Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/ksm.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Memory merging support.
4
*
5
* This code enables dynamic sharing of identical pages found in different
6
* memory areas, even if they are not shared by fork()
7
*
8
* Copyright (C) 2008-2009 Red Hat, Inc.
9
* Authors:
10
* Izik Eidus
11
* Andrea Arcangeli
12
* Chris Wright
13
* Hugh Dickins
14
*/
15
16
#include <linux/errno.h>
17
#include <linux/mm.h>
18
#include <linux/mm_inline.h>
19
#include <linux/fs.h>
20
#include <linux/mman.h>
21
#include <linux/sched.h>
22
#include <linux/sched/mm.h>
23
#include <linux/sched/cputime.h>
24
#include <linux/rwsem.h>
25
#include <linux/pagemap.h>
26
#include <linux/rmap.h>
27
#include <linux/spinlock.h>
28
#include <linux/xxhash.h>
29
#include <linux/delay.h>
30
#include <linux/kthread.h>
31
#include <linux/wait.h>
32
#include <linux/slab.h>
33
#include <linux/rbtree.h>
34
#include <linux/memory.h>
35
#include <linux/mmu_notifier.h>
36
#include <linux/swap.h>
37
#include <linux/ksm.h>
38
#include <linux/hashtable.h>
39
#include <linux/freezer.h>
40
#include <linux/oom.h>
41
#include <linux/numa.h>
42
#include <linux/pagewalk.h>
43
44
#include <asm/tlbflush.h>
45
#include "internal.h"
46
#include "mm_slot.h"
47
48
#define CREATE_TRACE_POINTS
49
#include <trace/events/ksm.h>
50
51
#ifdef CONFIG_NUMA
52
#define NUMA(x) (x)
53
#define DO_NUMA(x) do { (x); } while (0)
54
#else
55
#define NUMA(x) (0)
56
#define DO_NUMA(x) do { } while (0)
57
#endif
58
59
typedef u8 rmap_age_t;
60
61
/**
62
* DOC: Overview
63
*
64
* A few notes about the KSM scanning process,
65
* to make it easier to understand the data structures below:
66
*
67
* In order to reduce excessive scanning, KSM sorts the memory pages by their
68
* contents into a data structure that holds pointers to the pages' locations.
69
*
70
* Since the contents of the pages may change at any moment, KSM cannot just
71
* insert the pages into a normal sorted tree and expect it to find anything.
72
* Therefore KSM uses two data structures - the stable and the unstable tree.
73
*
74
* The stable tree holds pointers to all the merged pages (ksm pages), sorted
75
* by their contents. Because each such page is write-protected, searching on
76
* this tree is fully assured to be working (except when pages are unmapped),
77
* and therefore this tree is called the stable tree.
78
*
79
* The stable tree node includes information required for reverse
80
* mapping from a KSM page to virtual addresses that map this page.
81
*
82
* In order to avoid large latencies of the rmap walks on KSM pages,
83
* KSM maintains two types of nodes in the stable tree:
84
*
85
* * the regular nodes that keep the reverse mapping structures in a
86
* linked list
87
* * the "chains" that link nodes ("dups") that represent the same
88
* write protected memory content, but each "dup" corresponds to a
89
* different KSM page copy of that content
90
*
91
* Internally, the regular nodes, "dups" and "chains" are represented
92
* using the same struct ksm_stable_node structure.
93
*
94
* In addition to the stable tree, KSM uses a second data structure called the
95
* unstable tree: this tree holds pointers to pages which have been found to
96
* be "unchanged for a period of time". The unstable tree sorts these pages
97
* by their contents, but since they are not write-protected, KSM cannot rely
98
* upon the unstable tree to work correctly - the unstable tree is liable to
99
* be corrupted as its contents are modified, and so it is called unstable.
100
*
101
* KSM solves this problem by several techniques:
102
*
103
* 1) The unstable tree is flushed every time KSM completes scanning all
104
* memory areas, and then the tree is rebuilt again from the beginning.
105
* 2) KSM will only insert into the unstable tree, pages whose hash value
106
* has not changed since the previous scan of all memory areas.
107
* 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108
* colors of the nodes and not on their contents, assuring that even when
109
* the tree gets "corrupted" it won't get out of balance, so scanning time
110
* remains the same (also, searching and inserting nodes in an rbtree uses
111
* the same algorithm, so we have no overhead when we flush and rebuild).
112
* 4) KSM never flushes the stable tree, which means that even if it were to
113
* take 10 attempts to find a page in the unstable tree, once it is found,
114
* it is secured in the stable tree. (When we scan a new page, we first
115
* compare it against the stable tree, and then against the unstable tree.)
116
*
117
* If the merge_across_nodes tunable is unset, then KSM maintains multiple
118
* stable trees and multiple unstable trees: one of each for each NUMA node.
119
*/
120
121
/**
122
* struct ksm_mm_slot - ksm information per mm that is being scanned
123
* @slot: hash lookup from mm to mm_slot
124
* @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125
*/
126
struct ksm_mm_slot {
127
struct mm_slot slot;
128
struct ksm_rmap_item *rmap_list;
129
};
130
131
/**
132
* struct ksm_scan - cursor for scanning
133
* @mm_slot: the current mm_slot we are scanning
134
* @address: the next address inside that to be scanned
135
* @rmap_list: link to the next rmap to be scanned in the rmap_list
136
* @seqnr: count of completed full scans (needed when removing unstable node)
137
*
138
* There is only the one ksm_scan instance of this cursor structure.
139
*/
140
struct ksm_scan {
141
struct ksm_mm_slot *mm_slot;
142
unsigned long address;
143
struct ksm_rmap_item **rmap_list;
144
unsigned long seqnr;
145
};
146
147
/**
148
* struct ksm_stable_node - node of the stable rbtree
149
* @node: rb node of this ksm page in the stable tree
150
* @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151
* @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152
* @list: linked into migrate_nodes, pending placement in the proper node tree
153
* @hlist: hlist head of rmap_items using this ksm page
154
* @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155
* @chain_prune_time: time of the last full garbage collection
156
* @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157
* @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158
*/
159
struct ksm_stable_node {
160
union {
161
struct rb_node node; /* when node of stable tree */
162
struct { /* when listed for migration */
163
struct list_head *head;
164
struct {
165
struct hlist_node hlist_dup;
166
struct list_head list;
167
};
168
};
169
};
170
struct hlist_head hlist;
171
union {
172
unsigned long kpfn;
173
unsigned long chain_prune_time;
174
};
175
/*
176
* STABLE_NODE_CHAIN can be any negative number in
177
* rmap_hlist_len negative range, but better not -1 to be able
178
* to reliably detect underflows.
179
*/
180
#define STABLE_NODE_CHAIN -1024
181
int rmap_hlist_len;
182
#ifdef CONFIG_NUMA
183
int nid;
184
#endif
185
};
186
187
/**
188
* struct ksm_rmap_item - reverse mapping item for virtual addresses
189
* @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190
* @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191
* @nid: NUMA node id of unstable tree in which linked (may not match page)
192
* @mm: the memory structure this rmap_item is pointing into
193
* @address: the virtual address this rmap_item tracks (+ flags in low bits)
194
* @oldchecksum: previous checksum of the page at that virtual address
195
* @node: rb node of this rmap_item in the unstable tree
196
* @head: pointer to stable_node heading this list in the stable tree
197
* @hlist: link into hlist of rmap_items hanging off that stable_node
198
* @age: number of scan iterations since creation
199
* @remaining_skips: how many scans to skip
200
*/
201
struct ksm_rmap_item {
202
struct ksm_rmap_item *rmap_list;
203
union {
204
struct anon_vma *anon_vma; /* when stable */
205
#ifdef CONFIG_NUMA
206
int nid; /* when node of unstable tree */
207
#endif
208
};
209
struct mm_struct *mm;
210
unsigned long address; /* + low bits used for flags below */
211
unsigned int oldchecksum; /* when unstable */
212
rmap_age_t age;
213
rmap_age_t remaining_skips;
214
union {
215
struct rb_node node; /* when node of unstable tree */
216
struct { /* when listed from stable tree */
217
struct ksm_stable_node *head;
218
struct hlist_node hlist;
219
};
220
};
221
};
222
223
#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
224
#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
225
#define STABLE_FLAG 0x200 /* is listed from the stable tree */
226
227
/* The stable and unstable tree heads */
228
static struct rb_root one_stable_tree[1] = { RB_ROOT };
229
static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230
static struct rb_root *root_stable_tree = one_stable_tree;
231
static struct rb_root *root_unstable_tree = one_unstable_tree;
232
233
/* Recently migrated nodes of stable tree, pending proper placement */
234
static LIST_HEAD(migrate_nodes);
235
#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236
237
#define MM_SLOTS_HASH_BITS 10
238
static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239
240
static struct ksm_mm_slot ksm_mm_head = {
241
.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242
};
243
static struct ksm_scan ksm_scan = {
244
.mm_slot = &ksm_mm_head,
245
};
246
247
static struct kmem_cache *rmap_item_cache;
248
static struct kmem_cache *stable_node_cache;
249
static struct kmem_cache *mm_slot_cache;
250
251
/* Default number of pages to scan per batch */
252
#define DEFAULT_PAGES_TO_SCAN 100
253
254
/* The number of pages scanned */
255
static unsigned long ksm_pages_scanned;
256
257
/* The number of nodes in the stable tree */
258
static unsigned long ksm_pages_shared;
259
260
/* The number of page slots additionally sharing those nodes */
261
static unsigned long ksm_pages_sharing;
262
263
/* The number of nodes in the unstable tree */
264
static unsigned long ksm_pages_unshared;
265
266
/* The number of rmap_items in use: to calculate pages_volatile */
267
static unsigned long ksm_rmap_items;
268
269
/* The number of stable_node chains */
270
static unsigned long ksm_stable_node_chains;
271
272
/* The number of stable_node dups linked to the stable_node chains */
273
static unsigned long ksm_stable_node_dups;
274
275
/* Delay in pruning stale stable_node_dups in the stable_node_chains */
276
static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277
278
/* Maximum number of page slots sharing a stable node */
279
static int ksm_max_page_sharing = 256;
280
281
/* Number of pages ksmd should scan in one batch */
282
static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283
284
/* Milliseconds ksmd should sleep between batches */
285
static unsigned int ksm_thread_sleep_millisecs = 20;
286
287
/* Checksum of an empty (zeroed) page */
288
static unsigned int zero_checksum __read_mostly;
289
290
/* Whether to merge empty (zeroed) pages with actual zero pages */
291
static bool ksm_use_zero_pages __read_mostly;
292
293
/* Skip pages that couldn't be de-duplicated previously */
294
/* Default to true at least temporarily, for testing */
295
static bool ksm_smart_scan = true;
296
297
/* The number of zero pages which is placed by KSM */
298
atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299
300
/* The number of pages that have been skipped due to "smart scanning" */
301
static unsigned long ksm_pages_skipped;
302
303
/* Don't scan more than max pages per batch. */
304
static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305
306
/* Min CPU for scanning pages per scan */
307
#define KSM_ADVISOR_MIN_CPU 10
308
309
/* Max CPU for scanning pages per scan */
310
static unsigned int ksm_advisor_max_cpu = 70;
311
312
/* Target scan time in seconds to analyze all KSM candidate pages. */
313
static unsigned long ksm_advisor_target_scan_time = 200;
314
315
/* Exponentially weighted moving average. */
316
#define EWMA_WEIGHT 30
317
318
/**
319
* struct advisor_ctx - metadata for KSM advisor
320
* @start_scan: start time of the current scan
321
* @scan_time: scan time of previous scan
322
* @change: change in percent to pages_to_scan parameter
323
* @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324
*/
325
struct advisor_ctx {
326
ktime_t start_scan;
327
unsigned long scan_time;
328
unsigned long change;
329
unsigned long long cpu_time;
330
};
331
static struct advisor_ctx advisor_ctx;
332
333
/* Define different advisor's */
334
enum ksm_advisor_type {
335
KSM_ADVISOR_NONE,
336
KSM_ADVISOR_SCAN_TIME,
337
};
338
static enum ksm_advisor_type ksm_advisor;
339
340
#ifdef CONFIG_SYSFS
341
/*
342
* Only called through the sysfs control interface:
343
*/
344
345
/* At least scan this many pages per batch. */
346
static unsigned long ksm_advisor_min_pages_to_scan = 500;
347
348
static void set_advisor_defaults(void)
349
{
350
if (ksm_advisor == KSM_ADVISOR_NONE) {
351
ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352
} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353
advisor_ctx = (const struct advisor_ctx){ 0 };
354
ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355
}
356
}
357
#endif /* CONFIG_SYSFS */
358
359
static inline void advisor_start_scan(void)
360
{
361
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362
advisor_ctx.start_scan = ktime_get();
363
}
364
365
/*
366
* Use previous scan time if available, otherwise use current scan time as an
367
* approximation for the previous scan time.
368
*/
369
static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370
unsigned long scan_time)
371
{
372
return ctx->scan_time ? ctx->scan_time : scan_time;
373
}
374
375
/* Calculate exponential weighted moving average */
376
static unsigned long ewma(unsigned long prev, unsigned long curr)
377
{
378
return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379
}
380
381
/*
382
* The scan time advisor is based on the current scan rate and the target
383
* scan rate.
384
*
385
* new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386
*
387
* To avoid perturbations it calculates a change factor of previous changes.
388
* A new change factor is calculated for each iteration and it uses an
389
* exponentially weighted moving average. The new pages_to_scan value is
390
* multiplied with that change factor:
391
*
392
* new_pages_to_scan *= change facor
393
*
394
* The new_pages_to_scan value is limited by the cpu min and max values. It
395
* calculates the cpu percent for the last scan and calculates the new
396
* estimated cpu percent cost for the next scan. That value is capped by the
397
* cpu min and max setting.
398
*
399
* In addition the new pages_to_scan value is capped by the max and min
400
* limits.
