Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/internal.h
26131 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/* internal.h: mm/ internal definitions
3
*
4
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5
* Written by David Howells ([email protected])
6
*/
7
#ifndef __MM_INTERNAL_H
8
#define __MM_INTERNAL_H
9
10
#include <linux/fs.h>
11
#include <linux/khugepaged.h>
12
#include <linux/mm.h>
13
#include <linux/mm_inline.h>
14
#include <linux/pagemap.h>
15
#include <linux/pagewalk.h>
16
#include <linux/rmap.h>
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
19
#include <linux/swap_cgroup.h>
20
#include <linux/tracepoint-defs.h>
21
22
/* Internal core VMA manipulation functions. */
23
#include "vma.h"
24
25
struct folio_batch;
26
27
/*
28
* Maintains state across a page table move. The operation assumes both source
29
* and destination VMAs already exist and are specified by the user.
30
*
31
* Partial moves are permitted, but the old and new ranges must both reside
32
* within a VMA.
33
*
34
* mmap lock must be held in write and VMA write locks must be held on any VMA
35
* that is visible.
36
*
37
* Use the PAGETABLE_MOVE() macro to initialise this struct.
38
*
39
* The old_addr and new_addr fields are updated as the page table move is
40
* executed.
41
*
42
* NOTE: The page table move is affected by reading from [old_addr, old_end),
43
* and old_addr may be updated for better page table alignment, so len_in
44
* represents the length of the range being copied as specified by the user.
45
*/
46
struct pagetable_move_control {
47
struct vm_area_struct *old; /* Source VMA. */
48
struct vm_area_struct *new; /* Destination VMA. */
49
unsigned long old_addr; /* Address from which the move begins. */
50
unsigned long old_end; /* Exclusive address at which old range ends. */
51
unsigned long new_addr; /* Address to move page tables to. */
52
unsigned long len_in; /* Bytes to remap specified by user. */
53
54
bool need_rmap_locks; /* Do rmap locks need to be taken? */
55
bool for_stack; /* Is this an early temp stack being moved? */
56
};
57
58
#define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_) \
59
struct pagetable_move_control name = { \
60
.old = old_, \
61
.new = new_, \
62
.old_addr = old_addr_, \
63
.old_end = (old_addr_) + (len_), \
64
.new_addr = new_addr_, \
65
.len_in = len_, \
66
}
67
68
/*
69
* The set of flags that only affect watermark checking and reclaim
70
* behaviour. This is used by the MM to obey the caller constraints
71
* about IO, FS and watermark checking while ignoring placement
72
* hints such as HIGHMEM usage.
73
*/
74
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75
__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76
__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77
__GFP_NOLOCKDEP)
78
79
/* The GFP flags allowed during early boot */
80
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81
82
/* Control allocation cpuset and node placement constraints */
83
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84
85
/* Do not use these with a slab allocator */
86
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87
88
/*
89
* Different from WARN_ON_ONCE(), no warning will be issued
90
* when we specify __GFP_NOWARN.
91
*/
92
#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
93
static bool __section(".data..once") __warned; \
94
int __ret_warn_once = !!(cond); \
95
\
96
if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97
__warned = true; \
98
WARN_ON(1); \
99
} \
100
unlikely(__ret_warn_once); \
101
})
102
103
void page_writeback_init(void);
104
105
/*
106
* If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107
* its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108
* above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
109
* leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110
*/
111
#define ENTIRELY_MAPPED 0x800000
112
#define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
113
114
/*
115
* Flags passed to __show_mem() and show_free_areas() to suppress output in
116
* various contexts.
117
*/
118
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
119
120
/*
121
* How many individual pages have an elevated _mapcount. Excludes
122
* the folio's entire_mapcount.
123
*
124
* Don't use this function outside of debugging code.
125
*/
126
static inline int folio_nr_pages_mapped(const struct folio *folio)
127
{
128
if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129
return -1;
130
return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131
}
132
133
/*
134
* Retrieve the first entry of a folio based on a provided entry within the
135
* folio. We cannot rely on folio->swap as there is no guarantee that it has
136
* been initialized. Used for calling arch_swap_restore()
137
*/
138
static inline swp_entry_t folio_swap(swp_entry_t entry,
139
const struct folio *folio)
140
{
141
swp_entry_t swap = {
142
.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143
};
144
145
return swap;
146
}
147
148
static inline void *folio_raw_mapping(const struct folio *folio)
149
{
150
unsigned long mapping = (unsigned long)folio->mapping;
151
152
return (void *)(mapping & ~FOLIO_MAPPING_FLAGS);
153
}
154
155
/*
156
* This is a file-backed mapping, and is about to be memory mapped - invoke its
157
* mmap hook and safely handle error conditions. On error, VMA hooks will be
158
* mutated.
159
*
160
* @file: File which backs the mapping.
161
* @vma: VMA which we are mapping.
162
*
163
* Returns: 0 if success, error otherwise.
164
*/
165
static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166
{
167
int err = vfs_mmap(file, vma);
168
169
if (likely(!err))
170
return 0;
171
172
/*
173
* OK, we tried to call the file hook for mmap(), but an error
174
* arose. The mapping is in an inconsistent state and we most not invoke
175
* any further hooks on it.
176
*/
177
vma->vm_ops = &vma_dummy_vm_ops;
178
179
return err;
180
}
181
182
/*
183
* If the VMA has a close hook then close it, and since closing it might leave
184
* it in an inconsistent state which makes the use of any hooks suspect, clear
185
* them down by installing dummy empty hooks.
186
*/
187
static inline void vma_close(struct vm_area_struct *vma)
188
{
189
if (vma->vm_ops && vma->vm_ops->close) {
190
vma->vm_ops->close(vma);
191
192
/*
193
* The mapping is in an inconsistent state, and no further hooks
194
* may be invoked upon it.
195
*/
196
vma->vm_ops = &vma_dummy_vm_ops;
197
}
198
}
199
200
#ifdef CONFIG_MMU
201
202
/* Flags for folio_pte_batch(). */
203
typedef int __bitwise fpb_t;
204
205
/* Compare PTEs respecting the dirty bit. */
206
#define FPB_RESPECT_DIRTY ((__force fpb_t)BIT(0))
207
208
/* Compare PTEs respecting the soft-dirty bit. */
209
#define FPB_RESPECT_SOFT_DIRTY ((__force fpb_t)BIT(1))
210
211
/* Compare PTEs respecting the writable bit. */
212
#define FPB_RESPECT_WRITE ((__force fpb_t)BIT(2))
213
214
/*
215
* Merge PTE write bits: if any PTE in the batch is writable, modify the
216
* PTE at @ptentp to be writable.
217
*/
218
#define FPB_MERGE_WRITE ((__force fpb_t)BIT(3))
219
220
/*
221
* Merge PTE young and dirty bits: if any PTE in the batch is young or dirty,
222
* modify the PTE at @ptentp to be young or dirty, respectively.
