#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kfence.h>
#include <linux/kmemleak.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include "kasan.h"
bool __kasan_check_read(const volatile void *p, unsigned int size)
{
return kasan_check_range((void *)p, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__kasan_check_read);
bool __kasan_check_write(const volatile void *p, unsigned int size)
{
return kasan_check_range((void *)p, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__kasan_check_write);
#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
#undef memset
void *memset(void *addr, int c, size_t len)
{
if (!kasan_check_range(addr, len, true, _RET_IP_))
return NULL;
return __memset(addr, c, len);
}
#ifdef __HAVE_ARCH_MEMMOVE
#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
if (!kasan_check_range(src, len, false, _RET_IP_) ||
!kasan_check_range(dest, len, true, _RET_IP_))
return NULL;
return __memmove(dest, src, len);
}
#endif
#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
if (!kasan_check_range(src, len, false, _RET_IP_) ||
!kasan_check_range(dest, len, true, _RET_IP_))
return NULL;
return __memcpy(dest, src, len);
}
#endif
void *__asan_memset(void *addr, int c, ssize_t len)
{
if (!kasan_check_range(addr, len, true, _RET_IP_))
return NULL;
return __memset(addr, c, len);
}
EXPORT_SYMBOL(__asan_memset);
#ifdef __HAVE_ARCH_MEMMOVE
void *__asan_memmove(void *dest, const void *src, ssize_t len)
{
if (!kasan_check_range(src, len, false, _RET_IP_) ||
!kasan_check_range(dest, len, true, _RET_IP_))
return NULL;
return __memmove(dest, src, len);
}
EXPORT_SYMBOL(__asan_memmove);
#endif
void *__asan_memcpy(void *dest, const void *src, ssize_t len)
{
if (!kasan_check_range(src, len, false, _RET_IP_) ||
!kasan_check_range(dest, len, true, _RET_IP_))
return NULL;
return __memcpy(dest, src, len);
}
EXPORT_SYMBOL(__asan_memcpy);
#ifdef CONFIG_KASAN_SW_TAGS
void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
EXPORT_SYMBOL(__hwasan_memset);
#ifdef __HAVE_ARCH_MEMMOVE
void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
EXPORT_SYMBOL(__hwasan_memmove);
#endif
void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
EXPORT_SYMBOL(__hwasan_memcpy);
#endif
void kasan_poison(const void *addr, size_t size, u8 value, bool init)
{
void *shadow_start, *shadow_end;
if (!kasan_arch_is_ready())
return;
addr = kasan_reset_tag(addr);
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
return;
if (WARN_ON(size & KASAN_GRANULE_MASK))
return;
shadow_start = kasan_mem_to_shadow(addr);
shadow_end = kasan_mem_to_shadow(addr + size);
__memset(shadow_start, value, shadow_end - shadow_start);
}
EXPORT_SYMBOL_GPL(kasan_poison);
#ifdef CONFIG_KASAN_GENERIC
void kasan_poison_last_granule(const void *addr, size_t size)
{
if (!kasan_arch_is_ready())
return;
if (size & KASAN_GRANULE_MASK) {
u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
*shadow = size & KASAN_GRANULE_MASK;
}
}
#endif
void kasan_unpoison(const void *addr, size_t size, bool init)
{
u8 tag = get_tag(addr);
addr = kasan_reset_tag(addr);
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
return;
kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
kasan_poison_last_granule(addr, size);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static bool shadow_mapped(unsigned long addr)
{
pgd_t *pgd = pgd_offset_k(addr);
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd))
return false;
p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d))
return false;
pud = pud_offset(p4d, addr);
if (pud_none(*pud))
return false;
if (pud_leaf(*pud))
return true;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return false;
if (pmd_leaf(*pmd))
return true;
pte = pte_offset_kernel(pmd, addr);
return !pte_none(ptep_get(pte));
}
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct memory_notify *mem_data = data;
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
unsigned long shadow_end, shadow_size;
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
shadow_size = nr_shadow_pages << PAGE_SHIFT;
shadow_end = shadow_start + shadow_size;
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
return NOTIFY_BAD;
switch (action) {
case MEM_GOING_ONLINE: {
void *ret;
if (shadow_mapped(shadow_start))
return NOTIFY_OK;
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
shadow_end, GFP_KERNEL,
PAGE_KERNEL, VM_NO_GUARD,
pfn_to_nid(mem_data->start_pfn),
__builtin_return_address(0));
if (!ret)
return NOTIFY_BAD;
kmemleak_ignore(ret);
return NOTIFY_OK;
}
case MEM_CANCEL_ONLINE:
case MEM_OFFLINE: {
struct vm_struct *vm;
vm = find_vm_area((void *)shadow_start);
if (vm)
vfree((void *)shadow_start);
}
}
return NOTIFY_OK;
}
static int __init kasan_memhotplug_init(void)
{
hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
return 0;
}
core_initcall(kasan_memhotplug_init);
#endif
#ifdef CONFIG_KASAN_VMALLOC
void __init __weak kasan_populate_early_vm_area_shadow(void *start,
unsigned long size)
{
}
struct vmalloc_populate_data {
unsigned long start;
struct page **pages;
};
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
void *_data)
{
struct vmalloc_populate_data *data = _data;
struct page *page;
pte_t pte;
int index;
arch_leave_lazy_mmu_mode();
index = PFN_DOWN(addr - data->start);
page = data->pages[index];
__memset(page_to_virt(page), KASAN_VMALLOC_INVALID, PAGE_SIZE);
pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL);
