Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/kmsan/init.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* KMSAN initialization routines.
4
*
5
* Copyright (C) 2017-2021 Google LLC
6
* Author: Alexander Potapenko <[email protected]>
7
*
8
*/
9
10
#include "kmsan.h"
11
12
#include <asm/sections.h>
13
#include <linux/mm.h>
14
#include <linux/memblock.h>
15
16
#include "../internal.h"
17
18
#define NUM_FUTURE_RANGES 128
19
struct start_end_pair {
20
u64 start, end;
21
};
22
23
static struct start_end_pair start_end_pairs[NUM_FUTURE_RANGES] __initdata;
24
static int future_index __initdata;
25
26
/*
27
* Record a range of memory for which the metadata pages will be created once
28
* the page allocator becomes available.
29
*/
30
static void __init kmsan_record_future_shadow_range(void *start, void *end)
31
{
32
u64 nstart = (u64)start, nend = (u64)end, cstart, cend;
33
bool merged = false;
34
35
KMSAN_WARN_ON(future_index == NUM_FUTURE_RANGES);
36
KMSAN_WARN_ON((nstart >= nend) ||
37
/* Virtual address 0 is valid on s390. */
38
(!IS_ENABLED(CONFIG_S390) && !nstart) || !nend);
39
nstart = ALIGN_DOWN(nstart, PAGE_SIZE);
40
nend = ALIGN(nend, PAGE_SIZE);
41
42
/*
43
* Scan the existing ranges to see if any of them overlaps with
44
* [start, end). In that case, merge the two ranges instead of
45
* creating a new one.
46
* The number of ranges is less than 20, so there is no need to organize
47
* them into a more intelligent data structure.
48
*/
49
for (int i = 0; i < future_index; i++) {
50
cstart = start_end_pairs[i].start;
51
cend = start_end_pairs[i].end;
52
if ((cstart < nstart && cend < nstart) ||
53
(cstart > nend && cend > nend))
54
/* ranges are disjoint - do not merge */
55
continue;
56
start_end_pairs[i].start = min(nstart, cstart);
57
start_end_pairs[i].end = max(nend, cend);
58
merged = true;
59
break;
60
}
61
if (merged)
62
return;
63
start_end_pairs[future_index].start = nstart;
64
start_end_pairs[future_index].end = nend;
65
future_index++;
66
}
67
68
/*
69
* Initialize the shadow for existing mappings during kernel initialization.
70
* These include kernel text/data sections, NODE_DATA and future ranges
71
* registered while creating other data (e.g. percpu).
72
*
73
* Allocations via memblock can be only done before slab is initialized.
74
*/
75
void __init kmsan_init_shadow(void)
76
{
77
const size_t nd_size = sizeof(pg_data_t);
78
phys_addr_t p_start, p_end;
79
u64 loop;
80
int nid;
81
82
for_each_reserved_mem_range(loop, &p_start, &p_end)
83
kmsan_record_future_shadow_range(phys_to_virt(p_start),
84
phys_to_virt(p_end));
85
/* Allocate shadow for .data */
86
kmsan_record_future_shadow_range(_sdata, _edata);
87
88
for_each_online_node(nid)
89
kmsan_record_future_shadow_range(
90
NODE_DATA(nid), (char *)NODE_DATA(nid) + nd_size);
91
92
for (int i = 0; i < future_index; i++)
93
kmsan_init_alloc_meta_for_range(
94
(void *)start_end_pairs[i].start,
95
(void *)start_end_pairs[i].end);
96
}
97
98
struct metadata_page_pair {
99
struct page *shadow, *origin;
100
};
101
static struct metadata_page_pair held_back[NR_PAGE_ORDERS] __initdata;
102
103
/*
104
* Eager metadata allocation. When the memblock allocator is freeing pages to
105
* pagealloc, we use 2/3 of them as metadata for the remaining 1/3.
106
* We store the pointers to the returned blocks of pages in held_back[] grouped
107
* by their order: when kmsan_memblock_free_pages() is called for the first
108
* time with a certain order, it is reserved as a shadow block, for the second
109
* time - as an origin block. On the third time the incoming block receives its
110
* shadow and origin ranges from the previously saved shadow and origin blocks,
111
* after which held_back[order] can be used again.
