Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/ksm.c
49231 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Memory merging support.
4
*
5
* This code enables dynamic sharing of identical pages found in different
6
* memory areas, even if they are not shared by fork()
7
*
8
* Copyright (C) 2008-2009 Red Hat, Inc.
9
* Authors:
10
* Izik Eidus
11
* Andrea Arcangeli
12
* Chris Wright
13
* Hugh Dickins
14
*/
15
16
#include <linux/errno.h>
17
#include <linux/mm.h>
18
#include <linux/mm_inline.h>
19
#include <linux/fs.h>
20
#include <linux/mman.h>
21
#include <linux/sched.h>
22
#include <linux/sched/mm.h>
23
#include <linux/sched/cputime.h>
24
#include <linux/rwsem.h>
25
#include <linux/pagemap.h>
26
#include <linux/rmap.h>
27
#include <linux/spinlock.h>
28
#include <linux/xxhash.h>
29
#include <linux/delay.h>
30
#include <linux/kthread.h>
31
#include <linux/wait.h>
32
#include <linux/slab.h>
33
#include <linux/rbtree.h>
34
#include <linux/memory.h>
35
#include <linux/mmu_notifier.h>
36
#include <linux/swap.h>
37
#include <linux/ksm.h>
38
#include <linux/hashtable.h>
39
#include <linux/freezer.h>
40
#include <linux/oom.h>
41
#include <linux/numa.h>
42
#include <linux/pagewalk.h>
43
44
#include <asm/tlbflush.h>
45
#include "internal.h"
46
#include "mm_slot.h"
47
48
#define CREATE_TRACE_POINTS
49
#include <trace/events/ksm.h>
50
51
#ifdef CONFIG_NUMA
52
#define NUMA(x) (x)
53
#define DO_NUMA(x) do { (x); } while (0)
54
#else
55
#define NUMA(x) (0)
56
#define DO_NUMA(x) do { } while (0)
57
#endif
58
59
typedef u8 rmap_age_t;
60
61
/**
62
* DOC: Overview
63
*
64
* A few notes about the KSM scanning process,
65
* to make it easier to understand the data structures below:
66
*
67
* In order to reduce excessive scanning, KSM sorts the memory pages by their
68
* contents into a data structure that holds pointers to the pages' locations.
69
*
70
* Since the contents of the pages may change at any moment, KSM cannot just
71
* insert the pages into a normal sorted tree and expect it to find anything.
72
* Therefore KSM uses two data structures - the stable and the unstable tree.
73
*
74
* The stable tree holds pointers to all the merged pages (ksm pages), sorted
75
* by their contents. Because each such page is write-protected, searching on
76
* this tree is fully assured to be working (except when pages are unmapped),
77
* and therefore this tree is called the stable tree.
78
*
79
* The stable tree node includes information required for reverse
80
* mapping from a KSM page to virtual addresses that map this page.
81
*
82
* In order to avoid large latencies of the rmap walks on KSM pages,
83
* KSM maintains two types of nodes in the stable tree:
84
*
85
* * the regular nodes that keep the reverse mapping structures in a
86
* linked list
87
* * the "chains" that link nodes ("dups") that represent the same
88
* write protected memory content, but each "dup" corresponds to a
89
* different KSM page copy of that content
90
*
91
* Internally, the regular nodes, "dups" and "chains" are represented
92
* using the same struct ksm_stable_node structure.
93
*
94
* In addition to the stable tree, KSM uses a second data structure called the
95
* unstable tree: this tree holds pointers to pages which have been found to
96
* be "unchanged for a period of time". The unstable tree sorts these pages
97
* by their contents, but since they are not write-protected, KSM cannot rely
98
* upon the unstable tree to work correctly - the unstable tree is liable to
99
* be corrupted as its contents are modified, and so it is called unstable.
100
*
101
* KSM solves this problem by several techniques:
102
*
103
* 1) The unstable tree is flushed every time KSM completes scanning all
104
* memory areas, and then the tree is rebuilt again from the beginning.
105
* 2) KSM will only insert into the unstable tree, pages whose hash value
106
* has not changed since the previous scan of all memory areas.
107
* 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108
* colors of the nodes and not on their contents, assuring that even when
109
* the tree gets "corrupted" it won't get out of balance, so scanning time
110
* remains the same (also, searching and inserting nodes in an rbtree uses
111
* the same algorithm, so we have no overhead when we flush and rebuild).
112
* 4) KSM never flushes the stable tree, which means that even if it were to
113
* take 10 attempts to find a page in the unstable tree, once it is found,
114
* it is secured in the stable tree. (When we scan a new page, we first
115
* compare it against the stable tree, and then against the unstable tree.)
116
*
117
* If the merge_across_nodes tunable is unset, then KSM maintains multiple
118
* stable trees and multiple unstable trees: one of each for each NUMA node.
119
*/
120
121
/**
122
* struct ksm_mm_slot - ksm information per mm that is being scanned
123
* @slot: hash lookup from mm to mm_slot
124
* @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125
*/
126
struct ksm_mm_slot {
127
struct mm_slot slot;
128
struct ksm_rmap_item *rmap_list;
129
};
130
131
/**
132
* struct ksm_scan - cursor for scanning
133
* @mm_slot: the current mm_slot we are scanning
134
* @address: the next address inside that to be scanned
135
* @rmap_list: link to the next rmap to be scanned in the rmap_list
136
* @seqnr: count of completed full scans (needed when removing unstable node)
137
*
138
* There is only the one ksm_scan instance of this cursor structure.
139
*/
140
struct ksm_scan {
141
struct ksm_mm_slot *mm_slot;
142
unsigned long address;
143
struct ksm_rmap_item **rmap_list;
144
unsigned long seqnr;
145
};
146
147
/**
148
* struct ksm_stable_node - node of the stable rbtree
149
* @node: rb node of this ksm page in the stable tree
150
* @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151
* @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152
* @list: linked into migrate_nodes, pending placement in the proper node tree
153
* @hlist: hlist head of rmap_items using this ksm page
154
* @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155
* @chain_prune_time: time of the last full garbage collection
156
* @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157
* @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158
*/
159
struct ksm_stable_node {
160
union {
161
struct rb_node node; /* when node of stable tree */
162
struct { /* when listed for migration */
163
struct list_head *head;
164
struct {
165
struct hlist_node hlist_dup;
166
struct list_head list;
167
};
168
};
169
};
170
struct hlist_head hlist;
171
union {
172
unsigned long kpfn;
173
unsigned long chain_prune_time;
174
};
175
/*
176
* STABLE_NODE_CHAIN can be any negative number in
177
* rmap_hlist_len negative range, but better not -1 to be able
178
* to reliably detect underflows.
179
*/
180
#define STABLE_NODE_CHAIN -1024
181
int rmap_hlist_len;
182
#ifdef CONFIG_NUMA
183
int nid;
184
#endif
185
};
186
187
/**
188
* struct ksm_rmap_item - reverse mapping item for virtual addresses
189
* @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190
* @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191
* @nid: NUMA node id of unstable tree in which linked (may not match page)
192
* @mm: the memory structure this rmap_item is pointing into
193
* @address: the virtual address this rmap_item tracks (+ flags in low bits)
194
* @oldchecksum: previous checksum of the page at that virtual address
195
* @node: rb node of this rmap_item in the unstable tree
196
* @head: pointer to stable_node heading this list in the stable tree
197
* @hlist: link into hlist of rmap_items hanging off that stable_node
198
* @age: number of scan iterations since creation
199
* @remaining_skips: how many scans to skip
200
*/
201
struct ksm_rmap_item {
202
struct ksm_rmap_item *rmap_list;
203
union {
204
struct anon_vma *anon_vma; /* when stable */
205
#ifdef CONFIG_NUMA
206
int nid; /* when node of unstable tree */
207
#endif
208
};
209
struct mm_struct *mm;
210
unsigned long address; /* + low bits used for flags below */
211
unsigned int oldchecksum; /* when unstable */
212
rmap_age_t age;
213
rmap_age_t remaining_skips;
214
union {
215
struct rb_node node; /* when node of unstable tree */
216
struct { /* when listed from stable tree */
217
struct ksm_stable_node *head;
218
struct hlist_node hlist;
219
};
220
};
221
};
222
223
#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
224
#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
225
#define STABLE_FLAG 0x200 /* is listed from the stable tree */
226
227
/* The stable and unstable tree heads */
228
static struct rb_root one_stable_tree[1] = { RB_ROOT };
229
static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230
static struct rb_root *root_stable_tree = one_stable_tree;
231
static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233
/* Recently migrated nodes of stable tree, pending proper placement */
234
static LIST_HEAD(migrate_nodes);
235
#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237
#define MM_SLOTS_HASH_BITS 10
238
static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240
static struct ksm_mm_slot ksm_mm_head = {
241
.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242
};
243
static struct ksm_scan ksm_scan = {
244
.mm_slot = &ksm_mm_head,
245
};
246
247
static struct kmem_cache *rmap_item_cache;
248
static struct kmem_cache *stable_node_cache;
249
static struct kmem_cache *mm_slot_cache;
250
251
/* Default number of pages to scan per batch */
252
#define DEFAULT_PAGES_TO_SCAN 100
253
254
/* The number of pages scanned */
255
static unsigned long ksm_pages_scanned;
256
257
/* The number of nodes in the stable tree */
258
static unsigned long ksm_pages_shared;
259
260
/* The number of page slots additionally sharing those nodes */
261
static unsigned long ksm_pages_sharing;
262
263
/* The number of nodes in the unstable tree */
264
static unsigned long ksm_pages_unshared;
265
266
/* The number of rmap_items in use: to calculate pages_volatile */
267
static unsigned long ksm_rmap_items;
268
269
/* The number of stable_node chains */
270
static unsigned long ksm_stable_node_chains;
271
272
/* The number of stable_node dups linked to the stable_node chains */
273
static unsigned long ksm_stable_node_dups;
274
275
/* Delay in pruning stale stable_node_dups in the stable_node_chains */
276
static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277
278
/* Maximum number of page slots sharing a stable node */
279
static int ksm_max_page_sharing = 256;
280
281
/* Number of pages ksmd should scan in one batch */
282
static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283
284
/* Milliseconds ksmd should sleep between batches */
285
static unsigned int ksm_thread_sleep_millisecs = 20;
286
287
/* Checksum of an empty (zeroed) page */
288
static unsigned int zero_checksum __read_mostly;
289
290
/* Whether to merge empty (zeroed) pages with actual zero pages */
291
static bool ksm_use_zero_pages __read_mostly;
292
293
/* Skip pages that couldn't be de-duplicated previously */
294
/* Default to true at least temporarily, for testing */
295
static bool ksm_smart_scan = true;
296
297
/* The number of zero pages which is placed by KSM */
298
atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299
300
/* The number of pages that have been skipped due to "smart scanning" */
301
static unsigned long ksm_pages_skipped;
302
303
/* Don't scan more than max pages per batch. */
304
static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305
306
/* Min CPU for scanning pages per scan */
307
#define KSM_ADVISOR_MIN_CPU 10
308
309
/* Max CPU for scanning pages per scan */
310
static unsigned int ksm_advisor_max_cpu = 70;
311
312
/* Target scan time in seconds to analyze all KSM candidate pages. */
313
static unsigned long ksm_advisor_target_scan_time = 200;
314
315
/* Exponentially weighted moving average. */
316
#define EWMA_WEIGHT 30
317
318
/**
319
* struct advisor_ctx - metadata for KSM advisor
320
* @start_scan: start time of the current scan
321
* @scan_time: scan time of previous scan
322
* @change: change in percent to pages_to_scan parameter
323
* @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324
*/
325
struct advisor_ctx {
326
ktime_t start_scan;
327
unsigned long scan_time;
328
unsigned long change;
329
unsigned long long cpu_time;
330
};
331
static struct advisor_ctx advisor_ctx;
332
333
/* Define different advisor's */
334
enum ksm_advisor_type {
335
KSM_ADVISOR_NONE,
336
KSM_ADVISOR_SCAN_TIME,
337
};
338
static enum ksm_advisor_type ksm_advisor;
339
340
#ifdef CONFIG_SYSFS
341
/*
342
* Only called through the sysfs control interface:
343
*/
344
345
/* At least scan this many pages per batch. */
346
static unsigned long ksm_advisor_min_pages_to_scan = 500;
347
348
static void set_advisor_defaults(void)
349
{
350
if (ksm_advisor == KSM_ADVISOR_NONE) {
351
ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352
} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353
advisor_ctx = (const struct advisor_ctx){ 0 };
354
ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355
}
356
}
357
#endif /* CONFIG_SYSFS */
358
359
static inline void advisor_start_scan(void)
360
{
361
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362
advisor_ctx.start_scan = ktime_get();
363
}
364
365
/*
366
* Use previous scan time if available, otherwise use current scan time as an
367
* approximation for the previous scan time.
368
*/
369
static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370
unsigned long scan_time)
371
{
372
return ctx->scan_time ? ctx->scan_time : scan_time;
373
}
374
375
/* Calculate exponential weighted moving average */
376
static unsigned long ewma(unsigned long prev, unsigned long curr)
377
{
378
return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379
}
380
381
/*
382
* The scan time advisor is based on the current scan rate and the target
383
* scan rate.
384
*
385
* new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386
*
387
* To avoid perturbations it calculates a change factor of previous changes.
388
* A new change factor is calculated for each iteration and it uses an
389
* exponentially weighted moving average. The new pages_to_scan value is
390
* multiplied with that change factor:
391
*
392
* new_pages_to_scan *= change factor
393
*
394
* The new_pages_to_scan value is limited by the cpu min and max values. It
395
* calculates the cpu percent for the last scan and calculates the new
396
* estimated cpu percent cost for the next scan. That value is capped by the
397
* cpu min and max setting.
398
*
399
* In addition the new pages_to_scan value is capped by the max and min
400
* limits.