spin_lock(&init_mm.page_table_lock);
if (likely(pte_none(ptep_get(ptep)))) {
set_pte_at(&init_mm, addr, ptep, pte);
data->pages[index] = NULL;
}
spin_unlock(&init_mm.page_table_lock);
arch_enter_lazy_mmu_mode();
return 0;
}
static void ___free_pages_bulk(struct page **pages, int nr_pages)
{
int i;
for (i = 0; i < nr_pages; i++) {
if (pages[i]) {
__free_pages(pages[i], 0);
pages[i] = NULL;
}
}
}
static int ___alloc_pages_bulk(struct page **pages, int nr_pages)
{
unsigned long nr_populated, nr_total = nr_pages;
struct page **page_array = pages;
while (nr_pages) {
nr_populated = alloc_pages_bulk(GFP_KERNEL, nr_pages, pages);
if (!nr_populated) {
___free_pages_bulk(page_array, nr_total - nr_pages);
return -ENOMEM;
}
pages += nr_populated;
nr_pages -= nr_populated;
}
return 0;
}
static int __kasan_populate_vmalloc(unsigned long start, unsigned long end)
{
unsigned long nr_pages, nr_total = PFN_UP(end - start);
struct vmalloc_populate_data data;
int ret = 0;
data.pages = (struct page **)__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (!data.pages)
return -ENOMEM;
while (nr_total) {
nr_pages = min(nr_total, PAGE_SIZE / sizeof(data.pages[0]));
ret = ___alloc_pages_bulk(data.pages, nr_pages);
if (ret)
break;
data.start = start;
ret = apply_to_page_range(&init_mm, start, nr_pages * PAGE_SIZE,
kasan_populate_vmalloc_pte, &data);
___free_pages_bulk(data.pages, nr_pages);
if (ret)
break;
start += nr_pages * PAGE_SIZE;
nr_total -= nr_pages;
}
free_page((unsigned long)data.pages);
return ret;
}
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
{
unsigned long shadow_start, shadow_end;
int ret;
if (!kasan_arch_is_ready())
return 0;
if (!is_vmalloc_or_module_addr((void *)addr))
return 0;
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
if (IS_ENABLED(CONFIG_UML)) {
__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
return 0;
}
shadow_start = PAGE_ALIGN_DOWN(shadow_start);
shadow_end = PAGE_ALIGN(shadow_end);
ret = __kasan_populate_vmalloc(shadow_start, shadow_end);
if (ret)
return ret;
flush_cache_vmap(shadow_start, shadow_end);
return 0;
}
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
void *unused)
{
pte_t pte;
int none;
arch_leave_lazy_mmu_mode();
spin_lock(&init_mm.page_table_lock);
pte = ptep_get(ptep);
none = pte_none(pte);
if (likely(!none))
pte_clear(&init_mm, addr, ptep);
spin_unlock(&init_mm.page_table_lock);
if (likely(!none))
__free_page(pfn_to_page(pte_pfn(pte)));
arch_enter_lazy_mmu_mode();
return 0;
}
void kasan_release_vmalloc(unsigned long start, unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end,
unsigned long flags)
{
void *shadow_start, *shadow_end;
unsigned long region_start, region_end;
unsigned long size;
if (!kasan_arch_is_ready())
return;
region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
if (start != region_start &&
free_region_start < region_start)
region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
if (end != region_end &&
free_region_end > region_end)
region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
shadow_start = kasan_mem_to_shadow((void *)region_start);
shadow_end = kasan_mem_to_shadow((void *)region_end);
if (shadow_end > shadow_start) {
size = shadow_end - shadow_start;
if (IS_ENABLED(CONFIG_UML)) {
__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
return;
}
if (flags & KASAN_VMALLOC_PAGE_RANGE)
apply_to_existing_page_range(&init_mm,
(unsigned long)shadow_start,
size, kasan_depopulate_vmalloc_pte,
NULL);
if (flags & KASAN_VMALLOC_TLB_FLUSH)
flush_tlb_kernel_range((unsigned long)shadow_start,
(unsigned long)shadow_end);
}
}
void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
kasan_vmalloc_flags_t flags)
{
if (!kasan_arch_is_ready())
return (void *)start;
if (!is_vmalloc_or_module_addr(start))
return (void *)start;
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
!(flags & KASAN_VMALLOC_PROT_NORMAL))
return (void *)start;
start = set_tag(start, kasan_random_tag());
kasan_unpoison(start, size, false);
return (void *)start;
}
void __kasan_poison_vmalloc(const void *start, unsigned long size)
{
if (!kasan_arch_is_ready())
return;
if (!is_vmalloc_or_module_addr(start))
return;
size = round_up(size, KASAN_GRANULE_SIZE);
kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
}
#else
int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
{
void *ret;
size_t scaled_size;
size_t shadow_size;
unsigned long shadow_start;
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
KASAN_SHADOW_SCALE_SHIFT;
shadow_size = round_up(scaled_size, PAGE_SIZE);
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
return -EINVAL;
if (IS_ENABLED(CONFIG_UML)) {
__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
return 0;
}
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
shadow_start + shadow_size,
GFP_KERNEL,
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
__builtin_return_address(0));
if (ret) {
struct vm_struct *vm = find_vm_area(addr);
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
vm->flags |= VM_KASAN;
kmemleak_ignore(ret);
if (vm->flags & VM_DEFER_KMEMLEAK)
kmemleak_vmalloc(vm, size, gfp_mask);
return 0;
}
return -ENOMEM;
}
void kasan_free_module_shadow(const struct vm_struct *vm)
{
if (IS_ENABLED(CONFIG_UML))
return;
if (vm->flags & VM_KASAN)
vfree(kasan_mem_to_shadow(vm->addr));
}
#endif