401
*/
402
static void scan_time_advisor(void)
403
{
404
unsigned int cpu_percent;
405
unsigned long cpu_time;
406
unsigned long cpu_time_diff;
407
unsigned long cpu_time_diff_ms;
408
unsigned long pages;
409
unsigned long per_page_cost;
410
unsigned long factor;
411
unsigned long change;
412
unsigned long last_scan_time;
413
unsigned long scan_time;
414
415
/* Convert scan time to seconds */
416
scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417
MSEC_PER_SEC);
418
scan_time = scan_time ? scan_time : 1;
419
420
/* Calculate CPU consumption of ksmd background thread */
421
cpu_time = task_sched_runtime(current);
422
cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423
cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424
425
cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426
cpu_percent = cpu_percent ? cpu_percent : 1;
427
last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428
429
/* Calculate scan time as percentage of target scan time */
430
factor = ksm_advisor_target_scan_time * 100 / scan_time;
431
factor = factor ? factor : 1;
432
433
/*
434
* Calculate scan time as percentage of last scan time and use
435
* exponentially weighted average to smooth it
436
*/
437
change = scan_time * 100 / last_scan_time;
438
change = change ? change : 1;
439
change = ewma(advisor_ctx.change, change);
440
441
/* Calculate new scan rate based on target scan rate. */
442
pages = ksm_thread_pages_to_scan * 100 / factor;
443
/* Update pages_to_scan by weighted change percentage. */
444
pages = pages * change / 100;
445
446
/* Cap new pages_to_scan value */
447
per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448
per_page_cost = per_page_cost ? per_page_cost : 1;
449
450
pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451
pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452
pages = min(pages, ksm_advisor_max_pages_to_scan);
453
454
/* Update advisor context */
455
advisor_ctx.change = change;
456
advisor_ctx.scan_time = scan_time;
457
advisor_ctx.cpu_time = cpu_time;
458
459
ksm_thread_pages_to_scan = pages;
460
trace_ksm_advisor(scan_time, pages, cpu_percent);
461
}
462
463
static void advisor_stop_scan(void)
464
{
465
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466
scan_time_advisor();
467
}
468
469
#ifdef CONFIG_NUMA
470
/* Zeroed when merging across nodes is not allowed */
471
static unsigned int ksm_merge_across_nodes = 1;
472
static int ksm_nr_node_ids = 1;
473
#else
474
#define ksm_merge_across_nodes 1U
475
#define ksm_nr_node_ids 1
476
#endif
477
478
#define KSM_RUN_STOP 0
479
#define KSM_RUN_MERGE 1
480
#define KSM_RUN_UNMERGE 2
481
#define KSM_RUN_OFFLINE 4
482
static unsigned long ksm_run = KSM_RUN_STOP;
483
static void wait_while_offlining(void);
484
485
static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486
static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487
static DEFINE_MUTEX(ksm_thread_mutex);
488
static DEFINE_SPINLOCK(ksm_mmlist_lock);
489
490
static int __init ksm_slab_init(void)
491
{
492
rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493
if (!rmap_item_cache)
494
goto out;
495
496
stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497
if (!stable_node_cache)
498
goto out_free1;
499
500
mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501
if (!mm_slot_cache)
502
goto out_free2;
503
504
return 0;
505
506
out_free2:
507
kmem_cache_destroy(stable_node_cache);
508
out_free1:
509
kmem_cache_destroy(rmap_item_cache);
510
out:
511
return -ENOMEM;
512
}
513
514
static void __init ksm_slab_free(void)
515
{
516
kmem_cache_destroy(mm_slot_cache);
517
kmem_cache_destroy(stable_node_cache);
518
kmem_cache_destroy(rmap_item_cache);
519
mm_slot_cache = NULL;
520
}
521
522
static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523
{
524
return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525
}
526
527
static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528
{
529
return dup->head == STABLE_NODE_DUP_HEAD;
530
}
531
532
static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533
struct ksm_stable_node *chain)
534
{
535
VM_BUG_ON(is_stable_node_dup(dup));
536
dup->head = STABLE_NODE_DUP_HEAD;
537
VM_BUG_ON(!is_stable_node_chain(chain));
538
hlist_add_head(&dup->hlist_dup, &chain->hlist);
539
ksm_stable_node_dups++;
540
}
541
542
static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543
{
544
VM_BUG_ON(!is_stable_node_dup(dup));
545
hlist_del(&dup->hlist_dup);
546
ksm_stable_node_dups--;
547
}
548
549
static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550
{
551
VM_BUG_ON(is_stable_node_chain(dup));
552
if (is_stable_node_dup(dup))
553
__stable_node_dup_del(dup);
554
else
555
rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556
#ifdef CONFIG_DEBUG_VM
557
dup->head = NULL;
558
#endif
559
}
560
561
static inline struct ksm_rmap_item *alloc_rmap_item(void)
562
{
563
struct ksm_rmap_item *rmap_item;
564
565
rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566
__GFP_NORETRY | __GFP_NOWARN);
567
if (rmap_item)
568
ksm_rmap_items++;
569
return rmap_item;
570
}
571
572
static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573
{
574
ksm_rmap_items--;
575
rmap_item->mm->ksm_rmap_items--;
576
rmap_item->mm = NULL; /* debug safety */
577
kmem_cache_free(rmap_item_cache, rmap_item);
578
}
579
580
static inline struct ksm_stable_node *alloc_stable_node(void)
581
{
582
/*
583
* The allocation can take too long with GFP_KERNEL when memory is under
584
* pressure, which may lead to hung task warnings. Adding __GFP_HIGH
585
* grants access to memory reserves, helping to avoid this problem.
586
*/
587
return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588
}
589
590
static inline void free_stable_node(struct ksm_stable_node *stable_node)
591
{
592
VM_BUG_ON(stable_node->rmap_hlist_len &&
593
!is_stable_node_chain(stable_node));
594
kmem_cache_free(stable_node_cache, stable_node);
595
}
596
597
/*
598
* ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599
* page tables after it has passed through ksm_exit() - which, if necessary,
600
* takes mmap_lock briefly to serialize against them. ksm_exit() does not set
601
* a special flag: they can just back out as soon as mm_users goes to zero.
602
* ksm_test_exit() is used throughout to make this test for exit: in some
603
* places for correctness, in some places just to avoid unnecessary work.
604
*/
605
static inline bool ksm_test_exit(struct mm_struct *mm)
606
{
607
return atomic_read(&mm->mm_users) == 0;
608
}
609
610
/*
611
* We use break_ksm to break COW on a ksm page by triggering unsharing,
612
* such that the ksm page will get replaced by an exclusive anonymous page.
613
*
614
* We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
615
* in case the application has unmapped and remapped mm,addr meanwhile.
616
* Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
617
* mmap of /dev/mem, where we would not want to touch it.
618
*
619
* FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
620
* of the process that owns 'vma'. We also do not want to enforce
621
* protection keys here anyway.
622
*/
623
static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
624
{
625
vm_fault_t ret = 0;
626
627
if (lock_vma)
628
vma_start_write(vma);
629
630
do {
631
bool ksm_page = false;
632
struct folio_walk fw;
633
struct folio *folio;
634
635
cond_resched();
636
folio = folio_walk_start(&fw, vma, addr,
637
FW_MIGRATION | FW_ZEROPAGE);
638
if (folio) {
639
/* Small folio implies FW_LEVEL_PTE. */
640
if (!folio_test_large(folio) &&
641
(folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
642
ksm_page = true;
643
folio_walk_end(&fw, vma);
644
}
645
646
if (!ksm_page)
647
return 0;
648
ret = handle_mm_fault(vma, addr,
649
FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
650
NULL);
651
} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
652
/*
653
* We must loop until we no longer find a KSM page because
654
* handle_mm_fault() may back out if there's any difficulty e.g. if
655
* pte accessed bit gets updated concurrently.
656
*
657
* VM_FAULT_SIGBUS could occur if we race with truncation of the
658
* backing file, which also invalidates anonymous pages: that's
659
* okay, that truncation will have unmapped the KSM page for us.
660
*
661
* VM_FAULT_OOM: at the time of writing (late July 2009), setting
662
* aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
663
* current task has TIF_MEMDIE set, and will be OOM killed on return
664
* to user; and ksmd, having no mm, would never be chosen for that.
665
*
666
* But if the mm is in a limited mem_cgroup, then the fault may fail
667
* with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
668
* even ksmd can fail in this way - though it's usually breaking ksm
669
* just to undo a merge it made a moment before, so unlikely to oom.
670
*
671
* That's a pity: we might therefore have more kernel pages allocated
672
* than we're counting as nodes in the stable tree; but ksm_do_scan
673
* will retry to break_cow on each pass, so should recover the page
674
* in due course. The important thing is to not let VM_MERGEABLE
675
* be cleared while any such pages might remain in the area.
676
*/
677
return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
678
}
679
680
static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
681
{
682
if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL |
683
VM_HUGETLB | VM_DROPPABLE))
684
return false; /* just ignore the advice */
685
686
if (file_is_dax(file))
687
return false;
688
689
#ifdef VM_SAO
690
if (vm_flags & VM_SAO)
691
return false;
692
#endif
693
#ifdef VM_SPARC_ADI
694
if (vm_flags & VM_SPARC_ADI)
695
return false;
696
#endif
697
698
return true;
699
}
700
701
static bool vma_ksm_compatible(struct vm_area_struct *vma)
702
{
703
return ksm_compatible(vma->vm_file, vma->vm_flags);
704
}
705
706
static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
707
unsigned long addr)
708
{
709
struct vm_area_struct *vma;
710
if (ksm_test_exit(mm))
711
return NULL;
712
vma = vma_lookup(mm, addr);
713
if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
714
return NULL;
715
return vma;
716
}
717
718
static void break_cow(struct ksm_rmap_item *rmap_item)
719
{
720
struct mm_struct *mm = rmap_item->mm;
721
unsigned long addr = rmap_item->address;
722
struct vm_area_struct *vma;
723
724
/*
725
* It is not an accident that whenever we want to break COW
726
* to undo, we also need to drop a reference to the anon_vma.
727
*/
728
put_anon_vma(rmap_item->anon_vma);
729
730
mmap_read_lock(mm);
731
vma = find_mergeable_vma(mm, addr);
732
if (vma)
733
break_ksm(vma, addr, false);
734
mmap_read_unlock(mm);
735
}
736
737
static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
738
{
739
struct mm_struct *mm = rmap_item->mm;
740
unsigned long addr = rmap_item->address;
741
struct vm_area_struct *vma;
742
struct page *page = NULL;
743
struct folio_walk fw;
744
struct folio *folio;
745
746
mmap_read_lock(mm);
747
vma = find_mergeable_vma(mm, addr);
748
if (!vma)
749
goto out;
750
751
folio = folio_walk_start(&fw, vma, addr, 0);
752
if (folio) {
753
if (!folio_is_zone_device(folio) &&
754
folio_test_anon(folio)) {
755
folio_get(folio);
756
page = fw.page;
757
}
758
folio_walk_end(&fw, vma);
759
}
760
out:
761
if (page) {
762
flush_anon_page(vma, page, addr);
763
flush_dcache_page(page);
764
}
765
mmap_read_unlock(mm);
766
return page;
767
}
768
769
/*
770
* This helper is used for getting right index into array of tree roots.
771
* When merge_across_nodes knob is set to 1, there are only two rb-trees for
772
* stable and unstable pages from all nodes with roots in index 0. Otherwise,
773
* every node has its own stable and unstable tree.
774
*/
775
static inline int get_kpfn_nid(unsigned long kpfn)
776
{
777
return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
778
}
779
780
static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
781
struct rb_root *root)
782
{
783
struct ksm_stable_node *chain = alloc_stable_node();
784
VM_BUG_ON(is_stable_node_chain(dup));
785
if (likely(chain)) {
786
INIT_HLIST_HEAD(&chain->hlist);
787
chain->chain_prune_time = jiffies;
788
chain->rmap_hlist_len = STABLE_NODE_CHAIN;
789
#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
790
chain->nid = NUMA_NO_NODE; /* debug */
791
#endif
792
ksm_stable_node_chains++;
793
794
/*
795
* Put the stable node chain in the first dimension of
796
* the stable tree and at the same time remove the old
797
* stable node.
798
*/
799
rb_replace_node(&dup->node, &chain->node, root);
800
801
/*
802
* Move the old stable node to the second dimension
803
* queued in the hlist_dup. The invariant is that all
804
* dup stable_nodes in the chain->hlist point to pages
805
* that are write protected and have the exact same
806
* content.
807
*/
808
stable_node_chain_add_dup(dup, chain);
809
}
810
return chain;
811
}
812
813
static inline void free_stable_node_chain(struct ksm_stable_node *chain,
814
struct rb_root *root)
815
{
816
rb_erase(&chain->node, root);
817
free_stable_node(chain);
818
ksm_stable_node_chains--;
819
}
820
821
static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
822
{
823
struct ksm_rmap_item *rmap_item;
824
825
/* check it's not STABLE_NODE_CHAIN or negative */
826
BUG_ON(stable_node->rmap_hlist_len < 0);
827
828
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
829
if (rmap_item->hlist.next) {
830
ksm_pages_sharing--;
831
trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
832
} else {
833
ksm_pages_shared--;
834
}
835
836
rmap_item->mm->ksm_merging_pages--;
837
838
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
839
stable_node->rmap_hlist_len--;
840
put_anon_vma(rmap_item->anon_vma);
841
rmap_item->address &= PAGE_MASK;
842
cond_resched();
843
}
844
845
/*
846
* We need the second aligned pointer of the migrate_nodes
847
* list_head to stay clear from the rb_parent_color union
848
* (aligned and different than any node) and also different
849
* from &migrate_nodes. This will verify that future list.h changes
850
* don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
851
*/
852
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
853
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
854
855
trace_ksm_remove_ksm_page(stable_node->kpfn);
856
if (stable_node->head == &migrate_nodes)
857
list_del(&stable_node->list);
858
else
859
stable_node_dup_del(stable_node);
860
free_stable_node(stable_node);
861
}
862
863
enum ksm_get_folio_flags {
864
KSM_GET_FOLIO_NOLOCK,
865
KSM_GET_FOLIO_LOCK,
866
KSM_GET_FOLIO_TRYLOCK
867
};
868
869
/*
870
* ksm_get_folio: checks if the page indicated by the stable node
871
* is still its ksm page, despite having held no reference to it.
872
* In which case we can trust the content of the page, and it
873
* returns the gotten page; but if the page has now been zapped,
874
* remove the stale node from the stable tree and return NULL.
875
* But beware, the stable node's page might be being migrated.
876
*
877
* You would expect the stable_node to hold a reference to the ksm page.
878
* But if it increments the page's count, swapping out has to wait for
879
* ksmd to come around again before it can free the page, which may take
880
* seconds or even minutes: much too unresponsive. So instead we use a
881
* "keyhole reference": access to the ksm page from the stable node peeps
882
* out through its keyhole to see if that page still holds the right key,
883
* pointing back to this stable node. This relies on freeing a PageAnon
884
* page to reset its page->mapping to NULL, and relies on no other use of
885
* a page to put something that might look like our key in page->mapping.
886
* is on its way to being freed; but it is an anomaly to bear in mind.
887
*/
888
static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
889
enum ksm_get_folio_flags flags)
890
{
891
struct folio *folio;
892
void *expected_mapping;
893
unsigned long kpfn;
894
895
expected_mapping = (void *)((unsigned long)stable_node |
896
FOLIO_MAPPING_KSM);
897
again:
898
kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
899
folio = pfn_folio(kpfn);
900
if (READ_ONCE(folio->mapping) != expected_mapping)
901
goto stale;
902
903
/*
904
* We cannot do anything with the page while its refcount is 0.
905
* Usually 0 means free, or tail of a higher-order page: in which
906
* case this node is no longer referenced, and should be freed;
907
* however, it might mean that the page is under page_ref_freeze().
908
* The __remove_mapping() case is easy, again the node is now stale;
909
* the same is in reuse_ksm_page() case; but if page is swapcache
910
* in folio_migrate_mapping(), it might still be our page,
911
* in which case it's essential to keep the node.
912
*/
913
while (!folio_try_get(folio)) {
914
/*
915
* Another check for folio->mapping != expected_mapping
916
* would work here too. We have chosen to test the
917
* swapcache flag to optimize the common case, when the
918
* folio is or is about to be freed: the swapcache flag
919
* is cleared (under spin_lock_irq) in the ref_freeze
920
* section of __remove_mapping(); but anon folio->mapping
921
* is reset to NULL later, in free_pages_prepare().
922
*/
923
if (!folio_test_swapcache(folio))
924
goto stale;
925
cpu_relax();
926
}
927
928
if (READ_ONCE(folio->mapping) != expected_mapping) {
929
folio_put(folio);
930
goto stale;
931
}
932
933
if (flags == KSM_GET_FOLIO_TRYLOCK) {
934
if (!folio_trylock(folio)) {
935
folio_put(folio);
936
return ERR_PTR(-EBUSY);
937
}
938
} else if (flags == KSM_GET_FOLIO_LOCK)
939
folio_lock(folio);
940
941
if (flags != KSM_GET_FOLIO_NOLOCK) {
942
if (READ_ONCE(folio->mapping) != expected_mapping) {
943
folio_unlock(folio);
944
folio_put(folio);
945
goto stale;
946
}
947
}
948
return folio;
949
950
stale:
951
/*
952
* We come here from above when folio->mapping or the swapcache flag
953
* suggests that the node is stale; but it might be under migration.