223
*/
224
#define FPB_MERGE_YOUNG_DIRTY ((__force fpb_t)BIT(4))
225
226
static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
227
{
228
if (!(flags & FPB_RESPECT_DIRTY))
229
pte = pte_mkclean(pte);
230
if (likely(!(flags & FPB_RESPECT_SOFT_DIRTY)))
231
pte = pte_clear_soft_dirty(pte);
232
if (likely(!(flags & FPB_RESPECT_WRITE)))
233
pte = pte_wrprotect(pte);
234
return pte_mkold(pte);
235
}
236
237
/**
238
* folio_pte_batch_flags - detect a PTE batch for a large folio
239
* @folio: The large folio to detect a PTE batch for.
240
* @vma: The VMA. Only relevant with FPB_MERGE_WRITE, otherwise can be NULL.
241
* @ptep: Page table pointer for the first entry.
242
* @ptentp: Pointer to a COPY of the first page table entry whose flags this
243
* function updates based on @flags if appropriate.
244
* @max_nr: The maximum number of table entries to consider.
245
* @flags: Flags to modify the PTE batch semantics.
246
*
247
* Detect a PTE batch: consecutive (present) PTEs that map consecutive
248
* pages of the same large folio in a single VMA and a single page table.
249
*
250
* All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
251
* the accessed bit, writable bit, dirty bit (unless FPB_RESPECT_DIRTY is set)
252
* and soft-dirty bit (unless FPB_RESPECT_SOFT_DIRTY is set).
253
*
254
* @ptep must map any page of the folio. max_nr must be at least one and
255
* must be limited by the caller so scanning cannot exceed a single VMA and
256
* a single page table.
257
*
258
* Depending on the FPB_MERGE_* flags, the pte stored at @ptentp will
259
* be updated: it's crucial that a pointer to a COPY of the first
260
* page table entry, obtained through ptep_get(), is provided as @ptentp.
261
*
262
* This function will be inlined to optimize based on the input parameters;
263
* consider using folio_pte_batch() instead if applicable.
264
*
265
* Return: the number of table entries in the batch.
266
*/
267
static inline unsigned int folio_pte_batch_flags(struct folio *folio,
268
struct vm_area_struct *vma, pte_t *ptep, pte_t *ptentp,
269
unsigned int max_nr, fpb_t flags)
270
{
271
bool any_writable = false, any_young = false, any_dirty = false;
272
pte_t expected_pte, pte = *ptentp;
273
unsigned int nr, cur_nr;
274
275
VM_WARN_ON_FOLIO(!pte_present(pte), folio);
276
VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
277
VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
278
/*
279
* Ensure this is a pointer to a copy not a pointer into a page table.
280
* If this is a stack value, it won't be a valid virtual address, but
281
* that's fine because it also cannot be pointing into the page table.
282
*/
283
VM_WARN_ON(virt_addr_valid(ptentp) && PageTable(virt_to_page(ptentp)));
284
285
/* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
286
max_nr = min_t(unsigned long, max_nr,
287
folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
288
289
nr = pte_batch_hint(ptep, pte);
290
expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
291
ptep = ptep + nr;
292
293
while (nr < max_nr) {
294
pte = ptep_get(ptep);
295
296
if (!pte_same(__pte_batch_clear_ignored(pte, flags), expected_pte))
297
break;
298
299
if (flags & FPB_MERGE_WRITE)
300
any_writable |= pte_write(pte);
301
if (flags & FPB_MERGE_YOUNG_DIRTY) {
302
any_young |= pte_young(pte);
303
any_dirty |= pte_dirty(pte);
304
}
305
306
cur_nr = pte_batch_hint(ptep, pte);
307
expected_pte = pte_advance_pfn(expected_pte, cur_nr);
308
ptep += cur_nr;
309
nr += cur_nr;
310
}
311
312
if (any_writable)
313
*ptentp = pte_mkwrite(*ptentp, vma);
314
if (any_young)
315
*ptentp = pte_mkyoung(*ptentp);
316
if (any_dirty)
317
*ptentp = pte_mkdirty(*ptentp);
318
319
return min(nr, max_nr);
320
}
321
322
unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte,
323
unsigned int max_nr);
324
325
/**
326
* pte_move_swp_offset - Move the swap entry offset field of a swap pte
327
* forward or backward by delta
328
* @pte: The initial pte state; is_swap_pte(pte) must be true and
329
* non_swap_entry() must be false.
330
* @delta: The direction and the offset we are moving; forward if delta
331
* is positive; backward if delta is negative
332
*
333
* Moves the swap offset, while maintaining all other fields, including
334
* swap type, and any swp pte bits. The resulting pte is returned.
335
*/
336
static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
337
{
338
swp_entry_t entry = pte_to_swp_entry(pte);
339
pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
340
(swp_offset(entry) + delta)));
341
342
if (pte_swp_soft_dirty(pte))
343
new = pte_swp_mksoft_dirty(new);
344
if (pte_swp_exclusive(pte))
345
new = pte_swp_mkexclusive(new);
346
if (pte_swp_uffd_wp(pte))
347
new = pte_swp_mkuffd_wp(new);
348
349
return new;
350
}
351
352
353
/**
354
* pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
355
* @pte: The initial pte state; is_swap_pte(pte) must be true and
356
* non_swap_entry() must be false.
357
*
358
* Increments the swap offset, while maintaining all other fields, including
359
* swap type, and any swp pte bits. The resulting pte is returned.
360
*/
361
static inline pte_t pte_next_swp_offset(pte_t pte)
362
{
363
return pte_move_swp_offset(pte, 1);
364
}
365
366
/**
367
* swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
368
* @start_ptep: Page table pointer for the first entry.
369
* @max_nr: The maximum number of table entries to consider.
370
* @pte: Page table entry for the first entry.
371
*
372
* Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
373
* containing swap entries all with consecutive offsets and targeting the same
374
* swap type, all with matching swp pte bits.
375
*
376
* max_nr must be at least one and must be limited by the caller so scanning
377
* cannot exceed a single page table.
378
*
379
* Return: the number of table entries in the batch.
