Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kfence/core.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* KFENCE guarded object allocator and fault handling.
4
*
5
* Copyright (C) 2020, Google LLC.
6
*/
7
8
#define pr_fmt(fmt) "kfence: " fmt
9
10
#include <linux/atomic.h>
11
#include <linux/bug.h>
12
#include <linux/debugfs.h>
13
#include <linux/hash.h>
14
#include <linux/irq_work.h>
15
#include <linux/jhash.h>
16
#include <linux/kcsan-checks.h>
17
#include <linux/kfence.h>
18
#include <linux/kmemleak.h>
19
#include <linux/list.h>
20
#include <linux/lockdep.h>
21
#include <linux/log2.h>
22
#include <linux/memblock.h>
23
#include <linux/moduleparam.h>
24
#include <linux/nodemask.h>
25
#include <linux/notifier.h>
26
#include <linux/panic_notifier.h>
27
#include <linux/random.h>
28
#include <linux/rcupdate.h>
29
#include <linux/sched/clock.h>
30
#include <linux/seq_file.h>
31
#include <linux/slab.h>
32
#include <linux/spinlock.h>
33
#include <linux/string.h>
34
35
#include <asm/kfence.h>
36
37
#include "kfence.h"
38
39
/* Disables KFENCE on the first warning assuming an irrecoverable error. */
40
#define KFENCE_WARN_ON(cond) \
41
({ \
42
const bool __cond = WARN_ON(cond); \
43
if (unlikely(__cond)) { \
44
WRITE_ONCE(kfence_enabled, false); \
45
disabled_by_warn = true; \
46
} \
47
__cond; \
48
})
49
50
/* === Data ================================================================= */
51
52
static bool kfence_enabled __read_mostly;
53
static bool disabled_by_warn __read_mostly;
54
55
unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56
EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58
#ifdef MODULE_PARAM_PREFIX
59
#undef MODULE_PARAM_PREFIX
60
#endif
61
#define MODULE_PARAM_PREFIX "kfence."
62
63
static int kfence_enable_late(void);
64
static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65
{
66
unsigned long num;
67
int ret = kstrtoul(val, 0, &num);
68
69
if (ret < 0)
70
return ret;
71
72
/* Using 0 to indicate KFENCE is disabled. */
73
if (!num && READ_ONCE(kfence_enabled)) {
74
pr_info("disabled\n");
75
WRITE_ONCE(kfence_enabled, false);
76
}
77
78
*((unsigned long *)kp->arg) = num;
79
80
if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81
return disabled_by_warn ? -EINVAL : kfence_enable_late();
82
return 0;
83
}
84
85
static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86
{
87
if (!READ_ONCE(kfence_enabled))
88
return sprintf(buffer, "0\n");
89
90
return param_get_ulong(buffer, kp);
91
}
92
93
static const struct kernel_param_ops sample_interval_param_ops = {
94
.set = param_set_sample_interval,
95
.get = param_get_sample_interval,
96
};
97
module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99
/* Pool usage% threshold when currently covered allocations are skipped. */
100
static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101
module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103
/* Allocation burst count: number of excess KFENCE allocations per sample. */
104
static unsigned int kfence_burst __read_mostly;
105
module_param_named(burst, kfence_burst, uint, 0644);
106
107
/* If true, use a deferrable timer. */
108
static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
109
module_param_named(deferrable, kfence_deferrable, bool, 0444);
110
111
/* If true, check all canary bytes on panic. */
112
static bool kfence_check_on_panic __read_mostly;
113
module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
114
115
/* The pool of pages used for guard pages and objects. */
116
char *__kfence_pool __read_mostly;
117
EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
118
119
/*
120
* Per-object metadata, with one-to-one mapping of object metadata to
121
* backing pages (in __kfence_pool).
122
*/
123
static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
124
struct kfence_metadata *kfence_metadata __read_mostly;
125
126
/*
127
* If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
128
* So introduce kfence_metadata_init to initialize metadata, and then make
129
* kfence_metadata visible after initialization is successful. This prevents
130
* potential UAF or access to uninitialized metadata.
131
*/
132
static struct kfence_metadata *kfence_metadata_init __read_mostly;
133
134
/* Freelist with available objects. */
135
static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
136
static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
137
138
/*
139
* The static key to set up a KFENCE allocation; or if static keys are not used
140
* to gate allocations, to avoid a load and compare if KFENCE is disabled.
141
*/
142
DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
143
144
/* Gates the allocation, ensuring only one succeeds in a given period. */
145
atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
146
147
/*
148
* A Counting Bloom filter of allocation coverage: limits currently covered
149
* allocations of the same source filling up the pool.