401
*/
402
static void scan_time_advisor(void)
403
{
404
unsigned int cpu_percent;
405
unsigned long cpu_time;
406
unsigned long cpu_time_diff;
407
unsigned long cpu_time_diff_ms;
408
unsigned long pages;
409
unsigned long per_page_cost;
410
unsigned long factor;
411
unsigned long change;
412
unsigned long last_scan_time;
413
unsigned long scan_time;
414
415
/* Convert scan time to seconds */
416
scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417
MSEC_PER_SEC);
418
scan_time = scan_time ? scan_time : 1;
419
420
/* Calculate CPU consumption of ksmd background thread */
421
cpu_time = task_sched_runtime(current);
422
cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423
cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424
425
cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426
cpu_percent = cpu_percent ? cpu_percent : 1;
427
last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428
429
/* Calculate scan time as percentage of target scan time */
430
factor = ksm_advisor_target_scan_time * 100 / scan_time;
431
factor = factor ? factor : 1;
432
433
/*
434
* Calculate scan time as percentage of last scan time and use
435
* exponentially weighted average to smooth it
436
*/
437
change = scan_time * 100 / last_scan_time;
438
change = change ? change : 1;
439
change = ewma(advisor_ctx.change, change);
440
441
/* Calculate new scan rate based on target scan rate. */
442
pages = ksm_thread_pages_to_scan * 100 / factor;
443
/* Update pages_to_scan by weighted change percentage. */
444
pages = pages * change / 100;
445
446
/* Cap new pages_to_scan value */
447
per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448
per_page_cost = per_page_cost ? per_page_cost : 1;
449
450
pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451
pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452
pages = min(pages, ksm_advisor_max_pages_to_scan);
453
454
/* Update advisor context */
455
advisor_ctx.change = change;
456
advisor_ctx.scan_time = scan_time;
457
advisor_ctx.cpu_time = cpu_time;
458
459
ksm_thread_pages_to_scan = pages;
460
trace_ksm_advisor(scan_time, pages, cpu_percent);
461
}
462
463
static void advisor_stop_scan(void)
464
{
465
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466
scan_time_advisor();
467
}
468
469
#ifdef CONFIG_NUMA
470
/* Zeroed when merging across nodes is not allowed */
471
static unsigned int ksm_merge_across_nodes = 1;
472
static int ksm_nr_node_ids = 1;
473
#else
474
#define ksm_merge_across_nodes 1U
475
#define ksm_nr_node_ids 1
476
#endif
477
478
#define KSM_RUN_STOP 0
479
#define KSM_RUN_MERGE 1
480
#define KSM_RUN_UNMERGE 2
481
#define KSM_RUN_OFFLINE 4
482
static unsigned long ksm_run = KSM_RUN_STOP;
483
static void wait_while_offlining(void);
484
485
static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486
static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487
static DEFINE_MUTEX(ksm_thread_mutex);
488
static DEFINE_SPINLOCK(ksm_mmlist_lock);
489
490
static int __init ksm_slab_init(void)
491
{
492
rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493
if (!rmap_item_cache)
494
goto out;
495
496
stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497
if (!stable_node_cache)
498
goto out_free1;
499
500
mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501
if (!mm_slot_cache)
502
goto out_free2;
503
504
return 0;
505
506
out_free2:
507
kmem_cache_destroy(stable_node_cache);
508
out_free1:
509
kmem_cache_destroy(rmap_item_cache);
510
out:
511
return -ENOMEM;
512
}
513
514
static void __init ksm_slab_free(void)
515
{
516
kmem_cache_destroy(mm_slot_cache);
517
kmem_cache_destroy(stable_node_cache);
518
kmem_cache_destroy(rmap_item_cache);
519
mm_slot_cache = NULL;
520
}
521
522
static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523
{
524
return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525
}
526
527
static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528
{
529
return dup->head == STABLE_NODE_DUP_HEAD;
530
}
531
532
static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533
struct ksm_stable_node *chain)
534
{
535
VM_BUG_ON(is_stable_node_dup(dup));
536
dup->head = STABLE_NODE_DUP_HEAD;
537
VM_BUG_ON(!is_stable_node_chain(chain));
538
hlist_add_head(&dup->hlist_dup, &chain->hlist);
539
ksm_stable_node_dups++;
540
}
541
542
static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543
{
544
VM_BUG_ON(!is_stable_node_dup(dup));
545
hlist_del(&dup->hlist_dup);
546
ksm_stable_node_dups--;
547
}
548
549
static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550
{
551
VM_BUG_ON(is_stable_node_chain(dup));
552
if (is_stable_node_dup(dup))
553
__stable_node_dup_del(dup);
554
else
555
rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556
#ifdef CONFIG_DEBUG_VM
557
dup->head = NULL;
558
#endif
559
}
560
561
static inline struct ksm_rmap_item *alloc_rmap_item(void)
562
{
563
struct ksm_rmap_item *rmap_item;
564
565
rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566
__GFP_NORETRY | __GFP_NOWARN);
567
if (rmap_item)
568
ksm_rmap_items++;
569
return rmap_item;
570
}
571
572
static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573
{
574
ksm_rmap_items--;
575
rmap_item->mm->ksm_rmap_items--;
576
rmap_item->mm = NULL; /* debug safety */
577
kmem_cache_free(rmap_item_cache, rmap_item);
578
}
579
580
static inline struct ksm_stable_node *alloc_stable_node(void)
581
{
582
/*
583
* The allocation can take too long with GFP_KERNEL when memory is under
584
* pressure, which may lead to hung task warnings. Adding __GFP_HIGH
585
* grants access to memory reserves, helping to avoid this problem.
586
*/
587
return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588
}
589
590
static inline void free_stable_node(struct ksm_stable_node *stable_node)
591
{
592
VM_BUG_ON(stable_node->rmap_hlist_len &&
593
!is_stable_node_chain(stable_node));
594
kmem_cache_free(stable_node_cache, stable_node);
595
}
596
597
/*
598
* ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599
* page tables after it has passed through ksm_exit() - which, if necessary,
600
* takes mmap_lock briefly to serialize against them. ksm_exit() does not set
601
* a special flag: they can just back out as soon as mm_users goes to zero.
602
* ksm_test_exit() is used throughout to make this test for exit: in some
603
* places for correctness, in some places just to avoid unnecessary work.
604
*/
605
static inline bool ksm_test_exit(struct mm_struct *mm)
606
{
607
return atomic_read(&mm->mm_users) == 0;
608
}
609
610
static int break_ksm_pmd_entry(pmd_t *pmdp, unsigned long addr, unsigned long end,
611
struct mm_walk *walk)
612
{
613
unsigned long *found_addr = (unsigned long *) walk->private;
614
struct mm_struct *mm = walk->mm;
615
pte_t *start_ptep, *ptep;
616
spinlock_t *ptl;
617
int found = 0;
618
619
if (ksm_test_exit(walk->mm))
620
return 0;
621
if (signal_pending(current))
622
return -ERESTARTSYS;
623
624
start_ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
625
if (!start_ptep)
626
return 0;
627
628
for (ptep = start_ptep; addr < end; ptep++, addr += PAGE_SIZE) {
629
pte_t pte = ptep_get(ptep);
630
struct folio *folio = NULL;
631
632
if (pte_present(pte)) {
633
folio = vm_normal_folio(walk->vma, addr, pte);
634
} else if (!pte_none(pte)) {
635
const softleaf_t entry = softleaf_from_pte(pte);
636
637
/*
638
* As KSM pages remain KSM pages until freed, no need to wait
639
* here for migration to end.
640
*/
641
if (softleaf_is_migration(entry))
642
folio = softleaf_to_folio(entry);
643
}
644
/* return 1 if the page is an normal ksm page or KSM-placed zero page */
645
found = (folio && folio_test_ksm(folio)) ||
646
(pte_present(pte) && is_ksm_zero_pte(pte));
647
if (found) {
648
*found_addr = addr;
649
goto out_unlock;
650
}
651
}
652
out_unlock:
653
pte_unmap_unlock(start_ptep, ptl);
654
return found;
655
}
656
657
static const struct mm_walk_ops break_ksm_ops = {
658
.pmd_entry = break_ksm_pmd_entry,
659
.walk_lock = PGWALK_RDLOCK,
660
};
661
662
static const struct mm_walk_ops break_ksm_lock_vma_ops = {
663
.pmd_entry = break_ksm_pmd_entry,
664
.walk_lock = PGWALK_WRLOCK,
665
};
666
667
/*
668
* Though it's very tempting to unmerge rmap_items from stable tree rather
669
* than check every pte of a given vma, the locking doesn't quite work for
670
* that - an rmap_item is assigned to the stable tree after inserting ksm
671
* page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
672
* rmap_items from parent to child at fork time (so as not to waste time
673
* if exit comes before the next scan reaches it).
674
*
675
* Similarly, although we'd like to remove rmap_items (so updating counts
676
* and freeing memory) when unmerging an area, it's easier to leave that
677
* to the next pass of ksmd - consider, for example, how ksmd might be
678
* in cmp_and_merge_page on one of the rmap_items we would be removing.
679
*
680
* We use break_ksm to break COW on a ksm page by triggering unsharing,
681
* such that the ksm page will get replaced by an exclusive anonymous page.
682
*
683
* We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
684
* in case the application has unmapped and remapped mm,addr meanwhile.
685
* Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
686
* mmap of /dev/mem, where we would not want to touch it.
687
*
688
* FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
689
* of the process that owns 'vma'. We also do not want to enforce
690
* protection keys here anyway.
691
*/
692
static int break_ksm(struct vm_area_struct *vma, unsigned long addr,
693
unsigned long end, bool lock_vma)
694
{
695
vm_fault_t ret = 0;
696
const struct mm_walk_ops *ops = lock_vma ?
697
&break_ksm_lock_vma_ops : &break_ksm_ops;
698
699
do {
700
int ksm_page;
701
702
cond_resched();
703
ksm_page = walk_page_range_vma(vma, addr, end, ops, &addr);
704
if (ksm_page <= 0)
705
return ksm_page;
706
ret = handle_mm_fault(vma, addr,
707
FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
708
NULL);
709
} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
710
/*
711
* We must loop until we no longer find a KSM page because
712
* handle_mm_fault() may back out if there's any difficulty e.g. if
713
* pte accessed bit gets updated concurrently.
714
*
715
* VM_FAULT_SIGBUS could occur if we race with truncation of the
716
* backing file, which also invalidates anonymous pages: that's
717
* okay, that truncation will have unmapped the KSM page for us.
718
*
719
* VM_FAULT_OOM: at the time of writing (late July 2009), setting
720
* aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
721
* current task has TIF_MEMDIE set, and will be OOM killed on return
722
* to user; and ksmd, having no mm, would never be chosen for that.
723
*
724
* But if the mm is in a limited mem_cgroup, then the fault may fail
725
* with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
726
* even ksmd can fail in this way - though it's usually breaking ksm
727
* just to undo a merge it made a moment before, so unlikely to oom.
728
*
729
* That's a pity: we might therefore have more kernel pages allocated
730
* than we're counting as nodes in the stable tree; but ksm_do_scan
731
* will retry to break_cow on each pass, so should recover the page
732
* in due course. The important thing is to not let VM_MERGEABLE
733
* be cleared while any such pages might remain in the area.
734
*/
735
return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
736
}
737
738
static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
739
{
740
if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL |
741
VM_HUGETLB | VM_DROPPABLE))
742
return false; /* just ignore the advice */
743
744
if (file_is_dax(file))
745
return false;
746
747
#ifdef VM_SAO
748
if (vm_flags & VM_SAO)
749
return false;
750
#endif
751
#ifdef VM_SPARC_ADI
752
if (vm_flags & VM_SPARC_ADI)
753
return false;
754
#endif
755
756
return true;
757
}
758
759
static bool vma_ksm_compatible(struct vm_area_struct *vma)
760
{
761
return ksm_compatible(vma->vm_file, vma->vm_flags);
762
}
763
764
static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
765
unsigned long addr)
766
{
767
struct vm_area_struct *vma;
768
if (ksm_test_exit(mm))
769
return NULL;
770
vma = vma_lookup(mm, addr);
771
if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772
return NULL;
773
return vma;
774
}
775
776
static void break_cow(struct ksm_rmap_item *rmap_item)
777
{
778
struct mm_struct *mm = rmap_item->mm;
779
unsigned long addr = rmap_item->address;
780
struct vm_area_struct *vma;
781
782
/*
783
* It is not an accident that whenever we want to break COW
784
* to undo, we also need to drop a reference to the anon_vma.
785
*/
786
put_anon_vma(rmap_item->anon_vma);
787
788
mmap_read_lock(mm);
789
vma = find_mergeable_vma(mm, addr);
790
if (vma)
791
break_ksm(vma, addr, addr + PAGE_SIZE, false);
792
mmap_read_unlock(mm);
793
}
794
795
static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
796
{
797
struct mm_struct *mm = rmap_item->mm;
798
unsigned long addr = rmap_item->address;
799
struct vm_area_struct *vma;
800
struct page *page = NULL;
801
struct folio_walk fw;
802
struct folio *folio;
803
804
mmap_read_lock(mm);
805
vma = find_mergeable_vma(mm, addr);
806
if (!vma)
807
goto out;
808
809
folio = folio_walk_start(&fw, vma, addr, 0);
810
if (folio) {
811
if (!folio_is_zone_device(folio) &&
812
folio_test_anon(folio)) {
813
folio_get(folio);
814
page = fw.page;
815
}
816
folio_walk_end(&fw, vma);
817
}
818
out:
819
if (page) {
820
flush_anon_page(vma, page, addr);
821
flush_dcache_page(page);
822
}
823
mmap_read_unlock(mm);
824
return page;
825
}
826
827
/*
828
* This helper is used for getting right index into array of tree roots.
829
* When merge_across_nodes knob is set to 1, there are only two rb-trees for
830
* stable and unstable pages from all nodes with roots in index 0. Otherwise,
831
* every node has its own stable and unstable tree.
832
*/
833
static inline int get_kpfn_nid(unsigned long kpfn)
834
{
835
return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
836
}
837
838
static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
839
struct rb_root *root)
840
{
841
struct ksm_stable_node *chain = alloc_stable_node();
842
VM_BUG_ON(is_stable_node_chain(dup));
843
if (likely(chain)) {
844
INIT_HLIST_HEAD(&chain->hlist);
845
chain->chain_prune_time = jiffies;
846
chain->rmap_hlist_len = STABLE_NODE_CHAIN;
847
#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
848
chain->nid = NUMA_NO_NODE; /* debug */
849
#endif
850
ksm_stable_node_chains++;
851
852
/*
853
* Put the stable node chain in the first dimension of
854
* the stable tree and at the same time remove the old
855
* stable node.
856
*/
857
rb_replace_node(&dup->node, &chain->node, root);
858
859
/*
860
* Move the old stable node to the second dimension
861
* queued in the hlist_dup. The invariant is that all
862
* dup stable_nodes in the chain->hlist point to pages
863
* that are write protected and have the exact same
864
* content.
865
*/
866
stable_node_chain_add_dup(dup, chain);
867
}
868
return chain;
869
}
870
871
static inline void free_stable_node_chain(struct ksm_stable_node *chain,
872
struct rb_root *root)
873
{
874
rb_erase(&chain->node, root);
875
free_stable_node(chain);
876
ksm_stable_node_chains--;
877
}
878
879
static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
880
{
881
struct ksm_rmap_item *rmap_item;
882
883
/* check it's not STABLE_NODE_CHAIN or negative */
884
BUG_ON(stable_node->rmap_hlist_len < 0);
885
886
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
887
if (rmap_item->hlist.next) {
888
ksm_pages_sharing--;
889
trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
890
} else {
891
ksm_pages_shared--;
892
}
893
894
rmap_item->mm->ksm_merging_pages--;
895
896
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
897
stable_node->rmap_hlist_len--;
898
put_anon_vma(rmap_item->anon_vma);
899
rmap_item->address &= PAGE_MASK;
900
cond_resched();
901
}
902
903
/*
904
* We need the second aligned pointer of the migrate_nodes
905
* list_head to stay clear from the rb_parent_color union
906
* (aligned and different than any node) and also different
907
* from &migrate_nodes. This will verify that future list.h changes
908
* don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
909
*/
910
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
911
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
912
913
trace_ksm_remove_ksm_page(stable_node->kpfn);
914
if (stable_node->head == &migrate_nodes)
915
list_del(&stable_node->list);
916
else
917
stable_node_dup_del(stable_node);
918
free_stable_node(stable_node);
919
}
920
921
enum ksm_get_folio_flags {
922
KSM_GET_FOLIO_NOLOCK,
923
KSM_GET_FOLIO_LOCK,
924
KSM_GET_FOLIO_TRYLOCK
925
};
926
927
/*
928
* ksm_get_folio: checks if the page indicated by the stable node
929
* is still its ksm page, despite having held no reference to it.
930
* In which case we can trust the content of the page, and it
931
* returns the gotten page; but if the page has now been zapped,
932
* remove the stale node from the stable tree and return NULL.
933
* But beware, the stable node's page might be being migrated.
934
*
935
* You would expect the stable_node to hold a reference to the ksm page.
936
* But if it increments the page's count, swapping out has to wait for
937
* ksmd to come around again before it can free the page, which may take
938
* seconds or even minutes: much too unresponsive. So instead we use a
939
* "keyhole reference": access to the ksm page from the stable node peeps
940
* out through its keyhole to see if that page still holds the right key,
941
* pointing back to this stable node. This relies on freeing a PageAnon
942
* page to reset its page->mapping to NULL, and relies on no other use of
943
* a page to put something that might look like our key in page->mapping.
944
* is on its way to being freed; but it is an anomaly to bear in mind.
945
*/
946
static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
947
enum ksm_get_folio_flags flags)
948
{
949
struct folio *folio;
950
void *expected_mapping;
951
unsigned long kpfn;
952
953
expected_mapping = (void *)((unsigned long)stable_node |
954
FOLIO_MAPPING_KSM);
955
again:
956
kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
957
folio = pfn_folio(kpfn);
958
if (READ_ONCE(folio->mapping) != expected_mapping)
959
goto stale;
960
961
/*
962
* We cannot do anything with the page while its refcount is 0.
963
* Usually 0 means free, or tail of a higher-order page: in which
964
* case this node is no longer referenced, and should be freed;
965
* however, it might mean that the page is under page_ref_freeze().
966
* The __remove_mapping() case is easy, again the node is now stale;
967
* the same is in reuse_ksm_page() case; but if page is swapcache
968
* in folio_migrate_mapping(), it might still be our page,
969
* in which case it's essential to keep the node.
970
*/
971
while (!folio_try_get(folio)) {
972
/*
973
* Another check for folio->mapping != expected_mapping
974
* would work here too. We have chosen to test the
975
* swapcache flag to optimize the common case, when the
976
* folio is or is about to be freed: the swapcache flag
977
* is cleared (under spin_lock_irq) in the ref_freeze
978
* section of __remove_mapping(); but anon folio->mapping
979
* is reset to NULL later, in free_pages_prepare().
