {
1165
int err = vm_fault_to_errno(ret, flags);
1166
1167
if (err)
1168
return err;
1169
BUG();
1170
}
1171
1172
if (ret & VM_FAULT_RETRY) {
1173
if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1174
*locked = 0;
1175
return -EBUSY;
1176
}
1177
1178
return 0;
1179
}
1180
1181
/*
1182
* Writing to file-backed mappings which require folio dirty tracking using GUP
1183
* is a fundamentally broken operation, as kernel write access to GUP mappings
1184
* do not adhere to the semantics expected by a file system.
1185
*
1186
* Consider the following scenario:-
1187
*
1188
* 1. A folio is written to via GUP which write-faults the memory, notifying
1189
* the file system and dirtying the folio.
1190
* 2. Later, writeback is triggered, resulting in the folio being cleaned and
1191
* the PTE being marked read-only.
1192
* 3. The GUP caller writes to the folio, as it is mapped read/write via the
1193
* direct mapping.
1194
* 4. The GUP caller, now done with the page, unpins it and sets it dirty
1195
* (though it does not have to).
1196
*
1197
* This results in both data being written to a folio without writenotify, and
1198
* the folio being dirtied unexpectedly (if the caller decides to do so).
1199
*/
1200
static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1201
unsigned long gup_flags)
1202
{
1203
/*
1204
* If we aren't pinning then no problematic write can occur. A long term
1205
* pin is the most egregious case so this is the case we disallow.
1206
*/
1207
if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1208
(FOLL_PIN | FOLL_LONGTERM))
1209
return true;
1210
1211
/*
1212
* If the VMA does not require dirty tracking then no problematic write
1213
* can occur either.
1214
*/
1215
return !vma_needs_dirty_tracking(vma);
1216
}
1217
1218
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1219
{
1220
vm_flags_t vm_flags = vma->vm_flags;
1221
int write = (gup_flags & FOLL_WRITE);
1222
int foreign = (gup_flags & FOLL_REMOTE);
1223
bool vma_anon = vma_is_anonymous(vma);
1224
1225
if (vm_flags & (VM_IO | VM_PFNMAP))
1226
return -EFAULT;
1227
1228
if ((gup_flags & FOLL_ANON) && !vma_anon)
1229
return -EFAULT;
1230
1231
if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1232
return -EOPNOTSUPP;
1233
1234
if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1235
return -EOPNOTSUPP;
1236
1237
if (vma_is_secretmem(vma))
1238
return -EFAULT;
1239
1240
if (write) {
1241
if (!vma_anon &&
1242
!writable_file_mapping_allowed(vma, gup_flags))
1243
return -EFAULT;
1244
1245
if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1246
if (!(gup_flags & FOLL_FORCE))
1247
return -EFAULT;
1248
/*
1249
* We used to let the write,force case do COW in a
1250
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1251
* set a breakpoint in a read-only mapping of an
1252
* executable, without corrupting the file (yet only
1253
* when that file had been opened for writing!).
1254
* Anon pages in shared mappings are surprising: now
1255
* just reject it.
1256
*/
1257
if (!is_cow_mapping(vm_flags))
1258
return -EFAULT;
1259
}
1260
} else if (!(vm_flags & VM_READ)) {
1261
if (!(gup_flags & FOLL_FORCE))
1262
return -EFAULT;
1263
/*
1264
* Is there actually any vma we can reach here which does not
1265
* have VM_MAYREAD set?
1266
*/
1267
if (!(vm_flags & VM_MAYREAD))
1268
return -EFAULT;
1269
}
1270
/*
1271
* gups are always data accesses, not instruction
1272
* fetches, so execute=false here
1273
*/
1274
if (!arch_vma_access_permitted(vma, write, false, foreign))
1275
return -EFAULT;
1276
return 0;
1277
}
1278
1279
/*
1280
* This is "vma_lookup()", but with a warning if we would have
1281
* historically expanded the stack in the GUP code.
1282
*/
1283
static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1284
unsigned long addr)
1285
{
1286
#ifdef CONFIG_STACK_GROWSUP
1287
return vma_lookup(mm, addr);
1288
#else
1289
static volatile unsigned long next_warn;
1290
struct vm_area_struct *vma;
1291
unsigned long now, next;
1292
1293
vma = find_vma(mm, addr);
1294
if (!vma || (addr >= vma->vm_start))
1295
return vma;
1296
1297
/* Only warn for half-way relevant accesses */
1298
if (!(vma->vm_flags & VM_GROWSDOWN))
1299
return NULL;
1300
if (vma->vm_start - addr > 65536)
1301
return NULL;
1302
1303
/* Let's not warn more than once an hour.. */
1304
now = jiffies; next = next_warn;
1305
if (next && time_before(now, next))
1306
return NULL;
1307
next_warn = now + 60*60*HZ;
1308
1309
/* Let people know things may have changed. */
1310
pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1311
current->comm, task_pid_nr(current),
1312
vma->vm_start, vma->vm_end, addr);
1313
dump_stack();
1314
return NULL;
1315
#endif
1316
}
1317
1318
/**
1319
* __get_user_pages() - pin user pages in memory
1320
* @mm: mm_struct of target mm
1321
* @start: starting user address
1322
* @nr_pages: number of pages from start to pin
1323
* @gup_flags: flags modifying pin behaviour
1324
* @pages: array that receives pointers to the pages pinned.
1325
* Should be at least nr_pages long. Or NULL, if caller
1326
* only intends to ensure the pages are faulted in.
1327
* @locked: whether we're still with the mmap_lock held
1328
*
1329
* Returns either number of pages pinned (which may be less than the
1330
* number requested), or an error. Details about the return value:
1331
*
1332
* -- If nr_pages is 0, returns 0.
1333
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
1334
* -- If nr_pages is >0, and some pages were pinned, returns the number of
1335
* pages pinned. Again, this may be less than nr_pages.
1336
* -- 0 return value is possible when the fault would need to be retried.
1337
*
1338
* The caller is responsible for releasing returned @pages, via put_page().
1339
*
1340
* Must be called with mmap_lock held. It may be released. See below.
1341
*
1342
* __get_user_pages walks a process's page tables and takes a reference to
1343
* each struct page that each user address corresponds to at a given
1344
* instant. That is, it takes the page that would be accessed if a user
1345
* thread accesses the given user virtual address at that instant.
1346
*
1347
* This does not guarantee that the page exists in the user mappings when
1348
* __get_user_pages returns, and there may even be a completely different
1349
* page there in some cases (eg. if mmapped pagecache has been invalidated
1350
* and subsequently re-faulted). However it does guarantee that the page
1351
* won't be freed completely. And mostly callers simply care that the page
1352
* contains data that was valid *at some point in time*. Typically, an IO
1353
* or similar operation cannot guarantee anything stronger anyway because
1354
* locks can't be held over the syscall boundary.
1355
*
1356
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1357
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
1358
* appropriate) must be called after the page is finished with, and
1359
* before put_page is called.
1360
*
1361
* If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1362
* be released. If this happens *@locked will be set to 0 on return.
1363
*
1364
* A caller using such a combination of @gup_flags must therefore hold the
1365
* mmap_lock for reading only, and recognize when it's been released. Otherwise,
1366
* it must be held for either reading or writing and will not be released.
1367
*
1368
* In most cases, get_user_pages or get_user_pages_fast should be used
1369
* instead of __get_user_pages. __get_user_pages should be used only if
1370
* you need some special @gup_flags.
1371
*/
1372
static long __get_user_pages(struct mm_struct *mm,
1373
unsigned long start, unsigned long nr_pages,
1374
unsigned int gup_flags, struct page **pages,
1375
int *locked)
1376
{
1377
long ret = 0, i = 0;
1378
struct vm_area_struct *vma = NULL;
1379
struct follow_page_context ctx = { NULL };
1380
1381
if (!nr_pages)
1382
return 0;
1383
1384
start = untagged_addr_remote(mm, start);
1385
1386
VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1387
1388
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1389
VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1390
(FOLL_PIN | FOLL_GET));
1391
1392
do {
1393
struct page *page;
1394
unsigned int page_increm;
1395
1396
/* first iteration or cross vma bound */
1397
if (!vma || start >= vma->vm_end) {
1398
/*
1399
* MADV_POPULATE_(READ|WRITE) wants to handle VMA
1400
* lookups+error reporting differently.
1401
*/
1402
if (gup_flags & FOLL_MADV_POPULATE) {
1403
vma = vma_lookup(mm, start);
1404
if (!vma) {
1405
ret = -ENOMEM;
1406
goto out;
1407
}
1408
if (check_vma_flags(vma, gup_flags)) {
1409
ret = -EINVAL;
1410
goto out;
1411
}
1412
goto retry;
1413
}
1414
vma = gup_vma_lookup(mm, start);
1415
if (!vma && in_gate_area(mm, start)) {
1416
ret = get_gate_page(mm, start & PAGE_MASK,
1417
gup_flags, &vma,
1418
pages ? &page : NULL);
1419
if (ret)
1420
goto out;
1421
ctx.page_mask = 0;
1422
goto next_page;
1423
}
1424
1425
if (!vma) {
1426
ret = -EFAULT;
1427
goto out;
1428
}
1429
ret = check_vma_flags(vma, gup_flags);
1430
if (ret)
1431
goto out;
1432
}
1433
retry:
1434
/*
1435
* If we have a pending SIGKILL, don't keep faulting pages and
1436
* potentially allocating memory.