954
* We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
955
* before checking whether node->kpfn has been changed.
956
*/
957
smp_rmb();
958
if (READ_ONCE(stable_node->kpfn) != kpfn)
959
goto again;
960
remove_node_from_stable_tree(stable_node);
961
return NULL;
962
}
963
964
/*
965
* Removing rmap_item from stable or unstable tree.
966
* This function will clean the information from the stable/unstable tree.
967
*/
968
static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
969
{
970
if (rmap_item->address & STABLE_FLAG) {
971
struct ksm_stable_node *stable_node;
972
struct folio *folio;
973
974
stable_node = rmap_item->head;
975
folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
976
if (!folio)
977
goto out;
978
979
hlist_del(&rmap_item->hlist);
980
folio_unlock(folio);
981
folio_put(folio);
982
983
if (!hlist_empty(&stable_node->hlist))
984
ksm_pages_sharing--;
985
else
986
ksm_pages_shared--;
987
988
rmap_item->mm->ksm_merging_pages--;
989
990
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
991
stable_node->rmap_hlist_len--;
992
993
put_anon_vma(rmap_item->anon_vma);
994
rmap_item->head = NULL;
995
rmap_item->address &= PAGE_MASK;
996
997
} else if (rmap_item->address & UNSTABLE_FLAG) {
998
unsigned char age;
999
/*
1000
* Usually ksmd can and must skip the rb_erase, because
1001
* root_unstable_tree was already reset to RB_ROOT.
1002
* But be careful when an mm is exiting: do the rb_erase
1003
* if this rmap_item was inserted by this scan, rather
1004
* than left over from before.
1005
*/
1006
age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1007
BUG_ON(age > 1);
1008
if (!age)
1009
rb_erase(&rmap_item->node,
1010
root_unstable_tree + NUMA(rmap_item->nid));
1011
ksm_pages_unshared--;
1012
rmap_item->address &= PAGE_MASK;
1013
}
1014
out:
1015
cond_resched(); /* we're called from many long loops */
1016
}
1017
1018
static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1019
{
1020
while (*rmap_list) {
1021
struct ksm_rmap_item *rmap_item = *rmap_list;
1022
*rmap_list = rmap_item->rmap_list;
1023
remove_rmap_item_from_tree(rmap_item);
1024
free_rmap_item(rmap_item);
1025
}
1026
}
1027
1028
/*
1029
* Though it's very tempting to unmerge rmap_items from stable tree rather
1030
* than check every pte of a given vma, the locking doesn't quite work for
1031
* that - an rmap_item is assigned to the stable tree after inserting ksm
1032
* page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
1033
* rmap_items from parent to child at fork time (so as not to waste time
1034
* if exit comes before the next scan reaches it).
1035
*
1036
* Similarly, although we'd like to remove rmap_items (so updating counts
1037
* and freeing memory) when unmerging an area, it's easier to leave that
1038
* to the next pass of ksmd - consider, for example, how ksmd might be
1039
* in cmp_and_merge_page on one of the rmap_items we would be removing.
1040
*/
1041
static int unmerge_ksm_pages(struct vm_area_struct *vma,
1042
unsigned long start, unsigned long end, bool lock_vma)
1043
{
1044
unsigned long addr;
1045
int err = 0;
1046
1047
for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1048
if (ksm_test_exit(vma->vm_mm))
1049
break;
1050
if (signal_pending(current))
1051
err = -ERESTARTSYS;
1052
else
1053
err = break_ksm(vma, addr, lock_vma);
1054
}
1055
return err;
1056
}
1057
1058
static inline
1059
struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1060
{
1061
return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1062
}
1063
1064
static inline struct ksm_stable_node *page_stable_node(struct page *page)
1065
{
1066
return folio_stable_node(page_folio(page));
1067
}
1068
1069
static inline void folio_set_stable_node(struct folio *folio,
1070
struct ksm_stable_node *stable_node)
1071
{
1072
VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1073
folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1074
}
1075
1076
#ifdef CONFIG_SYSFS
1077
/*
1078
* Only called through the sysfs control interface:
1079
*/
1080
static int remove_stable_node(struct ksm_stable_node *stable_node)
1081
{
1082
struct folio *folio;
1083
int err;
1084
1085
folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1086
if (!folio) {
1087
/*
1088
* ksm_get_folio did remove_node_from_stable_tree itself.
1089
*/
1090
return 0;
1091
}
1092
1093
/*
1094
* Page could be still mapped if this races with __mmput() running in
1095
* between ksm_exit() and exit_mmap(). Just refuse to let
1096
* merge_across_nodes/max_page_sharing be switched.
1097
*/
1098
err = -EBUSY;
1099
if (!folio_mapped(folio)) {
1100
/*
1101
* The stable node did not yet appear stale to ksm_get_folio(),
1102
* since that allows for an unmapped ksm folio to be recognized
1103
* right up until it is freed; but the node is safe to remove.
1104
* This folio might be in an LRU cache waiting to be freed,
1105
* or it might be in the swapcache (perhaps under writeback),
1106
* or it might have been removed from swapcache a moment ago.
1107
*/
1108
folio_set_stable_node(folio, NULL);
1109
remove_node_from_stable_tree(stable_node);
1110
err = 0;
1111
}
1112
1113
folio_unlock(folio);
1114
folio_put(folio);
1115
return err;
1116
}
1117
1118
static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1119
struct rb_root *root)
1120
{
1121
struct ksm_stable_node *dup;
1122
struct hlist_node *hlist_safe;
1123
1124
if (!is_stable_node_chain(stable_node)) {
1125
VM_BUG_ON(is_stable_node_dup(stable_node));
1126
if (remove_stable_node(stable_node))
1127
return true;
1128
else
1129
return false;
1130
}
1131
1132
hlist_for_each_entry_safe(dup, hlist_safe,
1133
&stable_node->hlist, hlist_dup) {
1134
VM_BUG_ON(!is_stable_node_dup(dup));
1135
if (remove_stable_node(dup))
1136
return true;
1137
}
1138
BUG_ON(!hlist_empty(&stable_node->hlist));
1139
free_stable_node_chain(stable_node, root);
1140
return false;
1141
}
1142
1143
static int remove_all_stable_nodes(void)
1144
{
1145
struct ksm_stable_node *stable_node, *next;
1146
int nid;
1147
int err = 0;
1148
1149
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1150
while (root_stable_tree[nid].rb_node) {
1151
stable_node = rb_entry(root_stable_tree[nid].rb_node,
1152
struct ksm_stable_node, node);
1153
if (remove_stable_node_chain(stable_node,
1154
root_stable_tree + nid)) {
1155
err = -EBUSY;
1156
break; /* proceed to next nid */
1157
}
1158
cond_resched();
1159
}
1160
}
1161
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1162
if (remove_stable_node(stable_node))
1163
err = -EBUSY;
1164
cond_resched();
1165
}
1166
return err;
1167
}
1168
1169
static int unmerge_and_remove_all_rmap_items(void)
1170
{
1171
struct ksm_mm_slot *mm_slot;
1172
struct mm_slot *slot;
1173
struct mm_struct *mm;
1174
struct vm_area_struct *vma;
1175
int err = 0;
1176
1177
spin_lock(&ksm_mmlist_lock);
1178
slot = list_entry(ksm_mm_head.slot.mm_node.next,
1179
struct mm_slot, mm_node);
1180
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1181
spin_unlock(&ksm_mmlist_lock);
1182
1183
for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1184
mm_slot = ksm_scan.mm_slot) {
1185
VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1186
1187
mm = mm_slot->slot.mm;
1188
mmap_read_lock(mm);
1189
1190
/*
1191
* Exit right away if mm is exiting to avoid lockdep issue in
1192
* the maple tree
1193
*/
1194
if (ksm_test_exit(mm))
1195
goto mm_exiting;
1196
1197
for_each_vma(vmi, vma) {
1198
if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1199
continue;
1200
err = unmerge_ksm_pages(vma,
1201
vma->vm_start, vma->vm_end, false);
1202
if (err)
1203
goto error;
1204
}
1205
1206
mm_exiting:
1207
remove_trailing_rmap_items(&mm_slot->rmap_list);
1208
mmap_read_unlock(mm);
1209
1210
spin_lock(&ksm_mmlist_lock);
1211
slot = list_entry(mm_slot->slot.mm_node.next,
1212
struct mm_slot, mm_node);
1213
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1214
if (ksm_test_exit(mm)) {
1215
hash_del(&mm_slot->slot.hash);
1216
list_del(&mm_slot->slot.mm_node);
1217
spin_unlock(&ksm_mmlist_lock);
1218
1219
mm_slot_free(mm_slot_cache, mm_slot);
1220
clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1221
clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1222
mmdrop(mm);
1223
} else
1224
spin_unlock(&ksm_mmlist_lock);
1225
}
1226
1227
/* Clean up stable nodes, but don't worry if some are still busy */
1228
remove_all_stable_nodes();
1229
ksm_scan.seqnr = 0;
1230
return 0;
1231
1232
error:
1233
mmap_read_unlock(mm);
1234
spin_lock(&ksm_mmlist_lock);
1235
ksm_scan.mm_slot = &ksm_mm_head;
1236
spin_unlock(&ksm_mmlist_lock);
1237
return err;
1238
}
1239
#endif /* CONFIG_SYSFS */
1240
1241
static u32 calc_checksum(struct page *page)
1242
{
1243
u32 checksum;
1244
void *addr = kmap_local_page(page);
1245
checksum = xxhash(addr, PAGE_SIZE, 0);
1246
kunmap_local(addr);
1247
return checksum;
1248
}
1249
1250
static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1251
pte_t *orig_pte)
1252
{
1253
struct mm_struct *mm = vma->vm_mm;
1254
DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1255
int swapped;
1256
int err = -EFAULT;
1257
struct mmu_notifier_range range;
1258
bool anon_exclusive;
1259
pte_t entry;
1260
1261
if (WARN_ON_ONCE(folio_test_large(folio)))
1262
return err;
1263
1264
pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1265
if (pvmw.address == -EFAULT)
1266
goto out;
1267
1268
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1269
pvmw.address + PAGE_SIZE);
1270
mmu_notifier_invalidate_range_start(&range);
1271
1272
if (!page_vma_mapped_walk(&pvmw))
1273
goto out_mn;
1274
if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1275
goto out_unlock;
1276
1277
entry = ptep_get(pvmw.pte);
1278
/*
1279
* Handle PFN swap PTEs, such as device-exclusive ones, that actually
1280
* map pages: give up just like the next folio_walk would.
1281
*/
1282
if (unlikely(!pte_present(entry)))
1283
goto out_unlock;
1284
1285
anon_exclusive = PageAnonExclusive(&folio->page);
1286
if (pte_write(entry) || pte_dirty(entry) ||
1287
anon_exclusive || mm_tlb_flush_pending(mm)) {
1288
swapped = folio_test_swapcache(folio);
1289
flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1290
/*
1291
* Ok this is tricky, when get_user_pages_fast() run it doesn't
1292
* take any lock, therefore the check that we are going to make
1293
* with the pagecount against the mapcount is racy and
1294
* O_DIRECT can happen right after the check.
1295
* So we clear the pte and flush the tlb before the check
1296
* this assure us that no O_DIRECT can happen after the check
1297
* or in the middle of the check.
1298
*
1299
* No need to notify as we are downgrading page table to read
1300
* only not changing it to point to a new page.
1301
*
1302
* See Documentation/mm/mmu_notifier.rst
1303
*/
1304
entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1305
/*
1306
* Check that no O_DIRECT or similar I/O is in progress on the
1307
* page
1308
*/
1309
if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1310
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1311
goto out_unlock;
1312
}
1313
1314
/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1315
if (anon_exclusive &&
1316
folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1317
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1318
goto out_unlock;
1319
}
1320
1321
if (pte_dirty(entry))
1322
folio_mark_dirty(folio);
1323
entry = pte_mkclean(entry);
1324
1325
if (pte_write(entry))
1326
entry = pte_wrprotect(entry);
1327
1328
set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1329
}
1330
*orig_pte = entry;
1331
err = 0;
1332
1333
out_unlock:
1334
page_vma_mapped_walk_done(&pvmw);
1335
out_mn:
1336
mmu_notifier_invalidate_range_end(&range);
1337
out:
1338
return err;
1339
}
1340
1341
/**
1342
* replace_page - replace page in vma by new ksm page
1343
* @vma: vma that holds the pte pointing to page
1344
* @page: the page we are replacing by kpage
1345
* @kpage: the ksm page we replace page by
1346
* @orig_pte: the original value of the pte
1347
*
1348
* Returns 0 on success, -EFAULT on failure.
1349
*/
1350
static int replace_page(struct vm_area_struct *vma, struct page *page,
1351
struct page *kpage, pte_t orig_pte)
1352
{
1353
struct folio *kfolio = page_folio(kpage);
1354
struct mm_struct *mm = vma->vm_mm;
1355
struct folio *folio = page_folio(page);
1356
pmd_t *pmd;
1357
pmd_t pmde;
1358
pte_t *ptep;
1359
pte_t newpte;
1360
spinlock_t *ptl;
1361
unsigned long addr;
1362
int err = -EFAULT;
1363
struct mmu_notifier_range range;
1364
1365
addr = page_address_in_vma(folio, page, vma);
1366
if (addr == -EFAULT)
1367
goto out;
1368
1369
pmd = mm_find_pmd(mm, addr);
1370
if (!pmd)
1371
goto out;
1372
/*
1373
* Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1374
* without holding anon_vma lock for write. So when looking for a
1375
* genuine pmde (in which to find pte), test present and !THP together.
1376
*/
1377
pmde = pmdp_get_lockless(pmd);
1378
if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1379
goto out;
1380
1381
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1382
addr + PAGE_SIZE);
1383
mmu_notifier_invalidate_range_start(&range);
1384
1385
ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1386
if (!ptep)
1387
goto out_mn;
1388
if (!pte_same(ptep_get(ptep), orig_pte)) {
1389
pte_unmap_unlock(ptep, ptl);
1390
goto out_mn;
1391
}
1392
VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1393
VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1394
kfolio);
1395
1396
/*
1397
* No need to check ksm_use_zero_pages here: we can only have a
1398
* zero_page here if ksm_use_zero_pages was enabled already.
1399
*/
1400
if (!is_zero_pfn(page_to_pfn(kpage))) {
1401
folio_get(kfolio);
1402
folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1403
newpte = mk_pte(kpage, vma->vm_page_prot);
1404
} else {
1405
/*
1406
* Use pte_mkdirty to mark the zero page mapped by KSM, and then
1407
* we can easily track all KSM-placed zero pages by checking if
1408
* the dirty bit in zero page's PTE is set.
1409
*/
1410
newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1411
ksm_map_zero_page(mm);
1412
/*
1413
* We're replacing an anonymous page with a zero page, which is
1414
* not anonymous. We need to do proper accounting otherwise we
1415
* will get wrong values in /proc, and a BUG message in dmesg
1416
* when tearing down the mm.
1417
*/
1418
dec_mm_counter(mm, MM_ANONPAGES);
1419
}
1420
1421
flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1422
/*
1423
* No need to notify as we are replacing a read only page with another
1424
* read only page with the same content.