980
*/
981
if (!folio_test_swapcache(folio))
982
goto stale;
983
cpu_relax();
984
}
985
986
if (READ_ONCE(folio->mapping) != expected_mapping) {
987
folio_put(folio);
988
goto stale;
989
}
990
991
if (flags == KSM_GET_FOLIO_TRYLOCK) {
992
if (!folio_trylock(folio)) {
993
folio_put(folio);
994
return ERR_PTR(-EBUSY);
995
}
996
} else if (flags == KSM_GET_FOLIO_LOCK)
997
folio_lock(folio);
998
999
if (flags != KSM_GET_FOLIO_NOLOCK) {
1000
if (READ_ONCE(folio->mapping) != expected_mapping) {
1001
folio_unlock(folio);
1002
folio_put(folio);
1003
goto stale;
1004
}
1005
}
1006
return folio;
1007
1008
stale:
1009
/*
1010
* We come here from above when folio->mapping or the swapcache flag
1011
* suggests that the node is stale; but it might be under migration.
1012
* We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
1013
* before checking whether node->kpfn has been changed.
1014
*/
1015
smp_rmb();
1016
if (READ_ONCE(stable_node->kpfn) != kpfn)
1017
goto again;
1018
remove_node_from_stable_tree(stable_node);
1019
return NULL;
1020
}
1021
1022
/*
1023
* Removing rmap_item from stable or unstable tree.
1024
* This function will clean the information from the stable/unstable tree.
1025
*/
1026
static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
1027
{
1028
if (rmap_item->address & STABLE_FLAG) {
1029
struct ksm_stable_node *stable_node;
1030
struct folio *folio;
1031
1032
stable_node = rmap_item->head;
1033
folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1034
if (!folio)
1035
goto out;
1036
1037
hlist_del(&rmap_item->hlist);
1038
folio_unlock(folio);
1039
folio_put(folio);
1040
1041
if (!hlist_empty(&stable_node->hlist))
1042
ksm_pages_sharing--;
1043
else
1044
ksm_pages_shared--;
1045
1046
rmap_item->mm->ksm_merging_pages--;
1047
1048
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1049
stable_node->rmap_hlist_len--;
1050
1051
put_anon_vma(rmap_item->anon_vma);
1052
rmap_item->head = NULL;
1053
rmap_item->address &= PAGE_MASK;
1054
1055
} else if (rmap_item->address & UNSTABLE_FLAG) {
1056
unsigned char age;
1057
/*
1058
* Usually ksmd can and must skip the rb_erase, because
1059
* root_unstable_tree was already reset to RB_ROOT.
1060
* But be careful when an mm is exiting: do the rb_erase
1061
* if this rmap_item was inserted by this scan, rather
1062
* than left over from before.
1063
*/
1064
age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1065
BUG_ON(age > 1);
1066
if (!age)
1067
rb_erase(&rmap_item->node,
1068
root_unstable_tree + NUMA(rmap_item->nid));
1069
ksm_pages_unshared--;
1070
rmap_item->address &= PAGE_MASK;
1071
}
1072
out:
1073
cond_resched(); /* we're called from many long loops */
1074
}
1075
1076
static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1077
{
1078
while (*rmap_list) {
1079
struct ksm_rmap_item *rmap_item = *rmap_list;
1080
*rmap_list = rmap_item->rmap_list;
1081
remove_rmap_item_from_tree(rmap_item);
1082
free_rmap_item(rmap_item);
1083
}
1084
}
1085
1086
static inline
1087
struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1088
{
1089
return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090
}
1091
1092
static inline void folio_set_stable_node(struct folio *folio,
1093
struct ksm_stable_node *stable_node)
1094
{
1095
VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1096
folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1097
}
1098
1099
#ifdef CONFIG_SYSFS
1100
/*
1101
* Only called through the sysfs control interface:
1102
*/
1103
static int remove_stable_node(struct ksm_stable_node *stable_node)
1104
{
1105
struct folio *folio;
1106
int err;
1107
1108
folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1109
if (!folio) {
1110
/*
1111
* ksm_get_folio did remove_node_from_stable_tree itself.
1112
*/
1113
return 0;
1114
}
1115
1116
/*
1117
* Page could be still mapped if this races with __mmput() running in
1118
* between ksm_exit() and exit_mmap(). Just refuse to let
1119
* merge_across_nodes/max_page_sharing be switched.
1120
*/
1121
err = -EBUSY;
1122
if (!folio_mapped(folio)) {
1123
/*
1124
* The stable node did not yet appear stale to ksm_get_folio(),
1125
* since that allows for an unmapped ksm folio to be recognized
1126
* right up until it is freed; but the node is safe to remove.
1127
* This folio might be in an LRU cache waiting to be freed,
1128
* or it might be in the swapcache (perhaps under writeback),
1129
* or it might have been removed from swapcache a moment ago.
1130
*/
1131
folio_set_stable_node(folio, NULL);
1132
remove_node_from_stable_tree(stable_node);
1133
err = 0;
1134
}
1135
1136
folio_unlock(folio);
1137
folio_put(folio);
1138
return err;
1139
}
1140
1141
static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1142
struct rb_root *root)
1143
{
1144
struct ksm_stable_node *dup;
1145
struct hlist_node *hlist_safe;
1146
1147
if (!is_stable_node_chain(stable_node)) {
1148
VM_BUG_ON(is_stable_node_dup(stable_node));
1149
if (remove_stable_node(stable_node))
1150
return true;
1151
else
1152
return false;
1153
}
1154
1155
hlist_for_each_entry_safe(dup, hlist_safe,
1156
&stable_node->hlist, hlist_dup) {
1157
VM_BUG_ON(!is_stable_node_dup(dup));
1158
if (remove_stable_node(dup))
1159
return true;
1160
}
1161
BUG_ON(!hlist_empty(&stable_node->hlist));
1162
free_stable_node_chain(stable_node, root);
1163
return false;
1164
}
1165
1166
static int remove_all_stable_nodes(void)
1167
{
1168
struct ksm_stable_node *stable_node, *next;
1169
int nid;
1170
int err = 0;
1171
1172
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1173
while (root_stable_tree[nid].rb_node) {
1174
stable_node = rb_entry(root_stable_tree[nid].rb_node,
1175
struct ksm_stable_node, node);
1176
if (remove_stable_node_chain(stable_node,
1177
root_stable_tree + nid)) {
1178
err = -EBUSY;
1179
break; /* proceed to next nid */
1180
}
1181
cond_resched();
1182
}
1183
}
1184
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1185
if (remove_stable_node(stable_node))
1186
err = -EBUSY;
1187
cond_resched();
1188
}
1189
return err;
1190
}
1191
1192
static int unmerge_and_remove_all_rmap_items(void)
1193
{
1194
struct ksm_mm_slot *mm_slot;
1195
struct mm_slot *slot;
1196
struct mm_struct *mm;
1197
struct vm_area_struct *vma;
1198
int err = 0;
1199
1200
spin_lock(&ksm_mmlist_lock);
1201
slot = list_entry(ksm_mm_head.slot.mm_node.next,
1202
struct mm_slot, mm_node);
1203
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1204
spin_unlock(&ksm_mmlist_lock);
1205
1206
for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1207
mm_slot = ksm_scan.mm_slot) {
1208
VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1209
1210
mm = mm_slot->slot.mm;
1211
mmap_read_lock(mm);
1212
1213
/*
1214
* Exit right away if mm is exiting to avoid lockdep issue in
1215
* the maple tree
1216
*/
1217
if (ksm_test_exit(mm))
1218
goto mm_exiting;
1219
1220
for_each_vma(vmi, vma) {
1221
if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1222
continue;
1223
err = break_ksm(vma, vma->vm_start, vma->vm_end, false);
1224
if (err)
1225
goto error;
1226
}
1227
1228
mm_exiting:
1229
remove_trailing_rmap_items(&mm_slot->rmap_list);
1230
mmap_read_unlock(mm);
1231
1232
spin_lock(&ksm_mmlist_lock);
1233
slot = list_entry(mm_slot->slot.mm_node.next,
1234
struct mm_slot, mm_node);
1235
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1236
if (ksm_test_exit(mm)) {
1237
hash_del(&mm_slot->slot.hash);
1238
list_del(&mm_slot->slot.mm_node);
1239
spin_unlock(&ksm_mmlist_lock);
1240
1241
mm_slot_free(mm_slot_cache, mm_slot);
1242
mm_flags_clear(MMF_VM_MERGEABLE, mm);
1243
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
1244
mmdrop(mm);
1245
} else
1246
spin_unlock(&ksm_mmlist_lock);
1247
}
1248
1249
/* Clean up stable nodes, but don't worry if some are still busy */
1250
remove_all_stable_nodes();
1251
ksm_scan.seqnr = 0;
1252
return 0;
1253
1254
error:
1255
mmap_read_unlock(mm);
1256
spin_lock(&ksm_mmlist_lock);
1257
ksm_scan.mm_slot = &ksm_mm_head;
1258
spin_unlock(&ksm_mmlist_lock);
1259
return err;
1260
}
1261
#endif /* CONFIG_SYSFS */
1262
1263
static u32 calc_checksum(struct page *page)
1264
{
1265
u32 checksum;
1266
void *addr = kmap_local_page(page);
1267
checksum = xxhash(addr, PAGE_SIZE, 0);
1268
kunmap_local(addr);
1269
return checksum;
1270
}
1271
1272
static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1273
pte_t *orig_pte)
1274
{
1275
struct mm_struct *mm = vma->vm_mm;
1276
DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1277
int swapped;
1278
int err = -EFAULT;
1279
struct mmu_notifier_range range;
1280
bool anon_exclusive;
1281
pte_t entry;
1282
1283
if (WARN_ON_ONCE(folio_test_large(folio)))
1284
return err;
1285
1286
pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1287
if (pvmw.address == -EFAULT)
1288
goto out;
1289
1290
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1291
pvmw.address + PAGE_SIZE);
1292
mmu_notifier_invalidate_range_start(&range);
1293
1294
if (!page_vma_mapped_walk(&pvmw))
1295
goto out_mn;
1296
if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1297
goto out_unlock;
1298
1299
entry = ptep_get(pvmw.pte);
1300
/*
1301
* Handle PFN swap PTEs, such as device-exclusive ones, that actually
1302
* map pages: give up just like the next folio_walk would.
1303
*/
1304
if (unlikely(!pte_present(entry)))
1305
goto out_unlock;
1306
1307
anon_exclusive = PageAnonExclusive(&folio->page);
1308
if (pte_write(entry) || pte_dirty(entry) ||
1309
anon_exclusive || mm_tlb_flush_pending(mm)) {
1310
swapped = folio_test_swapcache(folio);
1311
flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1312
/*
1313
* Ok this is tricky, when get_user_pages_fast() run it doesn't
1314
* take any lock, therefore the check that we are going to make
1315
* with the pagecount against the mapcount is racy and
1316
* O_DIRECT can happen right after the check.
1317
* So we clear the pte and flush the tlb before the check
1318
* this assure us that no O_DIRECT can happen after the check
1319
* or in the middle of the check.
1320
*
1321
* No need to notify as we are downgrading page table to read
1322
* only not changing it to point to a new page.
1323
*
1324
* See Documentation/mm/mmu_notifier.rst
1325
*/
1326
entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1327
/*
1328
* Check that no O_DIRECT or similar I/O is in progress on the
1329
* page
1330
*/
1331
if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1332
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1333
goto out_unlock;
1334
}
1335
1336
/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1337
if (anon_exclusive &&
1338
folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1339
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1340
goto out_unlock;
1341
}
1342
1343
if (pte_dirty(entry))
1344
folio_mark_dirty(folio);
1345
entry = pte_mkclean(entry);
1346
1347
if (pte_write(entry))
1348
entry = pte_wrprotect(entry);
1349
1350
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1351
}
1352
*orig_pte = entry;
1353
err = 0;
1354
1355
out_unlock:
1356
page_vma_mapped_walk_done(&pvmw);
1357
out_mn:
1358
mmu_notifier_invalidate_range_end(&range);
1359
out:
1360
return err;
1361
}
1362
1363
/**
1364
* replace_page - replace page in vma by new ksm page
1365
* @vma: vma that holds the pte pointing to page
1366
* @page: the page we are replacing by kpage
1367
* @kpage: the ksm page we replace page by
1368
* @orig_pte: the original value of the pte
1369
*
1370
* Returns 0 on success, -EFAULT on failure.
1371
*/
1372
static int replace_page(struct vm_area_struct *vma, struct page *page,
1373
struct page *kpage, pte_t orig_pte)
1374
{
1375
struct folio *kfolio = page_folio(kpage);
1376
struct mm_struct *mm = vma->vm_mm;
1377
struct folio *folio = page_folio(page);
1378
pmd_t *pmd;
1379
pmd_t pmde;
1380
pte_t *ptep;
1381
pte_t newpte;
1382
spinlock_t *ptl;
1383
unsigned long addr;
1384
int err = -EFAULT;
1385
struct mmu_notifier_range range;
1386
1387
addr = page_address_in_vma(folio, page, vma);
1388
if (addr == -EFAULT)
1389
goto out;
1390
1391
pmd = mm_find_pmd(mm, addr);
1392
if (!pmd)
1393
goto out;
1394
/*
1395
* Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1396
* without holding anon_vma lock for write. So when looking for a
1397
* genuine pmde (in which to find pte), test present and !THP together.
1398
*/
1399
pmde = pmdp_get_lockless(pmd);
1400
if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1401
goto out;
1402
1403
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1404
addr + PAGE_SIZE);
1405
mmu_notifier_invalidate_range_start(&range);
1406
1407
ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1408
if (!ptep)
1409
goto out_mn;
1410
if (!pte_same(ptep_get(ptep), orig_pte)) {
1411
pte_unmap_unlock(ptep, ptl);
1412
goto out_mn;
1413
}
1414
VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1415
VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1416
kfolio);
1417
1418
/*
1419
* No need to check ksm_use_zero_pages here: we can only have a
1420
* zero_page here if ksm_use_zero_pages was enabled already.
1421
*/
1422
if (!is_zero_pfn(page_to_pfn(kpage))) {
1423
folio_get(kfolio);
1424
folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1425
newpte = mk_pte(kpage, vma->vm_page_prot);
1426
} else {
1427
/*
1428
* Use pte_mkdirty to mark the zero page mapped by KSM, and then
1429
* we can easily track all KSM-placed zero pages by checking if
1430
* the dirty bit in zero page's PTE is set.
1431
*/
1432
newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1433
ksm_map_zero_page(mm);
1434
/*
1435
* We're replacing an anonymous page with a zero page, which is
1436
* not anonymous. We need to do proper accounting otherwise we
1437
* will get wrong values in /proc, and a BUG message in dmesg
1438
* when tearing down the mm.
1439
*/
1440
dec_mm_counter(mm, MM_ANONPAGES);
1441
}
1442
1443
flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1444
/*
1445
* No need to notify as we are replacing a read only page with another
1446
* read only page with the same content.
1447
*
1448
* See Documentation/mm/mmu_notifier.rst
1449
*/
1450
ptep_clear_flush(vma, addr, ptep);
1451
set_pte_at(mm, addr, ptep, newpte);
1452
1453
folio_remove_rmap_pte(folio, page, vma);
1454
if (!folio_mapped(folio))
1455
folio_free_swap(folio);
1456
folio_put(folio);
1457
1458
pte_unmap_unlock(ptep, ptl);
1459
err = 0;
1460
out_mn:
1461
mmu_notifier_invalidate_range_end(&range);
1462
out:
1463
return err;
1464
}
1465
1466
/*
1467
* try_to_merge_one_page - take two pages and merge them into one
1468
* @vma: the vma that holds the pte pointing to page
1469
* @page: the PageAnon page that we want to replace with kpage
1470
* @kpage: the KSM page that we want to map instead of page,
1471
* or NULL the first time when we want to use page as kpage.
1472
*
1473
* This function returns 0 if the pages were merged, -EFAULT otherwise.
1474
*/
1475
static int try_to_merge_one_page(struct vm_area_struct *vma,
1476
struct page *page, struct page *kpage)
1477
{
1478
struct folio *folio = page_folio(page);
1479
pte_t orig_pte = __pte(0);
1480
int err = -EFAULT;
1481
1482
if (page == kpage) /* ksm page forked */
1483
return 0;
1484
1485
if (!folio_test_anon(folio))
1486
goto out;
1487
1488
/*
1489
* We need the folio lock to read a stable swapcache flag in
1490
* write_protect_page(). We trylock because we don't want to wait
1491
* here - we prefer to continue scanning and merging different
1492
* pages, then come back to this page when it is unlocked.