1437
*/
1438
if (fatal_signal_pending(current)) {
1439
ret = -EINTR;
1440
goto out;
1441
}
1442
cond_resched();
1443
1444
page = follow_page_mask(vma, start, gup_flags, &ctx);
1445
if (!page || PTR_ERR(page) == -EMLINK) {
1446
ret = faultin_page(vma, start, gup_flags,
1447
PTR_ERR(page) == -EMLINK, locked);
1448
switch (ret) {
1449
case 0:
1450
goto retry;
1451
case -EBUSY:
1452
case -EAGAIN:
1453
ret = 0;
1454
fallthrough;
1455
case -EFAULT:
1456
case -ENOMEM:
1457
case -EHWPOISON:
1458
goto out;
1459
}
1460
BUG();
1461
} else if (PTR_ERR(page) == -EEXIST) {
1462
/*
1463
* Proper page table entry exists, but no corresponding
1464
* struct page. If the caller expects **pages to be
1465
* filled in, bail out now, because that can't be done
1466
* for this page.
1467
*/
1468
if (pages) {
1469
ret = PTR_ERR(page);
1470
goto out;
1471
}
1472
} else if (IS_ERR(page)) {
1473
ret = PTR_ERR(page);
1474
goto out;
1475
}
1476
next_page:
1477
page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1478
if (page_increm > nr_pages)
1479
page_increm = nr_pages;
1480
1481
if (pages) {
1482
struct page *subpage;
1483
unsigned int j;
1484
1485
/*
1486
* This must be a large folio (and doesn't need to
1487
* be the whole folio; it can be part of it), do
1488
* the refcount work for all the subpages too.
1489
*
1490
* NOTE: here the page may not be the head page
1491
* e.g. when start addr is not thp-size aligned.
1492
* try_grab_folio() should have taken care of tail
1493
* pages.
1494
*/
1495
if (page_increm > 1) {
1496
struct folio *folio = page_folio(page);
1497
1498
/*
1499
* Since we already hold refcount on the
1500
* large folio, this should never fail.
1501
*/
1502
if (try_grab_folio(folio, page_increm - 1,
1503
gup_flags)) {
1504
/*
1505
* Release the 1st page ref if the
1506
* folio is problematic, fail hard.
1507
*/
1508
gup_put_folio(folio, 1, gup_flags);
1509
ret = -EFAULT;
1510
goto out;
1511
}
1512
}
1513
1514
for (j = 0; j < page_increm; j++) {
1515
subpage = nth_page(page, j);
1516
pages[i + j] = subpage;
1517
flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1518
flush_dcache_page(subpage);
1519
}
1520
}
1521
1522
i += page_increm;
1523
start += page_increm * PAGE_SIZE;
1524
nr_pages -= page_increm;
1525
} while (nr_pages);
1526
out:
1527
if (ctx.pgmap)
1528
put_dev_pagemap(ctx.pgmap);
1529
return i ? i : ret;
1530
}
1531
1532
static bool vma_permits_fault(struct vm_area_struct *vma,
1533
unsigned int fault_flags)
1534
{
1535
bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1536
bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1537
vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1538
1539
if (!(vm_flags & vma->vm_flags))
1540
return false;
1541
1542
/*
1543
* The architecture might have a hardware protection
1544
* mechanism other than read/write that can deny access.
1545
*
1546
* gup always represents data access, not instruction
1547
* fetches, so execute=false here:
1548
*/
1549
if (!arch_vma_access_permitted(vma, write, false, foreign))
1550
return false;
1551
1552
return true;
1553
}
1554
1555
/**
1556
* fixup_user_fault() - manually resolve a user page fault
1557
* @mm: mm_struct of target mm
1558
* @address: user address
1559
* @fault_flags:flags to pass down to handle_mm_fault()
1560
* @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1561
* does not allow retry. If NULL, the caller must guarantee
1562
* that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1563
*
1564
* This is meant to be called in the specific scenario where for locking reasons
1565
* we try to access user memory in atomic context (within a pagefault_disable()
1566
* section), this returns -EFAULT, and we want to resolve the user fault before
1567
* trying again.
1568
*
1569
* Typically this is meant to be used by the futex code.
1570
*
1571
* The main difference with get_user_pages() is that this function will
1572
* unconditionally call handle_mm_fault() which will in turn perform all the
1573
* necessary SW fixup of the dirty and young bits in the PTE, while
1574
* get_user_pages() only guarantees to update these in the struct page.
1575
*
1576
* This is important for some architectures where those bits also gate the
1577
* access permission to the page because they are maintained in software. On
1578
* such architectures, gup() will not be enough to make a subsequent access
1579
* succeed.
1580
*
1581
* This function will not return with an unlocked mmap_lock. So it has not the
1582
* same semantics wrt the @mm->mmap_lock as does filemap_fault().
1583
*/
1584
int fixup_user_fault(struct mm_struct *mm,
1585
unsigned long address, unsigned int fault_flags,
1586
bool *unlocked)
1587
{
1588
struct vm_area_struct *vma;
1589
vm_fault_t ret;
1590
1591
address = untagged_addr_remote(mm, address);
1592
1593
if (unlocked)
1594
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1595
1596
retry:
1597
vma = gup_vma_lookup(mm, address);
1598
if (!vma)
1599
return -EFAULT;
1600
1601
if (!vma_permits_fault(vma, fault_flags))
1602
return -EFAULT;
1603
1604
if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1605
fatal_signal_pending(current))
1606
return -EINTR;
1607
1608
ret = handle_mm_fault(vma, address, fault_flags, NULL);
1609
1610
if (ret & VM_FAULT_COMPLETED) {
1611
/*
1612
* NOTE: it's a pity that we need to retake the lock here
1613
* to pair with the unlock() in the callers. Ideally we
1614
* could tell the callers so they do not need to unlock.
1615
*/
1616
mmap_read_lock(mm);
1617
*unlocked = true;
1618
return 0;
1619
}
1620
1621
if (ret & VM_FAULT_ERROR) {
1622
int err = vm_fault_to_errno(ret, 0);
1623
1624
if (err)
1625
return err;
1626
BUG();
1627
}
1628
1629
if (ret & VM_FAULT_RETRY) {
1630
mmap_read_lock(mm);
1631
*unlocked = true;
1632
fault_flags |= FAULT_FLAG_TRIED;
1633
goto retry;
1634
}
1635
1636
return 0;
1637
}
1638
EXPORT_SYMBOL_GPL(fixup_user_fault);
1639
1640
/*
1641
* GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1642
* specified, it'll also respond to generic signals. The caller of GUP
1643
* that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1644
*/
1645
static bool gup_signal_pending(unsigned int flags)
1646
{
1647
if (fatal_signal_pending(current))
1648
return true;
1649
1650
if (!(flags & FOLL_INTERRUPTIBLE))
1651
return false;
1652
1653
return signal_pending(current);
1654
}
1655
1656
/*
1657
* Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1658
* the caller. This function may drop the mmap_lock. If it does so, then it will
1659
* set (*locked = 0).
1660
*
1661
* (*locked == 0) means that the caller expects this function to acquire and
1662
* drop the mmap_lock. Therefore, the value of *locked will still be zero when
1663
* the function returns, even though it may have changed temporarily during
1664
* function execution.
1665
*
1666
* Please note that this function, unlike __get_user_pages(), will not return 0
1667
* for nr_pages > 0, unless FOLL_NOWAIT is used.
1668
*/
1669
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1670
unsigned long start,
1671
unsigned long nr_pages,
1672
struct page **pages,
1673
int *locked,
1674
unsigned int flags)
1675
{
1676
long ret, pages_done;
1677
bool must_unlock = false;
1678
1679
if (!nr_pages)
1680
return 0;
1681
1682
/*
1683
* The internal caller expects GUP to manage the lock internally and the
1684
* lock must be released when this returns.
1685
*/
1686
if (!*locked) {
1687
if (mmap_read_lock_killable(mm))
1688
return -EAGAIN;
1689
must_unlock = true;
1690
*locked = 1;
1691
}
1692
else
1693
mmap_assert_locked(mm);
1694
1695
if (flags & FOLL_PIN)
1696
mm_set_has_pinned_flag(&mm->flags);
1697
1698
/*
1699
* FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1700
* is to set FOLL_GET if the caller wants pages[] filled in (but has
1701
* carelessly failed to specify FOLL_GET), so keep doing that, but only
1702
* for FOLL_GET, not for the newer FOLL_PIN.
1703
*
1704
* FOLL_PIN always expects pages to be non-null, but no need to assert
1705
* that here, as any failures will be obvious enough.
1706
*/
1707
if (pages && !(flags & FOLL_PIN))
1708
flags |= FOLL_GET;
1709
1710
pages_done = 0;
1711
for (;;) {
1712
ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1713
locked);
1714
if (!(flags & FOLL_UNLOCKABLE)) {
1715
/* VM_FAULT_RETRY couldn't trigger, bypass */
1716
pages_done = ret;
1717
break;
1718
}
1719
1720
/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1721
VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1722
1723
if (ret > 0) {
1724
nr_pages -= ret;
1725
pages_done += ret;
1726
if (!nr_pages)
1727
break;
1728
}
1729
if (*locked) {
1730
/*
1731
* VM_FAULT_RETRY didn't trigger or it was a
1732
* FOLL_NOWAIT.
1733
*/
1734
if (!pages_done)
1735
pages_done = ret;
1736
break;
1737
}
1738
/*
1739
* VM_FAULT_RETRY triggered, so seek to the faulting offset.
1740
* For the prefault case (!pages) we only update counts.
1741
*/
1742
if (likely(pages))
1743
pages += ret;
1744
start += ret << PAGE_SHIFT;
1745
1746
/* The lock was temporarily dropped, so we must unlock later */
1747
must_unlock = true;
1748
1749
retry:
1750
/*
1751
* Repeat on the address that fired VM_FAULT_RETRY
1752
* with both FAULT_FLAG_ALLOW_RETRY and
1753
* FAULT_FLAG_TRIED. Note that GUP can be interrupted
1754
* by fatal signals of even common signals, depending on
1755
* the caller's request. So we need to check it before we
1756
* start trying again otherwise it can loop forever.
