Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/khugepaged.c
26135 views
1
// SPDX-License-Identifier: GPL-2.0
2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4
#include <linux/mm.h>
5
#include <linux/sched.h>
6
#include <linux/sched/mm.h>
7
#include <linux/mmu_notifier.h>
8
#include <linux/rmap.h>
9
#include <linux/swap.h>
10
#include <linux/mm_inline.h>
11
#include <linux/kthread.h>
12
#include <linux/khugepaged.h>
13
#include <linux/freezer.h>
14
#include <linux/mman.h>
15
#include <linux/hashtable.h>
16
#include <linux/userfaultfd_k.h>
17
#include <linux/page_idle.h>
18
#include <linux/page_table_check.h>
19
#include <linux/rcupdate_wait.h>
20
#include <linux/swapops.h>
21
#include <linux/shmem_fs.h>
22
#include <linux/dax.h>
23
#include <linux/ksm.h>
24
25
#include <asm/tlb.h>
26
#include <asm/pgalloc.h>
27
#include "internal.h"
28
#include "mm_slot.h"
29
30
enum scan_result {
31
SCAN_FAIL,
32
SCAN_SUCCEED,
33
SCAN_PMD_NULL,
34
SCAN_PMD_NONE,
35
SCAN_PMD_MAPPED,
36
SCAN_EXCEED_NONE_PTE,
37
SCAN_EXCEED_SWAP_PTE,
38
SCAN_EXCEED_SHARED_PTE,
39
SCAN_PTE_NON_PRESENT,
40
SCAN_PTE_UFFD_WP,
41
SCAN_PTE_MAPPED_HUGEPAGE,
42
SCAN_PAGE_RO,
43
SCAN_LACK_REFERENCED_PAGE,
44
SCAN_PAGE_NULL,
45
SCAN_SCAN_ABORT,
46
SCAN_PAGE_COUNT,
47
SCAN_PAGE_LRU,
48
SCAN_PAGE_LOCK,
49
SCAN_PAGE_ANON,
50
SCAN_PAGE_COMPOUND,
51
SCAN_ANY_PROCESS,
52
SCAN_VMA_NULL,
53
SCAN_VMA_CHECK,
54
SCAN_ADDRESS_RANGE,
55
SCAN_DEL_PAGE_LRU,
56
SCAN_ALLOC_HUGE_PAGE_FAIL,
57
SCAN_CGROUP_CHARGE_FAIL,
58
SCAN_TRUNCATED,
59
SCAN_PAGE_HAS_PRIVATE,
60
SCAN_STORE_FAILED,
61
SCAN_COPY_MC,
62
SCAN_PAGE_FILLED,
63
};
64
65
#define CREATE_TRACE_POINTS
66
#include <trace/events/huge_memory.h>
67
68
static struct task_struct *khugepaged_thread __read_mostly;
69
static DEFINE_MUTEX(khugepaged_mutex);
70
71
/* default scan 8*512 pte (or vmas) every 30 second */
72
static unsigned int khugepaged_pages_to_scan __read_mostly;
73
static unsigned int khugepaged_pages_collapsed;
74
static unsigned int khugepaged_full_scans;
75
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76
/* during fragmentation poll the hugepage allocator once every minute */
77
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78
static unsigned long khugepaged_sleep_expire;
79
static DEFINE_SPINLOCK(khugepaged_mm_lock);
80
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81
/*
82
* default collapse hugepages if there is at least one pte mapped like
83
* it would have happened if the vma was large enough during page
84
* fault.
85
*
86
* Note that these are only respected if collapse was initiated by khugepaged.
87
*/
88
unsigned int khugepaged_max_ptes_none __read_mostly;
89
static unsigned int khugepaged_max_ptes_swap __read_mostly;
90
static unsigned int khugepaged_max_ptes_shared __read_mostly;
91
92
#define MM_SLOTS_HASH_BITS 10
93
static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94
95
static struct kmem_cache *mm_slot_cache __ro_after_init;
96
97
struct collapse_control {
98
bool is_khugepaged;
99
100
/* Num pages scanned per node */
101
u32 node_load[MAX_NUMNODES];
102
103
/* nodemask for allocation fallback */
104
nodemask_t alloc_nmask;
105
};
106
107
/**
108
* struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109
* @slot: hash lookup from mm to mm_slot
110
*/
111
struct khugepaged_mm_slot {
112
struct mm_slot slot;
113
};
114
115
/**
116
* struct khugepaged_scan - cursor for scanning
117
* @mm_head: the head of the mm list to scan
118
* @mm_slot: the current mm_slot we are scanning
119
* @address: the next address inside that to be scanned
120
*
121
* There is only the one khugepaged_scan instance of this cursor structure.
122
*/
123
struct khugepaged_scan {
124
struct list_head mm_head;
125
struct khugepaged_mm_slot *mm_slot;
126
unsigned long address;
127
};
128
129
static struct khugepaged_scan khugepaged_scan = {
130
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131
};
132
133
#ifdef CONFIG_SYSFS
134
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135
struct kobj_attribute *attr,
136
char *buf)
137
{
138
return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139
}
140
141
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142
struct kobj_attribute *attr,
143
const char *buf, size_t count)
144
{
145
unsigned int msecs;
146
int err;
147
148
err = kstrtouint(buf, 10, &msecs);
149
if (err)
150
return -EINVAL;
151
152
khugepaged_scan_sleep_millisecs = msecs;
153
khugepaged_sleep_expire = 0;
154
wake_up_interruptible(&khugepaged_wait);
155
156
return count;
157
}
158
static struct kobj_attribute scan_sleep_millisecs_attr =
159
__ATTR_RW(scan_sleep_millisecs);
160
161
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162
struct kobj_attribute *attr,
163
char *buf)
164
{
165
return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166
}
167
168
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169
struct kobj_attribute *attr,
170
const char *buf, size_t count)
171
{
172
unsigned int msecs;
173
int err;
174
175
err = kstrtouint(buf, 10, &msecs);
176
if (err)
177
return -EINVAL;
178
179
khugepaged_alloc_sleep_millisecs = msecs;
180
khugepaged_sleep_expire = 0;
181
wake_up_interruptible(&khugepaged_wait);
182
183
return count;
184
}
185
static struct kobj_attribute alloc_sleep_millisecs_attr =
186
__ATTR_RW(alloc_sleep_millisecs);
187
188
static ssize_t pages_to_scan_show(struct kobject *kobj,
189
struct kobj_attribute *attr,
190
char *buf)
191
{
192
return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193
}
194
static ssize_t pages_to_scan_store(struct kobject *kobj,
195
struct kobj_attribute *attr,
196
const char *buf, size_t count)
197
{
198
unsigned int pages;
199
int err;
200
201
err = kstrtouint(buf, 10, &pages);
202
if (err || !pages)
203
return -EINVAL;
204
205
khugepaged_pages_to_scan = pages;
206
207
return count;
208
}
209
static struct kobj_attribute pages_to_scan_attr =
210
__ATTR_RW(pages_to_scan);
211
212
static ssize_t pages_collapsed_show(struct kobject *kobj,
213
struct kobj_attribute *attr,
214
char *buf)
215
{
216
return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217
}
218
static struct kobj_attribute pages_collapsed_attr =
219
__ATTR_RO(pages_collapsed);
220
221
static ssize_t full_scans_show(struct kobject *kobj,
222
struct kobj_attribute *attr,
223
char *buf)
224
{
225
return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226
}
227
static struct kobj_attribute full_scans_attr =
228
__ATTR_RO(full_scans);
229
230
static ssize_t defrag_show(struct kobject *kobj,
231
struct kobj_attribute *attr, char *buf)
232
{
233
return single_hugepage_flag_show(kobj, attr, buf,
234
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235
}
236
static ssize_t defrag_store(struct kobject *kobj,
237
struct kobj_attribute *attr,
238
const char *buf, size_t count)
239
{
240
return single_hugepage_flag_store(kobj, attr, buf, count,
241
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242
}
243
static struct kobj_attribute khugepaged_defrag_attr =
244
__ATTR_RW(defrag);
245
246
/*
247
* max_ptes_none controls if khugepaged should collapse hugepages over
248
* any unmapped ptes in turn potentially increasing the memory
249
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250
* reduce the available free memory in the system as it
251
* runs. Increasing max_ptes_none will instead potentially reduce the
252
* free memory in the system during the khugepaged scan.
253
*/
254
static ssize_t max_ptes_none_show(struct kobject *kobj,
255
struct kobj_attribute *attr,
256
char *buf)
257
{
258
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259
}
260
static ssize_t max_ptes_none_store(struct kobject *kobj,
261
struct kobj_attribute *attr,
262
const char *buf, size_t count)
263
{
264
int err;
265
unsigned long max_ptes_none;
266
267
err = kstrtoul(buf, 10, &max_ptes_none);
268
if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269
return -EINVAL;
270
271
khugepaged_max_ptes_none = max_ptes_none;
272
273
return count;
274
}
275
static struct kobj_attribute khugepaged_max_ptes_none_attr =
276
__ATTR_RW(max_ptes_none);
277
278
static ssize_t max_ptes_swap_show(struct kobject *kobj,
279
struct kobj_attribute *attr,
280
char *buf)
281
{
282
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283
}
284
285
static ssize_t max_ptes_swap_store(struct kobject *kobj,
286
struct kobj_attribute *attr,
287
const char *buf, size_t count)
288
{
289
int err;
290
unsigned long max_ptes_swap;
291
292
err = kstrtoul(buf, 10, &max_ptes_swap);
293
if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294
return -EINVAL;
295
296
khugepaged_max_ptes_swap = max_ptes_swap;
297
298
return count;
299
}
300
301
static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302
__ATTR_RW(max_ptes_swap);
303
304
static ssize_t max_ptes_shared_show(struct kobject *kobj,
305
struct kobj_attribute *attr,
306
char *buf)
307
{
308
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309
}
310
311
static ssize_t max_ptes_shared_store(struct kobject *kobj,
312
struct kobj_attribute *attr,
313
const char *buf, size_t count)
314
{
315
int err;
316
unsigned long max_ptes_shared;
317
318
err = kstrtoul(buf, 10, &max_ptes_shared);
319
if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320
return -EINVAL;
321
322
khugepaged_max_ptes_shared = max_ptes_shared;
323
324
return count;
325
}
326
327
static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328
__ATTR_RW(max_ptes_shared);
329
330
static struct attribute *khugepaged_attr[] = {
331
&khugepaged_defrag_attr.attr,
332
&khugepaged_max_ptes_none_attr.attr,
333
&khugepaged_max_ptes_swap_attr.attr,
334
&khugepaged_max_ptes_shared_attr.attr,
335
&pages_to_scan_attr.attr,
336
&pages_collapsed_attr.attr,
337
&full_scans_attr.attr,
338
&scan_sleep_millisecs_attr.attr,
339
&alloc_sleep_millisecs_attr.attr,
340
NULL,
341
};
342
343
struct attribute_group khugepaged_attr_group = {
344
.attrs = khugepaged_attr,
345
.name = "khugepaged",
346
};
347
#endif /* CONFIG_SYSFS */
348
349
int hugepage_madvise(struct vm_area_struct *vma,
350
vm_flags_t *vm_flags, int advice)
351
{
352
switch (advice) {
353
case MADV_HUGEPAGE:
354
#ifdef CONFIG_S390
355
/*
356
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357
* can't handle this properly after s390_enable_sie, so we simply
358
* ignore the madvise to prevent qemu from causing a SIGSEGV.
