Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/khugepaged.c
50386 views
1
// SPDX-License-Identifier: GPL-2.0
2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4
#include <linux/mm.h>
5
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/mmu_notifier.h>
8
#include <linux/rmap.h>
9
#include <linux/swap.h>
10
#include <linux/mm_inline.h>
11
#include <linux/kthread.h>
12
#include <linux/khugepaged.h>
13
#include <linux/freezer.h>
14
#include <linux/mman.h>
15
#include <linux/hashtable.h>
16
#include <linux/userfaultfd_k.h>
17
#include <linux/page_idle.h>
18
#include <linux/page_table_check.h>
19
#include <linux/rcupdate_wait.h>
20
#include <linux/leafops.h>
21
#include <linux/shmem_fs.h>
22
#include <linux/dax.h>
23
#include <linux/ksm.h>
24
#include <linux/pgalloc.h>
25
26
#include <asm/tlb.h>
27
#include "internal.h"
28
#include "mm_slot.h"
29
30
enum scan_result {
31
SCAN_FAIL,
32
SCAN_SUCCEED,
33
SCAN_NO_PTE_TABLE,
34
SCAN_PMD_MAPPED,
35
SCAN_EXCEED_NONE_PTE,
36
SCAN_EXCEED_SWAP_PTE,
37
SCAN_EXCEED_SHARED_PTE,
38
SCAN_PTE_NON_PRESENT,
39
SCAN_PTE_UFFD_WP,
40
SCAN_PTE_MAPPED_HUGEPAGE,
41
SCAN_LACK_REFERENCED_PAGE,
42
SCAN_PAGE_NULL,
43
SCAN_SCAN_ABORT,
44
SCAN_PAGE_COUNT,
45
SCAN_PAGE_LRU,
46
SCAN_PAGE_LOCK,
47
SCAN_PAGE_ANON,
48
SCAN_PAGE_COMPOUND,
49
SCAN_ANY_PROCESS,
50
SCAN_VMA_NULL,
51
SCAN_VMA_CHECK,
52
SCAN_ADDRESS_RANGE,
53
SCAN_DEL_PAGE_LRU,
54
SCAN_ALLOC_HUGE_PAGE_FAIL,
55
SCAN_CGROUP_CHARGE_FAIL,
56
SCAN_TRUNCATED,
57
SCAN_PAGE_HAS_PRIVATE,
58
SCAN_STORE_FAILED,
59
SCAN_COPY_MC,
60
SCAN_PAGE_FILLED,
61
};
62
63
#define CREATE_TRACE_POINTS
64
#include <trace/events/huge_memory.h>
65
66
static struct task_struct *khugepaged_thread __read_mostly;
67
static DEFINE_MUTEX(khugepaged_mutex);
68
69
/* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */
70
static unsigned int khugepaged_pages_to_scan __read_mostly;
71
static unsigned int khugepaged_pages_collapsed;
72
static unsigned int khugepaged_full_scans;
73
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
74
/* during fragmentation poll the hugepage allocator once every minute */
75
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
76
static unsigned long khugepaged_sleep_expire;
77
static DEFINE_SPINLOCK(khugepaged_mm_lock);
78
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
79
/*
80
* default collapse hugepages if there is at least one pte mapped like
81
* it would have happened if the vma was large enough during page
82
* fault.
83
*
84
* Note that these are only respected if collapse was initiated by khugepaged.
85
*/
86
unsigned int khugepaged_max_ptes_none __read_mostly;
87
static unsigned int khugepaged_max_ptes_swap __read_mostly;
88
static unsigned int khugepaged_max_ptes_shared __read_mostly;
89
90
#define MM_SLOTS_HASH_BITS 10
91
static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
92
93
static struct kmem_cache *mm_slot_cache __ro_after_init;
94
95
struct collapse_control {
96
bool is_khugepaged;
97
98
/* Num pages scanned per node */
99
u32 node_load[MAX_NUMNODES];
100
101
/* nodemask for allocation fallback */
102
nodemask_t alloc_nmask;
103
};
104
105
/**
106
* struct khugepaged_scan - cursor for scanning
107
* @mm_head: the head of the mm list to scan
108
* @mm_slot: the current mm_slot we are scanning
109
* @address: the next address inside that to be scanned
110
*
111
* There is only the one khugepaged_scan instance of this cursor structure.
112
*/
113
struct khugepaged_scan {
114
struct list_head mm_head;
115
struct mm_slot *mm_slot;
116
unsigned long address;
117
};
118
119
static struct khugepaged_scan khugepaged_scan = {
120
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
121
};
122
123
#ifdef CONFIG_SYSFS
124
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
125
struct kobj_attribute *attr,
126
char *buf)
127
{
128
return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
129
}
130
131
static ssize_t __sleep_millisecs_store(const char *buf, size_t count,
132
unsigned int *millisecs)
133
{
134
unsigned int msecs;
135
int err;
136
137
err = kstrtouint(buf, 10, &msecs);
138
if (err)
139
return -EINVAL;
140
141
*millisecs = msecs;
142
khugepaged_sleep_expire = 0;
143
wake_up_interruptible(&khugepaged_wait);
144
145
return count;
146
}
147
148
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
149
struct kobj_attribute *attr,
150
const char *buf, size_t count)
151
{
152
return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs);
153
}
154
static struct kobj_attribute scan_sleep_millisecs_attr =
155
__ATTR_RW(scan_sleep_millisecs);
156
157
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
158
struct kobj_attribute *attr,
159
char *buf)
160
{
161
return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
162
}
163
164
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
165
struct kobj_attribute *attr,
166
const char *buf, size_t count)
167
{
168
return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs);
169
}
170
static struct kobj_attribute alloc_sleep_millisecs_attr =
171
__ATTR_RW(alloc_sleep_millisecs);
172
173
static ssize_t pages_to_scan_show(struct kobject *kobj,
174
struct kobj_attribute *attr,
175
char *buf)
176
{
177
return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
178
}
179
static ssize_t pages_to_scan_store(struct kobject *kobj,
180
struct kobj_attribute *attr,
181
const char *buf, size_t count)
182
{
183
unsigned int pages;
184
int err;
185
186
err = kstrtouint(buf, 10, &pages);
187
if (err || !pages)
188
return -EINVAL;
189
190
khugepaged_pages_to_scan = pages;
191
192
return count;
193
}
194
static struct kobj_attribute pages_to_scan_attr =
195
__ATTR_RW(pages_to_scan);
196
197
static ssize_t pages_collapsed_show(struct kobject *kobj,
198
struct kobj_attribute *attr,
199
char *buf)
200
{
201
return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
202
}
203
static struct kobj_attribute pages_collapsed_attr =
204
__ATTR_RO(pages_collapsed);
205
206
static ssize_t full_scans_show(struct kobject *kobj,
207
struct kobj_attribute *attr,
208
char *buf)
209
{
210
return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
211
}
212
static struct kobj_attribute full_scans_attr =
213
__ATTR_RO(full_scans);
214
215
static ssize_t defrag_show(struct kobject *kobj,
216
struct kobj_attribute *attr, char *buf)
217
{
218
return single_hugepage_flag_show(kobj, attr, buf,
219
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
220
}
221
static ssize_t defrag_store(struct kobject *kobj,
222
struct kobj_attribute *attr,
223
const char *buf, size_t count)
224
{
225
return single_hugepage_flag_store(kobj, attr, buf, count,
226
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
227
}
228
static struct kobj_attribute khugepaged_defrag_attr =
229
__ATTR_RW(defrag);
230
231
/*
232
* max_ptes_none controls if khugepaged should collapse hugepages over
233
* any unmapped ptes in turn potentially increasing the memory
234
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
235
* reduce the available free memory in the system as it
236
* runs. Increasing max_ptes_none will instead potentially reduce the
237
* free memory in the system during the khugepaged scan.
238
*/
239
static ssize_t max_ptes_none_show(struct kobject *kobj,
240
struct kobj_attribute *attr,
241
char *buf)
242
{
243
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
244
}
245
static ssize_t max_ptes_none_store(struct kobject *kobj,
246
struct kobj_attribute *attr,
247
const char *buf, size_t count)
248
{
249
int err;
250
unsigned long max_ptes_none;
251
252
err = kstrtoul(buf, 10, &max_ptes_none);
253
if (err || max_ptes_none > HPAGE_PMD_NR - 1)
254
return -EINVAL;
255
256
khugepaged_max_ptes_none = max_ptes_none;
257
258
return count;
259
}
260
static struct kobj_attribute khugepaged_max_ptes_none_attr =
261
__ATTR_RW(max_ptes_none);
262
263
static ssize_t max_ptes_swap_show(struct kobject *kobj,
264
struct kobj_attribute *attr,
265
char *buf)
266
{
267
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
268
}
269
270
static ssize_t max_ptes_swap_store(struct kobject *kobj,
271
struct kobj_attribute *attr,
272
const char *buf, size_t count)
273
{
274
int err;
275
unsigned long max_ptes_swap;
276
277
err = kstrtoul(buf, 10, &max_ptes_swap);
278
if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
279
return -EINVAL;
280
281
khugepaged_max_ptes_swap = max_ptes_swap;
282
283
return count;
284
}
285
286
static struct kobj_attribute khugepaged_max_ptes_swap_attr =
287
__ATTR_RW(max_ptes_swap);
288
289
static ssize_t max_ptes_shared_show(struct kobject *kobj,
290
struct kobj_attribute *attr,
291
char *buf)
292
{
293
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
294
}
295
296
static ssize_t max_ptes_shared_store(struct kobject *kobj,
297
struct kobj_attribute *attr,
298
const char *buf, size_t count)
299
{
300
int err;
301
unsigned long max_ptes_shared;
302
303
err = kstrtoul(buf, 10, &max_ptes_shared);
304
if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
305
return -EINVAL;
306
307
khugepaged_max_ptes_shared = max_ptes_shared;
308
309
return count;
310
}
311
312
static struct kobj_attribute khugepaged_max_ptes_shared_attr =
313
__ATTR_RW(max_ptes_shared);
314
315
static struct attribute *khugepaged_attr[] = {
316
&khugepaged_defrag_attr.attr,
317
&khugepaged_max_ptes_none_attr.attr,
318
&khugepaged_max_ptes_swap_attr.attr,
319
&khugepaged_max_ptes_shared_attr.attr,
320
&pages_to_scan_attr.attr,
321
&pages_collapsed_attr.attr,
322
&full_scans_attr.attr,
323
&scan_sleep_millisecs_attr.attr,
324
&alloc_sleep_millisecs_attr.attr,
325
NULL,
326
};
327
328
struct attribute_group khugepaged_attr_group = {
329
.attrs = khugepaged_attr,
330
.name = "khugepaged",
331
};
332
#endif /* CONFIG_SYSFS */
333
334
static bool pte_none_or_zero(pte_t pte)
335
{
336
if (pte_none(pte))
337
return true;
338
return pte_present(pte) && is_zero_pfn(pte_pfn(pte));
339
}
340
341
int hugepage_madvise(struct vm_area_struct *vma,
342
vm_flags_t *vm_flags, int advice)
343
{
344
switch (advice) {
345
case MADV_HUGEPAGE:
346
#ifdef CONFIG_S390
347
/*
348
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
349
* can't handle this properly after s390_enable_sie, so we simply
350
* ignore the madvise to prevent qemu from causing a SIGSEGV.