1757
*/
1758
if (gup_signal_pending(flags)) {
1759
if (!pages_done)
1760
pages_done = -EINTR;
1761
break;
1762
}
1763
1764
ret = mmap_read_lock_killable(mm);
1765
if (ret) {
1766
if (!pages_done)
1767
pages_done = ret;
1768
break;
1769
}
1770
1771
*locked = 1;
1772
ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1773
pages, locked);
1774
if (!*locked) {
1775
/* Continue to retry until we succeeded */
1776
VM_WARN_ON_ONCE(ret != 0);
1777
goto retry;
1778
}
1779
if (ret != 1) {
1780
VM_WARN_ON_ONCE(ret > 1);
1781
if (!pages_done)
1782
pages_done = ret;
1783
break;
1784
}
1785
nr_pages--;
1786
pages_done++;
1787
if (!nr_pages)
1788
break;
1789
if (likely(pages))
1790
pages++;
1791
start += PAGE_SIZE;
1792
}
1793
if (must_unlock && *locked) {
1794
/*
1795
* We either temporarily dropped the lock, or the caller
1796
* requested that we both acquire and drop the lock. Either way,
1797
* we must now unlock, and notify the caller of that state.
1798
*/
1799
mmap_read_unlock(mm);
1800
*locked = 0;
1801
}
1802
1803
/*
1804
* Failing to pin anything implies something has gone wrong (except when
1805
* FOLL_NOWAIT is specified).
1806
*/
1807
if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1808
return -EFAULT;
1809
1810
return pages_done;
1811
}
1812
1813
/**
1814
* populate_vma_page_range() - populate a range of pages in the vma.
1815
* @vma: target vma
1816
* @start: start address
1817
* @end: end address
1818
* @locked: whether the mmap_lock is still held
1819
*
1820
* This takes care of mlocking the pages too if VM_LOCKED is set.
1821
*
1822
* Return either number of pages pinned in the vma, or a negative error
1823
* code on error.
1824
*
1825
* vma->vm_mm->mmap_lock must be held.
1826
*
1827
* If @locked is NULL, it may be held for read or write and will
1828
* be unperturbed.
1829
*
1830
* If @locked is non-NULL, it must held for read only and may be
1831
* released. If it's released, *@locked will be set to 0.
1832
*/
1833
long populate_vma_page_range(struct vm_area_struct *vma,
1834
unsigned long start, unsigned long end, int *locked)
1835
{
1836
struct mm_struct *mm = vma->vm_mm;
1837
unsigned long nr_pages = (end - start) / PAGE_SIZE;
1838
int local_locked = 1;
1839
int gup_flags;
1840
long ret;
1841
1842
VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1843
VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1844
VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1845
VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma);
1846
mmap_assert_locked(mm);
1847
1848
/*
1849
* Rightly or wrongly, the VM_LOCKONFAULT case has never used
1850
* faultin_page() to break COW, so it has no work to do here.
1851
*/
1852
if (vma->vm_flags & VM_LOCKONFAULT)
1853
return nr_pages;
1854
1855
/* ... similarly, we've never faulted in PROT_NONE pages */
1856
if (!vma_is_accessible(vma))
1857
return -EFAULT;
1858
1859
gup_flags = FOLL_TOUCH;
1860
/*
1861
* We want to touch writable mappings with a write fault in order
1862
* to break COW, except for shared mappings because these don't COW
1863
* and we would not want to dirty them for nothing.
1864
*
1865
* Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1866
* readable (ie write-only or executable).
1867
*/
1868
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1869
gup_flags |= FOLL_WRITE;
1870
else
1871
gup_flags |= FOLL_FORCE;
1872
1873
if (locked)
1874
gup_flags |= FOLL_UNLOCKABLE;
1875
1876
/*
1877
* We made sure addr is within a VMA, so the following will
1878
* not result in a stack expansion that recurses back here.
1879
*/
1880
ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1881
NULL, locked ? locked : &local_locked);
1882
lru_add_drain();
1883
return ret;
1884
}
1885
1886
/*
1887
* faultin_page_range() - populate (prefault) page tables inside the
1888
* given range readable/writable
1889
*
1890
* This takes care of mlocking the pages, too, if VM_LOCKED is set.
1891
*
1892
* @mm: the mm to populate page tables in
1893
* @start: start address
1894
* @end: end address
1895
* @write: whether to prefault readable or writable
1896
* @locked: whether the mmap_lock is still held
1897
*
1898
* Returns either number of processed pages in the MM, or a negative error
1899
* code on error (see __get_user_pages()). Note that this function reports
1900
* errors related to VMAs, such as incompatible mappings, as expected by
1901
* MADV_POPULATE_(READ|WRITE).
1902
*
1903
* The range must be page-aligned.
1904
*
1905
* mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1906
*/
1907
long faultin_page_range(struct mm_struct *mm, unsigned long start,
1908
unsigned long end, bool write, int *locked)
1909
{
1910
unsigned long nr_pages = (end - start) / PAGE_SIZE;
1911
int gup_flags;
1912
long ret;
1913
1914
VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1915
VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1916
mmap_assert_locked(mm);
1917
1918
/*
1919
* FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1920
* the page dirty with FOLL_WRITE -- which doesn't make a
1921
* difference with !FOLL_FORCE, because the page is writable
1922
* in the page table.
1923
* FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1924
* a poisoned page.
1925
* !FOLL_FORCE: Require proper access permissions.
1926
*/
1927
gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1928
FOLL_MADV_POPULATE;
1929
if (write)
1930
gup_flags |= FOLL_WRITE;
1931
1932
ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1933
gup_flags);
1934
lru_add_drain();
1935
return ret;
1936
}
1937
1938
/*
1939
* __mm_populate - populate and/or mlock pages within a range of address space.
1940
*
1941
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1942
* flags. VMAs must be already marked with the desired vm_flags, and
1943
* mmap_lock must not be held.
1944
*/
1945
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1946
{
1947
struct mm_struct *mm = current->mm;
1948
unsigned long end, nstart, nend;
1949
struct vm_area_struct *vma = NULL;
1950
int locked = 0;
1951
long ret = 0;
1952
1953
end = start + len;
1954
1955
for (nstart = start; nstart < end; nstart = nend) {
1956
/*
1957
* We want to fault in pages for [nstart; end) address range.
1958
* Find first corresponding VMA.
1959
*/
1960
if (!locked) {
1961
locked = 1;
1962
mmap_read_lock(mm);
1963
vma = find_vma_intersection(mm, nstart, end);
1964
} else if (nstart >= vma->vm_end)
1965
vma = find_vma_intersection(mm, vma->vm_end, end);
1966
1967
if (!vma)
1968
break;
1969
/*
1970
* Set [nstart; nend) to intersection of desired address
1971
* range with the first VMA. Also, skip undesirable VMA types.
1972
*/
1973
nend = min(end, vma->vm_end);
1974
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1975
continue;
1976
if (nstart < vma->vm_start)
1977
nstart = vma->vm_start;
1978
/*
1979
* Now fault in a range of pages. populate_vma_page_range()
1980
* double checks the vma flags, so that it won't mlock pages
1981
* if the vma was already munlocked.
1982
*/
1983
ret = populate_vma_page_range(vma, nstart, nend, &locked);
1984
if (ret < 0) {
1985
if (ignore_errors) {
1986
ret = 0;
1987
continue; /* continue at next VMA */
1988
}
1989
break;
1990
}
1991
nend = nstart + ret * PAGE_SIZE;
1992
ret = 0;
1993
}
1994
if (locked)
1995
mmap_read_unlock(mm);
1996
return ret; /* 0 or negative error code */
1997
}
1998
#else /* CONFIG_MMU */
1999
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2000
unsigned long nr_pages, struct page **pages,
2001
int *locked, unsigned int foll_flags)
2002
{
2003
struct vm_area_struct *vma;
2004
bool must_unlock = false;
2005
vm_flags_t vm_flags;
2006
long i;
2007
2008
if (!nr_pages)
2009
return 0;
2010
2011
/*
2012
* The internal caller expects GUP to manage the lock internally and the
2013
* lock must be released when this returns.
2014
*/
2015
if (!*locked) {
2016
if (mmap_read_lock_killable(mm))
2017
return -EAGAIN;
2018
must_unlock = true;
2019
*locked = 1;
2020
}
2021
2022
/* calculate required read or write permissions.
2023
* If FOLL_FORCE is set, we only require the "MAY" flags.
2024
*/
2025
vm_flags = (foll_flags & FOLL_WRITE) ?
2026
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2027
vm_flags &= (foll_flags & FOLL_FORCE) ?
2028
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2029
2030
for (i = 0; i < nr_pages; i++) {
2031
vma = find_vma(mm, start);
2032
if (!vma)
2033
break;
2034
2035
/* protect what we can, including chardevs */
2036
if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2037
!(vm_flags & vma->vm_flags))
2038
break;
2039
2040
if (pages) {
2041
pages[i] = virt_to_page((void *)start);
2042
if (pages[i])
2043
get_page(pages[i]);
2044
}
2045
2046
start = (start + PAGE_SIZE) & PAGE_MASK;
2047
}
2048
2049
if (must_unlock && *locked) {
2050
mmap_read_unlock(mm);
2051
*locked = 0;
2052
}
2053
2054
return i ? : -EFAULT;
2055
}
2056
#endif /* !CONFIG_MMU */
2057
2058
/**
2059
* fault_in_writeable - fault in userspace address range for writing
2060
* @uaddr: start of address range
2061
* @size: size of address range
2062
*
2063
* Returns the number of bytes not faulted in (like copy_to_user() and
2064
* copy_from_user()).
