Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/bluetooth/hci_conn.c
50032 views
1
/*
2
BlueZ - Bluetooth protocol stack for Linux
3
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
Copyright 2023-2024 NXP
5
6
Written 2000,2001 by Maxim Krasnyansky <[email protected]>
7
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License version 2 as
10
published by the Free Software Foundation;
11
12
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23
SOFTWARE IS DISCLAIMED.
24
*/
25
26
/* Bluetooth HCI connection handling. */
27
28
#include <linux/export.h>
29
#include <linux/debugfs.h>
30
#include <linux/errqueue.h>
31
32
#include <net/bluetooth/bluetooth.h>
33
#include <net/bluetooth/hci_core.h>
34
#include <net/bluetooth/l2cap.h>
35
#include <net/bluetooth/iso.h>
36
#include <net/bluetooth/mgmt.h>
37
38
#include "smp.h"
39
#include "eir.h"
40
41
struct sco_param {
42
u16 pkt_type;
43
u16 max_latency;
44
u8 retrans_effort;
45
};
46
47
struct conn_handle_t {
48
struct hci_conn *conn;
49
__u16 handle;
50
};
51
52
static const struct sco_param esco_param_cvsd[] = {
53
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
54
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
55
{ EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
56
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
57
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
58
};
59
60
static const struct sco_param sco_param_cvsd[] = {
61
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
62
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
63
};
64
65
static const struct sco_param esco_param_msbc[] = {
66
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
67
{ EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
68
};
69
70
/* This function requires the caller holds hdev->lock */
71
void hci_connect_le_scan_cleanup(struct hci_conn *conn, u8 status)
72
{
73
struct hci_conn_params *params;
74
struct hci_dev *hdev = conn->hdev;
75
struct smp_irk *irk;
76
bdaddr_t *bdaddr;
77
u8 bdaddr_type;
78
79
bdaddr = &conn->dst;
80
bdaddr_type = conn->dst_type;
81
82
/* Check if we need to convert to identity address */
83
irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
84
if (irk) {
85
bdaddr = &irk->bdaddr;
86
bdaddr_type = irk->addr_type;
87
}
88
89
params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
90
bdaddr_type);
91
if (!params)
92
return;
93
94
if (params->conn) {
95
hci_conn_drop(params->conn);
96
hci_conn_put(params->conn);
97
params->conn = NULL;
98
}
99
100
if (!params->explicit_connect)
101
return;
102
103
/* If the status indicates successful cancellation of
104
* the attempt (i.e. Unknown Connection Id) there's no point of
105
* notifying failure since we'll go back to keep trying to
106
* connect. The only exception is explicit connect requests
107
* where a timeout + cancel does indicate an actual failure.
108
*/
109
if (status && status != HCI_ERROR_UNKNOWN_CONN_ID)
110
mgmt_connect_failed(hdev, conn, status);
111
112
/* The connection attempt was doing scan for new RPA, and is
113
* in scan phase. If params are not associated with any other
114
* autoconnect action, remove them completely. If they are, just unmark
115
* them as waiting for connection, by clearing explicit_connect field.
116
*/
117
params->explicit_connect = false;
118
119
hci_pend_le_list_del_init(params);
120
121
switch (params->auto_connect) {
122
case HCI_AUTO_CONN_EXPLICIT:
123
hci_conn_params_del(hdev, bdaddr, bdaddr_type);
124
/* return instead of break to avoid duplicate scan update */
125
return;
126
case HCI_AUTO_CONN_DIRECT:
127
case HCI_AUTO_CONN_ALWAYS:
128
hci_pend_le_list_add(params, &hdev->pend_le_conns);
129
break;
130
case HCI_AUTO_CONN_REPORT:
131
hci_pend_le_list_add(params, &hdev->pend_le_reports);
132
break;
133
default:
134
break;
135
}
136
137
hci_update_passive_scan(hdev);
138
}
139
140
static void hci_conn_cleanup(struct hci_conn *conn)
141
{
142
struct hci_dev *hdev = conn->hdev;
143
144
if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
145
hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
146
147
if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags))
148
hci_remove_link_key(hdev, &conn->dst);
149
150
hci_chan_list_flush(conn);
151
152
if (HCI_CONN_HANDLE_UNSET(conn->handle))
153
ida_free(&hdev->unset_handle_ida, conn->handle);
154
155
if (conn->cleanup)
156
conn->cleanup(conn);
157
158
if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
159
switch (conn->setting & SCO_AIRMODE_MASK) {
160
case SCO_AIRMODE_CVSD:
161
case SCO_AIRMODE_TRANSP:
162
if (hdev->notify)
163
hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
164
break;
165
}
166
} else {
167
if (hdev->notify)
168
hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
169
}
170
171
debugfs_remove_recursive(conn->debugfs);
172
173
hci_conn_del_sysfs(conn);
174
175
hci_dev_put(hdev);
176
}
177
178
int hci_disconnect(struct hci_conn *conn, __u8 reason)
179
{
180
BT_DBG("hcon %p", conn);
181
182
/* When we are central of an established connection and it enters
183
* the disconnect timeout, then go ahead and try to read the
184
* current clock offset. Processing of the result is done
185
* within the event handling and hci_clock_offset_evt function.
186
*/
187
if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
188
(conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
189
struct hci_dev *hdev = conn->hdev;
190
struct hci_cp_read_clock_offset clkoff_cp;
191
192
clkoff_cp.handle = cpu_to_le16(conn->handle);
193
hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
194
&clkoff_cp);
195
}
196
197
return hci_abort_conn(conn, reason);
198
}
199
200
static void hci_add_sco(struct hci_conn *conn, __u16 handle)
201
{
202
struct hci_dev *hdev = conn->hdev;
203
struct hci_cp_add_sco cp;
204
205
BT_DBG("hcon %p", conn);
206
207
conn->state = BT_CONNECT;
208
conn->out = true;
209
210
conn->attempt++;
211
212
cp.handle = cpu_to_le16(handle);
213
cp.pkt_type = cpu_to_le16(conn->pkt_type);
214
215
hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
216
}
217
218
static bool find_next_esco_param(struct hci_conn *conn,
219
const struct sco_param *esco_param, int size)
220
{
221
if (!conn->parent)
222
return false;
223
224
for (; conn->attempt <= size; conn->attempt++) {
225
if (lmp_esco_2m_capable(conn->parent) ||
226
(esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
227
break;
228
BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
229
conn, conn->attempt);
230
}
231
232
return conn->attempt <= size;
233
}
234
235
static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec)
236
{
237
int err;
238
__u8 vnd_len, *vnd_data = NULL;
239
struct hci_op_configure_data_path *cmd = NULL;
240
241
/* Do not take below 2 checks as error since the 1st means user do not
242
* want to use HFP offload mode and the 2nd means the vendor controller
243
* do not need to send below HCI command for offload mode.
