Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kasan/shadow.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* This file contains KASAN runtime code that manages shadow memory for
4
* generic and software tag-based KASAN modes.
5
*
6
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
7
* Author: Andrey Ryabinin <[email protected]>
8
*
9
* Some code borrowed from https://github.com/xairy/kasan-prototype by
10
* Andrey Konovalov <[email protected]>
11
*/
12
13
#include <linux/init.h>
14
#include <linux/kasan.h>
15
#include <linux/kernel.h>
16
#include <linux/kfence.h>
17
#include <linux/kmemleak.h>
18
#include <linux/memory.h>
19
#include <linux/mm.h>
20
#include <linux/string.h>
21
#include <linux/types.h>
22
#include <linux/vmalloc.h>
23
24
#include <asm/cacheflush.h>
25
#include <asm/tlbflush.h>
26
27
#include "kasan.h"
28
29
bool __kasan_check_read(const volatile void *p, unsigned int size)
30
{
31
return kasan_check_range((void *)p, size, false, _RET_IP_);
32
}
33
EXPORT_SYMBOL(__kasan_check_read);
34
35
bool __kasan_check_write(const volatile void *p, unsigned int size)
36
{
37
return kasan_check_range((void *)p, size, true, _RET_IP_);
38
}
39
EXPORT_SYMBOL(__kasan_check_write);
40
41
#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42
/*
43
* CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44
* instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45
* for the sites they want to instrument.
46
*
47
* If we have a compiler that can instrument meminstrinsics, never override
48
* these, so that non-instrumented files can safely consider them as builtins.
49
*/
50
#undef memset
51
void *memset(void *addr, int c, size_t len)
52
{
53
if (!kasan_check_range(addr, len, true, _RET_IP_))
54
return NULL;
55
56
return __memset(addr, c, len);
57
}
58
59
#ifdef __HAVE_ARCH_MEMMOVE
60
#undef memmove
61
void *memmove(void *dest, const void *src, size_t len)
62
{
63
if (!kasan_check_range(src, len, false, _RET_IP_) ||
64
!kasan_check_range(dest, len, true, _RET_IP_))
65
return NULL;
66
67
return __memmove(dest, src, len);
68
}
69
#endif
70
71
#undef memcpy
72
void *memcpy(void *dest, const void *src, size_t len)
73
{
74
if (!kasan_check_range(src, len, false, _RET_IP_) ||
75
!kasan_check_range(dest, len, true, _RET_IP_))
76
return NULL;
77
78
return __memcpy(dest, src, len);
79
}
80
#endif
81
82
void *__asan_memset(void *addr, int c, ssize_t len)
83
{
84
if (!kasan_check_range(addr, len, true, _RET_IP_))
85
return NULL;
86
87
return __memset(addr, c, len);
88
}
89
EXPORT_SYMBOL(__asan_memset);
90
91
#ifdef __HAVE_ARCH_MEMMOVE
92
void *__asan_memmove(void *dest, const void *src, ssize_t len)
93
{
94
if (!kasan_check_range(src, len, false, _RET_IP_) ||
95
!kasan_check_range(dest, len, true, _RET_IP_))
96
return NULL;
97
98
return __memmove(dest, src, len);
99
}
100
EXPORT_SYMBOL(__asan_memmove);
101
#endif
102
103
void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104
{
105
if (!kasan_check_range(src, len, false, _RET_IP_) ||
106
!kasan_check_range(dest, len, true, _RET_IP_))
107
return NULL;
108
109
return __memcpy(dest, src, len);
110
}
111
EXPORT_SYMBOL(__asan_memcpy);
112
113
#ifdef CONFIG_KASAN_SW_TAGS
114
void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115
EXPORT_SYMBOL(__hwasan_memset);
116
#ifdef __HAVE_ARCH_MEMMOVE
117
void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118
EXPORT_SYMBOL(__hwasan_memmove);
119
#endif
120
void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121
EXPORT_SYMBOL(__hwasan_memcpy);
122
#endif
123
124
void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125
{
126
void *shadow_start, *shadow_end;
127
128
if (!kasan_arch_is_ready())
129
return;
130
131
/*
132
* Perform shadow offset calculation based on untagged address, as
133
* some of the callers (e.g. kasan_poison_new_object) pass tagged
134
* addresses to this function.