359
*/
360
if (mm_has_pgste(vma->vm_mm))
361
return 0;
362
#endif
363
*vm_flags &= ~VM_NOHUGEPAGE;
364
*vm_flags |= VM_HUGEPAGE;
365
/*
366
* If the vma become good for khugepaged to scan,
367
* register it here without waiting a page fault that
368
* may not happen any time soon.
369
*/
370
khugepaged_enter_vma(vma, *vm_flags);
371
break;
372
case MADV_NOHUGEPAGE:
373
*vm_flags &= ~VM_HUGEPAGE;
374
*vm_flags |= VM_NOHUGEPAGE;
375
/*
376
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377
* this vma even if we leave the mm registered in khugepaged if
378
* it got registered before VM_NOHUGEPAGE was set.
379
*/
380
break;
381
}
382
383
return 0;
384
}
385
386
int __init khugepaged_init(void)
387
{
388
mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0);
389
if (!mm_slot_cache)
390
return -ENOMEM;
391
392
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394
khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395
khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396
397
return 0;
398
}
399
400
void __init khugepaged_destroy(void)
401
{
402
kmem_cache_destroy(mm_slot_cache);
403
}
404
405
static inline int hpage_collapse_test_exit(struct mm_struct *mm)
406
{
407
return atomic_read(&mm->mm_users) == 0;
408
}
409
410
static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
411
{
412
return hpage_collapse_test_exit(mm) ||
413
test_bit(MMF_DISABLE_THP, &mm->flags);
414
}
415
416
static bool hugepage_pmd_enabled(void)
417
{
418
/*
419
* We cover the anon, shmem and the file-backed case here; file-backed
420
* hugepages, when configured in, are determined by the global control.
421
* Anon pmd-sized hugepages are determined by the pmd-size control.
422
* Shmem pmd-sized hugepages are also determined by its pmd-size control,
423
* except when the global shmem_huge is set to SHMEM_HUGE_DENY.
424
*/
425
if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
426
hugepage_global_enabled())
427
return true;
428
if (test_bit(PMD_ORDER, &huge_anon_orders_always))
429
return true;
430
if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
431
return true;
432
if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
433
hugepage_global_enabled())
434
return true;
435
if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled())
436
return true;
437
return false;
438
}
439
440
void __khugepaged_enter(struct mm_struct *mm)
441
{
442
struct khugepaged_mm_slot *mm_slot;
443
struct mm_slot *slot;
444
int wakeup;
445
446
/* __khugepaged_exit() must not run from under us */
447
VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
448
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
449
return;
450
451
mm_slot = mm_slot_alloc(mm_slot_cache);
452
if (!mm_slot)
453
return;
454
455
slot = &mm_slot->slot;
456
457
spin_lock(&khugepaged_mm_lock);
458
mm_slot_insert(mm_slots_hash, mm, slot);
459
/*
460
* Insert just behind the scanning cursor, to let the area settle
461
* down a little.
462
*/
463
wakeup = list_empty(&khugepaged_scan.mm_head);
464
list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
465
spin_unlock(&khugepaged_mm_lock);
466
467
mmgrab(mm);
468
if (wakeup)
469
wake_up_interruptible(&khugepaged_wait);
470
}
471
472
void khugepaged_enter_vma(struct vm_area_struct *vma,
473
vm_flags_t vm_flags)
474
{
475
if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
476
hugepage_pmd_enabled()) {
477
if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
478
PMD_ORDER))
479
__khugepaged_enter(vma->vm_mm);
480
}
481
}
482
483
void __khugepaged_exit(struct mm_struct *mm)
484
{
485
struct khugepaged_mm_slot *mm_slot;
486
struct mm_slot *slot;
487
int free = 0;
488
489
spin_lock(&khugepaged_mm_lock);
490
slot = mm_slot_lookup(mm_slots_hash, mm);
491
mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
492
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
493
hash_del(&slot->hash);
494
list_del(&slot->mm_node);
495
free = 1;
496
}
497
spin_unlock(&khugepaged_mm_lock);
498
499
if (free) {
500
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
501
mm_slot_free(mm_slot_cache, mm_slot);
502
mmdrop(mm);
503
} else if (mm_slot) {
504
/*
505
* This is required to serialize against
506
* hpage_collapse_test_exit() (which is guaranteed to run
507
* under mmap sem read mode). Stop here (after we return all
508
* pagetables will be destroyed) until khugepaged has finished
509
* working on the pagetables under the mmap_lock.
510
*/
511
mmap_write_lock(mm);
512
mmap_write_unlock(mm);
513
}
514
}
515
516
static void release_pte_folio(struct folio *folio)
517
{
518
node_stat_mod_folio(folio,
519
NR_ISOLATED_ANON + folio_is_file_lru(folio),
520
-folio_nr_pages(folio));
521
folio_unlock(folio);
522
folio_putback_lru(folio);
523
}
524
525
static void release_pte_pages(pte_t *pte, pte_t *_pte,
526
struct list_head *compound_pagelist)
527
{
528
struct folio *folio, *tmp;
529
530
while (--_pte >= pte) {
531
pte_t pteval = ptep_get(_pte);
532
unsigned long pfn;
533
534
if (pte_none(pteval))
535
continue;
536
pfn = pte_pfn(pteval);
537
if (is_zero_pfn(pfn))
538
continue;
539
folio = pfn_folio(pfn);
540
if (folio_test_large(folio))
541
continue;
542
release_pte_folio(folio);
543
}
544
545
list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
546
list_del(&folio->lru);
547
release_pte_folio(folio);
548
}
549
}
550
551
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
552
unsigned long address,
553
pte_t *pte,
554
struct collapse_control *cc,
555
struct list_head *compound_pagelist)
556
{
557
struct page *page = NULL;
558
struct folio *folio = NULL;
559
pte_t *_pte;
560
int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
561
bool writable = false;
562
563
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
564
_pte++, address += PAGE_SIZE) {
565
pte_t pteval = ptep_get(_pte);
566
if (pte_none(pteval) || (pte_present(pteval) &&
567
is_zero_pfn(pte_pfn(pteval)))) {
568
++none_or_zero;
569
if (!userfaultfd_armed(vma) &&
570
(!cc->is_khugepaged ||
571
none_or_zero <= khugepaged_max_ptes_none)) {
572
continue;
573
} else {
574
result = SCAN_EXCEED_NONE_PTE;
575
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
576
goto out;
577
}
578
}
579
if (!pte_present(pteval)) {
580
result = SCAN_PTE_NON_PRESENT;
581
goto out;
582
}
583
if (pte_uffd_wp(pteval)) {
584
result = SCAN_PTE_UFFD_WP;
585
goto out;
586
}
587
page = vm_normal_page(vma, address, pteval);
588
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
589
result = SCAN_PAGE_NULL;
590
goto out;
591
}
592
593
folio = page_folio(page);
594
VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
595
596
/* See hpage_collapse_scan_pmd(). */
597
if (folio_maybe_mapped_shared(folio)) {
598
++shared;
599
if (cc->is_khugepaged &&
600
shared > khugepaged_max_ptes_shared) {
601
result = SCAN_EXCEED_SHARED_PTE;
602
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
603
goto out;
604
}
605
}
606
607
if (folio_test_large(folio)) {
608
struct folio *f;
609
610
/*
611
* Check if we have dealt with the compound page
612
* already
613
*/
614
list_for_each_entry(f, compound_pagelist, lru) {
615
if (folio == f)
616
goto next;
617
}
618
}
619
620
/*
621
* We can do it before folio_isolate_lru because the
622
* folio can't be freed from under us. NOTE: PG_lock
623
* is needed to serialize against split_huge_page
624
* when invoked from the VM.
625
*/
626
if (!folio_trylock(folio)) {
627
result = SCAN_PAGE_LOCK;
628
goto out;
629
}
630
631
/*
632
* Check if the page has any GUP (or other external) pins.
633
*
634
* The page table that maps the page has been already unlinked
635
* from the page table tree and this process cannot get
636
* an additional pin on the page.
637
*
638
* New pins can come later if the page is shared across fork,
639
* but not from this process. The other process cannot write to
640
* the page, only trigger CoW.
641
*/
642
if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
643
folio_unlock(folio);
644
result = SCAN_PAGE_COUNT;
645
goto out;
646
}
647
648
/*
649
* Isolate the page to avoid collapsing an hugepage
650
* currently in use by the VM.
651
*/
652
if (!folio_isolate_lru(folio)) {
653
folio_unlock(folio);
654
result = SCAN_DEL_PAGE_LRU;
655
goto out;
656
}
657
node_stat_mod_folio(folio,
658
NR_ISOLATED_ANON + folio_is_file_lru(folio),
659
folio_nr_pages(folio));
660
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
661
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
662
663
if (folio_test_large(folio))
664
list_add_tail(&folio->lru, compound_pagelist);
665
next:
666
/*
667
* If collapse was initiated by khugepaged, check that there is
668
* enough young pte to justify collapsing the page
669
*/
670
if (cc->is_khugepaged &&
671
(pte_young(pteval) || folio_test_young(folio) ||
672
folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
673
address)))
674
referenced++;
675
676
if (pte_write(pteval))
677
writable = true;
678
}
679
680
if (unlikely(!writable)) {
681
result = SCAN_PAGE_RO;
682
} else if (unlikely(cc->is_khugepaged && !referenced)) {
683
result = SCAN_LACK_REFERENCED_PAGE;
684
} else {
685
result = SCAN_SUCCEED;
686
trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
687
referenced, writable, result);
688
return result;
689
}
690
out:
691
release_pte_pages(pte, _pte, compound_pagelist);
692
trace_mm_collapse_huge_page_isolate(folio, none_or_zero,
693
referenced, writable, result);
694
return result;
695
}
696
697
static void __collapse_huge_page_copy_succeeded(pte_t *pte,
698
struct vm_area_struct *vma,
699
unsigned long address,
700
spinlock_t *ptl,
701
struct list_head *compound_pagelist)
702
{
703
unsigned long end = address + HPAGE_PMD_SIZE;
704
struct folio *src, *tmp;
705
pte_t pteval;
706
pte_t *_pte;
707
unsigned int nr_ptes;
708
709
for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes,
710
address += nr_ptes * PAGE_SIZE) {
711
nr_ptes = 1;
712
pteval = ptep_get(_pte);
713
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
714
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
715
if (is_zero_pfn(pte_pfn(pteval))) {
716
/*
717
* ptl mostly unnecessary.
718
*/
719
spin_lock(ptl);
720
ptep_clear(vma->vm_mm, address, _pte);
721
spin_unlock(ptl);
722
ksm_might_unmap_zero_page(vma->vm_mm, pteval);
723
}
724
} else {
725
struct page *src_page = pte_page(pteval);
726
727
src = page_folio(src_page);
728
729
if (folio_test_large(src)) {
730
unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT;
731
732
nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes);
733
} else {
734
release_pte_folio(src);
735
}
736
737
/*
738
* ptl mostly unnecessary, but preempt has to
739
* be disabled to update the per-cpu stats
740
* inside folio_remove_rmap_pte().