244
*/
245
if (!codec->data_path || !hdev->get_codec_config_data)
246
return 0;
247
248
err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
249
&vnd_data);
250
if (err < 0)
251
goto error;
252
253
cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
254
if (!cmd) {
255
err = -ENOMEM;
256
goto error;
257
}
258
259
err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
260
if (err < 0)
261
goto error;
262
263
cmd->vnd_len = vnd_len;
264
memcpy(cmd->vnd_data, vnd_data, vnd_len);
265
266
cmd->direction = 0x00;
267
__hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH,
268
sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT);
269
270
cmd->direction = 0x01;
271
err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH,
272
sizeof(*cmd) + vnd_len, cmd,
273
HCI_CMD_TIMEOUT);
274
error:
275
276
kfree(cmd);
277
kfree(vnd_data);
278
return err;
279
}
280
281
static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data)
282
{
283
struct conn_handle_t *conn_handle = data;
284
struct hci_conn *conn = conn_handle->conn;
285
__u16 handle = conn_handle->handle;
286
struct hci_cp_enhanced_setup_sync_conn cp;
287
const struct sco_param *param;
288
289
kfree(conn_handle);
290
291
if (!hci_conn_valid(hdev, conn))
292
return -ECANCELED;
293
294
bt_dev_dbg(hdev, "hcon %p", conn);
295
296
configure_datapath_sync(hdev, &conn->codec);
297
298
conn->state = BT_CONNECT;
299
conn->out = true;
300
301
conn->attempt++;
302
303
memset(&cp, 0x00, sizeof(cp));
304
305
cp.handle = cpu_to_le16(handle);
306
307
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
308
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
309
310
switch (conn->codec.id) {
311
case BT_CODEC_MSBC:
312
if (!find_next_esco_param(conn, esco_param_msbc,
313
ARRAY_SIZE(esco_param_msbc)))
314
return -EINVAL;
315
316
param = &esco_param_msbc[conn->attempt - 1];
317
cp.tx_coding_format.id = 0x05;
318
cp.rx_coding_format.id = 0x05;
319
cp.tx_codec_frame_size = __cpu_to_le16(60);
320
cp.rx_codec_frame_size = __cpu_to_le16(60);
321
cp.in_bandwidth = __cpu_to_le32(32000);
322
cp.out_bandwidth = __cpu_to_le32(32000);
323
cp.in_coding_format.id = 0x04;
324
cp.out_coding_format.id = 0x04;
325
cp.in_coded_data_size = __cpu_to_le16(16);
326
cp.out_coded_data_size = __cpu_to_le16(16);
327
cp.in_pcm_data_format = 2;
328
cp.out_pcm_data_format = 2;
329
cp.in_pcm_sample_payload_msb_pos = 0;
330
cp.out_pcm_sample_payload_msb_pos = 0;
331
cp.in_data_path = conn->codec.data_path;
332
cp.out_data_path = conn->codec.data_path;
333
cp.in_transport_unit_size = 1;
334
cp.out_transport_unit_size = 1;
335
break;
336
337
case BT_CODEC_TRANSPARENT:
338
if (!find_next_esco_param(conn, esco_param_msbc,
339
ARRAY_SIZE(esco_param_msbc)))
340
return -EINVAL;
341
342
param = &esco_param_msbc[conn->attempt - 1];
343
cp.tx_coding_format.id = 0x03;
344
cp.rx_coding_format.id = 0x03;
345
cp.tx_codec_frame_size = __cpu_to_le16(60);
346
cp.rx_codec_frame_size = __cpu_to_le16(60);
347
cp.in_bandwidth = __cpu_to_le32(0x1f40);
348
cp.out_bandwidth = __cpu_to_le32(0x1f40);
349
cp.in_coding_format.id = 0x03;
350
cp.out_coding_format.id = 0x03;
351
cp.in_coded_data_size = __cpu_to_le16(16);
352
cp.out_coded_data_size = __cpu_to_le16(16);
353
cp.in_pcm_data_format = 2;
354
cp.out_pcm_data_format = 2;
355
cp.in_pcm_sample_payload_msb_pos = 0;
356
cp.out_pcm_sample_payload_msb_pos = 0;
357
cp.in_data_path = conn->codec.data_path;
358
cp.out_data_path = conn->codec.data_path;
359
cp.in_transport_unit_size = 1;
360
cp.out_transport_unit_size = 1;
361
break;
362
363
case BT_CODEC_CVSD:
364
if (conn->parent && lmp_esco_capable(conn->parent)) {
365
if (!find_next_esco_param(conn, esco_param_cvsd,
366
ARRAY_SIZE(esco_param_cvsd)))
367
return -EINVAL;
368
param = &esco_param_cvsd[conn->attempt - 1];
369
} else {
370
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
371
return -EINVAL;
372
param = &sco_param_cvsd[conn->attempt - 1];
373
}
374
cp.tx_coding_format.id = 2;
375
cp.rx_coding_format.id = 2;
376
cp.tx_codec_frame_size = __cpu_to_le16(60);
377
cp.rx_codec_frame_size = __cpu_to_le16(60);
378
cp.in_bandwidth = __cpu_to_le32(16000);
379
cp.out_bandwidth = __cpu_to_le32(16000);
380
cp.in_coding_format.id = 4;
381
cp.out_coding_format.id = 4;
382
cp.in_coded_data_size = __cpu_to_le16(16);
383
cp.out_coded_data_size = __cpu_to_le16(16);
384
cp.in_pcm_data_format = 2;
385
cp.out_pcm_data_format = 2;
386
cp.in_pcm_sample_payload_msb_pos = 0;
387
cp.out_pcm_sample_payload_msb_pos = 0;
388
cp.in_data_path = conn->codec.data_path;
389
cp.out_data_path = conn->codec.data_path;
390
cp.in_transport_unit_size = 16;
391
cp.out_transport_unit_size = 16;
392
break;
393
default:
394
return -EINVAL;
395
}
396
397
cp.retrans_effort = param->retrans_effort;
398
cp.pkt_type = __cpu_to_le16(param->pkt_type);
399
cp.max_latency = __cpu_to_le16(param->max_latency);
400
401
if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
402
return -EIO;
403
404
return 0;
405
}
406
407
static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle)
408
{
409
struct hci_dev *hdev = conn->hdev;
410
struct hci_cp_setup_sync_conn cp;
411
const struct sco_param *param;
412
413
bt_dev_dbg(hdev, "hcon %p", conn);
414
415
conn->state = BT_CONNECT;
416
conn->out = true;
417
418
conn->attempt++;
419
420
cp.handle = cpu_to_le16(handle);
421
422
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
423
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
424
cp.voice_setting = cpu_to_le16(conn->setting);
425
426
switch (conn->setting & SCO_AIRMODE_MASK) {
427
case SCO_AIRMODE_TRANSP:
428
if (!find_next_esco_param(conn, esco_param_msbc,
429
ARRAY_SIZE(esco_param_msbc)))
430
return false;
431
param = &esco_param_msbc[conn->attempt - 1];
432
break;
433
case SCO_AIRMODE_CVSD:
434
if (conn->parent && lmp_esco_capable(conn->parent)) {
435
if (!find_next_esco_param(conn, esco_param_cvsd,
436
ARRAY_SIZE(esco_param_cvsd)))
437
return false;
438
param = &esco_param_cvsd[conn->attempt - 1];
439
} else {
440
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
441
return false;
442
param = &sco_param_cvsd[conn->attempt - 1];
443
}
444
break;
445
default:
446
return false;
447
}
448
449
cp.retrans_effort = param->retrans_effort;
450
cp.pkt_type = __cpu_to_le16(param->pkt_type);
451
cp.max_latency = __cpu_to_le16(param->max_latency);
452
453
if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
454
return false;
455
456
return true;
457
}
458
459
bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
460
{
461
int result;
462
struct conn_handle_t *conn_handle;
463
464
if (enhanced_sync_conn_capable(conn->hdev)) {
465
conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL);
466
467
if (!conn_handle)
468
return false;
469
470
conn_handle->conn = conn;
471
conn_handle->handle = handle;
472
result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync,
473
conn_handle, NULL);
474
if (result < 0)
475
kfree(conn_handle);
476
477
return result == 0;
478
}
479
480
return hci_setup_sync_conn(conn, handle);
481
}
482
483
u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
484
u16 to_multiplier)
485
{
486
struct hci_dev *hdev = conn->hdev;
487
struct hci_conn_params *params;
488
struct hci_cp_le_conn_update cp;
489
490
hci_dev_lock(hdev);
491
492
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
493
if (params) {
494
params->conn_min_interval = min;
495
params->conn_max_interval = max;
496
params->conn_latency = latency;
497
params->supervision_timeout = to_multiplier;
498
}
499
500
hci_dev_unlock(hdev);
501
502
memset(&cp, 0, sizeof(cp));
503
cp.handle = cpu_to_le16(conn->handle);
504
cp.conn_interval_min = cpu_to_le16(min);
505
cp.conn_interval_max = cpu_to_le16(max);
506
cp.conn_latency = cpu_to_le16(latency);
507
cp.supervision_timeout = cpu_to_le16(to_multiplier);
508
cp.min_ce_len = cpu_to_le16(0x0000);
509
cp.max_ce_len = cpu_to_le16(0x0000);
510
511
hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
512
513
if (params)
514
return 0x01;
515
516
return 0x00;
517
}
518
519
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
520
__u8 ltk[16], __u8 key_size)
521
{
522
struct hci_dev *hdev = conn->hdev;
523
struct hci_cp_le_start_enc cp;
524
525
BT_DBG("hcon %p", conn);
526
527
memset(&cp, 0, sizeof(cp));
528
529
cp.handle = cpu_to_le16(conn->handle);
530
cp.rand = rand;
531
cp.ediv = ediv;
532
memcpy(cp.ltk, ltk, key_size);
533
534
hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
535
}
536
537
/* Device _must_ be locked */
538
void hci_sco_setup(struct hci_conn *conn, __u8 status)
539
{
540
struct hci_link *link;
541
542
link = list_first_entry_or_null(&conn->link_list, struct hci_link, list);
543
if (!link || !link->conn)
544
return;
545
546
BT_DBG("hcon %p", conn);
547
548
if (!status) {
549
if (lmp_esco_capable(conn->hdev))
550
hci_setup_sync(link->conn, conn->handle);
551
else
552
hci_add_sco(link->conn, conn->handle);
553
} else {
554
hci_connect_cfm(link->conn, status);
555
hci_conn_del(link->conn);
556
}
557
}
558
559
static void hci_conn_timeout(struct work_struct *work)
560
{
561
struct hci_conn *conn = container_of(work, struct hci_conn,
562
disc_work.work);
563
int refcnt = atomic_read(&conn->refcnt);
564
565
BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
566
567
WARN_ON(refcnt < 0);
568
569
/* FIXME: It was observed that in pairing failed scenario, refcnt
570
* drops below 0. Probably this is because l2cap_conn_del calls
571
* l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
572
* dropped. After that loop hci_chan_del is called which also drops
573
* conn. For now make sure that ACL is alive if refcnt is higher then 0,
574
* otherwise drop it.
