Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/internal.h
49360 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/* internal.h: mm/ internal definitions
3
*
4
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5
* Written by David Howells ([email protected])
6
*/
7
#ifndef __MM_INTERNAL_H
8
#define __MM_INTERNAL_H
9
10
#include <linux/fs.h>
11
#include <linux/khugepaged.h>
12
#include <linux/mm.h>
13
#include <linux/mm_inline.h>
14
#include <linux/pagemap.h>
15
#include <linux/pagewalk.h>
16
#include <linux/rmap.h>
17
#include <linux/swap.h>
18
#include <linux/leafops.h>
19
#include <linux/swap_cgroup.h>
20
#include <linux/tracepoint-defs.h>
21
22
/* Internal core VMA manipulation functions. */
23
#include "vma.h"
24
25
struct folio_batch;
26
27
/*
28
* Maintains state across a page table move. The operation assumes both source
29
* and destination VMAs already exist and are specified by the user.
30
*
31
* Partial moves are permitted, but the old and new ranges must both reside
32
* within a VMA.
33
*
34
* mmap lock must be held in write and VMA write locks must be held on any VMA
35
* that is visible.
36
*
37
* Use the PAGETABLE_MOVE() macro to initialise this struct.
38
*
39
* The old_addr and new_addr fields are updated as the page table move is
40
* executed.
41
*
42
* NOTE: The page table move is affected by reading from [old_addr, old_end),
43
* and old_addr may be updated for better page table alignment, so len_in
44
* represents the length of the range being copied as specified by the user.
45
*/
46
struct pagetable_move_control {
47
struct vm_area_struct *old; /* Source VMA. */
48
struct vm_area_struct *new; /* Destination VMA. */
49
unsigned long old_addr; /* Address from which the move begins. */
50
unsigned long old_end; /* Exclusive address at which old range ends. */
51
unsigned long new_addr; /* Address to move page tables to. */
52
unsigned long len_in; /* Bytes to remap specified by user. */
53
54
bool need_rmap_locks; /* Do rmap locks need to be taken? */
55
bool for_stack; /* Is this an early temp stack being moved? */
56
};
57
58
#define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
59
struct pagetable_move_control name = { \
60
.old = old_, \
61
.new = new_, \
62
.old_addr = old_addr_, \
63
.old_end = (old_addr_) + (len_), \
64
.new_addr = new_addr_, \
65
.len_in = len_, \
66
}
67
68
/*
69
* The set of flags that only affect watermark checking and reclaim
70
* behaviour. This is used by the MM to obey the caller constraints
71
* about IO, FS and watermark checking while ignoring placement
72
* hints such as HIGHMEM usage.
73
*/
74
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75
__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76
__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77
__GFP_NOLOCKDEP)
78
79
/* The GFP flags allowed during early boot */
80
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81
82
/* Control allocation cpuset and node placement constraints */
83
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84
85
/* Do not use these with a slab allocator */
86
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87
88
/*
89
* Different from WARN_ON_ONCE(), no warning will be issued
90
* when we specify __GFP_NOWARN.
91
*/
92
#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
93
static bool __section(".data..once") __warned; \
94
int __ret_warn_once = !!(cond); \
95
\
96
if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97
__warned = true; \
98
WARN_ON(1); \
99
} \
100
unlikely(__ret_warn_once); \
101
})
102
103
void page_writeback_init(void);
104
105
/*
106
* If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107
* its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108
* above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
109
* leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110
*/
111
#define ENTIRELY_MAPPED 0x800000
112
#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
113
114
/*
115
* Flags passed to __show_mem() and show_free_areas() to suppress output in
116
* various contexts.
117
*/
118
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
119
120
/*
121
* How many individual pages have an elevated _mapcount. Excludes
122
* the folio's entire_mapcount.
123
*
124
* Don't use this function outside of debugging code.
125
*/
126
static inline int folio_nr_pages_mapped(const struct folio *folio)
127
{
128
if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129
return -1;
130
return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131
}
132
133
/*
134
* Retrieve the first entry of a folio based on a provided entry within the
135
* folio. We cannot rely on folio->swap as there is no guarantee that it has
136
* been initialized. Used for calling arch_swap_restore()
137
*/
138
static inline swp_entry_t folio_swap(swp_entry_t entry,
139
const struct folio *folio)
140
{
141
swp_entry_t swap = {
142
.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143
};
144
145
return swap;
146
}
147
148
static inline void *folio_raw_mapping(const struct folio *folio)
149
{
150
unsigned long mapping = (unsigned long)folio->mapping;
151
152
return (void *)(mapping & ~FOLIO_MAPPING_FLAGS);
153
}
154
155
/*
156
* This is a file-backed mapping, and is about to be memory mapped - invoke its
157
* mmap hook and safely handle error conditions. On error, VMA hooks will be
158
* mutated.
159
*
160
* @file: File which backs the mapping.
161
* @vma: VMA which we are mapping.
162
*
163
* Returns: 0 if success, error otherwise.
164
*/
165
static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166
{
167
int err = vfs_mmap(file, vma);
168
169
if (likely(!err))
170
return 0;
171
172
/*
173
* OK, we tried to call the file hook for mmap(), but an error
174
* arose. The mapping is in an inconsistent state and we most not invoke
175
* any further hooks on it.
176
*/
177
vma->vm_ops = &vma_dummy_vm_ops;
178
179
return err;
180
}
181
182
/*
183
* If the VMA has a close hook then close it, and since closing it might leave
184
* it in an inconsistent state which makes the use of any hooks suspect, clear
185
* them down by installing dummy empty hooks.
186
*/
187
static inline void vma_close(struct vm_area_struct *vma)
188
{
189
if (vma->vm_ops && vma->vm_ops->close) {
190
vma->vm_ops->close(vma);
191
192
/*
193
* The mapping is in an inconsistent state, and no further hooks
194
* may be invoked upon it.
195
*/
196
vma->vm_ops = &vma_dummy_vm_ops;
197
}
198
}
199
200
#ifdef CONFIG_MMU
201
202
/* Flags for folio_pte_batch(). */
203
typedef int __bitwise fpb_t;
204
205
/* Compare PTEs respecting the dirty bit. */
206
#define FPB_RESPECT_DIRTY ((__force fpb_t)BIT(0))
207
208
/* Compare PTEs respecting the soft-dirty bit. */
209
#define FPB_RESPECT_SOFT_DIRTY ((__force fpb_t)BIT(1))
210
211
/* Compare PTEs respecting the writable bit. */
212
#define FPB_RESPECT_WRITE ((__force fpb_t)BIT(2))
213
214
/*
215
* Merge PTE write bits: if any PTE in the batch is writable, modify the
216
* PTE at @ptentp to be writable.
217
*/
218
#define FPB_MERGE_WRITE ((__force fpb_t)BIT(3))
219
220
/*
221
* Merge PTE young and dirty bits: if any PTE in the batch is young or dirty,
222
* modify the PTE at @ptentp to be young or dirty, respectively.
