Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kmsan/hooks.c
48888 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* KMSAN hooks for kernel subsystems.
4
*
5
* These functions handle creation of KMSAN metadata for memory allocations.
6
*
7
* Copyright (C) 2018-2022 Google LLC
8
* Author: Alexander Potapenko <[email protected]>
9
*
10
*/
11
12
#include <linux/cacheflush.h>
13
#include <linux/dma-direction.h>
14
#include <linux/gfp.h>
15
#include <linux/kmsan.h>
16
#include <linux/mm.h>
17
#include <linux/mm_types.h>
18
#include <linux/scatterlist.h>
19
#include <linux/slab.h>
20
#include <linux/uaccess.h>
21
#include <linux/usb.h>
22
23
#include "../internal.h"
24
#include "../slab.h"
25
#include "kmsan.h"
26
27
/*
28
* Instrumented functions shouldn't be called under
29
* kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
30
* skipping effects of functions like memset() inside instrumented code.
31
*/
32
33
void kmsan_task_create(struct task_struct *task)
34
{
35
kmsan_enter_runtime();
36
kmsan_internal_task_create(task);
37
kmsan_leave_runtime();
38
}
39
40
void kmsan_task_exit(struct task_struct *task)
41
{
42
if (!kmsan_enabled || kmsan_in_runtime())
43
return;
44
45
kmsan_disable_current();
46
}
47
48
void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
49
{
50
if (unlikely(object == NULL))
51
return;
52
if (!kmsan_enabled || kmsan_in_runtime())
53
return;
54
/*
55
* There's a ctor or this is an RCU cache - do nothing. The memory
56
* status hasn't changed since last use.
57
*/
58
if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
59
return;
60
61
kmsan_enter_runtime();
62
if (flags & __GFP_ZERO)
63
kmsan_internal_unpoison_memory(object, s->object_size,
64
KMSAN_POISON_CHECK);
65
else
66
kmsan_internal_poison_memory(object, s->object_size, flags,
67
KMSAN_POISON_CHECK);
68
kmsan_leave_runtime();
69
}
70
71
void kmsan_slab_free(struct kmem_cache *s, void *object)
72
{
73
if (!kmsan_enabled || kmsan_in_runtime())
74
return;
75
76
/* RCU slabs could be legally used after free within the RCU period */
77
if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
78
return;
79
/*
80
* If there's a constructor, freed memory must remain in the same state
81
* until the next allocation. We cannot save its state to detect
82
* use-after-free bugs, instead we just keep it unpoisoned.
83
*/
84
if (s->ctor)
85
return;
86
kmsan_enter_runtime();
87
kmsan_internal_poison_memory(object, s->object_size,
88
GFP_KERNEL & ~(__GFP_RECLAIM),
89
KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
90
kmsan_leave_runtime();
91
}
92
93
void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
94
{
95
if (unlikely(ptr == NULL))
96
return;
97
if (!kmsan_enabled || kmsan_in_runtime())
98
return;
99
kmsan_enter_runtime();
100
if (flags & __GFP_ZERO)
101
kmsan_internal_unpoison_memory((void *)ptr, size,
102
/*checked*/ true);
103
else
104
kmsan_internal_poison_memory((void *)ptr, size, flags,
105
KMSAN_POISON_CHECK);
106
kmsan_leave_runtime();
107
}
108
109
void kmsan_kfree_large(const void *ptr)
110
{
111
struct page *page;
112
113
if (!kmsan_enabled || kmsan_in_runtime())
114
return;
115
kmsan_enter_runtime();
116
page = virt_to_head_page((void *)ptr);
117
KMSAN_WARN_ON(ptr != page_address(page));
118
kmsan_internal_poison_memory((void *)ptr, page_size(page),
119
GFP_KERNEL & ~(__GFP_RECLAIM),
120
KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
121
kmsan_leave_runtime();
122
}
123
124
static unsigned long vmalloc_shadow(unsigned long addr)
125
{
126
return (unsigned long)kmsan_get_metadata((void *)addr,
127
KMSAN_META_SHADOW);
128
}
129
130
static unsigned long vmalloc_origin(unsigned long addr)
131
{
132
return (unsigned long)kmsan_get_metadata((void *)addr,
133
KMSAN_META_ORIGIN);
134
}
135
136
void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
137
{
138
__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
139
__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
140
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
141
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
142
}
143
144
/*
145
* This function creates new shadow/origin pages for the physical pages mapped
146
* into the virtual memory. If those physical pages already had shadow/origin,
147
* those are ignored.