1493
*/
1494
if (!folio_trylock(folio))
1495
goto out;
1496
1497
if (folio_test_large(folio)) {
1498
if (split_huge_page(page))
1499
goto out_unlock;
1500
folio = page_folio(page);
1501
}
1502
1503
/*
1504
* If this anonymous page is mapped only here, its pte may need
1505
* to be write-protected. If it's mapped elsewhere, all of its
1506
* ptes are necessarily already write-protected. But in either
1507
* case, we need to lock and check page_count is not raised.
1508
*/
1509
if (write_protect_page(vma, folio, &orig_pte) == 0) {
1510
if (!kpage) {
1511
/*
1512
* While we hold folio lock, upgrade folio from
1513
* anon to a NULL stable_node with the KSM flag set:
1514
* stable_tree_insert() will update stable_node.
1515
*/
1516
folio_set_stable_node(folio, NULL);
1517
folio_mark_accessed(folio);
1518
/*
1519
* Page reclaim just frees a clean folio with no dirty
1520
* ptes: make sure that the ksm page would be swapped.
1521
*/
1522
if (!folio_test_dirty(folio))
1523
folio_mark_dirty(folio);
1524
err = 0;
1525
} else if (pages_identical(page, kpage))
1526
err = replace_page(vma, page, kpage, orig_pte);
1527
}
1528
1529
out_unlock:
1530
folio_unlock(folio);
1531
out:
1532
return err;
1533
}
1534
1535
/*
1536
* This function returns 0 if the pages were merged or if they are
1537
* no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1538
*/
1539
static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1540
struct page *page)
1541
{
1542
struct mm_struct *mm = rmap_item->mm;
1543
int err = -EFAULT;
1544
1545
/*
1546
* Same checksum as an empty page. We attempt to merge it with the
1547
* appropriate zero page if the user enabled this via sysfs.
1548
*/
1549
if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1550
struct vm_area_struct *vma;
1551
1552
mmap_read_lock(mm);
1553
vma = find_mergeable_vma(mm, rmap_item->address);
1554
if (vma) {
1555
err = try_to_merge_one_page(vma, page,
1556
ZERO_PAGE(rmap_item->address));
1557
trace_ksm_merge_one_page(
1558
page_to_pfn(ZERO_PAGE(rmap_item->address)),
1559
rmap_item, mm, err);
1560
} else {
1561
/*
1562
* If the vma is out of date, we do not need to
1563
* continue.
1564
*/
1565
err = 0;
1566
}
1567
mmap_read_unlock(mm);
1568
}
1569
1570
return err;
1571
}
1572
1573
/*
1574
* try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1575
* but no new kernel page is allocated: kpage must already be a ksm page.
1576
*
1577
* This function returns 0 if the pages were merged, -EFAULT otherwise.
1578
*/
1579
static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1580
struct page *page, struct page *kpage)
1581
{
1582
struct mm_struct *mm = rmap_item->mm;
1583
struct vm_area_struct *vma;
1584
int err = -EFAULT;
1585
1586
mmap_read_lock(mm);
1587
vma = find_mergeable_vma(mm, rmap_item->address);
1588
if (!vma)
1589
goto out;
1590
1591
err = try_to_merge_one_page(vma, page, kpage);
1592
if (err)
1593
goto out;
1594
1595
/* Unstable nid is in union with stable anon_vma: remove first */
1596
remove_rmap_item_from_tree(rmap_item);
1597
1598
/* Must get reference to anon_vma while still holding mmap_lock */
1599
rmap_item->anon_vma = vma->anon_vma;
1600
get_anon_vma(vma->anon_vma);
1601
out:
1602
mmap_read_unlock(mm);
1603
trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1604
rmap_item, mm, err);
1605
return err;
1606
}
1607
1608
/*
1609
* try_to_merge_two_pages - take two identical pages and prepare them
1610
* to be merged into one page.
1611
*
1612
* This function returns the kpage if we successfully merged two identical
1613
* pages into one ksm page, NULL otherwise.
1614
*
1615
* Note that this function upgrades page to ksm page: if one of the pages
1616
* is already a ksm page, try_to_merge_with_ksm_page should be used.
1617
*/
1618
static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1619
struct page *page,
1620
struct ksm_rmap_item *tree_rmap_item,
1621
struct page *tree_page)
1622
{
1623
int err;
1624
1625
err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1626
if (!err) {
1627
err = try_to_merge_with_ksm_page(tree_rmap_item,
1628
tree_page, page);
1629
/*
1630
* If that fails, we have a ksm page with only one pte
1631
* pointing to it: so break it.
1632
*/
1633
if (err)
1634
break_cow(rmap_item);
1635
}
1636
return err ? NULL : page_folio(page);
1637
}
1638
1639
static __always_inline
1640
bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1641
{
1642
VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1643
/*
1644
* Check that at least one mapping still exists, otherwise
1645
* there's no much point to merge and share with this
1646
* stable_node, as the underlying tree_page of the other
1647
* sharer is going to be freed soon.
1648
*/
1649
return stable_node->rmap_hlist_len &&
1650
stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1651
}
1652
1653
static __always_inline
1654
bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1655
{
1656
return __is_page_sharing_candidate(stable_node, 0);
1657
}
1658
1659
static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1660
struct ksm_stable_node **_stable_node,
1661
struct rb_root *root,
1662
bool prune_stale_stable_nodes)
1663
{
1664
struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1665
struct hlist_node *hlist_safe;
1666
struct folio *folio, *tree_folio = NULL;
1667
int found_rmap_hlist_len;
1668
1669
if (!prune_stale_stable_nodes ||
1670
time_before(jiffies, stable_node->chain_prune_time +
1671
msecs_to_jiffies(
1672
ksm_stable_node_chains_prune_millisecs)))
1673
prune_stale_stable_nodes = false;
1674
else
1675
stable_node->chain_prune_time = jiffies;
1676
1677
hlist_for_each_entry_safe(dup, hlist_safe,
1678
&stable_node->hlist, hlist_dup) {
1679
cond_resched();
1680
/*
1681
* We must walk all stable_node_dup to prune the stale
1682
* stable nodes during lookup.
1683
*
1684
* ksm_get_folio can drop the nodes from the
1685
* stable_node->hlist if they point to freed pages
1686
* (that's why we do a _safe walk). The "dup"
1687
* stable_node parameter itself will be freed from
1688
* under us if it returns NULL.
1689
*/
1690
folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1691
if (!folio)
1692
continue;
1693
/* Pick the best candidate if possible. */
1694
if (!found || (is_page_sharing_candidate(dup) &&
1695
(!is_page_sharing_candidate(found) ||
1696
dup->rmap_hlist_len > found_rmap_hlist_len))) {
1697
if (found)
1698
folio_put(tree_folio);
1699
found = dup;
1700
found_rmap_hlist_len = found->rmap_hlist_len;
1701
tree_folio = folio;
1702
/* skip put_page for found candidate */
1703
if (!prune_stale_stable_nodes &&
1704
is_page_sharing_candidate(found))
1705
break;
1706
continue;
1707
}
1708
folio_put(folio);
1709
}
1710
1711
if (found) {
1712
if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1713
/*
1714
* If there's not just one entry it would
1715
* corrupt memory, better BUG_ON. In KSM
1716
* context with no lock held it's not even
1717
* fatal.
1718
*/
1719
BUG_ON(stable_node->hlist.first->next);
1720
1721
/*
1722
* There's just one entry and it is below the
1723
* deduplication limit so drop the chain.
1724
*/
1725
rb_replace_node(&stable_node->node, &found->node,
1726
root);
1727
free_stable_node(stable_node);
1728
ksm_stable_node_chains--;
1729
ksm_stable_node_dups--;
1730
/*
1731
* NOTE: the caller depends on the stable_node
1732
* to be equal to stable_node_dup if the chain
1733
* was collapsed.
1734
*/
1735
*_stable_node = found;
1736
/*
1737
* Just for robustness, as stable_node is
1738
* otherwise left as a stable pointer, the
1739
* compiler shall optimize it away at build
1740
* time.
1741
*/
1742
stable_node = NULL;
1743
} else if (stable_node->hlist.first != &found->hlist_dup &&
1744
__is_page_sharing_candidate(found, 1)) {
1745
/*
1746
* If the found stable_node dup can accept one
1747
* more future merge (in addition to the one
1748
* that is underway) and is not at the head of
1749
* the chain, put it there so next search will
1750
* be quicker in the !prune_stale_stable_nodes
1751
* case.
1752
*
1753
* NOTE: it would be inaccurate to use nr > 1
1754
* instead of checking the hlist.first pointer
1755
* directly, because in the
1756
* prune_stale_stable_nodes case "nr" isn't
1757
* the position of the found dup in the chain,
1758
* but the total number of dups in the chain.
1759
*/
1760
hlist_del(&found->hlist_dup);
1761
hlist_add_head(&found->hlist_dup,
1762
&stable_node->hlist);
1763
}
1764
} else {
1765
/* Its hlist must be empty if no one found. */
1766
free_stable_node_chain(stable_node, root);
1767
}
1768
1769
*_stable_node_dup = found;
1770
return tree_folio;
1771
}
1772
1773
/*
1774
* Like for ksm_get_folio, this function can free the *_stable_node and
1775
* *_stable_node_dup if the returned tree_page is NULL.
1776
*
1777
* It can also free and overwrite *_stable_node with the found
1778
* stable_node_dup if the chain is collapsed (in which case
1779
* *_stable_node will be equal to *_stable_node_dup like if the chain
1780
* never existed). It's up to the caller to verify tree_page is not
1781
* NULL before dereferencing *_stable_node or *_stable_node_dup.
1782
*
1783
* *_stable_node_dup is really a second output parameter of this
1784
* function and will be overwritten in all cases, the caller doesn't
1785
* need to initialize it.
1786
*/
1787
static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1788
struct ksm_stable_node **_stable_node,
1789
struct rb_root *root,
1790
bool prune_stale_stable_nodes)
1791
{
1792
struct ksm_stable_node *stable_node = *_stable_node;
1793
1794
if (!is_stable_node_chain(stable_node)) {
1795
*_stable_node_dup = stable_node;
1796
return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1797
}
1798
return stable_node_dup(_stable_node_dup, _stable_node, root,
1799
prune_stale_stable_nodes);
1800
}
1801
1802
static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1803
struct ksm_stable_node **s_n,
1804
struct rb_root *root)
1805
{
1806
return __stable_node_chain(s_n_d, s_n, root, true);
1807
}
1808
1809
static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1810
struct ksm_stable_node **s_n,
1811
struct rb_root *root)
1812
{
1813
return __stable_node_chain(s_n_d, s_n, root, false);
1814
}
1815
1816
/*
1817
* stable_tree_search - search for page inside the stable tree
1818
*
1819
* This function checks if there is a page inside the stable tree
1820
* with identical content to the page that we are scanning right now.
1821
*
1822
* This function returns the stable tree node of identical content if found,
1823
* -EBUSY if the stable node's page is being migrated, NULL otherwise.
1824
*/
1825
static struct folio *stable_tree_search(struct page *page)
1826
{
1827
int nid;
1828
struct rb_root *root;
1829
struct rb_node **new;
1830
struct rb_node *parent;
1831
struct ksm_stable_node *stable_node, *stable_node_dup;
1832
struct ksm_stable_node *page_node;
1833
struct folio *folio;
1834
1835
folio = page_folio(page);
1836
page_node = folio_stable_node(folio);
1837
if (page_node && page_node->head != &migrate_nodes) {
1838
/* ksm page forked */
1839
folio_get(folio);
1840
return folio;
1841
}
1842
1843
nid = get_kpfn_nid(folio_pfn(folio));
1844
root = root_stable_tree + nid;
1845
again:
1846
new = &root->rb_node;
1847
parent = NULL;
1848
1849
while (*new) {
1850
struct folio *tree_folio;
1851
int ret;
1852
1853
cond_resched();
1854
stable_node = rb_entry(*new, struct ksm_stable_node, node);
1855
tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1856
if (!tree_folio) {
1857
/*
1858
* If we walked over a stale stable_node,
1859
* ksm_get_folio() will call rb_erase() and it
1860
* may rebalance the tree from under us. So
1861
* restart the search from scratch. Returning
1862
* NULL would be safe too, but we'd generate
1863
* false negative insertions just because some
1864
* stable_node was stale.
1865
*/
1866
goto again;
1867
}
1868
1869
ret = memcmp_pages(page, &tree_folio->page);
1870
folio_put(tree_folio);
1871
1872
parent = *new;
1873
if (ret < 0)
1874
new = &parent->rb_left;
1875
else if (ret > 0)
1876
new = &parent->rb_right;
1877
else {
1878
if (page_node) {
1879
VM_BUG_ON(page_node->head != &migrate_nodes);
1880
/*
1881
* If the mapcount of our migrated KSM folio is
1882
* at most 1, we can merge it with another
1883
* KSM folio where we know that we have space
1884
* for one more mapping without exceeding the
1885
* ksm_max_page_sharing limit: see
1886
* chain_prune(). This way, we can avoid adding
1887
* this stable node to the chain.
1888
*/
1889
if (folio_mapcount(folio) > 1)
1890
goto chain_append;
1891
}
1892
1893
if (!is_page_sharing_candidate(stable_node_dup)) {
1894
/*
1895
* If the stable_node is a chain and
1896
* we got a payload match in memcmp
1897
* but we cannot merge the scanned
1898
* page in any of the existing
1899
* stable_node dups because they're
1900
* all full, we need to wait the
1901
* scanned page to find itself a match
1902
* in the unstable tree to create a
1903
* brand new KSM page to add later to
1904
* the dups of this stable_node.
1905
*/
1906
return NULL;
1907
}
1908
1909
/*
1910
* Lock and unlock the stable_node's page (which
1911
* might already have been migrated) so that page
1912
* migration is sure to notice its raised count.
1913
* It would be more elegant to return stable_node
1914
* than kpage, but that involves more changes.
1915
*/
1916
tree_folio = ksm_get_folio(stable_node_dup,
1917
KSM_GET_FOLIO_TRYLOCK);
1918
1919
if (PTR_ERR(tree_folio) == -EBUSY)
1920
return ERR_PTR(-EBUSY);
1921
1922
if (unlikely(!tree_folio))
1923
/*
1924
* The tree may have been rebalanced,
1925
* so re-evaluate parent and new.
1926
*/
1927
goto again;
1928
folio_unlock(tree_folio);
1929
1930
if (get_kpfn_nid(stable_node_dup->kpfn) !=
1931
NUMA(stable_node_dup->nid)) {
1932
folio_put(tree_folio);
1933
goto replace;
1934
}
1935
return tree_folio;
1936
}
1937
}
1938
1939
if (!page_node)
1940
return NULL;
1941
1942
list_del(&page_node->list);
1943
DO_NUMA(page_node->nid = nid);
1944
rb_link_node(&page_node->node, parent, new);
1945
rb_insert_color(&page_node->node, root);
1946
out:
1947
if (is_page_sharing_candidate(page_node)) {
1948
folio_get(folio);
1949
return folio;
1950
} else
1951
return NULL;
1952
1953
replace:
1954
/*
1955
* If stable_node was a chain and chain_prune collapsed it,
1956
* stable_node has been updated to be the new regular
1957
* stable_node. A collapse of the chain is indistinguishable
1958
* from the case there was no chain in the stable
1959
* rbtree. Otherwise stable_node is the chain and
1960
* stable_node_dup is the dup to replace.