223
*/
224
#define FPB_MERGE_YOUNG_DIRTY ((__force fpb_t)BIT(4))
225
226
static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
227
{
228
if (!(flags & FPB_RESPECT_DIRTY))
229
pte = pte_mkclean(pte);
230
if (likely(!(flags & FPB_RESPECT_SOFT_DIRTY)))
231
pte = pte_clear_soft_dirty(pte);
232
if (likely(!(flags & FPB_RESPECT_WRITE)))
233
pte = pte_wrprotect(pte);
234
return pte_mkold(pte);
235
}
236
237
/**
238
* folio_pte_batch_flags - detect a PTE batch for a large folio
239
* @folio: The large folio to detect a PTE batch for.
240
* @vma: The VMA. Only relevant with FPB_MERGE_WRITE, otherwise can be NULL.
241
* @ptep: Page table pointer for the first entry.
242
* @ptentp: Pointer to a COPY of the first page table entry whose flags this
243
* function updates based on @flags if appropriate.
244
* @max_nr: The maximum number of table entries to consider.
245
* @flags: Flags to modify the PTE batch semantics.
246
*
247
* Detect a PTE batch: consecutive (present) PTEs that map consecutive
248
* pages of the same large folio in a single VMA and a single page table.
249
*
250
* All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
251
* the accessed bit, writable bit, dirty bit (unless FPB_RESPECT_DIRTY is set)
252
* and soft-dirty bit (unless FPB_RESPECT_SOFT_DIRTY is set).
253
*
254
* @ptep must map any page of the folio. max_nr must be at least one and
255
* must be limited by the caller so scanning cannot exceed a single VMA and
256
* a single page table.
257
*
258
* Depending on the FPB_MERGE_* flags, the pte stored at @ptentp will
259
* be updated: it's crucial that a pointer to a COPY of the first
260
* page table entry, obtained through ptep_get(), is provided as @ptentp.
261
*
262
* This function will be inlined to optimize based on the input parameters;
263
* consider using folio_pte_batch() instead if applicable.
264
*
265
* Return: the number of table entries in the batch.
266
*/
267
static inline unsigned int folio_pte_batch_flags(struct folio *folio,
268
struct vm_area_struct *vma, pte_t *ptep, pte_t *ptentp,
269
unsigned int max_nr, fpb_t flags)
270
{
271
bool any_writable = false, any_young = false, any_dirty = false;
272
pte_t expected_pte, pte = *ptentp;
273
unsigned int nr, cur_nr;
274
275
VM_WARN_ON_FOLIO(!pte_present(pte), folio);
276
VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
277
VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
278
/*
279
* Ensure this is a pointer to a copy not a pointer into a page table.
280
* If this is a stack value, it won't be a valid virtual address, but
281
* that's fine because it also cannot be pointing into the page table.
282
*/
283
VM_WARN_ON(virt_addr_valid(ptentp) && PageTable(virt_to_page(ptentp)));
284
285
/* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
286
max_nr = min_t(unsigned long, max_nr,
287
folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
288
289
nr = pte_batch_hint(ptep, pte);
290
expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
291
ptep = ptep + nr;
292
293
while (nr < max_nr) {
294
pte = ptep_get(ptep);
295
296
if (!pte_same(__pte_batch_clear_ignored(pte, flags), expected_pte))
297
break;
298
299
if (flags & FPB_MERGE_WRITE)
300
any_writable |= pte_write(pte);
301
if (flags & FPB_MERGE_YOUNG_DIRTY) {
302
any_young |= pte_young(pte);
303
any_dirty |= pte_dirty(pte);
304
}
305
306
cur_nr = pte_batch_hint(ptep, pte);
307
expected_pte = pte_advance_pfn(expected_pte, cur_nr);
308
ptep += cur_nr;
309
nr += cur_nr;
310
}
311
312
if (any_writable)
313
*ptentp = pte_mkwrite(*ptentp, vma);
314
if (any_young)
315
*ptentp = pte_mkyoung(*ptentp);
316
if (any_dirty)
317
*ptentp = pte_mkdirty(*ptentp);
318
319
return min(nr, max_nr);
320
}
321
322
unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte,
323
unsigned int max_nr);
324
325
/**
326
* pte_move_swp_offset - Move the swap entry offset field of a swap pte
327
* forward or backward by delta
328
* @pte: The initial pte state; must be a swap entry
329
* @delta: The direction and the offset we are moving; forward if delta
330
* is positive; backward if delta is negative
331
*
332
* Moves the swap offset, while maintaining all other fields, including
333
* swap type, and any swp pte bits. The resulting pte is returned.
334
*/
335
static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
336
{
337
const softleaf_t entry = softleaf_from_pte(pte);
338
pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
339
(swp_offset(entry) + delta)));
340
341
if (pte_swp_soft_dirty(pte))
342
new = pte_swp_mksoft_dirty(new);
343
if (pte_swp_exclusive(pte))
344
new = pte_swp_mkexclusive(new);
345
if (pte_swp_uffd_wp(pte))
346
new = pte_swp_mkuffd_wp(new);
347
348
return new;
349
}
350
351
352
/**
353
* pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
354
* @pte: The initial pte state; must be a swap entry.
355
*
356
* Increments the swap offset, while maintaining all other fields, including
357
* swap type, and any swp pte bits. The resulting pte is returned.
358
*/
359
static inline pte_t pte_next_swp_offset(pte_t pte)
360
{
361
return pte_move_swp_offset(pte, 1);
362
}
363
364
/**
365
* swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
366
* @start_ptep: Page table pointer for the first entry.
367
* @max_nr: The maximum number of table entries to consider.
368
* @pte: Page table entry for the first entry.
369
*
370
* Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
371
* containing swap entries all with consecutive offsets and targeting the same
372
* swap type, all with matching swp pte bits.
373
*
374
* max_nr must be at least one and must be limited by the caller so scanning
375
* cannot exceed a single page table.
376
*
377
* Return: the number of table entries in the batch.