575
*/
576
if (refcnt > 0)
577
return;
578
579
hci_abort_conn(conn, hci_proto_disconn_ind(conn));
580
}
581
582
/* Enter sniff mode */
583
static void hci_conn_idle(struct work_struct *work)
584
{
585
struct hci_conn *conn = container_of(work, struct hci_conn,
586
idle_work.work);
587
struct hci_dev *hdev = conn->hdev;
588
589
BT_DBG("hcon %p mode %d", conn, conn->mode);
590
591
if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
592
return;
593
594
if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
595
return;
596
597
if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
598
struct hci_cp_sniff_subrate cp;
599
cp.handle = cpu_to_le16(conn->handle);
600
cp.max_latency = cpu_to_le16(0);
601
cp.min_remote_timeout = cpu_to_le16(0);
602
cp.min_local_timeout = cpu_to_le16(0);
603
hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
604
}
605
606
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
607
struct hci_cp_sniff_mode cp;
608
cp.handle = cpu_to_le16(conn->handle);
609
cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
610
cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
611
cp.attempt = cpu_to_le16(4);
612
cp.timeout = cpu_to_le16(1);
613
hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
614
}
615
}
616
617
static void hci_conn_auto_accept(struct work_struct *work)
618
{
619
struct hci_conn *conn = container_of(work, struct hci_conn,
620
auto_accept_work.work);
621
622
hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
623
&conn->dst);
624
}
625
626
static void le_disable_advertising(struct hci_dev *hdev)
627
{
628
if (ext_adv_capable(hdev)) {
629
struct hci_cp_le_set_ext_adv_enable cp;
630
631
cp.enable = 0x00;
632
cp.num_of_sets = 0x00;
633
634
hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
635
&cp);
636
} else {
637
u8 enable = 0x00;
638
hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
639
&enable);
640
}
641
}
642
643
static void le_conn_timeout(struct work_struct *work)
644
{
645
struct hci_conn *conn = container_of(work, struct hci_conn,
646
le_conn_timeout.work);
647
struct hci_dev *hdev = conn->hdev;
648
649
BT_DBG("");
650
651
/* We could end up here due to having done directed advertising,
652
* so clean up the state if necessary. This should however only
653
* happen with broken hardware or if low duty cycle was used
654
* (which doesn't have a timeout of its own).
655
*/
656
if (conn->role == HCI_ROLE_SLAVE) {
657
/* Disable LE Advertising */
658
le_disable_advertising(hdev);
659
hci_dev_lock(hdev);
660
hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
661
hci_dev_unlock(hdev);
662
return;
663
}
664
665
hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
666
}
667
668
struct iso_list_data {
669
union {
670
u8 cig;
671
u8 big;
672
};
673
union {
674
u8 cis;
675
u8 bis;
676
u16 sync_handle;
677
};
678
int count;
679
bool big_term;
680
bool pa_sync_term;
681
bool big_sync_term;
682
};
683
684
static void bis_list(struct hci_conn *conn, void *data)
685
{
686
struct iso_list_data *d = data;
687
688
/* Skip if not broadcast/ANY address */
689
if (bacmp(&conn->dst, BDADDR_ANY))
690
return;
691
692
if (d->big != conn->iso_qos.bcast.big || d->bis == BT_ISO_QOS_BIS_UNSET ||
693
d->bis != conn->iso_qos.bcast.bis)
694
return;
695
696
d->count++;
697
}
698
699
static int terminate_big_sync(struct hci_dev *hdev, void *data)
700
{
701
struct iso_list_data *d = data;
702
703
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis);
704
705
hci_disable_per_advertising_sync(hdev, d->bis);
706
hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL);
707
708
/* Only terminate BIG if it has been created */
709
if (!d->big_term)
710
return 0;
711
712
return hci_le_terminate_big_sync(hdev, d->big,
713
HCI_ERROR_LOCAL_HOST_TERM);
714
}
715
716
static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err)
717
{
718
kfree(data);
719
}
720
721
static int hci_le_terminate_big(struct hci_dev *hdev, struct hci_conn *conn)
722
{
723
struct iso_list_data *d;
724
int ret;
725
726
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", conn->iso_qos.bcast.big,
727
conn->iso_qos.bcast.bis);
728
729
d = kzalloc(sizeof(*d), GFP_KERNEL);
730
if (!d)
731
return -ENOMEM;
732
733
d->big = conn->iso_qos.bcast.big;
734
d->bis = conn->iso_qos.bcast.bis;
735
d->big_term = test_and_clear_bit(HCI_CONN_BIG_CREATED, &conn->flags);
736
737
ret = hci_cmd_sync_queue(hdev, terminate_big_sync, d,
738
terminate_big_destroy);
739
if (ret)
740
kfree(d);
741
742
return ret;
743
}
744
745
static int big_terminate_sync(struct hci_dev *hdev, void *data)
746
{
747
struct iso_list_data *d = data;
748
749
bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big,
750
d->sync_handle);
751
752
if (d->big_sync_term)
753
hci_le_big_terminate_sync(hdev, d->big);
754
755
if (d->pa_sync_term)
756
return hci_le_pa_terminate_sync(hdev, d->sync_handle);
757
758
return 0;
759
}
760
761
static void find_bis(struct hci_conn *conn, void *data)
762
{
763
struct iso_list_data *d = data;
764
765
/* Ignore if BIG doesn't match */
766
if (d->big != conn->iso_qos.bcast.big)
767
return;
768
769
d->count++;
770
}
771
772
static int hci_le_big_terminate(struct hci_dev *hdev, struct hci_conn *conn)
773
{
774
struct iso_list_data *d;
775
int ret;
776
777
bt_dev_dbg(hdev, "hcon %p big 0x%2.2x sync_handle 0x%4.4x", conn,
778
conn->iso_qos.bcast.big, conn->sync_handle);
779
780
d = kzalloc(sizeof(*d), GFP_KERNEL);
781
if (!d)
782
return -ENOMEM;
783
784
d->big = conn->iso_qos.bcast.big;
785
d->sync_handle = conn->sync_handle;
786
787
if (conn->type == PA_LINK &&
788
test_and_clear_bit(HCI_CONN_PA_SYNC, &conn->flags)) {
789
hci_conn_hash_list_flag(hdev, find_bis, PA_LINK,
790
HCI_CONN_PA_SYNC, d);
791
792
if (!d->count)
793
d->pa_sync_term = true;
794
795
d->count = 0;
796
}
797
798
if (test_and_clear_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
799
hci_conn_hash_list_flag(hdev, find_bis, BIS_LINK,
800
HCI_CONN_BIG_SYNC, d);
801
802
if (!d->count)
803
d->big_sync_term = true;
804
}
805
806
if (!d->pa_sync_term && !d->big_sync_term)
807
return 0;
808
809
ret = hci_cmd_sync_queue(hdev, big_terminate_sync, d,
810
terminate_big_destroy);
811
if (ret)
812
kfree(d);
813
814
return ret;
815
}
816
817
/* Cleanup BIS connection
818
*
819
* Detects if there any BIS left connected in a BIG
820
* broadcaster: Remove advertising instance and terminate BIG.
821
* broadcaster receiver: Terminate BIG sync and terminate PA sync.
822
*/
823
static void bis_cleanup(struct hci_conn *conn)
824
{
825
struct hci_dev *hdev = conn->hdev;
826
struct hci_conn *bis;
827
828
bt_dev_dbg(hdev, "conn %p", conn);
829
830
if (conn->role == HCI_ROLE_MASTER) {
831
if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags))
832
return;
833
834
/* Check if ISO connection is a BIS and terminate advertising
835
* set and BIG if there are no other connections using it.
836
*/
837
bis = hci_conn_hash_lookup_big_state(hdev,
838
conn->iso_qos.bcast.big,
839
BT_CONNECTED,
840
HCI_ROLE_MASTER);
841
if (bis)
842
return;
843
844
bis = hci_conn_hash_lookup_big_state(hdev,
845
conn->iso_qos.bcast.big,
846
BT_CONNECT,
847
HCI_ROLE_MASTER);
848
if (bis)
849
return;
850
851
bis = hci_conn_hash_lookup_big_state(hdev,
852
conn->iso_qos.bcast.big,
853
BT_OPEN,
854
HCI_ROLE_MASTER);
855
if (bis)
856
return;
857
858
hci_le_terminate_big(hdev, conn);
859
} else {
860
hci_le_big_terminate(hdev, conn);
861
}
862
}
863
864
static int remove_cig_sync(struct hci_dev *hdev, void *data)
865
{
866
u8 handle = PTR_UINT(data);
867
868
return hci_le_remove_cig_sync(hdev, handle);
869
}
870
871
static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle)
872
{
873
bt_dev_dbg(hdev, "handle 0x%2.2x", handle);
874
875
return hci_cmd_sync_queue(hdev, remove_cig_sync, UINT_PTR(handle),
876
NULL);
877
}
878
879
static void find_cis(struct hci_conn *conn, void *data)
880
{
881
struct iso_list_data *d = data;
882
883
/* Ignore broadcast or if CIG don't match */
884
if (!bacmp(&conn->dst, BDADDR_ANY) || d->cig != conn->iso_qos.ucast.cig)
885
return;
886
887
d->count++;
888
}
889
890
/* Cleanup CIS connection:
891
*
892
* Detects if there any CIS left connected in a CIG and remove it.