1961
*/
1962
if (stable_node_dup == stable_node) {
1963
VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1964
VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1965
/* there is no chain */
1966
if (page_node) {
1967
VM_BUG_ON(page_node->head != &migrate_nodes);
1968
list_del(&page_node->list);
1969
DO_NUMA(page_node->nid = nid);
1970
rb_replace_node(&stable_node_dup->node,
1971
&page_node->node,
1972
root);
1973
if (is_page_sharing_candidate(page_node))
1974
folio_get(folio);
1975
else
1976
folio = NULL;
1977
} else {
1978
rb_erase(&stable_node_dup->node, root);
1979
folio = NULL;
1980
}
1981
} else {
1982
VM_BUG_ON(!is_stable_node_chain(stable_node));
1983
__stable_node_dup_del(stable_node_dup);
1984
if (page_node) {
1985
VM_BUG_ON(page_node->head != &migrate_nodes);
1986
list_del(&page_node->list);
1987
DO_NUMA(page_node->nid = nid);
1988
stable_node_chain_add_dup(page_node, stable_node);
1989
if (is_page_sharing_candidate(page_node))
1990
folio_get(folio);
1991
else
1992
folio = NULL;
1993
} else {
1994
folio = NULL;
1995
}
1996
}
1997
stable_node_dup->head = &migrate_nodes;
1998
list_add(&stable_node_dup->list, stable_node_dup->head);
1999
return folio;
2000
2001
chain_append:
2002
/*
2003
* If stable_node was a chain and chain_prune collapsed it,
2004
* stable_node has been updated to be the new regular
2005
* stable_node. A collapse of the chain is indistinguishable
2006
* from the case there was no chain in the stable
2007
* rbtree. Otherwise stable_node is the chain and
2008
* stable_node_dup is the dup to replace.
2009
*/
2010
if (stable_node_dup == stable_node) {
2011
VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2012
/* chain is missing so create it */
2013
stable_node = alloc_stable_node_chain(stable_node_dup,
2014
root);
2015
if (!stable_node)
2016
return NULL;
2017
}
2018
/*
2019
* Add this stable_node dup that was
2020
* migrated to the stable_node chain
2021
* of the current nid for this page
2022
* content.
2023
*/
2024
VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2025
VM_BUG_ON(page_node->head != &migrate_nodes);
2026
list_del(&page_node->list);
2027
DO_NUMA(page_node->nid = nid);
2028
stable_node_chain_add_dup(page_node, stable_node);
2029
goto out;
2030
}
2031
2032
/*
2033
* stable_tree_insert - insert stable tree node pointing to new ksm page
2034
* into the stable tree.
2035
*
2036
* This function returns the stable tree node just allocated on success,
2037
* NULL otherwise.
2038
*/
2039
static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2040
{
2041
int nid;
2042
unsigned long kpfn;
2043
struct rb_root *root;
2044
struct rb_node **new;
2045
struct rb_node *parent;
2046
struct ksm_stable_node *stable_node, *stable_node_dup;
2047
bool need_chain = false;
2048
2049
kpfn = folio_pfn(kfolio);
2050
nid = get_kpfn_nid(kpfn);
2051
root = root_stable_tree + nid;
2052
again:
2053
parent = NULL;
2054
new = &root->rb_node;
2055
2056
while (*new) {
2057
struct folio *tree_folio;
2058
int ret;
2059
2060
cond_resched();
2061
stable_node = rb_entry(*new, struct ksm_stable_node, node);
2062
tree_folio = chain(&stable_node_dup, &stable_node, root);
2063
if (!tree_folio) {
2064
/*
2065
* If we walked over a stale stable_node,
2066
* ksm_get_folio() will call rb_erase() and it
2067
* may rebalance the tree from under us. So
2068
* restart the search from scratch. Returning
2069
* NULL would be safe too, but we'd generate
2070
* false negative insertions just because some
2071
* stable_node was stale.
2072
*/
2073
goto again;
2074
}
2075
2076
ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2077
folio_put(tree_folio);
2078
2079
parent = *new;
2080
if (ret < 0)
2081
new = &parent->rb_left;
2082
else if (ret > 0)
2083
new = &parent->rb_right;
2084
else {
2085
need_chain = true;
2086
break;
2087
}
2088
}
2089
2090
stable_node_dup = alloc_stable_node();
2091
if (!stable_node_dup)
2092
return NULL;
2093
2094
INIT_HLIST_HEAD(&stable_node_dup->hlist);
2095
stable_node_dup->kpfn = kpfn;
2096
stable_node_dup->rmap_hlist_len = 0;
2097
DO_NUMA(stable_node_dup->nid = nid);
2098
if (!need_chain) {
2099
rb_link_node(&stable_node_dup->node, parent, new);
2100
rb_insert_color(&stable_node_dup->node, root);
2101
} else {
2102
if (!is_stable_node_chain(stable_node)) {
2103
struct ksm_stable_node *orig = stable_node;
2104
/* chain is missing so create it */
2105
stable_node = alloc_stable_node_chain(orig, root);
2106
if (!stable_node) {
2107
free_stable_node(stable_node_dup);
2108
return NULL;
2109
}
2110
}
2111
stable_node_chain_add_dup(stable_node_dup, stable_node);
2112
}
2113
2114
folio_set_stable_node(kfolio, stable_node_dup);
2115
2116
return stable_node_dup;
2117
}
2118
2119
/*
2120
* unstable_tree_search_insert - search for identical page,
2121
* else insert rmap_item into the unstable tree.
2122
*
2123
* This function searches for a page in the unstable tree identical to the
2124
* page currently being scanned; and if no identical page is found in the
2125
* tree, we insert rmap_item as a new object into the unstable tree.
2126
*
2127
* This function returns pointer to rmap_item found to be identical
2128
* to the currently scanned page, NULL otherwise.
2129
*
2130
* This function does both searching and inserting, because they share
2131
* the same walking algorithm in an rbtree.
2132
*/
2133
static
2134
struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2135
struct page *page,
2136
struct page **tree_pagep)
2137
{
2138
struct rb_node **new;
2139
struct rb_root *root;
2140
struct rb_node *parent = NULL;
2141
int nid;
2142
2143
nid = get_kpfn_nid(page_to_pfn(page));
2144
root = root_unstable_tree + nid;
2145
new = &root->rb_node;
2146
2147
while (*new) {
2148
struct ksm_rmap_item *tree_rmap_item;
2149
struct page *tree_page;
2150
int ret;
2151
2152
cond_resched();
2153
tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2154
tree_page = get_mergeable_page(tree_rmap_item);
2155
if (!tree_page)
2156
return NULL;
2157
2158
/*
2159
* Don't substitute a ksm page for a forked page.
2160
*/
2161
if (page == tree_page) {
2162
put_page(tree_page);
2163
return NULL;
2164
}
2165
2166
ret = memcmp_pages(page, tree_page);
2167
2168
parent = *new;
2169
if (ret < 0) {
2170
put_page(tree_page);
2171
new = &parent->rb_left;
2172
} else if (ret > 0) {
2173
put_page(tree_page);
2174
new = &parent->rb_right;
2175
} else if (!ksm_merge_across_nodes &&
2176
page_to_nid(tree_page) != nid) {
2177
/*
2178
* If tree_page has been migrated to another NUMA node,
2179
* it will be flushed out and put in the right unstable
2180
* tree next time: only merge with it when across_nodes.
2181
*/
2182
put_page(tree_page);
2183
return NULL;
2184
} else {
2185
*tree_pagep = tree_page;
2186
return tree_rmap_item;
2187
}
2188
}
2189
2190
rmap_item->address |= UNSTABLE_FLAG;
2191
rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2192
DO_NUMA(rmap_item->nid = nid);
2193
rb_link_node(&rmap_item->node, parent, new);
2194
rb_insert_color(&rmap_item->node, root);
2195
2196
ksm_pages_unshared++;
2197
return NULL;
2198
}
2199
2200
/*
2201
* stable_tree_append - add another rmap_item to the linked list of
2202
* rmap_items hanging off a given node of the stable tree, all sharing
2203
* the same ksm page.
2204
*/
2205
static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2206
struct ksm_stable_node *stable_node,
2207
bool max_page_sharing_bypass)
2208
{
2209
/*
2210
* rmap won't find this mapping if we don't insert the
2211
* rmap_item in the right stable_node
2212
* duplicate. page_migration could break later if rmap breaks,
2213
* so we can as well crash here. We really need to check for
2214
* rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2215
* for other negative values as an underflow if detected here
2216
* for the first time (and not when decreasing rmap_hlist_len)
2217
* would be sign of memory corruption in the stable_node.
2218
*/
2219
BUG_ON(stable_node->rmap_hlist_len < 0);
2220
2221
stable_node->rmap_hlist_len++;
2222
if (!max_page_sharing_bypass)
2223
/* possibly non fatal but unexpected overflow, only warn */
2224
WARN_ON_ONCE(stable_node->rmap_hlist_len >
2225
ksm_max_page_sharing);
2226
2227
rmap_item->head = stable_node;
2228
rmap_item->address |= STABLE_FLAG;
2229
hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2230
2231
if (rmap_item->hlist.next)
2232
ksm_pages_sharing++;
2233
else
2234
ksm_pages_shared++;
2235
2236
rmap_item->mm->ksm_merging_pages++;
2237
}
2238
2239
/*
2240
* cmp_and_merge_page - first see if page can be merged into the stable tree;
2241
* if not, compare checksum to previous and if it's the same, see if page can
2242
* be inserted into the unstable tree, or merged with a page already there and
2243
* both transferred to the stable tree.
2244
*
2245
* @page: the page that we are searching identical page to.
2246
* @rmap_item: the reverse mapping into the virtual address of this page
2247
*/
2248
static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2249
{
2250
struct folio *folio = page_folio(page);
2251
struct ksm_rmap_item *tree_rmap_item;
2252
struct page *tree_page = NULL;
2253
struct ksm_stable_node *stable_node;
2254
struct folio *kfolio;
2255
unsigned int checksum;
2256
int err;
2257
bool max_page_sharing_bypass = false;
2258
2259
stable_node = folio_stable_node(folio);
2260
if (stable_node) {
2261
if (stable_node->head != &migrate_nodes &&
2262
get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2263
NUMA(stable_node->nid)) {
2264
stable_node_dup_del(stable_node);
2265
stable_node->head = &migrate_nodes;
2266
list_add(&stable_node->list, stable_node->head);
2267
}
2268
if (stable_node->head != &migrate_nodes &&
2269
rmap_item->head == stable_node)
2270
return;
2271
/*
2272
* If it's a KSM fork, allow it to go over the sharing limit
2273
* without warnings.
2274
*/
2275
if (!is_page_sharing_candidate(stable_node))
2276
max_page_sharing_bypass = true;
2277
} else {
2278
remove_rmap_item_from_tree(rmap_item);
2279
2280
/*
2281
* If the hash value of the page has changed from the last time
2282
* we calculated it, this page is changing frequently: therefore we
2283
* don't want to insert it in the unstable tree, and we don't want
2284
* to waste our time searching for something identical to it there.
2285
*/
2286
checksum = calc_checksum(page);
2287
if (rmap_item->oldchecksum != checksum) {
2288
rmap_item->oldchecksum = checksum;
2289
return;
2290
}
2291
2292
if (!try_to_merge_with_zero_page(rmap_item, page))
2293
return;
2294
}
2295
2296
/* Start by searching for the folio in the stable tree */
2297
kfolio = stable_tree_search(page);
2298
if (kfolio == folio && rmap_item->head == stable_node) {
2299
folio_put(kfolio);
2300
return;
2301
}
2302
2303
remove_rmap_item_from_tree(rmap_item);
2304
2305
if (kfolio) {
2306
if (kfolio == ERR_PTR(-EBUSY))
2307
return;
2308
2309
err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2310
if (!err) {
2311
/*
2312
* The page was successfully merged:
2313
* add its rmap_item to the stable tree.
2314
*/
2315
folio_lock(kfolio);
2316
stable_tree_append(rmap_item, folio_stable_node(kfolio),
2317
max_page_sharing_bypass);
2318
folio_unlock(kfolio);
2319
}
2320
folio_put(kfolio);
2321
return;
2322
}
2323
2324
tree_rmap_item =
2325
unstable_tree_search_insert(rmap_item, page, &tree_page);
2326
if (tree_rmap_item) {
2327
bool split;
2328
2329
kfolio = try_to_merge_two_pages(rmap_item, page,
2330
tree_rmap_item, tree_page);
2331
/*
2332
* If both pages we tried to merge belong to the same compound
2333
* page, then we actually ended up increasing the reference
2334
* count of the same compound page twice, and split_huge_page
2335
* failed.
2336
* Here we set a flag if that happened, and we use it later to
2337
* try split_huge_page again. Since we call put_page right
2338
* afterwards, the reference count will be correct and
2339
* split_huge_page should succeed.
2340
*/
2341
split = PageTransCompound(page)
2342
&& compound_head(page) == compound_head(tree_page);
2343
put_page(tree_page);
2344
if (kfolio) {
2345
/*
2346
* The pages were successfully merged: insert new
2347
* node in the stable tree and add both rmap_items.
2348
*/
2349
folio_lock(kfolio);
2350
stable_node = stable_tree_insert(kfolio);
2351
if (stable_node) {
2352
stable_tree_append(tree_rmap_item, stable_node,
2353
false);
2354
stable_tree_append(rmap_item, stable_node,
2355
false);
2356
}
2357
folio_unlock(kfolio);
2358
2359
/*
2360
* If we fail to insert the page into the stable tree,
2361
* we will have 2 virtual addresses that are pointing
2362
* to a ksm page left outside the stable tree,
2363
* in which case we need to break_cow on both.
2364
*/
2365
if (!stable_node) {
2366
break_cow(tree_rmap_item);
2367
break_cow(rmap_item);
2368
}
2369
} else if (split) {
2370
/*
2371
* We are here if we tried to merge two pages and
2372
* failed because they both belonged to the same
2373
* compound page. We will split the page now, but no
2374
* merging will take place.
2375
* We do not want to add the cost of a full lock; if
2376
* the page is locked, it is better to skip it and
2377
* perhaps try again later.
2378
*/
2379
if (!folio_trylock(folio))
2380
return;
2381
split_huge_page(page);
2382
folio = page_folio(page);
2383
folio_unlock(folio);
2384
}
2385
}
2386
}
2387
2388
static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2389
struct ksm_rmap_item **rmap_list,
2390
unsigned long addr)
2391
{
2392
struct ksm_rmap_item *rmap_item;
2393
2394
while (*rmap_list) {
2395
rmap_item = *rmap_list;
2396
if ((rmap_item->address & PAGE_MASK) == addr)
2397
return rmap_item;
2398
if (rmap_item->address > addr)
2399
break;
2400
*rmap_list = rmap_item->rmap_list;
2401
remove_rmap_item_from_tree(rmap_item);
2402
free_rmap_item(rmap_item);
2403
}
2404
2405
rmap_item = alloc_rmap_item();
2406
if (rmap_item) {
2407
/* It has already been zeroed */
2408
rmap_item->mm = mm_slot->slot.mm;
2409
rmap_item->mm->ksm_rmap_items++;
2410
rmap_item->address = addr;
2411
rmap_item->rmap_list = *rmap_list;
2412
*rmap_list = rmap_item;
2413
}
2414
return rmap_item;
2415
}
2416
2417
/*
2418
* Calculate skip age for the ksm page age. The age determines how often
2419
* de-duplicating has already been tried unsuccessfully. If the age is
2420
* smaller, the scanning of this page is skipped for less scans.
2421
*
2422
* @age: rmap_item age of page
2423
*/
2424
static unsigned int skip_age(rmap_age_t age)
2425
{
2426
if (age <= 3)
2427
return 1;
2428
if (age <= 5)
2429
return 2;
2430
if (age <= 8)
2431
return 4;
2432
2433
return 8;
2434
}
2435
2436
/*
2437
* Determines if a page should be skipped for the current scan.
2438
*
2439
* @folio: folio containing the page to check
2440
* @rmap_item: associated rmap_item of page
2441
*/
2442
static bool should_skip_rmap_item(struct folio *folio,
2443
struct ksm_rmap_item *rmap_item)
2444
{
2445
rmap_age_t age;
2446
2447
if (!ksm_smart_scan)
2448
return false;
2449
2450
/*
2451
* Never skip pages that are already KSM; pages cmp_and_merge_page()
2452
* will essentially ignore them, but we still have to process them
2453
* properly.
2454
*/
2455
if (folio_test_ksm(folio))
2456
return false;
2457
2458
age = rmap_item->age;
2459
if (age != U8_MAX)
2460
rmap_item->age++;
2461
2462
/*
2463
* Smaller ages are not skipped, they need to get a chance to go
2464
* through the different phases of the KSM merging.
2465
*/
2466
if (age < 3)
2467
return false;
2468
2469
/*
2470
* Are we still allowed to skip? If not, then don't skip it
2471
* and determine how much more often we are allowed to skip next.