378
*/
379
static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
380
{
381
pte_t expected_pte = pte_next_swp_offset(pte);
382
const pte_t *end_ptep = start_ptep + max_nr;
383
const softleaf_t entry = softleaf_from_pte(pte);
384
pte_t *ptep = start_ptep + 1;
385
unsigned short cgroup_id;
386
387
VM_WARN_ON(max_nr < 1);
388
VM_WARN_ON(!softleaf_is_swap(entry));
389
390
cgroup_id = lookup_swap_cgroup_id(entry);
391
while (ptep < end_ptep) {
392
softleaf_t entry;
393
394
pte = ptep_get(ptep);
395
396
if (!pte_same(pte, expected_pte))
397
break;
398
entry = softleaf_from_pte(pte);
399
if (lookup_swap_cgroup_id(entry) != cgroup_id)
400
break;
401
expected_pte = pte_next_swp_offset(expected_pte);
402
ptep++;
403
}
404
405
return ptep - start_ptep;
406
}
407
#endif /* CONFIG_MMU */
408
409
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
410
int nr_throttled);
411
static inline void acct_reclaim_writeback(struct folio *folio)
412
{
413
pg_data_t *pgdat = folio_pgdat(folio);
414
int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
415
416
if (nr_throttled)
417
__acct_reclaim_writeback(pgdat, folio, nr_throttled);
418
}
419
420
static inline void wake_throttle_isolated(pg_data_t *pgdat)
421
{
422
wait_queue_head_t *wqh;
423
424
wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
425
if (waitqueue_active(wqh))
426
wake_up(wqh);
427
}
428
429
vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
430
static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
431
{
432
vm_fault_t ret = __vmf_anon_prepare(vmf);
433
434
if (unlikely(ret & VM_FAULT_RETRY))
435
vma_end_read(vmf->vma);
436
return ret;
437
}
438
439
vm_fault_t do_swap_page(struct vm_fault *vmf);
440
void folio_rotate_reclaimable(struct folio *folio);
441
bool __folio_end_writeback(struct folio *folio);
442
void deactivate_file_folio(struct folio *folio);
443
void folio_activate(struct folio *folio);
444
445
void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
446
struct vm_area_struct *start_vma, unsigned long floor,
447
unsigned long ceiling, bool mm_wr_locked);
448
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
449
450
struct zap_details;
451
void unmap_page_range(struct mmu_gather *tlb,
452
struct vm_area_struct *vma,
453
unsigned long addr, unsigned long end,
454
struct zap_details *details);
455
void zap_page_range_single_batched(struct mmu_gather *tlb,
456
struct vm_area_struct *vma, unsigned long addr,
457
unsigned long size, struct zap_details *details);
458
int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
459
gfp_t gfp);
460
461
void page_cache_ra_order(struct readahead_control *, struct file_ra_state *);
462
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
463
static inline void force_page_cache_readahead(struct address_space *mapping,
464
struct file *file, pgoff_t index, unsigned long nr_to_read)
465
{
466
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
467
force_page_cache_ra(&ractl, nr_to_read);
468
}
469
470
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
471
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
472
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
473
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
474
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
475
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
476
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
477
loff_t end);
478
long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
479
unsigned long mapping_try_invalidate(struct address_space *mapping,
480
pgoff_t start, pgoff_t end, unsigned long *nr_failed);
481
482
/**
483
* folio_evictable - Test whether a folio is evictable.
484
* @folio: The folio to test.
485
*
486
* Test whether @folio is evictable -- i.e., should be placed on
487
* active/inactive lists vs unevictable list.
488
*
489
* Reasons folio might not be evictable:
490
* 1. folio's mapping marked unevictable
491
* 2. One of the pages in the folio is part of an mlocked VMA
492
*/
493
static inline bool folio_evictable(struct folio *folio)
494
{
495
bool ret;
496
497
/* Prevent address_space of inode and swap cache from being freed */
498
rcu_read_lock();
499
ret = !mapping_unevictable(folio_mapping(folio)) &&
500
!folio_test_mlocked(folio);
501
rcu_read_unlock();
502
return ret;
503
}
504
505
/*
506
* Turn a non-refcounted page (->_refcount == 0) into refcounted with
507
* a count of one.
508
*/
509
static inline void set_page_refcounted(struct page *page)
510
{
511
VM_BUG_ON_PAGE(PageTail(page), page);
512
VM_BUG_ON_PAGE(page_ref_count(page), page);
513
set_page_count(page, 1);
514
}
515
516
/*
517
* Return true if a folio needs ->release_folio() calling upon it.
518
*/
519
static inline bool folio_needs_release(struct folio *folio)
520
{
521
struct address_space *mapping = folio_mapping(folio);
522
523
return folio_has_private(folio) ||
524
(mapping && mapping_release_always(mapping));
525
}
526
527
extern unsigned long highest_memmap_pfn;
528
529
/*
530
* Maximum number of reclaim retries without progress before the OOM
531
* killer is consider the only way forward.
532
*/
533
#define MAX_RECLAIM_RETRIES 16
534
535
/*
536
* in mm/vmscan.c:
537
*/
538
bool folio_isolate_lru(struct folio *folio);
539
void folio_putback_lru(struct folio *folio);
540
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
541
int user_proactive_reclaim(char *buf,
542
struct mem_cgroup *memcg, pg_data_t *pgdat);
543
544
/*
545
* in mm/rmap.c:
546
*/
547
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
548
549
/*
550
* in mm/page_alloc.c
551
*/
552
#define K(x) ((x) << (PAGE_SHIFT-10))
553
554
extern char * const zone_names[MAX_NR_ZONES];
555
556
/* perform sanity checks on struct pages being allocated or freed */
557
DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
558
559
extern int min_free_kbytes;
560
extern int defrag_mode;
561
562
void setup_per_zone_wmarks(void);
563
void calculate_min_free_kbytes(void);
564
int __meminit init_per_zone_wmark_min(void);
565
void page_alloc_sysctl_init(void);
566
567
/*
568
* Structure for holding the mostly immutable allocation parameters passed
569
* between functions involved in allocations, including the alloc_pages*
570
* family of functions.
571
*
572
* nodemask, migratetype and highest_zoneidx are initialized only once in
573
* __alloc_pages() and then never change.
574
*
575
* zonelist, preferred_zone and highest_zoneidx are set first in
576
* __alloc_pages() for the fast path, and might be later changed
577
* in __alloc_pages_slowpath(). All other functions pass the whole structure
578
* by a const pointer.
579
*/
580
struct alloc_context {
581
struct zonelist *zonelist;
582
nodemask_t *nodemask;
583
struct zoneref *preferred_zoneref;
584
int migratetype;
585
586
/*
587
* highest_zoneidx represents highest usable zone index of
588
* the allocation request. Due to the nature of the zone,
589
* memory on lower zone than the highest_zoneidx will be
590
* protected by lowmem_reserve[highest_zoneidx].
591
*
592
* highest_zoneidx is also used by reclaim/compaction to limit
593
* the target zone since higher zone than this index cannot be
594
* usable for this allocation request.
595
*/
596
enum zone_type highest_zoneidx;
597
bool spread_dirty_pages;
598
};
599
600
/*
601
* This function returns the order of a free page in the buddy system. In
602
* general, page_zone(page)->lock must be held by the caller to prevent the
603
* page from being allocated in parallel and returning garbage as the order.
604
* If a caller does not hold page_zone(page)->lock, it must guarantee that the
605
* page cannot be allocated or merged in parallel. Alternatively, it must
606
* handle invalid values gracefully, and use buddy_order_unsafe() below.
607
*/
608
static inline unsigned int buddy_order(struct page *page)
609
{
610
/* PageBuddy() must be checked by the caller */
611
return page_private(page);
612
}
613
614
/*
615
* Like buddy_order(), but for callers who cannot afford to hold the zone lock.
616
* PageBuddy() should be checked first by the caller to minimize race window,
617
* and invalid values must be handled gracefully.
618
*
619
* READ_ONCE is used so that if the caller assigns the result into a local
620
* variable and e.g. tests it for valid range before using, the compiler cannot
621
* decide to remove the variable and inline the page_private(page) multiple
622
* times, potentially observing different values in the tests and the actual
623
* use of the result.