2065
*/
2066
size_t fault_in_writeable(char __user *uaddr, size_t size)
2067
{
2068
const unsigned long start = (unsigned long)uaddr;
2069
const unsigned long end = start + size;
2070
unsigned long cur;
2071
2072
if (unlikely(size == 0))
2073
return 0;
2074
if (!user_write_access_begin(uaddr, size))
2075
return size;
2076
2077
/* Stop once we overflow to 0. */
2078
for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2079
unsafe_put_user(0, (char __user *)cur, out);
2080
out:
2081
user_write_access_end();
2082
if (size > cur - start)
2083
return size - (cur - start);
2084
return 0;
2085
}
2086
EXPORT_SYMBOL(fault_in_writeable);
2087
2088
/**
2089
* fault_in_subpage_writeable - fault in an address range for writing
2090
* @uaddr: start of address range
2091
* @size: size of address range
2092
*
2093
* Fault in a user address range for writing while checking for permissions at
2094
* sub-page granularity (e.g. arm64 MTE). This function should be used when
2095
* the caller cannot guarantee forward progress of a copy_to_user() loop.
2096
*
2097
* Returns the number of bytes not faulted in (like copy_to_user() and
2098
* copy_from_user()).
2099
*/
2100
size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2101
{
2102
size_t faulted_in;
2103
2104
/*
2105
* Attempt faulting in at page granularity first for page table
2106
* permission checking. The arch-specific probe_subpage_writeable()
2107
* functions may not check for this.
2108
*/
2109
faulted_in = size - fault_in_writeable(uaddr, size);
2110
if (faulted_in)
2111
faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2112
2113
return size - faulted_in;
2114
}
2115
EXPORT_SYMBOL(fault_in_subpage_writeable);
2116
2117
/*
2118
* fault_in_safe_writeable - fault in an address range for writing
2119
* @uaddr: start of address range
2120
* @size: length of address range
2121
*
2122
* Faults in an address range for writing. This is primarily useful when we
2123
* already know that some or all of the pages in the address range aren't in
2124
* memory.
2125
*
2126
* Unlike fault_in_writeable(), this function is non-destructive.
2127
*
2128
* Note that we don't pin or otherwise hold the pages referenced that we fault
2129
* in. There's no guarantee that they'll stay in memory for any duration of
2130
* time.
2131
*
2132
* Returns the number of bytes not faulted in, like copy_to_user() and
2133
* copy_from_user().
2134
*/
2135
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2136
{
2137
const unsigned long start = (unsigned long)uaddr;
2138
const unsigned long end = start + size;
2139
unsigned long cur;
2140
struct mm_struct *mm = current->mm;
2141
bool unlocked = false;
2142
2143
if (unlikely(size == 0))
2144
return 0;
2145
2146
mmap_read_lock(mm);
2147
/* Stop once we overflow to 0. */
2148
for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2149
if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2150
break;
2151
mmap_read_unlock(mm);
2152
2153
if (size > cur - start)
2154
return size - (cur - start);
2155
return 0;
2156
}
2157
EXPORT_SYMBOL(fault_in_safe_writeable);
2158
2159
/**
2160
* fault_in_readable - fault in userspace address range for reading
2161
* @uaddr: start of user address range
2162
* @size: size of user address range
2163
*
2164
* Returns the number of bytes not faulted in (like copy_to_user() and
2165
* copy_from_user()).
2166
*/
2167
size_t fault_in_readable(const char __user *uaddr, size_t size)
2168
{
2169
const unsigned long start = (unsigned long)uaddr;
2170
const unsigned long end = start + size;
2171
unsigned long cur;
2172
volatile char c;
2173
2174
if (unlikely(size == 0))
2175
return 0;
2176
if (!user_read_access_begin(uaddr, size))
2177
return size;
2178
2179
/* Stop once we overflow to 0. */
2180
for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2181
unsafe_get_user(c, (const char __user *)cur, out);
2182
out:
2183
user_read_access_end();
2184
(void)c;
2185
if (size > cur - start)
2186
return size - (cur - start);
2187
return 0;
2188
}
2189
EXPORT_SYMBOL(fault_in_readable);
2190
2191
/**
2192
* get_dump_page() - pin user page in memory while writing it to core dump
2193
* @addr: user address
2194
* @locked: a pointer to an int denoting whether the mmap sem is held
2195
*
2196
* Returns struct page pointer of user page pinned for dump,
2197
* to be freed afterwards by put_page().
2198
*
2199
* Returns NULL on any kind of failure - a hole must then be inserted into
2200
* the corefile, to preserve alignment with its headers; and also returns
2201
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2202
* allowing a hole to be left in the corefile to save disk space.
2203
*
2204
* Called without mmap_lock (takes and releases the mmap_lock by itself).
2205
*/
2206
#ifdef CONFIG_ELF_CORE
2207
struct page *get_dump_page(unsigned long addr, int *locked)
2208
{
2209
struct page *page;
2210
int ret;
2211
2212
ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2213
FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2214
return (ret == 1) ? page : NULL;
2215
}
2216
#endif /* CONFIG_ELF_CORE */
2217
2218
#ifdef CONFIG_MIGRATION
2219
2220
/*
2221
* An array of either pages or folios ("pofs"). Although it may seem tempting to
2222
* avoid this complication, by simply interpreting a list of folios as a list of
2223
* pages, that approach won't work in the longer term, because eventually the
2224
* layouts of struct page and struct folio will become completely different.
2225
* Furthermore, this pof approach avoids excessive page_folio() calls.
2226
*/
2227
struct pages_or_folios {
2228
union {
2229
struct page **pages;
2230
struct folio **folios;
2231
void **entries;
2232
};
2233
bool has_folios;
2234
long nr_entries;
2235
};
2236
2237
static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2238
{
2239
if (pofs->has_folios)
2240
return pofs->folios[i];
2241
return page_folio(pofs->pages[i]);
2242
}
2243
2244
static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2245
{
2246
pofs->entries[i] = NULL;
2247
}
2248
2249
static void pofs_unpin(struct pages_or_folios *pofs)
2250
{
2251
if (pofs->has_folios)
2252
unpin_folios(pofs->folios, pofs->nr_entries);
2253
else
2254
unpin_user_pages(pofs->pages, pofs->nr_entries);
2255
}
2256
2257
static struct folio *pofs_next_folio(struct folio *folio,
2258
struct pages_or_folios *pofs, long *index_ptr)
2259
{
2260
long i = *index_ptr + 1;
2261
2262
if (!pofs->has_folios && folio_test_large(folio)) {
2263
const unsigned long start_pfn = folio_pfn(folio);
2264
const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2265
2266
for (; i < pofs->nr_entries; i++) {
2267
unsigned long pfn = page_to_pfn(pofs->pages[i]);
2268
2269
/* Is this page part of this folio? */
2270
if (pfn < start_pfn || pfn >= end_pfn)
2271
break;
2272
}
2273
}
2274
2275
if (unlikely(i == pofs->nr_entries))
2276
return NULL;
2277
*index_ptr = i;
2278
2279
return pofs_get_folio(pofs, i);
2280
}
2281
2282
/*
2283
* Returns the number of collected folios. Return value is always >= 0.
2284
*/
2285
static unsigned long collect_longterm_unpinnable_folios(
2286
struct list_head *movable_folio_list,
2287
struct pages_or_folios *pofs)
2288
{
2289
unsigned long collected = 0;
2290
bool drain_allow = true;
2291
struct folio *folio;
2292
long i = 0;
2293
2294
for (folio = pofs_get_folio(pofs, i); folio;
2295
folio = pofs_next_folio(folio, pofs, &i)) {
2296
2297
if (folio_is_longterm_pinnable(folio))
2298
continue;
2299
2300
collected++;
2301
2302
if (folio_is_device_coherent(folio))
2303
continue;
2304
2305
if (folio_test_hugetlb(folio)) {
2306
folio_isolate_hugetlb(folio, movable_folio_list);
2307
continue;
2308
}
2309
2310
if (!folio_test_lru(folio) && drain_allow) {
2311
lru_add_drain_all();
2312
drain_allow = false;
2313
}
2314
2315
if (!folio_isolate_lru(folio))
2316
continue;
2317
2318
list_add_tail(&folio->lru, movable_folio_list);
2319
node_stat_mod_folio(folio,
2320
NR_ISOLATED_ANON + folio_is_file_lru(folio),
2321
folio_nr_pages(folio));
2322
}
2323
2324
return collected;
2325
}
2326
2327
/*
2328
* Unpins all folios and migrates device coherent folios and movable_folio_list.
2329
* Returns -EAGAIN if all folios were successfully migrated or -errno for
2330
* failure (or partial success).
2331
*/
2332
static int
2333
migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2334
struct pages_or_folios *pofs)
2335
{
2336
int ret;
2337
unsigned long i;
2338
2339
for (i = 0; i < pofs->nr_entries; i++) {
2340
struct folio *folio = pofs_get_folio(pofs, i);
2341
2342
if (folio_is_device_coherent(folio)) {
2343
/*
2344
* Migration will fail if the folio is pinned, so
2345
* convert the pin on the source folio to a normal
2346
* reference.
2347
*/
2348
pofs_clear_entry(pofs, i);
2349
folio_get(folio);
2350
gup_put_folio(folio, 1, FOLL_PIN);
2351
2352
if (migrate_device_coherent_folio(folio)) {
2353
ret = -EBUSY;
2354
goto err;
2355
}
2356
2357
continue;
2358
}
2359
2360
/*
2361
* We can't migrate folios with unexpected references, so drop
2362
* the reference obtained by __get_user_pages_locked().
2363
* Migrating folios have been added to movable_folio_list after
2364
* calling folio_isolate_lru() which takes a reference so the
2365
* folio won't be freed if it's migrating.