2472
*/
2473
if (!rmap_item->remaining_skips) {
2474
rmap_item->remaining_skips = skip_age(age);
2475
return false;
2476
}
2477
2478
/* Skip this page */
2479
ksm_pages_skipped++;
2480
rmap_item->remaining_skips--;
2481
remove_rmap_item_from_tree(rmap_item);
2482
return true;
2483
}
2484
2485
struct ksm_next_page_arg {
2486
struct folio *folio;
2487
struct page *page;
2488
unsigned long addr;
2489
};
2490
2491
static int ksm_next_page_pmd_entry(pmd_t *pmdp, unsigned long addr, unsigned long end,
2492
struct mm_walk *walk)
2493
{
2494
struct ksm_next_page_arg *private = walk->private;
2495
struct vm_area_struct *vma = walk->vma;
2496
pte_t *start_ptep = NULL, *ptep, pte;
2497
struct mm_struct *mm = walk->mm;
2498
struct folio *folio;
2499
struct page *page;
2500
spinlock_t *ptl;
2501
pmd_t pmd;
2502
2503
if (ksm_test_exit(mm))
2504
return 0;
2505
2506
cond_resched();
2507
2508
pmd = pmdp_get_lockless(pmdp);
2509
if (!pmd_present(pmd))
2510
return 0;
2511
2512
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && pmd_leaf(pmd)) {
2513
ptl = pmd_lock(mm, pmdp);
2514
pmd = pmdp_get(pmdp);
2515
2516
if (!pmd_present(pmd)) {
2517
goto not_found_unlock;
2518
} else if (pmd_leaf(pmd)) {
2519
page = vm_normal_page_pmd(vma, addr, pmd);
2520
if (!page)
2521
goto not_found_unlock;
2522
folio = page_folio(page);
2523
2524
if (folio_is_zone_device(folio) || !folio_test_anon(folio))
2525
goto not_found_unlock;
2526
2527
page += ((addr & (PMD_SIZE - 1)) >> PAGE_SHIFT);
2528
goto found_unlock;
2529
}
2530
spin_unlock(ptl);
2531
}
2532
2533
start_ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2534
if (!start_ptep)
2535
return 0;
2536
2537
for (ptep = start_ptep; addr < end; ptep++, addr += PAGE_SIZE) {
2538
pte = ptep_get(ptep);
2539
2540
if (!pte_present(pte))
2541
continue;
2542
2543
page = vm_normal_page(vma, addr, pte);
2544
if (!page)
2545
continue;
2546
folio = page_folio(page);
2547
2548
if (folio_is_zone_device(folio) || !folio_test_anon(folio))
2549
continue;
2550
goto found_unlock;
2551
}
2552
2553
not_found_unlock:
2554
spin_unlock(ptl);
2555
if (start_ptep)
2556
pte_unmap(start_ptep);
2557
return 0;
2558
found_unlock:
2559
folio_get(folio);
2560
spin_unlock(ptl);
2561
if (start_ptep)
2562
pte_unmap(start_ptep);
2563
private->page = page;
2564
private->folio = folio;
2565
private->addr = addr;
2566
return 1;
2567
}
2568
2569
static struct mm_walk_ops ksm_next_page_ops = {
2570
.pmd_entry = ksm_next_page_pmd_entry,
2571
.walk_lock = PGWALK_RDLOCK,
2572
};
2573
2574
static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2575
{
2576
struct mm_struct *mm;
2577
struct ksm_mm_slot *mm_slot;
2578
struct mm_slot *slot;
2579
struct vm_area_struct *vma;
2580
struct ksm_rmap_item *rmap_item;
2581
struct vma_iterator vmi;
2582
int nid;
2583
2584
if (list_empty(&ksm_mm_head.slot.mm_node))
2585
return NULL;
2586
2587
mm_slot = ksm_scan.mm_slot;
2588
if (mm_slot == &ksm_mm_head) {
2589
advisor_start_scan();
2590
trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2591
2592
/*
2593
* A number of pages can hang around indefinitely in per-cpu
2594
* LRU cache, raised page count preventing write_protect_page
2595
* from merging them. Though it doesn't really matter much,
2596
* it is puzzling to see some stuck in pages_volatile until
2597
* other activity jostles them out, and they also prevented
2598
* LTP's KSM test from succeeding deterministically; so drain
2599
* them here (here rather than on entry to ksm_do_scan(),
2600
* so we don't IPI too often when pages_to_scan is set low).
2601
*/
2602
lru_add_drain_all();
2603
2604
/*
2605
* Whereas stale stable_nodes on the stable_tree itself
2606
* get pruned in the regular course of stable_tree_search(),
2607
* those moved out to the migrate_nodes list can accumulate:
2608
* so prune them once before each full scan.
2609
*/
2610
if (!ksm_merge_across_nodes) {
2611
struct ksm_stable_node *stable_node, *next;
2612
struct folio *folio;
2613
2614
list_for_each_entry_safe(stable_node, next,
2615
&migrate_nodes, list) {
2616
folio = ksm_get_folio(stable_node,
2617
KSM_GET_FOLIO_NOLOCK);
2618
if (folio)
2619
folio_put(folio);
2620
cond_resched();
2621
}
2622
}
2623
2624
for (nid = 0; nid < ksm_nr_node_ids; nid++)
2625
root_unstable_tree[nid] = RB_ROOT;
2626
2627
spin_lock(&ksm_mmlist_lock);
2628
slot = list_entry(mm_slot->slot.mm_node.next,
2629
struct mm_slot, mm_node);
2630
mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2631
ksm_scan.mm_slot = mm_slot;
2632
spin_unlock(&ksm_mmlist_lock);
2633
/*
2634
* Although we tested list_empty() above, a racing __ksm_exit
2635
* of the last mm on the list may have removed it since then.
2636
*/
2637
if (mm_slot == &ksm_mm_head)
2638
return NULL;
2639
next_mm:
2640
ksm_scan.address = 0;
2641
ksm_scan.rmap_list = &mm_slot->rmap_list;
2642
}
2643
2644
slot = &mm_slot->slot;
2645
mm = slot->mm;
2646
vma_iter_init(&vmi, mm, ksm_scan.address);
2647
2648
mmap_read_lock(mm);
2649
if (ksm_test_exit(mm))
2650
goto no_vmas;
2651
2652
for_each_vma(vmi, vma) {
2653
if (!(vma->vm_flags & VM_MERGEABLE))
2654
continue;
2655
if (ksm_scan.address < vma->vm_start)
2656
ksm_scan.address = vma->vm_start;
2657
if (!vma->anon_vma)
2658
ksm_scan.address = vma->vm_end;
2659
2660
while (ksm_scan.address < vma->vm_end) {
2661
struct ksm_next_page_arg ksm_next_page_arg;
2662
struct page *tmp_page = NULL;
2663
struct folio *folio;
2664
2665
if (ksm_test_exit(mm))
2666
break;
2667
2668
int found;
2669
2670
found = walk_page_range_vma(vma, ksm_scan.address,
2671
vma->vm_end,
2672
&ksm_next_page_ops,
2673
&ksm_next_page_arg);
2674
2675
if (found > 0) {
2676
folio = ksm_next_page_arg.folio;
2677
tmp_page = ksm_next_page_arg.page;
2678
ksm_scan.address = ksm_next_page_arg.addr;
2679
} else {
2680
VM_WARN_ON_ONCE(found < 0);
2681
ksm_scan.address = vma->vm_end - PAGE_SIZE;
2682
}
2683
2684
if (tmp_page) {
2685
flush_anon_page(vma, tmp_page, ksm_scan.address);
2686
flush_dcache_page(tmp_page);
2687
rmap_item = get_next_rmap_item(mm_slot,
2688
ksm_scan.rmap_list, ksm_scan.address);
2689
if (rmap_item) {
2690
ksm_scan.rmap_list =
2691
&rmap_item->rmap_list;
2692
2693
if (should_skip_rmap_item(folio, rmap_item)) {
2694
folio_put(folio);
2695
goto next_page;
2696
}
2697
2698
ksm_scan.address += PAGE_SIZE;
2699
*page = tmp_page;
2700
} else {
2701
folio_put(folio);
2702
}
2703
mmap_read_unlock(mm);
2704
return rmap_item;
2705
}
2706
next_page:
2707
ksm_scan.address += PAGE_SIZE;
2708
cond_resched();
2709
}
2710
}
2711
2712
if (ksm_test_exit(mm)) {
2713
no_vmas:
2714
ksm_scan.address = 0;
2715
ksm_scan.rmap_list = &mm_slot->rmap_list;
2716
}
2717
/*
2718
* Nuke all the rmap_items that are above this current rmap:
2719
* because there were no VM_MERGEABLE vmas with such addresses.
2720
*/
2721
remove_trailing_rmap_items(ksm_scan.rmap_list);
2722
2723
spin_lock(&ksm_mmlist_lock);
2724
slot = list_entry(mm_slot->slot.mm_node.next,
2725
struct mm_slot, mm_node);
2726
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2727
if (ksm_scan.address == 0) {
2728
/*
2729
* We've completed a full scan of all vmas, holding mmap_lock
2730
* throughout, and found no VM_MERGEABLE: so do the same as
2731
* __ksm_exit does to remove this mm from all our lists now.
2732
* This applies either when cleaning up after __ksm_exit
2733
* (but beware: we can reach here even before __ksm_exit),
2734
* or when all VM_MERGEABLE areas have been unmapped (and
2735
* mmap_lock then protects against race with MADV_MERGEABLE).
2736
*/
2737
hash_del(&mm_slot->slot.hash);
2738
list_del(&mm_slot->slot.mm_node);
2739
spin_unlock(&ksm_mmlist_lock);
2740
2741
mm_slot_free(mm_slot_cache, mm_slot);
2742
/*
2743
* Only clear MMF_VM_MERGEABLE. We must not clear
2744
* MMF_VM_MERGE_ANY, because for those MMF_VM_MERGE_ANY process,
2745
* perhaps their mm_struct has just been added to ksm_mm_slot
2746
* list, and its process has not yet officially started running
2747
* or has not yet performed mmap/brk to allocate anonymous VMAS.
2748
*/
2749
mm_flags_clear(MMF_VM_MERGEABLE, mm);
2750
mmap_read_unlock(mm);
2751
mmdrop(mm);
2752
} else {
2753
mmap_read_unlock(mm);
2754
/*
2755
* mmap_read_unlock(mm) first because after
2756
* spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2757
* already have been freed under us by __ksm_exit()
2758
* because the "mm_slot" is still hashed and
2759
* ksm_scan.mm_slot doesn't point to it anymore.
2760
*/
2761
spin_unlock(&ksm_mmlist_lock);
2762
}
2763
2764
/* Repeat until we've completed scanning the whole list */
2765
mm_slot = ksm_scan.mm_slot;
2766
if (mm_slot != &ksm_mm_head)
2767
goto next_mm;
2768
2769
advisor_stop_scan();
2770
2771
trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2772
ksm_scan.seqnr++;
2773
return NULL;
2774
}
2775
2776
/**
2777
* ksm_do_scan - the ksm scanner main worker function.
2778
* @scan_npages: number of pages we want to scan before we return.
2779
*/
2780
static void ksm_do_scan(unsigned int scan_npages)
2781
{
2782
struct ksm_rmap_item *rmap_item;
2783
struct page *page;
2784
2785
while (scan_npages-- && likely(!freezing(current))) {
2786
cond_resched();
2787
rmap_item = scan_get_next_rmap_item(&page);
2788
if (!rmap_item)
2789
return;
2790
cmp_and_merge_page(page, rmap_item);
2791
put_page(page);
2792
ksm_pages_scanned++;
2793
}
2794
}
2795
2796
static int ksmd_should_run(void)
2797
{
2798
return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2799
}
2800
2801
static int ksm_scan_thread(void *nothing)
2802
{
2803
unsigned int sleep_ms;
2804
2805
set_freezable();
2806
set_user_nice(current, 5);
2807
2808
while (!kthread_should_stop()) {
2809
mutex_lock(&ksm_thread_mutex);
2810
wait_while_offlining();
2811
if (ksmd_should_run())
2812
ksm_do_scan(ksm_thread_pages_to_scan);
2813
mutex_unlock(&ksm_thread_mutex);
2814
2815
if (ksmd_should_run()) {
2816
sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2817
wait_event_freezable_timeout(ksm_iter_wait,
2818
sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2819
msecs_to_jiffies(sleep_ms));
2820
} else {
2821
wait_event_freezable(ksm_thread_wait,
2822
ksmd_should_run() || kthread_should_stop());
2823
}
2824
}
2825
return 0;
2826
}
2827
2828
static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2829
{
2830
if (vm_flags & VM_MERGEABLE)
2831
return false;
2832
2833
return ksm_compatible(file, vm_flags);
2834
}
2835
2836
static void __ksm_add_vma(struct vm_area_struct *vma)
2837
{
2838
if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2839
vm_flags_set(vma, VM_MERGEABLE);
2840
}
2841
2842
static int __ksm_del_vma(struct vm_area_struct *vma)
2843
{
2844
int err;
2845
2846
if (!(vma->vm_flags & VM_MERGEABLE))
2847
return 0;
2848
2849
if (vma->anon_vma) {
2850
err = break_ksm(vma, vma->vm_start, vma->vm_end, true);
2851
if (err)
2852
return err;
2853
}
2854
2855
vm_flags_clear(vma, VM_MERGEABLE);
2856
return 0;
2857
}
2858
/**
2859
* ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2860
*
2861
* @mm: Proposed VMA's mm_struct
2862
* @file: Proposed VMA's file-backed mapping, if any.
2863
* @vm_flags: Proposed VMA"s flags.
2864
*
2865
* Returns: @vm_flags possibly updated to mark mergeable.
2866
*/
2867
vm_flags_t ksm_vma_flags(struct mm_struct *mm, const struct file *file,
2868
vm_flags_t vm_flags)
2869
{
2870
if (mm_flags_test(MMF_VM_MERGE_ANY, mm) &&
2871
__ksm_should_add_vma(file, vm_flags)) {
2872
vm_flags |= VM_MERGEABLE;
2873
/*
2874
* Generally, the flags here always include MMF_VM_MERGEABLE.
2875
* However, in rare cases, this flag may be cleared by ksmd who
2876
* scans a cycle without finding any mergeable vma.
2877
*/
2878
if (unlikely(!mm_flags_test(MMF_VM_MERGEABLE, mm)))
2879
__ksm_enter(mm);
2880
}
2881
2882
return vm_flags;
2883
}
2884
2885
static void ksm_add_vmas(struct mm_struct *mm)
2886
{
2887
struct vm_area_struct *vma;
2888
2889
VMA_ITERATOR(vmi, mm, 0);
2890
for_each_vma(vmi, vma)
2891
__ksm_add_vma(vma);
2892
}
2893
2894
static int ksm_del_vmas(struct mm_struct *mm)
2895
{
2896
struct vm_area_struct *vma;
2897
int err;
2898
2899
VMA_ITERATOR(vmi, mm, 0);
2900
for_each_vma(vmi, vma) {
2901
err = __ksm_del_vma(vma);
2902
if (err)
2903
return err;
2904
}
2905
return 0;
2906
}
2907
2908
/**
2909
* ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2910
* compatible VMA's
2911
*
2912
* @mm: Pointer to mm
2913
*
2914
* Returns 0 on success, otherwise error code
2915
*/
2916
int ksm_enable_merge_any(struct mm_struct *mm)
2917
{
2918
int err;
2919
2920
if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2921
return 0;
2922
2923
if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2924
err = __ksm_enter(mm);
2925
if (err)
2926
return err;
2927
}
2928
2929
mm_flags_set(MMF_VM_MERGE_ANY, mm);
2930
ksm_add_vmas(mm);
2931
2932
return 0;
2933
}
2934
2935
/**
2936
* ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2937
* previously enabled via ksm_enable_merge_any().
2938
*
2939
* Disabling merging implies unmerging any merged pages, like setting
2940
* MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2941
* merging on all compatible VMA's remains enabled.