624
*/
625
#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
626
627
/*
628
* This function checks whether a page is free && is the buddy
629
* we can coalesce a page and its buddy if
630
* (a) the buddy is not in a hole (check before calling!) &&
631
* (b) the buddy is in the buddy system &&
632
* (c) a page and its buddy have the same order &&
633
* (d) a page and its buddy are in the same zone.
634
*
635
* For recording whether a page is in the buddy system, we set PageBuddy.
636
* Setting, clearing, and testing PageBuddy is serialized by zone->lock.
637
*
638
* For recording page's order, we use page_private(page).
639
*/
640
static inline bool page_is_buddy(struct page *page, struct page *buddy,
641
unsigned int order)
642
{
643
if (!page_is_guard(buddy) && !PageBuddy(buddy))
644
return false;
645
646
if (buddy_order(buddy) != order)
647
return false;
648
649
/*
650
* zone check is done late to avoid uselessly calculating
651
* zone/node ids for pages that could never merge.
652
*/
653
if (page_zone_id(page) != page_zone_id(buddy))
654
return false;
655
656
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
657
658
return true;
659
}
660
661
/*
662
* Locate the struct page for both the matching buddy in our
663
* pair (buddy1) and the combined O(n+1) page they form (page).
664
*
665
* 1) Any buddy B1 will have an order O twin B2 which satisfies
666
* the following equation:
667
* B2 = B1 ^ (1 << O)
668
* For example, if the starting buddy (buddy2) is #8 its order
669
* 1 buddy is #10:
670
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
671
*
672
* 2) Any buddy B will have an order O+1 parent P which
673
* satisfies the following equation:
674
* P = B & ~(1 << O)
675
*
676
* Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
677
*/
678
static inline unsigned long
679
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
680
{
681
return page_pfn ^ (1 << order);
682
}
683
684
/*
685
* Find the buddy of @page and validate it.
686
* @page: The input page
687
* @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
688
* function is used in the performance-critical __free_one_page().
689
* @order: The order of the page
690
* @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
691
* page_to_pfn().
692
*
693
* The found buddy can be a non PageBuddy, out of @page's zone, or its order is
694
* not the same as @page. The validation is necessary before use it.
695
*
696
* Return: the found buddy page or NULL if not found.
697
*/
698
static inline struct page *find_buddy_page_pfn(struct page *page,
699
unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
700
{
701
unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
702
struct page *buddy;
703
704
buddy = page + (__buddy_pfn - pfn);
705
if (buddy_pfn)
706
*buddy_pfn = __buddy_pfn;
707
708
if (page_is_buddy(page, buddy, order))
709
return buddy;
710
return NULL;
711
}
712
713
extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
714
unsigned long end_pfn, struct zone *zone);
715
716
static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
717
unsigned long end_pfn, struct zone *zone)
718
{
719
if (zone->contiguous)
720
return pfn_to_page(start_pfn);
721
722
return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
723
}
724
725
void set_zone_contiguous(struct zone *zone);
726
bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
727
unsigned long nr_pages);
728
729
static inline void clear_zone_contiguous(struct zone *zone)
730
{
731
zone->contiguous = false;
732
}
733
734
extern int __isolate_free_page(struct page *page, unsigned int order);
735
extern void __putback_isolated_page(struct page *page, unsigned int order,
736
int mt);
737
extern void memblock_free_pages(struct page *page, unsigned long pfn,
738
unsigned int order);
739
extern void __free_pages_core(struct page *page, unsigned int order,
740
enum meminit_context context);
741
742
/*
743
* This will have no effect, other than possibly generating a warning, if the
744
* caller passes in a non-large folio.
745
*/
746
static inline void folio_set_order(struct folio *folio, unsigned int order)
747
{
748
if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
749
return;
750
VM_WARN_ON_ONCE(order > MAX_FOLIO_ORDER);
751
752
folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
753
#ifdef NR_PAGES_IN_LARGE_FOLIO
754
folio->_nr_pages = 1U << order;
755
#endif
756
}
757
758
bool __folio_unqueue_deferred_split(struct folio *folio);
759
static inline bool folio_unqueue_deferred_split(struct folio *folio)
760
{
761
if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
762
return false;
763
764
/*
765
* At this point, there is no one trying to add the folio to
766
* deferred_list. If folio is not in deferred_list, it's safe
767
* to check without acquiring the split_queue_lock.
768
*/
769
if (data_race(list_empty(&folio->_deferred_list)))
770
return false;
771
772
return __folio_unqueue_deferred_split(folio);
773
}
774
775
static inline struct folio *page_rmappable_folio(struct page *page)
776
{
777
struct folio *folio = (struct folio *)page;
778
779
if (folio && folio_test_large(folio))
780
folio_set_large_rmappable(folio);
781
return folio;
782
}
783
784
static inline void prep_compound_head(struct page *page, unsigned int order)
785
{
786
struct folio *folio = (struct folio *)page;
787
788
folio_set_order(folio, order);
789
atomic_set(&folio->_large_mapcount, -1);
790
if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
791
atomic_set(&folio->_nr_pages_mapped, 0);
792
if (IS_ENABLED(CONFIG_MM_ID)) {
793
folio->_mm_ids = 0;
794
folio->_mm_id_mapcount[0] = -1;
795
folio->_mm_id_mapcount[1] = -1;
796
}
797
if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
798
atomic_set(&folio->_pincount, 0);
799
atomic_set(&folio->_entire_mapcount, -1);
800
}
801
if (order > 1)
802
INIT_LIST_HEAD(&folio->_deferred_list);
803
}
804
805
static inline void prep_compound_tail(struct page *head, int tail_idx)
806
{
807
struct page *p = head + tail_idx;
808
809
p->mapping = TAIL_MAPPING;
810
set_compound_head(p, head);
811
set_page_private(p, 0);
812
}
813
814
void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
815
extern bool free_pages_prepare(struct page *page, unsigned int order);
816
817
extern int user_min_free_kbytes;
818
819
struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
820
nodemask_t *);
821
#define __alloc_frozen_pages(...) \
822
alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
823
void free_frozen_pages(struct page *page, unsigned int order);
824
void free_unref_folios(struct folio_batch *fbatch);
825
826
#ifdef CONFIG_NUMA
827
struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
828
#else
829
static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
830
{
831
return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
832
}
833
#endif
834
835
#define alloc_frozen_pages(...) \
836
alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
837
838
struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order);
839
#define alloc_frozen_pages_nolock(...) \
840
alloc_hooks(alloc_frozen_pages_nolock_noprof(__VA_ARGS__))
841
842
extern void zone_pcp_reset(struct zone *zone);
843
extern void zone_pcp_disable(struct zone *zone);
844
extern void zone_pcp_enable(struct zone *zone);
845
extern void zone_pcp_init(struct zone *zone);
846
847
extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
848
phys_addr_t min_addr,
849
int nid, bool exact_nid);
850
851
void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
852
unsigned long, enum meminit_context, struct vmem_altmap *, int,
853
bool);
854
855
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
856
857
/*
858
* in mm/compaction.c
859
*/
860
/*
861
* compact_control is used to track pages being migrated and the free pages
862
* they are being migrated to during memory compaction. The free_pfn starts
863
* at the end of a zone and migrate_pfn begins at the start. Movable pages
864
* are moved to the end of a zone during a compaction run and the run
865
* completes when free_pfn <= migrate_pfn
866
*/
867
struct compact_control {
868
struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
869
struct list_head migratepages; /* List of pages being migrated */
870
unsigned int nr_freepages; /* Number of isolated free pages */
871
unsigned int nr_migratepages; /* Number of pages to migrate */
872
unsigned long free_pfn; /* isolate_freepages search base */
873
/*
874
* Acts as an in/out parameter to page isolation for migration.