135
*/
136
addr = kasan_reset_tag(addr);
137
138
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
139
return;
140
if (WARN_ON(size & KASAN_GRANULE_MASK))
141
return;
142
143
shadow_start = kasan_mem_to_shadow(addr);
144
shadow_end = kasan_mem_to_shadow(addr + size);
145
146
__memset(shadow_start, value, shadow_end - shadow_start);
147
}
148
EXPORT_SYMBOL_GPL(kasan_poison);
149
150
#ifdef CONFIG_KASAN_GENERIC
151
void kasan_poison_last_granule(const void *addr, size_t size)
152
{
153
if (!kasan_arch_is_ready())
154
return;
155
156
if (size & KASAN_GRANULE_MASK) {
157
u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158
*shadow = size & KASAN_GRANULE_MASK;
159
}
160
}
161
#endif
162
163
void kasan_unpoison(const void *addr, size_t size, bool init)
164
{
165
u8 tag = get_tag(addr);
166
167
/*
168
* Perform shadow offset calculation based on untagged address, as
169
* some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170
* addresses to this function.
171
*/
172
addr = kasan_reset_tag(addr);
173
174
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
175
return;
176
177
/* Unpoison all granules that cover the object. */
178
kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
179
180
/* Partially poison the last granule for the generic mode. */
181
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182
kasan_poison_last_granule(addr, size);
183
}
184
185
#ifdef CONFIG_MEMORY_HOTPLUG
186
static bool shadow_mapped(unsigned long addr)
187
{
188
pgd_t *pgd = pgd_offset_k(addr);
189
p4d_t *p4d;
190
pud_t *pud;
191
pmd_t *pmd;
192
pte_t *pte;
193
194
if (pgd_none(*pgd))
195
return false;
196
p4d = p4d_offset(pgd, addr);
197
if (p4d_none(*p4d))
198
return false;
199
pud = pud_offset(p4d, addr);
200
if (pud_none(*pud))
201
return false;
202
if (pud_leaf(*pud))
203
return true;
204
pmd = pmd_offset(pud, addr);
205
if (pmd_none(*pmd))
206
return false;
207
if (pmd_leaf(*pmd))
208
return true;
209
pte = pte_offset_kernel(pmd, addr);
210
return !pte_none(ptep_get(pte));
211
}
212
213
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
214
unsigned long action, void *data)
215
{
216
struct memory_notify *mem_data = data;
217
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
218
unsigned long shadow_end, shadow_size;
219
220
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
221
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
222
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
223
shadow_size = nr_shadow_pages << PAGE_SHIFT;
224
shadow_end = shadow_start + shadow_size;
225
226
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
227
WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
228
return NOTIFY_BAD;
229
230
switch (action) {
231
case MEM_GOING_ONLINE: {
232
void *ret;
233
234
/*
235
* If shadow is mapped already than it must have been mapped
236
* during the boot. This could happen if we onlining previously
237
* offlined memory.
238
*/
239
if (shadow_mapped(shadow_start))
240
return NOTIFY_OK;
241
242
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
243
shadow_end, GFP_KERNEL,
244
PAGE_KERNEL, VM_NO_GUARD,
245
pfn_to_nid(mem_data->start_pfn),
246
__builtin_return_address(0));
247
if (!ret)
248
return NOTIFY_BAD;
249
250
kmemleak_ignore(ret);
251
return NOTIFY_OK;
252
}
253
case MEM_CANCEL_ONLINE:
254
case MEM_OFFLINE: {
255
struct vm_struct *vm;
256
257
/*
258
* shadow_start was either mapped during boot by kasan_init()
259
* or during memory online by __vmalloc_node_range().
260
* In the latter case we can use vfree() to free shadow.
261
* Non-NULL result of the find_vm_area() will tell us if
262
* that was the second case.
263
*
264
* Currently it's not possible to free shadow mapped
265
* during boot by kasan_init(). It's because the code
266
* to do that hasn't been written yet. So we'll just
267
* leak the memory.