1425
*
1426
* See Documentation/mm/mmu_notifier.rst
1427
*/
1428
ptep_clear_flush(vma, addr, ptep);
1429
set_pte_at(mm, addr, ptep, newpte);
1430
1431
folio_remove_rmap_pte(folio, page, vma);
1432
if (!folio_mapped(folio))
1433
folio_free_swap(folio);
1434
folio_put(folio);
1435
1436
pte_unmap_unlock(ptep, ptl);
1437
err = 0;
1438
out_mn:
1439
mmu_notifier_invalidate_range_end(&range);
1440
out:
1441
return err;
1442
}
1443
1444
/*
1445
* try_to_merge_one_page - take two pages and merge them into one
1446
* @vma: the vma that holds the pte pointing to page
1447
* @page: the PageAnon page that we want to replace with kpage
1448
* @kpage: the KSM page that we want to map instead of page,
1449
* or NULL the first time when we want to use page as kpage.
1450
*
1451
* This function returns 0 if the pages were merged, -EFAULT otherwise.
1452
*/
1453
static int try_to_merge_one_page(struct vm_area_struct *vma,
1454
struct page *page, struct page *kpage)
1455
{
1456
struct folio *folio = page_folio(page);
1457
pte_t orig_pte = __pte(0);
1458
int err = -EFAULT;
1459
1460
if (page == kpage) /* ksm page forked */
1461
return 0;
1462
1463
if (!folio_test_anon(folio))
1464
goto out;
1465
1466
/*
1467
* We need the folio lock to read a stable swapcache flag in
1468
* write_protect_page(). We trylock because we don't want to wait
1469
* here - we prefer to continue scanning and merging different
1470
* pages, then come back to this page when it is unlocked.
1471
*/
1472
if (!folio_trylock(folio))
1473
goto out;
1474
1475
if (folio_test_large(folio)) {
1476
if (split_huge_page(page))
1477
goto out_unlock;
1478
folio = page_folio(page);
1479
}
1480
1481
/*
1482
* If this anonymous page is mapped only here, its pte may need
1483
* to be write-protected. If it's mapped elsewhere, all of its
1484
* ptes are necessarily already write-protected. But in either
1485
* case, we need to lock and check page_count is not raised.
1486
*/
1487
if (write_protect_page(vma, folio, &orig_pte) == 0) {
1488
if (!kpage) {
1489
/*
1490
* While we hold folio lock, upgrade folio from
1491
* anon to a NULL stable_node with the KSM flag set:
1492
* stable_tree_insert() will update stable_node.
1493
*/
1494
folio_set_stable_node(folio, NULL);
1495
folio_mark_accessed(folio);
1496
/*
1497
* Page reclaim just frees a clean folio with no dirty
1498
* ptes: make sure that the ksm page would be swapped.
1499
*/
1500
if (!folio_test_dirty(folio))
1501
folio_mark_dirty(folio);
1502
err = 0;
1503
} else if (pages_identical(page, kpage))
1504
err = replace_page(vma, page, kpage, orig_pte);
1505
}
1506
1507
out_unlock:
1508
folio_unlock(folio);
1509
out:
1510
return err;
1511
}
1512
1513
/*
1514
* This function returns 0 if the pages were merged or if they are
1515
* no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1516
*/
1517
static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1518
struct page *page)
1519
{
1520
struct mm_struct *mm = rmap_item->mm;
1521
int err = -EFAULT;
1522
1523
/*
1524
* Same checksum as an empty page. We attempt to merge it with the
1525
* appropriate zero page if the user enabled this via sysfs.
1526
*/
1527
if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1528
struct vm_area_struct *vma;
1529
1530
mmap_read_lock(mm);
1531
vma = find_mergeable_vma(mm, rmap_item->address);
1532
if (vma) {
1533
err = try_to_merge_one_page(vma, page,
1534
ZERO_PAGE(rmap_item->address));
1535
trace_ksm_merge_one_page(
1536
page_to_pfn(ZERO_PAGE(rmap_item->address)),
1537
rmap_item, mm, err);
1538
} else {
1539
/*
1540
* If the vma is out of date, we do not need to
1541
* continue.
1542
*/
1543
err = 0;
1544
}
1545
mmap_read_unlock(mm);
1546
}
1547
1548
return err;
1549
}
1550
1551
/*
1552
* try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1553
* but no new kernel page is allocated: kpage must already be a ksm page.
1554
*
1555
* This function returns 0 if the pages were merged, -EFAULT otherwise.
1556
*/
1557
static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1558
struct page *page, struct page *kpage)
1559
{
1560
struct mm_struct *mm = rmap_item->mm;
1561
struct vm_area_struct *vma;
1562
int err = -EFAULT;
1563
1564
mmap_read_lock(mm);
1565
vma = find_mergeable_vma(mm, rmap_item->address);
1566
if (!vma)
1567
goto out;
1568
1569
err = try_to_merge_one_page(vma, page, kpage);
1570
if (err)
1571
goto out;
1572
1573
/* Unstable nid is in union with stable anon_vma: remove first */
1574
remove_rmap_item_from_tree(rmap_item);
1575
1576
/* Must get reference to anon_vma while still holding mmap_lock */
1577
rmap_item->anon_vma = vma->anon_vma;
1578
get_anon_vma(vma->anon_vma);
1579
out:
1580
mmap_read_unlock(mm);
1581
trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1582
rmap_item, mm, err);
1583
return err;
1584
}
1585
1586
/*
1587
* try_to_merge_two_pages - take two identical pages and prepare them
1588
* to be merged into one page.
1589
*
1590
* This function returns the kpage if we successfully merged two identical
1591
* pages into one ksm page, NULL otherwise.
1592
*
1593
* Note that this function upgrades page to ksm page: if one of the pages
1594
* is already a ksm page, try_to_merge_with_ksm_page should be used.
1595
*/
1596
static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1597
struct page *page,
1598
struct ksm_rmap_item *tree_rmap_item,
1599
struct page *tree_page)
1600
{
1601
int err;
1602
1603
err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1604
if (!err) {
1605
err = try_to_merge_with_ksm_page(tree_rmap_item,
1606
tree_page, page);
1607
/*
1608
* If that fails, we have a ksm page with only one pte
1609
* pointing to it: so break it.
1610
*/
1611
if (err)
1612
break_cow(rmap_item);
1613
}
1614
return err ? NULL : page_folio(page);
1615
}
1616
1617
static __always_inline
1618
bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1619
{
1620
VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1621
/*
1622
* Check that at least one mapping still exists, otherwise
1623
* there's no much point to merge and share with this
1624
* stable_node, as the underlying tree_page of the other
1625
* sharer is going to be freed soon.
1626
*/
1627
return stable_node->rmap_hlist_len &&
1628
stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1629
}
1630
1631
static __always_inline
1632
bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1633
{
1634
return __is_page_sharing_candidate(stable_node, 0);
1635
}
1636
1637
static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1638
struct ksm_stable_node **_stable_node,
1639
struct rb_root *root,
1640
bool prune_stale_stable_nodes)
1641
{
1642
struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1643
struct hlist_node *hlist_safe;
1644
struct folio *folio, *tree_folio = NULL;
1645
int found_rmap_hlist_len;
1646
1647
if (!prune_stale_stable_nodes ||
1648
time_before(jiffies, stable_node->chain_prune_time +
1649
msecs_to_jiffies(
1650
ksm_stable_node_chains_prune_millisecs)))
1651
prune_stale_stable_nodes = false;
1652
else
1653
stable_node->chain_prune_time = jiffies;
1654
1655
hlist_for_each_entry_safe(dup, hlist_safe,
1656
&stable_node->hlist, hlist_dup) {
1657
cond_resched();
1658
/*
1659
* We must walk all stable_node_dup to prune the stale
1660
* stable nodes during lookup.
1661
*
1662
* ksm_get_folio can drop the nodes from the
1663
* stable_node->hlist if they point to freed pages
1664
* (that's why we do a _safe walk). The "dup"
1665
* stable_node parameter itself will be freed from
1666
* under us if it returns NULL.
1667
*/
1668
folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1669
if (!folio)
1670
continue;
1671
/* Pick the best candidate if possible. */
1672
if (!found || (is_page_sharing_candidate(dup) &&
1673
(!is_page_sharing_candidate(found) ||
1674
dup->rmap_hlist_len > found_rmap_hlist_len))) {
1675
if (found)
1676
folio_put(tree_folio);
1677
found = dup;
1678
found_rmap_hlist_len = found->rmap_hlist_len;
1679
tree_folio = folio;
1680
/* skip put_page for found candidate */
1681
if (!prune_stale_stable_nodes &&
1682
is_page_sharing_candidate(found))
1683
break;
1684
continue;
1685
}
1686
folio_put(folio);
1687
}
1688
1689
if (found) {
1690
if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1691
/*
1692
* If there's not just one entry it would
1693
* corrupt memory, better BUG_ON. In KSM
1694
* context with no lock held it's not even
1695
* fatal.
1696
*/
1697
BUG_ON(stable_node->hlist.first->next);
1698
1699
/*
1700
* There's just one entry and it is below the
1701
* deduplication limit so drop the chain.
1702
*/
1703
rb_replace_node(&stable_node->node, &found->node,
1704
root);
1705
free_stable_node(stable_node);
1706
ksm_stable_node_chains--;
1707
ksm_stable_node_dups--;
1708
/*
1709
* NOTE: the caller depends on the stable_node
1710
* to be equal to stable_node_dup if the chain
1711
* was collapsed.
1712
*/
1713
*_stable_node = found;
1714
/*
1715
* Just for robustness, as stable_node is
1716
* otherwise left as a stable pointer, the
1717
* compiler shall optimize it away at build
1718
* time.
1719
*/
1720
stable_node = NULL;
1721
} else if (stable_node->hlist.first != &found->hlist_dup &&
1722
__is_page_sharing_candidate(found, 1)) {
1723
/*
1724
* If the found stable_node dup can accept one
1725
* more future merge (in addition to the one
1726
* that is underway) and is not at the head of
1727
* the chain, put it there so next search will
1728
* be quicker in the !prune_stale_stable_nodes
1729
* case.
1730
*
1731
* NOTE: it would be inaccurate to use nr > 1
1732
* instead of checking the hlist.first pointer
1733
* directly, because in the
1734
* prune_stale_stable_nodes case "nr" isn't
1735
* the position of the found dup in the chain,
1736
* but the total number of dups in the chain.
1737
*/
1738
hlist_del(&found->hlist_dup);
1739
hlist_add_head(&found->hlist_dup,
1740
&stable_node->hlist);
1741
}
1742
} else {
1743
/* Its hlist must be empty if no one found. */
1744
free_stable_node_chain(stable_node, root);
1745
}
1746
1747
*_stable_node_dup = found;
1748
return tree_folio;
1749
}
1750
1751
/*
1752
* Like for ksm_get_folio, this function can free the *_stable_node and
1753
* *_stable_node_dup if the returned tree_page is NULL.
1754
*
1755
* It can also free and overwrite *_stable_node with the found
1756
* stable_node_dup if the chain is collapsed (in which case
1757
* *_stable_node will be equal to *_stable_node_dup like if the chain
1758
* never existed). It's up to the caller to verify tree_page is not
1759
* NULL before dereferencing *_stable_node or *_stable_node_dup.
1760
*
1761
* *_stable_node_dup is really a second output parameter of this
1762
* function and will be overwritten in all cases, the caller doesn't
1763
* need to initialize it.
1764
*/
1765
static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1766
struct ksm_stable_node **_stable_node,
1767
struct rb_root *root,
1768
bool prune_stale_stable_nodes)
1769
{
1770
struct ksm_stable_node *stable_node = *_stable_node;
1771
1772
if (!is_stable_node_chain(stable_node)) {
1773
*_stable_node_dup = stable_node;
1774
return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1775
}
1776
return stable_node_dup(_stable_node_dup, _stable_node, root,
1777
prune_stale_stable_nodes);
1778
}
1779
1780
static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1781
struct ksm_stable_node **s_n,
1782
struct rb_root *root)
1783
{
1784
return __stable_node_chain(s_n_d, s_n, root, true);
1785
}
1786
1787
static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1788
struct ksm_stable_node **s_n,
1789
struct rb_root *root)
1790
{
1791
return __stable_node_chain(s_n_d, s_n, root, false);
1792
}
1793
1794
/*
1795
* stable_tree_search - search for page inside the stable tree
1796
*
1797
* This function checks if there is a page inside the stable tree
1798
* with identical content to the page that we are scanning right now.
1799
*
1800
* This function returns the stable tree node of identical content if found,
1801
* -EBUSY if the stable node's page is being migrated, NULL otherwise.
1802
*/
1803
static struct folio *stable_tree_search(struct page *page)
1804
{
1805
int nid;
1806
struct rb_root *root;
1807
struct rb_node **new;
1808
struct rb_node *parent;
1809
struct ksm_stable_node *stable_node, *stable_node_dup;
1810
struct ksm_stable_node *page_node;
1811
struct folio *folio;
1812
1813
folio = page_folio(page);
1814
page_node = folio_stable_node(folio);
1815
if (page_node && page_node->head != &migrate_nodes) {
1816
/* ksm page forked */
1817
folio_get(folio);
1818
return folio;
1819
}
1820
1821
nid = get_kpfn_nid(folio_pfn(folio));
1822
root = root_stable_tree + nid;
1823
again:
1824
new = &root->rb_node;
1825
parent = NULL;
1826
1827
while (*new) {
1828
struct folio *tree_folio;
1829
int ret;
1830
1831
cond_resched();
1832
stable_node = rb_entry(*new, struct ksm_stable_node, node);
1833
tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1834
if (!tree_folio) {
1835
/*
1836
* If we walked over a stale stable_node,
1837
* ksm_get_folio() will call rb_erase() and it
1838
* may rebalance the tree from under us. So
1839
* restart the search from scratch. Returning
1840
* NULL would be safe too, but we'd generate
1841
* false negative insertions just because some
1842
* stable_node was stale.
1843
*/
1844
goto again;
1845
}
1846
1847
ret = memcmp_pages(page, &tree_folio->page);
1848
folio_put(tree_folio);
1849
1850
parent = *new;
1851
if (ret < 0)
1852
new = &parent->rb_left;
1853
else if (ret > 0)
1854
new = &parent->rb_right;
1855
else {
1856
if (page_node) {
1857
VM_BUG_ON(page_node->head != &migrate_nodes);
1858
/*
1859
* If the mapcount of our migrated KSM folio is
1860
* at most 1, we can merge it with another
1861
* KSM folio where we know that we have space
1862
* for one more mapping without exceeding the
1863
* ksm_max_page_sharing limit: see
1864
* chain_prune(). This way, we can avoid adding
1865
* this stable node to the chain.
1866
*/
1867
if (folio_mapcount(folio) > 1)
1868
goto chain_append;
1869
}
1870
1871
if (!is_page_sharing_candidate(stable_node_dup)) {
1872
/*
1873
* If the stable_node is a chain and
1874
* we got a payload match in memcmp
1875
* but we cannot merge the scanned
1876
* page in any of the existing
1877
* stable_node dups because they're
1878
* all full, we need to wait the
1879
* scanned page to find itself a match
1880
* in the unstable tree to create a
1881
* brand new KSM page to add later to
1882
* the dups of this stable_node.
1883
*/
1884
return NULL;
1885
}
1886
1887
/*
1888
* Lock and unlock the stable_node's page (which
1889
* might already have been migrated) so that page
1890
* migration is sure to notice its raised count.
1891
* It would be more elegant to return stable_node
1892
* than kpage, but that involves more changes.
1893
*/
1894
tree_folio = ksm_get_folio(stable_node_dup,
1895
KSM_GET_FOLIO_TRYLOCK);
1896
1897
if (PTR_ERR(tree_folio) == -EBUSY)
1898
return ERR_PTR(-EBUSY);
1899
1900
if (unlikely(!tree_folio))
1901
/*
1902
* The tree may have been rebalanced,
1903
* so re-evaluate parent and new.