875
* isolate_migratepages uses it as a search base.
876
* isolate_migratepages_block will update the value to the next pfn
877
* after the last isolated one.
878
*/
879
unsigned long migrate_pfn;
880
unsigned long fast_start_pfn; /* a pfn to start linear scan from */
881
struct zone *zone;
882
unsigned long total_migrate_scanned;
883
unsigned long total_free_scanned;
884
unsigned short fast_search_fail;/* failures to use free list searches */
885
short search_order; /* order to start a fast search at */
886
const gfp_t gfp_mask; /* gfp mask of a direct compactor */
887
int order; /* order a direct compactor needs */
888
int migratetype; /* migratetype of direct compactor */
889
const unsigned int alloc_flags; /* alloc flags of a direct compactor */
890
const int highest_zoneidx; /* zone index of a direct compactor */
891
enum migrate_mode mode; /* Async or sync migration mode */
892
bool ignore_skip_hint; /* Scan blocks even if marked skip */
893
bool no_set_skip_hint; /* Don't mark blocks for skipping */
894
bool ignore_block_suitable; /* Scan blocks considered unsuitable */
895
bool direct_compaction; /* False from kcompactd or /proc/... */
896
bool proactive_compaction; /* kcompactd proactive compaction */
897
bool whole_zone; /* Whole zone should/has been scanned */
898
bool contended; /* Signal lock contention */
899
bool finish_pageblock; /* Scan the remainder of a pageblock. Used
900
* when there are potentially transient
901
* isolation or migration failures to
902
* ensure forward progress.
903
*/
904
bool alloc_contig; /* alloc_contig_range allocation */
905
};
906
907
/*
908
* Used in direct compaction when a page should be taken from the freelists
909
* immediately when one is created during the free path.
910
*/
911
struct capture_control {
912
struct compact_control *cc;
913
struct page *page;
914
};
915
916
unsigned long
917
isolate_freepages_range(struct compact_control *cc,
918
unsigned long start_pfn, unsigned long end_pfn);
919
int
920
isolate_migratepages_range(struct compact_control *cc,
921
unsigned long low_pfn, unsigned long end_pfn);
922
923
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
924
void init_cma_reserved_pageblock(struct page *page);
925
926
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
927
928
struct cma;
929
930
#ifdef CONFIG_CMA
931
void *cma_reserve_early(struct cma *cma, unsigned long size);
932
void init_cma_pageblock(struct page *page);
933
#else
934
static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
935
{
936
return NULL;
937
}
938
static inline void init_cma_pageblock(struct page *page)
939
{
940
}
941
#endif
942
943
944
int find_suitable_fallback(struct free_area *area, unsigned int order,
945
int migratetype, bool claimable);
946
947
static inline bool free_area_empty(struct free_area *area, int migratetype)
948
{
949
return list_empty(&area->free_list[migratetype]);
950
}
951
952
/* mm/util.c */
953
struct anon_vma *folio_anon_vma(const struct folio *folio);
954
955
#ifdef CONFIG_MMU
956
void unmap_mapping_folio(struct folio *folio);
957
extern long populate_vma_page_range(struct vm_area_struct *vma,
958
unsigned long start, unsigned long end, int *locked);
959
extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
960
unsigned long end, bool write, int *locked);
961
bool mlock_future_ok(const struct mm_struct *mm, vm_flags_t vm_flags,
962
unsigned long bytes);
963
964
/*
965
* NOTE: This function can't tell whether the folio is "fully mapped" in the
966
* range.
967
* "fully mapped" means all the pages of folio is associated with the page
968
* table of range while this function just check whether the folio range is
969
* within the range [start, end). Function caller needs to do page table
970
* check if it cares about the page table association.
971
*
972
* Typical usage (like mlock or madvise) is:
973
* Caller knows at least 1 page of folio is associated with page table of VMA
974
* and the range [start, end) is intersect with the VMA range. Caller wants
975
* to know whether the folio is fully associated with the range. It calls
976
* this function to check whether the folio is in the range first. Then checks
977
* the page table to know whether the folio is fully mapped to the range.
978
*/
979
static inline bool
980
folio_within_range(struct folio *folio, struct vm_area_struct *vma,
981
unsigned long start, unsigned long end)
982
{
983
pgoff_t pgoff, addr;
984
unsigned long vma_pglen = vma_pages(vma);
985
986
VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
987
if (start > end)
988
return false;
989
990
if (start < vma->vm_start)
991
start = vma->vm_start;
992
993
if (end > vma->vm_end)
994
end = vma->vm_end;
995
996
pgoff = folio_pgoff(folio);
997
998
/* if folio start address is not in vma range */
999
if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
1000
return false;
1001
1002
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1003
1004
return !(addr < start || end - addr < folio_size(folio));
1005
}
1006
1007
static inline bool
1008
folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
1009
{
1010
return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
1011
}
1012
1013
/*
1014
* mlock_vma_folio() and munlock_vma_folio():
1015
* should be called with vma's mmap_lock held for read or write,
1016
* under page table lock for the pte/pmd being added or removed.
1017
*
1018
* mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
1019
* the end of folio_remove_rmap_*(); but new anon folios are managed by
1020
* folio_add_lru_vma() calling mlock_new_folio().
1021
*/
1022
void mlock_folio(struct folio *folio);
1023
static inline void mlock_vma_folio(struct folio *folio,
1024
struct vm_area_struct *vma)
1025
{
1026
/*
1027
* The VM_SPECIAL check here serves two purposes.
1028
* 1) VM_IO check prevents migration from double-counting during mlock.
1029
* 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1030
* is never left set on a VM_SPECIAL vma, there is an interval while
1031
* file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1032
* still be set while VM_SPECIAL bits are added: so ignore it then.
1033
*/
1034
if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1035
mlock_folio(folio);
1036
}
1037
1038
void munlock_folio(struct folio *folio);
1039
static inline void munlock_vma_folio(struct folio *folio,
1040
struct vm_area_struct *vma)
1041
{
1042
/*
1043
* munlock if the function is called. Ideally, we should only
1044
* do munlock if any page of folio is unmapped from VMA and
1045
* cause folio not fully mapped to VMA.