741
*/
742
spin_lock(ptl);
743
clear_ptes(vma->vm_mm, address, _pte, nr_ptes);
744
folio_remove_rmap_ptes(src, src_page, nr_ptes, vma);
745
spin_unlock(ptl);
746
free_swap_cache(src);
747
folio_put_refs(src, nr_ptes);
748
}
749
}
750
751
list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
752
list_del(&src->lru);
753
node_stat_sub_folio(src, NR_ISOLATED_ANON +
754
folio_is_file_lru(src));
755
folio_unlock(src);
756
free_swap_cache(src);
757
folio_putback_lru(src);
758
}
759
}
760
761
static void __collapse_huge_page_copy_failed(pte_t *pte,
762
pmd_t *pmd,
763
pmd_t orig_pmd,
764
struct vm_area_struct *vma,
765
struct list_head *compound_pagelist)
766
{
767
spinlock_t *pmd_ptl;
768
769
/*
770
* Re-establish the PMD to point to the original page table
771
* entry. Restoring PMD needs to be done prior to releasing
772
* pages. Since pages are still isolated and locked here,
773
* acquiring anon_vma_lock_write is unnecessary.
774
*/
775
pmd_ptl = pmd_lock(vma->vm_mm, pmd);
776
pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
777
spin_unlock(pmd_ptl);
778
/*
779
* Release both raw and compound pages isolated
780
* in __collapse_huge_page_isolate.
781
*/
782
release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
783
}
784
785
/*
786
* __collapse_huge_page_copy - attempts to copy memory contents from raw
787
* pages to a hugepage. Cleans up the raw pages if copying succeeds;
788
* otherwise restores the original page table and releases isolated raw pages.
789
* Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
790
*
791
* @pte: starting of the PTEs to copy from
792
* @folio: the new hugepage to copy contents to
793
* @pmd: pointer to the new hugepage's PMD
794
* @orig_pmd: the original raw pages' PMD
795
* @vma: the original raw pages' virtual memory area
796
* @address: starting address to copy
797
* @ptl: lock on raw pages' PTEs
798
* @compound_pagelist: list that stores compound pages
799
*/
800
static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
801
pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
802
unsigned long address, spinlock_t *ptl,
803
struct list_head *compound_pagelist)
804
{
805
unsigned int i;
806
int result = SCAN_SUCCEED;
807
808
/*
809
* Copying pages' contents is subject to memory poison at any iteration.
810
*/
811
for (i = 0; i < HPAGE_PMD_NR; i++) {
812
pte_t pteval = ptep_get(pte + i);
813
struct page *page = folio_page(folio, i);
814
unsigned long src_addr = address + i * PAGE_SIZE;
815
struct page *src_page;
816
817
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
818
clear_user_highpage(page, src_addr);
819
continue;
820
}
821
src_page = pte_page(pteval);
822
if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
823
result = SCAN_COPY_MC;
824
break;
825
}
826
}
827
828
if (likely(result == SCAN_SUCCEED))
829
__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
830
compound_pagelist);
831
else
832
__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
833
compound_pagelist);
834
835
return result;
836
}
837
838
static void khugepaged_alloc_sleep(void)
839
{
840
DEFINE_WAIT(wait);
841
842
add_wait_queue(&khugepaged_wait, &wait);
843
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
844
schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
845
remove_wait_queue(&khugepaged_wait, &wait);
846
}
847
848
struct collapse_control khugepaged_collapse_control = {
849
.is_khugepaged = true,
850
};
851
852
static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
853
{
854
int i;
855
856
/*
857
* If node_reclaim_mode is disabled, then no extra effort is made to
858
* allocate memory locally.
859
*/
860
if (!node_reclaim_enabled())
861
return false;
862
863
/* If there is a count for this node already, it must be acceptable */
864
if (cc->node_load[nid])
865
return false;
866
867
for (i = 0; i < MAX_NUMNODES; i++) {
868
if (!cc->node_load[i])
869
continue;
870
if (node_distance(nid, i) > node_reclaim_distance)
871
return true;
872
}
873
return false;
874
}
875
876
#define khugepaged_defrag() \
877
(transparent_hugepage_flags & \
878
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
879
880
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
881
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
882
{
883
return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
884
}
885
886
#ifdef CONFIG_NUMA
887
static int hpage_collapse_find_target_node(struct collapse_control *cc)
888
{
889
int nid, target_node = 0, max_value = 0;
890
891
/* find first node with max normal pages hit */
892
for (nid = 0; nid < MAX_NUMNODES; nid++)
893
if (cc->node_load[nid] > max_value) {
894
max_value = cc->node_load[nid];
895
target_node = nid;
896
}
897
898
for_each_online_node(nid) {
899
if (max_value == cc->node_load[nid])
900
node_set(nid, cc->alloc_nmask);
901
}
902
903
return target_node;
904
}
905
#else
906
static int hpage_collapse_find_target_node(struct collapse_control *cc)
907
{
908
return 0;
909
}
910
#endif
911
912
/*
913
* If mmap_lock temporarily dropped, revalidate vma
914
* before taking mmap_lock.
915
* Returns enum scan_result value.
916
*/
917
918
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
919
bool expect_anon,
920
struct vm_area_struct **vmap,
921
struct collapse_control *cc)
922
{
923
struct vm_area_struct *vma;
924
unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
925
926
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
927
return SCAN_ANY_PROCESS;
928
929
*vmap = vma = find_vma(mm, address);
930
if (!vma)
931
return SCAN_VMA_NULL;
932
933
if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
934
return SCAN_ADDRESS_RANGE;
935
if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
936
return SCAN_VMA_CHECK;
937
/*
938
* Anon VMA expected, the address may be unmapped then
939
* remapped to file after khugepaged reaquired the mmap_lock.
940
*
941
* thp_vma_allowable_order may return true for qualified file
942
* vmas.
943
*/
944
if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
945
return SCAN_PAGE_ANON;
946
return SCAN_SUCCEED;
947
}
948
949
static inline int check_pmd_state(pmd_t *pmd)
950
{
951
pmd_t pmde = pmdp_get_lockless(pmd);
952
953
if (pmd_none(pmde))
954
return SCAN_PMD_NONE;
955
956
/*
957
* The folio may be under migration when khugepaged is trying to
958
* collapse it. Migration success or failure will eventually end
959
* up with a present PMD mapping a folio again.
960
*/
961
if (is_pmd_migration_entry(pmde))
962
return SCAN_PMD_MAPPED;
963
if (!pmd_present(pmde))
964
return SCAN_PMD_NULL;
965
if (pmd_trans_huge(pmde))
966
return SCAN_PMD_MAPPED;
967
if (pmd_bad(pmde))
968
return SCAN_PMD_NULL;
969
return SCAN_SUCCEED;
970
}
971
972
static int find_pmd_or_thp_or_none(struct mm_struct *mm,
973
unsigned long address,
974
pmd_t **pmd)
975
{
976
*pmd = mm_find_pmd(mm, address);
977
if (!*pmd)
978
return SCAN_PMD_NULL;
979
980
return check_pmd_state(*pmd);
981
}
982
983
static int check_pmd_still_valid(struct mm_struct *mm,
984
unsigned long address,
985
pmd_t *pmd)
986
{
987
pmd_t *new_pmd;
988
int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
989
990
if (result != SCAN_SUCCEED)
991
return result;
992
if (new_pmd != pmd)
993
return SCAN_FAIL;
994
return SCAN_SUCCEED;
995
}
996
997
/*
998
* Bring missing pages in from swap, to complete THP collapse.
999
* Only done if hpage_collapse_scan_pmd believes it is worthwhile.
1000
*
1001
* Called and returns without pte mapped or spinlocks held.
1002
* Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
1003
*/
1004
static int __collapse_huge_page_swapin(struct mm_struct *mm,
1005
struct vm_area_struct *vma,
1006
unsigned long haddr, pmd_t *pmd,
1007
int referenced)
1008
{
1009
int swapped_in = 0;
1010
vm_fault_t ret = 0;
1011
unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1012
int result;
1013
pte_t *pte = NULL;
1014
spinlock_t *ptl;
1015
1016
for (address = haddr; address < end; address += PAGE_SIZE) {
1017
struct vm_fault vmf = {
1018
.vma = vma,
1019
.address = address,
1020
.pgoff = linear_page_index(vma, address),
1021
.flags = FAULT_FLAG_ALLOW_RETRY,
1022
.pmd = pmd,
1023
};
1024
1025
if (!pte++) {
1026
/*
1027
* Here the ptl is only used to check pte_same() in
1028
* do_swap_page(), so readonly version is enough.
1029
*/
1030
pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl);
1031
if (!pte) {
1032
mmap_read_unlock(mm);
1033
result = SCAN_PMD_NULL;
1034
goto out;
1035
}
1036
}
1037
1038
vmf.orig_pte = ptep_get_lockless(pte);
1039
if (!is_swap_pte(vmf.orig_pte))
1040
continue;
1041
1042
vmf.pte = pte;
1043
vmf.ptl = ptl;
1044
ret = do_swap_page(&vmf);
1045
/* Which unmaps pte (after perhaps re-checking the entry) */
1046
pte = NULL;
1047
1048
/*
1049
* do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1050
* Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1051
* we do not retry here and swap entry will remain in pagetable
1052
* resulting in later failure.
1053
*/
1054
if (ret & VM_FAULT_RETRY) {
1055
/* Likely, but not guaranteed, that page lock failed */
1056
result = SCAN_PAGE_LOCK;
1057
goto out;
1058
}
1059
if (ret & VM_FAULT_ERROR) {
1060
mmap_read_unlock(mm);
1061
result = SCAN_FAIL;
1062
goto out;
1063
}
1064
swapped_in++;
1065
}
1066
1067
if (pte)
1068
pte_unmap(pte);
1069
1070
/* Drain LRU cache to remove extra pin on the swapped in pages */
1071
if (swapped_in)
1072
lru_add_drain();
1073
1074
result = SCAN_SUCCEED;
1075
out:
1076
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1077
return result;
1078
}
1079
1080
static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1081
struct collapse_control *cc)
1082
{
1083
gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1084
GFP_TRANSHUGE);
1085
int node = hpage_collapse_find_target_node(cc);
1086
struct folio *folio;
1087
1088
folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1089
if (!folio) {
1090
*foliop = NULL;
1091
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1092
return SCAN_ALLOC_HUGE_PAGE_FAIL;
1093
}
1094
1095
count_vm_event(THP_COLLAPSE_ALLOC);
1096
if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1097
folio_put(folio);
1098
*foliop = NULL;
1099
return SCAN_CGROUP_CHARGE_FAIL;
1100
}
1101
1102
count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1103
1104
*foliop = folio;
1105
return SCAN_SUCCEED;
1106
}
1107
1108
static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1109
int referenced, int unmapped,
1110
struct collapse_control *cc)
1111
{
1112
LIST_HEAD(compound_pagelist);
1113
pmd_t *pmd, _pmd;
1114
pte_t *pte;
1115
pgtable_t pgtable;
1116
struct folio *folio;
1117
spinlock_t *pmd_ptl, *pte_ptl;
1118
int result = SCAN_FAIL;
1119
struct vm_area_struct *vma;
1120
struct mmu_notifier_range range;
1121
1122
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1123
1124
/*
1125
* Before allocating the hugepage, release the mmap_lock read lock.
1126
* The allocation can take potentially a long time if it involves
1127
* sync compaction, and we do not need to hold the mmap_lock during
1128
* that. We will recheck the vma after taking it again in write mode.