1904
*/
1905
goto again;
1906
folio_unlock(tree_folio);
1907
1908
if (get_kpfn_nid(stable_node_dup->kpfn) !=
1909
NUMA(stable_node_dup->nid)) {
1910
folio_put(tree_folio);
1911
goto replace;
1912
}
1913
return tree_folio;
1914
}
1915
}
1916
1917
if (!page_node)
1918
return NULL;
1919
1920
list_del(&page_node->list);
1921
DO_NUMA(page_node->nid = nid);
1922
rb_link_node(&page_node->node, parent, new);
1923
rb_insert_color(&page_node->node, root);
1924
out:
1925
if (is_page_sharing_candidate(page_node)) {
1926
folio_get(folio);
1927
return folio;
1928
} else
1929
return NULL;
1930
1931
replace:
1932
/*
1933
* If stable_node was a chain and chain_prune collapsed it,
1934
* stable_node has been updated to be the new regular
1935
* stable_node. A collapse of the chain is indistinguishable
1936
* from the case there was no chain in the stable
1937
* rbtree. Otherwise stable_node is the chain and
1938
* stable_node_dup is the dup to replace.
1939
*/
1940
if (stable_node_dup == stable_node) {
1941
VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1942
VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1943
/* there is no chain */
1944
if (page_node) {
1945
VM_BUG_ON(page_node->head != &migrate_nodes);
1946
list_del(&page_node->list);
1947
DO_NUMA(page_node->nid = nid);
1948
rb_replace_node(&stable_node_dup->node,
1949
&page_node->node,
1950
root);
1951
if (is_page_sharing_candidate(page_node))
1952
folio_get(folio);
1953
else
1954
folio = NULL;
1955
} else {
1956
rb_erase(&stable_node_dup->node, root);
1957
folio = NULL;
1958
}
1959
} else {
1960
VM_BUG_ON(!is_stable_node_chain(stable_node));
1961
__stable_node_dup_del(stable_node_dup);
1962
if (page_node) {
1963
VM_BUG_ON(page_node->head != &migrate_nodes);
1964
list_del(&page_node->list);
1965
DO_NUMA(page_node->nid = nid);
1966
stable_node_chain_add_dup(page_node, stable_node);
1967
if (is_page_sharing_candidate(page_node))
1968
folio_get(folio);
1969
else
1970
folio = NULL;
1971
} else {
1972
folio = NULL;
1973
}
1974
}
1975
stable_node_dup->head = &migrate_nodes;
1976
list_add(&stable_node_dup->list, stable_node_dup->head);
1977
return folio;
1978
1979
chain_append:
1980
/*
1981
* If stable_node was a chain and chain_prune collapsed it,
1982
* stable_node has been updated to be the new regular
1983
* stable_node. A collapse of the chain is indistinguishable
1984
* from the case there was no chain in the stable
1985
* rbtree. Otherwise stable_node is the chain and
1986
* stable_node_dup is the dup to replace.
1987
*/
1988
if (stable_node_dup == stable_node) {
1989
VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1990
/* chain is missing so create it */
1991
stable_node = alloc_stable_node_chain(stable_node_dup,
1992
root);
1993
if (!stable_node)
1994
return NULL;
1995
}
1996
/*
1997
* Add this stable_node dup that was
1998
* migrated to the stable_node chain
1999
* of the current nid for this page
2000
* content.
2001
*/
2002
VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2003
VM_BUG_ON(page_node->head != &migrate_nodes);
2004
list_del(&page_node->list);
2005
DO_NUMA(page_node->nid = nid);
2006
stable_node_chain_add_dup(page_node, stable_node);
2007
goto out;
2008
}
2009
2010
/*
2011
* stable_tree_insert - insert stable tree node pointing to new ksm page
2012
* into the stable tree.
2013
*
2014
* This function returns the stable tree node just allocated on success,
2015
* NULL otherwise.
2016
*/
2017
static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2018
{
2019
int nid;
2020
unsigned long kpfn;
2021
struct rb_root *root;
2022
struct rb_node **new;
2023
struct rb_node *parent;
2024
struct ksm_stable_node *stable_node, *stable_node_dup;
2025
bool need_chain = false;
2026
2027
kpfn = folio_pfn(kfolio);
2028
nid = get_kpfn_nid(kpfn);
2029
root = root_stable_tree + nid;
2030
again:
2031
parent = NULL;
2032
new = &root->rb_node;
2033
2034
while (*new) {
2035
struct folio *tree_folio;
2036
int ret;
2037
2038
cond_resched();
2039
stable_node = rb_entry(*new, struct ksm_stable_node, node);
2040
tree_folio = chain(&stable_node_dup, &stable_node, root);
2041
if (!tree_folio) {
2042
/*
2043
* If we walked over a stale stable_node,
2044
* ksm_get_folio() will call rb_erase() and it
2045
* may rebalance the tree from under us. So
2046
* restart the search from scratch. Returning
2047
* NULL would be safe too, but we'd generate
2048
* false negative insertions just because some
2049
* stable_node was stale.
2050
*/
2051
goto again;
2052
}
2053
2054
ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2055
folio_put(tree_folio);
2056
2057
parent = *new;
2058
if (ret < 0)
2059
new = &parent->rb_left;
2060
else if (ret > 0)
2061
new = &parent->rb_right;
2062
else {
2063
need_chain = true;
2064
break;
2065
}
2066
}
2067
2068
stable_node_dup = alloc_stable_node();
2069
if (!stable_node_dup)
2070
return NULL;
2071
2072
INIT_HLIST_HEAD(&stable_node_dup->hlist);
2073
stable_node_dup->kpfn = kpfn;
2074
stable_node_dup->rmap_hlist_len = 0;
2075
DO_NUMA(stable_node_dup->nid = nid);
2076
if (!need_chain) {
2077
rb_link_node(&stable_node_dup->node, parent, new);
2078
rb_insert_color(&stable_node_dup->node, root);
2079
} else {
2080
if (!is_stable_node_chain(stable_node)) {
2081
struct ksm_stable_node *orig = stable_node;
2082
/* chain is missing so create it */
2083
stable_node = alloc_stable_node_chain(orig, root);
2084
if (!stable_node) {
2085
free_stable_node(stable_node_dup);
2086
return NULL;
2087
}
2088
}
2089
stable_node_chain_add_dup(stable_node_dup, stable_node);
2090
}
2091
2092
folio_set_stable_node(kfolio, stable_node_dup);
2093
2094
return stable_node_dup;
2095
}
2096
2097
/*
2098
* unstable_tree_search_insert - search for identical page,
2099
* else insert rmap_item into the unstable tree.
2100
*
2101
* This function searches for a page in the unstable tree identical to the
2102
* page currently being scanned; and if no identical page is found in the
2103
* tree, we insert rmap_item as a new object into the unstable tree.
2104
*
2105
* This function returns pointer to rmap_item found to be identical
2106
* to the currently scanned page, NULL otherwise.
2107
*
2108
* This function does both searching and inserting, because they share
2109
* the same walking algorithm in an rbtree.
2110
*/
2111
static
2112
struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2113
struct page *page,
2114
struct page **tree_pagep)
2115
{
2116
struct rb_node **new;
2117
struct rb_root *root;
2118
struct rb_node *parent = NULL;
2119
int nid;
2120
2121
nid = get_kpfn_nid(page_to_pfn(page));
2122
root = root_unstable_tree + nid;
2123
new = &root->rb_node;
2124
2125
while (*new) {
2126
struct ksm_rmap_item *tree_rmap_item;
2127
struct page *tree_page;
2128
int ret;
2129
2130
cond_resched();
2131
tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2132
tree_page = get_mergeable_page(tree_rmap_item);
2133
if (!tree_page)
2134
return NULL;
2135
2136
/*
2137
* Don't substitute a ksm page for a forked page.
2138
*/
2139
if (page == tree_page) {
2140
put_page(tree_page);
2141
return NULL;
2142
}
2143
2144
ret = memcmp_pages(page, tree_page);
2145
2146
parent = *new;
2147
if (ret < 0) {
2148
put_page(tree_page);
2149
new = &parent->rb_left;
2150
} else if (ret > 0) {
2151
put_page(tree_page);
2152
new = &parent->rb_right;
2153
} else if (!ksm_merge_across_nodes &&
2154
page_to_nid(tree_page) != nid) {
2155
/*
2156
* If tree_page has been migrated to another NUMA node,
2157
* it will be flushed out and put in the right unstable
2158
* tree next time: only merge with it when across_nodes.
2159
*/
2160
put_page(tree_page);
2161
return NULL;
2162
} else {
2163
*tree_pagep = tree_page;
2164
return tree_rmap_item;
2165
}
2166
}
2167
2168
rmap_item->address |= UNSTABLE_FLAG;
2169
rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2170
DO_NUMA(rmap_item->nid = nid);
2171
rb_link_node(&rmap_item->node, parent, new);
2172
rb_insert_color(&rmap_item->node, root);
2173
2174
ksm_pages_unshared++;
2175
return NULL;
2176
}
2177
2178
/*
2179
* stable_tree_append - add another rmap_item to the linked list of
2180
* rmap_items hanging off a given node of the stable tree, all sharing
2181
* the same ksm page.
2182
*/
2183
static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2184
struct ksm_stable_node *stable_node,
2185
bool max_page_sharing_bypass)
2186
{
2187
/*
2188
* rmap won't find this mapping if we don't insert the
2189
* rmap_item in the right stable_node
2190
* duplicate. page_migration could break later if rmap breaks,
2191
* so we can as well crash here. We really need to check for
2192
* rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2193
* for other negative values as an underflow if detected here
2194
* for the first time (and not when decreasing rmap_hlist_len)
2195
* would be sign of memory corruption in the stable_node.
2196
*/
2197
BUG_ON(stable_node->rmap_hlist_len < 0);
2198
2199
stable_node->rmap_hlist_len++;
2200
if (!max_page_sharing_bypass)
2201
/* possibly non fatal but unexpected overflow, only warn */
2202
WARN_ON_ONCE(stable_node->rmap_hlist_len >
2203
ksm_max_page_sharing);
2204
2205
rmap_item->head = stable_node;
2206
rmap_item->address |= STABLE_FLAG;
2207
hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2208
2209
if (rmap_item->hlist.next)
2210
ksm_pages_sharing++;
2211
else
2212
ksm_pages_shared++;
2213
2214
rmap_item->mm->ksm_merging_pages++;
2215
}
2216
2217
/*
2218
* cmp_and_merge_page - first see if page can be merged into the stable tree;
2219
* if not, compare checksum to previous and if it's the same, see if page can
2220
* be inserted into the unstable tree, or merged with a page already there and
2221
* both transferred to the stable tree.
2222
*
2223
* @page: the page that we are searching identical page to.
2224
* @rmap_item: the reverse mapping into the virtual address of this page
2225
*/
2226
static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2227
{
2228
struct ksm_rmap_item *tree_rmap_item;
2229
struct page *tree_page = NULL;
2230
struct ksm_stable_node *stable_node;
2231
struct folio *kfolio;
2232
unsigned int checksum;
2233
int err;
2234
bool max_page_sharing_bypass = false;
2235
2236
stable_node = page_stable_node(page);
2237
if (stable_node) {
2238
if (stable_node->head != &migrate_nodes &&
2239
get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2240
NUMA(stable_node->nid)) {
2241
stable_node_dup_del(stable_node);
2242
stable_node->head = &migrate_nodes;
2243
list_add(&stable_node->list, stable_node->head);
2244
}
2245
if (stable_node->head != &migrate_nodes &&
2246
rmap_item->head == stable_node)
2247
return;
2248
/*
2249
* If it's a KSM fork, allow it to go over the sharing limit
2250
* without warnings.
2251
*/
2252
if (!is_page_sharing_candidate(stable_node))
2253
max_page_sharing_bypass = true;
2254
} else {
2255
remove_rmap_item_from_tree(rmap_item);
2256
2257
/*
2258
* If the hash value of the page has changed from the last time
2259
* we calculated it, this page is changing frequently: therefore we
2260
* don't want to insert it in the unstable tree, and we don't want
2261
* to waste our time searching for something identical to it there.
2262
*/
2263
checksum = calc_checksum(page);
2264
if (rmap_item->oldchecksum != checksum) {
2265
rmap_item->oldchecksum = checksum;
2266
return;
2267
}
2268
2269
if (!try_to_merge_with_zero_page(rmap_item, page))
2270
return;
2271
}
2272
2273
/* Start by searching for the folio in the stable tree */
2274
kfolio = stable_tree_search(page);
2275
if (&kfolio->page == page && rmap_item->head == stable_node) {
2276
folio_put(kfolio);
2277
return;
2278
}
2279
2280
remove_rmap_item_from_tree(rmap_item);
2281
2282
if (kfolio) {
2283
if (kfolio == ERR_PTR(-EBUSY))
2284
return;
2285
2286
err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2287
if (!err) {
2288
/*
2289
* The page was successfully merged:
2290
* add its rmap_item to the stable tree.
2291
*/
2292
folio_lock(kfolio);
2293
stable_tree_append(rmap_item, folio_stable_node(kfolio),
2294
max_page_sharing_bypass);
2295
folio_unlock(kfolio);
2296
}
2297
folio_put(kfolio);
2298
return;
2299
}
2300
2301
tree_rmap_item =
2302
unstable_tree_search_insert(rmap_item, page, &tree_page);
2303
if (tree_rmap_item) {
2304
bool split;
2305
2306
kfolio = try_to_merge_two_pages(rmap_item, page,
2307
tree_rmap_item, tree_page);
2308
/*
2309
* If both pages we tried to merge belong to the same compound
2310
* page, then we actually ended up increasing the reference
2311
* count of the same compound page twice, and split_huge_page
2312
* failed.
2313
* Here we set a flag if that happened, and we use it later to
2314
* try split_huge_page again. Since we call put_page right
2315
* afterwards, the reference count will be correct and
2316
* split_huge_page should succeed.
2317
*/
2318
split = PageTransCompound(page)
2319
&& compound_head(page) == compound_head(tree_page);
2320
put_page(tree_page);
2321
if (kfolio) {
2322
/*
2323
* The pages were successfully merged: insert new
2324
* node in the stable tree and add both rmap_items.
2325
*/
2326
folio_lock(kfolio);
2327
stable_node = stable_tree_insert(kfolio);
2328
if (stable_node) {
2329
stable_tree_append(tree_rmap_item, stable_node,
2330
false);
2331
stable_tree_append(rmap_item, stable_node,
2332
false);
2333
}
2334
folio_unlock(kfolio);
2335
2336
/*
2337
* If we fail to insert the page into the stable tree,
2338
* we will have 2 virtual addresses that are pointing
2339
* to a ksm page left outside the stable tree,
2340
* in which case we need to break_cow on both.
2341
*/
2342
if (!stable_node) {
2343
break_cow(tree_rmap_item);
2344
break_cow(rmap_item);
2345
}
2346
} else if (split) {
2347
/*
2348
* We are here if we tried to merge two pages and
2349
* failed because they both belonged to the same
2350
* compound page. We will split the page now, but no
2351
* merging will take place.
2352
* We do not want to add the cost of a full lock; if
2353
* the page is locked, it is better to skip it and
2354
* perhaps try again later.