351
*/
352
if (mm_has_pgste(vma->vm_mm))
353
return 0;
354
#endif
355
*vm_flags &= ~VM_NOHUGEPAGE;
356
*vm_flags |= VM_HUGEPAGE;
357
/*
358
* If the vma become good for khugepaged to scan,
359
* register it here without waiting a page fault that
360
* may not happen any time soon.
361
*/
362
khugepaged_enter_vma(vma, *vm_flags);
363
break;
364
case MADV_NOHUGEPAGE:
365
*vm_flags &= ~VM_HUGEPAGE;
366
*vm_flags |= VM_NOHUGEPAGE;
367
/*
368
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
369
* this vma even if we leave the mm registered in khugepaged if
370
* it got registered before VM_NOHUGEPAGE was set.
371
*/
372
break;
373
}
374
375
return 0;
376
}
377
378
int __init khugepaged_init(void)
379
{
380
mm_slot_cache = KMEM_CACHE(mm_slot, 0);
381
if (!mm_slot_cache)
382
return -ENOMEM;
383
384
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
385
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
386
khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
387
khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
388
389
return 0;
390
}
391
392
void __init khugepaged_destroy(void)
393
{
394
kmem_cache_destroy(mm_slot_cache);
395
}
396
397
static inline int hpage_collapse_test_exit(struct mm_struct *mm)
398
{
399
return atomic_read(&mm->mm_users) == 0;
400
}
401
402
static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
403
{
404
return hpage_collapse_test_exit(mm) ||
405
mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm);
406
}
407
408
static bool hugepage_pmd_enabled(void)
409
{
410
/*
411
* We cover the anon, shmem and the file-backed case here; file-backed
412
* hugepages, when configured in, are determined by the global control.
413
* Anon pmd-sized hugepages are determined by the pmd-size control.
414
* Shmem pmd-sized hugepages are also determined by its pmd-size control,
415
* except when the global shmem_huge is set to SHMEM_HUGE_DENY.
416
*/
417
if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
418
hugepage_global_enabled())
419
return true;
420
if (test_bit(PMD_ORDER, &huge_anon_orders_always))
421
return true;
422
if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
423
return true;
424
if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
425
hugepage_global_enabled())
426
return true;
427
if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
428
return true;
429
return false;
430
}
431
432
void __khugepaged_enter(struct mm_struct *mm)
433
{
434
struct mm_slot *slot;
435
int wakeup;
436
437
/* __khugepaged_exit() must not run from under us */
438
VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
439
if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm)))
440
return;
441
442
slot = mm_slot_alloc(mm_slot_cache);
443
if (!slot)
444
return;
445
446
spin_lock(&khugepaged_mm_lock);
447
mm_slot_insert(mm_slots_hash, mm, slot);
448
/*
449
* Insert just behind the scanning cursor, to let the area settle
450
* down a little.
451
*/
452
wakeup = list_empty(&khugepaged_scan.mm_head);
453
list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
454
spin_unlock(&khugepaged_mm_lock);
455
456
mmgrab(mm);
457
if (wakeup)
458
wake_up_interruptible(&khugepaged_wait);
459
}
460
461
void khugepaged_enter_vma(struct vm_area_struct *vma,
462
vm_flags_t vm_flags)
463
{
464
if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) &&
465
hugepage_pmd_enabled()) {
466
if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER))
467
__khugepaged_enter(vma->vm_mm);
468
}
469
}
470
471
void __khugepaged_exit(struct mm_struct *mm)
472
{
473
struct mm_slot *slot;
474
int free = 0;
475
476
spin_lock(&khugepaged_mm_lock);
477
slot = mm_slot_lookup(mm_slots_hash, mm);
478
if (slot && khugepaged_scan.mm_slot != slot) {
479
hash_del(&slot->hash);
480
list_del(&slot->mm_node);
481
free = 1;
482
}
483
spin_unlock(&khugepaged_mm_lock);
484
485
if (free) {
486
mm_flags_clear(MMF_VM_HUGEPAGE, mm);
487
mm_slot_free(mm_slot_cache, slot);
488
mmdrop(mm);
489
} else if (slot) {
490
/*
491
* This is required to serialize against
492
* hpage_collapse_test_exit() (which is guaranteed to run
493
* under mmap sem read mode). Stop here (after we return all
494
* pagetables will be destroyed) until khugepaged has finished
495
* working on the pagetables under the mmap_lock.
496
*/
497
mmap_write_lock(mm);
498
mmap_write_unlock(mm);
499
}
500
}
501
502
static void release_pte_folio(struct folio *folio)
503
{
504
node_stat_mod_folio(folio,
505
NR_ISOLATED_ANON + folio_is_file_lru(folio),
506
-folio_nr_pages(folio));
507
folio_unlock(folio);
508
folio_putback_lru(folio);
509
}
510
511
static void release_pte_pages(pte_t *pte, pte_t *_pte,
512
struct list_head *compound_pagelist)
513
{
514
struct folio *folio, *tmp;
515
516
while (--_pte >= pte) {
517
pte_t pteval = ptep_get(_pte);
518
unsigned long pfn;
519
520
if (pte_none(pteval))
521
continue;
522
VM_WARN_ON_ONCE(!pte_present(pteval));
523
pfn = pte_pfn(pteval);
524
if (is_zero_pfn(pfn))
525
continue;
526
folio = pfn_folio(pfn);
527
if (folio_test_large(folio))
528
continue;
529
release_pte_folio(folio);
530
}
531
532
list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
533
list_del(&folio->lru);
534
release_pte_folio(folio);
535
}
536
}
537
538
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
539
unsigned long start_addr,
540
pte_t *pte,
541
struct collapse_control *cc,
542
struct list_head *compound_pagelist)
543
{
544
struct page *page = NULL;
545
struct folio *folio = NULL;
546
unsigned long addr = start_addr;
547
pte_t *_pte;
548
int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
549
550
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
551
_pte++, addr += PAGE_SIZE) {
552
pte_t pteval = ptep_get(_pte);
553
if (pte_none_or_zero(pteval)) {
554
++none_or_zero;
555
if (!userfaultfd_armed(vma) &&
556
(!cc->is_khugepaged ||
557
none_or_zero <= khugepaged_max_ptes_none)) {
558
continue;
559
} else {
560
result = SCAN_EXCEED_NONE_PTE;
561
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
562
goto out;
563
}
564
}
565
if (!pte_present(pteval)) {
566
result = SCAN_PTE_NON_PRESENT;
567
goto out;
568
}
569
if (pte_uffd_wp(pteval)) {
570
result = SCAN_PTE_UFFD_WP;
571
goto out;
572
}
573
page = vm_normal_page(vma, addr, pteval);
574
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
575
result = SCAN_PAGE_NULL;
576
goto out;
577
}
578
579
folio = page_folio(page);
580
VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
581
582
/* See hpage_collapse_scan_pmd(). */
583
if (folio_maybe_mapped_shared(folio)) {
584
++shared;
585
if (cc->is_khugepaged &&
586
shared > khugepaged_max_ptes_shared) {
587
result = SCAN_EXCEED_SHARED_PTE;
588
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
589
goto out;
590
}
591
}
592
593
if (folio_test_large(folio)) {
594
struct folio *f;
595
596
/*
597
* Check if we have dealt with the compound page
598
* already
599
*/
600
list_for_each_entry(f, compound_pagelist, lru) {
601
if (folio == f)
602
goto next;
603
}
604
}
605
606
/*
607
* We can do it before folio_isolate_lru because the
608
* folio can't be freed from under us. NOTE: PG_lock
609
* is needed to serialize against split_huge_page
610
* when invoked from the VM.
611
*/
612
if (!folio_trylock(folio)) {
613
result = SCAN_PAGE_LOCK;
614
goto out;
615
}
616
617
/*
618
* Check if the page has any GUP (or other external) pins.
619
*
620
* The page table that maps the page has been already unlinked
621
* from the page table tree and this process cannot get
622
* an additional pin on the page.
623
*
624
* New pins can come later if the page is shared across fork,
625
* but not from this process. The other process cannot write to
626
* the page, only trigger CoW.
627
*/
628
if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
629
folio_unlock(folio);
630
result = SCAN_PAGE_COUNT;
631
goto out;
632
}
633
634
/*
635
* Isolate the page to avoid collapsing an hugepage
636
* currently in use by the VM.
637
*/
638
if (!folio_isolate_lru(folio)) {
639
folio_unlock(folio);
640
result = SCAN_DEL_PAGE_LRU;
641
goto out;
642
}
643
node_stat_mod_folio(folio,
644
NR_ISOLATED_ANON + folio_is_file_lru(folio),
645
folio_nr_pages(folio));
646
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
647
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
648
649
if (folio_test_large(folio))
650
list_add_tail(&folio->lru, compound_pagelist);
651
next:
652
/*
653
* If collapse was initiated by khugepaged, check that there is
654
* enough young pte to justify collapsing the page
655
*/
656
if (cc->is_khugepaged &&
657
(pte_young(pteval) || folio_test_young(folio) ||
658
folio_test_referenced(folio) ||
659
mmu_notifier_test_young(vma->vm_mm, addr)))
660
referenced++;
661
}
662
663
if (unlikely(cc->is_khugepaged && !referenced)) {
664
result = SCAN_LACK_REFERENCED_PAGE;
665
} else {
666
result = SCAN_SUCCEED;
667
trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
668
referenced, result);
669
return result;
670
}
671
out:
672
release_pte_pages(pte, _pte, compound_pagelist);
673
trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
674
referenced, result);
675
return result;
676
}
677
678
static void __collapse_huge_page_copy_succeeded(pte_t *pte,
679
struct vm_area_struct *vma,
680
unsigned long address,
681
spinlock_t *ptl,
682
struct list_head *compound_pagelist)
683
{
684
unsigned long end = address + HPAGE_PMD_SIZE;
685
struct folio *src, *tmp;
686
pte_t pteval;
687
pte_t *_pte;
688
unsigned int nr_ptes;
689
690
for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
691
address += nr_ptes * PAGE_SIZE) {
692
nr_ptes = 1;
693
pteval = ptep_get(_pte);
694
if (pte_none_or_zero(pteval)) {
695
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
696
if (pte_none(pteval))
697
continue;
698
/*
699
* ptl mostly unnecessary.
700
*/
701
spin_lock(ptl);
702
ptep_clear(vma->vm_mm, address, _pte);
703
spin_unlock(ptl);
704
ksm_might_unmap_zero_page(vma->vm_mm, pteval);
705
} else {
706
struct page *src_page = pte_page(pteval);
707
708
src = page_folio(src_page);
709
710
if (folio_test_large(src)) {
711
unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
712
713
nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
714
} else {
715
release_pte_folio(src);
716
}
717
718
/*
719
* ptl mostly unnecessary, but preempt has to
720
* be disabled to update the per-cpu stats
721
* inside folio_remove_rmap_pte().
722
*/
723
spin_lock(ptl);
724
clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
725
folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
726
spin_unlock(ptl);
727
free_swap_cache(src);
728
folio_put_refs(src, nr_ptes);
729
}
730
}
731
732
list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
733
list_del(&src->lru);
734
node_stat_sub_folio(src, NR_ISOLATED_ANON +
735
folio_is_file_lru(src));
736
folio_unlock(src);
737
free_swap_cache(src);
738
folio_putback_lru(src);
739
}
740
}
741
742
static void __collapse_huge_page_copy_failed(pte_t *pte,
743
pmd_t *pmd,
744
pmd_t orig_pmd,
745
struct vm_area_struct *vma,
746
struct list_head *compound_pagelist)
747
{
748
spinlock_t *pmd_ptl;
749
750
/*
751
* Re-establish the PMD to point to the original page table
752
* entry. Restoring PMD needs to be done prior to releasing
753
* pages. Since pages are still isolated and locked here,
754
* acquiring anon_vma_lock_write is unnecessary.