148
*/
149
int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
150
phys_addr_t phys_addr, pgprot_t prot,
151
unsigned int page_shift)
152
{
153
gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
154
struct page *shadow, *origin;
155
unsigned long off = 0;
156
int nr, err = 0, clean = 0, mapped;
157
158
if (!kmsan_enabled || kmsan_in_runtime())
159
return 0;
160
161
nr = (end - start) / PAGE_SIZE;
162
kmsan_enter_runtime();
163
for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
164
shadow = alloc_pages(gfp_mask, 1);
165
origin = alloc_pages(gfp_mask, 1);
166
if (!shadow || !origin) {
167
err = -ENOMEM;
168
goto ret;
169
}
170
mapped = __vmap_pages_range_noflush(
171
vmalloc_shadow(start + off),
172
vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
173
PAGE_SHIFT);
174
if (mapped) {
175
err = mapped;
176
goto ret;
177
}
178
shadow = NULL;
179
mapped = __vmap_pages_range_noflush(
180
vmalloc_origin(start + off),
181
vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
182
PAGE_SHIFT);
183
if (mapped) {
184
__vunmap_range_noflush(
185
vmalloc_shadow(start + off),
186
vmalloc_shadow(start + off + PAGE_SIZE));
187
err = mapped;
188
goto ret;
189
}
190
origin = NULL;
191
}
192
/* Page mapping loop finished normally, nothing to clean up. */
193
clean = 0;
194
195
ret:
196
if (clean > 0) {
197
/*
198
* Something went wrong. Clean up shadow/origin pages allocated
199
* on the last loop iteration, then delete mappings created
200
* during the previous iterations.
201
*/
202
if (shadow)
203
__free_pages(shadow, 1);
204
if (origin)
205
__free_pages(origin, 1);
206
__vunmap_range_noflush(
207
vmalloc_shadow(start),
208
vmalloc_shadow(start + clean * PAGE_SIZE));
209
__vunmap_range_noflush(
210
vmalloc_origin(start),
211
vmalloc_origin(start + clean * PAGE_SIZE));
212
}
213
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
214
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
215
kmsan_leave_runtime();
216
return err;
217
}
218
219
void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
220
{
221
unsigned long v_shadow, v_origin;
222
struct page *shadow, *origin;
223
int nr;
224
225
if (!kmsan_enabled || kmsan_in_runtime())
226
return;
227
228
nr = (end - start) / PAGE_SIZE;
229
kmsan_enter_runtime();
230
v_shadow = (unsigned long)vmalloc_shadow(start);
231
v_origin = (unsigned long)vmalloc_origin(start);
232
for (int i = 0; i < nr;
233
i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
234
shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
235
origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
236
__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
237
__vunmap_range_noflush(v_origin, vmalloc_origin(end));
238
if (shadow)
239
__free_pages(shadow, 1);
240
if (origin)
241
__free_pages(origin, 1);
242
}
243
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
244
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
245
kmsan_leave_runtime();
246
}
247
248
void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
249
size_t left)
250
{
251
unsigned long ua_flags;
252
253
if (!kmsan_enabled || kmsan_in_runtime())
254
return;
255
/*
256
* At this point we've copied the memory already. It's hard to check it
257
* before copying, as the size of actually copied buffer is unknown.
258
*/
259
260
/* copy_to_user() may copy zero bytes. No need to check. */
261
if (!to_copy)
262
return;
263
/* Or maybe copy_to_user() failed to copy anything. */
264
if (to_copy <= left)
265
return;
266
267
ua_flags = user_access_save();
268
if (!IS_ENABLED(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE) ||
269
(u64)to < TASK_SIZE) {
270
/* This is a user memory access, check it. */
271
kmsan_internal_check_memory((void *)from, to_copy - left, to,
272
REASON_COPY_TO_USER);
273
} else {
274
/* Otherwise this is a kernel memory access. This happens when a
275
* compat syscall passes an argument allocated on the kernel
276
* stack to a real syscall.
277
* Don't check anything, just copy the shadow of the copied
278
* bytes.