2355
*/
2356
if (!trylock_page(page))
2357
return;
2358
split_huge_page(page);
2359
unlock_page(page);
2360
}
2361
}
2362
}
2363
2364
static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2365
struct ksm_rmap_item **rmap_list,
2366
unsigned long addr)
2367
{
2368
struct ksm_rmap_item *rmap_item;
2369
2370
while (*rmap_list) {
2371
rmap_item = *rmap_list;
2372
if ((rmap_item->address & PAGE_MASK) == addr)
2373
return rmap_item;
2374
if (rmap_item->address > addr)
2375
break;
2376
*rmap_list = rmap_item->rmap_list;
2377
remove_rmap_item_from_tree(rmap_item);
2378
free_rmap_item(rmap_item);
2379
}
2380
2381
rmap_item = alloc_rmap_item();
2382
if (rmap_item) {
2383
/* It has already been zeroed */
2384
rmap_item->mm = mm_slot->slot.mm;
2385
rmap_item->mm->ksm_rmap_items++;
2386
rmap_item->address = addr;
2387
rmap_item->rmap_list = *rmap_list;
2388
*rmap_list = rmap_item;
2389
}
2390
return rmap_item;
2391
}
2392
2393
/*
2394
* Calculate skip age for the ksm page age. The age determines how often
2395
* de-duplicating has already been tried unsuccessfully. If the age is
2396
* smaller, the scanning of this page is skipped for less scans.
2397
*
2398
* @age: rmap_item age of page
2399
*/
2400
static unsigned int skip_age(rmap_age_t age)
2401
{
2402
if (age <= 3)
2403
return 1;
2404
if (age <= 5)
2405
return 2;
2406
if (age <= 8)
2407
return 4;
2408
2409
return 8;
2410
}
2411
2412
/*
2413
* Determines if a page should be skipped for the current scan.
2414
*
2415
* @folio: folio containing the page to check
2416
* @rmap_item: associated rmap_item of page
2417
*/
2418
static bool should_skip_rmap_item(struct folio *folio,
2419
struct ksm_rmap_item *rmap_item)
2420
{
2421
rmap_age_t age;
2422
2423
if (!ksm_smart_scan)
2424
return false;
2425
2426
/*
2427
* Never skip pages that are already KSM; pages cmp_and_merge_page()
2428
* will essentially ignore them, but we still have to process them
2429
* properly.
2430
*/
2431
if (folio_test_ksm(folio))
2432
return false;
2433
2434
age = rmap_item->age;
2435
if (age != U8_MAX)
2436
rmap_item->age++;
2437
2438
/*
2439
* Smaller ages are not skipped, they need to get a chance to go
2440
* through the different phases of the KSM merging.
2441
*/
2442
if (age < 3)
2443
return false;
2444
2445
/*
2446
* Are we still allowed to skip? If not, then don't skip it
2447
* and determine how much more often we are allowed to skip next.
2448
*/
2449
if (!rmap_item->remaining_skips) {
2450
rmap_item->remaining_skips = skip_age(age);
2451
return false;
2452
}
2453
2454
/* Skip this page */
2455
ksm_pages_skipped++;
2456
rmap_item->remaining_skips--;
2457
remove_rmap_item_from_tree(rmap_item);
2458
return true;
2459
}
2460
2461
static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2462
{
2463
struct mm_struct *mm;
2464
struct ksm_mm_slot *mm_slot;
2465
struct mm_slot *slot;
2466
struct vm_area_struct *vma;
2467
struct ksm_rmap_item *rmap_item;
2468
struct vma_iterator vmi;
2469
int nid;
2470
2471
if (list_empty(&ksm_mm_head.slot.mm_node))
2472
return NULL;
2473
2474
mm_slot = ksm_scan.mm_slot;
2475
if (mm_slot == &ksm_mm_head) {
2476
advisor_start_scan();
2477
trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2478
2479
/*
2480
* A number of pages can hang around indefinitely in per-cpu
2481
* LRU cache, raised page count preventing write_protect_page
2482
* from merging them. Though it doesn't really matter much,
2483
* it is puzzling to see some stuck in pages_volatile until
2484
* other activity jostles them out, and they also prevented
2485
* LTP's KSM test from succeeding deterministically; so drain
2486
* them here (here rather than on entry to ksm_do_scan(),
2487
* so we don't IPI too often when pages_to_scan is set low).
2488
*/
2489
lru_add_drain_all();
2490
2491
/*
2492
* Whereas stale stable_nodes on the stable_tree itself
2493
* get pruned in the regular course of stable_tree_search(),
2494
* those moved out to the migrate_nodes list can accumulate:
2495
* so prune them once before each full scan.
2496
*/
2497
if (!ksm_merge_across_nodes) {
2498
struct ksm_stable_node *stable_node, *next;
2499
struct folio *folio;
2500
2501
list_for_each_entry_safe(stable_node, next,
2502
&migrate_nodes, list) {
2503
folio = ksm_get_folio(stable_node,
2504
KSM_GET_FOLIO_NOLOCK);
2505
if (folio)
2506
folio_put(folio);
2507
cond_resched();
2508
}
2509
}
2510
2511
for (nid = 0; nid < ksm_nr_node_ids; nid++)
2512
root_unstable_tree[nid] = RB_ROOT;
2513
2514
spin_lock(&ksm_mmlist_lock);
2515
slot = list_entry(mm_slot->slot.mm_node.next,
2516
struct mm_slot, mm_node);
2517
mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2518
ksm_scan.mm_slot = mm_slot;
2519
spin_unlock(&ksm_mmlist_lock);
2520
/*
2521
* Although we tested list_empty() above, a racing __ksm_exit
2522
* of the last mm on the list may have removed it since then.
2523
*/
2524
if (mm_slot == &ksm_mm_head)
2525
return NULL;
2526
next_mm:
2527
ksm_scan.address = 0;
2528
ksm_scan.rmap_list = &mm_slot->rmap_list;
2529
}
2530
2531
slot = &mm_slot->slot;
2532
mm = slot->mm;
2533
vma_iter_init(&vmi, mm, ksm_scan.address);
2534
2535
mmap_read_lock(mm);
2536
if (ksm_test_exit(mm))
2537
goto no_vmas;
2538
2539
for_each_vma(vmi, vma) {
2540
if (!(vma->vm_flags & VM_MERGEABLE))
2541
continue;
2542
if (ksm_scan.address < vma->vm_start)
2543
ksm_scan.address = vma->vm_start;
2544
if (!vma->anon_vma)
2545
ksm_scan.address = vma->vm_end;
2546
2547
while (ksm_scan.address < vma->vm_end) {
2548
struct page *tmp_page = NULL;
2549
struct folio_walk fw;
2550
struct folio *folio;
2551
2552
if (ksm_test_exit(mm))
2553
break;
2554
2555
folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2556
if (folio) {
2557
if (!folio_is_zone_device(folio) &&
2558
folio_test_anon(folio)) {
2559
folio_get(folio);
2560
tmp_page = fw.page;
2561
}
2562
folio_walk_end(&fw, vma);
2563
}
2564
2565
if (tmp_page) {
2566
flush_anon_page(vma, tmp_page, ksm_scan.address);
2567
flush_dcache_page(tmp_page);
2568
rmap_item = get_next_rmap_item(mm_slot,
2569
ksm_scan.rmap_list, ksm_scan.address);
2570
if (rmap_item) {
2571
ksm_scan.rmap_list =
2572
&rmap_item->rmap_list;
2573
2574
if (should_skip_rmap_item(folio, rmap_item)) {
2575
folio_put(folio);
2576
goto next_page;
2577
}
2578
2579
ksm_scan.address += PAGE_SIZE;
2580
*page = tmp_page;
2581
} else {
2582
folio_put(folio);
2583
}
2584
mmap_read_unlock(mm);
2585
return rmap_item;
2586
}
2587
next_page:
2588
ksm_scan.address += PAGE_SIZE;
2589
cond_resched();
2590
}
2591
}
2592
2593
if (ksm_test_exit(mm)) {
2594
no_vmas:
2595
ksm_scan.address = 0;
2596
ksm_scan.rmap_list = &mm_slot->rmap_list;
2597
}
2598
/*
2599
* Nuke all the rmap_items that are above this current rmap:
2600
* because there were no VM_MERGEABLE vmas with such addresses.
2601
*/
2602
remove_trailing_rmap_items(ksm_scan.rmap_list);
2603
2604
spin_lock(&ksm_mmlist_lock);
2605
slot = list_entry(mm_slot->slot.mm_node.next,
2606
struct mm_slot, mm_node);
2607
ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2608
if (ksm_scan.address == 0) {
2609
/*
2610
* We've completed a full scan of all vmas, holding mmap_lock
2611
* throughout, and found no VM_MERGEABLE: so do the same as
2612
* __ksm_exit does to remove this mm from all our lists now.
2613
* This applies either when cleaning up after __ksm_exit
2614
* (but beware: we can reach here even before __ksm_exit),
2615
* or when all VM_MERGEABLE areas have been unmapped (and
2616
* mmap_lock then protects against race with MADV_MERGEABLE).
2617
*/
2618
hash_del(&mm_slot->slot.hash);
2619
list_del(&mm_slot->slot.mm_node);
2620
spin_unlock(&ksm_mmlist_lock);
2621
2622
mm_slot_free(mm_slot_cache, mm_slot);
2623
clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2624
clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2625
mmap_read_unlock(mm);
2626
mmdrop(mm);
2627
} else {
2628
mmap_read_unlock(mm);
2629
/*
2630
* mmap_read_unlock(mm) first because after
2631
* spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2632
* already have been freed under us by __ksm_exit()
2633
* because the "mm_slot" is still hashed and
2634
* ksm_scan.mm_slot doesn't point to it anymore.
2635
*/
2636
spin_unlock(&ksm_mmlist_lock);
2637
}
2638
2639
/* Repeat until we've completed scanning the whole list */
2640
mm_slot = ksm_scan.mm_slot;
2641
if (mm_slot != &ksm_mm_head)
2642
goto next_mm;
2643
2644
advisor_stop_scan();
2645
2646
trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2647
ksm_scan.seqnr++;
2648
return NULL;
2649
}
2650
2651
/**
2652
* ksm_do_scan - the ksm scanner main worker function.
2653
* @scan_npages: number of pages we want to scan before we return.
2654
*/
2655
static void ksm_do_scan(unsigned int scan_npages)
2656
{
2657
struct ksm_rmap_item *rmap_item;
2658
struct page *page;
2659
2660
while (scan_npages-- && likely(!freezing(current))) {
2661
cond_resched();
2662
rmap_item = scan_get_next_rmap_item(&page);
2663
if (!rmap_item)
2664
return;
2665
cmp_and_merge_page(page, rmap_item);
2666
put_page(page);
2667
ksm_pages_scanned++;
2668
}
2669
}
2670
2671
static int ksmd_should_run(void)
2672
{
2673
return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2674
}
2675
2676
static int ksm_scan_thread(void *nothing)
2677
{
2678
unsigned int sleep_ms;
2679
2680
set_freezable();
2681
set_user_nice(current, 5);
2682
2683
while (!kthread_should_stop()) {
2684
mutex_lock(&ksm_thread_mutex);
2685
wait_while_offlining();
2686
if (ksmd_should_run())
2687
ksm_do_scan(ksm_thread_pages_to_scan);
2688
mutex_unlock(&ksm_thread_mutex);
2689
2690
if (ksmd_should_run()) {
2691
sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2692
wait_event_freezable_timeout(ksm_iter_wait,
2693
sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2694
msecs_to_jiffies(sleep_ms));
2695
} else {
2696
wait_event_freezable(ksm_thread_wait,
2697
ksmd_should_run() || kthread_should_stop());
2698
}
2699
}
2700
return 0;
2701
}
2702
2703
static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2704
{
2705
if (vm_flags & VM_MERGEABLE)
2706
return false;
2707
2708
return ksm_compatible(file, vm_flags);
2709
}
2710
2711
static void __ksm_add_vma(struct vm_area_struct *vma)
2712
{
2713
if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2714
vm_flags_set(vma, VM_MERGEABLE);
2715
}
2716
2717
static int __ksm_del_vma(struct vm_area_struct *vma)
2718
{
2719
int err;
2720
2721
if (!(vma->vm_flags & VM_MERGEABLE))
2722
return 0;
2723
2724
if (vma->anon_vma) {
2725
err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2726
if (err)
2727
return err;
2728
}
2729
2730
vm_flags_clear(vma, VM_MERGEABLE);
2731
return 0;
2732
}
2733
/**
2734
* ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2735
*
2736
* @mm: Proposed VMA's mm_struct
2737
* @file: Proposed VMA's file-backed mapping, if any.
2738
* @vm_flags: Proposed VMA"s flags.
2739
*
2740
* Returns: @vm_flags possibly updated to mark mergeable.
2741
*/
2742
vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file,
2743
vm_flags_t vm_flags)
2744
{
2745
if (test_bit(MMF_VM_MERGE_ANY, &mm->flags) &&
2746
__ksm_should_add_vma(file, vm_flags))
2747
vm_flags |= VM_MERGEABLE;
2748
2749
return vm_flags;
2750
}
2751
2752
static void ksm_add_vmas(struct mm_struct *mm)
2753
{
2754
struct vm_area_struct *vma;
2755
2756
VMA_ITERATOR(vmi, mm, 0);
2757
for_each_vma(vmi, vma)
2758
__ksm_add_vma(vma);
2759
}
2760
2761
static int ksm_del_vmas(struct mm_struct *mm)
2762
{
2763
struct vm_area_struct *vma;
2764
int err;
2765
2766
VMA_ITERATOR(vmi, mm, 0);
2767
for_each_vma(vmi, vma) {
2768
err = __ksm_del_vma(vma);
2769
if (err)
2770
return err;
2771
}
2772
return 0;
2773
}
2774
2775
/**
2776
* ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2777
* compatible VMA's
2778
*
2779
* @mm: Pointer to mm
2780
*
2781
* Returns 0 on success, otherwise error code
2782
*/
2783
int ksm_enable_merge_any(struct mm_struct *mm)
2784
{
2785
int err;
2786
2787
if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2788
return 0;
2789
2790
if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2791
err = __ksm_enter(mm);
2792
if (err)
2793
return err;
2794
}
2795
2796
set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2797
ksm_add_vmas(mm);
2798
2799
return 0;
2800
}
2801
2802
/**
2803
* ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2804
* previously enabled via ksm_enable_merge_any().
2805
*
2806
* Disabling merging implies unmerging any merged pages, like setting
2807
* MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2808
* merging on all compatible VMA's remains enabled.
2809
*
2810
* @mm: Pointer to mm
2811
*
2812
* Returns 0 on success, otherwise error code
2813
*/
2814
int ksm_disable_merge_any(struct mm_struct *mm)
2815
{
2816
int err;
2817
2818
if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2819
return 0;
2820
2821
err = ksm_del_vmas(mm);
2822
if (err) {
2823
ksm_add_vmas(mm);
2824
return err;
2825
}
2826
2827
clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2828
return 0;
2829
}
2830
2831
int ksm_disable(struct mm_struct *mm)
2832
{
2833
mmap_assert_write_locked(mm);
2834
2835
if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2836
return 0;
2837
if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2838
return ksm_disable_merge_any(mm);
2839
return ksm_del_vmas(mm);
2840
}
2841
2842
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2843
unsigned long end, int advice, vm_flags_t *vm_flags)
2844
{
2845
struct mm_struct *mm = vma->vm_mm;
2846
int err;
2847
2848
switch (advice) {
2849
case MADV_MERGEABLE:
2850
if (vma->vm_flags & VM_MERGEABLE)
2851
return 0;
2852
if (!vma_ksm_compatible(vma))
2853
return 0;
2854
2855
if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2856
err = __ksm_enter(mm);
2857
if (err)
2858
return err;
2859
}
2860
2861
*vm_flags |= VM_MERGEABLE;
2862
break;
2863
2864
case MADV_UNMERGEABLE:
2865
if (!(*vm_flags & VM_MERGEABLE))
2866
return 0; /* just ignore the advice */
2867
2868
if (vma->anon_vma) {
2869
err = unmerge_ksm_pages(vma, start, end, true);
2870
if (err)
2871
return err;
2872
}
2873
2874
*vm_flags &= ~VM_MERGEABLE;
2875
break;
2876
}
2877
2878
return 0;
2879
}
2880
EXPORT_SYMBOL_GPL(ksm_madvise);
2881
2882
int __ksm_enter(struct mm_struct *mm)
2883
{
2884
struct ksm_mm_slot *mm_slot;
2885
struct mm_slot *slot;
2886
int needs_wakeup;
2887
2888
mm_slot = mm_slot_alloc(mm_slot_cache);
2889
if (!mm_slot)
2890
return -ENOMEM;
2891
2892
slot = &mm_slot->slot;
2893
2894
/* Check ksm_run too? Would need tighter locking */
2895
needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2896
2897
spin_lock(&ksm_mmlist_lock);
2898
mm_slot_insert(mm_slots_hash, mm, slot);
2899
/*
2900
* When KSM_RUN_MERGE (or KSM_RUN_STOP),
2901
* insert just behind the scanning cursor, to let the area settle
2902
* down a little; when fork is followed by immediate exec, we don't
2903
* want ksmd to waste time setting up and tearing down an rmap_list.