1046
*
1047
* But it's not easy to confirm that's the situation. So we
1048
* always munlock the folio and page reclaim will correct it
1049
* if it's wrong.
1050
*/
1051
if (unlikely(vma->vm_flags & VM_LOCKED))
1052
munlock_folio(folio);
1053
}
1054
1055
void mlock_new_folio(struct folio *folio);
1056
bool need_mlock_drain(int cpu);
1057
void mlock_drain_local(void);
1058
void mlock_drain_remote(int cpu);
1059
1060
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1061
1062
/**
1063
* vma_address - Find the virtual address a page range is mapped at
1064
* @vma: The vma which maps this object.
1065
* @pgoff: The page offset within its object.
1066
* @nr_pages: The number of pages to consider.
1067
*
1068
* If any page in this range is mapped by this VMA, return the first address
1069
* where any of these pages appear. Otherwise, return -EFAULT.
1070
*/
1071
static inline unsigned long vma_address(const struct vm_area_struct *vma,
1072
pgoff_t pgoff, unsigned long nr_pages)
1073
{
1074
unsigned long address;
1075
1076
if (pgoff >= vma->vm_pgoff) {
1077
address = vma->vm_start +
1078
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1079
/* Check for address beyond vma (or wrapped through 0?) */
1080
if (address < vma->vm_start || address >= vma->vm_end)
1081
address = -EFAULT;
1082
} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1083
/* Test above avoids possibility of wrap to 0 on 32-bit */
1084
address = vma->vm_start;
1085
} else {
1086
address = -EFAULT;
1087
}
1088
return address;
1089
}
1090
1091
/*
1092
* Then at what user virtual address will none of the range be found in vma?
1093
* Assumes that vma_address() already returned a good starting address.
1094
*/
1095
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1096
{
1097
struct vm_area_struct *vma = pvmw->vma;
1098
pgoff_t pgoff;
1099
unsigned long address;
1100
1101
/* Common case, plus ->pgoff is invalid for KSM */
1102
if (pvmw->nr_pages == 1)
1103
return pvmw->address + PAGE_SIZE;
1104
1105
pgoff = pvmw->pgoff + pvmw->nr_pages;
1106
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1107
/* Check for address beyond vma (or wrapped through 0?) */
1108
if (address < vma->vm_start || address > vma->vm_end)
1109
address = vma->vm_end;
1110
return address;
1111
}
1112
1113
static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1114
struct file *fpin)
1115
{
1116
int flags = vmf->flags;
1117
1118
if (fpin)
1119
return fpin;
1120
1121
/*
1122
* FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1123
* anything, so we only pin the file and drop the mmap_lock if only
1124
* FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1125
*/
1126
if (fault_flag_allow_retry_first(flags) &&
1127
!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1128
fpin = get_file(vmf->vma->vm_file);
1129
release_fault_lock(vmf);
1130
}
1131
return fpin;
1132
}
1133
#else /* !CONFIG_MMU */
1134
static inline void unmap_mapping_folio(struct folio *folio) { }
1135
static inline void mlock_new_folio(struct folio *folio) { }
1136
static inline bool need_mlock_drain(int cpu) { return false; }
1137
static inline void mlock_drain_local(void) { }
1138
static inline void mlock_drain_remote(int cpu) { }
1139
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1140
{
1141
}
1142
#endif /* !CONFIG_MMU */
1143
1144
/* Memory initialisation debug and verification */
1145
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1146
DECLARE_STATIC_KEY_TRUE(deferred_pages);
1147
1148
bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1149
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1150
1151
void init_deferred_page(unsigned long pfn, int nid);
1152
1153
enum mminit_level {
1154
MMINIT_WARNING,
1155
MMINIT_VERIFY,
1156
MMINIT_TRACE
1157
};
1158
1159
#ifdef CONFIG_DEBUG_MEMORY_INIT
1160
1161
extern int mminit_loglevel;
1162
1163
#define mminit_dprintk(level, prefix, fmt, arg...) \
1164
do { \
1165
if (level < mminit_loglevel) { \
1166
if (level <= MMINIT_WARNING) \
1167
pr_warn("mminit::" prefix " " fmt, ##arg); \
1168
else \
1169
printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1170
} \
1171
} while (0)
1172
1173
extern void mminit_verify_pageflags_layout(void);
1174
extern void mminit_verify_zonelist(void);
1175
#else
1176
1177
static inline void mminit_dprintk(enum mminit_level level,
1178
const char *prefix, const char *fmt, ...)
1179
{
1180
}
1181
1182
static inline void mminit_verify_pageflags_layout(void)
1183
{
1184
}
1185
1186
static inline void mminit_verify_zonelist(void)
1187
{
1188
}
1189
#endif /* CONFIG_DEBUG_MEMORY_INIT */
1190
1191
#define NODE_RECLAIM_NOSCAN -2
1192
#define NODE_RECLAIM_FULL -1
1193
#define NODE_RECLAIM_SOME 0
1194
#define NODE_RECLAIM_SUCCESS 1
1195
1196
#ifdef CONFIG_NUMA
1197
extern int node_reclaim_mode;
1198
1199
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1200
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1201
#else
1202
#define node_reclaim_mode 0
1203
1204
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1205
unsigned int order)
1206
{
1207
return NODE_RECLAIM_NOSCAN;
1208
}
1209
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1210
{
1211
return NUMA_NO_NODE;
1212
}
1213
#endif
1214
1215
static inline bool node_reclaim_enabled(void)
1216
{
1217
/* Is any node_reclaim_mode bit set? */
1218
return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1219
}
1220
1221
/*
1222
* mm/memory-failure.c
1223
*/
1224
#ifdef CONFIG_MEMORY_FAILURE
1225
int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1226
void shake_folio(struct folio *folio);
1227
typedef int hwpoison_filter_func_t(struct page *p);
1228
void hwpoison_filter_register(hwpoison_filter_func_t *filter);
1229
void hwpoison_filter_unregister(void);
1230
1231
#define MAGIC_HWPOISON 0x48575053U /* HWPS */
1232
void SetPageHWPoisonTakenOff(struct page *page);
1233
void ClearPageHWPoisonTakenOff(struct page *page);
1234
bool take_page_off_buddy(struct page *page);
1235
bool put_page_back_buddy(struct page *page);
1236
struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1237
void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1238
struct vm_area_struct *vma, struct list_head *to_kill,
1239
unsigned long ksm_addr);
1240
unsigned long page_mapped_in_vma(const struct page *page,
1241
struct vm_area_struct *vma);
1242
1243
#else
1244
static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1245
{
1246
return -EBUSY;
1247
}
1248
#endif
1249
1250
extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1251
unsigned long, unsigned long,
1252
unsigned long, unsigned long);
1253
1254
extern void set_pageblock_order(void);
1255
unsigned long reclaim_pages(struct list_head *folio_list);
1256
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1257
struct list_head *folio_list);
1258
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1259
#define ALLOC_WMARK_MIN WMARK_MIN
1260
#define ALLOC_WMARK_LOW WMARK_LOW
1261
#define ALLOC_WMARK_HIGH WMARK_HIGH
1262
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1263
1264
/* Mask to get the watermark bits */
1265
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1266
1267
/*
1268
* Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1269
* cannot assume a reduced access to memory reserves is sufficient for
1270
* !MMU
1271
*/
1272
#ifdef CONFIG_MMU
1273
#define ALLOC_OOM 0x08
1274
#else
1275
#define ALLOC_OOM ALLOC_NO_WATERMARKS
1276
#endif
1277
1278
#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1279
* to 25% of the min watermark or
1280
* 62.5% if __GFP_HIGH is set.