893
*/
894
static void cis_cleanup(struct hci_conn *conn)
895
{
896
struct hci_dev *hdev = conn->hdev;
897
struct iso_list_data d;
898
899
if (conn->iso_qos.ucast.cig == BT_ISO_QOS_CIG_UNSET)
900
return;
901
902
memset(&d, 0, sizeof(d));
903
d.cig = conn->iso_qos.ucast.cig;
904
905
/* Check if ISO connection is a CIS and remove CIG if there are
906
* no other connections using it.
907
*/
908
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_BOUND, &d);
909
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_CONNECT,
910
&d);
911
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_CONNECTED,
912
&d);
913
if (d.count)
914
return;
915
916
hci_le_remove_cig(hdev, conn->iso_qos.ucast.cig);
917
}
918
919
static int hci_conn_hash_alloc_unset(struct hci_dev *hdev)
920
{
921
return ida_alloc_range(&hdev->unset_handle_ida, HCI_CONN_HANDLE_MAX + 1,
922
U16_MAX, GFP_ATOMIC);
923
}
924
925
static struct hci_conn *__hci_conn_add(struct hci_dev *hdev, int type,
926
bdaddr_t *dst, u8 dst_type,
927
u8 role, u16 handle)
928
{
929
struct hci_conn *conn;
930
struct smp_irk *irk = NULL;
931
932
switch (type) {
933
case ACL_LINK:
934
if (!hdev->acl_mtu)
935
return ERR_PTR(-ECONNREFUSED);
936
break;
937
case CIS_LINK:
938
case BIS_LINK:
939
case PA_LINK:
940
if (!hdev->iso_mtu)
941
return ERR_PTR(-ECONNREFUSED);
942
irk = hci_get_irk(hdev, dst, dst_type);
943
break;
944
case LE_LINK:
945
if (hdev->le_mtu && hdev->le_mtu < HCI_MIN_LE_MTU)
946
return ERR_PTR(-ECONNREFUSED);
947
if (!hdev->le_mtu && hdev->acl_mtu < HCI_MIN_LE_MTU)
948
return ERR_PTR(-ECONNREFUSED);
949
irk = hci_get_irk(hdev, dst, dst_type);
950
break;
951
case SCO_LINK:
952
case ESCO_LINK:
953
if (!hdev->sco_pkts)
954
/* Controller does not support SCO or eSCO over HCI */
955
return ERR_PTR(-ECONNREFUSED);
956
break;
957
default:
958
return ERR_PTR(-ECONNREFUSED);
959
}
960
961
bt_dev_dbg(hdev, "dst %pMR handle 0x%4.4x", dst, handle);
962
963
conn = kzalloc(sizeof(*conn), GFP_KERNEL);
964
if (!conn)
965
return ERR_PTR(-ENOMEM);
966
967
/* If and IRK exists use its identity address */
968
if (!irk) {
969
bacpy(&conn->dst, dst);
970
conn->dst_type = dst_type;
971
} else {
972
bacpy(&conn->dst, &irk->bdaddr);
973
conn->dst_type = irk->addr_type;
974
}
975
976
bacpy(&conn->src, &hdev->bdaddr);
977
conn->handle = handle;
978
conn->hdev = hdev;
979
conn->type = type;
980
conn->role = role;
981
conn->mode = HCI_CM_ACTIVE;
982
conn->state = BT_OPEN;
983
conn->auth_type = HCI_AT_GENERAL_BONDING;
984
conn->io_capability = hdev->io_capability;
985
conn->remote_auth = 0xff;
986
conn->key_type = 0xff;
987
conn->rssi = HCI_RSSI_INVALID;
988
conn->tx_power = HCI_TX_POWER_INVALID;
989
conn->max_tx_power = HCI_TX_POWER_INVALID;
990
conn->sync_handle = HCI_SYNC_HANDLE_INVALID;
991
conn->sid = HCI_SID_INVALID;
992
993
set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
994
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
995
996
/* Set Default Authenticated payload timeout to 30s */
997
conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
998
999
if (conn->role == HCI_ROLE_MASTER)
1000
conn->out = true;
1001
1002
switch (type) {
1003
case ACL_LINK:
1004
conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
1005
conn->mtu = hdev->acl_mtu;
1006
break;
1007
case LE_LINK:
1008
/* conn->src should reflect the local identity address */
1009
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
1010
conn->mtu = hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu;
1011
break;
1012
case CIS_LINK:
1013
/* conn->src should reflect the local identity address */
1014
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
1015
1016
if (conn->role == HCI_ROLE_MASTER)
1017
conn->cleanup = cis_cleanup;
1018
1019
conn->mtu = hdev->iso_mtu;
1020
break;
1021
case PA_LINK:
1022
case BIS_LINK:
1023
/* conn->src should reflect the local identity address */
1024
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
1025
conn->cleanup = bis_cleanup;
1026
conn->mtu = hdev->iso_mtu;
1027
break;
1028
case SCO_LINK:
1029
if (lmp_esco_capable(hdev))
1030
conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
1031
(hdev->esco_type & EDR_ESCO_MASK);
1032
else
1033
conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
1034
1035
conn->mtu = hdev->sco_mtu;
1036
break;
1037
case ESCO_LINK:
1038
conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
1039
conn->mtu = hdev->sco_mtu;
1040
break;
1041
}
1042
1043
skb_queue_head_init(&conn->data_q);
1044
skb_queue_head_init(&conn->tx_q.queue);
1045
1046
INIT_LIST_HEAD(&conn->chan_list);
1047
INIT_LIST_HEAD(&conn->link_list);
1048
1049
INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
1050
INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
1051
INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
1052
INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
1053
1054
atomic_set(&conn->refcnt, 0);
1055
1056
hci_dev_hold(hdev);
1057
1058
hci_conn_hash_add(hdev, conn);
1059
1060
/* The SCO and eSCO connections will only be notified when their
1061
* setup has been completed. This is different to ACL links which
1062
* can be notified right away.
1063
*/
1064
if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
1065
if (hdev->notify)
1066
hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
1067
}
1068
1069
hci_conn_init_sysfs(conn);
1070
return conn;
1071
}
1072
1073
struct hci_conn *hci_conn_add_unset(struct hci_dev *hdev, int type,
1074
bdaddr_t *dst, u8 dst_type, u8 role)
1075
{
1076
int handle;
1077
1078
bt_dev_dbg(hdev, "dst %pMR", dst);
1079
1080
handle = hci_conn_hash_alloc_unset(hdev);
1081
if (unlikely(handle < 0))
1082
return ERR_PTR(-ECONNREFUSED);
1083
1084
return __hci_conn_add(hdev, type, dst, dst_type, role, handle);
1085
}
1086
1087
struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
1088
u8 dst_type, u8 role, u16 handle)
1089
{
1090
if (handle > HCI_CONN_HANDLE_MAX)
1091
return ERR_PTR(-EINVAL);
1092
1093
return __hci_conn_add(hdev, type, dst, dst_type, role, handle);
1094
}
1095
1096
static void hci_conn_cleanup_child(struct hci_conn *conn, u8 reason)
1097
{
1098
if (!reason)
1099
reason = HCI_ERROR_REMOTE_USER_TERM;
1100
1101
/* Due to race, SCO/ISO conn might be not established yet at this point,
1102
* and nothing else will clean it up. In other cases it is done via HCI
1103
* events.
1104
*/
1105
switch (conn->type) {
1106
case SCO_LINK:
1107
case ESCO_LINK:
1108
if (HCI_CONN_HANDLE_UNSET(conn->handle))
1109
hci_conn_failed(conn, reason);
1110
break;
1111
case CIS_LINK:
1112
case BIS_LINK:
1113
case PA_LINK:
1114
if ((conn->state != BT_CONNECTED &&
1115
!test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) ||
1116
test_bit(HCI_CONN_BIG_CREATED, &conn->flags))
1117
hci_conn_failed(conn, reason);
1118
break;
1119
}
1120
}
1121
1122
static void hci_conn_unlink(struct hci_conn *conn)
1123
{
1124
struct hci_dev *hdev = conn->hdev;
1125
1126
bt_dev_dbg(hdev, "hcon %p", conn);
1127
1128
if (!conn->parent) {
1129
struct hci_link *link, *t;
1130
1131
list_for_each_entry_safe(link, t, &conn->link_list, list) {
1132
struct hci_conn *child = link->conn;
1133
1134
hci_conn_unlink(child);
1135
1136
/* If hdev is down it means
1137
* hci_dev_close_sync/hci_conn_hash_flush is in progress
1138
* and links don't need to be cleanup as all connections
1139
* would be cleanup.