150
*
151
* Assuming a range of 15%-85% unique allocations in the pool at any point in
152
* time, the below parameters provide a probablity of 0.02-0.33 for false
153
* positive hits respectively:
154
*
155
* P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
156
*/
157
#define ALLOC_COVERED_HNUM 2
158
#define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
159
#define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
160
#define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
161
#define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
162
static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
163
164
/* Stack depth used to determine uniqueness of an allocation. */
165
#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
166
167
/*
168
* Randomness for stack hashes, making the same collisions across reboots and
169
* different machines less likely.
170
*/
171
static u32 stack_hash_seed __ro_after_init;
172
173
/* Statistics counters for debugfs. */
174
enum kfence_counter_id {
175
KFENCE_COUNTER_ALLOCATED,
176
KFENCE_COUNTER_ALLOCS,
177
KFENCE_COUNTER_FREES,
178
KFENCE_COUNTER_ZOMBIES,
179
KFENCE_COUNTER_BUGS,
180
KFENCE_COUNTER_SKIP_INCOMPAT,
181
KFENCE_COUNTER_SKIP_CAPACITY,
182
KFENCE_COUNTER_SKIP_COVERED,
183
KFENCE_COUNTER_COUNT,
184
};
185
static atomic_long_t counters[KFENCE_COUNTER_COUNT];
186
static const char *const counter_names[] = {
187
[KFENCE_COUNTER_ALLOCATED] = "currently allocated",
188
[KFENCE_COUNTER_ALLOCS] = "total allocations",
189
[KFENCE_COUNTER_FREES] = "total frees",
190
[KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
191
[KFENCE_COUNTER_BUGS] = "total bugs",
192
[KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
193
[KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
194
[KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
195
};
196
static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
197
198
/* === Internals ============================================================ */
199
200
static inline bool should_skip_covered(void)
201
{
202
unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
203
204
return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
205
}
206
207
static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
208
{
209
num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
210
num_entries = filter_irq_stacks(stack_entries, num_entries);
211
return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
212
}
213
214
/*
215
* Adds (or subtracts) count @val for allocation stack trace hash
216
* @alloc_stack_hash from Counting Bloom filter.
217
*/
218
static void alloc_covered_add(u32 alloc_stack_hash, int val)
219
{
220
int i;
221
222
for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
223
atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
224
alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
225
}
226
}
227
228
/*
229
* Returns true if the allocation stack trace hash @alloc_stack_hash is
230
* currently contained (non-zero count) in Counting Bloom filter.
231
*/
232
static bool alloc_covered_contains(u32 alloc_stack_hash)
233
{
234
int i;
235
236
for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
237
if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
238
return false;
239
alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
240
}
241
242
return true;
243
}
244
245
static bool kfence_protect(unsigned long addr)
246
{
247
return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
248
}
249
250
static bool kfence_unprotect(unsigned long addr)
251
{
252
return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
253
}
254
255
static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
256
{
257
unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258
unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
259
260
/* The checks do not affect performance; only called from slow-paths. */
261
262
/* Only call with a pointer into kfence_metadata. */
263
if (KFENCE_WARN_ON(meta < kfence_metadata ||
264
meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
265
return 0;
266
267
/*
268
* This metadata object only ever maps to 1 page; verify that the stored
269
* address is in the expected range.
270
*/
271
if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
272
return 0;
273
274
return pageaddr;
275
}
276
277
static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
278
{
279
enum kfence_object_state state = READ_ONCE(meta->state);
280
281
return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
282
}
283
284
/*
285
* Update the object's metadata state, including updating the alloc/free stacks
286
* depending on the state transition.
287
*/
288
static noinline void
289
metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
290
unsigned long *stack_entries, size_t num_stack_entries)
291
{
292
struct kfence_track *track =
293
next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
294
295
lockdep_assert_held(&meta->lock);
296
297
/* Stack has been saved when calling rcu, skip. */
298
if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
299
goto out;
300
301
if (stack_entries) {
302
memcpy(track->stack_entries, stack_entries,
303
num_stack_entries * sizeof(stack_entries[0]));
304
} else {
305
/*
306
* Skip over 1 (this) functions; noinline ensures we do not
307
* accidentally skip over the caller by never inlining.
308
*/
309
num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
310
}
311
track->num_stack_entries = num_stack_entries;
312
track->pid = task_pid_nr(current);
313
track->cpu = raw_smp_processor_id();
314
track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
315
316
out:
317
/*
318
* Pairs with READ_ONCE() in
319
* kfence_shutdown_cache(),
320
* kfence_handle_page_fault().