380
*/
381
static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
382
{
383
pte_t expected_pte = pte_next_swp_offset(pte);
384
const pte_t *end_ptep = start_ptep + max_nr;
385
swp_entry_t entry = pte_to_swp_entry(pte);
386
pte_t *ptep = start_ptep + 1;
387
unsigned short cgroup_id;
388
389
VM_WARN_ON(max_nr < 1);
390
VM_WARN_ON(!is_swap_pte(pte));
391
VM_WARN_ON(non_swap_entry(entry));
392
393
cgroup_id = lookup_swap_cgroup_id(entry);
394
while (ptep < end_ptep) {
395
pte = ptep_get(ptep);
396
397
if (!pte_same(pte, expected_pte))
398
break;
399
if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
400
break;
401
expected_pte = pte_next_swp_offset(expected_pte);
402
ptep++;
403
}
404
405
return ptep - start_ptep;
406
}
407
#endif /* CONFIG_MMU */
408
409
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
410
int nr_throttled);
411
static inline void acct_reclaim_writeback(struct folio *folio)
412
{
413
pg_data_t *pgdat = folio_pgdat(folio);
414
int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
415
416
if (nr_throttled)
417
__acct_reclaim_writeback(pgdat, folio, nr_throttled);
418
}
419
420
static inline void wake_throttle_isolated(pg_data_t *pgdat)
421
{
422
wait_queue_head_t *wqh;
423
424
wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
425
if (waitqueue_active(wqh))
426
wake_up(wqh);
427
}
428
429
vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
430
static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
431
{
432
vm_fault_t ret = __vmf_anon_prepare(vmf);
433
434
if (unlikely(ret & VM_FAULT_RETRY))
435
vma_end_read(vmf->vma);
436
return ret;
437
}
438
439
vm_fault_t do_swap_page(struct vm_fault *vmf);
440
void folio_rotate_reclaimable(struct folio *folio);
441
bool __folio_end_writeback(struct folio *folio);
442
void deactivate_file_folio(struct folio *folio);
443
void folio_activate(struct folio *folio);
444
445
void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
446
struct vm_area_struct *start_vma, unsigned long floor,
447
unsigned long ceiling, bool mm_wr_locked);
448
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
449
450
struct zap_details;
451
void unmap_page_range(struct mmu_gather *tlb,
452
struct vm_area_struct *vma,
453
unsigned long addr, unsigned long end,
454
struct zap_details *details);
455
void zap_page_range_single_batched(struct mmu_gather *tlb,
456
struct vm_area_struct *vma, unsigned long addr,
457
unsigned long size, struct zap_details *details);
458
int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
459
gfp_t gfp);
460
461
void page_cache_ra_order(struct readahead_control *, struct file_ra_state *);
462
void force_page_cache_ra(struct readahead_control *, unsigned long nr);
463
static inline void force_page_cache_readahead(struct address_space *mapping,
464
struct file *file, pgoff_t index, unsigned long nr_to_read)
465
{
466
DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
467
force_page_cache_ra(&ractl, nr_to_read);
468
}
469
470
unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
471
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
472
unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
473
pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
474
void filemap_free_folio(struct address_space *mapping, struct folio *folio);
475
int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
476
bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
477
loff_t end);
478
long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
479
unsigned long mapping_try_invalidate(struct address_space *mapping,
480
pgoff_t start, pgoff_t end, unsigned long *nr_failed);
481
482
/**
483
* folio_evictable - Test whether a folio is evictable.
484
* @folio: The folio to test.
485
*
486
* Test whether @folio is evictable -- i.e., should be placed on
487
* active/inactive lists vs unevictable list.
488
*
489
* Reasons folio might not be evictable:
490
* 1. folio's mapping marked unevictable
491
* 2. One of the pages in the folio is part of an mlocked VMA
492
*/
493
static inline bool folio_evictable(struct folio *folio)
494
{
495
bool ret;
496
497
/* Prevent address_space of inode and swap cache from being freed */
498
rcu_read_lock();
499
ret = !mapping_unevictable(folio_mapping(folio)) &&
500
!folio_test_mlocked(folio);
501
rcu_read_unlock();
502
return ret;
503
}
504
505
/*
506
* Turn a non-refcounted page (->_refcount == 0) into refcounted with
507
* a count of one.
508
*/
509
static inline void set_page_refcounted(struct page *page)
510
{
511
VM_BUG_ON_PAGE(PageTail(page), page);
512
VM_BUG_ON_PAGE(page_ref_count(page), page);
513
set_page_count(page, 1);
514
}
515
516
/*
517
* Return true if a folio needs ->release_folio() calling upon it.
518
*/
519
static inline bool folio_needs_release(struct folio *folio)
520
{
521
struct address_space *mapping = folio_mapping(folio);
522
523
return folio_has_private(folio) ||
524
(mapping && mapping_release_always(mapping));
525
}
526
527
extern unsigned long highest_memmap_pfn;
528
529
/*
530
* Maximum number of reclaim retries without progress before the OOM
531
* killer is consider the only way forward.
532
*/
533
#define MAX_RECLAIM_RETRIES 16
534
535
/*
536
* in mm/vmscan.c:
537
*/
538
bool folio_isolate_lru(struct folio *folio);
539
void folio_putback_lru(struct folio *folio);
540
extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
541
#ifdef CONFIG_NUMA
542
int user_proactive_reclaim(char *buf,
543
struct mem_cgroup *memcg, pg_data_t *pgdat);
544
#else
545
static inline int user_proactive_reclaim(char *buf,
546
struct mem_cgroup *memcg, pg_data_t *pgdat)
547
{
548
return 0;
549
}
550
#endif
551
552
/*
553
* in mm/rmap.c:
554
*/
555
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
556
557
/*
558
* in mm/page_alloc.c
559
*/
560
#define K(x) ((x) << (PAGE_SHIFT-10))
561
562
extern char * const zone_names[MAX_NR_ZONES];
563
564
/* perform sanity checks on struct pages being allocated or freed */
565
DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
566
567
extern int min_free_kbytes;
568
extern int defrag_mode;
569
570
void setup_per_zone_wmarks(void);
571
void calculate_min_free_kbytes(void);
572
int __meminit init_per_zone_wmark_min(void);
573
void page_alloc_sysctl_init(void);
574
575
/*
576
* Structure for holding the mostly immutable allocation parameters passed
577
* between functions involved in allocations, including the alloc_pages*
578
* family of functions.
579
*
580
* nodemask, migratetype and highest_zoneidx are initialized only once in
581
* __alloc_pages() and then never change.
582
*
583
* zonelist, preferred_zone and highest_zoneidx are set first in
584
* __alloc_pages() for the fast path, and might be later changed
585
* in __alloc_pages_slowpath(). All other functions pass the whole structure
586
* by a const pointer.
587
*/
588
struct alloc_context {
589
struct zonelist *zonelist;
590
nodemask_t *nodemask;
591
struct zoneref *preferred_zoneref;
592
int migratetype;
593
594
/*
595
* highest_zoneidx represents highest usable zone index of
596
* the allocation request. Due to the nature of the zone,
597
* memory on lower zone than the highest_zoneidx will be
598
* protected by lowmem_reserve[highest_zoneidx].
599
*
600
* highest_zoneidx is also used by reclaim/compaction to limit
601
* the target zone since higher zone than this index cannot be
602
* usable for this allocation request.
