Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kasan/shadow.c
49657 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* This file contains KASAN runtime code that manages shadow memory for
4
* generic and software tag-based KASAN modes.
5
*
6
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
7
* Author: Andrey Ryabinin <[email protected]>
8
*
9
* Some code borrowed from https://github.com/xairy/kasan-prototype by
10
* Andrey Konovalov <[email protected]>
11
*/
12
13
#include <linux/init.h>
14
#include <linux/kasan.h>
15
#include <linux/kernel.h>
16
#include <linux/kfence.h>
17
#include <linux/kmemleak.h>
18
#include <linux/memory.h>
19
#include <linux/mm.h>
20
#include <linux/string.h>
21
#include <linux/types.h>
22
#include <linux/vmalloc.h>
23
24
#include <asm/cacheflush.h>
25
#include <asm/tlbflush.h>
26
27
#include "kasan.h"
28
29
bool __kasan_check_read(const volatile void *p, unsigned int size)
30
{
31
return kasan_check_range((void *)p, size, false, _RET_IP_);
32
}
33
EXPORT_SYMBOL(__kasan_check_read);
34
35
bool __kasan_check_write(const volatile void *p, unsigned int size)
36
{
37
return kasan_check_range((void *)p, size, true, _RET_IP_);
38
}
39
EXPORT_SYMBOL(__kasan_check_write);
40
41
#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42
/*
43
* CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44
* instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45
* for the sites they want to instrument.
46
*
47
* If we have a compiler that can instrument meminstrinsics, never override
48
* these, so that non-instrumented files can safely consider them as builtins.
49
*/
50
#undef memset
51
void *memset(void *addr, int c, size_t len)
52
{
53
if (!kasan_check_range(addr, len, true, _RET_IP_))
54
return NULL;
55
56
return __memset(addr, c, len);
57
}
58
59
#ifdef __HAVE_ARCH_MEMMOVE
60
#undef memmove
61
void *memmove(void *dest, const void *src, size_t len)
62
{
63
if (!kasan_check_range(src, len, false, _RET_IP_) ||
64
!kasan_check_range(dest, len, true, _RET_IP_))
65
return NULL;
66
67
return __memmove(dest, src, len);
68
}
69
#endif
70
71
#undef memcpy
72
void *memcpy(void *dest, const void *src, size_t len)
73
{
74
if (!kasan_check_range(src, len, false, _RET_IP_) ||
75
!kasan_check_range(dest, len, true, _RET_IP_))
76
return NULL;
77
78
return __memcpy(dest, src, len);
79
}
80
#endif
81
82
void *__asan_memset(void *addr, int c, ssize_t len)
83
{
84
if (!kasan_check_range(addr, len, true, _RET_IP_))
85
return NULL;
86
87
return __memset(addr, c, len);
88
}
89
EXPORT_SYMBOL(__asan_memset);
90
91
#ifdef __HAVE_ARCH_MEMMOVE
92
void *__asan_memmove(void *dest, const void *src, ssize_t len)
93
{
94
if (!kasan_check_range(src, len, false, _RET_IP_) ||
95
!kasan_check_range(dest, len, true, _RET_IP_))
96
return NULL;
97
98
return __memmove(dest, src, len);
99
}
100
EXPORT_SYMBOL(__asan_memmove);
101
#endif
102
103
void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104
{
105
if (!kasan_check_range(src, len, false, _RET_IP_) ||
106
!kasan_check_range(dest, len, true, _RET_IP_))
107
return NULL;
108
109
return __memcpy(dest, src, len);
110
}
111
EXPORT_SYMBOL(__asan_memcpy);
112
113
#ifdef CONFIG_KASAN_SW_TAGS
114
void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115
EXPORT_SYMBOL(__hwasan_memset);
116
#ifdef __HAVE_ARCH_MEMMOVE
117
void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118
EXPORT_SYMBOL(__hwasan_memmove);
119
#endif
120
void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121
EXPORT_SYMBOL(__hwasan_memcpy);
122
#endif
123
124
void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125
{
126
void *shadow_start, *shadow_end;
127
128
if (!kasan_enabled())
129
return;
130
131
/*
132
* Perform shadow offset calculation based on untagged address, as
133
* some of the callers (e.g. kasan_poison_new_object) pass tagged
134
* addresses to this function.