1129
*/
1130
mmap_read_unlock(mm);
1131
1132
result = alloc_charge_folio(&folio, mm, cc);
1133
if (result != SCAN_SUCCEED)
1134
goto out_nolock;
1135
1136
mmap_read_lock(mm);
1137
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1138
if (result != SCAN_SUCCEED) {
1139
mmap_read_unlock(mm);
1140
goto out_nolock;
1141
}
1142
1143
result = find_pmd_or_thp_or_none(mm, address, &pmd);
1144
if (result != SCAN_SUCCEED) {
1145
mmap_read_unlock(mm);
1146
goto out_nolock;
1147
}
1148
1149
if (unmapped) {
1150
/*
1151
* __collapse_huge_page_swapin will return with mmap_lock
1152
* released when it fails. So we jump out_nolock directly in
1153
* that case. Continuing to collapse causes inconsistency.
1154
*/
1155
result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1156
referenced);
1157
if (result != SCAN_SUCCEED)
1158
goto out_nolock;
1159
}
1160
1161
mmap_read_unlock(mm);
1162
/*
1163
* Prevent all access to pagetables with the exception of
1164
* gup_fast later handled by the ptep_clear_flush and the VM
1165
* handled by the anon_vma lock + PG_lock.
1166
*
1167
* UFFDIO_MOVE is prevented to race as well thanks to the
1168
* mmap_lock.
1169
*/
1170
mmap_write_lock(mm);
1171
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1172
if (result != SCAN_SUCCEED)
1173
goto out_up_write;
1174
/* check if the pmd is still valid */
1175
vma_start_write(vma);
1176
result = check_pmd_still_valid(mm, address, pmd);
1177
if (result != SCAN_SUCCEED)
1178
goto out_up_write;
1179
1180
anon_vma_lock_write(vma->anon_vma);
1181
1182
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1183
address + HPAGE_PMD_SIZE);
1184
mmu_notifier_invalidate_range_start(&range);
1185
1186
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1187
/*
1188
* This removes any huge TLB entry from the CPU so we won't allow
1189
* huge and small TLB entries for the same virtual address to
1190
* avoid the risk of CPU bugs in that area.
1191
*
1192
* Parallel GUP-fast is fine since GUP-fast will back off when
1193
* it detects PMD is changed.
1194
*/
1195
_pmd = pmdp_collapse_flush(vma, address, pmd);
1196
spin_unlock(pmd_ptl);
1197
mmu_notifier_invalidate_range_end(&range);
1198
tlb_remove_table_sync_one();
1199
1200
pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1201
if (pte) {
1202
result = __collapse_huge_page_isolate(vma, address, pte, cc,
1203
&compound_pagelist);
1204
spin_unlock(pte_ptl);
1205
} else {
1206
result = SCAN_PMD_NULL;
1207
}
1208
1209
if (unlikely(result != SCAN_SUCCEED)) {
1210
if (pte)
1211
pte_unmap(pte);
1212
spin_lock(pmd_ptl);
1213
BUG_ON(!pmd_none(*pmd));
1214
/*
1215
* We can only use set_pmd_at when establishing
1216
* hugepmds and never for establishing regular pmds that
1217
* points to regular pagetables. Use pmd_populate for that
1218
*/
1219
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1220
spin_unlock(pmd_ptl);
1221
anon_vma_unlock_write(vma->anon_vma);
1222
goto out_up_write;
1223
}
1224
1225
/*
1226
* All pages are isolated and locked so anon_vma rmap
1227
* can't run anymore.
1228
*/
1229
anon_vma_unlock_write(vma->anon_vma);
1230
1231
result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1232
vma, address, pte_ptl,
1233
&compound_pagelist);
1234
pte_unmap(pte);
1235
if (unlikely(result != SCAN_SUCCEED))
1236
goto out_up_write;
1237
1238
/*
1239
* The smp_wmb() inside __folio_mark_uptodate() ensures the
1240
* copy_huge_page writes become visible before the set_pmd_at()
1241
* write.
1242
*/
1243
__folio_mark_uptodate(folio);
1244
pgtable = pmd_pgtable(_pmd);
1245
1246
_pmd = folio_mk_pmd(folio, vma->vm_page_prot);
1247
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1248
1249
spin_lock(pmd_ptl);
1250
BUG_ON(!pmd_none(*pmd));
1251
folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1252
folio_add_lru_vma(folio, vma);
1253
pgtable_trans_huge_deposit(mm, pmd, pgtable);
1254
set_pmd_at(mm, address, pmd, _pmd);
1255
update_mmu_cache_pmd(vma, address, pmd);
1256
deferred_split_folio(folio, false);
1257
spin_unlock(pmd_ptl);
1258
1259
folio = NULL;
1260
1261
result = SCAN_SUCCEED;
1262
out_up_write:
1263
mmap_write_unlock(mm);
1264
out_nolock:
1265
if (folio)
1266
folio_put(folio);
1267
trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1268
return result;
1269
}
1270
1271
static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1272
struct vm_area_struct *vma,
1273
unsigned long address, bool *mmap_locked,
1274
struct collapse_control *cc)
1275
{
1276
pmd_t *pmd;
1277
pte_t *pte, *_pte;
1278
int result = SCAN_FAIL, referenced = 0;
1279
int none_or_zero = 0, shared = 0;
1280
struct page *page = NULL;
1281
struct folio *folio = NULL;
1282
unsigned long _address;
1283
spinlock_t *ptl;
1284
int node = NUMA_NO_NODE, unmapped = 0;
1285
bool writable = false;
1286
1287
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1288
1289
result = find_pmd_or_thp_or_none(mm, address, &pmd);
1290
if (result != SCAN_SUCCEED)
1291
goto out;
1292
1293
memset(cc->node_load, 0, sizeof(cc->node_load));
1294
nodes_clear(cc->alloc_nmask);
1295
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1296
if (!pte) {
1297
result = SCAN_PMD_NULL;
1298
goto out;
1299
}
1300
1301
for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1302
_pte++, _address += PAGE_SIZE) {
1303
pte_t pteval = ptep_get(_pte);
1304
if (is_swap_pte(pteval)) {
1305
++unmapped;
1306
if (!cc->is_khugepaged ||
1307
unmapped <= khugepaged_max_ptes_swap) {
1308
/*
1309
* Always be strict with uffd-wp
1310
* enabled swap entries. Please see
1311
* comment below for pte_uffd_wp().
1312
*/
1313
if (pte_swp_uffd_wp_any(pteval)) {
1314
result = SCAN_PTE_UFFD_WP;
1315
goto out_unmap;
1316
}
1317
continue;
1318
} else {
1319
result = SCAN_EXCEED_SWAP_PTE;
1320
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1321
goto out_unmap;
1322
}
1323
}
1324
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1325
++none_or_zero;
1326
if (!userfaultfd_armed(vma) &&
1327
(!cc->is_khugepaged ||
1328
none_or_zero <= khugepaged_max_ptes_none)) {
1329
continue;
1330
} else {
1331
result = SCAN_EXCEED_NONE_PTE;
1332
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1333
goto out_unmap;
1334
}
1335
}
1336
if (pte_uffd_wp(pteval)) {
1337
/*
1338
* Don't collapse the page if any of the small
1339
* PTEs are armed with uffd write protection.
1340
* Here we can also mark the new huge pmd as
1341
* write protected if any of the small ones is
1342
* marked but that could bring unknown
1343
* userfault messages that falls outside of
1344
* the registered range. So, just be simple.
1345
*/
1346
result = SCAN_PTE_UFFD_WP;
1347
goto out_unmap;
1348
}
1349
if (pte_write(pteval))
1350
writable = true;
1351
1352
page = vm_normal_page(vma, _address, pteval);
1353
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1354
result = SCAN_PAGE_NULL;
1355
goto out_unmap;
1356
}
1357
folio = page_folio(page);
1358
1359
if (!folio_test_anon(folio)) {
1360
result = SCAN_PAGE_ANON;
1361
goto out_unmap;
1362
}
1363
1364
/*
1365
* We treat a single page as shared if any part of the THP
1366
* is shared.
1367
*/
1368
if (folio_maybe_mapped_shared(folio)) {
1369
++shared;
1370
if (cc->is_khugepaged &&
1371
shared > khugepaged_max_ptes_shared) {
1372
result = SCAN_EXCEED_SHARED_PTE;
1373
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1374
goto out_unmap;
1375
}
1376
}
1377
1378
/*
1379
* Record which node the original page is from and save this
1380
* information to cc->node_load[].
1381
* Khugepaged will allocate hugepage from the node has the max
1382
* hit record.
1383
*/
1384
node = folio_nid(folio);
1385
if (hpage_collapse_scan_abort(node, cc)) {
1386
result = SCAN_SCAN_ABORT;
1387
goto out_unmap;
1388
}
1389
cc->node_load[node]++;
1390
if (!folio_test_lru(folio)) {
1391
result = SCAN_PAGE_LRU;
1392
goto out_unmap;
1393
}
1394
if (folio_test_locked(folio)) {
1395
result = SCAN_PAGE_LOCK;
1396
goto out_unmap;
1397
}
1398
1399
/*
1400
* Check if the page has any GUP (or other external) pins.
1401
*
1402
* Here the check may be racy:
1403
* it may see folio_mapcount() > folio_ref_count().
1404
* But such case is ephemeral we could always retry collapse
1405
* later. However it may report false positive if the page
1406
* has excessive GUP pins (i.e. 512). Anyway the same check
1407
* will be done again later the risk seems low.
1408
*/
1409
if (folio_expected_ref_count(folio) != folio_ref_count(folio)) {
1410
result = SCAN_PAGE_COUNT;
1411
goto out_unmap;
1412
}
1413
1414
/*
1415
* If collapse was initiated by khugepaged, check that there is
1416
* enough young pte to justify collapsing the page
1417
*/
1418
if (cc->is_khugepaged &&
1419
(pte_young(pteval) || folio_test_young(folio) ||
1420
folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1421
address)))
1422
referenced++;
1423
}
1424
if (!writable) {
1425
result = SCAN_PAGE_RO;
1426
} else if (cc->is_khugepaged &&
1427
(!referenced ||
1428
(unmapped && referenced < HPAGE_PMD_NR / 2))) {
1429
result = SCAN_LACK_REFERENCED_PAGE;
1430
} else {
1431
result = SCAN_SUCCEED;
1432
}
1433
out_unmap:
1434
pte_unmap_unlock(pte, ptl);
1435
if (result == SCAN_SUCCEED) {
1436
result = collapse_huge_page(mm, address, referenced,
1437
unmapped, cc);
1438
/* collapse_huge_page will return with the mmap_lock released */
1439
*mmap_locked = false;
1440
}
1441
out:
1442
trace_mm_khugepaged_scan_pmd(mm, folio, writable, referenced,
1443
none_or_zero, result, unmapped);
1444
return result;
1445
}
1446
1447
static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1448
{
1449
struct mm_slot *slot = &mm_slot->slot;
1450
struct mm_struct *mm = slot->mm;
1451
1452
lockdep_assert_held(&khugepaged_mm_lock);
1453
1454
if (hpage_collapse_test_exit(mm)) {
1455
/* free mm_slot */
1456
hash_del(&slot->hash);
1457
list_del(&slot->mm_node);
1458
1459
/*
1460
* Not strictly needed because the mm exited already.