2366
*/
2367
unpin_folio(folio);
2368
pofs_clear_entry(pofs, i);
2369
}
2370
2371
if (!list_empty(movable_folio_list)) {
2372
struct migration_target_control mtc = {
2373
.nid = NUMA_NO_NODE,
2374
.gfp_mask = GFP_USER | __GFP_NOWARN,
2375
.reason = MR_LONGTERM_PIN,
2376
};
2377
2378
if (migrate_pages(movable_folio_list, alloc_migration_target,
2379
NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2380
MR_LONGTERM_PIN, NULL)) {
2381
ret = -ENOMEM;
2382
goto err;
2383
}
2384
}
2385
2386
putback_movable_pages(movable_folio_list);
2387
2388
return -EAGAIN;
2389
2390
err:
2391
pofs_unpin(pofs);
2392
putback_movable_pages(movable_folio_list);
2393
2394
return ret;
2395
}
2396
2397
static long
2398
check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2399
{
2400
LIST_HEAD(movable_folio_list);
2401
unsigned long collected;
2402
2403
collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2404
pofs);
2405
if (!collected)
2406
return 0;
2407
2408
return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2409
}
2410
2411
/*
2412
* Check whether all folios are *allowed* to be pinned indefinitely (long term).
2413
* Rather confusingly, all folios in the range are required to be pinned via
2414
* FOLL_PIN, before calling this routine.
2415
*
2416
* Return values:
2417
*
2418
* 0: if everything is OK and all folios in the range are allowed to be pinned,
2419
* then this routine leaves all folios pinned and returns zero for success.
2420
*
2421
* -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2422
* routine will migrate those folios away, unpin all the folios in the range. If
2423
* migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2424
* caller should re-pin the entire range with FOLL_PIN and then call this
2425
* routine again.
2426
*
2427
* -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2428
* indicates a migration failure. The caller should give up, and propagate the
2429
* error back up the call stack. The caller does not need to unpin any folios in
2430
* that case, because this routine will do the unpinning.
2431
*/
2432
static long check_and_migrate_movable_folios(unsigned long nr_folios,
2433
struct folio **folios)
2434
{
2435
struct pages_or_folios pofs = {
2436
.folios = folios,
2437
.has_folios = true,
2438
.nr_entries = nr_folios,
2439
};
2440
2441
return check_and_migrate_movable_pages_or_folios(&pofs);
2442
}
2443
2444
/*
2445
* Return values and behavior are the same as those for
2446
* check_and_migrate_movable_folios().
2447
*/
2448
static long check_and_migrate_movable_pages(unsigned long nr_pages,
2449
struct page **pages)
2450
{
2451
struct pages_or_folios pofs = {
2452
.pages = pages,
2453
.has_folios = false,
2454
.nr_entries = nr_pages,
2455
};
2456
2457
return check_and_migrate_movable_pages_or_folios(&pofs);
2458
}
2459
#else
2460
static long check_and_migrate_movable_pages(unsigned long nr_pages,
2461
struct page **pages)
2462
{
2463
return 0;
2464
}
2465
2466
static long check_and_migrate_movable_folios(unsigned long nr_folios,
2467
struct folio **folios)
2468
{
2469
return 0;
2470
}
2471
#endif /* CONFIG_MIGRATION */
2472
2473
/*
2474
* __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2475
* allows us to process the FOLL_LONGTERM flag.
2476
*/
2477
static long __gup_longterm_locked(struct mm_struct *mm,
2478
unsigned long start,
2479
unsigned long nr_pages,
2480
struct page **pages,
2481
int *locked,
2482
unsigned int gup_flags)
2483
{
2484
unsigned int flags;
2485
long rc, nr_pinned_pages;
2486
2487
if (!(gup_flags & FOLL_LONGTERM))
2488
return __get_user_pages_locked(mm, start, nr_pages, pages,
2489
locked, gup_flags);
2490
2491
flags = memalloc_pin_save();
2492
do {
2493
nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2494
pages, locked,
2495
gup_flags);
2496
if (nr_pinned_pages <= 0) {
2497
rc = nr_pinned_pages;
2498
break;
2499
}
2500
2501
/* FOLL_LONGTERM implies FOLL_PIN */
2502
rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2503
} while (rc == -EAGAIN);
2504
memalloc_pin_restore(flags);
2505
return rc ? rc : nr_pinned_pages;
2506
}
2507
2508
/*
2509
* Check that the given flags are valid for the exported gup/pup interface, and
2510
* update them with the required flags that the caller must have set.
2511
*/
2512
static bool is_valid_gup_args(struct page **pages, int *locked,
2513
unsigned int *gup_flags_p, unsigned int to_set)
2514
{
2515
unsigned int gup_flags = *gup_flags_p;
2516
2517
/*
2518
* These flags not allowed to be specified externally to the gup
2519
* interfaces:
2520
* - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2521
* - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2522
* - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2523
*/
2524
if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2525
return false;
2526
2527
gup_flags |= to_set;
2528
if (locked) {
2529
/* At the external interface locked must be set */
2530
if (WARN_ON_ONCE(*locked != 1))
2531
return false;
2532
2533
gup_flags |= FOLL_UNLOCKABLE;
2534
}
2535
2536
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2537
if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2538
(FOLL_PIN | FOLL_GET)))
2539
return false;
2540
2541
/* LONGTERM can only be specified when pinning */
2542
if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2543
return false;
2544
2545
/* Pages input must be given if using GET/PIN */
2546
if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2547
return false;
2548
2549
/* We want to allow the pgmap to be hot-unplugged at all times */
2550
if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2551
(gup_flags & FOLL_PCI_P2PDMA)))
2552
return false;
2553
2554
*gup_flags_p = gup_flags;
2555
return true;
2556
}
2557
2558
#ifdef CONFIG_MMU
2559
/**
2560
* get_user_pages_remote() - pin user pages in memory
2561
* @mm: mm_struct of target mm
2562
* @start: starting user address
2563
* @nr_pages: number of pages from start to pin
2564
* @gup_flags: flags modifying lookup behaviour
2565
* @pages: array that receives pointers to the pages pinned.
2566
* Should be at least nr_pages long. Or NULL, if caller
2567
* only intends to ensure the pages are faulted in.
2568
* @locked: pointer to lock flag indicating whether lock is held and
2569
* subsequently whether VM_FAULT_RETRY functionality can be
2570
* utilised. Lock must initially be held.
2571
*
2572
* Returns either number of pages pinned (which may be less than the
2573
* number requested), or an error. Details about the return value:
2574
*
2575
* -- If nr_pages is 0, returns 0.
2576
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
2577
* -- If nr_pages is >0, and some pages were pinned, returns the number of
2578
* pages pinned. Again, this may be less than nr_pages.
2579
*
2580
* The caller is responsible for releasing returned @pages, via put_page().
2581
*
2582
* Must be called with mmap_lock held for read or write.
2583
*
2584
* get_user_pages_remote walks a process's page tables and takes a reference
2585
* to each struct page that each user address corresponds to at a given
2586
* instant. That is, it takes the page that would be accessed if a user
2587
* thread accesses the given user virtual address at that instant.
2588
*
2589
* This does not guarantee that the page exists in the user mappings when
2590
* get_user_pages_remote returns, and there may even be a completely different
2591
* page there in some cases (eg. if mmapped pagecache has been invalidated
2592
* and subsequently re-faulted). However it does guarantee that the page
2593
* won't be freed completely. And mostly callers simply care that the page
2594
* contains data that was valid *at some point in time*. Typically, an IO
2595
* or similar operation cannot guarantee anything stronger anyway because
2596
* locks can't be held over the syscall boundary.
2597
*
2598
* If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2599
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2600
* be called after the page is finished with, and before put_page is called.
2601
*
2602
* get_user_pages_remote is typically used for fewer-copy IO operations,
2603
* to get a handle on the memory by some means other than accesses
2604
* via the user virtual addresses. The pages may be submitted for
2605
* DMA to devices or accessed via their kernel linear mapping (via the
2606
* kmap APIs). Care should be taken to use the correct cache flushing APIs.
2607
*
2608
* See also get_user_pages_fast, for performance critical applications.
2609
*
2610
* get_user_pages_remote should be phased out in favor of
2611
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2612
* should use get_user_pages_remote because it cannot pass
2613
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2614
*/
2615
long get_user_pages_remote(struct mm_struct *mm,
2616
unsigned long start, unsigned long nr_pages,
2617
unsigned int gup_flags, struct page **pages,
2618
int *locked)
2619
{
2620
int local_locked = 1;
2621
2622
if (!is_valid_gup_args(pages, locked, &gup_flags,
2623
FOLL_TOUCH | FOLL_REMOTE))
2624
return -EINVAL;
2625
2626
return __get_user_pages_locked(mm, start, nr_pages, pages,
2627
locked ? locked : &local_locked,
2628
gup_flags);
2629
}
2630
EXPORT_SYMBOL(get_user_pages_remote);
2631
2632
#else /* CONFIG_MMU */
2633
long get_user_pages_remote(struct mm_struct *mm,
2634
unsigned long start, unsigned long nr_pages,
2635
unsigned int gup_flags, struct page **pages,
2636
int *locked)
2637
{
2638
return 0;
2639
}
2640
#endif /* !CONFIG_MMU */
2641
2642
/**
2643
* get_user_pages() - pin user pages in memory
2644
* @start: starting user address
2645
* @nr_pages: number of pages from start to pin
2646
* @gup_flags: flags modifying lookup behaviour
2647
* @pages: array that receives pointers to the pages pinned.
2648
* Should be at least nr_pages long. Or NULL, if caller
2649
* only intends to ensure the pages are faulted in.
2650
*
2651
* This is the same as get_user_pages_remote(), just with a less-flexible
2652
* calling convention where we assume that the mm being operated on belongs to
2653
* the current task, and doesn't allow passing of a locked parameter. We also
2654
* obviously don't pass FOLL_REMOTE in here.
2655
*/
2656
long get_user_pages(unsigned long start, unsigned long nr_pages,
2657
unsigned int gup_flags, struct page **pages)
2658
{
2659
int locked = 1;
2660
2661
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2662
return -EINVAL;
2663
2664
return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2665
&locked, gup_flags);
2666
}
2667
EXPORT_SYMBOL(get_user_pages);
2668
2669
/*
2670
* get_user_pages_unlocked() is suitable to replace the form:
2671
*
2672
* mmap_read_lock(mm);
2673
* get_user_pages(mm, ..., pages, NULL);
2674
* mmap_read_unlock(mm);
2675
*
2676
* with:
2677
*
2678
* get_user_pages_unlocked(mm, ..., pages);
2679
*
2680
* It is functionally equivalent to get_user_pages_fast so
2681
* get_user_pages_fast should be used instead if specific gup_flags
2682
* (e.g. FOLL_FORCE) are not required.