1281
*/
1282
#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1283
* of the min watermark.
1284
*/
1285
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1286
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1287
#ifdef CONFIG_ZONE_DMA32
1288
#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1289
#else
1290
#define ALLOC_NOFRAGMENT 0x0
1291
#endif
1292
#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1293
#define ALLOC_TRYLOCK 0x400 /* Only use spin_trylock in allocation path */
1294
#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1295
1296
/* Flags that allow allocations below the min watermark. */
1297
#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1298
1299
enum ttu_flags;
1300
struct tlbflush_unmap_batch;
1301
1302
1303
/*
1304
* only for MM internal work items which do not depend on
1305
* any allocations or locks which might depend on allocations
1306
*/
1307
extern struct workqueue_struct *mm_percpu_wq;
1308
1309
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1310
void try_to_unmap_flush(void);
1311
void try_to_unmap_flush_dirty(void);
1312
void flush_tlb_batched_pending(struct mm_struct *mm);
1313
#else
1314
static inline void try_to_unmap_flush(void)
1315
{
1316
}
1317
static inline void try_to_unmap_flush_dirty(void)
1318
{
1319
}
1320
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1321
{
1322
}
1323
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1324
1325
extern const struct trace_print_flags pageflag_names[];
1326
extern const struct trace_print_flags vmaflag_names[];
1327
extern const struct trace_print_flags gfpflag_names[];
1328
1329
void setup_zone_pageset(struct zone *zone);
1330
1331
struct migration_target_control {
1332
int nid; /* preferred node id */
1333
nodemask_t *nmask;
1334
gfp_t gfp_mask;
1335
enum migrate_reason reason;
1336
};
1337
1338
/*
1339
* mm/filemap.c
1340
*/
1341
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1342
struct folio *folio, loff_t fpos, size_t size);
1343
1344
/*
1345
* mm/vmalloc.c
1346
*/
1347
#ifdef CONFIG_MMU
1348
void __init vmalloc_init(void);
1349
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1350
pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask);
1351
unsigned int get_vm_area_page_order(struct vm_struct *vm);
1352
#else
1353
static inline void vmalloc_init(void)
1354
{
1355
}
1356
1357
static inline
1358
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1359
pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask)
1360
{
1361
return -EINVAL;
1362
}
1363
#endif
1364
1365
int __must_check __vmap_pages_range_noflush(unsigned long addr,
1366
unsigned long end, pgprot_t prot,
1367
struct page **pages, unsigned int page_shift);
1368
1369
void vunmap_range_noflush(unsigned long start, unsigned long end);
1370
1371
void __vunmap_range_noflush(unsigned long start, unsigned long end);
1372
1373
static inline bool vma_is_single_threaded_private(struct vm_area_struct *vma)
1374
{
1375
if (vma->vm_flags & VM_SHARED)
1376
return false;
1377
1378
return atomic_read(&vma->vm_mm->mm_users) == 1;
1379
}
1380
1381
#ifdef CONFIG_NUMA_BALANCING
1382
bool folio_can_map_prot_numa(struct folio *folio, struct vm_area_struct *vma,
1383
bool is_private_single_threaded);
1384
1385
#else
1386
static inline bool folio_can_map_prot_numa(struct folio *folio,
1387
struct vm_area_struct *vma, bool is_private_single_threaded)
1388
{
1389
return false;
1390
}
1391
#endif
1392
1393
int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1394
unsigned long addr, int *flags, bool writable,
1395
int *last_cpupid);
1396
1397
void free_zone_device_folio(struct folio *folio);
1398
int migrate_device_coherent_folio(struct folio *folio);
1399
1400
struct vm_struct *__get_vm_area_node(unsigned long size,
1401
unsigned long align, unsigned long shift,
1402
unsigned long vm_flags, unsigned long start,
1403
unsigned long end, int node, gfp_t gfp_mask,
1404
const void *caller);
1405
1406
/*
1407
* mm/gup.c
1408
*/
1409
int __must_check try_grab_folio(struct folio *folio, int refs,
1410
unsigned int flags);
1411
1412
/*
1413
* mm/huge_memory.c
1414
*/
1415
void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1416
pud_t *pud, bool write);
1417
bool touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1418
pmd_t *pmd, bool write);
1419
1420
/*
1421
* Parses a string with mem suffixes into its order. Useful to parse kernel
1422
* parameters.
1423
*/
1424
static inline int get_order_from_str(const char *size_str,
1425
unsigned long valid_orders)
1426
{
1427
unsigned long size;
1428
char *endptr;
1429
int order;
1430
1431
size = memparse(size_str, &endptr);
1432
1433
if (!is_power_of_2(size))
1434
return -EINVAL;
1435
order = get_order(size);
1436
if (BIT(order) & ~valid_orders)
1437
return -EINVAL;
1438
1439
return order;
1440
}
1441
1442
enum {
1443
/* mark page accessed */
1444
FOLL_TOUCH = 1 << 16,
1445
/* a retry, previous pass started an IO */
1446
FOLL_TRIED = 1 << 17,
1447
/* we are working on non-current tsk/mm */
1448
FOLL_REMOTE = 1 << 18,
1449
/* pages must be released via unpin_user_page */
1450
FOLL_PIN = 1 << 19,
1451
/* gup_fast: prevent fall-back to slow gup */
1452
FOLL_FAST_ONLY = 1 << 20,
1453
/* allow unlocking the mmap lock */
1454
FOLL_UNLOCKABLE = 1 << 21,
1455
/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1456
FOLL_MADV_POPULATE = 1 << 22,
1457
};
1458
1459
#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1460
FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1461
FOLL_MADV_POPULATE)
1462
1463
/*
1464
* Indicates for which pages that are write-protected in the page table,
1465
* whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1466
* GUP pin will remain consistent with the pages mapped into the page tables
1467
* of the MM.
1468
*
1469
* Temporary unmapping of PageAnonExclusive() pages or clearing of
1470
* PageAnonExclusive() has to protect against concurrent GUP:
1471
* * Ordinary GUP: Using the PT lock
1472
* * GUP-fast and fork(): mm->write_protect_seq
1473
* * GUP-fast and KSM or temporary unmapping (swap, migration): see
1474
* folio_try_share_anon_rmap_*()
1475
*
1476
* Must be called with the (sub)page that's actually referenced via the
1477
* page table entry, which might not necessarily be the head page for a
1478
* PTE-mapped THP.