2942
*
2943
* @mm: Pointer to mm
2944
*
2945
* Returns 0 on success, otherwise error code
2946
*/
2947
int ksm_disable_merge_any(struct mm_struct *mm)
2948
{
2949
int err;
2950
2951
if (!mm_flags_test(MMF_VM_MERGE_ANY, mm))
2952
return 0;
2953
2954
err = ksm_del_vmas(mm);
2955
if (err) {
2956
ksm_add_vmas(mm);
2957
return err;
2958
}
2959
2960
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2961
return 0;
2962
}
2963
2964
int ksm_disable(struct mm_struct *mm)
2965
{
2966
mmap_assert_write_locked(mm);
2967
2968
if (!mm_flags_test(MMF_VM_MERGEABLE, mm))
2969
return 0;
2970
if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2971
return ksm_disable_merge_any(mm);
2972
return ksm_del_vmas(mm);
2973
}
2974
2975
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2976
unsigned long end, int advice, vm_flags_t *vm_flags)
2977
{
2978
struct mm_struct *mm = vma->vm_mm;
2979
int err;
2980
2981
switch (advice) {
2982
case MADV_MERGEABLE:
2983
if (vma->vm_flags & VM_MERGEABLE)
2984
return 0;
2985
if (!vma_ksm_compatible(vma))
2986
return 0;
2987
2988
if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2989
err = __ksm_enter(mm);
2990
if (err)
2991
return err;
2992
}
2993
2994
*vm_flags |= VM_MERGEABLE;
2995
break;
2996
2997
case MADV_UNMERGEABLE:
2998
if (!(*vm_flags & VM_MERGEABLE))
2999
return 0; /* just ignore the advice */
3000
3001
if (vma->anon_vma) {
3002
err = break_ksm(vma, start, end, true);
3003
if (err)
3004
return err;
3005
}
3006
3007
*vm_flags &= ~VM_MERGEABLE;
3008
break;
3009
}
3010
3011
return 0;
3012
}
3013
EXPORT_SYMBOL_GPL(ksm_madvise);
3014
3015
int __ksm_enter(struct mm_struct *mm)
3016
{
3017
struct ksm_mm_slot *mm_slot;
3018
struct mm_slot *slot;
3019
int needs_wakeup;
3020
3021
mm_slot = mm_slot_alloc(mm_slot_cache);
3022
if (!mm_slot)
3023
return -ENOMEM;
3024
3025
slot = &mm_slot->slot;
3026
3027
/* Check ksm_run too? Would need tighter locking */
3028
needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
3029
3030
spin_lock(&ksm_mmlist_lock);
3031
mm_slot_insert(mm_slots_hash, mm, slot);
3032
/*
3033
* When KSM_RUN_MERGE (or KSM_RUN_STOP),
3034
* insert just behind the scanning cursor, to let the area settle
3035
* down a little; when fork is followed by immediate exec, we don't
3036
* want ksmd to waste time setting up and tearing down an rmap_list.
3037
*
3038
* But when KSM_RUN_UNMERGE, it's important to insert ahead of its
3039
* scanning cursor, otherwise KSM pages in newly forked mms will be
3040
* missed: then we might as well insert at the end of the list.
3041
*/
3042
if (ksm_run & KSM_RUN_UNMERGE)
3043
list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
3044
else
3045
list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
3046
spin_unlock(&ksm_mmlist_lock);
3047
3048
mm_flags_set(MMF_VM_MERGEABLE, mm);
3049
mmgrab(mm);
3050
3051
if (needs_wakeup)
3052
wake_up_interruptible(&ksm_thread_wait);
3053
3054
trace_ksm_enter(mm);
3055
return 0;
3056
}
3057
3058
void __ksm_exit(struct mm_struct *mm)
3059
{
3060
struct ksm_mm_slot *mm_slot = NULL;
3061
struct mm_slot *slot;
3062
int easy_to_free = 0;
3063
3064
/*
3065
* This process is exiting: if it's straightforward (as is the
3066
* case when ksmd was never running), free mm_slot immediately.
3067
* But if it's at the cursor or has rmap_items linked to it, use
3068
* mmap_lock to synchronize with any break_cows before pagetables
3069
* are freed, and leave the mm_slot on the list for ksmd to free.
3070
* Beware: ksm may already have noticed it exiting and freed the slot.
3071
*/
3072
3073
spin_lock(&ksm_mmlist_lock);
3074
slot = mm_slot_lookup(mm_slots_hash, mm);
3075
if (!slot)
3076
goto unlock;
3077
mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3078
if (ksm_scan.mm_slot == mm_slot)
3079
goto unlock;
3080
if (!mm_slot->rmap_list) {
3081
hash_del(&slot->hash);
3082
list_del(&slot->mm_node);
3083
easy_to_free = 1;
3084
} else {
3085
list_move(&slot->mm_node,
3086
&ksm_scan.mm_slot->slot.mm_node);
3087
}
3088
unlock:
3089
spin_unlock(&ksm_mmlist_lock);
3090
3091
if (easy_to_free) {
3092
mm_slot_free(mm_slot_cache, mm_slot);
3093
mm_flags_clear(MMF_VM_MERGE_ANY, mm);
3094
mm_flags_clear(MMF_VM_MERGEABLE, mm);
3095
mmdrop(mm);
3096
} else if (mm_slot) {
3097
mmap_write_lock(mm);
3098
mmap_write_unlock(mm);
3099
}
3100
3101
trace_ksm_exit(mm);
3102
}
3103
3104
struct folio *ksm_might_need_to_copy(struct folio *folio,
3105
struct vm_area_struct *vma, unsigned long addr)
3106
{
3107
struct page *page = folio_page(folio, 0);
3108
struct anon_vma *anon_vma = folio_anon_vma(folio);
3109
struct folio *new_folio;
3110
3111
if (folio_test_large(folio))
3112
return folio;
3113
3114
if (folio_test_ksm(folio)) {
3115
if (folio_stable_node(folio) &&
3116
!(ksm_run & KSM_RUN_UNMERGE))
3117
return folio; /* no need to copy it */
3118
} else if (!anon_vma) {
3119
return folio; /* no need to copy it */
3120
} else if (folio->index == linear_page_index(vma, addr) &&
3121
anon_vma->root == vma->anon_vma->root) {
3122
return folio; /* still no need to copy it */
3123
}
3124
if (PageHWPoison(page))
3125
return ERR_PTR(-EHWPOISON);
3126
if (!folio_test_uptodate(folio))
3127
return folio; /* let do_swap_page report the error */
3128
3129
new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
3130
if (new_folio &&
3131
mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3132
folio_put(new_folio);
3133
new_folio = NULL;
3134
}
3135
if (new_folio) {
3136
if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3137
addr, vma)) {
3138
folio_put(new_folio);
3139
return ERR_PTR(-EHWPOISON);
3140
}
3141
folio_set_dirty(new_folio);
3142
__folio_mark_uptodate(new_folio);
3143
__folio_set_locked(new_folio);
3144
#ifdef CONFIG_SWAP
3145
count_vm_event(KSM_SWPIN_COPY);
3146
#endif
3147
}
3148
3149
return new_folio;
3150
}
3151
3152
void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3153
{
3154
struct ksm_stable_node *stable_node;
3155
struct ksm_rmap_item *rmap_item;
3156
int search_new_forks = 0;
3157
3158
VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3159
3160
/*
3161
* Rely on the page lock to protect against concurrent modifications
3162
* to that page's node of the stable tree.
3163
*/
3164
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3165
3166
stable_node = folio_stable_node(folio);
3167
if (!stable_node)
3168
return;
3169
again:
3170
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3171
struct anon_vma *anon_vma = rmap_item->anon_vma;
3172
struct anon_vma_chain *vmac;
3173
struct vm_area_struct *vma;
3174
3175
cond_resched();
3176
if (!anon_vma_trylock_read(anon_vma)) {
3177
if (rwc->try_lock) {
3178
rwc->contended = true;
3179
return;
3180
}
3181
anon_vma_lock_read(anon_vma);
3182
}
3183
anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3184
0, ULONG_MAX) {
3185
unsigned long addr;
3186
3187
cond_resched();
3188
vma = vmac->vma;
3189
3190
/* Ignore the stable/unstable/sqnr flags */
3191
addr = rmap_item->address & PAGE_MASK;
3192
3193
if (addr < vma->vm_start || addr >= vma->vm_end)
3194
continue;
3195
/*
3196
* Initially we examine only the vma which covers this
3197
* rmap_item; but later, if there is still work to do,
3198
* we examine covering vmas in other mms: in case they
3199
* were forked from the original since ksmd passed.
3200
*/
3201
if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3202
continue;
3203
3204
if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3205
continue;
3206
3207
if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3208
anon_vma_unlock_read(anon_vma);
3209
return;
3210
}
3211
if (rwc->done && rwc->done(folio)) {
3212
anon_vma_unlock_read(anon_vma);
3213
return;
3214
}
3215
}
3216
anon_vma_unlock_read(anon_vma);
3217
}
3218
if (!search_new_forks++)
3219
goto again;
3220
}
3221
3222
#ifdef CONFIG_MEMORY_FAILURE
3223
/*
3224
* Collect processes when the error hit an ksm page.
3225
*/
3226
void collect_procs_ksm(const struct folio *folio, const struct page *page,
3227
struct list_head *to_kill, int force_early)
3228
{
3229
struct ksm_stable_node *stable_node;
3230
struct ksm_rmap_item *rmap_item;
3231
struct vm_area_struct *vma;
3232
struct task_struct *tsk;
3233
3234
stable_node = folio_stable_node(folio);
3235
if (!stable_node)
3236
return;
3237
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3238
struct anon_vma *av = rmap_item->anon_vma;
3239
3240
anon_vma_lock_read(av);
3241
rcu_read_lock();
3242
for_each_process(tsk) {
3243
struct anon_vma_chain *vmac;
3244
unsigned long addr;
3245
struct task_struct *t =
3246
task_early_kill(tsk, force_early);
3247
if (!t)
3248
continue;
3249
anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3250
ULONG_MAX)
3251
{
3252
vma = vmac->vma;
3253
if (vma->vm_mm == t->mm) {
3254
addr = rmap_item->address & PAGE_MASK;
3255
add_to_kill_ksm(t, page, vma, to_kill,
3256
addr);
3257
}
3258
}
3259
}
3260
rcu_read_unlock();
3261
anon_vma_unlock_read(av);
3262
}
3263
}
3264
#endif
3265
3266
#ifdef CONFIG_MIGRATION
3267
void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3268
{
3269
struct ksm_stable_node *stable_node;
3270
3271
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3272
VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3273
VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3274
3275
stable_node = folio_stable_node(folio);
3276
if (stable_node) {
3277
VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3278
stable_node->kpfn = folio_pfn(newfolio);
3279
/*
3280
* newfolio->mapping was set in advance; now we need smp_wmb()
3281
* to make sure that the new stable_node->kpfn is visible
3282
* to ksm_get_folio() before it can see that folio->mapping
3283
* has gone stale (or that the swapcache flag has been cleared).
3284
*/
3285
smp_wmb();
3286
folio_set_stable_node(folio, NULL);
3287
}
3288
}
3289
#endif /* CONFIG_MIGRATION */
3290
3291
#ifdef CONFIG_MEMORY_HOTREMOVE
3292
static void wait_while_offlining(void)
3293
{
3294
while (ksm_run & KSM_RUN_OFFLINE) {
3295
mutex_unlock(&ksm_thread_mutex);
3296
wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3297
TASK_UNINTERRUPTIBLE);
3298
mutex_lock(&ksm_thread_mutex);
3299
}
3300
}
3301
3302
static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3303
unsigned long start_pfn,
3304
unsigned long end_pfn)
3305
{
3306
if (stable_node->kpfn >= start_pfn &&
3307
stable_node->kpfn < end_pfn) {
3308
/*
3309
* Don't ksm_get_folio, page has already gone:
3310
* which is why we keep kpfn instead of page*
3311
*/
3312
remove_node_from_stable_tree(stable_node);
3313
return true;
3314
}
3315
return false;
3316
}
3317
3318
static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3319
unsigned long start_pfn,
3320
unsigned long end_pfn,
3321
struct rb_root *root)
3322
{
3323
struct ksm_stable_node *dup;
3324
struct hlist_node *hlist_safe;
3325
3326
if (!is_stable_node_chain(stable_node)) {
3327
VM_BUG_ON(is_stable_node_dup(stable_node));
3328
return stable_node_dup_remove_range(stable_node, start_pfn,
3329
end_pfn);
3330
}
3331
3332
hlist_for_each_entry_safe(dup, hlist_safe,
3333
&stable_node->hlist, hlist_dup) {
3334
VM_BUG_ON(!is_stable_node_dup(dup));
3335
stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3336
}
3337
if (hlist_empty(&stable_node->hlist)) {
3338
free_stable_node_chain(stable_node, root);
3339
return true; /* notify caller that tree was rebalanced */
3340
} else
3341
return false;
3342
}
3343
3344
static void ksm_check_stable_tree(unsigned long start_pfn,
3345
unsigned long end_pfn)
3346
{
3347
struct ksm_stable_node *stable_node, *next;
3348
struct rb_node *node;
3349
int nid;
3350
3351
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3352
node = rb_first(root_stable_tree + nid);
3353
while (node) {
3354
stable_node = rb_entry(node, struct ksm_stable_node, node);
3355
if (stable_node_chain_remove_range(stable_node,
3356
start_pfn, end_pfn,
3357
root_stable_tree +
3358
nid))
3359
node = rb_first(root_stable_tree + nid);
3360
else
3361
node = rb_next(node);
3362
cond_resched();
3363
}
3364
}
3365
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3366
if (stable_node->kpfn >= start_pfn &&
3367
stable_node->kpfn < end_pfn)
3368
remove_node_from_stable_tree(stable_node);
3369
cond_resched();
3370
}
3371
}
3372
3373
static int ksm_memory_callback(struct notifier_block *self,
3374
unsigned long action, void *arg)
3375
{
3376
struct memory_notify *mn = arg;
3377
3378
switch (action) {
3379
case MEM_GOING_OFFLINE:
3380
/*
3381
* Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3382
* and remove_all_stable_nodes() while memory is going offline:
3383
* it is unsafe for them to touch the stable tree at this time.
3384
* But break_ksm(), rmap lookups and other entry points
3385
* which do not need the ksm_thread_mutex are all safe.
3386
*/
3387
mutex_lock(&ksm_thread_mutex);
3388
ksm_run |= KSM_RUN_OFFLINE;
3389
mutex_unlock(&ksm_thread_mutex);
3390
break;
3391
3392
case MEM_OFFLINE:
3393
/*
3394
* Most of the work is done by page migration; but there might
3395
* be a few stable_nodes left over, still pointing to struct
3396
* pages which have been offlined: prune those from the tree,
3397
* otherwise ksm_get_folio() might later try to access a
3398
* non-existent struct page.
3399
*/
3400
ksm_check_stable_tree(mn->start_pfn,
3401
mn->start_pfn + mn->nr_pages);
3402
fallthrough;
3403
case MEM_CANCEL_OFFLINE:
3404
mutex_lock(&ksm_thread_mutex);
3405
ksm_run &= ~KSM_RUN_OFFLINE;
3406
mutex_unlock(&ksm_thread_mutex);
3407
3408
smp_mb(); /* wake_up_bit advises this */
3409
wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3410
break;
3411
}
3412
return NOTIFY_OK;
3413
}
3414
#else
3415
static void wait_while_offlining(void)
3416
{
3417
}
3418
#endif /* CONFIG_MEMORY_HOTREMOVE */
3419
3420
#ifdef CONFIG_PROC_FS
3421
/*
3422
* The process is mergeable only if any VMA is currently
3423
* applicable to KSM.
3424
*
3425
* The mmap lock must be held in read mode.
3426
*/
3427
bool ksm_process_mergeable(struct mm_struct *mm)
3428
{
3429
struct vm_area_struct *vma;
3430
3431
mmap_assert_locked(mm);
3432
VMA_ITERATOR(vmi, mm, 0);
3433
for_each_vma(vmi, vma)
3434
if (vma->vm_flags & VM_MERGEABLE)
3435
return true;
3436
3437
return false;
3438
}
3439
3440
long ksm_process_profit(struct mm_struct *mm)
3441
{
3442
return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3443
mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3444
}
3445
#endif /* CONFIG_PROC_FS */
3446
3447
#ifdef CONFIG_SYSFS
3448
/*
3449
* This all compiles without CONFIG_SYSFS, but is a waste of space.