755
*/
756
pmd_ptl = pmd_lock(vma->vm_mm, pmd);
757
pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
758
spin_unlock(pmd_ptl);
759
/*
760
* Release both raw and compound pages isolated
761
* in __collapse_huge_page_isolate.
762
*/
763
release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
764
}
765
766
/*
767
* __collapse_huge_page_copy - attempts to copy memory contents from raw
768
* pages to a hugepage. Cleans up the raw pages if copying succeeds;
769
* otherwise restores the original page table and releases isolated raw pages.
770
* Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
771
*
772
* @pte: starting of the PTEs to copy from
773
* @folio: the new hugepage to copy contents to
774
* @pmd: pointer to the new hugepage's PMD
775
* @orig_pmd: the original raw pages' PMD
776
* @vma: the original raw pages' virtual memory area
777
* @address: starting address to copy
778
* @ptl: lock on raw pages' PTEs
779
* @compound_pagelist: list that stores compound pages
780
*/
781
static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
782
pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
783
unsigned long address, spinlock_t *ptl,
784
struct list_head *compound_pagelist)
785
{
786
unsigned int i;
787
int result = SCAN_SUCCEED;
788
789
/*
790
* Copying pages' contents is subject to memory poison at any iteration.
791
*/
792
for (i = 0; i < HPAGE_PMD_NR; i++) {
793
pte_t pteval = ptep_get(pte + i);
794
struct page *page = folio_page(folio, i);
795
unsigned long src_addr = address + i * PAGE_SIZE;
796
struct page *src_page;
797
798
if (pte_none_or_zero(pteval)) {
799
clear_user_highpage(page, src_addr);
800
continue;
801
}
802
src_page = pte_page(pteval);
803
if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
804
result = SCAN_COPY_MC;
805
break;
806
}
807
}
808
809
if (likely(result == SCAN_SUCCEED))
810
__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
811
compound_pagelist);
812
else
813
__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
814
compound_pagelist);
815
816
return result;
817
}
818
819
static void khugepaged_alloc_sleep(void)
820
{
821
DEFINE_WAIT(wait);
822
823
add_wait_queue(&khugepaged_wait, &wait);
824
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
825
schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
826
remove_wait_queue(&khugepaged_wait, &wait);
827
}
828
829
struct collapse_control khugepaged_collapse_control = {
830
.is_khugepaged = true,
831
};
832
833
static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
834
{
835
int i;
836
837
/*
838
* If node_reclaim_mode is disabled, then no extra effort is made to
839
* allocate memory locally.
840
*/
841
if (!node_reclaim_enabled())
842
return false;
843
844
/* If there is a count for this node already, it must be acceptable */
845
if (cc->node_load[nid])
846
return false;
847
848
for (i = 0; i < MAX_NUMNODES; i++) {
849
if (!cc->node_load[i])
850
continue;
851
if (node_distance(nid, i) > node_reclaim_distance)
852
return true;
853
}
854
return false;
855
}
856
857
#define khugepaged_defrag() \
858
(transparent_hugepage_flags & \
859
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
860
861
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
862
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
863
{
864
return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
865
}
866
867
#ifdef CONFIG_NUMA
868
static int hpage_collapse_find_target_node(struct collapse_control *cc)
869
{
870
int nid, target_node = 0, max_value = 0;
871
872
/* find first node with max normal pages hit */
873
for (nid = 0; nid < MAX_NUMNODES; nid++)
874
if (cc->node_load[nid] > max_value) {
875
max_value = cc->node_load[nid];
876
target_node = nid;
877
}
878
879
for_each_online_node(nid) {
880
if (max_value == cc->node_load[nid])
881
node_set(nid, cc->alloc_nmask);
882
}
883
884
return target_node;
885
}
886
#else
887
static int hpage_collapse_find_target_node(struct collapse_control *cc)
888
{
889
return 0;
890
}
891
#endif
892
893
/*
894
* If mmap_lock temporarily dropped, revalidate vma
895
* before taking mmap_lock.
896
* Returns enum scan_result value.
897
*/
898
899
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
900
bool expect_anon,
901
struct vm_area_struct **vmap,
902
struct collapse_control *cc)
903
{
904
struct vm_area_struct *vma;
905
enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED :
906
TVA_FORCED_COLLAPSE;
907
908
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
909
return SCAN_ANY_PROCESS;
910
911
*vmap = vma = find_vma(mm, address);
912
if (!vma)
913
return SCAN_VMA_NULL;
914
915
if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
916
return SCAN_ADDRESS_RANGE;
917
if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER))
918
return SCAN_VMA_CHECK;
919
/*
920
* Anon VMA expected, the address may be unmapped then
921
* remapped to file after khugepaged reaquired the mmap_lock.
922
*
923
* thp_vma_allowable_order may return true for qualified file
924
* vmas.
925
*/
926
if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
927
return SCAN_PAGE_ANON;
928
return SCAN_SUCCEED;
929
}
930
931
static inline int check_pmd_state(pmd_t *pmd)
932
{
933
pmd_t pmde = pmdp_get_lockless(pmd);
934
935
if (pmd_none(pmde))
936
return SCAN_NO_PTE_TABLE;
937
938
/*
939
* The folio may be under migration when khugepaged is trying to
940
* collapse it. Migration success or failure will eventually end
941
* up with a present PMD mapping a folio again.
942
*/
943
if (pmd_is_migration_entry(pmde))
944
return SCAN_PMD_MAPPED;
945
if (!pmd_present(pmde))
946
return SCAN_NO_PTE_TABLE;
947
if (pmd_trans_huge(pmde))
948
return SCAN_PMD_MAPPED;
949
if (pmd_bad(pmde))
950
return SCAN_NO_PTE_TABLE;
951
return SCAN_SUCCEED;
952
}
953
954
static int find_pmd_or_thp_or_none(struct mm_struct *mm,
955
unsigned long address,
956
pmd_t **pmd)
957
{
958
*pmd = mm_find_pmd(mm, address);
959
if (!*pmd)
960
return SCAN_NO_PTE_TABLE;
961
962
return check_pmd_state(*pmd);
963
}
964
965
static int check_pmd_still_valid(struct mm_struct *mm,
966
unsigned long address,
967
pmd_t *pmd)
968
{
969
pmd_t *new_pmd;
970
int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
971
972
if (result != SCAN_SUCCEED)
973
return result;
974
if (new_pmd != pmd)
975
return SCAN_FAIL;
976
return SCAN_SUCCEED;
977
}
978
979
/*
980
* Bring missing pages in from swap, to complete THP collapse.
981
* Only done if hpage_collapse_scan_pmd believes it is worthwhile.
982
*
983
* Called and returns without pte mapped or spinlocks held.
984
* Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
985
*/
986
static int __collapse_huge_page_swapin(struct mm_struct *mm,
987
struct vm_area_struct *vma,
988
unsigned long start_addr, pmd_t *pmd,
989
int referenced)
990
{
991
int swapped_in = 0;
992
vm_fault_t ret = 0;
993
unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE);
994
int result;
995
pte_t *pte = NULL;
996
spinlock_t *ptl;
997
998
for (addr = start_addr; addr < end; addr += PAGE_SIZE) {
999
struct vm_fault vmf = {
1000
.vma = vma,
1001
.address = addr,
1002
.pgoff = linear_page_index(vma, addr),
1003
.flags = FAULT_FLAG_ALLOW_RETRY,
1004
.pmd = pmd,
1005
};
1006
1007
if (!pte++) {
1008
/*
1009
* Here the ptl is only used to check pte_same() in
1010
* do_swap_page(), so readonly version is enough.
1011
*/
1012
pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
1013
if (!pte) {
1014
mmap_read_unlock(mm);
1015
result = SCAN_NO_PTE_TABLE;
1016
goto out;
1017
}
1018
}
1019
1020
vmf.orig_pte = ptep_get_lockless(pte);
1021
if (pte_none(vmf.orig_pte) ||
1022
pte_present(vmf.orig_pte))
1023
continue;
1024
1025
vmf.pte = pte;
1026
vmf.ptl = ptl;
1027
ret = do_swap_page(&vmf);
1028
/* Which unmaps pte (after perhaps re-checking the entry) */
1029
pte = NULL;
1030
1031
/*
1032
* do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1033
* Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1034
* we do not retry here and swap entry will remain in pagetable
1035
* resulting in later failure.
1036
*/
1037
if (ret & VM_FAULT_RETRY) {
1038
/* Likely, but not guaranteed, that page lock failed */
1039
result = SCAN_PAGE_LOCK;
1040
goto out;
1041
}
1042
if (ret & VM_FAULT_ERROR) {
1043
mmap_read_unlock(mm);
1044
result = SCAN_FAIL;
1045
goto out;
1046
}
1047
swapped_in++;
1048
}
1049
1050
if (pte)
1051
pte_unmap(pte);
1052
1053
/* Drain LRU cache to remove extra pin on the swapped in pages */
1054
if (swapped_in)
1055
lru_add_drain();
1056
1057
result = SCAN_SUCCEED;
1058
out:
1059
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1060
return result;
1061
}
1062
1063
static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1064
struct collapse_control *cc)
1065
{
1066
gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1067
GFP_TRANSHUGE);
1068
int node = hpage_collapse_find_target_node(cc);
1069
struct folio *folio;
1070
1071
folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1072
if (!folio) {
1073
*foliop = NULL;
1074
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1075
return SCAN_ALLOC_HUGE_PAGE_FAIL;
1076
}
1077
1078
count_vm_event(THP_COLLAPSE_ALLOC);
1079
if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1080
folio_put(folio);
1081
*foliop = NULL;
1082
return SCAN_CGROUP_CHARGE_FAIL;
1083
}
1084
1085
count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1086
1087
*foliop = folio;
1088
return SCAN_SUCCEED;
1089
}
1090
1091
static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1092
int referenced, int unmapped,
1093
struct collapse_control *cc)
1094
{
1095
LIST_HEAD(compound_pagelist);
1096
pmd_t *pmd, _pmd;
1097
pte_t *pte;
1098
pgtable_t pgtable;
1099
struct folio *folio;
1100
spinlock_t *pmd_ptl, *pte_ptl;
1101
int result = SCAN_FAIL;
1102
struct vm_area_struct *vma;
1103
struct mmu_notifier_range range;
1104
1105
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1106
1107
/*
1108
* Before allocating the hugepage, release the mmap_lock read lock.
1109
* The allocation can take potentially a long time if it involves
1110
* sync compaction, and we do not need to hold the mmap_lock during
1111
* that. We will recheck the vma after taking it again in write mode.
1112
*/
1113
mmap_read_unlock(mm);
1114
1115
result = alloc_charge_folio(&folio, mm, cc);
1116
if (result != SCAN_SUCCEED)
1117
goto out_nolock;
1118
1119
mmap_read_lock(mm);
1120
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1121
if (result != SCAN_SUCCEED) {
1122
mmap_read_unlock(mm);
1123
goto out_nolock;
1124
}
1125
1126
result = find_pmd_or_thp_or_none(mm, address, &pmd);
1127
if (result != SCAN_SUCCEED) {
1128
mmap_read_unlock(mm);
1129
goto out_nolock;
1130
}
1131
1132
if (unmapped) {
1133
/*
1134
* __collapse_huge_page_swapin will return with mmap_lock
1135
* released when it fails. So we jump out_nolock directly in
1136
* that case. Continuing to collapse causes inconsistency.