1461
*
1462
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1463
*/
1464
1465
/* khugepaged_mm_lock actually not necessary for the below */
1466
mm_slot_free(mm_slot_cache, mm_slot);
1467
mmdrop(mm);
1468
}
1469
}
1470
1471
/* folio must be locked, and mmap_lock must be held */
1472
static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1473
pmd_t *pmdp, struct folio *folio, struct page *page)
1474
{
1475
struct vm_fault vmf = {
1476
.vma = vma,
1477
.address = addr,
1478
.flags = 0,
1479
.pmd = pmdp,
1480
};
1481
1482
mmap_assert_locked(vma->vm_mm);
1483
1484
if (do_set_pmd(&vmf, folio, page))
1485
return SCAN_FAIL;
1486
1487
folio_get(folio);
1488
return SCAN_SUCCEED;
1489
}
1490
1491
/**
1492
* collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1493
* address haddr.
1494
*
1495
* @mm: process address space where collapse happens
1496
* @addr: THP collapse address
1497
* @install_pmd: If a huge PMD should be installed
1498
*
1499
* This function checks whether all the PTEs in the PMD are pointing to the
1500
* right THP. If so, retract the page table so the THP can refault in with
1501
* as pmd-mapped. Possibly install a huge PMD mapping the THP.
1502
*/
1503
int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1504
bool install_pmd)
1505
{
1506
int nr_mapped_ptes = 0, result = SCAN_FAIL;
1507
unsigned int nr_batch_ptes;
1508
struct mmu_notifier_range range;
1509
bool notified = false;
1510
unsigned long haddr = addr & HPAGE_PMD_MASK;
1511
unsigned long end = haddr + HPAGE_PMD_SIZE;
1512
struct vm_area_struct *vma = vma_lookup(mm, haddr);
1513
struct folio *folio;
1514
pte_t *start_pte, *pte;
1515
pmd_t *pmd, pgt_pmd;
1516
spinlock_t *pml = NULL, *ptl;
1517
int i;
1518
1519
mmap_assert_locked(mm);
1520
1521
/* First check VMA found, in case page tables are being torn down */
1522
if (!vma || !vma->vm_file ||
1523
!range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1524
return SCAN_VMA_CHECK;
1525
1526
/* Fast check before locking page if already PMD-mapped */
1527
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1528
if (result == SCAN_PMD_MAPPED)
1529
return result;
1530
1531
/*
1532
* If we are here, we've succeeded in replacing all the native pages
1533
* in the page cache with a single hugepage. If a mm were to fault-in
1534
* this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1535
* and map it by a PMD, regardless of sysfs THP settings. As such, let's
1536
* analogously elide sysfs THP settings here.
1537
*/
1538
if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1539
return SCAN_VMA_CHECK;
1540
1541
/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1542
if (userfaultfd_wp(vma))
1543
return SCAN_PTE_UFFD_WP;
1544
1545
folio = filemap_lock_folio(vma->vm_file->f_mapping,
1546
linear_page_index(vma, haddr));
1547
if (IS_ERR(folio))
1548
return SCAN_PAGE_NULL;
1549
1550
if (folio_order(folio) != HPAGE_PMD_ORDER) {
1551
result = SCAN_PAGE_COMPOUND;
1552
goto drop_folio;
1553
}
1554
1555
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1556
switch (result) {
1557
case SCAN_SUCCEED:
1558
break;
1559
case SCAN_PMD_NONE:
1560
/*
1561
* All pte entries have been removed and pmd cleared.
1562
* Skip all the pte checks and just update the pmd mapping.
1563
*/
1564
goto maybe_install_pmd;
1565
default:
1566
goto drop_folio;
1567
}
1568
1569
result = SCAN_FAIL;
1570
start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1571
if (!start_pte) /* mmap_lock + page lock should prevent this */
1572
goto drop_folio;
1573
1574
/* step 1: check all mapped PTEs are to the right huge page */
1575
for (i = 0, addr = haddr, pte = start_pte;
1576
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1577
struct page *page;
1578
pte_t ptent = ptep_get(pte);
1579
1580
/* empty pte, skip */
1581
if (pte_none(ptent))
1582
continue;
1583
1584
/* page swapped out, abort */
1585
if (!pte_present(ptent)) {
1586
result = SCAN_PTE_NON_PRESENT;
1587
goto abort;
1588
}
1589
1590
page = vm_normal_page(vma, addr, ptent);
1591
if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1592
page = NULL;
1593
/*
1594
* Note that uprobe, debugger, or MAP_PRIVATE may change the
1595
* page table, but the new page will not be a subpage of hpage.
1596
*/
1597
if (folio_page(folio, i) != page)
1598
goto abort;
1599
}
1600
1601
pte_unmap_unlock(start_pte, ptl);
1602
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1603
haddr, haddr + HPAGE_PMD_SIZE);
1604
mmu_notifier_invalidate_range_start(&range);
1605
notified = true;
1606
1607
/*
1608
* pmd_lock covers a wider range than ptl, and (if split from mm's
1609
* page_table_lock) ptl nests inside pml. The less time we hold pml,
1610
* the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1611
* inserts a valid as-if-COWed PTE without even looking up page cache.
1612
* So page lock of folio does not protect from it, so we must not drop
1613
* ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1614
*/
1615
if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1616
pml = pmd_lock(mm, pmd);
1617
1618
start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl);
1619
if (!start_pte) /* mmap_lock + page lock should prevent this */
1620
goto abort;
1621
if (!pml)
1622
spin_lock(ptl);
1623
else if (ptl != pml)
1624
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1625
1626
if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd))))
1627
goto abort;
1628
1629
/* step 2: clear page table and adjust rmap */
1630
for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR;
1631
i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE,
1632
pte += nr_batch_ptes) {
1633
unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT;
1634
struct page *page;
1635
pte_t ptent = ptep_get(pte);
1636
1637
nr_batch_ptes = 1;
1638
1639
if (pte_none(ptent))
1640
continue;
1641
/*
1642
* We dropped ptl after the first scan, to do the mmu_notifier:
1643
* page lock stops more PTEs of the folio being faulted in, but
1644
* does not stop write faults COWing anon copies from existing
1645
* PTEs; and does not stop those being swapped out or migrated.
1646
*/
1647
if (!pte_present(ptent)) {
1648
result = SCAN_PTE_NON_PRESENT;
1649
goto abort;
1650
}
1651
page = vm_normal_page(vma, addr, ptent);
1652
1653
if (folio_page(folio, i) != page)
1654
goto abort;
1655
1656
nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes);
1657
1658
/*
1659
* Must clear entry, or a racing truncate may re-remove it.
1660
* TLB flush can be left until pmdp_collapse_flush() does it.
1661
* PTE dirty? Shmem page is already dirty; file is read-only.
1662
*/
1663
clear_ptes(mm, addr, pte, nr_batch_ptes);
1664
folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma);
1665
nr_mapped_ptes += nr_batch_ptes;
1666
}
1667
1668
if (!pml)
1669
spin_unlock(ptl);
1670
1671
/* step 3: set proper refcount and mm_counters. */
1672
if (nr_mapped_ptes) {
1673
folio_ref_sub(folio, nr_mapped_ptes);
1674
add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1675
}
1676
1677
/* step 4: remove empty page table */
1678
if (!pml) {
1679
pml = pmd_lock(mm, pmd);
1680
if (ptl != pml) {
1681
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1682
if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) {
1683
flush_tlb_mm(mm);
1684
goto unlock;
1685
}
1686
}
1687
}
1688
pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1689
pmdp_get_lockless_sync();
1690
pte_unmap_unlock(start_pte, ptl);
1691
if (ptl != pml)
1692
spin_unlock(pml);
1693
1694
mmu_notifier_invalidate_range_end(&range);
1695
1696
mm_dec_nr_ptes(mm);
1697
page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1698
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1699
1700
maybe_install_pmd:
1701
/* step 5: install pmd entry */
1702
result = install_pmd
1703
? set_huge_pmd(vma, haddr, pmd, folio, &folio->page)
1704
: SCAN_SUCCEED;
1705
goto drop_folio;
1706
abort:
1707
if (nr_mapped_ptes) {
1708
flush_tlb_mm(mm);
1709
folio_ref_sub(folio, nr_mapped_ptes);
1710
add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes);
1711
}
1712
unlock:
1713
if (start_pte)
1714
pte_unmap_unlock(start_pte, ptl);
1715
if (pml && pml != ptl)
1716
spin_unlock(pml);
1717
if (notified)
1718
mmu_notifier_invalidate_range_end(&range);
1719
drop_folio:
1720
folio_unlock(folio);
1721
folio_put(folio);
1722
return result;
1723
}
1724
1725
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1726
{
1727
struct vm_area_struct *vma;
1728
1729
i_mmap_lock_read(mapping);
1730
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1731
struct mmu_notifier_range range;
1732
struct mm_struct *mm;
1733
unsigned long addr;
1734
pmd_t *pmd, pgt_pmd;
1735
spinlock_t *pml;
1736
spinlock_t *ptl;
1737
bool success = false;
1738
1739
/*
1740
* Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1741
* got written to. These VMAs are likely not worth removing
1742
* page tables from, as PMD-mapping is likely to be split later.
1743
*/
1744
if (READ_ONCE(vma->anon_vma))
1745
continue;
1746
1747
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1748
if (addr & ~HPAGE_PMD_MASK ||
1749
vma->vm_end < addr + HPAGE_PMD_SIZE)
1750
continue;
1751
1752
mm = vma->vm_mm;
1753
if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1754
continue;
1755
1756
if (hpage_collapse_test_exit(mm))
1757
continue;
1758
/*
1759
* When a vma is registered with uffd-wp, we cannot recycle
1760
* the page table because there may be pte markers installed.
1761
* Other vmas can still have the same file mapped hugely, but
1762
* skip this one: it will always be mapped in small page size
1763
* for uffd-wp registered ranges.
1764
*/
1765
if (userfaultfd_wp(vma))
1766
continue;
1767
1768
/* PTEs were notified when unmapped; but now for the PMD? */
1769
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1770
addr, addr + HPAGE_PMD_SIZE);
1771
mmu_notifier_invalidate_range_start(&range);
1772
1773
pml = pmd_lock(mm, pmd);
1774
/*
1775
* The lock of new_folio is still held, we will be blocked in
1776
* the page fault path, which prevents the pte entries from
1777
* being set again. So even though the old empty PTE page may be
1778
* concurrently freed and a new PTE page is filled into the pmd
1779
* entry, it is still empty and can be removed.
1780
*
1781
* So here we only need to recheck if the state of pmd entry
1782
* still meets our requirements, rather than checking pmd_same()
1783
* like elsewhere.
1784
*/
1785
if (check_pmd_state(pmd) != SCAN_SUCCEED)
1786
goto drop_pml;
1787
ptl = pte_lockptr(mm, pmd);
1788
if (ptl != pml)
1789
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1790
1791
/*
1792
* Huge page lock is still held, so normally the page table
1793
* must remain empty; and we have already skipped anon_vma
1794
* and userfaultfd_wp() vmas. But since the mmap_lock is not
1795
* held, it is still possible for a racing userfaultfd_ioctl()
1796
* to have inserted ptes or markers. Now that we hold ptlock,
1797
* repeating the anon_vma check protects from one category,
1798
* and repeating the userfaultfd_wp() check from another.