135
*/
136
addr = kasan_reset_tag(addr);
137
138
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
139
return;
140
if (WARN_ON(size & KASAN_GRANULE_MASK))
141
return;
142
143
shadow_start = kasan_mem_to_shadow(addr);
144
shadow_end = kasan_mem_to_shadow(addr + size);
145
146
__memset(shadow_start, value, shadow_end - shadow_start);
147
}
148
EXPORT_SYMBOL_GPL(kasan_poison);
149
150
#ifdef CONFIG_KASAN_GENERIC
151
void kasan_poison_last_granule(const void *addr, size_t size)
152
{
153
if (!kasan_enabled())
154
return;
155
156
if (size & KASAN_GRANULE_MASK) {
157
u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158
*shadow = size & KASAN_GRANULE_MASK;
159
}
160
}
161
#endif
162
163
void kasan_unpoison(const void *addr, size_t size, bool init)
164
{
165
u8 tag = get_tag(addr);
166
167
/*
168
* Perform shadow offset calculation based on untagged address, as
169
* some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170
* addresses to this function.
171
*/
172
addr = kasan_reset_tag(addr);
173
174
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
175
return;
176
177
/* Unpoison all granules that cover the object. */
178
kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
179
180
/* Partially poison the last granule for the generic mode. */
181
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182
kasan_poison_last_granule(addr, size);
183
}
184
185
#ifdef CONFIG_MEMORY_HOTPLUG
186
static bool shadow_mapped(unsigned long addr)
187
{
188
pgd_t *pgd = pgd_offset_k(addr);
189
p4d_t *p4d;
190
pud_t *pud;
191
pmd_t *pmd;
192
pte_t *pte;
193
194
if (pgd_none(*pgd))
195
return false;
196
p4d = p4d_offset(pgd, addr);
197
if (p4d_none(*p4d))
198
return false;
199
pud = pud_offset(p4d, addr);
200
if (pud_none(*pud))
201
return false;
202
if (pud_leaf(*pud))
203
return true;
204
pmd = pmd_offset(pud, addr);
205
if (pmd_none(*pmd))
206
return false;
207
if (pmd_leaf(*pmd))
208
return true;
209
pte = pte_offset_kernel(pmd, addr);
210
return !pte_none(ptep_get(pte));
211
}
212
213
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
214
unsigned long action, void *data)
215
{
216
struct memory_notify *mem_data = data;
217
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
218
unsigned long shadow_end, shadow_size;
219
220
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
221
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
222
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
223
shadow_size = nr_shadow_pages << PAGE_SHIFT;
224
shadow_end = shadow_start + shadow_size;
225
226
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
227
WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
228
return NOTIFY_BAD;
229
230
switch (action) {
231
case MEM_GOING_ONLINE: {
232
void *ret;
233
234
/*
235
* If shadow is mapped already than it must have been mapped
236
* during the boot. This could happen if we onlining previously
237
* offlined memory.
238
*/
239
if (shadow_mapped(shadow_start))
240
return NOTIFY_OK;
241
242
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
243
shadow_end, GFP_KERNEL,
244
PAGE_KERNEL, VM_NO_GUARD,
245
pfn_to_nid(mem_data->start_pfn),
246
__builtin_return_address(0));
247
if (!ret)
248
return NOTIFY_BAD;
249
250
kmemleak_ignore(ret);
251
return NOTIFY_OK;
252
}
253
case MEM_CANCEL_ONLINE:
254
case MEM_OFFLINE: {
255
struct vm_struct *vm;
256
257
/*
258
* shadow_start was either mapped during boot by kasan_init()
259
* or during memory online by __vmalloc_node_range().
260
* In the latter case we can use vfree() to free shadow.
261
* Non-NULL result of the find_vm_area() will tell us if
262
* that was the second case.
263
*
264
* Currently it's not possible to free shadow mapped
265
* during boot by kasan_init(). It's because the code
266
* to do that hasn't been written yet. So we'll just
267
* leak the memory.