1137
*/
1138
result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1139
referenced);
1140
if (result != SCAN_SUCCEED)
1141
goto out_nolock;
1142
}
1143
1144
mmap_read_unlock(mm);
1145
/*
1146
* Prevent all access to pagetables with the exception of
1147
* gup_fast later handled by the ptep_clear_flush and the VM
1148
* handled by the anon_vma lock + PG_lock.
1149
*
1150
* UFFDIO_MOVE is prevented to race as well thanks to the
1151
* mmap_lock.
1152
*/
1153
mmap_write_lock(mm);
1154
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1155
if (result != SCAN_SUCCEED)
1156
goto out_up_write;
1157
/* check if the pmd is still valid */
1158
vma_start_write(vma);
1159
result = check_pmd_still_valid(mm, address, pmd);
1160
if (result != SCAN_SUCCEED)
1161
goto out_up_write;
1162
1163
anon_vma_lock_write(vma->anon_vma);
1164
1165
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1166
address + HPAGE_PMD_SIZE);
1167
mmu_notifier_invalidate_range_start(&range);
1168
1169
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1170
/*
1171
* This removes any huge TLB entry from the CPU so we won't allow
1172
* huge and small TLB entries for the same virtual address to
1173
* avoid the risk of CPU bugs in that area.
1174
*
1175
* Parallel GUP-fast is fine since GUP-fast will back off when
1176
* it detects PMD is changed.
1177
*/
1178
_pmd = pmdp_collapse_flush(vma, address, pmd);
1179
spin_unlock(pmd_ptl);
1180
mmu_notifier_invalidate_range_end(&range);
1181
tlb_remove_table_sync_one();
1182
1183
pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1184
if (pte) {
1185
result = __collapse_huge_page_isolate(vma, address, pte, cc,
1186
&compound_pagelist);
1187
spin_unlock(pte_ptl);
1188
} else {
1189
result = SCAN_NO_PTE_TABLE;
1190
}
1191
1192
if (unlikely(result != SCAN_SUCCEED)) {
1193
if (pte)
1194
pte_unmap(pte);
1195
spin_lock(pmd_ptl);
1196
BUG_ON(!pmd_none(*pmd));
1197
/*
1198
* We can only use set_pmd_at when establishing
1199
* hugepmds and never for establishing regular pmds that
1200
* points to regular pagetables. Use pmd_populate for that
1201
*/
1202
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1203
spin_unlock(pmd_ptl);
1204
anon_vma_unlock_write(vma->anon_vma);
1205
goto out_up_write;
1206
}
1207
1208
/*
1209
* All pages are isolated and locked so anon_vma rmap
1210
* can't run anymore.
1211
*/
1212
anon_vma_unlock_write(vma->anon_vma);
1213
1214
result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1215
vma, address, pte_ptl,
1216
&compound_pagelist);
1217
pte_unmap(pte);
1218
if (unlikely(result != SCAN_SUCCEED))
1219
goto out_up_write;
1220
1221
/*
1222
* The smp_wmb() inside __folio_mark_uptodate() ensures the
1223
* copy_huge_page writes become visible before the set_pmd_at()
1224
* write.
1225
*/
1226
__folio_mark_uptodate(folio);
1227
pgtable = pmd_pgtable(_pmd);
1228
1229
spin_lock(pmd_ptl);
1230
BUG_ON(!pmd_none(*pmd));
1231
pgtable_trans_huge_deposit(mm, pmd, pgtable);
1232
map_anon_folio_pmd_nopf(folio, pmd, vma, address);
1233
spin_unlock(pmd_ptl);
1234
1235
folio = NULL;
1236
1237
result = SCAN_SUCCEED;
1238
out_up_write:
1239
mmap_write_unlock(mm);
1240
out_nolock:
1241
if (folio)
1242
folio_put(folio);
1243
trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1244
return result;
1245
}
1246
1247
static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1248
struct vm_area_struct *vma,
1249
unsigned long start_addr, bool *mmap_locked,
1250
struct collapse_control *cc)
1251
{
1252
pmd_t *pmd;
1253
pte_t *pte, *_pte;
1254
int result = SCAN_FAIL, referenced = 0;
1255
int none_or_zero = 0, shared = 0;
1256
struct page *page = NULL;
1257
struct folio *folio = NULL;
1258
unsigned long addr;
1259
spinlock_t *ptl;
1260
int node = NUMA_NO_NODE, unmapped = 0;
1261
1262
VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK);
1263
1264
result = find_pmd_or_thp_or_none(mm, start_addr, &pmd);
1265
if (result != SCAN_SUCCEED)
1266
goto out;
1267
1268
memset(cc->node_load, 0, sizeof(cc->node_load));
1269
nodes_clear(cc->alloc_nmask);
1270
pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl);
1271
if (!pte) {
1272
result = SCAN_NO_PTE_TABLE;
1273
goto out;
1274
}
1275
1276
for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1277
_pte++, addr += PAGE_SIZE) {
1278
pte_t pteval = ptep_get(_pte);
1279
if (pte_none_or_zero(pteval)) {
1280
++none_or_zero;
1281
if (!userfaultfd_armed(vma) &&
1282
(!cc->is_khugepaged ||
1283
none_or_zero <= khugepaged_max_ptes_none)) {
1284
continue;
1285
} else {
1286
result = SCAN_EXCEED_NONE_PTE;
1287
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1288
goto out_unmap;
1289
}
1290
}
1291
if (!pte_present(pteval)) {
1292
++unmapped;
1293
if (!cc->is_khugepaged ||
1294
unmapped <= khugepaged_max_ptes_swap) {
1295
/*
1296
* Always be strict with uffd-wp
1297
* enabled swap entries. Please see
1298
* comment below for pte_uffd_wp().
1299
*/
1300
if (pte_swp_uffd_wp_any(pteval)) {
1301
result = SCAN_PTE_UFFD_WP;
1302
goto out_unmap;
1303
}
1304
continue;
1305
} else {
1306
result = SCAN_EXCEED_SWAP_PTE;
1307
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1308
goto out_unmap;
1309
}
1310
}
1311
if (pte_uffd_wp(pteval)) {
1312
/*
1313
* Don't collapse the page if any of the small
1314
* PTEs are armed with uffd write protection.
1315
* Here we can also mark the new huge pmd as
1316
* write protected if any of the small ones is
1317
* marked but that could bring unknown
1318
* userfault messages that falls outside of
1319
* the registered range. So, just be simple.
1320
*/
1321
result = SCAN_PTE_UFFD_WP;
1322
goto out_unmap;
1323
}
1324
1325
page = vm_normal_page(vma, addr, pteval);
1326
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1327
result = SCAN_PAGE_NULL;
1328
goto out_unmap;
1329
}
1330
folio = page_folio(page);
1331
1332
if (!folio_test_anon(folio)) {
1333
result = SCAN_PAGE_ANON;
1334
goto out_unmap;
1335
}
1336
1337
/*
1338
* We treat a single page as shared if any part of the THP
1339
* is shared.
1340
*/
1341
if (folio_maybe_mapped_shared(folio)) {
1342
++shared;
1343
if (cc->is_khugepaged &&
1344
shared > khugepaged_max_ptes_shared) {
1345
result = SCAN_EXCEED_SHARED_PTE;
1346
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1347
goto out_unmap;
1348
}
1349
}
1350
1351
/*
1352
* Record which node the original page is from and save this
1353
* information to cc->node_load[].
1354
* Khugepaged will allocate hugepage from the node has the max
1355
* hit record.
1356
*/
1357
node = folio_nid(folio);
1358
if (hpage_collapse_scan_abort(node, cc)) {
1359
result = SCAN_SCAN_ABORT;
1360
goto out_unmap;
1361
}
1362
cc->node_load[node]++;
1363
if (!folio_test_lru(folio)) {
1364
result = SCAN_PAGE_LRU;
1365
goto out_unmap;
1366
}
1367
if (folio_test_locked(folio)) {
1368
result = SCAN_PAGE_LOCK;
1369
goto out_unmap;
1370
}
1371
1372
/*
1373
* Check if the page has any GUP (or other external) pins.
1374
*
1375
* Here the check may be racy:
1376
* it may see folio_mapcount() > folio_ref_count().
1377
* But such case is ephemeral we could always retry collapse
1378
* later. However it may report false positive if the page
1379
* has excessive GUP pins (i.e. 512). Anyway the same check
1380
* will be done again later the risk seems low.
1381
*/
1382
if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1383
result = SCAN_PAGE_COUNT;
1384
goto out_unmap;
1385
}
1386
1387
/*
1388
* If collapse was initiated by khugepaged, check that there is
1389
* enough young pte to justify collapsing the page
1390
*/
1391
if (cc->is_khugepaged &&
1392
(pte_young(pteval) || folio_test_young(folio) ||
1393
folio_test_referenced(folio) ||
1394
mmu_notifier_test_young(vma->vm_mm, addr)))
1395
referenced++;
1396
}
1397
if (cc->is_khugepaged &&
1398
(!referenced ||
1399
(unmapped && referenced < HPAGE_PMD_NR / 2))) {
1400
result = SCAN_LACK_REFERENCED_PAGE;
1401
} else {
1402
result = SCAN_SUCCEED;
1403
}
1404
out_unmap:
1405
pte_unmap_unlock(pte, ptl);
1406
if (result == SCAN_SUCCEED) {
1407
result = collapse_huge_page(mm, start_addr, referenced,
1408
unmapped, cc);
1409
/* collapse_huge_page will return with the mmap_lock released */
1410
*mmap_locked = false;
1411
}
1412
out:
1413
trace_mm_khugepaged_scan_pmd(mm, folio, referenced,
1414
none_or_zero, result, unmapped);
1415
return result;
1416
}
1417
1418
static void collect_mm_slot(struct mm_slot *slot)
1419
{
1420
struct mm_struct *mm = slot->mm;
1421
1422
lockdep_assert_held(&khugepaged_mm_lock);
1423
1424
if (hpage_collapse_test_exit(mm)) {
1425
/* free mm_slot */
1426
hash_del(&slot->hash);
1427
list_del(&slot->mm_node);
1428
1429
/*
1430
* Not strictly needed because the mm exited already.
1431
*
1432
* mm_flags_clear(MMF_VM_HUGEPAGE, mm);
1433
*/
1434
1435
/* khugepaged_mm_lock actually not necessary for the below */
1436
mm_slot_free(mm_slot_cache, slot);
1437
mmdrop(mm);
1438
}
1439
}
1440
1441
/* folio must be locked, and mmap_lock must be held */
1442
static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1443
pmd_t *pmdp, struct folio *folio, struct page *page)
1444
{
1445
struct mm_struct *mm = vma->vm_mm;
1446
struct vm_fault vmf = {
1447
.vma = vma,
1448
.address = addr,
1449
.flags = 0,
1450
};
1451
pgd_t *pgdp;
1452
p4d_t *p4dp;
1453
pud_t *pudp;
1454
1455
mmap_assert_locked(vma->vm_mm);
1456
1457
if (!pmdp) {
1458
pgdp = pgd_offset(mm, addr);
1459
p4dp = p4d_alloc(mm, pgdp, addr);
1460
if (!p4dp)
1461
return SCAN_FAIL;
1462
pudp = pud_alloc(mm, p4dp, addr);
1463
if (!pudp)
1464
return SCAN_FAIL;
1465
pmdp = pmd_alloc(mm, pudp, addr);
1466
if (!pmdp)
1467
return SCAN_FAIL;
1468
}
1469
1470
vmf.pmd = pmdp;
1471
if (do_set_pmd(&vmf, folio, page))
1472
return SCAN_FAIL;
1473
1474
folio_get(folio);
1475
return SCAN_SUCCEED;
1476
}
1477
1478
/**
1479
* collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1480
* address haddr.