603
*/
604
enum zone_type highest_zoneidx;
605
bool spread_dirty_pages;
606
};
607
608
/*
609
* This function returns the order of a free page in the buddy system. In
610
* general, page_zone(page)->lock must be held by the caller to prevent the
611
* page from being allocated in parallel and returning garbage as the order.
612
* If a caller does not hold page_zone(page)->lock, it must guarantee that the
613
* page cannot be allocated or merged in parallel. Alternatively, it must
614
* handle invalid values gracefully, and use buddy_order_unsafe() below.
615
*/
616
static inline unsigned int buddy_order(struct page *page)
617
{
618
/* PageBuddy() must be checked by the caller */
619
return page_private(page);
620
}
621
622
/*
623
* Like buddy_order(), but for callers who cannot afford to hold the zone lock.
624
* PageBuddy() should be checked first by the caller to minimize race window,
625
* and invalid values must be handled gracefully.
626
*
627
* READ_ONCE is used so that if the caller assigns the result into a local
628
* variable and e.g. tests it for valid range before using, the compiler cannot
629
* decide to remove the variable and inline the page_private(page) multiple
630
* times, potentially observing different values in the tests and the actual
631
* use of the result.
632
*/
633
#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
634
635
/*
636
* This function checks whether a page is free && is the buddy
637
* we can coalesce a page and its buddy if
638
* (a) the buddy is not in a hole (check before calling!) &&
639
* (b) the buddy is in the buddy system &&
640
* (c) a page and its buddy have the same order &&
641
* (d) a page and its buddy are in the same zone.
642
*
643
* For recording whether a page is in the buddy system, we set PageBuddy.
644
* Setting, clearing, and testing PageBuddy is serialized by zone->lock.
645
*
646
* For recording page's order, we use page_private(page).
647
*/
648
static inline bool page_is_buddy(struct page *page, struct page *buddy,
649
unsigned int order)
650
{
651
if (!page_is_guard(buddy) && !PageBuddy(buddy))
652
return false;
653
654
if (buddy_order(buddy) != order)
655
return false;
656
657
/*
658
* zone check is done late to avoid uselessly calculating
659
* zone/node ids for pages that could never merge.
660
*/
661
if (page_zone_id(page) != page_zone_id(buddy))
662
return false;
663
664
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
665
666
return true;
667
}
668
669
/*
670
* Locate the struct page for both the matching buddy in our
671
* pair (buddy1) and the combined O(n+1) page they form (page).
672
*
673
* 1) Any buddy B1 will have an order O twin B2 which satisfies
674
* the following equation:
675
* B2 = B1 ^ (1 << O)
676
* For example, if the starting buddy (buddy2) is #8 its order
677
* 1 buddy is #10:
678
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
679
*
680
* 2) Any buddy B will have an order O+1 parent P which
681
* satisfies the following equation:
682
* P = B & ~(1 << O)
683
*
684
* Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
685
*/
686
static inline unsigned long
687
__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
688
{
689
return page_pfn ^ (1 << order);
690
}
691
692
/*
693
* Find the buddy of @page and validate it.
694
* @page: The input page
695
* @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
696
* function is used in the performance-critical __free_one_page().
697
* @order: The order of the page
698
* @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
699
* page_to_pfn().
700
*
701
* The found buddy can be a non PageBuddy, out of @page's zone, or its order is
702
* not the same as @page. The validation is necessary before use it.
703
*
704
* Return: the found buddy page or NULL if not found.
705
*/
706
static inline struct page *find_buddy_page_pfn(struct page *page,
707
unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
708
{
709
unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
710
struct page *buddy;
711
712
buddy = page + (__buddy_pfn - pfn);
713
if (buddy_pfn)
714
*buddy_pfn = __buddy_pfn;
715
716
if (page_is_buddy(page, buddy, order))
717
return buddy;
718
return NULL;
719
}
720
721
extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
722
unsigned long end_pfn, struct zone *zone);
723
724
static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
725
unsigned long end_pfn, struct zone *zone)
726
{
727
if (zone->contiguous)
728
return pfn_to_page(start_pfn);
729
730
return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
731
}
732
733
void set_zone_contiguous(struct zone *zone);
734
bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
735
unsigned long nr_pages);
736
737
static inline void clear_zone_contiguous(struct zone *zone)
738
{
739
zone->contiguous = false;
740
}
741
742
extern int __isolate_free_page(struct page *page, unsigned int order);
743
extern void __putback_isolated_page(struct page *page, unsigned int order,
744
int mt);
745
extern void memblock_free_pages(struct page *page, unsigned long pfn,
746
unsigned int order);
747
extern void __free_pages_core(struct page *page, unsigned int order,
748
enum meminit_context context);
749
750
/*
751
* This will have no effect, other than possibly generating a warning, if the
752
* caller passes in a non-large folio.
753
*/
754
static inline void folio_set_order(struct folio *folio, unsigned int order)
755
{
756
if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
757
return;
758
759
folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
760
#ifdef NR_PAGES_IN_LARGE_FOLIO
761
folio->_nr_pages = 1U << order;
762
#endif
763
}
764
765
bool __folio_unqueue_deferred_split(struct folio *folio);
766
static inline bool folio_unqueue_deferred_split(struct folio *folio)
767
{
768
if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
769
return false;
770
771
/*
772
* At this point, there is no one trying to add the folio to
773
* deferred_list. If folio is not in deferred_list, it's safe
774
* to check without acquiring the split_queue_lock.