1479
*
1480
* If the vma is NULL, we're coming from the GUP-fast path and might have
1481
* to fallback to the slow path just to lookup the vma.
1482
*/
1483
static inline bool gup_must_unshare(struct vm_area_struct *vma,
1484
unsigned int flags, struct page *page)
1485
{
1486
/*
1487
* FOLL_WRITE is implicitly handled correctly as the page table entry
1488
* has to be writable -- and if it references (part of) an anonymous
1489
* folio, that part is required to be marked exclusive.
1490
*/
1491
if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1492
return false;
1493
/*
1494
* Note: PageAnon(page) is stable until the page is actually getting
1495
* freed.
1496
*/
1497
if (!PageAnon(page)) {
1498
/*
1499
* We only care about R/O long-term pining: R/O short-term
1500
* pinning does not have the semantics to observe successive
1501
* changes through the process page tables.
1502
*/
1503
if (!(flags & FOLL_LONGTERM))
1504
return false;
1505
1506
/* We really need the vma ... */
1507
if (!vma)
1508
return true;
1509
1510
/*
1511
* ... because we only care about writable private ("COW")
1512
* mappings where we have to break COW early.
1513
*/
1514
return is_cow_mapping(vma->vm_flags);
1515
}
1516
1517
/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1518
if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1519
smp_rmb();
1520
1521
/*
1522
* Note that KSM pages cannot be exclusive, and consequently,
1523
* cannot get pinned.
1524
*/
1525
return !PageAnonExclusive(page);
1526
}
1527
1528
extern bool mirrored_kernelcore;
1529
bool memblock_has_mirror(void);
1530
void memblock_free_all(void);
1531
1532
static __always_inline void vma_set_range(struct vm_area_struct *vma,
1533
unsigned long start, unsigned long end,
1534
pgoff_t pgoff)
1535
{
1536
vma->vm_start = start;
1537
vma->vm_end = end;
1538
vma->vm_pgoff = pgoff;
1539
}
1540
1541
static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1542
{
1543
/*
1544
* NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1545
* enablements, because when without soft-dirty being compiled in,
1546
* VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1547
* will be constantly true.
1548
*/
1549
if (!pgtable_supports_soft_dirty())
1550
return false;
1551
1552
/*
1553
* Soft-dirty is kind of special: its tracking is enabled when the
1554
* vma flags not set.
1555
*/
1556
return !(vma->vm_flags & VM_SOFTDIRTY);
1557
}
1558
1559
static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1560
{
1561
return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1562
}
1563
1564
static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1565
{
1566
return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1567
}
1568
1569
void __meminit __init_single_page(struct page *page, unsigned long pfn,
1570
unsigned long zone, int nid);
1571
void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1572
1573
/* shrinker related functions */
1574
unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1575
int priority);
1576
1577
int shmem_add_to_page_cache(struct folio *folio,
1578
struct address_space *mapping,
1579
pgoff_t index, void *expected, gfp_t gfp);
1580
int shmem_inode_acct_blocks(struct inode *inode, long pages);
1581
bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped);
1582
1583
#ifdef CONFIG_SHRINKER_DEBUG
1584
static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1585
struct shrinker *shrinker, const char *fmt, va_list ap)
1586
{
1587
shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1588
1589
return shrinker->name ? 0 : -ENOMEM;
1590
}
1591
1592
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1593
{
1594
kfree_const(shrinker->name);
1595
shrinker->name = NULL;
1596
}
1597
1598
extern int shrinker_debugfs_add(struct shrinker *shrinker);
1599
extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1600
int *debugfs_id);
1601
extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1602
int debugfs_id);
1603
#else /* CONFIG_SHRINKER_DEBUG */
1604
static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1605
{
1606
return 0;
1607
}
1608
static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1609
const char *fmt, va_list ap)
1610
{
1611
return 0;
1612
}
1613
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1614
{
1615
}
1616
static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1617
int *debugfs_id)
1618
{
1619
*debugfs_id = -1;
1620
return NULL;
1621
}
1622
static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1623
int debugfs_id)
1624
{
1625
}
1626
#endif /* CONFIG_SHRINKER_DEBUG */
1627
1628
/* Only track the nodes of mappings with shadow entries */
1629
void workingset_update_node(struct xa_node *node);
1630
extern struct list_lru shadow_nodes;
1631
#define mapping_set_update(xas, mapping) do { \
1632
if (!dax_mapping(mapping) && !shmem_mapping(mapping)) { \
1633
xas_set_update(xas, workingset_update_node); \
1634
xas_set_lru(xas, &shadow_nodes); \
1635
} \
1636
} while (0)
1637
1638
/* mremap.c */
1639
unsigned long move_page_tables(struct pagetable_move_control *pmc);
1640
1641
#ifdef CONFIG_UNACCEPTED_MEMORY
1642
void accept_page(struct page *page);
1643
#else /* CONFIG_UNACCEPTED_MEMORY */
1644
static inline void accept_page(struct page *page)
1645
{
1646
}
1647
#endif /* CONFIG_UNACCEPTED_MEMORY */
1648
1649
/* pagewalk.c */
1650
int walk_page_range_mm_unsafe(struct mm_struct *mm, unsigned long start,
1651
unsigned long end, const struct mm_walk_ops *ops,
1652
void *private);
1653
int walk_page_range_vma_unsafe(struct vm_area_struct *vma, unsigned long start,
1654
unsigned long end, const struct mm_walk_ops *ops,
1655
void *private);
1656
int walk_page_range_debug(struct mm_struct *mm, unsigned long start,
1657
unsigned long end, const struct mm_walk_ops *ops,
1658
pgd_t *pgd, void *private);
1659
1660
/* pt_reclaim.c */
1661
bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1662
void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1663
pmd_t pmdval);
1664
void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1665
struct mmu_gather *tlb);
1666
1667
#ifdef CONFIG_PT_RECLAIM
1668
bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1669
struct zap_details *details);
1670
#else
1671
static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1672
struct zap_details *details)
1673
{
1674
return false;
1675
}
1676
#endif /* CONFIG_PT_RECLAIM */
1677
1678
void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm);
1679
int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm);
1680
1681
void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn);
1682
int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
1683
unsigned long pfn, unsigned long size, pgprot_t pgprot);
1684
1685
static inline void io_remap_pfn_range_prepare(struct vm_area_desc *desc,
1686
unsigned long orig_pfn, unsigned long size)
1687
{
1688
const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
1689
1690
return remap_pfn_range_prepare(desc, pfn);
1691
}
1692
1693
static inline int io_remap_pfn_range_complete(struct vm_area_struct *vma,
1694
unsigned long addr, unsigned long orig_pfn, unsigned long size,
1695
pgprot_t orig_prot)
1696
{
1697
const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
1698
const pgprot_t prot = pgprot_decrypted(orig_prot);
1699
1700
return remap_pfn_range_complete(vma, addr, pfn, size, prot);
1701
}
1702
1703
#endif /* __MM_INTERNAL_H */
1704
1705