1481
*
1482
* @mm: process address space where collapse happens
1483
* @addr: THP collapse address
1484
* @install_pmd: If a huge PMD should be installed
1485
*
1486
* This function checks whether all the PTEs in the PMD are pointing to the
1487
* right THP. If so, retract the page table so the THP can refault in with
1488
* as pmd-mapped. Possibly install a huge PMD mapping the THP.
1489
*/
1490
int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1491
bool install_pmd)
1492
{
1493
int nr_mapped_ptes = 0, result = SCAN_FAIL;
1494
unsigned int nr_batch_ptes;
1495
struct mmu_notifier_range range;
1496
bool notified = false;
1497
unsigned long haddr = addr & HPAGE_PMD_MASK;
1498
unsigned long end = haddr + HPAGE_PMD_SIZE;
1499
struct vm_area_struct *vma = vma_lookup(mm, haddr);
1500
struct folio *folio;
1501
pte_t *start_pte, *pte;
1502
pmd_t *pmd, pgt_pmd;
1503
spinlock_t *pml = NULL, *ptl;
1504
int i;
1505
1506
mmap_assert_locked(mm);
1507
1508
/* First check VMA found, in case page tables are being torn down */
1509
if (!vma || !vma->vm_file ||
1510
!range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1511
return SCAN_VMA_CHECK;
1512
1513
/* Fast check before locking page if already PMD-mapped */
1514
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1515
if (result == SCAN_PMD_MAPPED)
1516
return result;
1517
1518
/*
1519
* If we are here, we've succeeded in replacing all the native pages
1520
* in the page cache with a single hugepage. If a mm were to fault-in
1521
* this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1522
* and map it by a PMD, regardless of sysfs THP settings. As such, let's
1523
* analogously elide sysfs THP settings here and force collapse.
1524
*/
1525
if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
1526
return SCAN_VMA_CHECK;
1527
1528
/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1529
if (userfaultfd_wp(vma))
1530
return SCAN_PTE_UFFD_WP;
1531
1532
folio = filemap_lock_folio(vma->vm_file->f_mapping,
1533
linear_page_index(vma, haddr));
1534
if (IS_ERR(folio))
1535
return SCAN_PAGE_NULL;
1536
1537
if (folio_order(folio) != HPAGE_PMD_ORDER) {
1538
result = SCAN_PAGE_COMPOUND;
1539
goto drop_folio;
1540
}
1541
1542
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1543
switch (result) {
1544
case SCAN_SUCCEED:
1545
break;
1546
case SCAN_NO_PTE_TABLE:
1547
/*
1548
* All pte entries have been removed and pmd cleared.
1549
* Skip all the pte checks and just update the pmd mapping.
1550
*/
1551
goto maybe_install_pmd;
1552
default:
1553
goto drop_folio;
1554
}
1555
1556
result = SCAN_FAIL;
1557
start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1558
if (!start_pte) /* mmap_lock + page lock should prevent this */
1559
goto drop_folio;
1560
1561
/* step 1: check all mapped PTEs are to the right huge page */
1562
for (i = 0, addr = haddr, pte = start_pte;
1563
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1564
struct page *page;
1565
pte_t ptent = ptep_get(pte);
1566
1567
/* empty pte, skip */
1568
if (pte_none(ptent))
1569
continue;
1570
1571
/* page swapped out, abort */
1572
if (!pte_present(ptent)) {
1573
result = SCAN_PTE_NON_PRESENT;
1574
goto abort;
1575
}
1576
1577
page = vm_normal_page(vma, addr, ptent);
1578
if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1579
page = NULL;
1580
/*
1581
* Note that uprobe, debugger, or MAP_PRIVATE may change the
1582
* page table, but the new page will not be a subpage of hpage.
1583
*/
1584
if (folio_page(folio, i) != page)
1585
goto abort;
1586
}
1587
1588
pte_unmap_unlock(start_pte, ptl);
1589
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1590
haddr, haddr + HPAGE_PMD_SIZE);
1591
mmu_notifier_invalidate_range_start(&range);
1592
notified = true;
1593
1594
/*
1595
* pmd_lock covers a wider range than ptl, and (if split from mm's
1596
* page_table_lock) ptl nests inside pml. The less time we hold pml,
1597
* the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1598
* inserts a valid as-if-COWed PTE without even looking up page cache.
1599
* So page lock of folio does not protect from it, so we must not drop
1600
* ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1601
*/
1602
if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1603
pml = pmd_lock(mm, pmd);
1604
1605
start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1606
if (!start_pte) /* mmap_lock + page lock should prevent this */
1607
goto abort;
1608
if (!pml)
1609
spin_lock(ptl);
1610
else if (ptl != pml)
1611
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1612
1613
if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1614
goto abort;
1615
1616
/* step 2: clear page table and adjust rmap */
1617
for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1618
i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1619
pte += nr_batch_ptes) {
1620
unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1621
struct page *page;
1622
pte_t ptent = ptep_get(pte);
1623
1624
nr_batch_ptes = 1;
1625
1626
if (pte_none(ptent))
1627
continue;
1628
/*
1629
* We dropped ptl after the first scan, to do the mmu_notifier:
1630
* page lock stops more PTEs of the folio being faulted in, but
1631
* does not stop write faults COWing anon copies from existing
1632
* PTEs; and does not stop those being swapped out or migrated.
1633
*/
1634
if (!pte_present(ptent)) {
1635
result = SCAN_PTE_NON_PRESENT;
1636
goto abort;
1637
}
1638
page = vm_normal_page(vma, addr, ptent);
1639
1640
if (folio_page(folio, i) != page)
1641
goto abort;
1642
1643
nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1644
1645
/*
1646
* Must clear entry, or a racing truncate may re-remove it.
1647
* TLB flush can be left until pmdp_collapse_flush() does it.
1648
* PTE dirty? Shmem page is already dirty; file is read-only.
1649
*/
1650
clear_ptes(mm, addr, pte, nr_batch_ptes);
1651
folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1652
nr_mapped_ptes += nr_batch_ptes;
1653
}
1654
1655
if (!pml)
1656
spin_unlock(ptl);
1657
1658
/* step 3: set proper refcount and mm_counters. */
1659
if (nr_mapped_ptes) {
1660
folio_ref_sub(folio, nr_mapped_ptes);
1661
add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1662
}
1663
1664
/* step 4: remove empty page table */
1665
if (!pml) {
1666
pml = pmd_lock(mm, pmd);
1667
if (ptl != pml) {
1668
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1669
if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1670
flush_tlb_mm(mm);
1671
goto unlock;
1672
}
1673
}
1674
}
1675
pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1676
pmdp_get_lockless_sync();
1677
pte_unmap_unlock(start_pte, ptl);
1678
if (ptl != pml)
1679
spin_unlock(pml);
1680
1681
mmu_notifier_invalidate_range_end(&range);
1682
1683
mm_dec_nr_ptes(mm);
1684
page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1685
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1686
1687
maybe_install_pmd:
1688
/* step 5: install pmd entry */
1689
result = install_pmd
1690
? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1691
: SCAN_SUCCEED;
1692
goto drop_folio;
1693
abort:
1694
if (nr_mapped_ptes) {
1695
flush_tlb_mm(mm);
1696
folio_ref_sub(folio, nr_mapped_ptes);
1697
add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1698
}
1699
unlock:
1700
if (start_pte)
1701
pte_unmap_unlock(start_pte, ptl);
1702
if (pml && pml != ptl)
1703
spin_unlock(pml);
1704
if (notified)
1705
mmu_notifier_invalidate_range_end(&range);
1706
drop_folio:
1707
folio_unlock(folio);
1708
folio_put(folio);
1709
return result;
1710
}
1711
1712
/* Can we retract page tables for this file-backed VMA? */
1713
static bool file_backed_vma_is_retractable(struct vm_area_struct *vma)
1714
{
1715
/*
1716
* Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1717
* got written to. These VMAs are likely not worth removing
1718
* page tables from, as PMD-mapping is likely to be split later.
1719
*/
1720
if (READ_ONCE(vma->anon_vma))
1721
return false;
1722
1723
/*
1724
* When a vma is registered with uffd-wp, we cannot recycle
1725
* the page table because there may be pte markers installed.
1726
* Other vmas can still have the same file mapped hugely, but
1727
* skip this one: it will always be mapped in small page size
1728
* for uffd-wp registered ranges.
1729
*/
1730
if (userfaultfd_wp(vma))
1731
return false;
1732
1733
/*
1734
* If the VMA contains guard regions then we can't collapse it.
1735
*
1736
* This is set atomically on guard marker installation under mmap/VMA
1737
* read lock, and here we may not hold any VMA or mmap lock at all.
1738
*
1739
* This is therefore serialised on the PTE page table lock, which is
1740
* obtained on guard region installation after the flag is set, so this
1741
* check being performed under this lock excludes races.
1742
*/
1743
if (vma_flag_test_atomic(vma, VMA_MAYBE_GUARD_BIT))
1744
return false;
1745
1746
return true;
1747
}
1748
1749
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1750
{
1751
struct vm_area_struct *vma;
1752
1753
i_mmap_lock_read(mapping);
1754
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1755
struct mmu_notifier_range range;
1756
struct mm_struct *mm;
1757
unsigned long addr;
1758
pmd_t *pmd, pgt_pmd;
1759
spinlock_t *pml;
1760
spinlock_t *ptl;
1761
bool success = false;
1762
1763
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1764
if (addr & ~HPAGE_PMD_MASK ||
1765
vma->vm_end < addr + HPAGE_PMD_SIZE)
1766
continue;
1767
1768
mm = vma->vm_mm;
1769
if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1770
continue;
1771
1772
if (hpage_collapse_test_exit(mm))
1773
continue;
1774
1775
if (!file_backed_vma_is_retractable(vma))
1776
continue;
1777
1778
/* PTEs were notified when unmapped; but now for the PMD? */
1779
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1780
addr, addr + HPAGE_PMD_SIZE);
1781
mmu_notifier_invalidate_range_start(&range);
1782
1783
pml = pmd_lock(mm, pmd);
1784
/*
1785
* The lock of new_folio is still held, we will be blocked in
1786
* the page fault path, which prevents the pte entries from
1787
* being set again. So even though the old empty PTE page may be
1788
* concurrently freed and a new PTE page is filled into the pmd
1789
* entry, it is still empty and can be removed.
1790
*
1791
* So here we only need to recheck if the state of pmd entry
1792
* still meets our requirements, rather than checking pmd_same()
1793
* like elsewhere.