1799
*/
1800
if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) {
1801
pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1802
pmdp_get_lockless_sync();
1803
success = true;
1804
}
1805
1806
if (ptl != pml)
1807
spin_unlock(ptl);
1808
drop_pml:
1809
spin_unlock(pml);
1810
1811
mmu_notifier_invalidate_range_end(&range);
1812
1813
if (success) {
1814
mm_dec_nr_ptes(mm);
1815
page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1816
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1817
}
1818
}
1819
i_mmap_unlock_read(mapping);
1820
}
1821
1822
/**
1823
* collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1824
*
1825
* @mm: process address space where collapse happens
1826
* @addr: virtual collapse start address
1827
* @file: file that collapse on
1828
* @start: collapse start address
1829
* @cc: collapse context and scratchpad
1830
*
1831
* Basic scheme is simple, details are more complex:
1832
* - allocate and lock a new huge page;
1833
* - scan page cache, locking old pages
1834
* + swap/gup in pages if necessary;
1835
* - copy data to new page
1836
* - handle shmem holes
1837
* + re-validate that holes weren't filled by someone else
1838
* + check for userfaultfd
1839
* - finalize updates to the page cache;
1840
* - if replacing succeeds:
1841
* + unlock huge page;
1842
* + free old pages;
1843
* - if replacing failed;
1844
* + unlock old pages
1845
* + unlock and free huge page;
1846
*/
1847
static int collapse_file(struct mm_struct *mm, unsigned long addr,
1848
struct file *file, pgoff_t start,
1849
struct collapse_control *cc)
1850
{
1851
struct address_space *mapping = file->f_mapping;
1852
struct page *dst;
1853
struct folio *folio, *tmp, *new_folio;
1854
pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1855
LIST_HEAD(pagelist);
1856
XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1857
int nr_none = 0, result = SCAN_SUCCEED;
1858
bool is_shmem = shmem_file(file);
1859
1860
VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1861
VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1862
1863
result = alloc_charge_folio(&new_folio, mm, cc);
1864
if (result != SCAN_SUCCEED)
1865
goto out;
1866
1867
mapping_set_update(&xas, mapping);
1868
1869
__folio_set_locked(new_folio);
1870
if (is_shmem)
1871
__folio_set_swapbacked(new_folio);
1872
new_folio->index = start;
1873
new_folio->mapping = mapping;
1874
1875
/*
1876
* Ensure we have slots for all the pages in the range. This is
1877
* almost certainly a no-op because most of the pages must be present
1878
*/
1879
do {
1880
xas_lock_irq(&xas);
1881
xas_create_range(&xas);
1882
if (!xas_error(&xas))
1883
break;
1884
xas_unlock_irq(&xas);
1885
if (!xas_nomem(&xas, GFP_KERNEL)) {
1886
result = SCAN_FAIL;
1887
goto rollback;
1888
}
1889
} while (1);
1890
1891
for (index = start; index < end;) {
1892
xas_set(&xas, index);
1893
folio = xas_load(&xas);
1894
1895
VM_BUG_ON(index != xas.xa_index);
1896
if (is_shmem) {
1897
if (!folio) {
1898
/*
1899
* Stop if extent has been truncated or
1900
* hole-punched, and is now completely
1901
* empty.
1902
*/
1903
if (index == start) {
1904
if (!xas_next_entry(&xas, end - 1)) {
1905
result = SCAN_TRUNCATED;
1906
goto xa_locked;
1907
}
1908
}
1909
nr_none++;
1910
index++;
1911
continue;
1912
}
1913
1914
if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1915
xas_unlock_irq(&xas);
1916
/* swap in or instantiate fallocated page */
1917
if (shmem_get_folio(mapping->host, index, 0,
1918
&folio, SGP_NOALLOC)) {
1919
result = SCAN_FAIL;
1920
goto xa_unlocked;
1921
}
1922
/* drain lru cache to help folio_isolate_lru() */
1923
lru_add_drain();
1924
} else if (folio_trylock(folio)) {
1925
folio_get(folio);
1926
xas_unlock_irq(&xas);
1927
} else {
1928
result = SCAN_PAGE_LOCK;
1929
goto xa_locked;
1930
}
1931
} else { /* !is_shmem */
1932
if (!folio || xa_is_value(folio)) {
1933
xas_unlock_irq(&xas);
1934
page_cache_sync_readahead(mapping, &file->f_ra,
1935
file, index,
1936
end - index);
1937
/* drain lru cache to help folio_isolate_lru() */
1938
lru_add_drain();
1939
folio = filemap_lock_folio(mapping, index);
1940
if (IS_ERR(folio)) {
1941
result = SCAN_FAIL;
1942
goto xa_unlocked;
1943
}
1944
} else if (folio_test_dirty(folio)) {
1945
/*
1946
* khugepaged only works on read-only fd,
1947
* so this page is dirty because it hasn't
1948
* been flushed since first write. There
1949
* won't be new dirty pages.
1950
*
1951
* Trigger async flush here and hope the
1952
* writeback is done when khugepaged
1953
* revisits this page.
1954
*
1955
* This is a one-off situation. We are not
1956
* forcing writeback in loop.
1957
*/
1958
xas_unlock_irq(&xas);
1959
filemap_flush(mapping);
1960
result = SCAN_FAIL;
1961
goto xa_unlocked;
1962
} else if (folio_test_writeback(folio)) {
1963
xas_unlock_irq(&xas);
1964
result = SCAN_FAIL;
1965
goto xa_unlocked;
1966
} else if (folio_trylock(folio)) {
1967
folio_get(folio);
1968
xas_unlock_irq(&xas);
1969
} else {
1970
result = SCAN_PAGE_LOCK;
1971
goto xa_locked;
1972
}
1973
}
1974
1975
/*
1976
* The folio must be locked, so we can drop the i_pages lock
1977
* without racing with truncate.
1978
*/
1979
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1980
1981
/* make sure the folio is up to date */
1982
if (unlikely(!folio_test_uptodate(folio))) {
1983
result = SCAN_FAIL;
1984
goto out_unlock;
1985
}
1986
1987
/*
1988
* If file was truncated then extended, or hole-punched, before
1989
* we locked the first folio, then a THP might be there already.
1990
* This will be discovered on the first iteration.
1991
*/
1992
if (folio_order(folio) == HPAGE_PMD_ORDER &&
1993
folio->index == start) {
1994
/* Maybe PMD-mapped */
1995
result = SCAN_PTE_MAPPED_HUGEPAGE;
1996
goto out_unlock;
1997
}
1998
1999
if (folio_mapping(folio) != mapping) {
2000
result = SCAN_TRUNCATED;
2001
goto out_unlock;
2002
}
2003
2004
if (!is_shmem && (folio_test_dirty(folio) ||
2005
folio_test_writeback(folio))) {
2006
/*
2007
* khugepaged only works on read-only fd, so this
2008
* folio is dirty because it hasn't been flushed
2009
* since first write.
2010
*/
2011
result = SCAN_FAIL;
2012
goto out_unlock;
2013
}
2014
2015
if (!folio_isolate_lru(folio)) {
2016
result = SCAN_DEL_PAGE_LRU;
2017
goto out_unlock;
2018
}
2019
2020
if (!filemap_release_folio(folio, GFP_KERNEL)) {
2021
result = SCAN_PAGE_HAS_PRIVATE;
2022
folio_putback_lru(folio);
2023
goto out_unlock;
2024
}
2025
2026
if (folio_mapped(folio))
2027
try_to_unmap(folio,
2028
TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
2029
2030
xas_lock_irq(&xas);
2031
2032
VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
2033
2034
/*
2035
* We control 2 + nr_pages references to the folio:
2036
* - we hold a pin on it;
2037
* - nr_pages reference from page cache;
2038
* - one from lru_isolate_folio;
2039
* If those are the only references, then any new usage
2040
* of the folio will have to fetch it from the page
2041
* cache. That requires locking the folio to handle
2042
* truncate, so any new usage will be blocked until we
2043
* unlock folio after collapse/during rollback.
2044
*/
2045
if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2046
result = SCAN_PAGE_COUNT;
2047
xas_unlock_irq(&xas);
2048
folio_putback_lru(folio);
2049
goto out_unlock;
2050
}
2051
2052
/*
2053
* Accumulate the folios that are being collapsed.
2054
*/
2055
list_add_tail(&folio->lru, &pagelist);
2056
index += folio_nr_pages(folio);
2057
continue;
2058
out_unlock:
2059
folio_unlock(folio);
2060
folio_put(folio);
2061
goto xa_unlocked;
2062
}
2063
2064
if (!is_shmem) {
2065
filemap_nr_thps_inc(mapping);
2066
/*
2067
* Paired with the fence in do_dentry_open() -> get_write_access()
2068
* to ensure i_writecount is up to date and the update to nr_thps
2069
* is visible. Ensures the page cache will be truncated if the
2070
* file is opened writable.
2071
*/
2072
smp_mb();
2073
if (inode_is_open_for_write(mapping->host)) {
2074
result = SCAN_FAIL;
2075
filemap_nr_thps_dec(mapping);
2076
}
2077
}
2078
2079
xa_locked:
2080
xas_unlock_irq(&xas);
2081
xa_unlocked:
2082
2083
/*
2084
* If collapse is successful, flush must be done now before copying.
2085
* If collapse is unsuccessful, does flush actually need to be done?
2086
* Do it anyway, to clear the state.
2087
*/
2088
try_to_unmap_flush();
2089
2090
if (result == SCAN_SUCCEED && nr_none &&
2091
!shmem_charge(mapping->host, nr_none))
2092
result = SCAN_FAIL;
2093
if (result != SCAN_SUCCEED) {
2094
nr_none = 0;
2095
goto rollback;
2096
}
2097
2098
/*
2099
* The old folios are locked, so they won't change anymore.
2100
*/
2101
index = start;
2102
dst = folio_page(new_folio, 0);
2103
list_for_each_entry(folio, &pagelist, lru) {
2104
int i, nr_pages = folio_nr_pages(folio);
2105
2106
while (index < folio->index) {
2107
clear_highpage(dst);
2108
index++;
2109
dst++;
2110
}
2111
2112
for (i = 0; i < nr_pages; i++) {
2113
if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2114
result = SCAN_COPY_MC;
2115
goto rollback;
2116
}
2117
index++;
2118
dst++;
2119
}
2120
}
2121
while (index < end) {
2122
clear_highpage(dst);
2123
index++;
2124
dst++;
2125
}
2126
2127
if (nr_none) {
2128
struct vm_area_struct *vma;
2129
int nr_none_check = 0;
2130
2131
i_mmap_lock_read(mapping);
2132
xas_lock_irq(&xas);
2133
2134
xas_set(&xas, start);
2135
for (index = start; index < end; index++) {
2136
if (!xas_next(&xas)) {
2137
xas_store(&xas, XA_RETRY_ENTRY);
2138
if (xas_error(&xas)) {
2139
result = SCAN_STORE_FAILED;
2140
goto immap_locked;
2141
}
2142
nr_none_check++;
2143
}
2144
}
2145
2146
if (nr_none != nr_none_check) {
2147
result = SCAN_PAGE_FILLED;
2148
goto immap_locked;
2149
}
2150
2151
/*
2152
* If userspace observed a missing page in a VMA with
2153
* a MODE_MISSING userfaultfd, then it might expect a
2154
* UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2155
* roll back to avoid suppressing such an event. Since
2156
* wp/minor userfaultfds don't give userspace any
2157
* guarantees that the kernel doesn't fill a missing
2158
* page with a zero page, so they don't matter here.