1140
*/
1141
if (!test_bit(HCI_UP, &hdev->flags))
1142
continue;
1143
1144
hci_conn_cleanup_child(child, conn->abort_reason);
1145
}
1146
1147
return;
1148
}
1149
1150
if (!conn->link)
1151
return;
1152
1153
list_del_rcu(&conn->link->list);
1154
synchronize_rcu();
1155
1156
hci_conn_drop(conn->parent);
1157
hci_conn_put(conn->parent);
1158
conn->parent = NULL;
1159
1160
kfree(conn->link);
1161
conn->link = NULL;
1162
}
1163
1164
void hci_conn_del(struct hci_conn *conn)
1165
{
1166
struct hci_dev *hdev = conn->hdev;
1167
1168
BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
1169
1170
hci_conn_unlink(conn);
1171
1172
disable_delayed_work_sync(&conn->disc_work);
1173
disable_delayed_work_sync(&conn->auto_accept_work);
1174
disable_delayed_work_sync(&conn->idle_work);
1175
1176
/* Remove the connection from the list so unacked logic can detect when
1177
* a certain pool is not being utilized.
1178
*/
1179
hci_conn_hash_del(hdev, conn);
1180
1181
/* Handle unacked frames:
1182
*
1183
* - In case there are no connection, or if restoring the buffers
1184
* considered in transist would overflow, restore all buffers to the
1185
* pool.
1186
* - Otherwise restore just the buffers considered in transit for the
1187
* hci_conn
1188
*/
1189
switch (conn->type) {
1190
case ACL_LINK:
1191
if (!hci_conn_num(hdev, ACL_LINK) ||
1192
hdev->acl_cnt + conn->sent > hdev->acl_pkts)
1193
hdev->acl_cnt = hdev->acl_pkts;
1194
else
1195
hdev->acl_cnt += conn->sent;
1196
break;
1197
case LE_LINK:
1198
cancel_delayed_work(&conn->le_conn_timeout);
1199
1200
if (hdev->le_pkts) {
1201
if (!hci_conn_num(hdev, LE_LINK) ||
1202
hdev->le_cnt + conn->sent > hdev->le_pkts)
1203
hdev->le_cnt = hdev->le_pkts;
1204
else
1205
hdev->le_cnt += conn->sent;
1206
} else {
1207
if ((!hci_conn_num(hdev, LE_LINK) &&
1208
!hci_conn_num(hdev, ACL_LINK)) ||
1209
hdev->acl_cnt + conn->sent > hdev->acl_pkts)
1210
hdev->acl_cnt = hdev->acl_pkts;
1211
else
1212
hdev->acl_cnt += conn->sent;
1213
}
1214
break;
1215
case CIS_LINK:
1216
case BIS_LINK:
1217
case PA_LINK:
1218
if (!hci_iso_count(hdev) ||
1219
hdev->iso_cnt + conn->sent > hdev->iso_pkts)
1220
hdev->iso_cnt = hdev->iso_pkts;
1221
else
1222
hdev->iso_cnt += conn->sent;
1223
break;
1224
}
1225
1226
skb_queue_purge(&conn->data_q);
1227
skb_queue_purge(&conn->tx_q.queue);
1228
1229
/* Remove the connection from the list and cleanup its remaining
1230
* state. This is a separate function since for some cases like
1231
* BT_CONNECT_SCAN we *only* want the cleanup part without the
1232
* rest of hci_conn_del.
1233
*/
1234
hci_conn_cleanup(conn);
1235
1236
/* Dequeue callbacks using connection pointer as data */
1237
hci_cmd_sync_dequeue(hdev, NULL, conn, NULL);
1238
}
1239
1240
struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
1241
{
1242
int use_src = bacmp(src, BDADDR_ANY);
1243
struct hci_dev *hdev = NULL, *d;
1244
1245
BT_DBG("%pMR -> %pMR", src, dst);
1246
1247
read_lock(&hci_dev_list_lock);
1248
1249
list_for_each_entry(d, &hci_dev_list, list) {
1250
if (!test_bit(HCI_UP, &d->flags) ||
1251
hci_dev_test_flag(d, HCI_USER_CHANNEL))
1252
continue;
1253
1254
/* Simple routing:
1255
* No source address - find interface with bdaddr != dst
1256
* Source address - find interface with bdaddr == src
1257
*/
1258
1259
if (use_src) {
1260
bdaddr_t id_addr;
1261
u8 id_addr_type;
1262
1263
if (src_type == BDADDR_BREDR) {
1264
if (!lmp_bredr_capable(d))
1265
continue;
1266
bacpy(&id_addr, &d->bdaddr);
1267
id_addr_type = BDADDR_BREDR;
1268
} else {
1269
if (!lmp_le_capable(d))
1270
continue;
1271
1272
hci_copy_identity_address(d, &id_addr,
1273
&id_addr_type);
1274
1275
/* Convert from HCI to three-value type */
1276
if (id_addr_type == ADDR_LE_DEV_PUBLIC)
1277
id_addr_type = BDADDR_LE_PUBLIC;
1278
else
1279
id_addr_type = BDADDR_LE_RANDOM;
1280
}
1281
1282
if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
1283
hdev = d; break;
1284
}
1285
} else {
1286
if (bacmp(&d->bdaddr, dst)) {
1287
hdev = d; break;
1288
}
1289
}
1290
}
1291
1292
if (hdev)
1293
hdev = hci_dev_hold(hdev);
1294
1295
read_unlock(&hci_dev_list_lock);
1296
return hdev;
1297
}
1298
EXPORT_SYMBOL(hci_get_route);
1299
1300
/* This function requires the caller holds hdev->lock */
1301
static void hci_le_conn_failed(struct hci_conn *conn, u8 status)
1302
{
1303
struct hci_dev *hdev = conn->hdev;
1304
1305
hci_connect_le_scan_cleanup(conn, status);
1306
1307
/* Enable advertising in case this was a failed connection
1308
* attempt as a peripheral.
1309
*/
1310
hci_enable_advertising(hdev);
1311
}
1312
1313
/* This function requires the caller holds hdev->lock */
1314
void hci_conn_failed(struct hci_conn *conn, u8 status)
1315
{
1316
struct hci_dev *hdev = conn->hdev;
1317
1318
bt_dev_dbg(hdev, "status 0x%2.2x", status);
1319
1320
switch (conn->type) {
1321
case LE_LINK:
1322
hci_le_conn_failed(conn, status);
1323
break;
1324
case ACL_LINK:
1325
mgmt_connect_failed(hdev, conn, status);
1326
break;
1327
}
1328
1329
/* In case of BIG/PA sync failed, clear conn flags so that
1330
* the conns will be correctly cleaned up by ISO layer
1331
*/
1332
test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags);
1333
test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags);
1334
1335
conn->state = BT_CLOSED;
1336
hci_connect_cfm(conn, status);
1337
hci_conn_del(conn);
1338
}
1339
1340
/* This function requires the caller holds hdev->lock */
1341
u8 hci_conn_set_handle(struct hci_conn *conn, u16 handle)
1342
{
1343
struct hci_dev *hdev = conn->hdev;
1344
1345
bt_dev_dbg(hdev, "hcon %p handle 0x%4.4x", conn, handle);
1346
1347
if (conn->handle == handle)
1348
return 0;
1349
1350
if (handle > HCI_CONN_HANDLE_MAX) {
1351
bt_dev_err(hdev, "Invalid handle: 0x%4.4x > 0x%4.4x",
1352
handle, HCI_CONN_HANDLE_MAX);
1353
return HCI_ERROR_INVALID_PARAMETERS;
1354
}
1355
1356
/* If abort_reason has been sent it means the connection is being
1357
* aborted and the handle shall not be changed.
1358
*/
1359
if (conn->abort_reason)
1360
return conn->abort_reason;
1361
1362
if (HCI_CONN_HANDLE_UNSET(conn->handle))
1363
ida_free(&hdev->unset_handle_ida, conn->handle);
1364
1365
conn->handle = handle;
1366
1367
return 0;
1368
}
1369
1370
struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1371
u8 dst_type, bool dst_resolved, u8 sec_level,
1372
u16 conn_timeout, u8 role, u8 phy, u8 sec_phy)
1373
{
1374
struct hci_conn *conn;
1375
struct smp_irk *irk;
1376
int err;
1377
1378
/* Let's make sure that le is enabled.*/
1379
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1380
if (lmp_le_capable(hdev))
1381
return ERR_PTR(-ECONNREFUSED);
1382
1383
return ERR_PTR(-EOPNOTSUPP);
1384
}
1385
1386
/* Since the controller supports only one LE connection attempt at a
1387
* time, we return -EBUSY if there is any connection attempt running.
1388
*/
1389
if (hci_lookup_le_connect(hdev))
1390
return ERR_PTR(-EBUSY);
1391
1392
/* If there's already a connection object but it's not in
1393
* scanning state it means it must already be established, in
1394
* which case we can't do anything else except report a failure
1395
* to connect.