268
*/
269
vm = find_vm_area((void *)shadow_start);
270
if (vm)
271
vfree((void *)shadow_start);
272
}
273
}
274
275
return NOTIFY_OK;
276
}
277
278
static int __init kasan_memhotplug_init(void)
279
{
280
hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
281
282
return 0;
283
}
284
285
core_initcall(kasan_memhotplug_init);
286
#endif
287
288
#ifdef CONFIG_KASAN_VMALLOC
289
290
void __init __weak kasan_populate_early_vm_area_shadow(void *start,
291
unsigned long size)
292
{
293
}
294
295
struct vmalloc_populate_data {
296
unsigned long start;
297
struct page **pages;
298
};
299
300
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
301
void *_data)
302
{
303
struct vmalloc_populate_data *data = _data;
304
struct page *page;
305
pte_t pte;
306
int index;
307
308
arch_leave_lazy_mmu_mode();
309
310
index = PFN_DOWN(addr - data->start);
311
page = data->pages[index];
312
__memset(page_to_virt(page), KASAN_VMALLOC_INVALID, PAGE_SIZE);
313
pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL);
314
315
spin_lock(&init_mm.page_table_lock);
316
if (likely(pte_none(ptep_get(ptep)))) {
317
set_pte_at(&init_mm, addr, ptep, pte);
318
data->pages[index] = NULL;
319
}
320
spin_unlock(&init_mm.page_table_lock);
321
322
arch_enter_lazy_mmu_mode();
323
324
return 0;
325
}
326
327
static void ___free_pages_bulk(struct page **pages, int nr_pages)
328
{
329
int i;
330
331
for (i = 0; i < nr_pages; i++) {
332
if (pages[i]) {
333
__free_pages(pages[i], 0);
334
pages[i] = NULL;
335
}
336
}
337
}
338
339
static int ___alloc_pages_bulk(struct page **pages, int nr_pages)
340
{
341
unsigned long nr_populated, nr_total = nr_pages;
342
struct page **page_array = pages;
343
344
while (nr_pages) {
345
nr_populated = alloc_pages_bulk(GFP_KERNEL, nr_pages, pages);
346
if (!nr_populated) {
347
___free_pages_bulk(page_array, nr_total - nr_pages);
348
return -ENOMEM;
349
}
350
pages += nr_populated;
351
nr_pages -= nr_populated;
352
}
353
354
return 0;
355
}
356
357
static int __kasan_populate_vmalloc(unsigned long start, unsigned long end)
358
{
359
unsigned long nr_pages, nr_total = PFN_UP(end - start);
360
struct vmalloc_populate_data data;
361
int ret = 0;
362
363
data.pages = (struct page **)__get_free_page(GFP_KERNEL | __GFP_ZERO);
364
if (!data.pages)
365
return -ENOMEM;
366
367
while (nr_total) {
368
nr_pages = min(nr_total, PAGE_SIZE / sizeof(data.pages[0]));
369
ret = ___alloc_pages_bulk(data.pages, nr_pages);
370
if (ret)
371
break;
372
373
data.start = start;
374
ret = apply_to_page_range(&init_mm, start, nr_pages * PAGE_SIZE,
375
kasan_populate_vmalloc_pte, &data);
376
___free_pages_bulk(data.pages, nr_pages);
377
if (ret)
378
break;
379
380
start += nr_pages * PAGE_SIZE;
381
nr_total -= nr_pages;
382
}
383
384
free_page((unsigned long)data.pages);
385
386
return ret;
387
}
388
389
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
390
{
391
unsigned long shadow_start, shadow_end;
392
int ret;
393
394
if (!kasan_arch_is_ready())
395
return 0;
396
397
if (!is_vmalloc_or_module_addr((void *)addr))
398
return 0;
399
400
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
401
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
402
403
/*
404
* User Mode Linux maps enough shadow memory for all of virtual memory
405
* at boot, so doesn't need to allocate more on vmalloc, just clear it.
406
*
407
* The remaining CONFIG_UML checks in this file exist for the same
408
* reason.
409
*/
410
if (IS_ENABLED(CONFIG_UML)) {
411
__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
412
return 0;
413
}
414
415
shadow_start = PAGE_ALIGN_DOWN(shadow_start);
416
shadow_end = PAGE_ALIGN(shadow_end);
417
418
ret = __kasan_populate_vmalloc(shadow_start, shadow_end);
419
if (ret)
420
return ret;
421
422
flush_cache_vmap(shadow_start, shadow_end);
423
424
/*
425
* We need to be careful about inter-cpu effects here. Consider:
426
*
427
* CPU#0 CPU#1
428
* WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
429
* p[99] = 1;
430
*
431
* With compiler instrumentation, that ends up looking like this:
432
*
433
* CPU#0 CPU#1
434
* // vmalloc() allocates memory
435
* // let a = area->addr
436
* // we reach kasan_populate_vmalloc
437
* // and call kasan_unpoison:
438
* STORE shadow(a), unpoison_val
439
* ...