2159
*
2160
* Any userfaultfds registered after this point will
2161
* not be able to observe any missing pages due to the
2162
* previously inserted retry entries.
2163
*/
2164
vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2165
if (userfaultfd_missing(vma)) {
2166
result = SCAN_EXCEED_NONE_PTE;
2167
goto immap_locked;
2168
}
2169
}
2170
2171
immap_locked:
2172
i_mmap_unlock_read(mapping);
2173
if (result != SCAN_SUCCEED) {
2174
xas_set(&xas, start);
2175
for (index = start; index < end; index++) {
2176
if (xas_next(&xas) == XA_RETRY_ENTRY)
2177
xas_store(&xas, NULL);
2178
}
2179
2180
xas_unlock_irq(&xas);
2181
goto rollback;
2182
}
2183
} else {
2184
xas_lock_irq(&xas);
2185
}
2186
2187
if (is_shmem)
2188
__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2189
else
2190
__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2191
2192
if (nr_none) {
2193
__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2194
/* nr_none is always 0 for non-shmem. */
2195
__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2196
}
2197
2198
/*
2199
* Mark new_folio as uptodate before inserting it into the
2200
* page cache so that it isn't mistaken for an fallocated but
2201
* unwritten page.
2202
*/
2203
folio_mark_uptodate(new_folio);
2204
folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2205
2206
if (is_shmem)
2207
folio_mark_dirty(new_folio);
2208
folio_add_lru(new_folio);
2209
2210
/* Join all the small entries into a single multi-index entry. */
2211
xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2212
xas_store(&xas, new_folio);
2213
WARN_ON_ONCE(xas_error(&xas));
2214
xas_unlock_irq(&xas);
2215
2216
/*
2217
* Remove pte page tables, so we can re-fault the page as huge.
2218
* If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2219
*/
2220
retract_page_tables(mapping, start);
2221
if (cc && !cc->is_khugepaged)
2222
result = SCAN_PTE_MAPPED_HUGEPAGE;
2223
folio_unlock(new_folio);
2224
2225
/*
2226
* The collapse has succeeded, so free the old folios.
2227
*/
2228
list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2229
list_del(&folio->lru);
2230
folio->mapping = NULL;
2231
folio_clear_active(folio);
2232
folio_clear_unevictable(folio);
2233
folio_unlock(folio);
2234
folio_put_refs(folio, 2 + folio_nr_pages(folio));
2235
}
2236
2237
goto out;
2238
2239
rollback:
2240
/* Something went wrong: roll back page cache changes */
2241
if (nr_none) {
2242
xas_lock_irq(&xas);
2243
mapping->nrpages -= nr_none;
2244
xas_unlock_irq(&xas);
2245
shmem_uncharge(mapping->host, nr_none);
2246
}
2247
2248
list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2249
list_del(&folio->lru);
2250
folio_unlock(folio);
2251
folio_putback_lru(folio);
2252
folio_put(folio);
2253
}
2254
/*
2255
* Undo the updates of filemap_nr_thps_inc for non-SHMEM
2256
* file only. This undo is not needed unless failure is
2257
* due to SCAN_COPY_MC.
2258
*/
2259
if (!is_shmem && result == SCAN_COPY_MC) {
2260
filemap_nr_thps_dec(mapping);
2261
/*
2262
* Paired with the fence in do_dentry_open() -> get_write_access()
2263
* to ensure the update to nr_thps is visible.
2264
*/
2265
smp_mb();
2266
}
2267
2268
new_folio->mapping = NULL;
2269
2270
folio_unlock(new_folio);
2271
folio_put(new_folio);
2272
out:
2273
VM_BUG_ON(!list_empty(&pagelist));
2274
trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2275
return result;
2276
}
2277
2278
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2279
struct file *file, pgoff_t start,
2280
struct collapse_control *cc)
2281
{
2282
struct folio *folio = NULL;
2283
struct address_space *mapping = file->f_mapping;
2284
XA_STATE(xas, &mapping->i_pages, start);
2285
int present, swap;
2286
int node = NUMA_NO_NODE;
2287
int result = SCAN_SUCCEED;
2288
2289
present = 0;
2290
swap = 0;
2291
memset(cc->node_load, 0, sizeof(cc->node_load));
2292
nodes_clear(cc->alloc_nmask);
2293
rcu_read_lock();
2294
xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2295
if (xas_retry(&xas, folio))
2296
continue;
2297
2298
if (xa_is_value(folio)) {
2299
swap += 1 << xas_get_order(&xas);
2300
if (cc->is_khugepaged &&
2301
swap > khugepaged_max_ptes_swap) {
2302
result = SCAN_EXCEED_SWAP_PTE;
2303
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2304
break;
2305
}
2306
continue;
2307
}
2308
2309
if (!folio_try_get(folio)) {
2310
xas_reset(&xas);
2311
continue;
2312
}
2313
2314
if (unlikely(folio != xas_reload(&xas))) {
2315
folio_put(folio);
2316
xas_reset(&xas);
2317
continue;
2318
}
2319
2320
if (folio_order(folio) == HPAGE_PMD_ORDER &&
2321
folio->index == start) {
2322
/* Maybe PMD-mapped */
2323
result = SCAN_PTE_MAPPED_HUGEPAGE;
2324
/*
2325
* For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2326
* by the caller won't touch the page cache, and so
2327
* it's safe to skip LRU and refcount checks before
2328
* returning.
2329
*/
2330
folio_put(folio);
2331
break;
2332
}
2333
2334
node = folio_nid(folio);
2335
if (hpage_collapse_scan_abort(node, cc)) {
2336
result = SCAN_SCAN_ABORT;
2337
folio_put(folio);
2338
break;
2339
}
2340
cc->node_load[node]++;
2341
2342
if (!folio_test_lru(folio)) {
2343
result = SCAN_PAGE_LRU;
2344
folio_put(folio);
2345
break;
2346
}
2347
2348
if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) {
2349
result = SCAN_PAGE_COUNT;
2350
folio_put(folio);
2351
break;
2352
}
2353
2354
/*
2355
* We probably should check if the folio is referenced
2356
* here, but nobody would transfer pte_young() to
2357
* folio_test_referenced() for us. And rmap walk here
2358
* is just too costly...
2359
*/
2360
2361
present += folio_nr_pages(folio);
2362
folio_put(folio);
2363
2364
if (need_resched()) {
2365
xas_pause(&xas);
2366
cond_resched_rcu();
2367
}
2368
}
2369
rcu_read_unlock();
2370
2371
if (result == SCAN_SUCCEED) {
2372
if (cc->is_khugepaged &&
2373
present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2374
result = SCAN_EXCEED_NONE_PTE;
2375
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2376
} else {
2377
result = collapse_file(mm, addr, file, start, cc);
2378
}
2379
}
2380
2381
trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2382
return result;
2383
}
2384
2385
static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2386
struct collapse_control *cc)
2387
__releases(&khugepaged_mm_lock)
2388
__acquires(&khugepaged_mm_lock)
2389
{
2390
struct vma_iterator vmi;
2391
struct khugepaged_mm_slot *mm_slot;
2392
struct mm_slot *slot;
2393
struct mm_struct *mm;
2394
struct vm_area_struct *vma;
2395
int progress = 0;
2396
2397
VM_BUG_ON(!pages);
2398
lockdep_assert_held(&khugepaged_mm_lock);
2399
*result = SCAN_FAIL;
2400
2401
if (khugepaged_scan.mm_slot) {
2402
mm_slot = khugepaged_scan.mm_slot;
2403
slot = &mm_slot->slot;
2404
} else {
2405
slot = list_entry(khugepaged_scan.mm_head.next,
2406
struct mm_slot, mm_node);
2407
mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2408
khugepaged_scan.address = 0;
2409
khugepaged_scan.mm_slot = mm_slot;
2410
}
2411
spin_unlock(&khugepaged_mm_lock);
2412
2413
mm = slot->mm;
2414
/*
2415
* Don't wait for semaphore (to avoid long wait times). Just move to
2416
* the next mm on the list.
2417
*/
2418
vma = NULL;
2419
if (unlikely(!mmap_read_trylock(mm)))
2420
goto breakouterloop_mmap_lock;
2421
2422
progress++;
2423
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2424
goto breakouterloop;
2425
2426
vma_iter_init(&vmi, mm, khugepaged_scan.address);
2427
for_each_vma(vmi, vma) {
2428
unsigned long hstart, hend;
2429
2430
cond_resched();
2431
if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2432
progress++;
2433
break;
2434
}
2435
if (!thp_vma_allowable_order(vma, vma->vm_flags,
2436
TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2437
skip:
2438
progress++;
2439
continue;
2440
}
2441
hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2442
hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2443
if (khugepaged_scan.address > hend)
2444
goto skip;
2445
if (khugepaged_scan.address < hstart)
2446
khugepaged_scan.address = hstart;
2447
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2448
2449
while (khugepaged_scan.address < hend) {
2450
bool mmap_locked = true;
2451
2452
cond_resched();
2453
if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2454
goto breakouterloop;
2455
2456
VM_BUG_ON(khugepaged_scan.address < hstart ||
2457
khugepaged_scan.address + HPAGE_PMD_SIZE >
2458
hend);
2459
if (!vma_is_anonymous(vma)) {
2460
struct file *file = get_file(vma->vm_file);
2461
pgoff_t pgoff = linear_page_index(vma,
2462
khugepaged_scan.address);
2463
2464
mmap_read_unlock(mm);
2465
mmap_locked = false;
2466
*result = hpage_collapse_scan_file(mm,
2467
khugepaged_scan.address, file, pgoff, cc);
2468
fput(file);
2469
if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2470
mmap_read_lock(mm);
2471
if (hpage_collapse_test_exit_or_disable(mm))
2472
goto breakouterloop;
2473
*result = collapse_pte_mapped_thp(mm,
2474
khugepaged_scan.address, false);
2475
if (*result == SCAN_PMD_MAPPED)
2476
*result = SCAN_SUCCEED;
2477
mmap_read_unlock(mm);
2478
}
2479
} else {
2480
*result = hpage_collapse_scan_pmd(mm, vma,
2481
khugepaged_scan.address, &mmap_locked, cc);
2482
}
2483
2484
if (*result == SCAN_SUCCEED)
2485
++khugepaged_pages_collapsed;
2486
2487
/* move to next address */
2488
khugepaged_scan.address += HPAGE_PMD_SIZE;
2489
progress += HPAGE_PMD_NR;
2490
if (!mmap_locked)
2491
/*
2492
* We released mmap_lock so break loop. Note
2493
* that we drop mmap_lock before all hugepage
2494
* allocations, so if allocation fails, we are
2495
* guaranteed to break here and report the
2496
* correct result back to caller.
2497
*/
2498
goto breakouterloop_mmap_lock;
2499
if (progress >= pages)
2500
goto breakouterloop;
2501
}
2502
}
2503
breakouterloop:
2504
mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2505
breakouterloop_mmap_lock:
2506
2507
spin_lock(&khugepaged_mm_lock);
2508
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2509
/*
2510
* Release the current mm_slot if this mm is about to die, or
2511
* if we scanned all vmas of this mm.