1396
*/
1397
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1398
if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1399
return ERR_PTR(-EBUSY);
1400
}
1401
1402
/* Check if the destination address has been resolved by the controller
1403
* since if it did then the identity address shall be used.
1404
*/
1405
if (!dst_resolved) {
1406
/* When given an identity address with existing identity
1407
* resolving key, the connection needs to be established
1408
* to a resolvable random address.
1409
*
1410
* Storing the resolvable random address is required here
1411
* to handle connection failures. The address will later
1412
* be resolved back into the original identity address
1413
* from the connect request.
1414
*/
1415
irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1416
if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1417
dst = &irk->rpa;
1418
dst_type = ADDR_LE_DEV_RANDOM;
1419
}
1420
}
1421
1422
if (conn) {
1423
bacpy(&conn->dst, dst);
1424
} else {
1425
conn = hci_conn_add_unset(hdev, LE_LINK, dst, dst_type, role);
1426
if (IS_ERR(conn))
1427
return conn;
1428
hci_conn_hold(conn);
1429
conn->pending_sec_level = sec_level;
1430
}
1431
1432
conn->sec_level = BT_SECURITY_LOW;
1433
conn->conn_timeout = conn_timeout;
1434
conn->le_adv_phy = phy;
1435
conn->le_adv_sec_phy = sec_phy;
1436
1437
err = hci_connect_le_sync(hdev, conn);
1438
if (err) {
1439
hci_conn_del(conn);
1440
return ERR_PTR(err);
1441
}
1442
1443
return conn;
1444
}
1445
1446
static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1447
{
1448
struct hci_conn *conn;
1449
1450
conn = hci_conn_hash_lookup_le(hdev, addr, type);
1451
if (!conn)
1452
return false;
1453
1454
if (conn->state != BT_CONNECTED)
1455
return false;
1456
1457
return true;
1458
}
1459
1460
/* This function requires the caller holds hdev->lock */
1461
static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1462
bdaddr_t *addr, u8 addr_type)
1463
{
1464
struct hci_conn_params *params;
1465
1466
if (is_connected(hdev, addr, addr_type))
1467
return -EISCONN;
1468
1469
params = hci_conn_params_lookup(hdev, addr, addr_type);
1470
if (!params) {
1471
params = hci_conn_params_add(hdev, addr, addr_type);
1472
if (!params)
1473
return -ENOMEM;
1474
1475
/* If we created new params, mark them to be deleted in
1476
* hci_connect_le_scan_cleanup. It's different case than
1477
* existing disabled params, those will stay after cleanup.
1478
*/
1479
params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1480
}
1481
1482
/* We're trying to connect, so make sure params are at pend_le_conns */
1483
if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1484
params->auto_connect == HCI_AUTO_CONN_REPORT ||
1485
params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1486
hci_pend_le_list_del_init(params);
1487
hci_pend_le_list_add(params, &hdev->pend_le_conns);
1488
}
1489
1490
params->explicit_connect = true;
1491
1492
BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1493
params->auto_connect);
1494
1495
return 0;
1496
}
1497
1498
static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos)
1499
{
1500
struct hci_conn *conn;
1501
u8 big;
1502
1503
/* Allocate a BIG if not set */
1504
if (qos->bcast.big == BT_ISO_QOS_BIG_UNSET) {
1505
for (big = 0x00; big < 0xef; big++) {
1506
1507
conn = hci_conn_hash_lookup_big(hdev, big);
1508
if (!conn)
1509
break;
1510
}
1511
1512
if (big == 0xef)
1513
return -EADDRNOTAVAIL;
1514
1515
/* Update BIG */
1516
qos->bcast.big = big;
1517
}
1518
1519
return 0;
1520
}
1521
1522
static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos)
1523
{
1524
struct hci_conn *conn;
1525
u8 bis;
1526
1527
/* Allocate BIS if not set */
1528
if (qos->bcast.bis == BT_ISO_QOS_BIS_UNSET) {
1529
if (qos->bcast.big != BT_ISO_QOS_BIG_UNSET) {
1530
conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big);
1531
1532
if (conn) {
1533
/* If the BIG handle is already matched to an advertising
1534
* handle, do not allocate a new one.
1535
*/
1536
qos->bcast.bis = conn->iso_qos.bcast.bis;
1537
return 0;
1538
}
1539
}
1540
1541
/* Find an unused adv set to advertise BIS, skip instance 0x00
1542
* since it is reserved as general purpose set.
1543
*/
1544
for (bis = 0x01; bis < hdev->le_num_of_adv_sets;
1545
bis++) {
1546
1547
conn = hci_conn_hash_lookup_bis(hdev, BDADDR_ANY, bis);
1548
if (!conn)
1549
break;
1550
}
1551
1552
if (bis == hdev->le_num_of_adv_sets)
1553
return -EADDRNOTAVAIL;
1554
1555
/* Update BIS */
1556
qos->bcast.bis = bis;
1557
}
1558
1559
return 0;
1560
}
1561
1562
/* This function requires the caller holds hdev->lock */
1563
static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst,
1564
__u8 sid, struct bt_iso_qos *qos,
1565
__u8 base_len, __u8 *base, u16 timeout)
1566
{
1567
struct hci_conn *conn;
1568
int err;
1569
1570
/* Let's make sure that le is enabled.*/
1571
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1572
if (lmp_le_capable(hdev))
1573
return ERR_PTR(-ECONNREFUSED);
1574
return ERR_PTR(-EOPNOTSUPP);
1575
}
1576
1577
err = qos_set_big(hdev, qos);
1578
if (err)
1579
return ERR_PTR(err);
1580
1581
err = qos_set_bis(hdev, qos);
1582
if (err)
1583
return ERR_PTR(err);
1584
1585
/* Check if the LE Create BIG command has already been sent */
1586
conn = hci_conn_hash_lookup_per_adv_bis(hdev, dst, qos->bcast.big,
1587
qos->bcast.big);
1588
if (conn)
1589
return ERR_PTR(-EADDRINUSE);
1590
1591
/* Check BIS settings against other bound BISes, since all
1592
* BISes in a BIG must have the same value for all parameters
1593
*/
1594
conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big);
1595
1596
if (conn && (memcmp(qos, &conn->iso_qos, sizeof(*qos)) ||
1597
base_len != conn->le_per_adv_data_len ||
1598
memcmp(conn->le_per_adv_data, base, base_len)))
1599
return ERR_PTR(-EADDRINUSE);
1600
1601
conn = hci_conn_add_unset(hdev, BIS_LINK, dst, 0, HCI_ROLE_MASTER);
1602
if (IS_ERR(conn))
1603
return conn;
1604
1605
conn->state = BT_CONNECT;
1606
conn->sid = sid;
1607
conn->conn_timeout = timeout;
1608
1609
hci_conn_hold(conn);
1610
return conn;
1611
}
1612
1613
/* This function requires the caller holds hdev->lock */
1614
struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1615
u8 dst_type, u8 sec_level,
1616
u16 conn_timeout,
1617
enum conn_reasons conn_reason)
1618
{
1619
struct hci_conn *conn;
1620
1621
/* Let's make sure that le is enabled.*/
1622
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1623
if (lmp_le_capable(hdev))
1624
return ERR_PTR(-ECONNREFUSED);
1625
1626
return ERR_PTR(-EOPNOTSUPP);
1627
}
1628
1629
/* Some devices send ATT messages as soon as the physical link is
1630
* established. To be able to handle these ATT messages, the user-
1631
* space first establishes the connection and then starts the pairing
1632
* process.
1633
*
1634
* So if a hci_conn object already exists for the following connection
1635
* attempt, we simply update pending_sec_level and auth_type fields
1636
* and return the object found.