268
*/
269
vm = find_vm_area((void *)shadow_start);
270
if (vm)
271
vfree((void *)shadow_start);
272
}
273
}
274
275
return NOTIFY_OK;
276
}
277
278
static int __init kasan_memhotplug_init(void)
279
{
280
hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
281
282
return 0;
283
}
284
285
core_initcall(kasan_memhotplug_init);
286
#endif
287
288
#ifdef CONFIG_KASAN_VMALLOC
289
290
void __init __weak kasan_populate_early_vm_area_shadow(void *start,
291
unsigned long size)
292
{
293
}
294
295
struct vmalloc_populate_data {
296
unsigned long start;
297
struct page **pages;
298
};
299
300
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
301
void *_data)
302
{
303
struct vmalloc_populate_data *data = _data;
304
struct page *page;
305
pte_t pte;
306
int index;
307
308
arch_leave_lazy_mmu_mode();
309
310
index = PFN_DOWN(addr - data->start);
311
page = data->pages[index];
312
__memset(page_to_virt(page), KASAN_VMALLOC_INVALID, PAGE_SIZE);
313
pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL);
314
315
spin_lock(&init_mm.page_table_lock);
316
if (likely(pte_none(ptep_get(ptep)))) {
317
set_pte_at(&init_mm, addr, ptep, pte);
318
data->pages[index] = NULL;
319
}
320
spin_unlock(&init_mm.page_table_lock);
321
322
arch_enter_lazy_mmu_mode();
323
324
return 0;
325
}
326
327
static void ___free_pages_bulk(struct page **pages, int nr_pages)
328
{
329
int i;
330
331
for (i = 0; i < nr_pages; i++) {
332
if (pages[i]) {
333
__free_pages(pages[i], 0);
334
pages[i] = NULL;
335
}
336
}
337
}
338
339
static int ___alloc_pages_bulk(struct page **pages, int nr_pages, gfp_t gfp_mask)
340
{
341
unsigned long nr_populated, nr_total = nr_pages;
342
struct page **page_array = pages;
343
344
while (nr_pages) {
345
nr_populated = alloc_pages_bulk(gfp_mask, nr_pages, pages);
346
if (!nr_populated) {
347
___free_pages_bulk(page_array, nr_total - nr_pages);
348
return -ENOMEM;
349
}
350
pages += nr_populated;
351
nr_pages -= nr_populated;
352
}
353
354
return 0;
355
}
356
357
static int __kasan_populate_vmalloc_do(unsigned long start, unsigned long end, gfp_t gfp_mask)
358
{
359
unsigned long nr_pages, nr_total = PFN_UP(end - start);
360
struct vmalloc_populate_data data;
361
unsigned int flags;
362
int ret = 0;
363
364
data.pages = (struct page **)__get_free_page(gfp_mask | __GFP_ZERO);
365
if (!data.pages)
366
return -ENOMEM;
367
368
while (nr_total) {
369
nr_pages = min(nr_total, PAGE_SIZE / sizeof(data.pages[0]));
370
ret = ___alloc_pages_bulk(data.pages, nr_pages, gfp_mask);
371
if (ret)
372
break;
373
374
data.start = start;
375
376
/*
377
* page tables allocations ignore external gfp mask, enforce it
378
* by the scope API
379
*/
380
flags = memalloc_apply_gfp_scope(gfp_mask);
381
ret = apply_to_page_range(&init_mm, start, nr_pages * PAGE_SIZE,
382
kasan_populate_vmalloc_pte, &data);
383
memalloc_restore_scope(flags);
384
385
___free_pages_bulk(data.pages, nr_pages);
386
if (ret)
387
break;
388
389
start += nr_pages * PAGE_SIZE;
390
nr_total -= nr_pages;
391
}
392
393
free_page((unsigned long)data.pages);
394
395
return ret;
396
}
397
398
int __kasan_populate_vmalloc(unsigned long addr, unsigned long size, gfp_t gfp_mask)
399
{
400
unsigned long shadow_start, shadow_end;
401
int ret;
402
403
if (!is_vmalloc_or_module_addr((void *)addr))
404
return 0;
405
406
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
407
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
408
409
/*
410
* User Mode Linux maps enough shadow memory for all of virtual memory
411
* at boot, so doesn't need to allocate more on vmalloc, just clear it.
412
*
413
* The remaining CONFIG_UML checks in this file exist for the same
414
* reason.