1794
*/
1795
if (check_pmd_state(pmd) != SCAN_SUCCEED)
1796
goto drop_pml;
1797
ptl = pte_lockptr(mm, pmd);
1798
if (ptl != pml)
1799
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1800
1801
/*
1802
* Huge page lock is still held, so normally the page table must
1803
* remain empty; and we have already skipped anon_vma and
1804
* userfaultfd_wp() vmas. But since the mmap_lock is not held,
1805
* it is still possible for a racing userfaultfd_ioctl() or
1806
* madvise() to have inserted ptes or markers. Now that we hold
1807
* ptlock, repeating the retractable checks protects us from
1808
* races against the prior checks.
1809
*/
1810
if (likely(file_backed_vma_is_retractable(vma))) {
1811
pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1812
pmdp_get_lockless_sync();
1813
success = true;
1814
}
1815
1816
if (ptl != pml)
1817
spin_unlock(ptl);
1818
drop_pml:
1819
spin_unlock(pml);
1820
1821
mmu_notifier_invalidate_range_end(&range);
1822
1823
if (success) {
1824
mm_dec_nr_ptes(mm);
1825
page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1826
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1827
}
1828
}
1829
i_mmap_unlock_read(mapping);
1830
}
1831
1832
/**
1833
* collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1834
*
1835
* @mm: process address space where collapse happens
1836
* @addr: virtual collapse start address
1837
* @file: file that collapse on
1838
* @start: collapse start address
1839
* @cc: collapse context and scratchpad
1840
*
1841
* Basic scheme is simple, details are more complex:
1842
* - allocate and lock a new huge page;
1843
* - scan page cache, locking old pages
1844
* + swap/gup in pages if necessary;
1845
* - copy data to new page
1846
* - handle shmem holes
1847
* + re-validate that holes weren't filled by someone else
1848
* + check for userfaultfd
1849
* - finalize updates to the page cache;
1850
* - if replacing succeeds:
1851
* + unlock huge page;
1852
* + free old pages;
1853
* - if replacing failed;
1854
* + unlock old pages
1855
* + unlock and free huge page;
1856
*/
1857
static int collapse_file(struct mm_struct *mm, unsigned long addr,
1858
struct file *file, pgoff_t start,
1859
struct collapse_control *cc)
1860
{
1861
struct address_space *mapping = file->f_mapping;
1862
struct page *dst;
1863
struct folio *folio, *tmp, *new_folio;
1864
pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1865
LIST_HEAD(pagelist);
1866
XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1867
int nr_none = 0, result = SCAN_SUCCEED;
1868
bool is_shmem = shmem_file(file);
1869
1870
VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1871
VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1872
1873
result = alloc_charge_folio(&new_folio, mm, cc);
1874
if (result != SCAN_SUCCEED)
1875
goto out;
1876
1877
mapping_set_update(&xas, mapping);
1878
1879
__folio_set_locked(new_folio);
1880
if (is_shmem)
1881
__folio_set_swapbacked(new_folio);
1882
new_folio->index = start;
1883
new_folio->mapping = mapping;
1884
1885
/*
1886
* Ensure we have slots for all the pages in the range. This is
1887
* almost certainly a no-op because most of the pages must be present
1888
*/
1889
do {
1890
xas_lock_irq(&xas);
1891
xas_create_range(&xas);
1892
if (!xas_error(&xas))
1893
break;
1894
xas_unlock_irq(&xas);
1895
if (!xas_nomem(&xas, GFP_KERNEL)) {
1896
result = SCAN_FAIL;
1897
goto rollback;
1898
}
1899
} while (1);
1900
1901
for (index = start; index < end;) {
1902
xas_set(&xas, index);
1903
folio = xas_load(&xas);
1904
1905
VM_BUG_ON(index != xas.xa_index);
1906
if (is_shmem) {
1907
if (!folio) {
1908
/*
1909
* Stop if extent has been truncated or
1910
* hole-punched, and is now completely
1911
* empty.
1912
*/
1913
if (index == start) {
1914
if (!xas_next_entry(&xas, end - 1)) {
1915
result = SCAN_TRUNCATED;
1916
goto xa_locked;
1917
}
1918
}
1919
nr_none++;
1920
index++;
1921
continue;
1922
}
1923
1924
if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1925
xas_unlock_irq(&xas);
1926
/* swap in or instantiate fallocated page */
1927
if (shmem_get_folio(mapping->host, index, 0,
1928
&folio, SGP_NOALLOC)) {
1929
result = SCAN_FAIL;
1930
goto xa_unlocked;
1931
}
1932
/* drain lru cache to help folio_isolate_lru() */
1933
lru_add_drain();
1934
} else if (folio_trylock(folio)) {
1935
folio_get(folio);
1936
xas_unlock_irq(&xas);
1937
} else {
1938
result = SCAN_PAGE_LOCK;
1939
goto xa_locked;
1940
}
1941
} else { /* !is_shmem */
1942
if (!folio || xa_is_value(folio)) {
1943
xas_unlock_irq(&xas);
1944
page_cache_sync_readahead(mapping, &file->f_ra,
1945
file, index,
1946
end - index);
1947
/* drain lru cache to help folio_isolate_lru() */
1948
lru_add_drain();
1949
folio = filemap_lock_folio(mapping, index);
1950
if (IS_ERR(folio)) {
1951
result = SCAN_FAIL;
1952
goto xa_unlocked;
1953
}
1954
} else if (folio_test_dirty(folio)) {
1955
/*
1956
* khugepaged only works on read-only fd,
1957
* so this page is dirty because it hasn't
1958
* been flushed since first write. There
1959
* won't be new dirty pages.
1960
*
1961
* Trigger async flush here and hope the
1962
* writeback is done when khugepaged
1963
* revisits this page.
1964
*
1965
* This is a one-off situation. We are not
1966
* forcing writeback in loop.
1967
*/
1968
xas_unlock_irq(&xas);
1969
filemap_flush(mapping);
1970
result = SCAN_FAIL;
1971
goto xa_unlocked;
1972
} else if (folio_test_writeback(folio)) {
1973
xas_unlock_irq(&xas);
1974
result = SCAN_FAIL;
1975
goto xa_unlocked;
1976
} else if (folio_trylock(folio)) {
1977
folio_get(folio);
1978
xas_unlock_irq(&xas);
1979
} else {
1980
result = SCAN_PAGE_LOCK;
1981
goto xa_locked;
1982
}
1983
}
1984
1985
/*
1986
* The folio must be locked, so we can drop the i_pages lock
1987
* without racing with truncate.
1988
*/
1989
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1990
1991
/* make sure the folio is up to date */
1992
if (unlikely(!folio_test_uptodate(folio))) {
1993
result = SCAN_FAIL;
1994
goto out_unlock;
1995
}
1996
1997
/*
1998
* If file was truncated then extended, or hole-punched, before
1999
* we locked the first folio, then a THP might be there already.
2000
* This will be discovered on the first iteration.
2001
*/
2002
if (folio_order(folio) == HPAGE_PMD_ORDER &&
2003
folio->index == start) {
2004
/* Maybe PMD-mapped */
2005
result = SCAN_PTE_MAPPED_HUGEPAGE;
2006
goto out_unlock;
2007
}
2008
2009
if (folio_mapping(folio) != mapping) {
2010
result = SCAN_TRUNCATED;
2011
goto out_unlock;
2012
}
2013
2014
if (!is_shmem && (folio_test_dirty(folio) ||
2015
folio_test_writeback(folio))) {
2016
/*
2017
* khugepaged only works on read-only fd, so this
2018
* folio is dirty because it hasn't been flushed
2019
* since first write.
2020
*/
2021
result = SCAN_FAIL;
2022
goto out_unlock;
2023
}
2024
2025
if (!folio_isolate_lru(folio)) {
2026
result = SCAN_DEL_PAGE_LRU;
2027
goto out_unlock;
2028
}
2029
2030
if (!filemap_release_folio(folio, GFP_KERNEL)) {
2031
result = SCAN_PAGE_HAS_PRIVATE;
2032
folio_putback_lru(folio);
2033
goto out_unlock;
2034
}
2035
2036
if (folio_mapped(folio))
2037
try_to_unmap(folio,
2038
TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2039
2040
xas_lock_irq(&xas);
2041
2042
VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2043
2044
/*
2045
* We control 2 + nr_pages references to the folio:
2046
* - we hold a pin on it;
2047
* - nr_pages reference from page cache;
2048
* - one from lru_isolate_folio;
2049
* If those are the only references, then any new usage
2050
* of the folio will have to fetch it from the page
2051
* cache. That requires locking the folio to handle
2052
* truncate, so any new usage will be blocked until we
2053
* unlock folio after collapse/during rollback.
2054
*/
2055
if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2056
result = SCAN_PAGE_COUNT;
2057
xas_unlock_irq(&xas);
2058
folio_putback_lru(folio);
2059
goto out_unlock;
2060
}
2061
2062
/*
2063
* Accumulate the folios that are being collapsed.
2064
*/
2065
list_add_tail(&folio->lru, &pagelist);
2066
index += folio_nr_pages(folio);
2067
continue;
2068
out_unlock:
2069
folio_unlock(folio);
2070
folio_put(folio);
2071
goto xa_unlocked;
2072
}
2073
2074
if (!is_shmem) {
2075
filemap_nr_thps_inc(mapping);
2076
/*
2077
* Paired with the fence in do_dentry_open() -> get_write_access()
2078
* to ensure i_writecount is up to date and the update to nr_thps
2079
* is visible. Ensures the page cache will be truncated if the
2080
* file is opened writable.
2081
*/
2082
smp_mb();
2083
if (inode_is_open_for_write(mapping->host)) {
2084
result = SCAN_FAIL;
2085
filemap_nr_thps_dec(mapping);
2086
}
2087
}
2088
2089
xa_locked:
2090
xas_unlock_irq(&xas);
2091
xa_unlocked:
2092
2093
/*
2094
* If collapse is successful, flush must be done now before copying.
2095
* If collapse is unsuccessful, does flush actually need to be done?
2096
* Do it anyway, to clear the state.
2097
*/
2098
try_to_unmap_flush();
2099
2100
if (result == SCAN_SUCCEED && nr_none &&
2101
!shmem_charge(mapping->host, nr_none))
2102
result = SCAN_FAIL;
2103
if (result != SCAN_SUCCEED) {
2104
nr_none = 0;
2105
goto rollback;
2106
}
2107
2108
/*
2109
* The old folios are locked, so they won't change anymore.
2110
*/
2111
index = start;
2112
dst = folio_page(new_folio, 0);
2113
list_for_each_entry(folio, &pagelist, lru) {
2114
int i, nr_pages = folio_nr_pages(folio);
2115
2116
while (index < folio->index) {
2117
clear_highpage(dst);
2118
index++;
2119
dst++;
2120
}
2121
2122
for (i = 0; i < nr_pages; i++) {
2123
if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2124
result = SCAN_COPY_MC;
2125
goto rollback;
2126
}
2127
index++;
2128
dst++;
2129
}
2130
}
2131
while (index < end) {
2132
clear_highpage(dst);
2133
index++;
2134
dst++;
2135
}
2136
2137
if (nr_none) {
2138
struct vm_area_struct *vma;
2139
int nr_none_check = 0;
2140
2141
i_mmap_lock_read(mapping);
2142
xas_lock_irq(&xas);
2143
2144
xas_set(&xas, start);
2145
for (index = start; index < end; index++) {
2146
if (!xas_next(&xas)) {
2147
xas_store(&xas, XA_RETRY_ENTRY);
2148
if (xas_error(&xas)) {
2149
result = SCAN_STORE_FAILED;
2150
goto immap_locked;
2151
}
2152
nr_none_check++;
2153
}
2154
}
2155
2156
if (nr_none != nr_none_check) {
2157
result = SCAN_PAGE_FILLED;
2158
goto immap_locked;
2159
}
2160
2161
/*
2162
* If userspace observed a missing page in a VMA with
2163
* a MODE_MISSING userfaultfd, then it might expect a
2164
* UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2165
* roll back to avoid suppressing such an event. Since
2166
* wp/minor userfaultfds don't give userspace any
2167
* guarantees that the kernel doesn't fill a missing
2168
* page with a zero page, so they don't matter here.