2904
*
2905
* But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2906
* scanning cursor, otherwise KSM pages in newly forked mms will be
2907
* missed: then we might as well insert at the end of the list.
2908
*/
2909
if (ksm_run & KSM_RUN_UNMERGE)
2910
list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2911
else
2912
list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2913
spin_unlock(&ksm_mmlist_lock);
2914
2915
set_bit(MMF_VM_MERGEABLE, &mm->flags);
2916
mmgrab(mm);
2917
2918
if (needs_wakeup)
2919
wake_up_interruptible(&ksm_thread_wait);
2920
2921
trace_ksm_enter(mm);
2922
return 0;
2923
}
2924
2925
void __ksm_exit(struct mm_struct *mm)
2926
{
2927
struct ksm_mm_slot *mm_slot;
2928
struct mm_slot *slot;
2929
int easy_to_free = 0;
2930
2931
/*
2932
* This process is exiting: if it's straightforward (as is the
2933
* case when ksmd was never running), free mm_slot immediately.
2934
* But if it's at the cursor or has rmap_items linked to it, use
2935
* mmap_lock to synchronize with any break_cows before pagetables
2936
* are freed, and leave the mm_slot on the list for ksmd to free.
2937
* Beware: ksm may already have noticed it exiting and freed the slot.
2938
*/
2939
2940
spin_lock(&ksm_mmlist_lock);
2941
slot = mm_slot_lookup(mm_slots_hash, mm);
2942
mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2943
if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2944
if (!mm_slot->rmap_list) {
2945
hash_del(&slot->hash);
2946
list_del(&slot->mm_node);
2947
easy_to_free = 1;
2948
} else {
2949
list_move(&slot->mm_node,
2950
&ksm_scan.mm_slot->slot.mm_node);
2951
}
2952
}
2953
spin_unlock(&ksm_mmlist_lock);
2954
2955
if (easy_to_free) {
2956
mm_slot_free(mm_slot_cache, mm_slot);
2957
clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2958
clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2959
mmdrop(mm);
2960
} else if (mm_slot) {
2961
mmap_write_lock(mm);
2962
mmap_write_unlock(mm);
2963
}
2964
2965
trace_ksm_exit(mm);
2966
}
2967
2968
struct folio *ksm_might_need_to_copy(struct folio *folio,
2969
struct vm_area_struct *vma, unsigned long addr)
2970
{
2971
struct page *page = folio_page(folio, 0);
2972
struct anon_vma *anon_vma = folio_anon_vma(folio);
2973
struct folio *new_folio;
2974
2975
if (folio_test_large(folio))
2976
return folio;
2977
2978
if (folio_test_ksm(folio)) {
2979
if (folio_stable_node(folio) &&
2980
!(ksm_run & KSM_RUN_UNMERGE))
2981
return folio; /* no need to copy it */
2982
} else if (!anon_vma) {
2983
return folio; /* no need to copy it */
2984
} else if (folio->index == linear_page_index(vma, addr) &&
2985
anon_vma->root == vma->anon_vma->root) {
2986
return folio; /* still no need to copy it */
2987
}
2988
if (PageHWPoison(page))
2989
return ERR_PTR(-EHWPOISON);
2990
if (!folio_test_uptodate(folio))
2991
return folio; /* let do_swap_page report the error */
2992
2993
new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2994
if (new_folio &&
2995
mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2996
folio_put(new_folio);
2997
new_folio = NULL;
2998
}
2999
if (new_folio) {
3000
if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3001
addr, vma)) {
3002
folio_put(new_folio);
3003
return ERR_PTR(-EHWPOISON);
3004
}
3005
folio_set_dirty(new_folio);
3006
__folio_mark_uptodate(new_folio);
3007
__folio_set_locked(new_folio);
3008
#ifdef CONFIG_SWAP
3009
count_vm_event(KSM_SWPIN_COPY);
3010
#endif
3011
}
3012
3013
return new_folio;
3014
}
3015
3016
void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3017
{
3018
struct ksm_stable_node *stable_node;
3019
struct ksm_rmap_item *rmap_item;
3020
int search_new_forks = 0;
3021
3022
VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3023
3024
/*
3025
* Rely on the page lock to protect against concurrent modifications
3026
* to that page's node of the stable tree.
3027
*/
3028
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3029
3030
stable_node = folio_stable_node(folio);
3031
if (!stable_node)
3032
return;
3033
again:
3034
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3035
struct anon_vma *anon_vma = rmap_item->anon_vma;
3036
struct anon_vma_chain *vmac;
3037
struct vm_area_struct *vma;
3038
3039
cond_resched();
3040
if (!anon_vma_trylock_read(anon_vma)) {
3041
if (rwc->try_lock) {
3042
rwc->contended = true;
3043
return;
3044
}
3045
anon_vma_lock_read(anon_vma);
3046
}
3047
anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3048
0, ULONG_MAX) {
3049
unsigned long addr;
3050
3051
cond_resched();
3052
vma = vmac->vma;
3053
3054
/* Ignore the stable/unstable/sqnr flags */
3055
addr = rmap_item->address & PAGE_MASK;
3056
3057
if (addr < vma->vm_start || addr >= vma->vm_end)
3058
continue;
3059
/*
3060
* Initially we examine only the vma which covers this
3061
* rmap_item; but later, if there is still work to do,
3062
* we examine covering vmas in other mms: in case they
3063
* were forked from the original since ksmd passed.
3064
*/
3065
if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3066
continue;
3067
3068
if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3069
continue;
3070
3071
if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3072
anon_vma_unlock_read(anon_vma);
3073
return;
3074
}
3075
if (rwc->done && rwc->done(folio)) {
3076
anon_vma_unlock_read(anon_vma);
3077
return;
3078
}
3079
}
3080
anon_vma_unlock_read(anon_vma);
3081
}
3082
if (!search_new_forks++)
3083
goto again;
3084
}
3085
3086
#ifdef CONFIG_MEMORY_FAILURE
3087
/*
3088
* Collect processes when the error hit an ksm page.
3089
*/
3090
void collect_procs_ksm(const struct folio *folio, const struct page *page,
3091
struct list_head *to_kill, int force_early)
3092
{
3093
struct ksm_stable_node *stable_node;
3094
struct ksm_rmap_item *rmap_item;
3095
struct vm_area_struct *vma;
3096
struct task_struct *tsk;
3097
3098
stable_node = folio_stable_node(folio);
3099
if (!stable_node)
3100
return;
3101
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3102
struct anon_vma *av = rmap_item->anon_vma;
3103
3104
anon_vma_lock_read(av);
3105
rcu_read_lock();
3106
for_each_process(tsk) {
3107
struct anon_vma_chain *vmac;
3108
unsigned long addr;
3109
struct task_struct *t =
3110
task_early_kill(tsk, force_early);
3111
if (!t)
3112
continue;
3113
anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3114
ULONG_MAX)
3115
{
3116
vma = vmac->vma;
3117
if (vma->vm_mm == t->mm) {
3118
addr = rmap_item->address & PAGE_MASK;
3119
add_to_kill_ksm(t, page, vma, to_kill,
3120
addr);
3121
}
3122
}
3123
}
3124
rcu_read_unlock();
3125
anon_vma_unlock_read(av);
3126
}
3127
}
3128
#endif
3129
3130
#ifdef CONFIG_MIGRATION
3131
void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3132
{
3133
struct ksm_stable_node *stable_node;
3134
3135
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3136
VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3137
VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3138
3139
stable_node = folio_stable_node(folio);
3140
if (stable_node) {
3141
VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3142
stable_node->kpfn = folio_pfn(newfolio);
3143
/*
3144
* newfolio->mapping was set in advance; now we need smp_wmb()
3145
* to make sure that the new stable_node->kpfn is visible
3146
* to ksm_get_folio() before it can see that folio->mapping
3147
* has gone stale (or that the swapcache flag has been cleared).
3148
*/
3149
smp_wmb();
3150
folio_set_stable_node(folio, NULL);
3151
}
3152
}
3153
#endif /* CONFIG_MIGRATION */
3154
3155
#ifdef CONFIG_MEMORY_HOTREMOVE
3156
static void wait_while_offlining(void)
3157
{
3158
while (ksm_run & KSM_RUN_OFFLINE) {
3159
mutex_unlock(&ksm_thread_mutex);
3160
wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3161
TASK_UNINTERRUPTIBLE);
3162
mutex_lock(&ksm_thread_mutex);
3163
}
3164
}
3165
3166
static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3167
unsigned long start_pfn,
3168
unsigned long end_pfn)
3169
{
3170
if (stable_node->kpfn >= start_pfn &&
3171
stable_node->kpfn < end_pfn) {
3172
/*
3173
* Don't ksm_get_folio, page has already gone:
3174
* which is why we keep kpfn instead of page*
3175
*/
3176
remove_node_from_stable_tree(stable_node);
3177
return true;
3178
}
3179
return false;
3180
}
3181
3182
static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3183
unsigned long start_pfn,
3184
unsigned long end_pfn,
3185
struct rb_root *root)
3186
{
3187
struct ksm_stable_node *dup;
3188
struct hlist_node *hlist_safe;
3189
3190
if (!is_stable_node_chain(stable_node)) {
3191
VM_BUG_ON(is_stable_node_dup(stable_node));
3192
return stable_node_dup_remove_range(stable_node, start_pfn,
3193
end_pfn);
3194
}
3195
3196
hlist_for_each_entry_safe(dup, hlist_safe,
3197
&stable_node->hlist, hlist_dup) {
3198
VM_BUG_ON(!is_stable_node_dup(dup));
3199
stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3200
}
3201
if (hlist_empty(&stable_node->hlist)) {
3202
free_stable_node_chain(stable_node, root);
3203
return true; /* notify caller that tree was rebalanced */
3204
} else
3205
return false;
3206
}
3207
3208
static void ksm_check_stable_tree(unsigned long start_pfn,
3209
unsigned long end_pfn)
3210
{
3211
struct ksm_stable_node *stable_node, *next;
3212
struct rb_node *node;
3213
int nid;
3214
3215
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3216
node = rb_first(root_stable_tree + nid);
3217
while (node) {
3218
stable_node = rb_entry(node, struct ksm_stable_node, node);
3219
if (stable_node_chain_remove_range(stable_node,
3220
start_pfn, end_pfn,
3221
root_stable_tree +
3222
nid))
3223
node = rb_first(root_stable_tree + nid);
3224
else
3225
node = rb_next(node);
3226
cond_resched();
3227
}
3228
}
3229
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3230
if (stable_node->kpfn >= start_pfn &&
3231
stable_node->kpfn < end_pfn)
3232
remove_node_from_stable_tree(stable_node);
3233
cond_resched();
3234
}
3235
}
3236
3237
static int ksm_memory_callback(struct notifier_block *self,
3238
unsigned long action, void *arg)
3239
{
3240
struct memory_notify *mn = arg;
3241
3242
switch (action) {
3243
case MEM_GOING_OFFLINE:
3244
/*
3245
* Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3246
* and remove_all_stable_nodes() while memory is going offline:
3247
* it is unsafe for them to touch the stable tree at this time.
3248
* But unmerge_ksm_pages(), rmap lookups and other entry points
3249
* which do not need the ksm_thread_mutex are all safe.
3250
*/
3251
mutex_lock(&ksm_thread_mutex);
3252
ksm_run |= KSM_RUN_OFFLINE;
3253
mutex_unlock(&ksm_thread_mutex);
3254
break;
3255
3256
case MEM_OFFLINE:
3257
/*
3258
* Most of the work is done by page migration; but there might
3259
* be a few stable_nodes left over, still pointing to struct
3260
* pages which have been offlined: prune those from the tree,
3261
* otherwise ksm_get_folio() might later try to access a
3262
* non-existent struct page.
3263
*/
3264
ksm_check_stable_tree(mn->start_pfn,
3265
mn->start_pfn + mn->nr_pages);
3266
fallthrough;
3267
case MEM_CANCEL_OFFLINE:
3268
mutex_lock(&ksm_thread_mutex);
3269
ksm_run &= ~KSM_RUN_OFFLINE;
3270
mutex_unlock(&ksm_thread_mutex);
3271
3272
smp_mb(); /* wake_up_bit advises this */
3273
wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3274
break;
3275
}
3276
return NOTIFY_OK;
3277
}
3278
#else
3279
static void wait_while_offlining(void)
3280
{
3281
}
3282
#endif /* CONFIG_MEMORY_HOTREMOVE */
3283
3284
#ifdef CONFIG_PROC_FS
3285
/*
3286
* The process is mergeable only if any VMA is currently
3287
* applicable to KSM.
3288
*
3289
* The mmap lock must be held in read mode.
3290
*/
3291
bool ksm_process_mergeable(struct mm_struct *mm)
3292
{
3293
struct vm_area_struct *vma;
3294
3295
mmap_assert_locked(mm);
3296
VMA_ITERATOR(vmi, mm, 0);
3297
for_each_vma(vmi, vma)
3298
if (vma->vm_flags & VM_MERGEABLE)
3299
return true;
3300
3301
return false;
3302
}
3303
3304
long ksm_process_profit(struct mm_struct *mm)
3305
{
3306
return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3307
mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3308
}
3309
#endif /* CONFIG_PROC_FS */
3310
3311
#ifdef CONFIG_SYSFS
3312
/*
3313
* This all compiles without CONFIG_SYSFS, but is a waste of space.
3314
*/
3315
3316
#define KSM_ATTR_RO(_name) \
3317
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3318
#define KSM_ATTR(_name) \
3319
static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3320
3321
static ssize_t sleep_millisecs_show(struct kobject *kobj,
3322
struct kobj_attribute *attr, char *buf)
3323
{
3324
return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3325
}
3326
3327
static ssize_t sleep_millisecs_store(struct kobject *kobj,
3328
struct kobj_attribute *attr,
3329
const char *buf, size_t count)
3330
{
3331
unsigned int msecs;
3332
int err;
3333
3334
err = kstrtouint(buf, 10, &msecs);
3335
if (err)
3336
return -EINVAL;
3337
3338
ksm_thread_sleep_millisecs = msecs;
3339
wake_up_interruptible(&ksm_iter_wait);
3340
3341
return count;
3342
}
3343
KSM_ATTR(sleep_millisecs);
3344
3345
static ssize_t pages_to_scan_show(struct kobject *kobj,
3346
struct kobj_attribute *attr, char *buf)
3347
{
3348
return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3349
}
3350
3351
static ssize_t pages_to_scan_store(struct kobject *kobj,
3352
struct kobj_attribute *attr,
3353
const char *buf, size_t count)
3354
{
3355
unsigned int nr_pages;
3356
int err;
3357
3358
if (ksm_advisor != KSM_ADVISOR_NONE)
3359
return -EINVAL;
3360
3361
err = kstrtouint(buf, 10, &nr_pages);
3362
if (err)
3363
return -EINVAL;
3364
3365
ksm_thread_pages_to_scan = nr_pages;
3366
3367
return count;
3368
}
3369
KSM_ATTR(pages_to_scan);
3370
3371
static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3372
char *buf)
3373
{
3374
return sysfs_emit(buf, "%lu\n", ksm_run);
3375
}
3376
3377
static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3378
const char *buf, size_t count)
3379
{
3380
unsigned int flags;
3381
int err;
3382
3383
err = kstrtouint(buf, 10, &flags);
3384
if (err)
3385
return -EINVAL;
3386
if (flags > KSM_RUN_UNMERGE)
3387
return -EINVAL;
3388
3389
/*
3390
* KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3391
* KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3392
* breaking COW to free the pages_shared (but leaves mm_slots
3393
* on the list for when ksmd may be set running again).