415
*/
416
if (IS_ENABLED(CONFIG_UML)) {
417
__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
418
return 0;
419
}
420
421
shadow_start = PAGE_ALIGN_DOWN(shadow_start);
422
shadow_end = PAGE_ALIGN(shadow_end);
423
424
ret = __kasan_populate_vmalloc_do(shadow_start, shadow_end, gfp_mask);
425
if (ret)
426
return ret;
427
428
flush_cache_vmap(shadow_start, shadow_end);
429
430
/*
431
* We need to be careful about inter-cpu effects here. Consider:
432
*
433
* CPU#0 CPU#1
434
* WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
435
* p[99] = 1;
436
*
437
* With compiler instrumentation, that ends up looking like this:
438
*
439
* CPU#0 CPU#1
440
* // vmalloc() allocates memory
441
* // let a = area->addr
442
* // we reach kasan_populate_vmalloc
443
* // and call kasan_unpoison:
444
* STORE shadow(a), unpoison_val
445
* ...
446
* STORE shadow(a+99), unpoison_val x = LOAD p
447
* // rest of vmalloc process <data dependency>
448
* STORE p, a LOAD shadow(x+99)
449
*
450
* If there is no barrier between the end of unpoisoning the shadow
451
* and the store of the result to p, the stores could be committed
452
* in a different order by CPU#0, and CPU#1 could erroneously observe
453
* poison in the shadow.
454
*
455
* We need some sort of barrier between the stores.
456
*
457
* In the vmalloc() case, this is provided by a smp_wmb() in
458
* clear_vm_uninitialized_flag(). In the per-cpu allocator and in
459
* get_vm_area() and friends, the caller gets shadow allocated but
460
* doesn't have any pages mapped into the virtual address space that
461
* has been reserved. Mapping those pages in will involve taking and
462
* releasing a page-table lock, which will provide the barrier.
463
*/
464
465
return 0;
466
}
467
468
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
469
void *unused)
470
{
471
pte_t pte;
472
int none;
473
474
arch_leave_lazy_mmu_mode();
475
476
spin_lock(&init_mm.page_table_lock);
477
pte = ptep_get(ptep);
478
none = pte_none(pte);
479
if (likely(!none))
480
pte_clear(&init_mm, addr, ptep);
481
spin_unlock(&init_mm.page_table_lock);
482
483
if (likely(!none))
484
__free_page(pfn_to_page(pte_pfn(pte)));
485
486
arch_enter_lazy_mmu_mode();
487
488
return 0;
489
}
490
491
/*
492
* Release the backing for the vmalloc region [start, end), which
493
* lies within the free region [free_region_start, free_region_end).
494
*
495
* This can be run lazily, long after the region was freed. It runs
496
* under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
497
* infrastructure.
498
*
499
* How does this work?
500
* -------------------
501
*
502
* We have a region that is page aligned, labeled as A.
503
* That might not map onto the shadow in a way that is page-aligned:
504
*
505
* start end
506
* v v
507
* |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
508
* -------- -------- -------- -------- --------
509
* | | | | |
510
* | | | /-------/ |
511
* \-------\|/------/ |/---------------/
512
* ||| ||
513
* |??AAAAAA|AAAAAAAA|AA??????| < shadow
514
* (1) (2) (3)
515
*
516
* First we align the start upwards and the end downwards, so that the
517
* shadow of the region aligns with shadow page boundaries. In the
518
* example, this gives us the shadow page (2). This is the shadow entirely
519
* covered by this allocation.
520
*
521
* Then we have the tricky bits. We want to know if we can free the
522
* partially covered shadow pages - (1) and (3) in the example. For this,
523
* we are given the start and end of the free region that contains this
524
* allocation. Extending our previous example, we could have:
525
*
526
* free_region_start free_region_end
527
* | start end |
528
* v v v v
529
* |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
530
* -------- -------- -------- -------- --------
531
* | | | | |
532
* | | | /-------/ |
533
* \-------\|/------/ |/---------------/
534
* ||| ||
535
* |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
536
* (1) (2) (3)
537
*
538
* Once again, we align the start of the free region up, and the end of
539
* the free region down so that the shadow is page aligned. So we can free
540
* page (1) - we know no allocation currently uses anything in that page,
541
* because all of it is in the vmalloc free region. But we cannot free
542
* page (3), because we can't be sure that the rest of it is unused.
543
*
544
* We only consider pages that contain part of the original region for
545
* freeing: we don't try to free other pages from the free region or we'd
546
* end up trying to free huge chunks of virtual address space.
547
*
548
* Concurrency
549
* -----------
550
*
551
* How do we know that we're not freeing a page that is simultaneously
552
* being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
553
*
554
* We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
555
* at the same time. While we run under free_vmap_area_lock, the population
556
* code does not.