2683
*/
2684
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2685
struct page **pages, unsigned int gup_flags)
2686
{
2687
int locked = 0;
2688
2689
if (!is_valid_gup_args(pages, NULL, &gup_flags,
2690
FOLL_TOUCH | FOLL_UNLOCKABLE))
2691
return -EINVAL;
2692
2693
return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2694
&locked, gup_flags);
2695
}
2696
EXPORT_SYMBOL(get_user_pages_unlocked);
2697
2698
/*
2699
* GUP-fast
2700
*
2701
* get_user_pages_fast attempts to pin user pages by walking the page
2702
* tables directly and avoids taking locks. Thus the walker needs to be
2703
* protected from page table pages being freed from under it, and should
2704
* block any THP splits.
2705
*
2706
* One way to achieve this is to have the walker disable interrupts, and
2707
* rely on IPIs from the TLB flushing code blocking before the page table
2708
* pages are freed. This is unsuitable for architectures that do not need
2709
* to broadcast an IPI when invalidating TLBs.
2710
*
2711
* Another way to achieve this is to batch up page table containing pages
2712
* belonging to more than one mm_user, then rcu_sched a callback to free those
2713
* pages. Disabling interrupts will allow the gup_fast() walker to both block
2714
* the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2715
* (which is a relatively rare event). The code below adopts this strategy.
2716
*
2717
* Before activating this code, please be aware that the following assumptions
2718
* are currently made:
2719
*
2720
* *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2721
* free pages containing page tables or TLB flushing requires IPI broadcast.
2722
*
2723
* *) ptes can be read atomically by the architecture.
2724
*
2725
* *) valid user addesses are below TASK_MAX_SIZE
2726
*
2727
* The last two assumptions can be relaxed by the addition of helper functions.
2728
*
2729
* This code is based heavily on the PowerPC implementation by Nick Piggin.
2730
*/
2731
#ifdef CONFIG_HAVE_GUP_FAST
2732
/*
2733
* Used in the GUP-fast path to determine whether GUP is permitted to work on
2734
* a specific folio.
2735
*
2736
* This call assumes the caller has pinned the folio, that the lowest page table
2737
* level still points to this folio, and that interrupts have been disabled.
2738
*
2739
* GUP-fast must reject all secretmem folios.
2740
*
2741
* Writing to pinned file-backed dirty tracked folios is inherently problematic
2742
* (see comment describing the writable_file_mapping_allowed() function). We
2743
* therefore try to avoid the most egregious case of a long-term mapping doing
2744
* so.
2745
*
2746
* This function cannot be as thorough as that one as the VMA is not available
2747
* in the fast path, so instead we whitelist known good cases and if in doubt,
2748
* fall back to the slow path.
2749
*/
2750
static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2751
{
2752
bool reject_file_backed = false;
2753
struct address_space *mapping;
2754
bool check_secretmem = false;
2755
unsigned long mapping_flags;
2756
2757
/*
2758
* If we aren't pinning then no problematic write can occur. A long term
2759
* pin is the most egregious case so this is the one we disallow.
2760
*/
2761
if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2762
(FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2763
reject_file_backed = true;
2764
2765
/* We hold a folio reference, so we can safely access folio fields. */
2766
2767
/* secretmem folios are always order-0 folios. */
2768
if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2769
check_secretmem = true;
2770
2771
if (!reject_file_backed && !check_secretmem)
2772
return true;
2773
2774
if (WARN_ON_ONCE(folio_test_slab(folio)))
2775
return false;
2776
2777
/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2778
if (folio_test_hugetlb(folio))
2779
return true;
2780
2781
/*
2782
* GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2783
* cannot proceed, which means no actions performed under RCU can
2784
* proceed either.
2785
*
2786
* inodes and thus their mappings are freed under RCU, which means the
2787
* mapping cannot be freed beneath us and thus we can safely dereference
2788
* it.
2789
*/
2790
lockdep_assert_irqs_disabled();
2791
2792
/*
2793
* However, there may be operations which _alter_ the mapping, so ensure
2794
* we read it once and only once.
2795
*/
2796
mapping = READ_ONCE(folio->mapping);
2797
2798
/*
2799
* The mapping may have been truncated, in any case we cannot determine
2800
* if this mapping is safe - fall back to slow path to determine how to
2801
* proceed.
2802
*/
2803
if (!mapping)
2804
return false;
2805
2806
/* Anonymous folios pose no problem. */
2807
mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS;
2808
if (mapping_flags)
2809
return mapping_flags & FOLIO_MAPPING_ANON;
2810
2811
/*
2812
* At this point, we know the mapping is non-null and points to an
2813
* address_space object.
2814
*/
2815
if (check_secretmem && secretmem_mapping(mapping))
2816
return false;
2817
/* The only remaining allowed file system is shmem. */
2818
return !reject_file_backed || shmem_mapping(mapping);
2819
}
2820
2821
static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2822
unsigned int flags, struct page **pages)
2823
{
2824
while ((*nr) - nr_start) {
2825
struct folio *folio = page_folio(pages[--(*nr)]);
2826
2827
folio_clear_referenced(folio);
2828
gup_put_folio(folio, 1, flags);
2829
}
2830
}
2831
2832
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2833
/*
2834
* GUP-fast relies on pte change detection to avoid concurrent pgtable
2835
* operations.
2836
*
2837
* To pin the page, GUP-fast needs to do below in order:
2838
* (1) pin the page (by prefetching pte), then (2) check pte not changed.
2839
*
2840
* For the rest of pgtable operations where pgtable updates can be racy
2841
* with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2842
* is pinned.
2843
*
2844
* Above will work for all pte-level operations, including THP split.
2845
*
2846
* For THP collapse, it's a bit more complicated because GUP-fast may be
2847
* walking a pgtable page that is being freed (pte is still valid but pmd
2848
* can be cleared already). To avoid race in such condition, we need to
2849
* also check pmd here to make sure pmd doesn't change (corresponds to
2850
* pmdp_collapse_flush() in the THP collapse code path).
2851
*/
2852
static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2853
unsigned long end, unsigned int flags, struct page **pages,
2854
int *nr)
2855
{
2856
struct dev_pagemap *pgmap = NULL;
2857
int ret = 0;
2858
pte_t *ptep, *ptem;
2859
2860
ptem = ptep = pte_offset_map(&pmd, addr);
2861
if (!ptep)
2862
return 0;
2863
do {
2864
pte_t pte = ptep_get_lockless(ptep);
2865
struct page *page;
2866
struct folio *folio;
2867
2868
/*
2869
* Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2870
* pte_access_permitted() better should reject these pages
2871
* either way: otherwise, GUP-fast might succeed in
2872
* cases where ordinary GUP would fail due to VMA access
2873
* permissions.
2874
*/
2875
if (pte_protnone(pte))
2876
goto pte_unmap;
2877
2878
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2879
goto pte_unmap;
2880
2881
if (pte_special(pte))
2882
goto pte_unmap;
2883
2884
/* If it's not marked as special it must have a valid memmap. */
2885
VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2886
page = pte_page(pte);
2887
2888
folio = try_grab_folio_fast(page, 1, flags);
2889
if (!folio)
2890
goto pte_unmap;
2891
2892
if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2893
unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2894
gup_put_folio(folio, 1, flags);
2895
goto pte_unmap;
2896
}
2897
2898
if (!gup_fast_folio_allowed(folio, flags)) {
2899
gup_put_folio(folio, 1, flags);
2900
goto pte_unmap;
2901
}
2902
2903
if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2904
gup_put_folio(folio, 1, flags);
2905
goto pte_unmap;
2906
}
2907
2908
/*
2909
* We need to make the page accessible if and only if we are
2910
* going to access its content (the FOLL_PIN case). Please
2911
* see Documentation/core-api/pin_user_pages.rst for
2912
* details.
2913
*/
2914
if (flags & FOLL_PIN) {
2915
ret = arch_make_folio_accessible(folio);
2916
if (ret) {
2917
gup_put_folio(folio, 1, flags);
2918
goto pte_unmap;
2919
}
2920
}
2921
folio_set_referenced(folio);
2922
pages[*nr] = page;
2923
(*nr)++;
2924
} while (ptep++, addr += PAGE_SIZE, addr != end);
2925
2926
ret = 1;
2927
2928
pte_unmap:
2929
if (pgmap)
2930
put_dev_pagemap(pgmap);
2931
pte_unmap(ptem);
2932
return ret;
2933
}
2934
#else
2935
2936
/*
2937
* If we can't determine whether or not a pte is special, then fail immediately
2938
* for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2939
* to be special.