2169
*
2170
* Any userfaultfds registered after this point will
2171
* not be able to observe any missing pages due to the
2172
* previously inserted retry entries.
2173
*/
2174
vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2175
if (userfaultfd_missing(vma)) {
2176
result = SCAN_EXCEED_NONE_PTE;
2177
goto immap_locked;
2178
}
2179
}
2180
2181
immap_locked:
2182
i_mmap_unlock_read(mapping);
2183
if (result != SCAN_SUCCEED) {
2184
xas_set(&xas, start);
2185
for (index = start; index < end; index++) {
2186
if (xas_next(&xas) == XA_RETRY_ENTRY)
2187
xas_store(&xas, NULL);
2188
}
2189
2190
xas_unlock_irq(&xas);
2191
goto rollback;
2192
}
2193
} else {
2194
xas_lock_irq(&xas);
2195
}
2196
2197
if (is_shmem)
2198
lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2199
else
2200
lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2201
2202
if (nr_none) {
2203
lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2204
/* nr_none is always 0 for non-shmem. */
2205
lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2206
}
2207
2208
/*
2209
* Mark new_folio as uptodate before inserting it into the
2210
* page cache so that it isn't mistaken for an fallocated but
2211
* unwritten page.
2212
*/
2213
folio_mark_uptodate(new_folio);
2214
folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2215
2216
if (is_shmem)
2217
folio_mark_dirty(new_folio);
2218
folio_add_lru(new_folio);
2219
2220
/* Join all the small entries into a single multi-index entry. */
2221
xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2222
xas_store(&xas, new_folio);
2223
WARN_ON_ONCE(xas_error(&xas));
2224
xas_unlock_irq(&xas);
2225
2226
/*
2227
* Remove pte page tables, so we can re-fault the page as huge.
2228
* If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2229
*/
2230
retract_page_tables(mapping, start);
2231
if (cc && !cc->is_khugepaged)
2232
result = SCAN_PTE_MAPPED_HUGEPAGE;
2233
folio_unlock(new_folio);
2234
2235
/*
2236
* The collapse has succeeded, so free the old folios.
2237
*/
2238
list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2239
list_del(&folio->lru);
2240
folio->mapping = NULL;
2241
folio_clear_active(folio);
2242
folio_clear_unevictable(folio);
2243
folio_unlock(folio);
2244
folio_put_refs(folio, 2 + folio_nr_pages(folio));
2245
}
2246
2247
goto out;
2248
2249
rollback:
2250
/* Something went wrong: roll back page cache changes */
2251
if (nr_none) {
2252
xas_lock_irq(&xas);
2253
mapping->nrpages -= nr_none;
2254
xas_unlock_irq(&xas);
2255
shmem_uncharge(mapping->host, nr_none);
2256
}
2257
2258
list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2259
list_del(&folio->lru);
2260
folio_unlock(folio);
2261
folio_putback_lru(folio);
2262
folio_put(folio);
2263
}
2264
/*
2265
* Undo the updates of filemap_nr_thps_inc for non-SHMEM
2266
* file only. This undo is not needed unless failure is
2267
* due to SCAN_COPY_MC.
2268
*/
2269
if (!is_shmem && result == SCAN_COPY_MC) {
2270
filemap_nr_thps_dec(mapping);
2271
/*
2272
* Paired with the fence in do_dentry_open() -> get_write_access()
2273
* to ensure the update to nr_thps is visible.
2274
*/
2275
smp_mb();
2276
}
2277
2278
new_folio->mapping = NULL;
2279
2280
folio_unlock(new_folio);
2281
folio_put(new_folio);
2282
out:
2283
VM_BUG_ON(!list_empty(&pagelist));
2284
trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2285
return result;
2286
}
2287
2288
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2289
struct file *file, pgoff_t start,
2290
struct collapse_control *cc)
2291
{
2292
struct folio *folio = NULL;
2293
struct address_space *mapping = file->f_mapping;
2294
XA_STATE(xas, &mapping->i_pages, start);
2295
int present, swap;
2296
int node = NUMA_NO_NODE;
2297
int result = SCAN_SUCCEED;
2298
2299
present = 0;
2300
swap = 0;
2301
memset(cc->node_load, 0, sizeof(cc->node_load));
2302
nodes_clear(cc->alloc_nmask);
2303
rcu_read_lock();
2304
xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2305
if (xas_retry(&xas, folio))
2306
continue;
2307
2308
if (xa_is_value(folio)) {
2309
swap += 1 << xas_get_order(&xas);
2310
if (cc->is_khugepaged &&
2311
swap > khugepaged_max_ptes_swap) {
2312
result = SCAN_EXCEED_SWAP_PTE;
2313
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2314
break;
2315
}
2316
continue;
2317
}
2318
2319
if (!folio_try_get(folio)) {
2320
xas_reset(&xas);
2321
continue;
2322
}
2323
2324
if (unlikely(folio != xas_reload(&xas))) {
2325
folio_put(folio);
2326
xas_reset(&xas);
2327
continue;
2328
}
2329
2330
if (folio_order(folio) == HPAGE_PMD_ORDER &&
2331
folio->index == start) {
2332
/* Maybe PMD-mapped */
2333
result = SCAN_PTE_MAPPED_HUGEPAGE;
2334
/*
2335
* For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2336
* by the caller won't touch the page cache, and so
2337
* it's safe to skip LRU and refcount checks before
2338
* returning.
2339
*/
2340
folio_put(folio);
2341
break;
2342
}
2343
2344
node = folio_nid(folio);
2345
if (hpage_collapse_scan_abort(node, cc)) {
2346
result = SCAN_SCAN_ABORT;
2347
folio_put(folio);
2348
break;
2349
}
2350
cc->node_load[node]++;
2351
2352
if (!folio_test_lru(folio)) {
2353
result = SCAN_PAGE_LRU;
2354
folio_put(folio);
2355
break;
2356
}
2357
2358
if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2359
result = SCAN_PAGE_COUNT;
2360
folio_put(folio);
2361
break;
2362
}
2363
2364
/*
2365
* We probably should check if the folio is referenced
2366
* here, but nobody would transfer pte_young() to
2367
* folio_test_referenced() for us. And rmap walk here
2368
* is just too costly...
2369
*/
2370
2371
present += folio_nr_pages(folio);
2372
folio_put(folio);
2373
2374
if (need_resched()) {
2375
xas_pause(&xas);
2376
cond_resched_rcu();
2377
}
2378
}
2379
rcu_read_unlock();
2380
2381
if (result == SCAN_SUCCEED) {
2382
if (cc->is_khugepaged &&
2383
present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2384
result = SCAN_EXCEED_NONE_PTE;
2385
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2386
} else {
2387
result = collapse_file(mm, addr, file, start, cc);
2388
}
2389
}
2390
2391
trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2392
return result;
2393
}
2394
2395
static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2396
struct collapse_control *cc)
2397
__releases(&khugepaged_mm_lock)
2398
__acquires(&khugepaged_mm_lock)
2399
{
2400
struct vma_iterator vmi;
2401
struct mm_slot *slot;
2402
struct mm_struct *mm;
2403
struct vm_area_struct *vma;
2404
int progress = 0;
2405
2406
VM_BUG_ON(!pages);
2407
lockdep_assert_held(&khugepaged_mm_lock);
2408
*result = SCAN_FAIL;
2409
2410
if (khugepaged_scan.mm_slot) {
2411
slot = khugepaged_scan.mm_slot;
2412
} else {
2413
slot = list_first_entry(&khugepaged_scan.mm_head,
2414
struct mm_slot, mm_node);
2415
khugepaged_scan.address = 0;
2416
khugepaged_scan.mm_slot = slot;
2417
}
2418
spin_unlock(&khugepaged_mm_lock);
2419
2420
mm = slot->mm;
2421
/*
2422
* Don't wait for semaphore (to avoid long wait times). Just move to
2423
* the next mm on the list.
2424
*/
2425
vma = NULL;
2426
if (unlikely(!mmap_read_trylock(mm)))
2427
goto breakouterloop_mmap_lock;
2428
2429
progress++;
2430
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2431
goto breakouterloop;
2432
2433
vma_iter_init(&vmi, mm, khugepaged_scan.address);
2434
for_each_vma(vmi, vma) {
2435
unsigned long hstart, hend;
2436
2437
cond_resched();
2438
if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2439
progress++;
2440
break;
2441
}
2442
if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) {
2443
skip:
2444
progress++;
2445
continue;
2446
}
2447
hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2448
hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2449
if (khugepaged_scan.address > hend)
2450
goto skip;
2451
if (khugepaged_scan.address < hstart)
2452
khugepaged_scan.address = hstart;
2453
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2454
2455
while (khugepaged_scan.address < hend) {
2456
bool mmap_locked = true;
2457
2458
cond_resched();
2459
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2460
goto breakouterloop;
2461
2462
VM_BUG_ON(khugepaged_scan.address < hstart ||
2463
khugepaged_scan.address + HPAGE_PMD_SIZE >
2464
hend);
2465
if (!vma_is_anonymous(vma)) {
2466
struct file *file = get_file(vma->vm_file);
2467
pgoff_t pgoff = linear_page_index(vma,
2468
khugepaged_scan.address);
2469
2470
mmap_read_unlock(mm);
2471
mmap_locked = false;
2472
*result = hpage_collapse_scan_file(mm,
2473
khugepaged_scan.address, file, pgoff, cc);
2474
fput(file);
2475
if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2476
mmap_read_lock(mm);
2477
if (hpage_collapse_test_exit_or_disable(mm))
2478
goto breakouterloop;
2479
*result = collapse_pte_mapped_thp(mm,
2480
khugepaged_scan.address, false);
2481
if (*result == SCAN_PMD_MAPPED)
2482
*result = SCAN_SUCCEED;
2483
mmap_read_unlock(mm);
2484
}
2485
} else {
2486
*result = hpage_collapse_scan_pmd(mm, vma,
2487
khugepaged_scan.address, &mmap_locked, cc);
2488
}
2489
2490
if (*result == SCAN_SUCCEED)
2491
++khugepaged_pages_collapsed;
2492
2493
/* move to next address */
2494
khugepaged_scan.address += HPAGE_PMD_SIZE;
2495
progress += HPAGE_PMD_NR;
2496
if (!mmap_locked)
2497
/*
2498
* We released mmap_lock so break loop. Note
2499
* that we drop mmap_lock before all hugepage
2500
* allocations, so if allocation fails, we are
2501
* guaranteed to break here and report the
2502
* correct result back to caller.