1637
*/
1638
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1639
if (conn) {
1640
if (conn->pending_sec_level < sec_level)
1641
conn->pending_sec_level = sec_level;
1642
goto done;
1643
}
1644
1645
BT_DBG("requesting refresh of dst_addr");
1646
1647
conn = hci_conn_add_unset(hdev, LE_LINK, dst, dst_type,
1648
HCI_ROLE_MASTER);
1649
if (IS_ERR(conn))
1650
return conn;
1651
1652
if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1653
hci_conn_del(conn);
1654
return ERR_PTR(-EBUSY);
1655
}
1656
1657
conn->state = BT_CONNECT;
1658
set_bit(HCI_CONN_SCANNING, &conn->flags);
1659
conn->sec_level = BT_SECURITY_LOW;
1660
conn->pending_sec_level = sec_level;
1661
conn->conn_timeout = conn_timeout;
1662
conn->conn_reason = conn_reason;
1663
1664
hci_update_passive_scan(hdev);
1665
1666
done:
1667
hci_conn_hold(conn);
1668
return conn;
1669
}
1670
1671
struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1672
u8 sec_level, u8 auth_type,
1673
enum conn_reasons conn_reason, u16 timeout)
1674
{
1675
struct hci_conn *acl;
1676
1677
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1678
if (lmp_bredr_capable(hdev))
1679
return ERR_PTR(-ECONNREFUSED);
1680
1681
return ERR_PTR(-EOPNOTSUPP);
1682
}
1683
1684
/* Reject outgoing connection to device with same BD ADDR against
1685
* CVE-2020-26555
1686
*/
1687
if (!bacmp(&hdev->bdaddr, dst)) {
1688
bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n",
1689
dst);
1690
return ERR_PTR(-ECONNREFUSED);
1691
}
1692
1693
acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1694
if (!acl) {
1695
acl = hci_conn_add_unset(hdev, ACL_LINK, dst, 0,
1696
HCI_ROLE_MASTER);
1697
if (IS_ERR(acl))
1698
return acl;
1699
}
1700
1701
hci_conn_hold(acl);
1702
1703
acl->conn_reason = conn_reason;
1704
if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1705
int err;
1706
1707
acl->sec_level = BT_SECURITY_LOW;
1708
acl->pending_sec_level = sec_level;
1709
acl->auth_type = auth_type;
1710
acl->conn_timeout = timeout;
1711
1712
err = hci_connect_acl_sync(hdev, acl);
1713
if (err) {
1714
hci_conn_del(acl);
1715
return ERR_PTR(err);
1716
}
1717
}
1718
1719
return acl;
1720
}
1721
1722
static struct hci_link *hci_conn_link(struct hci_conn *parent,
1723
struct hci_conn *conn)
1724
{
1725
struct hci_dev *hdev = parent->hdev;
1726
struct hci_link *link;
1727
1728
bt_dev_dbg(hdev, "parent %p hcon %p", parent, conn);
1729
1730
if (conn->link)
1731
return conn->link;
1732
1733
if (conn->parent)
1734
return NULL;
1735
1736
link = kzalloc(sizeof(*link), GFP_KERNEL);
1737
if (!link)
1738
return NULL;
1739
1740
link->conn = hci_conn_hold(conn);
1741
conn->link = link;
1742
conn->parent = hci_conn_get(parent);
1743
1744
/* Use list_add_tail_rcu append to the list */
1745
list_add_tail_rcu(&link->list, &parent->link_list);
1746
1747
return link;
1748
}
1749
1750
struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1751
__u16 setting, struct bt_codec *codec,
1752
u16 timeout)
1753
{
1754
struct hci_conn *acl;
1755
struct hci_conn *sco;
1756
struct hci_link *link;
1757
1758
acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1759
CONN_REASON_SCO_CONNECT, timeout);
1760
if (IS_ERR(acl))
1761
return acl;
1762
1763
sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1764
if (!sco) {
1765
sco = hci_conn_add_unset(hdev, type, dst, 0, HCI_ROLE_MASTER);
1766
if (IS_ERR(sco)) {
1767
hci_conn_drop(acl);
1768
return sco;
1769
}
1770
}
1771
1772
link = hci_conn_link(acl, sco);
1773
if (!link) {
1774
hci_conn_drop(acl);
1775
hci_conn_drop(sco);
1776
return ERR_PTR(-ENOLINK);
1777
}
1778
1779
sco->setting = setting;
1780
sco->codec = *codec;
1781
1782
if (acl->state == BT_CONNECTED &&
1783
(sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1784
set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1785
hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1786
1787
if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1788
/* defer SCO setup until mode change completed */
1789
set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1790
return sco;
1791
}
1792
1793
hci_sco_setup(acl, 0x00);
1794
}
1795
1796
return sco;
1797
}
1798
1799
static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos)
1800
{
1801
struct hci_dev *hdev = conn->hdev;
1802
struct hci_cp_le_create_big cp;
1803
struct iso_list_data data;
1804
1805
memset(&cp, 0, sizeof(cp));
1806
1807
data.big = qos->bcast.big;
1808
data.bis = qos->bcast.bis;
1809
data.count = 0;
1810
1811
/* Create a BIS for each bound connection */
1812
hci_conn_hash_list_state(hdev, bis_list, BIS_LINK,
1813
BT_BOUND, &data);
1814
1815
cp.handle = qos->bcast.big;
1816
cp.adv_handle = qos->bcast.bis;
1817
cp.num_bis = data.count;
1818
hci_cpu_to_le24(qos->bcast.out.interval, cp.bis.sdu_interval);
1819
cp.bis.sdu = cpu_to_le16(qos->bcast.out.sdu);
1820
cp.bis.latency = cpu_to_le16(qos->bcast.out.latency);
1821
cp.bis.rtn = qos->bcast.out.rtn;
1822
cp.bis.phy = qos->bcast.out.phy;
1823
cp.bis.packing = qos->bcast.packing;
1824
cp.bis.framing = qos->bcast.framing;
1825
cp.bis.encryption = qos->bcast.encryption;
1826
memcpy(cp.bis.bcode, qos->bcast.bcode, sizeof(cp.bis.bcode));
1827
1828
return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp);
1829
}
1830
1831
static int set_cig_params_sync(struct hci_dev *hdev, void *data)
1832
{
1833
DEFINE_FLEX(struct hci_cp_le_set_cig_params, pdu, cis, num_cis, 0x1f);
1834
u8 cig_id = PTR_UINT(data);
1835
struct hci_conn *conn;
1836
struct bt_iso_qos *qos;
1837
u8 aux_num_cis = 0;
1838
u8 cis_id;
1839
1840
conn = hci_conn_hash_lookup_cig(hdev, cig_id);
1841
if (!conn)
1842
return 0;
1843
1844
qos = &conn->iso_qos;
1845
pdu->cig_id = cig_id;
1846
hci_cpu_to_le24(qos->ucast.out.interval, pdu->c_interval);
1847
hci_cpu_to_le24(qos->ucast.in.interval, pdu->p_interval);
1848
pdu->sca = qos->ucast.sca;
1849
pdu->packing = qos->ucast.packing;
1850
pdu->framing = qos->ucast.framing;
1851
pdu->c_latency = cpu_to_le16(qos->ucast.out.latency);
1852
pdu->p_latency = cpu_to_le16(qos->ucast.in.latency);
1853
1854
/* Reprogram all CIS(s) with the same CIG, valid range are:
1855
* num_cis: 0x00 to 0x1F
1856
* cis_id: 0x00 to 0xEF
1857
*/
1858
for (cis_id = 0x00; cis_id < 0xf0 &&
1859
aux_num_cis < pdu->num_cis; cis_id++) {
1860
struct hci_cis_params *cis;
1861
1862
conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, cig_id, cis_id);
1863
if (!conn)
1864
continue;
1865
1866
qos = &conn->iso_qos;
1867
1868
cis = &pdu->cis[aux_num_cis++];
1869
cis->cis_id = cis_id;
1870
cis->c_sdu = cpu_to_le16(conn->iso_qos.ucast.out.sdu);
1871
cis->p_sdu = cpu_to_le16(conn->iso_qos.ucast.in.sdu);
1872
cis->c_phy = qos->ucast.out.phy ? qos->ucast.out.phy :
1873
qos->ucast.in.phy;
1874
cis->p_phy = qos->ucast.in.phy ? qos->ucast.in.phy :
1875
qos->ucast.out.phy;
1876
cis->c_rtn = qos->ucast.out.rtn;
1877
cis->p_rtn = qos->ucast.in.rtn;
1878
}
1879
pdu->num_cis = aux_num_cis;
1880
1881
if (!pdu->num_cis)
1882
return 0;
1883
1884
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_CIG_PARAMS,
1885
struct_size(pdu, cis, pdu->num_cis),
1886
pdu, HCI_CMD_TIMEOUT);
1887
}
1888
1889
static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos)
1890
{
1891
struct hci_dev *hdev = conn->hdev;
1892
struct iso_list_data data;
1893
1894
memset(&data, 0, sizeof(data));
1895
1896
/* Allocate first still reconfigurable CIG if not set */
1897
if (qos->ucast.cig == BT_ISO_QOS_CIG_UNSET) {
1898
for (data.cig = 0x00; data.cig < 0xf0; data.cig++) {
1899
data.count = 0;
1900
1901
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK,
1902
BT_CONNECT, &data);
1903
if (data.count)
1904
continue;
1905
1906
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK,
1907
BT_CONNECTED, &data);
1908
if (!data.count)
1909
break;
1910
}
1911
1912
if (data.cig == 0xf0)
1913
return false;
1914
1915
/* Update CIG */
1916
qos->ucast.cig = data.cig;
1917
}
1918
1919
if (qos->ucast.cis != BT_ISO_QOS_CIS_UNSET) {
1920
if (hci_conn_hash_lookup_cis(hdev, NULL, 0, qos->ucast.cig,
1921
qos->ucast.cis))
1922
return false;
1923
goto done;
1924
}
1925
1926
/* Allocate first available CIS if not set */
1927
for (data.cig = qos->ucast.cig, data.cis = 0x00; data.cis < 0xf0;
1928
data.cis++) {
1929
if (!hci_conn_hash_lookup_cis(hdev, NULL, 0, data.cig,
1930
data.cis)) {
1931
/* Update CIS */
1932
qos->ucast.cis = data.cis;
1933
break;
1934
}
1935
}
1936
1937
if (qos->ucast.cis == BT_ISO_QOS_CIS_UNSET)
1938
return false;
1939
1940
done:
1941
if (hci_cmd_sync_queue(hdev, set_cig_params_sync,
1942
UINT_PTR(qos->ucast.cig), NULL) < 0)
1943
return false;
1944
1945
return true;
1946
}
1947
1948
struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst,
1949
__u8 dst_type, struct bt_iso_qos *qos,
1950
u16 timeout)
1951
{
1952
struct hci_conn *cis;
1953
1954
cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type, qos->ucast.cig,
1955
qos->ucast.cis);
1956
if (!cis) {
1957
cis = hci_conn_add_unset(hdev, CIS_LINK, dst, dst_type,
1958
HCI_ROLE_MASTER);
1959
if (IS_ERR(cis))
1960
return cis;
1961
cis->cleanup = cis_cleanup;
1962
cis->dst_type = dst_type;
1963
cis->iso_qos.ucast.cig = BT_ISO_QOS_CIG_UNSET;
1964
cis->iso_qos.ucast.cis = BT_ISO_QOS_CIS_UNSET;
1965
cis->conn_timeout = timeout;
1966
}
1967
1968
if (cis->state == BT_CONNECTED)
1969
return cis;
1970
1971
/* Check if CIS has been set and the settings matches */
1972
if (cis->state == BT_BOUND &&
1973
!memcmp(&cis->iso_qos, qos, sizeof(*qos)))
1974
return cis;
1975
1976
/* Update LINK PHYs according to QoS preference */
1977
cis->le_tx_phy = qos->ucast.out.phy;
1978
cis->le_rx_phy = qos->ucast.in.phy;
1979
1980
/* If output interval is not set use the input interval as it cannot be
1981
* 0x000000.