440
* STORE shadow(a+99), unpoison_val x = LOAD p
441
* // rest of vmalloc process <data dependency>
442
* STORE p, a LOAD shadow(x+99)
443
*
444
* If there is no barrier between the end of unpoisoning the shadow
445
* and the store of the result to p, the stores could be committed
446
* in a different order by CPU#0, and CPU#1 could erroneously observe
447
* poison in the shadow.
448
*
449
* We need some sort of barrier between the stores.
450
*
451
* In the vmalloc() case, this is provided by a smp_wmb() in
452
* clear_vm_uninitialized_flag(). In the per-cpu allocator and in
453
* get_vm_area() and friends, the caller gets shadow allocated but
454
* doesn't have any pages mapped into the virtual address space that
455
* has been reserved. Mapping those pages in will involve taking and
456
* releasing a page-table lock, which will provide the barrier.
457
*/
458
459
return 0;
460
}
461
462
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
463
void *unused)
464
{
465
pte_t pte;
466
int none;
467
468
arch_leave_lazy_mmu_mode();
469
470
spin_lock(&init_mm.page_table_lock);
471
pte = ptep_get(ptep);
472
none = pte_none(pte);
473
if (likely(!none))
474
pte_clear(&init_mm, addr, ptep);
475
spin_unlock(&init_mm.page_table_lock);
476
477
if (likely(!none))
478
__free_page(pfn_to_page(pte_pfn(pte)));
479
480
arch_enter_lazy_mmu_mode();
481
482
return 0;
483
}
484
485
/*
486
* Release the backing for the vmalloc region [start, end), which
487
* lies within the free region [free_region_start, free_region_end).
488
*
489
* This can be run lazily, long after the region was freed. It runs
490
* under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
491
* infrastructure.
492
*
493
* How does this work?
494
* -------------------
495
*
496
* We have a region that is page aligned, labeled as A.
497
* That might not map onto the shadow in a way that is page-aligned:
498
*
499
* start end
500
* v v
501
* |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
502
* -------- -------- -------- -------- --------
503
* | | | | |
504
* | | | /-------/ |
505
* \-------\|/------/ |/---------------/
506
* ||| ||
507
* |??AAAAAA|AAAAAAAA|AA??????| < shadow
508
* (1) (2) (3)
509
*
510
* First we align the start upwards and the end downwards, so that the
511
* shadow of the region aligns with shadow page boundaries. In the
512
* example, this gives us the shadow page (2). This is the shadow entirely
513
* covered by this allocation.
514
*
515
* Then we have the tricky bits. We want to know if we can free the
516
* partially covered shadow pages - (1) and (3) in the example. For this,
517
* we are given the start and end of the free region that contains this
518
* allocation. Extending our previous example, we could have:
519
*
520
* free_region_start free_region_end
521
* | start end |
522
* v v v v
523
* |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
524
* -------- -------- -------- -------- --------
525
* | | | | |
526
* | | | /-------/ |
527
* \-------\|/------/ |/---------------/
528
* ||| ||
529
* |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
530
* (1) (2) (3)
531
*
532
* Once again, we align the start of the free region up, and the end of
533
* the free region down so that the shadow is page aligned. So we can free
534
* page (1) - we know no allocation currently uses anything in that page,
535
* because all of it is in the vmalloc free region. But we cannot free
536
* page (3), because we can't be sure that the rest of it is unused.
537
*
538
* We only consider pages that contain part of the original region for
539
* freeing: we don't try to free other pages from the free region or we'd
540
* end up trying to free huge chunks of virtual address space.
541
*
542
* Concurrency
543
* -----------
544
*
545
* How do we know that we're not freeing a page that is simultaneously
546
* being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
547
*
548
* We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
549
* at the same time. While we run under free_vmap_area_lock, the population
550
* code does not.