2503
*/
2504
goto breakouterloop_mmap_lock;
2505
if (progress >= pages)
2506
goto breakouterloop;
2507
}
2508
}
2509
breakouterloop:
2510
mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2511
breakouterloop_mmap_lock:
2512
2513
spin_lock(&khugepaged_mm_lock);
2514
VM_BUG_ON(khugepaged_scan.mm_slot != slot);
2515
/*
2516
* Release the current mm_slot if this mm is about to die, or
2517
* if we scanned all vmas of this mm.
2518
*/
2519
if (hpage_collapse_test_exit(mm) || !vma) {
2520
/*
2521
* Make sure that if mm_users is reaching zero while
2522
* khugepaged runs here, khugepaged_exit will find
2523
* mm_slot not pointing to the exiting mm.
2524
*/
2525
if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) {
2526
khugepaged_scan.mm_slot = list_next_entry(slot, mm_node);
2527
khugepaged_scan.address = 0;
2528
} else {
2529
khugepaged_scan.mm_slot = NULL;
2530
khugepaged_full_scans++;
2531
}
2532
2533
collect_mm_slot(slot);
2534
}
2535
2536
return progress;
2537
}
2538
2539
static int khugepaged_has_work(void)
2540
{
2541
return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2542
}
2543
2544
static int khugepaged_wait_event(void)
2545
{
2546
return !list_empty(&khugepaged_scan.mm_head) ||
2547
kthread_should_stop();
2548
}
2549
2550
static void khugepaged_do_scan(struct collapse_control *cc)
2551
{
2552
unsigned int progress = 0, pass_through_head = 0;
2553
unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2554
bool wait = true;
2555
int result = SCAN_SUCCEED;
2556
2557
lru_add_drain_all();
2558
2559
while (true) {
2560
cond_resched();
2561
2562
if (unlikely(kthread_should_stop()))
2563
break;
2564
2565
spin_lock(&khugepaged_mm_lock);
2566
if (!khugepaged_scan.mm_slot)
2567
pass_through_head++;
2568
if (khugepaged_has_work() &&
2569
pass_through_head < 2)
2570
progress += khugepaged_scan_mm_slot(pages - progress,
2571
&result, cc);
2572
else
2573
progress = pages;
2574
spin_unlock(&khugepaged_mm_lock);
2575
2576
if (progress >= pages)
2577
break;
2578
2579
if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2580
/*
2581
* If fail to allocate the first time, try to sleep for
2582
* a while. When hit again, cancel the scan.
2583
*/
2584
if (!wait)
2585
break;
2586
wait = false;
2587
khugepaged_alloc_sleep();
2588
}
2589
}
2590
}
2591
2592
static bool khugepaged_should_wakeup(void)
2593
{
2594
return kthread_should_stop() ||
2595
time_after_eq(jiffies, khugepaged_sleep_expire);
2596
}
2597
2598
static void khugepaged_wait_work(void)
2599
{
2600
if (khugepaged_has_work()) {
2601
const unsigned long scan_sleep_jiffies =
2602
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2603
2604
if (!scan_sleep_jiffies)
2605
return;
2606
2607
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2608
wait_event_freezable_timeout(khugepaged_wait,
2609
khugepaged_should_wakeup(),
2610
scan_sleep_jiffies);
2611
return;
2612
}
2613
2614
if (hugepage_pmd_enabled())
2615
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2616
}
2617
2618
static int khugepaged(void *none)
2619
{
2620
struct mm_slot *slot;
2621
2622
set_freezable();
2623
set_user_nice(current, MAX_NICE);
2624
2625
while (!kthread_should_stop()) {
2626
khugepaged_do_scan(&khugepaged_collapse_control);
2627
khugepaged_wait_work();
2628
}
2629
2630
spin_lock(&khugepaged_mm_lock);
2631
slot = khugepaged_scan.mm_slot;
2632
khugepaged_scan.mm_slot = NULL;
2633
if (slot)
2634
collect_mm_slot(slot);
2635
spin_unlock(&khugepaged_mm_lock);
2636
return 0;
2637
}
2638
2639
static void set_recommended_min_free_kbytes(void)
2640
{
2641
struct zone *zone;
2642
int nr_zones = 0;
2643
unsigned long recommended_min;
2644
2645
if (!hugepage_pmd_enabled()) {
2646
calculate_min_free_kbytes();
2647
goto update_wmarks;
2648
}
2649
2650
for_each_populated_zone(zone) {
2651
/*
2652
* We don't need to worry about fragmentation of
2653
* ZONE_MOVABLE since it only has movable pages.
2654
*/
2655
if (zone_idx(zone) > gfp_zone(GFP_USER))
2656
continue;
2657
2658
nr_zones++;
2659
}
2660
2661
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2662
recommended_min = pageblock_nr_pages * nr_zones * 2;
2663
2664
/*
2665
* Make sure that on average at least two pageblocks are almost free
2666
* of another type, one for a migratetype to fall back to and a
2667
* second to avoid subsequent fallbacks of other types There are 3
2668
* MIGRATE_TYPES we care about.
2669
*/
2670
recommended_min += pageblock_nr_pages * nr_zones *
2671
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2672
2673
/* don't ever allow to reserve more than 5% of the lowmem */
2674
recommended_min = min(recommended_min,
2675
(unsigned long) nr_free_buffer_pages() / 20);
2676
recommended_min <<= (PAGE_SHIFT-10);
2677
2678
if (recommended_min > min_free_kbytes) {
2679
if (user_min_free_kbytes >= 0)
2680
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2681
min_free_kbytes, recommended_min);
2682
2683
min_free_kbytes = recommended_min;
2684
}
2685
2686
update_wmarks:
2687
setup_per_zone_wmarks();
2688
}
2689
2690
int start_stop_khugepaged(void)
2691
{
2692
int err = 0;
2693
2694
mutex_lock(&khugepaged_mutex);
2695
if (hugepage_pmd_enabled()) {
2696
if (!khugepaged_thread)
2697
khugepaged_thread = kthread_run(khugepaged, NULL,
2698
"khugepaged");
2699
if (IS_ERR(khugepaged_thread)) {
2700
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2701
err = PTR_ERR(khugepaged_thread);
2702
khugepaged_thread = NULL;
2703
goto fail;
2704
}
2705
2706
if (!list_empty(&khugepaged_scan.mm_head))
2707
wake_up_interruptible(&khugepaged_wait);
2708
} else if (khugepaged_thread) {
2709
kthread_stop(khugepaged_thread);
2710
khugepaged_thread = NULL;
2711
}
2712
set_recommended_min_free_kbytes();
2713
fail:
2714
mutex_unlock(&khugepaged_mutex);
2715
return err;
2716
}
2717
2718
void khugepaged_min_free_kbytes_update(void)
2719
{
2720
mutex_lock(&khugepaged_mutex);
2721
if (hugepage_pmd_enabled() && khugepaged_thread)
2722
set_recommended_min_free_kbytes();
2723
mutex_unlock(&khugepaged_mutex);
2724
}
2725
2726
bool current_is_khugepaged(void)
2727
{
2728
return kthread_func(current) == khugepaged;
2729
}
2730
2731
static int madvise_collapse_errno(enum scan_result r)
2732
{
2733
/*
2734
* MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2735
* actionable feedback to caller, so they may take an appropriate
2736
* fallback measure depending on the nature of the failure.
2737
*/
2738
switch (r) {
2739
case SCAN_ALLOC_HUGE_PAGE_FAIL:
2740
return -ENOMEM;
2741
case SCAN_CGROUP_CHARGE_FAIL:
2742
case SCAN_EXCEED_NONE_PTE:
2743
return -EBUSY;
2744
/* Resource temporary unavailable - trying again might succeed */
2745
case SCAN_PAGE_COUNT:
2746
case SCAN_PAGE_LOCK:
2747
case SCAN_PAGE_LRU:
2748
case SCAN_DEL_PAGE_LRU:
2749
case SCAN_PAGE_FILLED:
2750
return -EAGAIN;
2751
/*
2752
* Other: Trying again likely not to succeed / error intrinsic to
2753
* specified memory range. khugepaged likely won't be able to collapse
2754
* either.
2755
*/
2756
default:
2757
return -EINVAL;
2758
}
2759
}
2760
2761
int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2762
unsigned long end, bool *lock_dropped)
2763
{
2764
struct collapse_control *cc;
2765
struct mm_struct *mm = vma->vm_mm;
2766
unsigned long hstart, hend, addr;
2767
int thps = 0, last_fail = SCAN_FAIL;
2768
bool mmap_locked = true;
2769
2770
BUG_ON(vma->vm_start > start);
2771
BUG_ON(vma->vm_end < end);
2772
2773
if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER))
2774
return -EINVAL;
2775
2776
cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2777
if (!cc)
2778
return -ENOMEM;
2779
cc->is_khugepaged = false;
2780
2781
mmgrab(mm);
2782
lru_add_drain_all();
2783
2784
hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2785
hend = end & HPAGE_PMD_MASK;
2786
2787
for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2788
int result = SCAN_FAIL;
2789
2790
if (!mmap_locked) {
2791
cond_resched();
2792
mmap_read_lock(mm);
2793
mmap_locked = true;
2794
result = hugepage_vma_revalidate(mm, addr, false, &vma,
2795
cc);
2796
if (result != SCAN_SUCCEED) {
2797
last_fail = result;
2798
goto out_nolock;
2799
}
2800
2801
hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2802
}
2803
mmap_assert_locked(mm);
2804
if (!vma_is_anonymous(vma)) {
2805
struct file *file = get_file(vma->vm_file);
2806
pgoff_t pgoff = linear_page_index(vma, addr);
2807
2808
mmap_read_unlock(mm);
2809
mmap_locked = false;
2810
result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2811
cc);
2812
fput(file);
2813
} else {
2814
result = hpage_collapse_scan_pmd(mm, vma, addr,
2815
&mmap_locked, cc);
2816
}
2817
if (!mmap_locked)
2818
*lock_dropped = true;
2819
2820
handle_result:
2821
switch (result) {
2822
case SCAN_SUCCEED:
2823
case SCAN_PMD_MAPPED:
2824
++thps;
2825
break;
2826
case SCAN_PTE_MAPPED_HUGEPAGE:
2827
BUG_ON(mmap_locked);
2828
mmap_read_lock(mm);
2829
result = collapse_pte_mapped_thp(mm, addr, true);
2830
mmap_read_unlock(mm);
2831
goto handle_result;
2832
/* Whitelisted set of results where continuing OK */
2833
case SCAN_NO_PTE_TABLE:
2834
case SCAN_PTE_NON_PRESENT:
2835
case SCAN_PTE_UFFD_WP:
2836
case SCAN_LACK_REFERENCED_PAGE:
2837
case SCAN_PAGE_NULL:
2838
case SCAN_PAGE_COUNT:
2839
case SCAN_PAGE_LOCK:
2840
case SCAN_PAGE_COMPOUND:
2841
case SCAN_PAGE_LRU:
2842
case SCAN_DEL_PAGE_LRU:
2843
last_fail = result;
2844
break;
2845
default:
2846
last_fail = result;
2847
/* Other error, exit */
2848
goto out_maybelock;
2849
}
2850
}
2851
2852
out_maybelock:
2853
/* Caller expects us to hold mmap_lock on return */
2854
if (!mmap_locked)
2855
mmap_read_lock(mm);
2856
out_nolock:
2857
mmap_assert_locked(mm);
2858
mmdrop(mm);
2859
kfree(cc);
2860
2861
return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2862
: madvise_collapse_errno(last_fail);
2863
}
2864
2865