775
*/
776
if (data_race(list_empty(&folio->_deferred_list)))
777
return false;
778
779
return __folio_unqueue_deferred_split(folio);
780
}
781
782
static inline struct folio *page_rmappable_folio(struct page *page)
783
{
784
struct folio *folio = (struct folio *)page;
785
786
if (folio && folio_test_large(folio))
787
folio_set_large_rmappable(folio);
788
return folio;
789
}
790
791
static inline void prep_compound_head(struct page *page, unsigned int order)
792
{
793
struct folio *folio = (struct folio *)page;
794
795
folio_set_order(folio, order);
796
atomic_set(&folio->_large_mapcount, -1);
797
if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
798
atomic_set(&folio->_nr_pages_mapped, 0);
799
if (IS_ENABLED(CONFIG_MM_ID)) {
800
folio->_mm_ids = 0;
801
folio->_mm_id_mapcount[0] = -1;
802
folio->_mm_id_mapcount[1] = -1;
803
}
804
if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
805
atomic_set(&folio->_pincount, 0);
806
atomic_set(&folio->_entire_mapcount, -1);
807
}
808
if (order > 1)
809
INIT_LIST_HEAD(&folio->_deferred_list);
810
}
811
812
static inline void prep_compound_tail(struct page *head, int tail_idx)
813
{
814
struct page *p = head + tail_idx;
815
816
p->mapping = TAIL_MAPPING;
817
set_compound_head(p, head);
818
set_page_private(p, 0);
819
}
820
821
void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
822
extern bool free_pages_prepare(struct page *page, unsigned int order);
823
824
extern int user_min_free_kbytes;
825
826
struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
827
nodemask_t *);
828
#define __alloc_frozen_pages(...) \
829
alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
830
void free_frozen_pages(struct page *page, unsigned int order);
831
void free_unref_folios(struct folio_batch *fbatch);
832
833
#ifdef CONFIG_NUMA
834
struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
835
#else
836
static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
837
{
838
return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
839
}
840
#endif
841
842
#define alloc_frozen_pages(...) \
843
alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
844
845
extern void zone_pcp_reset(struct zone *zone);
846
extern void zone_pcp_disable(struct zone *zone);
847
extern void zone_pcp_enable(struct zone *zone);
848
extern void zone_pcp_init(struct zone *zone);
849
850
extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
851
phys_addr_t min_addr,
852
int nid, bool exact_nid);
853
854
void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
855
unsigned long, enum meminit_context, struct vmem_altmap *, int,
856
bool);
857
858
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
859
860
/*
861
* in mm/compaction.c
862
*/
863
/*
864
* compact_control is used to track pages being migrated and the free pages
865
* they are being migrated to during memory compaction. The free_pfn starts
866
* at the end of a zone and migrate_pfn begins at the start. Movable pages
867
* are moved to the end of a zone during a compaction run and the run
868
* completes when free_pfn <= migrate_pfn
869
*/
870
struct compact_control {
871
struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
872
struct list_head migratepages; /* List of pages being migrated */
873
unsigned int nr_freepages; /* Number of isolated free pages */
874
unsigned int nr_migratepages; /* Number of pages to migrate */
875
unsigned long free_pfn; /* isolate_freepages search base */
876
/*
877
* Acts as an in/out parameter to page isolation for migration.
878
* isolate_migratepages uses it as a search base.
879
* isolate_migratepages_block will update the value to the next pfn
880
* after the last isolated one.
881
*/
882
unsigned long migrate_pfn;
883
unsigned long fast_start_pfn; /* a pfn to start linear scan from */
884
struct zone *zone;
885
unsigned long total_migrate_scanned;
886
unsigned long total_free_scanned;
887
unsigned short fast_search_fail;/* failures to use free list searches */
888
short search_order; /* order to start a fast search at */
889
const gfp_t gfp_mask; /* gfp mask of a direct compactor */
890
int order; /* order a direct compactor needs */
891
int migratetype; /* migratetype of direct compactor */
892
const unsigned int alloc_flags; /* alloc flags of a direct compactor */
893
const int highest_zoneidx; /* zone index of a direct compactor */
894
enum migrate_mode mode; /* Async or sync migration mode */
895
bool ignore_skip_hint; /* Scan blocks even if marked skip */
896
bool no_set_skip_hint; /* Don't mark blocks for skipping */
897
bool ignore_block_suitable; /* Scan blocks considered unsuitable */
898
bool direct_compaction; /* False from kcompactd or /proc/... */
899
bool proactive_compaction; /* kcompactd proactive compaction */
900
bool whole_zone; /* Whole zone should/has been scanned */
901
bool contended; /* Signal lock contention */
902
bool finish_pageblock; /* Scan the remainder of a pageblock. Used
903
* when there are potentially transient
904
* isolation or migration failures to
905
* ensure forward progress.
906
*/
907
bool alloc_contig; /* alloc_contig_range allocation */
908
};
909
910
/*
911
* Used in direct compaction when a page should be taken from the freelists
912
* immediately when one is created during the free path.
913
*/
914
struct capture_control {
915
struct compact_control *cc;
916
struct page *page;
917
};
918
919
unsigned long
920
isolate_freepages_range(struct compact_control *cc,
921
unsigned long start_pfn, unsigned long end_pfn);
922
int
923
isolate_migratepages_range(struct compact_control *cc,
924
unsigned long low_pfn, unsigned long end_pfn);
925
926
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
927
void init_cma_reserved_pageblock(struct page *page);
928
929
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
930
931
struct cma;
932
933
#ifdef CONFIG_CMA
934
void *cma_reserve_early(struct cma *cma, unsigned long size);
935
void init_cma_pageblock(struct page *page);
936
#else
937
static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
938
{
939
return NULL;
940
}
941
static inline void init_cma_pageblock(struct page *page)
942
{
943
}
944
#endif
945
946
947
int find_suitable_fallback(struct free_area *area, unsigned int order,
948
int migratetype, bool claimable);
949
950
static inline bool free_area_empty(struct free_area *area, int migratetype)
951
{
952
return list_empty(&area->free_list[migratetype]);
953
}
954
955
/* mm/util.c */
956
struct anon_vma *folio_anon_vma(const struct folio *folio);
957
958
#ifdef CONFIG_MMU
959
void unmap_mapping_folio(struct folio *folio);
960
extern long populate_vma_page_range(struct vm_area_struct *vma,
961
unsigned long start, unsigned long end, int *locked);
962
extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
963
unsigned long end, bool write, int *locked);
964
extern bool mlock_future_ok(struct mm_struct *mm, vm_flags_t vm_flags,
965
unsigned long bytes);
966
967
/*
968
* NOTE: This function can't tell whether the folio is "fully mapped" in the
969
* range.
970
* "fully mapped" means all the pages of folio is associated with the page
971
* table of range while this function just check whether the folio range is
972
* within the range [start, end). Function caller needs to do page table
973
* check if it cares about the page table association.
974
*
975
* Typical usage (like mlock or madvise) is:
976
* Caller knows at least 1 page of folio is associated with page table of VMA
977
* and the range [start, end) is intersect with the VMA range. Caller wants
978
* to know whether the folio is fully associated with the range. It calls
979
* this function to check whether the folio is in the range first. Then checks
980
* the page table to know whether the folio is fully mapped to the range.
981
*/
982
static inline bool
983
folio_within_range(struct folio *folio, struct vm_area_struct *vma,
984
unsigned long start, unsigned long end)
985
{
986
pgoff_t pgoff, addr;
987
unsigned long vma_pglen = vma_pages(vma);
988
989
VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
990
if (start > end)
991
return false;
992
993
if (start < vma->vm_start)
994
start = vma->vm_start;
995
996
if (end > vma->vm_end)
997
end = vma->vm_end;
998
999
pgoff = folio_pgoff(folio);
1000
1001
/* if folio start address is not in vma range */
1002
if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
1003
return false;
1004
1005
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1006
1007
return !(addr < start || end - addr < folio_size(folio));
1008
}
1009
1010
static inline bool
1011
folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
1012
{
1013
return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
1014
}
1015
1016
/*
1017
* mlock_vma_folio() and munlock_vma_folio():
1018
* should be called with vma's mmap_lock held for read or write,
1019
* under page table lock for the pte/pmd being added or removed.