3394
*/
3395
3396
mutex_lock(&ksm_thread_mutex);
3397
wait_while_offlining();
3398
if (ksm_run != flags) {
3399
ksm_run = flags;
3400
if (flags & KSM_RUN_UNMERGE) {
3401
set_current_oom_origin();
3402
err = unmerge_and_remove_all_rmap_items();
3403
clear_current_oom_origin();
3404
if (err) {
3405
ksm_run = KSM_RUN_STOP;
3406
count = err;
3407
}
3408
}
3409
}
3410
mutex_unlock(&ksm_thread_mutex);
3411
3412
if (flags & KSM_RUN_MERGE)
3413
wake_up_interruptible(&ksm_thread_wait);
3414
3415
return count;
3416
}
3417
KSM_ATTR(run);
3418
3419
#ifdef CONFIG_NUMA
3420
static ssize_t merge_across_nodes_show(struct kobject *kobj,
3421
struct kobj_attribute *attr, char *buf)
3422
{
3423
return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3424
}
3425
3426
static ssize_t merge_across_nodes_store(struct kobject *kobj,
3427
struct kobj_attribute *attr,
3428
const char *buf, size_t count)
3429
{
3430
int err;
3431
unsigned long knob;
3432
3433
err = kstrtoul(buf, 10, &knob);
3434
if (err)
3435
return err;
3436
if (knob > 1)
3437
return -EINVAL;
3438
3439
mutex_lock(&ksm_thread_mutex);
3440
wait_while_offlining();
3441
if (ksm_merge_across_nodes != knob) {
3442
if (ksm_pages_shared || remove_all_stable_nodes())
3443
err = -EBUSY;
3444
else if (root_stable_tree == one_stable_tree) {
3445
struct rb_root *buf;
3446
/*
3447
* This is the first time that we switch away from the
3448
* default of merging across nodes: must now allocate
3449
* a buffer to hold as many roots as may be needed.
3450
* Allocate stable and unstable together:
3451
* MAXSMP NODES_SHIFT 10 will use 16kB.
3452
*/
3453
buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3454
GFP_KERNEL);
3455
/* Let us assume that RB_ROOT is NULL is zero */
3456
if (!buf)
3457
err = -ENOMEM;
3458
else {
3459
root_stable_tree = buf;
3460
root_unstable_tree = buf + nr_node_ids;
3461
/* Stable tree is empty but not the unstable */
3462
root_unstable_tree[0] = one_unstable_tree[0];
3463
}
3464
}
3465
if (!err) {
3466
ksm_merge_across_nodes = knob;
3467
ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3468
}
3469
}
3470
mutex_unlock(&ksm_thread_mutex);
3471
3472
return err ? err : count;
3473
}
3474
KSM_ATTR(merge_across_nodes);
3475
#endif
3476
3477
static ssize_t use_zero_pages_show(struct kobject *kobj,
3478
struct kobj_attribute *attr, char *buf)
3479
{
3480
return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3481
}
3482
static ssize_t use_zero_pages_store(struct kobject *kobj,
3483
struct kobj_attribute *attr,
3484
const char *buf, size_t count)
3485
{
3486
int err;
3487
bool value;
3488
3489
err = kstrtobool(buf, &value);
3490
if (err)
3491
return -EINVAL;
3492
3493
ksm_use_zero_pages = value;
3494
3495
return count;
3496
}
3497
KSM_ATTR(use_zero_pages);
3498
3499
static ssize_t max_page_sharing_show(struct kobject *kobj,
3500
struct kobj_attribute *attr, char *buf)
3501
{
3502
return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3503
}
3504
3505
static ssize_t max_page_sharing_store(struct kobject *kobj,
3506
struct kobj_attribute *attr,
3507
const char *buf, size_t count)
3508
{
3509
int err;
3510
int knob;
3511
3512
err = kstrtoint(buf, 10, &knob);
3513
if (err)
3514
return err;
3515
/*
3516
* When a KSM page is created it is shared by 2 mappings. This
3517
* being a signed comparison, it implicitly verifies it's not
3518
* negative.
3519
*/
3520
if (knob < 2)
3521
return -EINVAL;
3522
3523
if (READ_ONCE(ksm_max_page_sharing) == knob)
3524
return count;
3525
3526
mutex_lock(&ksm_thread_mutex);
3527
wait_while_offlining();
3528
if (ksm_max_page_sharing != knob) {
3529
if (ksm_pages_shared || remove_all_stable_nodes())
3530
err = -EBUSY;
3531
else
3532
ksm_max_page_sharing = knob;
3533
}
3534
mutex_unlock(&ksm_thread_mutex);
3535
3536
return err ? err : count;
3537
}
3538
KSM_ATTR(max_page_sharing);
3539
3540
static ssize_t pages_scanned_show(struct kobject *kobj,
3541
struct kobj_attribute *attr, char *buf)
3542
{
3543
return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3544
}
3545
KSM_ATTR_RO(pages_scanned);
3546
3547
static ssize_t pages_shared_show(struct kobject *kobj,
3548
struct kobj_attribute *attr, char *buf)
3549
{
3550
return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3551
}
3552
KSM_ATTR_RO(pages_shared);
3553
3554
static ssize_t pages_sharing_show(struct kobject *kobj,
3555
struct kobj_attribute *attr, char *buf)
3556
{
3557
return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3558
}
3559
KSM_ATTR_RO(pages_sharing);
3560
3561
static ssize_t pages_unshared_show(struct kobject *kobj,
3562
struct kobj_attribute *attr, char *buf)
3563
{
3564
return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3565
}
3566
KSM_ATTR_RO(pages_unshared);
3567
3568
static ssize_t pages_volatile_show(struct kobject *kobj,
3569
struct kobj_attribute *attr, char *buf)
3570
{
3571
long ksm_pages_volatile;
3572
3573
ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3574
- ksm_pages_sharing - ksm_pages_unshared;
3575
/*
3576
* It was not worth any locking to calculate that statistic,
3577
* but it might therefore sometimes be negative: conceal that.
3578
*/
3579
if (ksm_pages_volatile < 0)
3580
ksm_pages_volatile = 0;
3581
return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3582
}
3583
KSM_ATTR_RO(pages_volatile);
3584
3585
static ssize_t pages_skipped_show(struct kobject *kobj,
3586
struct kobj_attribute *attr, char *buf)
3587
{
3588
return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3589
}
3590
KSM_ATTR_RO(pages_skipped);
3591
3592
static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3593
struct kobj_attribute *attr, char *buf)
3594
{
3595
return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3596
}
3597
KSM_ATTR_RO(ksm_zero_pages);
3598
3599
static ssize_t general_profit_show(struct kobject *kobj,
3600
struct kobj_attribute *attr, char *buf)
3601
{
3602
long general_profit;
3603
3604
general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3605
ksm_rmap_items * sizeof(struct ksm_rmap_item);
3606
3607
return sysfs_emit(buf, "%ld\n", general_profit);
3608
}
3609
KSM_ATTR_RO(general_profit);
3610
3611
static ssize_t stable_node_dups_show(struct kobject *kobj,
3612
struct kobj_attribute *attr, char *buf)
3613
{
3614
return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3615
}
3616
KSM_ATTR_RO(stable_node_dups);
3617
3618
static ssize_t stable_node_chains_show(struct kobject *kobj,
3619
struct kobj_attribute *attr, char *buf)
3620
{
3621
return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3622
}
3623
KSM_ATTR_RO(stable_node_chains);
3624
3625
static ssize_t
3626
stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3627
struct kobj_attribute *attr,
3628
char *buf)
3629
{
3630
return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3631
}
3632
3633
static ssize_t
3634
stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3635
struct kobj_attribute *attr,
3636
const char *buf, size_t count)
3637
{
3638
unsigned int msecs;
3639
int err;
3640
3641
err = kstrtouint(buf, 10, &msecs);
3642
if (err)
3643
return -EINVAL;
3644
3645
ksm_stable_node_chains_prune_millisecs = msecs;
3646
3647
return count;
3648
}
3649
KSM_ATTR(stable_node_chains_prune_millisecs);
3650
3651
static ssize_t full_scans_show(struct kobject *kobj,
3652
struct kobj_attribute *attr, char *buf)
3653
{
3654
return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3655
}
3656
KSM_ATTR_RO(full_scans);
3657
3658
static ssize_t smart_scan_show(struct kobject *kobj,
3659
struct kobj_attribute *attr, char *buf)
3660
{
3661
return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3662
}
3663
3664
static ssize_t smart_scan_store(struct kobject *kobj,
3665
struct kobj_attribute *attr,
3666
const char *buf, size_t count)
3667
{
3668
int err;
3669
bool value;
3670
3671
err = kstrtobool(buf, &value);
3672
if (err)
3673
return -EINVAL;
3674
3675
ksm_smart_scan = value;
3676
return count;
3677
}
3678
KSM_ATTR(smart_scan);
3679
3680
static ssize_t advisor_mode_show(struct kobject *kobj,
3681
struct kobj_attribute *attr, char *buf)
3682
{
3683
const char *output;
3684
3685
if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3686
output = "none [scan-time]";
3687
else
3688
output = "[none] scan-time";
3689
3690
return sysfs_emit(buf, "%s\n", output);
3691
}
3692
3693
static ssize_t advisor_mode_store(struct kobject *kobj,
3694
struct kobj_attribute *attr, const char *buf,
3695
size_t count)
3696
{
3697
enum ksm_advisor_type curr_advisor = ksm_advisor;
3698
3699
if (sysfs_streq("scan-time", buf))
3700
ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3701
else if (sysfs_streq("none", buf))
3702
ksm_advisor = KSM_ADVISOR_NONE;
3703
else
3704
return -EINVAL;
3705
3706
/* Set advisor default values */
3707
if (curr_advisor != ksm_advisor)
3708
set_advisor_defaults();
3709
3710
return count;
3711
}
3712
KSM_ATTR(advisor_mode);
3713
3714
static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3715
struct kobj_attribute *attr, char *buf)
3716
{
3717
return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3718
}
3719
3720
static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3721
struct kobj_attribute *attr,
3722
const char *buf, size_t count)
3723
{
3724
int err;
3725
unsigned long value;
3726
3727
err = kstrtoul(buf, 10, &value);
3728
if (err)
3729
return -EINVAL;
3730
3731
ksm_advisor_max_cpu = value;
3732
return count;
3733
}
3734
KSM_ATTR(advisor_max_cpu);
3735
3736
static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3737
struct kobj_attribute *attr, char *buf)
3738
{
3739
return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3740
}
3741
3742
static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3743
struct kobj_attribute *attr,
3744
const char *buf, size_t count)
3745
{
3746
int err;
3747
unsigned long value;
3748
3749
err = kstrtoul(buf, 10, &value);
3750
if (err)
3751
return -EINVAL;
3752
3753
ksm_advisor_min_pages_to_scan = value;
3754
return count;
3755
}
3756
KSM_ATTR(advisor_min_pages_to_scan);
3757
3758
static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3759
struct kobj_attribute *attr, char *buf)
3760
{
3761
return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3762
}
3763
3764
static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3765
struct kobj_attribute *attr,
3766
const char *buf, size_t count)
3767
{
3768
int err;
3769
unsigned long value;
3770
3771
err = kstrtoul(buf, 10, &value);
3772
if (err)
3773
return -EINVAL;
3774
3775
ksm_advisor_max_pages_to_scan = value;
3776
return count;
3777
}
3778
KSM_ATTR(advisor_max_pages_to_scan);
3779
3780
static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3781
struct kobj_attribute *attr, char *buf)
3782
{
3783
return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3784
}
3785
3786
static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3787
struct kobj_attribute *attr,
3788
const char *buf, size_t count)
3789
{
3790
int err;
3791
unsigned long value;
3792
3793
err = kstrtoul(buf, 10, &value);
3794
if (err)
3795
return -EINVAL;
3796
if (value < 1)
3797
return -EINVAL;
3798
3799
ksm_advisor_target_scan_time = value;
3800
return count;
3801
}
3802
KSM_ATTR(advisor_target_scan_time);
3803
3804
static struct attribute *ksm_attrs[] = {
3805
&sleep_millisecs_attr.attr,
3806
&pages_to_scan_attr.attr,
3807
&run_attr.attr,
3808
&pages_scanned_attr.attr,
3809
&pages_shared_attr.attr,
3810
&pages_sharing_attr.attr,
3811
&pages_unshared_attr.attr,
3812
&pages_volatile_attr.attr,
3813
&pages_skipped_attr.attr,
3814
&ksm_zero_pages_attr.attr,
3815
&full_scans_attr.attr,
3816
#ifdef CONFIG_NUMA
3817
&merge_across_nodes_attr.attr,
3818
#endif
3819
&max_page_sharing_attr.attr,
3820
&stable_node_chains_attr.attr,
3821
&stable_node_dups_attr.attr,
3822
&stable_node_chains_prune_millisecs_attr.attr,
3823
&use_zero_pages_attr.attr,
3824
&general_profit_attr.attr,
3825
&smart_scan_attr.attr,
3826
&advisor_mode_attr.attr,
3827
&advisor_max_cpu_attr.attr,
3828
&advisor_min_pages_to_scan_attr.attr,
3829
&advisor_max_pages_to_scan_attr.attr,
3830
&advisor_target_scan_time_attr.attr,
3831
NULL,
3832
};
3833
3834
static const struct attribute_group ksm_attr_group = {
3835
.attrs = ksm_attrs,
3836
.name = "ksm",
3837
};
3838
#endif /* CONFIG_SYSFS */
3839
3840
static int __init ksm_init(void)
3841
{
3842
struct task_struct *ksm_thread;
3843
int err;
3844
3845
/* The correct value depends on page size and endianness */
3846
zero_checksum = calc_checksum(ZERO_PAGE(0));
3847
/* Default to false for backwards compatibility */
3848
ksm_use_zero_pages = false;
3849
3850
err = ksm_slab_init();
3851
if (err)
3852
goto out;
3853
3854
ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3855
if (IS_ERR(ksm_thread)) {
3856
pr_err("ksm: creating kthread failed\n");
3857
err = PTR_ERR(ksm_thread);
3858
goto out_free;
3859
}
3860
3861
#ifdef CONFIG_SYSFS
3862
err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3863
if (err) {
3864
pr_err("ksm: register sysfs failed\n");
3865
kthread_stop(ksm_thread);
3866
goto out_free;
3867
}
3868
#else
3869
ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3870
3871
#endif /* CONFIG_SYSFS */
3872
3873
#ifdef CONFIG_MEMORY_HOTREMOVE
3874
/* There is no significance to this priority 100 */
3875
hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3876
#endif
3877
return 0;
3878
3879
out_free:
3880
ksm_slab_free();
3881
out:
3882
return err;
3883
}
3884
subsys_initcall(ksm_init);
3885
3886