557
*
558
* free_vmap_area_lock instead operates to ensure that the larger range
559
* [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
560
* the per-cpu region-finding algorithm both run under free_vmap_area_lock,
561
* no space identified as free will become used while we are running. This
562
* means that so long as we are careful with alignment and only free shadow
563
* pages entirely covered by the free region, we will not run in to any
564
* trouble - any simultaneous allocations will be for disjoint regions.
565
*/
566
void __kasan_release_vmalloc(unsigned long start, unsigned long end,
567
unsigned long free_region_start,
568
unsigned long free_region_end,
569
unsigned long flags)
570
{
571
void *shadow_start, *shadow_end;
572
unsigned long region_start, region_end;
573
unsigned long size;
574
575
region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
576
region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
577
578
free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
579
580
if (start != region_start &&
581
free_region_start < region_start)
582
region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
583
584
free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
585
586
if (end != region_end &&
587
free_region_end > region_end)
588
region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
589
590
shadow_start = kasan_mem_to_shadow((void *)region_start);
591
shadow_end = kasan_mem_to_shadow((void *)region_end);
592
593
if (shadow_end > shadow_start) {
594
size = shadow_end - shadow_start;
595
if (IS_ENABLED(CONFIG_UML)) {
596
__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
597
return;
598
}
599
600
601
if (flags & KASAN_VMALLOC_PAGE_RANGE)
602
apply_to_existing_page_range(&init_mm,
603
(unsigned long)shadow_start,
604
size, kasan_depopulate_vmalloc_pte,
605
NULL);
606
607
if (flags & KASAN_VMALLOC_TLB_FLUSH)
608
flush_tlb_kernel_range((unsigned long)shadow_start,
609
(unsigned long)shadow_end);
610
}
611
}
612
613
void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
614
kasan_vmalloc_flags_t flags)
615
{
616
/*
617
* Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
618
* mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
619
* Software KASAN modes can't optimize zeroing memory by combining it
620
* with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
621
*/
622
623
if (!is_vmalloc_or_module_addr(start))
624
return (void *)start;
625
626
/*
627
* Don't tag executable memory with the tag-based mode.
628
* The kernel doesn't tolerate having the PC register tagged.
629
*/
630
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
631
!(flags & KASAN_VMALLOC_PROT_NORMAL))
632
return (void *)start;
633
634
if (unlikely(!(flags & KASAN_VMALLOC_KEEP_TAG)))
635
start = set_tag(start, kasan_random_tag());
636
637
kasan_unpoison(start, size, false);
638
return (void *)start;
639
}
640
641
/*
642
* Poison the shadow for a vmalloc region. Called as part of the
643
* freeing process at the time the region is freed.
644
*/
645
void __kasan_poison_vmalloc(const void *start, unsigned long size)
646
{
647
if (!is_vmalloc_or_module_addr(start))
648
return;
649
650
size = round_up(size, KASAN_GRANULE_SIZE);
651
kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
652
}
653
654
#else /* CONFIG_KASAN_VMALLOC */
655
656
int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
657
{
658
void *ret;
659
size_t scaled_size;
660
size_t shadow_size;
661
unsigned long shadow_start;
662
663
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
664
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
665
KASAN_SHADOW_SCALE_SHIFT;
666
shadow_size = round_up(scaled_size, PAGE_SIZE);
667
668
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
669
return -EINVAL;
670
671
if (IS_ENABLED(CONFIG_UML)) {
672
__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
673
return 0;
674
}
675
676
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
677
shadow_start + shadow_size,
678
GFP_KERNEL,
679
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
680
__builtin_return_address(0));
681
682
if (ret) {
683
struct vm_struct *vm = find_vm_area(addr);
684
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
685
vm->flags |= VM_KASAN;
686
kmemleak_ignore(ret);
687
688
if (vm->flags & VM_DEFER_KMEMLEAK)
689
kmemleak_vmalloc(vm, size, gfp_mask);
690
691
return 0;
692
}
693
694
return -ENOMEM;
695
}
696
697
void kasan_free_module_shadow(const struct vm_struct *vm)
698
{
699
if (IS_ENABLED(CONFIG_UML))
700
return;
701
702
if (vm->flags & VM_KASAN)
703
vfree(kasan_mem_to_shadow(vm->addr));
704
}
705
706
#endif
707
708