321
*/
322
WRITE_ONCE(meta->state, next);
323
}
324
325
#ifdef CONFIG_KMSAN
326
#define check_canary_attributes noinline __no_kmsan_checks
327
#else
328
#define check_canary_attributes inline
329
#endif
330
331
/* Check canary byte at @addr. */
332
static check_canary_attributes bool check_canary_byte(u8 *addr)
333
{
334
struct kfence_metadata *meta;
335
unsigned long flags;
336
337
if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
338
return true;
339
340
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
341
342
meta = addr_to_metadata((unsigned long)addr);
343
raw_spin_lock_irqsave(&meta->lock, flags);
344
kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
345
raw_spin_unlock_irqrestore(&meta->lock, flags);
346
347
return false;
348
}
349
350
static inline void set_canary(const struct kfence_metadata *meta)
351
{
352
const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
353
unsigned long addr = pageaddr;
354
355
/*
356
* The canary may be written to part of the object memory, but it does
357
* not affect it. The user should initialize the object before using it.
358
*/
359
for (; addr < meta->addr; addr += sizeof(u64))
360
*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
361
362
addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
363
for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
364
*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
365
}
366
367
static check_canary_attributes void
368
check_canary(const struct kfence_metadata *meta)
369
{
370
const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
371
unsigned long addr = pageaddr;
372
373
/*
374
* We'll iterate over each canary byte per-side until a corrupted byte
375
* is found. However, we'll still iterate over the canary bytes to the
376
* right of the object even if there was an error in the canary bytes to
377
* the left of the object. Specifically, if check_canary_byte()
378
* generates an error, showing both sides might give more clues as to
379
* what the error is about when displaying which bytes were corrupted.
380
*/
381
382
/* Apply to left of object. */
383
for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
384
if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
385
break;
386
}
387
388
/*
389
* If the canary is corrupted in a certain 64 bytes, or the canary
390
* memory cannot be completely covered by multiple consecutive 64 bytes,
391
* it needs to be checked one by one.
392
*/
393
for (; addr < meta->addr; addr++) {
394
if (unlikely(!check_canary_byte((u8 *)addr)))
395
break;
396
}
397
398
/* Apply to right of object. */
399
for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
400
if (unlikely(!check_canary_byte((u8 *)addr)))
401
return;
402
}
403
for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
404
if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
405
406
for (; addr - pageaddr < PAGE_SIZE; addr++) {
407
if (!check_canary_byte((u8 *)addr))
408
return;
409
}
410
}
411
}
412
}
413
414
static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
415
unsigned long *stack_entries, size_t num_stack_entries,
416
u32 alloc_stack_hash)
417
{
418
struct kfence_metadata *meta = NULL;
419
unsigned long flags;
420
struct slab *slab;
421
void *addr;
422
const bool random_right_allocate = get_random_u32_below(2);
423
const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
424
!get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
425
426
/* Try to obtain a free object. */
427
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
428
if (!list_empty(&kfence_freelist)) {
429
meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
430
list_del_init(&meta->list);
431
}
432
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
433
if (!meta) {
434
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
435
return NULL;
436
}
437
438
if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
439
/*
440
* This is extremely unlikely -- we are reporting on a
441
* use-after-free, which locked meta->lock, and the reporting
442
* code via printk calls kmalloc() which ends up in
443
* kfence_alloc() and tries to grab the same object that we're
444
* reporting on. While it has never been observed, lockdep does
445
* report that there is a possibility of deadlock. Fix it by
446
* using trylock and bailing out gracefully.
447
*/
448
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
449
/* Put the object back on the freelist. */
450
list_add_tail(&meta->list, &kfence_freelist);
451
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
452
453
return NULL;
454
}
455
456
meta->addr = metadata_to_pageaddr(meta);
457
/* Unprotect if we're reusing this page. */
458
if (meta->state == KFENCE_OBJECT_FREED)
459
kfence_unprotect(meta->addr);
460
461
/*
462
* Note: for allocations made before RNG initialization, will always
463
* return zero. We still benefit from enabling KFENCE as early as
464
* possible, even when the RNG is not yet available, as this will allow
465
* KFENCE to detect bugs due to earlier allocations. The only downside
466
* is that the out-of-bounds accesses detected are deterministic for
467
* such allocations.