112
*
113
* At the very end there may be leftover blocks in held_back[]. They are
114
* collected later by kmsan_memblock_discard().
115
*/
116
bool kmsan_memblock_free_pages(struct page *page, unsigned int order)
117
{
118
struct page *shadow, *origin;
119
120
if (!held_back[order].shadow) {
121
held_back[order].shadow = page;
122
return false;
123
}
124
if (!held_back[order].origin) {
125
held_back[order].origin = page;
126
return false;
127
}
128
shadow = held_back[order].shadow;
129
origin = held_back[order].origin;
130
kmsan_setup_meta(page, shadow, origin, order);
131
132
held_back[order].shadow = NULL;
133
held_back[order].origin = NULL;
134
return true;
135
}
136
137
#define MAX_BLOCKS 8
138
struct smallstack {
139
struct page *items[MAX_BLOCKS];
140
int index;
141
int order;
142
};
143
144
static struct smallstack collect = {
145
.index = 0,
146
.order = MAX_PAGE_ORDER,
147
};
148
149
static void smallstack_push(struct smallstack *stack, struct page *pages)
150
{
151
KMSAN_WARN_ON(stack->index == MAX_BLOCKS);
152
stack->items[stack->index] = pages;
153
stack->index++;
154
}
155
#undef MAX_BLOCKS
156
157
static struct page *smallstack_pop(struct smallstack *stack)
158
{
159
struct page *ret;
160
161
KMSAN_WARN_ON(stack->index == 0);
162
stack->index--;
163
ret = stack->items[stack->index];
164
stack->items[stack->index] = NULL;
165
return ret;
166
}
167
168
static void do_collection(void)
169
{
170
struct page *page, *shadow, *origin;
171
172
while (collect.index >= 3) {
173
page = smallstack_pop(&collect);
174
shadow = smallstack_pop(&collect);
175
origin = smallstack_pop(&collect);
176
kmsan_setup_meta(page, shadow, origin, collect.order);
177
__free_pages_core(page, collect.order, MEMINIT_EARLY);
178
}
179
}
180
181
static void collect_split(void)
182
{
183
struct smallstack tmp = {
184
.order = collect.order - 1,
185
.index = 0,
186
};
187
struct page *page;
188
189
if (!collect.order)
190
return;
191
while (collect.index) {
192
page = smallstack_pop(&collect);
193
smallstack_push(&tmp, &page[0]);
194
smallstack_push(&tmp, &page[1 << tmp.order]);
195
}
196
__memcpy(&collect, &tmp, sizeof(tmp));
197
}
198
199
/*
200
* Memblock is about to go away. Split the page blocks left over in held_back[]
201
* and return 1/3 of that memory to the system.
202
*/
203
static void kmsan_memblock_discard(void)
204
{
205
/*
206
* For each order=N:
207
* - push held_back[N].shadow and .origin to @collect;
208
* - while there are >= 3 elements in @collect, do garbage collection:
209
* - pop 3 ranges from @collect;
210
* - use two of them as shadow and origin for the third one;
211
* - repeat;
212
* - split each remaining element from @collect into 2 ranges of
213
* order=N-1,
214
* - repeat.
215
*/
216
collect.order = MAX_PAGE_ORDER;
217
for (int i = MAX_PAGE_ORDER; i >= 0; i--) {
218
if (held_back[i].shadow)
219
smallstack_push(&collect, held_back[i].shadow);
220
if (held_back[i].origin)
221
smallstack_push(&collect, held_back[i].origin);
222
held_back[i].shadow = NULL;
223
held_back[i].origin = NULL;
224
do_collection();
225
collect_split();
226
}
227
}
228
229
void __init kmsan_init_runtime(void)
230
{
231
/* Assuming current is init_task */
232
kmsan_internal_task_create(current);
233
kmsan_memblock_discard();
234
pr_info("Starting KernelMemorySanitizer\n");
235
pr_info("ATTENTION: KMSAN is a debugging tool! Do not use it on production machines!\n");
236
kmsan_enabled = true;
237
}
238
239