3450
*/
3451
3452
#define KSM_ATTR_RO(_name) \
3453
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3454
#define KSM_ATTR(_name) \
3455
static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3456
3457
static ssize_t sleep_millisecs_show(struct kobject *kobj,
3458
struct kobj_attribute *attr, char *buf)
3459
{
3460
return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3461
}
3462
3463
static ssize_t sleep_millisecs_store(struct kobject *kobj,
3464
struct kobj_attribute *attr,
3465
const char *buf, size_t count)
3466
{
3467
unsigned int msecs;
3468
int err;
3469
3470
err = kstrtouint(buf, 10, &msecs);
3471
if (err)
3472
return -EINVAL;
3473
3474
ksm_thread_sleep_millisecs = msecs;
3475
wake_up_interruptible(&ksm_iter_wait);
3476
3477
return count;
3478
}
3479
KSM_ATTR(sleep_millisecs);
3480
3481
static ssize_t pages_to_scan_show(struct kobject *kobj,
3482
struct kobj_attribute *attr, char *buf)
3483
{
3484
return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3485
}
3486
3487
static ssize_t pages_to_scan_store(struct kobject *kobj,
3488
struct kobj_attribute *attr,
3489
const char *buf, size_t count)
3490
{
3491
unsigned int nr_pages;
3492
int err;
3493
3494
if (ksm_advisor != KSM_ADVISOR_NONE)
3495
return -EINVAL;
3496
3497
err = kstrtouint(buf, 10, &nr_pages);
3498
if (err)
3499
return -EINVAL;
3500
3501
ksm_thread_pages_to_scan = nr_pages;
3502
3503
return count;
3504
}
3505
KSM_ATTR(pages_to_scan);
3506
3507
static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3508
char *buf)
3509
{
3510
return sysfs_emit(buf, "%lu\n", ksm_run);
3511
}
3512
3513
static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3514
const char *buf, size_t count)
3515
{
3516
unsigned int flags;
3517
int err;
3518
3519
err = kstrtouint(buf, 10, &flags);
3520
if (err)
3521
return -EINVAL;
3522
if (flags > KSM_RUN_UNMERGE)
3523
return -EINVAL;
3524
3525
/*
3526
* KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3527
* KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3528
* breaking COW to free the pages_shared (but leaves mm_slots
3529
* on the list for when ksmd may be set running again).
3530
*/
3531
3532
mutex_lock(&ksm_thread_mutex);
3533
wait_while_offlining();
3534
if (ksm_run != flags) {
3535
ksm_run = flags;
3536
if (flags & KSM_RUN_UNMERGE) {
3537
set_current_oom_origin();
3538
err = unmerge_and_remove_all_rmap_items();
3539
clear_current_oom_origin();
3540
if (err) {
3541
ksm_run = KSM_RUN_STOP;
3542
count = err;
3543
}
3544
}
3545
}
3546
mutex_unlock(&ksm_thread_mutex);
3547
3548
if (flags & KSM_RUN_MERGE)
3549
wake_up_interruptible(&ksm_thread_wait);
3550
3551
return count;
3552
}
3553
KSM_ATTR(run);
3554
3555
#ifdef CONFIG_NUMA
3556
static ssize_t merge_across_nodes_show(struct kobject *kobj,
3557
struct kobj_attribute *attr, char *buf)
3558
{
3559
return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3560
}
3561
3562
static ssize_t merge_across_nodes_store(struct kobject *kobj,
3563
struct kobj_attribute *attr,
3564
const char *buf, size_t count)
3565
{
3566
int err;
3567
unsigned long knob;
3568
3569
err = kstrtoul(buf, 10, &knob);
3570
if (err)
3571
return err;
3572
if (knob > 1)
3573
return -EINVAL;
3574
3575
mutex_lock(&ksm_thread_mutex);
3576
wait_while_offlining();
3577
if (ksm_merge_across_nodes != knob) {
3578
if (ksm_pages_shared || remove_all_stable_nodes())
3579
err = -EBUSY;
3580
else if (root_stable_tree == one_stable_tree) {
3581
struct rb_root *buf;
3582
/*
3583
* This is the first time that we switch away from the
3584
* default of merging across nodes: must now allocate
3585
* a buffer to hold as many roots as may be needed.
3586
* Allocate stable and unstable together:
3587
* MAXSMP NODES_SHIFT 10 will use 16kB.
3588
*/
3589
buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3590
GFP_KERNEL);
3591
/* Let us assume that RB_ROOT is NULL is zero */
3592
if (!buf)
3593
err = -ENOMEM;
3594
else {
3595
root_stable_tree = buf;
3596
root_unstable_tree = buf + nr_node_ids;
3597
/* Stable tree is empty but not the unstable */
3598
root_unstable_tree[0] = one_unstable_tree[0];
3599
}
3600
}
3601
if (!err) {
3602
ksm_merge_across_nodes = knob;
3603
ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3604
}
3605
}
3606
mutex_unlock(&ksm_thread_mutex);
3607
3608
return err ? err : count;
3609
}
3610
KSM_ATTR(merge_across_nodes);
3611
#endif
3612
3613
static ssize_t use_zero_pages_show(struct kobject *kobj,
3614
struct kobj_attribute *attr, char *buf)
3615
{
3616
return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3617
}
3618
static ssize_t use_zero_pages_store(struct kobject *kobj,
3619
struct kobj_attribute *attr,
3620
const char *buf, size_t count)
3621
{
3622
int err;
3623
bool value;
3624
3625
err = kstrtobool(buf, &value);
3626
if (err)
3627
return -EINVAL;
3628
3629
ksm_use_zero_pages = value;
3630
3631
return count;
3632
}
3633
KSM_ATTR(use_zero_pages);
3634
3635
static ssize_t max_page_sharing_show(struct kobject *kobj,
3636
struct kobj_attribute *attr, char *buf)
3637
{
3638
return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3639
}
3640
3641
static ssize_t max_page_sharing_store(struct kobject *kobj,
3642
struct kobj_attribute *attr,
3643
const char *buf, size_t count)
3644
{
3645
int err;
3646
int knob;
3647
3648
err = kstrtoint(buf, 10, &knob);
3649
if (err)
3650
return err;
3651
/*
3652
* When a KSM page is created it is shared by 2 mappings. This
3653
* being a signed comparison, it implicitly verifies it's not
3654
* negative.
3655
*/
3656
if (knob < 2)
3657
return -EINVAL;
3658
3659
if (READ_ONCE(ksm_max_page_sharing) == knob)
3660
return count;
3661
3662
mutex_lock(&ksm_thread_mutex);
3663
wait_while_offlining();
3664
if (ksm_max_page_sharing != knob) {
3665
if (ksm_pages_shared || remove_all_stable_nodes())
3666
err = -EBUSY;
3667
else
3668
ksm_max_page_sharing = knob;
3669
}
3670
mutex_unlock(&ksm_thread_mutex);
3671
3672
return err ? err : count;
3673
}
3674
KSM_ATTR(max_page_sharing);
3675
3676
static ssize_t pages_scanned_show(struct kobject *kobj,
3677
struct kobj_attribute *attr, char *buf)
3678
{
3679
return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3680
}
3681
KSM_ATTR_RO(pages_scanned);
3682
3683
static ssize_t pages_shared_show(struct kobject *kobj,
3684
struct kobj_attribute *attr, char *buf)
3685
{
3686
return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3687
}
3688
KSM_ATTR_RO(pages_shared);
3689
3690
static ssize_t pages_sharing_show(struct kobject *kobj,
3691
struct kobj_attribute *attr, char *buf)
3692
{
3693
return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3694
}
3695
KSM_ATTR_RO(pages_sharing);
3696
3697
static ssize_t pages_unshared_show(struct kobject *kobj,
3698
struct kobj_attribute *attr, char *buf)
3699
{
3700
return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3701
}
3702
KSM_ATTR_RO(pages_unshared);
3703
3704
static ssize_t pages_volatile_show(struct kobject *kobj,
3705
struct kobj_attribute *attr, char *buf)
3706
{
3707
long ksm_pages_volatile;
3708
3709
ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3710
- ksm_pages_sharing - ksm_pages_unshared;
3711
/*
3712
* It was not worth any locking to calculate that statistic,
3713
* but it might therefore sometimes be negative: conceal that.
3714
*/
3715
if (ksm_pages_volatile < 0)
3716
ksm_pages_volatile = 0;
3717
return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3718
}
3719
KSM_ATTR_RO(pages_volatile);
3720
3721
static ssize_t pages_skipped_show(struct kobject *kobj,
3722
struct kobj_attribute *attr, char *buf)
3723
{
3724
return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3725
}
3726
KSM_ATTR_RO(pages_skipped);
3727
3728
static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3729
struct kobj_attribute *attr, char *buf)
3730
{
3731
return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3732
}
3733
KSM_ATTR_RO(ksm_zero_pages);
3734
3735
static ssize_t general_profit_show(struct kobject *kobj,
3736
struct kobj_attribute *attr, char *buf)
3737
{
3738
long general_profit;
3739
3740
general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3741
ksm_rmap_items * sizeof(struct ksm_rmap_item);
3742
3743
return sysfs_emit(buf, "%ld\n", general_profit);
3744
}
3745
KSM_ATTR_RO(general_profit);
3746
3747
static ssize_t stable_node_dups_show(struct kobject *kobj,
3748
struct kobj_attribute *attr, char *buf)
3749
{
3750
return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3751
}
3752
KSM_ATTR_RO(stable_node_dups);
3753
3754
static ssize_t stable_node_chains_show(struct kobject *kobj,
3755
struct kobj_attribute *attr, char *buf)
3756
{
3757
return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3758
}
3759
KSM_ATTR_RO(stable_node_chains);
3760
3761
static ssize_t
3762
stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3763
struct kobj_attribute *attr,
3764
char *buf)
3765
{
3766
return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3767
}
3768
3769
static ssize_t
3770
stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3771
struct kobj_attribute *attr,
3772
const char *buf, size_t count)
3773
{
3774
unsigned int msecs;
3775
int err;
3776
3777
err = kstrtouint(buf, 10, &msecs);
3778
if (err)
3779
return -EINVAL;
3780
3781
ksm_stable_node_chains_prune_millisecs = msecs;
3782
3783
return count;
3784
}
3785
KSM_ATTR(stable_node_chains_prune_millisecs);
3786
3787
static ssize_t full_scans_show(struct kobject *kobj,
3788
struct kobj_attribute *attr, char *buf)
3789
{
3790
return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3791
}
3792
KSM_ATTR_RO(full_scans);
3793
3794
static ssize_t smart_scan_show(struct kobject *kobj,
3795
struct kobj_attribute *attr, char *buf)
3796
{
3797
return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3798
}
3799
3800
static ssize_t smart_scan_store(struct kobject *kobj,
3801
struct kobj_attribute *attr,
3802
const char *buf, size_t count)
3803
{
3804
int err;
3805
bool value;
3806
3807
err = kstrtobool(buf, &value);
3808
if (err)
3809
return -EINVAL;
3810
3811
ksm_smart_scan = value;
3812
return count;
3813
}
3814
KSM_ATTR(smart_scan);
3815
3816
static ssize_t advisor_mode_show(struct kobject *kobj,
3817
struct kobj_attribute *attr, char *buf)
3818
{
3819
const char *output;
3820
3821
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3822
output = "none [scan-time]";
3823
else
3824
output = "[none] scan-time";
3825
3826
return sysfs_emit(buf, "%s\n", output);
3827
}
3828
3829
static ssize_t advisor_mode_store(struct kobject *kobj,
3830
struct kobj_attribute *attr, const char *buf,
3831
size_t count)
3832
{
3833
enum ksm_advisor_type curr_advisor = ksm_advisor;
3834
3835
if (sysfs_streq("scan-time", buf))
3836
ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3837
else if (sysfs_streq("none", buf))
3838
ksm_advisor = KSM_ADVISOR_NONE;
3839
else
3840
return -EINVAL;
3841
3842
/* Set advisor default values */
3843
if (curr_advisor != ksm_advisor)
3844
set_advisor_defaults();
3845
3846
return count;
3847
}
3848
KSM_ATTR(advisor_mode);
3849
3850
static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3851
struct kobj_attribute *attr, char *buf)
3852
{
3853
return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3854
}
3855
3856
static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3857
struct kobj_attribute *attr,
3858
const char *buf, size_t count)
3859
{
3860
int err;
3861
unsigned long value;
3862
3863
err = kstrtoul(buf, 10, &value);
3864
if (err)
3865
return -EINVAL;
3866
3867
ksm_advisor_max_cpu = value;
3868
return count;
3869
}
3870
KSM_ATTR(advisor_max_cpu);
3871
3872
static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3873
struct kobj_attribute *attr, char *buf)
3874
{
3875
return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3876
}
3877
3878
static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3879
struct kobj_attribute *attr,
3880
const char *buf, size_t count)
3881
{
3882
int err;
3883
unsigned long value;
3884
3885
err = kstrtoul(buf, 10, &value);
3886
if (err)
3887
return -EINVAL;
3888
3889
ksm_advisor_min_pages_to_scan = value;
3890
return count;
3891
}
3892
KSM_ATTR(advisor_min_pages_to_scan);
3893
3894
static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3895
struct kobj_attribute *attr, char *buf)
3896
{
3897
return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3898
}
3899
3900
static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3901
struct kobj_attribute *attr,
3902
const char *buf, size_t count)
3903
{
3904
int err;
3905
unsigned long value;
3906
3907
err = kstrtoul(buf, 10, &value);
3908
if (err)
3909
return -EINVAL;
3910
3911
ksm_advisor_max_pages_to_scan = value;
3912
return count;
3913
}
3914
KSM_ATTR(advisor_max_pages_to_scan);
3915
3916
static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3917
struct kobj_attribute *attr, char *buf)
3918
{
3919
return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3920
}
3921
3922
static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3923
struct kobj_attribute *attr,
3924
const char *buf, size_t count)
3925
{
3926
int err;
3927
unsigned long value;
3928
3929
err = kstrtoul(buf, 10, &value);
3930
if (err)
3931
return -EINVAL;
3932
if (value < 1)
3933
return -EINVAL;
3934
3935
ksm_advisor_target_scan_time = value;
3936
return count;
3937
}
3938
KSM_ATTR(advisor_target_scan_time);
3939
3940
static struct attribute *ksm_attrs[] = {
3941
&sleep_millisecs_attr.attr,
3942
&pages_to_scan_attr.attr,
3943
&run_attr.attr,
3944
&pages_scanned_attr.attr,
3945
&pages_shared_attr.attr,
3946
&pages_sharing_attr.attr,
3947
&pages_unshared_attr.attr,
3948
&pages_volatile_attr.attr,
3949
&pages_skipped_attr.attr,
3950
&ksm_zero_pages_attr.attr,
3951
&full_scans_attr.attr,
3952
#ifdef CONFIG_NUMA
3953
&merge_across_nodes_attr.attr,
3954
#endif
3955
&max_page_sharing_attr.attr,
3956
&stable_node_chains_attr.attr,
3957
&stable_node_dups_attr.attr,
3958
&stable_node_chains_prune_millisecs_attr.attr,
3959
&use_zero_pages_attr.attr,
3960
&general_profit_attr.attr,
3961
&smart_scan_attr.attr,
3962
&advisor_mode_attr.attr,
3963
&advisor_max_cpu_attr.attr,
3964
&advisor_min_pages_to_scan_attr.attr,
3965
&advisor_max_pages_to_scan_attr.attr,
3966
&advisor_target_scan_time_attr.attr,
3967
NULL,
3968
};
3969
3970
static const struct attribute_group ksm_attr_group = {
3971
.attrs = ksm_attrs,
3972
.name = "ksm",
3973
};
3974
#endif /* CONFIG_SYSFS */
3975
3976
static int __init ksm_init(void)
3977
{
3978
struct task_struct *ksm_thread;
3979
int err;
3980
3981
/* The correct value depends on page size and endianness */
3982
zero_checksum = calc_checksum(ZERO_PAGE(0));
3983
/* Default to false for backwards compatibility */
3984
ksm_use_zero_pages = false;
3985
3986
err = ksm_slab_init();
3987
if (err)
3988
goto out;
3989
3990
ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3991
if (IS_ERR(ksm_thread)) {
3992
pr_err("ksm: creating kthread failed\n");
3993
err = PTR_ERR(ksm_thread);
3994
goto out_free;
3995
}
3996
3997
#ifdef CONFIG_SYSFS
3998
err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3999
if (err) {
4000
pr_err("ksm: register sysfs failed\n");
4001
kthread_stop(ksm_thread);
4002
goto out_free;
4003
}
4004
#else
4005
ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
4006
4007
#endif /* CONFIG_SYSFS */
4008
4009
#ifdef CONFIG_MEMORY_HOTREMOVE
4010
/* There is no significance to this priority 100 */
4011
hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
4012
#endif
4013
return 0;
4014
4015
out_free:
4016
ksm_slab_free();
4017
out:
4018
return err;
4019
}
4020
subsys_initcall(ksm_init);
4021
4022