468
*/
469
if (random_right_allocate) {
470
/* Allocate on the "right" side, re-calculate address. */
471
meta->addr += PAGE_SIZE - size;
472
meta->addr = ALIGN_DOWN(meta->addr, cache->align);
473
}
474
475
addr = (void *)meta->addr;
476
477
/* Update remaining metadata. */
478
metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
479
/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
480
WRITE_ONCE(meta->cache, cache);
481
meta->size = size;
482
meta->alloc_stack_hash = alloc_stack_hash;
483
raw_spin_unlock_irqrestore(&meta->lock, flags);
484
485
alloc_covered_add(alloc_stack_hash, 1);
486
487
/* Set required slab fields. */
488
slab = virt_to_slab((void *)meta->addr);
489
slab->slab_cache = cache;
490
slab->objects = 1;
491
492
/* Memory initialization. */
493
set_canary(meta);
494
495
/*
496
* We check slab_want_init_on_alloc() ourselves, rather than letting
497
* SL*B do the initialization, as otherwise we might overwrite KFENCE's
498
* redzone.
499
*/
500
if (unlikely(slab_want_init_on_alloc(gfp, cache)))
501
memzero_explicit(addr, size);
502
if (cache->ctor)
503
cache->ctor(addr);
504
505
if (random_fault)
506
kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
507
508
atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
509
atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
510
511
return addr;
512
}
513
514
static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
515
{
516
struct kcsan_scoped_access assert_page_exclusive;
517
unsigned long flags;
518
bool init;
519
520
raw_spin_lock_irqsave(&meta->lock, flags);
521
522
if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
523
/* Invalid or double-free, bail out. */
524
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
525
kfence_report_error((unsigned long)addr, false, NULL, meta,
526
KFENCE_ERROR_INVALID_FREE);
527
raw_spin_unlock_irqrestore(&meta->lock, flags);
528
return;
529
}
530
531
/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
532
kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
533
KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
534
&assert_page_exclusive);
535
536
if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
537
kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
538
539
/* Restore page protection if there was an OOB access. */
540
if (meta->unprotected_page) {
541
memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
542
kfence_protect(meta->unprotected_page);
543
meta->unprotected_page = 0;
544
}
545
546
/* Mark the object as freed. */
547
metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
548
init = slab_want_init_on_free(meta->cache);
549
raw_spin_unlock_irqrestore(&meta->lock, flags);
550
551
alloc_covered_add(meta->alloc_stack_hash, -1);
552
553
/* Check canary bytes for memory corruption. */
554
check_canary(meta);
555
556
/*
557
* Clear memory if init-on-free is set. While we protect the page, the
558
* data is still there, and after a use-after-free is detected, we
559
* unprotect the page, so the data is still accessible.
560
*/
561
if (!zombie && unlikely(init))
562
memzero_explicit(addr, meta->size);
563
564
/* Protect to detect use-after-frees. */
565
kfence_protect((unsigned long)addr);
566
567
kcsan_end_scoped_access(&assert_page_exclusive);
568
if (!zombie) {
569
/* Add it to the tail of the freelist for reuse. */
570
raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
571
KFENCE_WARN_ON(!list_empty(&meta->list));
572
list_add_tail(&meta->list, &kfence_freelist);
573
raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
574
575
atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
576
atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
577
} else {
578
/* See kfence_shutdown_cache(). */
579
atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
580
}
581
}
582
583
static void rcu_guarded_free(struct rcu_head *h)
584
{
585
struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
586
587
kfence_guarded_free((void *)meta->addr, meta, false);
588
}
589
590
/*
591
* Initialization of the KFENCE pool after its allocation.
592
* Returns 0 on success; otherwise returns the address up to
593
* which partial initialization succeeded.
594
*/
595
static unsigned long kfence_init_pool(void)
596
{
597
unsigned long addr;
598
struct page *pages;
599
int i;
600
601
if (!arch_kfence_init_pool())
602
return (unsigned long)__kfence_pool;
603
604
addr = (unsigned long)__kfence_pool;
605
pages = virt_to_page(__kfence_pool);
606
607
/*
608
* Set up object pages: they must have PGTY_slab set to avoid freeing
609
* them as real pages.
610
*
611
* We also want to avoid inserting kfence_free() in the kfree()
612
* fast-path in SLUB, and therefore need to ensure kfree() correctly
613
* enters __slab_free() slow-path.
614
*/
615
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
616
struct slab *slab = page_slab(nth_page(pages, i));
617
618
if (!i || (i % 2))
619
continue;
620
621
__folio_set_slab(slab_folio(slab));
622
#ifdef CONFIG_MEMCG
623
slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
624
MEMCG_DATA_OBJEXTS;
625
#endif
626
}
627
628
/*
629
* Protect the first 2 pages. The first page is mostly unnecessary, and
630
* merely serves as an extended guard page. However, adding one
631
* additional page in the beginning gives us an even number of pages,
632
* which simplifies the mapping of address to metadata index.