2940
*
2941
* For a futex to be placed on a THP tail page, get_futex_key requires a
2942
* get_user_pages_fast_only implementation that can pin pages. Thus it's still
2943
* useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2944
*/
2945
static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2946
unsigned long end, unsigned int flags, struct page **pages,
2947
int *nr)
2948
{
2949
return 0;
2950
}
2951
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2952
2953
static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2954
unsigned long end, unsigned int flags, struct page **pages,
2955
int *nr)
2956
{
2957
struct page *page;
2958
struct folio *folio;
2959
int refs;
2960
2961
if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2962
return 0;
2963
2964
if (pmd_special(orig))
2965
return 0;
2966
2967
page = pmd_page(orig);
2968
refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2969
2970
folio = try_grab_folio_fast(page, refs, flags);
2971
if (!folio)
2972
return 0;
2973
2974
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2975
gup_put_folio(folio, refs, flags);
2976
return 0;
2977
}
2978
2979
if (!gup_fast_folio_allowed(folio, flags)) {
2980
gup_put_folio(folio, refs, flags);
2981
return 0;
2982
}
2983
if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2984
gup_put_folio(folio, refs, flags);
2985
return 0;
2986
}
2987
2988
*nr += refs;
2989
folio_set_referenced(folio);
2990
return 1;
2991
}
2992
2993
static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
2994
unsigned long end, unsigned int flags, struct page **pages,
2995
int *nr)
2996
{
2997
struct page *page;
2998
struct folio *folio;
2999
int refs;
3000
3001
if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3002
return 0;
3003
3004
if (pud_special(orig))
3005
return 0;
3006
3007
page = pud_page(orig);
3008
refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3009
3010
folio = try_grab_folio_fast(page, refs, flags);
3011
if (!folio)
3012
return 0;
3013
3014
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3015
gup_put_folio(folio, refs, flags);
3016
return 0;
3017
}
3018
3019
if (!gup_fast_folio_allowed(folio, flags)) {
3020
gup_put_folio(folio, refs, flags);
3021
return 0;
3022
}
3023
3024
if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3025
gup_put_folio(folio, refs, flags);
3026
return 0;
3027
}
3028
3029
*nr += refs;
3030
folio_set_referenced(folio);
3031
return 1;
3032
}
3033
3034
static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3035
unsigned long end, unsigned int flags, struct page **pages,
3036
int *nr)
3037
{
3038
unsigned long next;
3039
pmd_t *pmdp;
3040
3041
pmdp = pmd_offset_lockless(pudp, pud, addr);
3042
do {
3043
pmd_t pmd = pmdp_get_lockless(pmdp);
3044
3045
next = pmd_addr_end(addr, end);
3046
if (!pmd_present(pmd))
3047
return 0;
3048
3049
if (unlikely(pmd_leaf(pmd))) {
3050
/* See gup_fast_pte_range() */
3051
if (pmd_protnone(pmd))
3052
return 0;
3053
3054
if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3055
pages, nr))
3056
return 0;
3057
3058
} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3059
pages, nr))
3060
return 0;
3061
} while (pmdp++, addr = next, addr != end);
3062
3063
return 1;
3064
}
3065
3066
static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3067
unsigned long end, unsigned int flags, struct page **pages,
3068
int *nr)
3069
{
3070
unsigned long next;
3071
pud_t *pudp;
3072
3073
pudp = pud_offset_lockless(p4dp, p4d, addr);
3074
do {
3075
pud_t pud = READ_ONCE(*pudp);
3076
3077
next = pud_addr_end(addr, end);
3078
if (unlikely(!pud_present(pud)))
3079
return 0;
3080
if (unlikely(pud_leaf(pud))) {
3081
if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3082
pages, nr))
3083
return 0;
3084
} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3085
pages, nr))
3086
return 0;
3087
} while (pudp++, addr = next, addr != end);
3088
3089
return 1;
3090
}
3091
3092
static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3093
unsigned long end, unsigned int flags, struct page **pages,
3094
int *nr)
3095
{
3096
unsigned long next;
3097
p4d_t *p4dp;
3098
3099
p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3100
do {
3101
p4d_t p4d = READ_ONCE(*p4dp);
3102
3103
next = p4d_addr_end(addr, end);
3104
if (!p4d_present(p4d))
3105
return 0;
3106
BUILD_BUG_ON(p4d_leaf(p4d));
3107
if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3108
pages, nr))
3109
return 0;
3110
} while (p4dp++, addr = next, addr != end);
3111
3112
return 1;
3113
}
3114
3115
static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3116
unsigned int flags, struct page **pages, int *nr)
3117
{
3118
unsigned long next;
3119
pgd_t *pgdp;
3120
3121
pgdp = pgd_offset(current->mm, addr);
3122
do {
3123
pgd_t pgd = READ_ONCE(*pgdp);
3124
3125
next = pgd_addr_end(addr, end);
3126
if (pgd_none(pgd))
3127
return;
3128
BUILD_BUG_ON(pgd_leaf(pgd));
3129
if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3130
pages, nr))
3131
return;
3132
} while (pgdp++, addr = next, addr != end);
3133
}
3134
#else
3135
static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3136
unsigned int flags, struct page **pages, int *nr)
3137
{
3138
}
3139
#endif /* CONFIG_HAVE_GUP_FAST */
3140
3141
#ifndef gup_fast_permitted
3142
/*
3143
* Check if it's allowed to use get_user_pages_fast_only() for the range, or
3144
* we need to fall back to the slow version:
3145
*/
3146
static bool gup_fast_permitted(unsigned long start, unsigned long end)
3147
{
3148
return true;
3149
}
3150
#endif
3151
3152
static unsigned long gup_fast(unsigned long start, unsigned long end,
3153
unsigned int gup_flags, struct page **pages)
3154
{
3155
unsigned long flags;
3156
int nr_pinned = 0;
3157
unsigned seq;
3158
3159
if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3160
!gup_fast_permitted(start, end))
3161
return 0;
3162
3163
if (gup_flags & FOLL_PIN) {
3164
if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3165
return 0;
3166
}
3167
3168
/*
3169
* Disable interrupts. The nested form is used, in order to allow full,
3170
* general purpose use of this routine.
3171
*
3172
* With interrupts disabled, we block page table pages from being freed
3173
* from under us. See struct mmu_table_batch comments in
3174
* include/asm-generic/tlb.h for more details.
3175
*
3176
* We do not adopt an rcu_read_lock() here as we also want to block IPIs
3177
* that come from callers of tlb_remove_table_sync_one().
3178
*/
3179
local_irq_save(flags);
3180
gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3181
local_irq_restore(flags);
3182
3183
/*
3184
* When pinning pages for DMA there could be a concurrent write protect
3185
* from fork() via copy_page_range(), in this case always fail GUP-fast.
3186
*/
3187
if (gup_flags & FOLL_PIN) {
3188
if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3189
gup_fast_unpin_user_pages(pages, nr_pinned);
3190
return 0;
3191
} else {
3192
sanity_check_pinned_pages(pages, nr_pinned);
3193
}
3194
}
3195
return nr_pinned;
3196
}
3197
3198
static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3199
unsigned int gup_flags, struct page **pages)
3200
{
3201
unsigned long len, end;
3202
unsigned long nr_pinned;
3203
int locked = 0;
3204
int ret;
3205
3206
if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3207
FOLL_FORCE | FOLL_PIN | FOLL_GET |
3208
FOLL_FAST_ONLY | FOLL_NOFAULT |
3209
FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3210
return -EINVAL;
3211
3212
if (gup_flags & FOLL_PIN)
3213
mm_set_has_pinned_flag(&current->mm->flags);
3214
3215
if (!(gup_flags & FOLL_FAST_ONLY))
3216
might_lock_read(&current->mm->mmap_lock);
3217
3218
start = untagged_addr(start) & PAGE_MASK;
3219
len = nr_pages << PAGE_SHIFT;
3220
if (check_add_overflow(start, len, &end))
3221
return -EOVERFLOW;
3222
if (end > TASK_SIZE_MAX)
3223
return -EFAULT;
3224
3225
nr_pinned = gup_fast(start, end, gup_flags, pages);
3226
if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3227
return nr_pinned;
3228
3229
/* Slow path: try to get the remaining pages with get_user_pages */
3230
start += nr_pinned << PAGE_SHIFT;
3231
pages += nr_pinned;
3232
ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3233
pages, &locked,
3234
gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3235
if (ret < 0) {
3236
/*
3237
* The caller has to unpin the pages we already pinned so
3238
* returning -errno is not an option
3239
*/
3240
if (nr_pinned)
3241
return nr_pinned;
3242
return ret;
3243
}
3244
return ret + nr_pinned;
3245
}
3246
3247
/**
3248
* get_user_pages_fast_only() - pin user pages in memory
3249
* @start: starting user address
3250
* @nr_pages: number of pages from start to pin
3251
* @gup_flags: flags modifying pin behaviour
3252
* @pages: array that receives pointers to the pages pinned.
3253
* Should be at least nr_pages long.
3254
*
3255
* Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3256
* the regular GUP.
3257
*
3258
* If the architecture does not support this function, simply return with no
3259
* pages pinned.
3260
*
3261
* Careful, careful! COW breaking can go either way, so a non-write
3262
* access can get ambiguous page results. If you call this function without
3263
* 'write' set, you'd better be sure that you're ok with that ambiguity.
3264
*/
3265
int get_user_pages_fast_only(unsigned long start, int nr_pages,
3266
unsigned int gup_flags, struct page **pages)
3267
{
3268
/*
3269
* Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3270
* because gup fast is always a "pin with a +1 page refcount" request.
3271
*
3272
* FOLL_FAST_ONLY is required in order to match the API description of
3273
* this routine: no fall back to regular ("slow") GUP.
3274
*/
3275
if (!is_valid_gup_args(pages, NULL, &gup_flags,
3276
FOLL_GET | FOLL_FAST_ONLY))
3277
return -EINVAL;
3278
3279
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3280
}
3281
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3282
3283
/**
3284
* get_user_pages_fast() - pin user pages in memory
3285
* @start: starting user address
3286
* @nr_pages: number of pages from start to pin
3287
* @gup_flags: flags modifying pin behaviour
3288
* @pages: array that receives pointers to the pages pinned.
3289
* Should be at least nr_pages long.
3290
*
3291
* Attempt to pin user pages in memory without taking mm->mmap_lock.
3292
* If not successful, it will fall back to taking the lock and
3293
* calling get_user_pages().
3294
*
3295
* Returns number of pages pinned. This may be fewer than the number requested.
3296
* If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3297
* -errno.
3298
*/
3299
int get_user_pages_fast(unsigned long start, int nr_pages,
3300
unsigned int gup_flags, struct page **pages)
3301
{
3302
/*
3303
* The caller may or may not have explicitly set FOLL_GET; either way is
3304
* OK. However, internally (within mm/gup.c), gup fast variants must set
3305
* FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3306
* request.