1020
*
1021
* mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
1022
* the end of folio_remove_rmap_*(); but new anon folios are managed by
1023
* folio_add_lru_vma() calling mlock_new_folio().
1024
*/
1025
void mlock_folio(struct folio *folio);
1026
static inline void mlock_vma_folio(struct folio *folio,
1027
struct vm_area_struct *vma)
1028
{
1029
/*
1030
* The VM_SPECIAL check here serves two purposes.
1031
* 1) VM_IO check prevents migration from double-counting during mlock.
1032
* 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1033
* is never left set on a VM_SPECIAL vma, there is an interval while
1034
* file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1035
* still be set while VM_SPECIAL bits are added: so ignore it then.
1036
*/
1037
if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1038
mlock_folio(folio);
1039
}
1040
1041
void munlock_folio(struct folio *folio);
1042
static inline void munlock_vma_folio(struct folio *folio,
1043
struct vm_area_struct *vma)
1044
{
1045
/*
1046
* munlock if the function is called. Ideally, we should only
1047
* do munlock if any page of folio is unmapped from VMA and
1048
* cause folio not fully mapped to VMA.
1049
*
1050
* But it's not easy to confirm that's the situation. So we
1051
* always munlock the folio and page reclaim will correct it
1052
* if it's wrong.
1053
*/
1054
if (unlikely(vma->vm_flags & VM_LOCKED))
1055
munlock_folio(folio);
1056
}
1057
1058
void mlock_new_folio(struct folio *folio);
1059
bool need_mlock_drain(int cpu);
1060
void mlock_drain_local(void);
1061
void mlock_drain_remote(int cpu);
1062
1063
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1064
1065
/**
1066
* vma_address - Find the virtual address a page range is mapped at
1067
* @vma: The vma which maps this object.
1068
* @pgoff: The page offset within its object.
1069
* @nr_pages: The number of pages to consider.
1070
*
1071
* If any page in this range is mapped by this VMA, return the first address
1072
* where any of these pages appear. Otherwise, return -EFAULT.
1073
*/
1074
static inline unsigned long vma_address(const struct vm_area_struct *vma,
1075
pgoff_t pgoff, unsigned long nr_pages)
1076
{
1077
unsigned long address;
1078
1079
if (pgoff >= vma->vm_pgoff) {
1080
address = vma->vm_start +
1081
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1082
/* Check for address beyond vma (or wrapped through 0?) */
1083
if (address < vma->vm_start || address >= vma->vm_end)
1084
address = -EFAULT;
1085
} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1086
/* Test above avoids possibility of wrap to 0 on 32-bit */
1087
address = vma->vm_start;
1088
} else {
1089
address = -EFAULT;
1090
}
1091
return address;
1092
}
1093
1094
/*
1095
* Then at what user virtual address will none of the range be found in vma?
1096
* Assumes that vma_address() already returned a good starting address.
1097
*/
1098
static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1099
{
1100
struct vm_area_struct *vma = pvmw->vma;
1101
pgoff_t pgoff;
1102
unsigned long address;
1103
1104
/* Common case, plus ->pgoff is invalid for KSM */
1105
if (pvmw->nr_pages == 1)
1106
return pvmw->address + PAGE_SIZE;
1107
1108
pgoff = pvmw->pgoff + pvmw->nr_pages;
1109
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1110
/* Check for address beyond vma (or wrapped through 0?) */
1111
if (address < vma->vm_start || address > vma->vm_end)
1112
address = vma->vm_end;
1113
return address;
1114
}
1115
1116
static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1117
struct file *fpin)
1118
{
1119
int flags = vmf->flags;
1120
1121
if (fpin)
1122
return fpin;
1123
1124
/*
1125
* FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1126
* anything, so we only pin the file and drop the mmap_lock if only
1127
* FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1128
*/
1129
if (fault_flag_allow_retry_first(flags) &&
1130
!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1131
fpin = get_file(vmf->vma->vm_file);
1132
release_fault_lock(vmf);
1133
}
1134
return fpin;
1135
}
1136
#else /* !CONFIG_MMU */
1137
static inline void unmap_mapping_folio(struct folio *folio) { }
1138
static inline void mlock_new_folio(struct folio *folio) { }
1139
static inline bool need_mlock_drain(int cpu) { return false; }
1140
static inline void mlock_drain_local(void) { }
1141
static inline void mlock_drain_remote(int cpu) { }
1142
static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1143
{
1144
}
1145
#endif /* !CONFIG_MMU */
1146
1147
/* Memory initialisation debug and verification */
1148
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1149
DECLARE_STATIC_KEY_TRUE(deferred_pages);
1150
1151
bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1152
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1153
1154
void init_deferred_page(unsigned long pfn, int nid);
1155
1156
enum mminit_level {
1157
MMINIT_WARNING,
1158
MMINIT_VERIFY,
1159
MMINIT_TRACE
1160
};
1161
1162
#ifdef CONFIG_DEBUG_MEMORY_INIT
1163
1164
extern int mminit_loglevel;
1165
1166
#define mminit_dprintk(level, prefix, fmt, arg...) \
1167
do { \
1168
if (level < mminit_loglevel) { \
1169
if (level <= MMINIT_WARNING) \
1170
pr_warn("mminit::" prefix " " fmt, ##arg); \
1171
else \
1172
printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1173
} \
1174
} while (0)
1175
1176
extern void mminit_verify_pageflags_layout(void);
1177
extern void mminit_verify_zonelist(void);
1178
#else
1179
1180
static inline void mminit_dprintk(enum mminit_level level,
1181
const char *prefix, const char *fmt, ...)