633
*/
634
for (i = 0; i < 2; i++) {
635
if (unlikely(!kfence_protect(addr)))
636
return addr;
637
638
addr += PAGE_SIZE;
639
}
640
641
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
642
struct kfence_metadata *meta = &kfence_metadata_init[i];
643
644
/* Initialize metadata. */
645
INIT_LIST_HEAD(&meta->list);
646
raw_spin_lock_init(&meta->lock);
647
meta->state = KFENCE_OBJECT_UNUSED;
648
meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
649
list_add_tail(&meta->list, &kfence_freelist);
650
651
/* Protect the right redzone. */
652
if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
653
goto reset_slab;
654
655
addr += 2 * PAGE_SIZE;
656
}
657
658
/*
659
* Make kfence_metadata visible only when initialization is successful.
660
* Otherwise, if the initialization fails and kfence_metadata is freed,
661
* it may cause UAF in kfence_shutdown_cache().
662
*/
663
smp_store_release(&kfence_metadata, kfence_metadata_init);
664
return 0;
665
666
reset_slab:
667
for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
668
struct slab *slab = page_slab(nth_page(pages, i));
669
670
if (!i || (i % 2))
671
continue;
672
#ifdef CONFIG_MEMCG
673
slab->obj_exts = 0;
674
#endif
675
__folio_clear_slab(slab_folio(slab));
676
}
677
678
return addr;
679
}
680
681
static bool __init kfence_init_pool_early(void)
682
{
683
unsigned long addr;
684
685
if (!__kfence_pool)
686
return false;
687
688
addr = kfence_init_pool();
689
690
if (!addr) {
691
/*
692
* The pool is live and will never be deallocated from this point on.
693
* Ignore the pool object from the kmemleak phys object tree, as it would
694
* otherwise overlap with allocations returned by kfence_alloc(), which
695
* are registered with kmemleak through the slab post-alloc hook.
696
*/
697
kmemleak_ignore_phys(__pa(__kfence_pool));
698
return true;
699
}
700
701
/*
702
* Only release unprotected pages, and do not try to go back and change
703
* page attributes due to risk of failing to do so as well. If changing
704
* page attributes for some pages fails, it is very likely that it also
705
* fails for the first page, and therefore expect addr==__kfence_pool in
706
* most failure cases.
707
*/
708
memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
709
__kfence_pool = NULL;
710
711
memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
712
kfence_metadata_init = NULL;
713
714
return false;
715
}
716
717
/* === DebugFS Interface ==================================================== */
718
719
static int stats_show(struct seq_file *seq, void *v)
720
{
721
int i;
722
723
seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
724
for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
725
seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
726
727
return 0;
728
}
729
DEFINE_SHOW_ATTRIBUTE(stats);
730
731
/*
732
* debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
733
* start_object() and next_object() return the object index + 1, because NULL is used
734
* to stop iteration.
735
*/
736
static void *start_object(struct seq_file *seq, loff_t *pos)
737
{
738
if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
739
return (void *)((long)*pos + 1);
740
return NULL;
741
}
742
743
static void stop_object(struct seq_file *seq, void *v)
744
{
745
}
746
747
static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
748
{
749
++*pos;
750
if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
751
return (void *)((long)*pos + 1);
752
return NULL;
753
}
754
755
static int show_object(struct seq_file *seq, void *v)
756
{
757
struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
758
unsigned long flags;
759
760
raw_spin_lock_irqsave(&meta->lock, flags);
761
kfence_print_object(seq, meta);
762
raw_spin_unlock_irqrestore(&meta->lock, flags);
763
seq_puts(seq, "---------------------------------\n");
764
765
return 0;
766
}
767
768
static const struct seq_operations objects_sops = {
769
.start = start_object,
770
.next = next_object,
771
.stop = stop_object,
772
.show = show_object,
773
};
774
DEFINE_SEQ_ATTRIBUTE(objects);
775
776
static int kfence_debugfs_init(void)
777
{
778
struct dentry *kfence_dir;
779
780
if (!READ_ONCE(kfence_enabled))
781
return 0;
782
783
kfence_dir = debugfs_create_dir("kfence", NULL);
784
debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
785
debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
786
return 0;
787
}
788
789
late_initcall(kfence_debugfs_init);
790
791
/* === Panic Notifier ====================================================== */
792
793
static void kfence_check_all_canary(void)
794
{
795
int i;
796
797
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
798
struct kfence_metadata *meta = &kfence_metadata[i];
799
800
if (kfence_obj_allocated(meta))
801
check_canary(meta);
802
}
803
}
804
805
static int kfence_check_canary_callback(struct notifier_block *nb,
806
unsigned long reason, void *arg)
807
{
808
kfence_check_all_canary();
809
return NOTIFY_OK;
810
}
811
812
static struct notifier_block kfence_check_canary_notifier = {
813
.notifier_call = kfence_check_canary_callback,
814
};
815
816
/* === Allocation Gate Timer ================================================ */
817
818
static struct delayed_work kfence_timer;
819
820
#ifdef CONFIG_KFENCE_STATIC_KEYS
821
/* Wait queue to wake up allocation-gate timer task. */
822
static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
823
824
static void wake_up_kfence_timer(struct irq_work *work)
825
{
826
wake_up(&allocation_wait);
827
}
828
static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
829
#endif
830
831
/*
832
* Set up delayed work, which will enable and disable the static key. We need to
833
* use a work queue (rather than a simple timer), since enabling and disabling a
834
* static key cannot be done from an interrupt.