2512
*/
2513
if (hpage_collapse_test_exit(mm) || !vma) {
2514
/*
2515
* Make sure that if mm_users is reaching zero while
2516
* khugepaged runs here, khugepaged_exit will find
2517
* mm_slot not pointing to the exiting mm.
2518
*/
2519
if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2520
slot = list_entry(slot->mm_node.next,
2521
struct mm_slot, mm_node);
2522
khugepaged_scan.mm_slot =
2523
mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2524
khugepaged_scan.address = 0;
2525
} else {
2526
khugepaged_scan.mm_slot = NULL;
2527
khugepaged_full_scans++;
2528
}
2529
2530
collect_mm_slot(mm_slot);
2531
}
2532
2533
return progress;
2534
}
2535
2536
static int khugepaged_has_work(void)
2537
{
2538
return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2539
}
2540
2541
static int khugepaged_wait_event(void)
2542
{
2543
return !list_empty(&khugepaged_scan.mm_head) ||
2544
kthread_should_stop();
2545
}
2546
2547
static void khugepaged_do_scan(struct collapse_control *cc)
2548
{
2549
unsigned int progress = 0, pass_through_head = 0;
2550
unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2551
bool wait = true;
2552
int result = SCAN_SUCCEED;
2553
2554
lru_add_drain_all();
2555
2556
while (true) {
2557
cond_resched();
2558
2559
if (unlikely(kthread_should_stop()))
2560
break;
2561
2562
spin_lock(&khugepaged_mm_lock);
2563
if (!khugepaged_scan.mm_slot)
2564
pass_through_head++;
2565
if (khugepaged_has_work() &&
2566
pass_through_head < 2)
2567
progress += khugepaged_scan_mm_slot(pages - progress,
2568
&result, cc);
2569
else
2570
progress = pages;
2571
spin_unlock(&khugepaged_mm_lock);
2572
2573
if (progress >= pages)
2574
break;
2575
2576
if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2577
/*
2578
* If fail to allocate the first time, try to sleep for
2579
* a while. When hit again, cancel the scan.
2580
*/
2581
if (!wait)
2582
break;
2583
wait = false;
2584
khugepaged_alloc_sleep();
2585
}
2586
}
2587
}
2588
2589
static bool khugepaged_should_wakeup(void)
2590
{
2591
return kthread_should_stop() ||
2592
time_after_eq(jiffies, khugepaged_sleep_expire);
2593
}
2594
2595
static void khugepaged_wait_work(void)
2596
{
2597
if (khugepaged_has_work()) {
2598
const unsigned long scan_sleep_jiffies =
2599
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2600
2601
if (!scan_sleep_jiffies)
2602
return;
2603
2604
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2605
wait_event_freezable_timeout(khugepaged_wait,
2606
khugepaged_should_wakeup(),
2607
scan_sleep_jiffies);
2608
return;
2609
}
2610
2611
if (hugepage_pmd_enabled())
2612
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2613
}
2614
2615
static int khugepaged(void *none)
2616
{
2617
struct khugepaged_mm_slot *mm_slot;
2618
2619
set_freezable();
2620
set_user_nice(current, MAX_NICE);
2621
2622
while (!kthread_should_stop()) {
2623
khugepaged_do_scan(&khugepaged_collapse_control);
2624
khugepaged_wait_work();
2625
}
2626
2627
spin_lock(&khugepaged_mm_lock);
2628
mm_slot = khugepaged_scan.mm_slot;
2629
khugepaged_scan.mm_slot = NULL;
2630
if (mm_slot)
2631
collect_mm_slot(mm_slot);
2632
spin_unlock(&khugepaged_mm_lock);
2633
return 0;
2634
}
2635
2636
static void set_recommended_min_free_kbytes(void)
2637
{
2638
struct zone *zone;
2639
int nr_zones = 0;
2640
unsigned long recommended_min;
2641
2642
if (!hugepage_pmd_enabled()) {
2643
calculate_min_free_kbytes();
2644
goto update_wmarks;
2645
}
2646
2647
for_each_populated_zone(zone) {
2648
/*
2649
* We don't need to worry about fragmentation of
2650
* ZONE_MOVABLE since it only has movable pages.
2651
*/
2652
if (zone_idx(zone) > gfp_zone(GFP_USER))
2653
continue;
2654
2655
nr_zones++;
2656
}
2657
2658
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2659
recommended_min = pageblock_nr_pages * nr_zones * 2;
2660
2661
/*
2662
* Make sure that on average at least two pageblocks are almost free
2663
* of another type, one for a migratetype to fall back to and a
2664
* second to avoid subsequent fallbacks of other types There are 3
2665
* MIGRATE_TYPES we care about.
2666
*/
2667
recommended_min += pageblock_nr_pages * nr_zones *
2668
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2669
2670
/* don't ever allow to reserve more than 5% of the lowmem */
2671
recommended_min = min(recommended_min,
2672
(unsigned long) nr_free_buffer_pages() / 20);
2673
recommended_min <<= (PAGE_SHIFT-10);
2674
2675
if (recommended_min > min_free_kbytes) {
2676
if (user_min_free_kbytes >= 0)
2677
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2678
min_free_kbytes, recommended_min);
2679
2680
min_free_kbytes = recommended_min;
2681
}
2682
2683
update_wmarks:
2684
setup_per_zone_wmarks();
2685
}
2686
2687
int start_stop_khugepaged(void)
2688
{
2689
int err = 0;
2690
2691
mutex_lock(&khugepaged_mutex);
2692
if (hugepage_pmd_enabled()) {
2693
if (!khugepaged_thread)
2694
khugepaged_thread = kthread_run(khugepaged, NULL,
2695
"khugepaged");
2696
if (IS_ERR(khugepaged_thread)) {
2697
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2698
err = PTR_ERR(khugepaged_thread);
2699
khugepaged_thread = NULL;
2700
goto fail;
2701
}
2702
2703
if (!list_empty(&khugepaged_scan.mm_head))
2704
wake_up_interruptible(&khugepaged_wait);
2705
} else if (khugepaged_thread) {
2706
kthread_stop(khugepaged_thread);
2707
khugepaged_thread = NULL;
2708
}
2709
set_recommended_min_free_kbytes();
2710
fail:
2711
mutex_unlock(&khugepaged_mutex);
2712
return err;
2713
}
2714
2715
void khugepaged_min_free_kbytes_update(void)
2716
{
2717
mutex_lock(&khugepaged_mutex);
2718
if (hugepage_pmd_enabled() && khugepaged_thread)
2719
set_recommended_min_free_kbytes();
2720
mutex_unlock(&khugepaged_mutex);
2721
}
2722
2723
bool current_is_khugepaged(void)
2724
{
2725
return kthread_func(current) == khugepaged;
2726
}
2727
2728
static int madvise_collapse_errno(enum scan_result r)
2729
{
2730
/*
2731
* MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2732
* actionable feedback to caller, so they may take an appropriate
2733
* fallback measure depending on the nature of the failure.
2734
*/
2735
switch (r) {
2736
case SCAN_ALLOC_HUGE_PAGE_FAIL:
2737
return -ENOMEM;
2738
case SCAN_CGROUP_CHARGE_FAIL:
2739
case SCAN_EXCEED_NONE_PTE:
2740
return -EBUSY;
2741
/* Resource temporary unavailable - trying again might succeed */
2742
case SCAN_PAGE_COUNT:
2743
case SCAN_PAGE_LOCK:
2744
case SCAN_PAGE_LRU:
2745
case SCAN_DEL_PAGE_LRU:
2746
case SCAN_PAGE_FILLED:
2747
return -EAGAIN;
2748
/*
2749
* Other: Trying again likely not to succeed / error intrinsic to
2750
* specified memory range. khugepaged likely won't be able to collapse
2751
* either.
2752
*/
2753
default:
2754
return -EINVAL;
2755
}
2756
}
2757
2758
int madvise_collapse(struct vm_area_struct *vma, unsigned long start,
2759
unsigned long end, bool *lock_dropped)
2760
{
2761
struct collapse_control *cc;
2762
struct mm_struct *mm = vma->vm_mm;
2763
unsigned long hstart, hend, addr;
2764
int thps = 0, last_fail = SCAN_FAIL;
2765
bool mmap_locked = true;
2766
2767
BUG_ON(vma->vm_start > start);
2768
BUG_ON(vma->vm_end < end);
2769
2770
if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2771
return -EINVAL;
2772
2773
cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2774
if (!cc)
2775
return -ENOMEM;
2776
cc->is_khugepaged = false;
2777
2778
mmgrab(mm);
2779
lru_add_drain_all();
2780
2781
hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2782
hend = end & HPAGE_PMD_MASK;
2783
2784
for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2785
int result = SCAN_FAIL;
2786
2787
if (!mmap_locked) {
2788
cond_resched();
2789
mmap_read_lock(mm);
2790
mmap_locked = true;
2791
result = hugepage_vma_revalidate(mm, addr, false, &vma,
2792
cc);
2793
if (result != SCAN_SUCCEED) {
2794
last_fail = result;
2795
goto out_nolock;
2796
}
2797
2798
hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2799
}
2800
mmap_assert_locked(mm);
2801
memset(cc->node_load, 0, sizeof(cc->node_load));
2802
nodes_clear(cc->alloc_nmask);
2803
if (!vma_is_anonymous(vma)) {
2804
struct file *file = get_file(vma->vm_file);
2805
pgoff_t pgoff = linear_page_index(vma, addr);
2806
2807
mmap_read_unlock(mm);
2808
mmap_locked = false;
2809
result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2810
cc);
2811
fput(file);
2812
} else {
2813
result = hpage_collapse_scan_pmd(mm, vma, addr,
2814
&mmap_locked, cc);
2815
}
2816
if (!mmap_locked)
2817
*lock_dropped = true;
2818
2819
handle_result:
2820
switch (result) {
2821
case SCAN_SUCCEED:
2822
case SCAN_PMD_MAPPED:
2823
++thps;
2824
break;
2825
case SCAN_PTE_MAPPED_HUGEPAGE:
2826
BUG_ON(mmap_locked);
2827
mmap_read_lock(mm);
2828
result = collapse_pte_mapped_thp(mm, addr, true);
2829
mmap_read_unlock(mm);
2830
goto handle_result;
2831
/* Whitelisted set of results where continuing OK */
2832
case SCAN_PMD_NULL:
2833
case SCAN_PTE_NON_PRESENT:
2834
case SCAN_PTE_UFFD_WP:
2835
case SCAN_PAGE_RO:
2836
case SCAN_LACK_REFERENCED_PAGE:
2837
case SCAN_PAGE_NULL:
2838
case SCAN_PAGE_COUNT:
2839
case SCAN_PAGE_LOCK:
2840
case SCAN_PAGE_COMPOUND:
2841
case SCAN_PAGE_LRU:
2842
case SCAN_DEL_PAGE_LRU:
2843
last_fail = result;
2844
break;
2845
default:
2846
last_fail = result;
2847
/* Other error, exit */
2848
goto out_maybelock;
2849
}
2850
}
2851
2852
out_maybelock:
2853
/* Caller expects us to hold mmap_lock on return */
2854
if (!mmap_locked)
2855
mmap_read_lock(mm);
2856
out_nolock:
2857
mmap_assert_locked(mm);
2858
mmdrop(mm);
2859
kfree(cc);
2860
2861
return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2862
: madvise_collapse_errno(last_fail);
2863
}
2864
2865