279
*/
280
kmsan_enter_runtime();
281
kmsan_internal_memmove_metadata((void *)to, (void *)from,
282
to_copy - left);
283
kmsan_leave_runtime();
284
}
285
user_access_restore(ua_flags);
286
}
287
EXPORT_SYMBOL(kmsan_copy_to_user);
288
289
void kmsan_memmove(void *to, const void *from, size_t size)
290
{
291
if (!kmsan_enabled || kmsan_in_runtime())
292
return;
293
294
kmsan_enter_runtime();
295
kmsan_internal_memmove_metadata(to, (void *)from, size);
296
kmsan_leave_runtime();
297
}
298
EXPORT_SYMBOL(kmsan_memmove);
299
300
/* Helper function to check an URB. */
301
void kmsan_handle_urb(const struct urb *urb, bool is_out)
302
{
303
if (!urb)
304
return;
305
if (is_out)
306
kmsan_internal_check_memory(urb->transfer_buffer,
307
urb->transfer_buffer_length,
308
/*user_addr*/ NULL,
309
REASON_SUBMIT_URB);
310
else
311
kmsan_internal_unpoison_memory(urb->transfer_buffer,
312
urb->transfer_buffer_length,
313
/*checked*/ false);
314
}
315
EXPORT_SYMBOL_GPL(kmsan_handle_urb);
316
317
static void kmsan_handle_dma_page(const void *addr, size_t size,
318
enum dma_data_direction dir)
319
{
320
switch (dir) {
321
case DMA_BIDIRECTIONAL:
322
kmsan_internal_check_memory((void *)addr, size,
323
/*user_addr*/ NULL, REASON_ANY);
324
kmsan_internal_unpoison_memory((void *)addr, size,
325
/*checked*/ false);
326
break;
327
case DMA_TO_DEVICE:
328
kmsan_internal_check_memory((void *)addr, size,
329
/*user_addr*/ NULL, REASON_ANY);
330
break;
331
case DMA_FROM_DEVICE:
332
kmsan_internal_unpoison_memory((void *)addr, size,
333
/*checked*/ false);
334
break;
335
case DMA_NONE:
336
break;
337
}
338
}
339
340
/* Helper function to handle DMA data transfers. */
341
void kmsan_handle_dma(phys_addr_t phys, size_t size,
342
enum dma_data_direction dir)
343
{
344
u64 page_offset, to_go;
345
void *addr;
346
347
if (PhysHighMem(phys))
348
return;
349
addr = phys_to_virt(phys);
350
/*
351
* The kernel may occasionally give us adjacent DMA pages not belonging
352
* to the same allocation. Process them separately to avoid triggering
353
* internal KMSAN checks.
354
*/
355
while (size > 0) {
356
page_offset = offset_in_page(addr);
357
to_go = min(PAGE_SIZE - page_offset, (u64)size);
358
kmsan_handle_dma_page((void *)addr, to_go, dir);
359
addr += to_go;
360
size -= to_go;
361
}
362
}
363
EXPORT_SYMBOL_GPL(kmsan_handle_dma);
364
365
void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
366
enum dma_data_direction dir)
367
{
368
struct scatterlist *item;
369
int i;
370
371
for_each_sg(sg, item, nents, i)
372
kmsan_handle_dma(sg_phys(item), item->length, dir);
373
}
374
375
/* Functions from kmsan-checks.h follow. */
376
377
/*
378
* To create an origin, kmsan_poison_memory() unwinds the stacks and stores it
379
* into the stack depot. This may cause deadlocks if done from within KMSAN
380
* runtime, therefore we bail out if kmsan_in_runtime().
381
*/
382
void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
383
{
384
if (!kmsan_enabled || kmsan_in_runtime())
385
return;
386
kmsan_enter_runtime();
387
/* The users may want to poison/unpoison random memory. */
388
kmsan_internal_poison_memory((void *)address, size, flags,
389
KMSAN_POISON_NOCHECK);
390
kmsan_leave_runtime();
391
}
392
EXPORT_SYMBOL(kmsan_poison_memory);
393
394
/*
395
* Unlike kmsan_poison_memory(), this function can be used from within KMSAN
396
* runtime, because it does not trigger allocations or call instrumented code.
397
*/
398
void kmsan_unpoison_memory(const void *address, size_t size)
399
{
400
unsigned long ua_flags;
401
402
if (!kmsan_enabled)
403
return;
404
405
ua_flags = user_access_save();
406
/* The users may want to poison/unpoison random memory. */
407
kmsan_internal_unpoison_memory((void *)address, size,
408
KMSAN_POISON_NOCHECK);
409
user_access_restore(ua_flags);
410
}
411
EXPORT_SYMBOL(kmsan_unpoison_memory);
412
413
/*
414
* Version of kmsan_unpoison_memory() called from IRQ entry functions.
415
*/
416
void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
417
{
418
kmsan_unpoison_memory((void *)regs, sizeof(*regs));
419
}
420
421
void kmsan_check_memory(const void *addr, size_t size)
422
{
423
if (!kmsan_enabled)
424
return;
425
return kmsan_internal_check_memory((void *)addr, size,
426
/*user_addr*/ NULL, REASON_ANY);
427
}
428
EXPORT_SYMBOL(kmsan_check_memory);
429
430
void kmsan_enable_current(void)
431
{
432
KMSAN_WARN_ON(current->kmsan_ctx.depth == 0);
433
current->kmsan_ctx.depth--;
434
}
435
EXPORT_SYMBOL(kmsan_enable_current);
436
437
void kmsan_disable_current(void)
438
{
439
current->kmsan_ctx.depth++;
440
KMSAN_WARN_ON(current->kmsan_ctx.depth == 0);
441
}
442
EXPORT_SYMBOL(kmsan_disable_current);
443
444