835
*
836
* Note: Toggling a static branch currently causes IPIs, and here we'll end up
837
* with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
838
* more aggressive sampling intervals), we could get away with a variant that
839
* avoids IPIs, at the cost of not immediately capturing allocations if the
840
* instructions remain cached.
841
*/
842
static void toggle_allocation_gate(struct work_struct *work)
843
{
844
if (!READ_ONCE(kfence_enabled))
845
return;
846
847
atomic_set(&kfence_allocation_gate, -kfence_burst);
848
#ifdef CONFIG_KFENCE_STATIC_KEYS
849
/* Enable static key, and await allocation to happen. */
850
static_branch_enable(&kfence_allocation_key);
851
852
wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
853
854
/* Disable static key and reset timer. */
855
static_branch_disable(&kfence_allocation_key);
856
#endif
857
queue_delayed_work(system_unbound_wq, &kfence_timer,
858
msecs_to_jiffies(kfence_sample_interval));
859
}
860
861
/* === Public interface ===================================================== */
862
863
void __init kfence_alloc_pool_and_metadata(void)
864
{
865
if (!kfence_sample_interval)
866
return;
867
868
/*
869
* If the pool has already been initialized by arch, there is no need to
870
* re-allocate the memory pool.
871
*/
872
if (!__kfence_pool)
873
__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
874
875
if (!__kfence_pool) {
876
pr_err("failed to allocate pool\n");
877
return;
878
}
879
880
/* The memory allocated by memblock has been zeroed out. */
881
kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
882
if (!kfence_metadata_init) {
883
pr_err("failed to allocate metadata\n");
884
memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
885
__kfence_pool = NULL;
886
}
887
}
888
889
static void kfence_init_enable(void)
890
{
891
if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
892
static_branch_enable(&kfence_allocation_key);
893
894
if (kfence_deferrable)
895
INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
896
else
897
INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
898
899
if (kfence_check_on_panic)
900
atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
901
902
WRITE_ONCE(kfence_enabled, true);
903
queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
904
905
pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
906
CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
907
(void *)(__kfence_pool + KFENCE_POOL_SIZE));
908
}
909
910
void __init kfence_init(void)
911
{
912
stack_hash_seed = get_random_u32();
913
914
/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
915
if (!kfence_sample_interval)
916
return;
917
918
if (!kfence_init_pool_early()) {
919
pr_err("%s failed\n", __func__);
920
return;
921
}
922
923
kfence_init_enable();
924
}
925
926
static int kfence_init_late(void)
927
{
928
const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
929
const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
930
unsigned long addr = (unsigned long)__kfence_pool;
931
unsigned long free_size = KFENCE_POOL_SIZE;
932
int err = -ENOMEM;
933
934
#ifdef CONFIG_CONTIG_ALLOC
935
struct page *pages;
936
937
pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
938
NULL);
939
if (!pages)
940
return -ENOMEM;
941
942
__kfence_pool = page_to_virt(pages);
943
pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
944
NULL);
945
if (pages)
946
kfence_metadata_init = page_to_virt(pages);
947
#else
948
if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
949
nr_pages_meta > MAX_ORDER_NR_PAGES) {
950
pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
951
return -EINVAL;
952
}
953
954
__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
955
if (!__kfence_pool)
956
return -ENOMEM;
957
958
kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
959
#endif
960
961
if (!kfence_metadata_init)
962
goto free_pool;
963
964
memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
965
addr = kfence_init_pool();
966
if (!addr) {
967
kfence_init_enable();
968
kfence_debugfs_init();
969
return 0;
970
}
971
972
pr_err("%s failed\n", __func__);
973
free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
974
err = -EBUSY;
975
976
#ifdef CONFIG_CONTIG_ALLOC
977
free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
978
nr_pages_meta);