1182
{
1183
}
1184
1185
static inline void mminit_verify_pageflags_layout(void)
1186
{
1187
}
1188
1189
static inline void mminit_verify_zonelist(void)
1190
{
1191
}
1192
#endif /* CONFIG_DEBUG_MEMORY_INIT */
1193
1194
#define NODE_RECLAIM_NOSCAN -2
1195
#define NODE_RECLAIM_FULL -1
1196
#define NODE_RECLAIM_SOME 0
1197
#define NODE_RECLAIM_SUCCESS 1
1198
1199
#ifdef CONFIG_NUMA
1200
extern int node_reclaim_mode;
1201
1202
extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1203
extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1204
#else
1205
#define node_reclaim_mode 0
1206
1207
static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1208
unsigned int order)
1209
{
1210
return NODE_RECLAIM_NOSCAN;
1211
}
1212
static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1213
{
1214
return NUMA_NO_NODE;
1215
}
1216
#endif
1217
1218
static inline bool node_reclaim_enabled(void)
1219
{
1220
/* Is any node_reclaim_mode bit set? */
1221
return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1222
}
1223
1224
/*
1225
* mm/memory-failure.c
1226
*/
1227
#ifdef CONFIG_MEMORY_FAILURE
1228
int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1229
void shake_folio(struct folio *folio);
1230
extern int hwpoison_filter(struct page *p);
1231
1232
extern u32 hwpoison_filter_dev_major;
1233
extern u32 hwpoison_filter_dev_minor;
1234
extern u64 hwpoison_filter_flags_mask;
1235
extern u64 hwpoison_filter_flags_value;
1236
extern u64 hwpoison_filter_memcg;
1237
extern u32 hwpoison_filter_enable;
1238
#define MAGIC_HWPOISON 0x48575053U /* HWPS */
1239
void SetPageHWPoisonTakenOff(struct page *page);
1240
void ClearPageHWPoisonTakenOff(struct page *page);
1241
bool take_page_off_buddy(struct page *page);
1242
bool put_page_back_buddy(struct page *page);
1243
struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1244
void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1245
struct vm_area_struct *vma, struct list_head *to_kill,
1246
unsigned long ksm_addr);
1247
unsigned long page_mapped_in_vma(const struct page *page,
1248
struct vm_area_struct *vma);
1249
1250
#else
1251
static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1252
{
1253
return -EBUSY;
1254
}
1255
#endif
1256
1257
extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1258
unsigned long, unsigned long,
1259
unsigned long, unsigned long);
1260
1261
extern void set_pageblock_order(void);
1262
unsigned long reclaim_pages(struct list_head *folio_list);
1263
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1264
struct list_head *folio_list);
1265
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1266
#define ALLOC_WMARK_MIN WMARK_MIN
1267
#define ALLOC_WMARK_LOW WMARK_LOW
1268
#define ALLOC_WMARK_HIGH WMARK_HIGH
1269
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1270
1271
/* Mask to get the watermark bits */
1272
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1273
1274
/*
1275
* Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1276
* cannot assume a reduced access to memory reserves is sufficient for
1277
* !MMU
1278
*/
1279
#ifdef CONFIG_MMU
1280
#define ALLOC_OOM 0x08
1281
#else
1282
#define ALLOC_OOM ALLOC_NO_WATERMARKS
1283
#endif
1284
1285
#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1286
* to 25% of the min watermark or
1287
* 62.5% if __GFP_HIGH is set.
1288
*/
1289
#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1290
* of the min watermark.
1291
*/
1292
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1293
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1294
#ifdef CONFIG_ZONE_DMA32
1295
#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1296
#else
1297
#define ALLOC_NOFRAGMENT 0x0
1298
#endif
1299
#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1300
#define ALLOC_TRYLOCK 0x400 /* Only use spin_trylock in allocation path */
1301
#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1302
1303
/* Flags that allow allocations below the min watermark. */
1304
#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1305
1306
enum ttu_flags;
1307
struct tlbflush_unmap_batch;
1308
1309
1310
/*
1311
* only for MM internal work items which do not depend on
1312
* any allocations or locks which might depend on allocations
1313
*/
1314
extern struct workqueue_struct *mm_percpu_wq;
1315
1316
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1317
void try_to_unmap_flush(void);
1318
void try_to_unmap_flush_dirty(void);
1319
void flush_tlb_batched_pending(struct mm_struct *mm);
1320
#else
1321
static inline void try_to_unmap_flush(void)
1322
{
1323
}
1324
static inline void try_to_unmap_flush_dirty(void)
1325
{
1326
}
1327
static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1328
{
1329
}
1330
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1331
1332
extern const struct trace_print_flags pageflag_names[];
1333
extern const struct trace_print_flags vmaflag_names[];
1334
extern const struct trace_print_flags gfpflag_names[];
1335
1336
static inline bool is_migrate_highatomic(enum migratetype migratetype)
1337
{
1338
return migratetype == MIGRATE_HIGHATOMIC;
1339
}
1340
1341
void setup_zone_pageset(struct zone *zone);
1342
1343
struct migration_target_control {
1344
int nid; /* preferred node id */
1345
nodemask_t *nmask;
1346
gfp_t gfp_mask;
1347
enum migrate_reason reason;
1348
};
1349
1350
/*
1351
* mm/filemap.c
1352
*/
1353
size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1354
struct folio *folio, loff_t fpos, size_t size);
1355
1356
/*
1357
* mm/vmalloc.c
1358
*/
1359
#ifdef CONFIG_MMU
1360
void __init vmalloc_init(void);
1361
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1362
pgprot_t prot, struct page **pages, unsigned int page_shift);
1363
unsigned int get_vm_area_page_order(struct vm_struct *vm);
1364
#else
1365
static inline void vmalloc_init(void)
1366
{
1367
}
1368
1369
static inline
1370
int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1371
pgprot_t prot, struct page **pages, unsigned int page_shift)
1372
{
1373
return -EINVAL;
1374
}
1375
#endif
1376
1377
int __must_check __vmap_pages_range_noflush(unsigned long addr,
1378
unsigned long end, pgprot_t prot,
1379
struct page **pages, unsigned int page_shift);
1380
1381
void vunmap_range_noflush(unsigned long start, unsigned long end);
1382
1383
void __vunmap_range_noflush(unsigned long start, unsigned long end);
1384
1385
int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1386
unsigned long addr, int *flags, bool writable,
1387
int *last_cpupid);
1388
1389
void free_zone_device_folio(struct folio *folio);
1390
int migrate_device_coherent_folio(struct folio *folio);
1391
1392
struct vm_struct *__get_vm_area_node(unsigned long size,
1393
unsigned long align, unsigned long shift,
1394
unsigned long vm_flags, unsigned long start,
1395
unsigned long end, int node, gfp_t gfp_mask,
1396
const void *caller);
1397
1398
/*
1399
* mm/gup.c
1400
*/
1401
int __must_check try_grab_folio(struct folio *folio, int refs,
1402
unsigned int flags);
1403
1404
/*
1405
* mm/huge_memory.c
1406
*/
1407
void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1408
pud_t *pud, bool write);
1409
void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1410
pmd_t *pmd, bool write);
1411
1412
/*
1413
* Parses a string with mem suffixes into its order. Useful to parse kernel
1414
* parameters.
1415
*/
1416
static inline int get_order_from_str(const char *size_str,
1417
unsigned long valid_orders)
1418
{
1419
unsigned long size;
1420
char *endptr;
1421
int order;
1422
1423
size = memparse(size_str, &endptr);
1424
1425
if (!is_power_of_2(size))
1426
return -EINVAL;
1427
order = get_order(size);
1428
if (BIT(order) & ~valid_orders)
1429
return -EINVAL;
1430
1431
return order;
1432
}
1433
1434
enum {
1435
/* mark page accessed */
1436
FOLL_TOUCH = 1 << 16,
1437
/* a retry, previous pass started an IO */
1438
FOLL_TRIED = 1 << 17,
1439
/* we are working on non-current tsk/mm */
1440
FOLL_REMOTE = 1 << 18,
1441
/* pages must be released via unpin_user_page */
1442
FOLL_PIN = 1 << 19,
1443
/* gup_fast: prevent fall-back to slow gup */
1444
FOLL_FAST_ONLY = 1 << 20,
1445
/* allow unlocking the mmap lock */
1446
FOLL_UNLOCKABLE = 1 << 21,
1447
/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1448
FOLL_MADV_POPULATE = 1 << 22,
1449
};
1450
1451
#define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1452
FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1453
FOLL_MADV_POPULATE)
1454
1455
/*
1456
* Indicates for which pages that are write-protected in the page table,
1457
* whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1458
* GUP pin will remain consistent with the pages mapped into the page tables
1459
* of the MM.