551
*
552
* free_vmap_area_lock instead operates to ensure that the larger range
553
* [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
554
* the per-cpu region-finding algorithm both run under free_vmap_area_lock,
555
* no space identified as free will become used while we are running. This
556
* means that so long as we are careful with alignment and only free shadow
557
* pages entirely covered by the free region, we will not run in to any
558
* trouble - any simultaneous allocations will be for disjoint regions.
559
*/
560
void kasan_release_vmalloc(unsigned long start, unsigned long end,
561
unsigned long free_region_start,
562
unsigned long free_region_end,
563
unsigned long flags)
564
{
565
void *shadow_start, *shadow_end;
566
unsigned long region_start, region_end;
567
unsigned long size;
568
569
if (!kasan_arch_is_ready())
570
return;
571
572
region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
573
region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
574
575
free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
576
577
if (start != region_start &&
578
free_region_start < region_start)
579
region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
580
581
free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
582
583
if (end != region_end &&
584
free_region_end > region_end)
585
region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
586
587
shadow_start = kasan_mem_to_shadow((void *)region_start);
588
shadow_end = kasan_mem_to_shadow((void *)region_end);
589
590
if (shadow_end > shadow_start) {
591
size = shadow_end - shadow_start;
592
if (IS_ENABLED(CONFIG_UML)) {
593
__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
594
return;
595
}
596
597
598
if (flags & KASAN_VMALLOC_PAGE_RANGE)
599
apply_to_existing_page_range(&init_mm,
600
(unsigned long)shadow_start,
601
size, kasan_depopulate_vmalloc_pte,
602
NULL);
603
604
if (flags & KASAN_VMALLOC_TLB_FLUSH)
605
flush_tlb_kernel_range((unsigned long)shadow_start,
606
(unsigned long)shadow_end);
607
}
608
}
609
610
void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
611
kasan_vmalloc_flags_t flags)
612
{
613
/*
614
* Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
615
* mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
616
* Software KASAN modes can't optimize zeroing memory by combining it
617
* with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
618
*/
619
620
if (!kasan_arch_is_ready())
621
return (void *)start;
622
623
if (!is_vmalloc_or_module_addr(start))
624
return (void *)start;
625
626
/*
627
* Don't tag executable memory with the tag-based mode.
628
* The kernel doesn't tolerate having the PC register tagged.
629
*/
630
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
631
!(flags & KASAN_VMALLOC_PROT_NORMAL))
632
return (void *)start;
633
634
start = set_tag(start, kasan_random_tag());
635
kasan_unpoison(start, size, false);
636
return (void *)start;
637
}
638
639
/*
640
* Poison the shadow for a vmalloc region. Called as part of the
641
* freeing process at the time the region is freed.
642
*/
643
void __kasan_poison_vmalloc(const void *start, unsigned long size)
644
{
645
if (!kasan_arch_is_ready())
646
return;
647
648
if (!is_vmalloc_or_module_addr(start))
649
return;
650
651
size = round_up(size, KASAN_GRANULE_SIZE);
652
kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
653
}
654
655
#else /* CONFIG_KASAN_VMALLOC */
656
657
int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
658
{
659
void *ret;
660
size_t scaled_size;
661
size_t shadow_size;
662
unsigned long shadow_start;
663
664
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
665
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
666
KASAN_SHADOW_SCALE_SHIFT;
667
shadow_size = round_up(scaled_size, PAGE_SIZE);
668
669
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
670
return -EINVAL;
671
672
if (IS_ENABLED(CONFIG_UML)) {
673
__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
674
return 0;
675
}
676
677
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
678
shadow_start + shadow_size,
679
GFP_KERNEL,
680
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
681
__builtin_return_address(0));
682
683
if (ret) {
684
struct vm_struct *vm = find_vm_area(addr);
685
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
686
vm->flags |= VM_KASAN;
687
kmemleak_ignore(ret);
688
689
if (vm->flags & VM_DEFER_KMEMLEAK)
690
kmemleak_vmalloc(vm, size, gfp_mask);
691
692
return 0;
693
}
694
695
return -ENOMEM;
696
}
697
698
void kasan_free_module_shadow(const struct vm_struct *vm)
699
{
700
if (IS_ENABLED(CONFIG_UML))
701
return;
702
703
if (vm->flags & VM_KASAN)
704
vfree(kasan_mem_to_shadow(vm->addr));
705
}
706
707
#endif
708
709