979
free_pool:
980
free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
981
free_size / PAGE_SIZE);
982
#else
983
free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
984
free_pool:
985
free_pages_exact((void *)addr, free_size);
986
#endif
987
988
kfence_metadata_init = NULL;
989
__kfence_pool = NULL;
990
return err;
991
}
992
993
static int kfence_enable_late(void)
994
{
995
if (!__kfence_pool)
996
return kfence_init_late();
997
998
WRITE_ONCE(kfence_enabled, true);
999
queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1000
pr_info("re-enabled\n");
1001
return 0;
1002
}
1003
1004
void kfence_shutdown_cache(struct kmem_cache *s)
1005
{
1006
unsigned long flags;
1007
struct kfence_metadata *meta;
1008
int i;
1009
1010
/* Pairs with release in kfence_init_pool(). */
1011
if (!smp_load_acquire(&kfence_metadata))
1012
return;
1013
1014
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1015
bool in_use;
1016
1017
meta = &kfence_metadata[i];
1018
1019
/*
1020
* If we observe some inconsistent cache and state pair where we
1021
* should have returned false here, cache destruction is racing
1022
* with either kmem_cache_alloc() or kmem_cache_free(). Taking
1023
* the lock will not help, as different critical section
1024
* serialization will have the same outcome.
1025
*/
1026
if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1027
continue;
1028
1029
raw_spin_lock_irqsave(&meta->lock, flags);
1030
in_use = meta->cache == s && kfence_obj_allocated(meta);
1031
raw_spin_unlock_irqrestore(&meta->lock, flags);
1032
1033
if (in_use) {
1034
/*
1035
* This cache still has allocations, and we should not
1036
* release them back into the freelist so they can still
1037
* safely be used and retain the kernel's default
1038
* behaviour of keeping the allocations alive (leak the
1039
* cache); however, they effectively become "zombie
1040
* allocations" as the KFENCE objects are the only ones
1041
* still in use and the owning cache is being destroyed.
1042
*
1043
* We mark them freed, so that any subsequent use shows
1044
* more useful error messages that will include stack
1045
* traces of the user of the object, the original
1046
* allocation, and caller to shutdown_cache().
1047
*/
1048
kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1049
}
1050
}
1051
1052
for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1053
meta = &kfence_metadata[i];
1054
1055
/* See above. */
1056
if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1057
continue;
1058
1059
raw_spin_lock_irqsave(&meta->lock, flags);
1060
if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1061
meta->cache = NULL;
1062
raw_spin_unlock_irqrestore(&meta->lock, flags);
1063
}
1064
}
1065
1066
void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1067
{
1068
unsigned long stack_entries[KFENCE_STACK_DEPTH];
1069
size_t num_stack_entries;
1070
u32 alloc_stack_hash;
1071
int allocation_gate;
1072
1073
/*
1074
* Perform size check before switching kfence_allocation_gate, so that
1075
* we don't disable KFENCE without making an allocation.
1076
*/
1077
if (size > PAGE_SIZE) {
1078
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1079
return NULL;
1080
}
1081
1082
/*
1083
* Skip allocations from non-default zones, including DMA. We cannot
1084
* guarantee that pages in the KFENCE pool will have the requested
1085
* properties (e.g. reside in DMAable memory).
1086
*/
1087
if ((flags & GFP_ZONEMASK) ||
1088
((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1089
(s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1090
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1091
return NULL;
1092
}
1093
1094
/*
1095
* Skip allocations for this slab, if KFENCE has been disabled for
1096
* this slab.
1097
*/
1098
if (s->flags & SLAB_SKIP_KFENCE)
1099
return NULL;
1100
1101
allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1102
if (allocation_gate > 1)
1103
return NULL;
1104
#ifdef CONFIG_KFENCE_STATIC_KEYS
1105
/*
1106
* waitqueue_active() is fully ordered after the update of
1107
* kfence_allocation_gate per atomic_inc_return().
1108
*/
1109
if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1110
/*
1111
* Calling wake_up() here may deadlock when allocations happen
1112
* from within timer code. Use an irq_work to defer it.