1460
*
1461
* Temporary unmapping of PageAnonExclusive() pages or clearing of
1462
* PageAnonExclusive() has to protect against concurrent GUP:
1463
* * Ordinary GUP: Using the PT lock
1464
* * GUP-fast and fork(): mm->write_protect_seq
1465
* * GUP-fast and KSM or temporary unmapping (swap, migration): see
1466
* folio_try_share_anon_rmap_*()
1467
*
1468
* Must be called with the (sub)page that's actually referenced via the
1469
* page table entry, which might not necessarily be the head page for a
1470
* PTE-mapped THP.
1471
*
1472
* If the vma is NULL, we're coming from the GUP-fast path and might have
1473
* to fallback to the slow path just to lookup the vma.
1474
*/
1475
static inline bool gup_must_unshare(struct vm_area_struct *vma,
1476
unsigned int flags, struct page *page)
1477
{
1478
/*
1479
* FOLL_WRITE is implicitly handled correctly as the page table entry
1480
* has to be writable -- and if it references (part of) an anonymous
1481
* folio, that part is required to be marked exclusive.
1482
*/
1483
if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1484
return false;
1485
/*
1486
* Note: PageAnon(page) is stable until the page is actually getting
1487
* freed.
1488
*/
1489
if (!PageAnon(page)) {
1490
/*
1491
* We only care about R/O long-term pining: R/O short-term
1492
* pinning does not have the semantics to observe successive
1493
* changes through the process page tables.
1494
*/
1495
if (!(flags & FOLL_LONGTERM))
1496
return false;
1497
1498
/* We really need the vma ... */
1499
if (!vma)
1500
return true;
1501
1502
/*
1503
* ... because we only care about writable private ("COW")
1504
* mappings where we have to break COW early.
1505
*/
1506
return is_cow_mapping(vma->vm_flags);
1507
}
1508
1509
/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1510
if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1511
smp_rmb();
1512
1513
/*
1514
* Note that KSM pages cannot be exclusive, and consequently,
1515
* cannot get pinned.
1516
*/
1517
return !PageAnonExclusive(page);
1518
}
1519
1520
extern bool mirrored_kernelcore;
1521
bool memblock_has_mirror(void);
1522
void memblock_free_all(void);
1523
1524
static __always_inline void vma_set_range(struct vm_area_struct *vma,
1525
unsigned long start, unsigned long end,
1526
pgoff_t pgoff)
1527
{
1528
vma->vm_start = start;
1529
vma->vm_end = end;
1530
vma->vm_pgoff = pgoff;
1531
}
1532
1533
static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1534
{
1535
/*
1536
* NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1537
* enablements, because when without soft-dirty being compiled in,
1538
* VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1539
* will be constantly true.
1540
*/
1541
if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1542
return false;
1543
1544
/*
1545
* Soft-dirty is kind of special: its tracking is enabled when the
1546
* vma flags not set.
1547
*/
1548
return !(vma->vm_flags & VM_SOFTDIRTY);
1549
}
1550
1551
static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1552
{
1553
return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1554
}
1555
1556
static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1557
{
1558
return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1559
}
1560
1561
void __meminit __init_single_page(struct page *page, unsigned long pfn,
1562
unsigned long zone, int nid);
1563
void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1564
1565
/* shrinker related functions */
1566
unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1567
int priority);
1568
1569
#ifdef CONFIG_SHRINKER_DEBUG
1570
static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1571
struct shrinker *shrinker, const char *fmt, va_list ap)
1572
{
1573
shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1574
1575
return shrinker->name ? 0 : -ENOMEM;
1576
}
1577
1578
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1579
{
1580
kfree_const(shrinker->name);
1581
shrinker->name = NULL;
1582
}
1583
1584
extern int shrinker_debugfs_add(struct shrinker *shrinker);
1585
extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1586
int *debugfs_id);
1587
extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1588
int debugfs_id);
1589
#else /* CONFIG_SHRINKER_DEBUG */
1590
static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1591
{
1592
return 0;
1593
}
1594
static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1595
const char *fmt, va_list ap)
1596
{
1597
return 0;
1598
}
1599
static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1600
{
1601
}
1602
static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1603
int *debugfs_id)
1604
{
1605
*debugfs_id = -1;
1606
return NULL;
1607
}
1608
static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1609
int debugfs_id)
1610
{
1611
}
1612
#endif /* CONFIG_SHRINKER_DEBUG */
1613
1614
/* Only track the nodes of mappings with shadow entries */
1615
void workingset_update_node(struct xa_node *node);
1616
extern struct list_lru shadow_nodes;
1617
#define mapping_set_update(xas, mapping) do { \
1618
if (!dax_mapping(mapping) && !shmem_mapping(mapping)) { \
1619
xas_set_update(xas, workingset_update_node); \
1620
xas_set_lru(xas, &shadow_nodes); \
1621
} \
1622
} while (0)
1623
1624
/* mremap.c */
1625
unsigned long move_page_tables(struct pagetable_move_control *pmc);
1626
1627
#ifdef CONFIG_UNACCEPTED_MEMORY
1628
void accept_page(struct page *page);
1629
#else /* CONFIG_UNACCEPTED_MEMORY */
1630
static inline void accept_page(struct page *page)
1631
{
1632
}
1633
#endif /* CONFIG_UNACCEPTED_MEMORY */
1634
1635
/* pagewalk.c */
1636
int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1637
unsigned long end, const struct mm_walk_ops *ops,
1638
void *private);
1639
int walk_page_range_debug(struct mm_struct *mm, unsigned long start,
1640
unsigned long end, const struct mm_walk_ops *ops,
1641
pgd_t *pgd, void *private);
1642
1643
/* pt_reclaim.c */
1644
bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
1645
void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
1646
pmd_t pmdval);
1647
void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
1648
struct mmu_gather *tlb);
1649
1650
#ifdef CONFIG_PT_RECLAIM
1651
bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1652
struct zap_details *details);
1653
#else
1654
static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
1655
struct zap_details *details)
1656
{
1657
return false;
1658
}
1659
#endif /* CONFIG_PT_RECLAIM */
1660
1661
void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm);
1662
int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm);
1663
1664
#endif /* __MM_INTERNAL_H */
1665
1666