3307
*/
3308
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3309
return -EINVAL;
3310
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3311
}
3312
EXPORT_SYMBOL_GPL(get_user_pages_fast);
3313
3314
/**
3315
* pin_user_pages_fast() - pin user pages in memory without taking locks
3316
*
3317
* @start: starting user address
3318
* @nr_pages: number of pages from start to pin
3319
* @gup_flags: flags modifying pin behaviour
3320
* @pages: array that receives pointers to the pages pinned.
3321
* Should be at least nr_pages long.
3322
*
3323
* Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3324
* get_user_pages_fast() for documentation on the function arguments, because
3325
* the arguments here are identical.
3326
*
3327
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3328
* see Documentation/core-api/pin_user_pages.rst for further details.
3329
*
3330
* Note that if a zero_page is amongst the returned pages, it will not have
3331
* pins in it and unpin_user_page() will not remove pins from it.
3332
*/
3333
int pin_user_pages_fast(unsigned long start, int nr_pages,
3334
unsigned int gup_flags, struct page **pages)
3335
{
3336
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3337
return -EINVAL;
3338
return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3339
}
3340
EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3341
3342
/**
3343
* pin_user_pages_remote() - pin pages of a remote process
3344
*
3345
* @mm: mm_struct of target mm
3346
* @start: starting user address
3347
* @nr_pages: number of pages from start to pin
3348
* @gup_flags: flags modifying lookup behaviour
3349
* @pages: array that receives pointers to the pages pinned.
3350
* Should be at least nr_pages long.
3351
* @locked: pointer to lock flag indicating whether lock is held and
3352
* subsequently whether VM_FAULT_RETRY functionality can be
3353
* utilised. Lock must initially be held.
3354
*
3355
* Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3356
* get_user_pages_remote() for documentation on the function arguments, because
3357
* the arguments here are identical.
3358
*
3359
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3360
* see Documentation/core-api/pin_user_pages.rst for details.
3361
*
3362
* Note that if a zero_page is amongst the returned pages, it will not have
3363
* pins in it and unpin_user_page*() will not remove pins from it.
3364
*/
3365
long pin_user_pages_remote(struct mm_struct *mm,
3366
unsigned long start, unsigned long nr_pages,
3367
unsigned int gup_flags, struct page **pages,
3368
int *locked)
3369
{
3370
int local_locked = 1;
3371
3372
if (!is_valid_gup_args(pages, locked, &gup_flags,
3373
FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3374
return 0;
3375
return __gup_longterm_locked(mm, start, nr_pages, pages,
3376
locked ? locked : &local_locked,
3377
gup_flags);
3378
}
3379
EXPORT_SYMBOL(pin_user_pages_remote);
3380
3381
/**
3382
* pin_user_pages() - pin user pages in memory for use by other devices
3383
*
3384
* @start: starting user address
3385
* @nr_pages: number of pages from start to pin
3386
* @gup_flags: flags modifying lookup behaviour
3387
* @pages: array that receives pointers to the pages pinned.
3388
* Should be at least nr_pages long.
3389
*
3390
* Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3391
* FOLL_PIN is set.
3392
*
3393
* FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3394
* see Documentation/core-api/pin_user_pages.rst for details.
3395
*
3396
* Note that if a zero_page is amongst the returned pages, it will not have
3397
* pins in it and unpin_user_page*() will not remove pins from it.
3398
*/
3399
long pin_user_pages(unsigned long start, unsigned long nr_pages,
3400
unsigned int gup_flags, struct page **pages)
3401
{
3402
int locked = 1;
3403
3404
if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3405
return 0;
3406
return __gup_longterm_locked(current->mm, start, nr_pages,
3407
pages, &locked, gup_flags);
3408
}
3409
EXPORT_SYMBOL(pin_user_pages);
3410
3411
/*
3412
* pin_user_pages_unlocked() is the FOLL_PIN variant of
3413
* get_user_pages_unlocked(). Behavior is the same, except that this one sets
3414
* FOLL_PIN and rejects FOLL_GET.
3415
*
3416
* Note that if a zero_page is amongst the returned pages, it will not have
3417
* pins in it and unpin_user_page*() will not remove pins from it.
3418
*/
3419
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3420
struct page **pages, unsigned int gup_flags)
3421
{
3422
int locked = 0;
3423
3424
if (!is_valid_gup_args(pages, NULL, &gup_flags,
3425
FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3426
return 0;
3427
3428
return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3429
&locked, gup_flags);
3430
}
3431
EXPORT_SYMBOL(pin_user_pages_unlocked);
3432
3433
/**
3434
* memfd_pin_folios() - pin folios associated with a memfd
3435
* @memfd: the memfd whose folios are to be pinned
3436
* @start: the first memfd offset
3437
* @end: the last memfd offset (inclusive)
3438
* @folios: array that receives pointers to the folios pinned
3439
* @max_folios: maximum number of entries in @folios
3440
* @offset: the offset into the first folio
3441
*
3442
* Attempt to pin folios associated with a memfd in the contiguous range
3443
* [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3444
* the folios can either be found in the page cache or need to be allocated
3445
* if necessary. Once the folios are located, they are all pinned via
3446
* FOLL_PIN and @offset is populatedwith the offset into the first folio.
3447
* And, eventually, these pinned folios must be released either using
3448
* unpin_folios() or unpin_folio().
3449
*
3450
* It must be noted that the folios may be pinned for an indefinite amount
3451
* of time. And, in most cases, the duration of time they may stay pinned
3452
* would be controlled by the userspace. This behavior is effectively the
3453
* same as using FOLL_LONGTERM with other GUP APIs.
3454
*
3455
* Returns number of folios pinned, which could be less than @max_folios
3456
* as it depends on the folio sizes that cover the range [start, end].
3457
* If no folios were pinned, it returns -errno.
3458
*/
3459
long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3460
struct folio **folios, unsigned int max_folios,
3461
pgoff_t *offset)
3462
{
3463
unsigned int flags, nr_folios, nr_found;
3464
unsigned int i, pgshift = PAGE_SHIFT;
3465
pgoff_t start_idx, end_idx;
3466
struct folio *folio = NULL;
3467
struct folio_batch fbatch;
3468
struct hstate *h;
3469
long ret = -EINVAL;
3470
3471
if (start < 0 || start > end || !max_folios)
3472
return -EINVAL;
3473
3474
if (!memfd)
3475
return -EINVAL;
3476
3477
if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3478
return -EINVAL;
3479
3480
if (end >= i_size_read(file_inode(memfd)))
3481
return -EINVAL;
3482
3483
if (is_file_hugepages(memfd)) {
3484
h = hstate_file(memfd);
3485
pgshift = huge_page_shift(h);
3486
}
3487
3488
flags = memalloc_pin_save();
3489
do {
3490
nr_folios = 0;
3491
start_idx = start >> pgshift;
3492
end_idx = end >> pgshift;
3493
if (is_file_hugepages(memfd)) {
3494
start_idx <<= huge_page_order(h);
3495
end_idx <<= huge_page_order(h);
3496
}
3497
3498
folio_batch_init(&fbatch);
3499
while (start_idx <= end_idx && nr_folios < max_folios) {
3500
/*
3501
* In most cases, we should be able to find the folios
3502
* in the page cache. If we cannot find them for some
3503
* reason, we try to allocate them and add them to the
3504
* page cache.
3505
*/
3506
nr_found = filemap_get_folios_contig(memfd->f_mapping,
3507
&start_idx,
3508
end_idx,
3509
&fbatch);
3510
if (folio) {
3511
folio_put(folio);
3512
folio = NULL;
3513
}
3514
3515
for (i = 0; i < nr_found; i++) {
3516
folio = fbatch.folios[i];
3517
3518
if (try_grab_folio(folio, 1, FOLL_PIN)) {
3519
folio_batch_release(&fbatch);
3520
ret = -EINVAL;
3521
goto err;
3522
}
3523
3524
if (nr_folios == 0)
3525
*offset = offset_in_folio(folio, start);
3526
3527
folios[nr_folios] = folio;
3528
if (++nr_folios == max_folios)
3529
break;
3530
}
3531
3532
folio = NULL;
3533
folio_batch_release(&fbatch);
3534
if (!nr_found) {
3535
folio = memfd_alloc_folio(memfd, start_idx);
3536
if (IS_ERR(folio)) {
3537
ret = PTR_ERR(folio);
3538
if (ret != -EEXIST)
3539
goto err;
3540
folio = NULL;
3541
}
3542
}
3543
}
3544
3545
ret = check_and_migrate_movable_folios(nr_folios, folios);
3546
} while (ret == -EAGAIN);
3547
3548
memalloc_pin_restore(flags);
3549
return ret ? ret : nr_folios;
3550
err:
3551
memalloc_pin_restore(flags);
3552
unpin_folios(folios, nr_folios);
3553
3554
return ret;
3555
}
3556
EXPORT_SYMBOL_GPL(memfd_pin_folios);
3557
3558
/**
3559
* folio_add_pins() - add pins to an already-pinned folio
3560
* @folio: the folio to add more pins to
3561
* @pins: number of pins to add
3562
*
3563
* Try to add more pins to an already-pinned folio. The semantics
3564
* of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3565
* be changed.
3566
*
3567
* This function is helpful when having obtained a pin on a large folio
3568
* using memfd_pin_folios(), but wanting to logically unpin parts
3569
* (e.g., individual pages) of the folio later, for example, using
3570
* unpin_user_page_range_dirty_lock().
3571
*
3572
* This is not the right interface to initially pin a folio.
3573
*/
3574
int folio_add_pins(struct folio *folio, unsigned int pins)
3575
{
3576
VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3577
3578
return try_grab_folio(folio, pins, FOLL_PIN);
3579
}
3580
EXPORT_SYMBOL_GPL(folio_add_pins);
3581
3582