1113
*/
1114
irq_work_queue(&wake_up_kfence_timer_work);
1115
}
1116
#endif
1117
1118
if (!READ_ONCE(kfence_enabled))
1119
return NULL;
1120
1121
num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1122
1123
/*
1124
* Do expensive check for coverage of allocation in slow-path after
1125
* allocation_gate has already become non-zero, even though it might
1126
* mean not making any allocation within a given sample interval.
1127
*
1128
* This ensures reasonable allocation coverage when the pool is almost
1129
* full, including avoiding long-lived allocations of the same source
1130
* filling up the pool (e.g. pagecache allocations).
1131
*/
1132
alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1133
if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1134
atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1135
return NULL;
1136
}
1137
1138
return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1139
alloc_stack_hash);
1140
}
1141
1142
size_t kfence_ksize(const void *addr)
1143
{
1144
const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1145
1146
/*
1147
* Read locklessly -- if there is a race with __kfence_alloc(), this is
1148
* either a use-after-free or invalid access.
1149
*/
1150
return meta ? meta->size : 0;
1151
}
1152
1153
void *kfence_object_start(const void *addr)
1154
{
1155
const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1156
1157
/*
1158
* Read locklessly -- if there is a race with __kfence_alloc(), this is
1159
* either a use-after-free or invalid access.
1160
*/
1161
return meta ? (void *)meta->addr : NULL;
1162
}
1163
1164
void __kfence_free(void *addr)
1165
{
1166
struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1167
1168
#ifdef CONFIG_MEMCG
1169
KFENCE_WARN_ON(meta->obj_exts.objcg);
1170
#endif
1171
/*
1172
* If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1173
* the object, as the object page may be recycled for other-typed
1174
* objects once it has been freed. meta->cache may be NULL if the cache
1175
* was destroyed.
1176
* Save the stack trace here so that reports show where the user freed
1177
* the object.
1178
*/
1179
if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1180
unsigned long flags;
1181
1182
raw_spin_lock_irqsave(&meta->lock, flags);
1183
metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1184
raw_spin_unlock_irqrestore(&meta->lock, flags);
1185
call_rcu(&meta->rcu_head, rcu_guarded_free);
1186
} else {
1187
kfence_guarded_free(addr, meta, false);
1188
}
1189
}
1190
1191
bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1192
{
1193
const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1194
struct kfence_metadata *to_report = NULL;
1195
enum kfence_error_type error_type;
1196
unsigned long flags;
1197
1198
if (!is_kfence_address((void *)addr))
1199
return false;
1200
1201
if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1202
return kfence_unprotect(addr); /* ... unprotect and proceed. */
1203
1204
atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1205
1206
if (page_index % 2) {
1207
/* This is a redzone, report a buffer overflow. */
1208
struct kfence_metadata *meta;
1209
int distance = 0;
1210
1211
meta = addr_to_metadata(addr - PAGE_SIZE);
1212
if (meta && kfence_obj_allocated(meta)) {
1213
to_report = meta;
1214
/* Data race ok; distance calculation approximate. */
1215
distance = addr - data_race(meta->addr + meta->size);
1216
}
1217
1218
meta = addr_to_metadata(addr + PAGE_SIZE);
1219
if (meta && kfence_obj_allocated(meta)) {
1220
/* Data race ok; distance calculation approximate. */
1221
if (!to_report || distance > data_race(meta->addr) - addr)
1222
to_report = meta;
1223
}
1224
1225
if (!to_report)
1226
goto out;
1227
1228
raw_spin_lock_irqsave(&to_report->lock, flags);
1229
to_report->unprotected_page = addr;
1230
error_type = KFENCE_ERROR_OOB;
1231
1232
/*
1233
* If the object was freed before we took the look we can still
1234
* report this as an OOB -- the report will simply show the
1235
* stacktrace of the free as well.
1236
*/
1237
} else {
1238
to_report = addr_to_metadata(addr);
1239
if (!to_report)
1240
goto out;
1241
1242
raw_spin_lock_irqsave(&to_report->lock, flags);
1243
error_type = KFENCE_ERROR_UAF;
1244
/*
1245
* We may race with __kfence_alloc(), and it is possible that a
1246
* freed object may be reallocated. We simply report this as a
1247
* use-after-free, with the stack trace showing the place where
1248
* the object was re-allocated.
1249
*/
1250
}
1251
1252
out:
1253
if (to_report) {
1254
kfence_report_error(addr, is_write, regs, to_report, error_type);
1255
raw_spin_unlock_irqrestore(&to_report->lock, flags);
1256
} else {
1257
/* This may be a UAF or OOB access, but we can't be sure. */
1258
kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1259
}
1260
1261
return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1262
}
1263
1264