1982
*/
1983
if (!qos->ucast.out.interval)
1984
qos->ucast.out.interval = qos->ucast.in.interval;
1985
1986
/* If input interval is not set use the output interval as it cannot be
1987
* 0x000000.
1988
*/
1989
if (!qos->ucast.in.interval)
1990
qos->ucast.in.interval = qos->ucast.out.interval;
1991
1992
/* If output latency is not set use the input latency as it cannot be
1993
* 0x0000.
1994
*/
1995
if (!qos->ucast.out.latency)
1996
qos->ucast.out.latency = qos->ucast.in.latency;
1997
1998
/* If input latency is not set use the output latency as it cannot be
1999
* 0x0000.
2000
*/
2001
if (!qos->ucast.in.latency)
2002
qos->ucast.in.latency = qos->ucast.out.latency;
2003
2004
if (!hci_le_set_cig_params(cis, qos)) {
2005
hci_conn_drop(cis);
2006
return ERR_PTR(-EINVAL);
2007
}
2008
2009
hci_conn_hold(cis);
2010
2011
cis->iso_qos = *qos;
2012
cis->state = BT_BOUND;
2013
2014
return cis;
2015
}
2016
2017
bool hci_iso_setup_path(struct hci_conn *conn)
2018
{
2019
struct hci_dev *hdev = conn->hdev;
2020
struct hci_cp_le_setup_iso_path cmd;
2021
2022
memset(&cmd, 0, sizeof(cmd));
2023
2024
if (conn->iso_qos.ucast.out.sdu) {
2025
cmd.handle = cpu_to_le16(conn->handle);
2026
cmd.direction = 0x00; /* Input (Host to Controller) */
2027
cmd.path = 0x00; /* HCI path if enabled */
2028
cmd.codec = 0x03; /* Transparent Data */
2029
2030
if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd),
2031
&cmd) < 0)
2032
return false;
2033
}
2034
2035
if (conn->iso_qos.ucast.in.sdu) {
2036
cmd.handle = cpu_to_le16(conn->handle);
2037
cmd.direction = 0x01; /* Output (Controller to Host) */
2038
cmd.path = 0x00; /* HCI path if enabled */
2039
cmd.codec = 0x03; /* Transparent Data */
2040
2041
if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd),
2042
&cmd) < 0)
2043
return false;
2044
}
2045
2046
return true;
2047
}
2048
2049
int hci_conn_check_create_cis(struct hci_conn *conn)
2050
{
2051
if (conn->type != CIS_LINK)
2052
return -EINVAL;
2053
2054
if (!conn->parent || conn->parent->state != BT_CONNECTED ||
2055
conn->state != BT_CONNECT || HCI_CONN_HANDLE_UNSET(conn->handle))
2056
return 1;
2057
2058
return 0;
2059
}
2060
2061
static int hci_create_cis_sync(struct hci_dev *hdev, void *data)
2062
{
2063
return hci_le_create_cis_sync(hdev);
2064
}
2065
2066
int hci_le_create_cis_pending(struct hci_dev *hdev)
2067
{
2068
struct hci_conn *conn;
2069
bool pending = false;
2070
2071
rcu_read_lock();
2072
2073
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
2074
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) {
2075
rcu_read_unlock();
2076
return -EBUSY;
2077
}
2078
2079
if (!hci_conn_check_create_cis(conn))
2080
pending = true;
2081
}
2082
2083
rcu_read_unlock();
2084
2085
if (!pending)
2086
return 0;
2087
2088
/* Queue Create CIS */
2089
return hci_cmd_sync_queue(hdev, hci_create_cis_sync, NULL, NULL);
2090
}
2091
2092
static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn,
2093
struct bt_iso_io_qos *qos, __u8 phy)
2094
{
2095
/* Only set MTU if PHY is enabled */
2096
if (!qos->sdu && qos->phy)
2097
qos->sdu = conn->mtu;
2098
2099
/* Use the same PHY as ACL if set to any */
2100
if (qos->phy == BT_ISO_PHY_ANY)
2101
qos->phy = phy;
2102
2103
/* Use LE ACL connection interval if not set */
2104
if (!qos->interval)
2105
/* ACL interval unit in 1.25 ms to us */
2106
qos->interval = conn->le_conn_interval * 1250;
2107
2108
/* Use LE ACL connection latency if not set */
2109
if (!qos->latency)
2110
qos->latency = conn->le_conn_latency;
2111
}
2112
2113
static int create_big_sync(struct hci_dev *hdev, void *data)
2114
{
2115
struct hci_conn *conn = data;
2116
struct bt_iso_qos *qos = &conn->iso_qos;
2117
u16 interval, sync_interval = 0;
2118
u32 flags = 0;
2119
int err;
2120
2121
if (qos->bcast.out.phy == 0x02)
2122
flags |= MGMT_ADV_FLAG_SEC_2M;
2123
2124
/* Align intervals */
2125
interval = (qos->bcast.out.interval / 1250) * qos->bcast.sync_factor;
2126
2127
if (qos->bcast.bis)
2128
sync_interval = interval * 4;
2129
2130
err = hci_start_per_adv_sync(hdev, qos->bcast.bis, conn->sid,
2131
conn->le_per_adv_data_len,
2132
conn->le_per_adv_data, flags, interval,
2133
interval, sync_interval);
2134
if (err)
2135
return err;
2136
2137
return hci_le_create_big(conn, &conn->iso_qos);
2138
}
2139
2140
struct hci_conn *hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst,
2141
__u8 dst_type, __u8 sid,
2142
struct bt_iso_qos *qos)
2143
{
2144
struct hci_conn *conn;
2145
2146
bt_dev_dbg(hdev, "dst %pMR type %d sid %d", dst, dst_type, sid);
2147
2148
conn = hci_conn_add_unset(hdev, PA_LINK, dst, dst_type, HCI_ROLE_SLAVE);
2149
if (IS_ERR(conn))
2150
return conn;
2151
2152
conn->iso_qos = *qos;
2153
conn->sid = sid;
2154
conn->state = BT_LISTEN;
2155
conn->conn_timeout = msecs_to_jiffies(qos->bcast.sync_timeout * 10);
2156
2157
hci_conn_hold(conn);
2158
2159
hci_connect_pa_sync(hdev, conn);
2160
2161
return conn;
2162
}
2163
2164
int hci_conn_big_create_sync(struct hci_dev *hdev, struct hci_conn *hcon,
2165
struct bt_iso_qos *qos, __u16 sync_handle,
2166
__u8 num_bis, __u8 bis[])
2167
{
2168
int err;
2169
2170
if (num_bis < 0x01 || num_bis > ISO_MAX_NUM_BIS)
2171
return -EINVAL;
2172
2173
err = qos_set_big(hdev, qos);
2174
if (err)
2175
return err;
2176
2177
if (hcon) {
2178
/* Update hcon QoS */
2179
hcon->iso_qos = *qos;
2180
2181
hcon->num_bis = num_bis;
2182
memcpy(hcon->bis, bis, num_bis);
2183
hcon->conn_timeout = msecs_to_jiffies(qos->bcast.timeout * 10);
2184
}
2185
2186
return hci_connect_big_sync(hdev, hcon);
2187
}
2188
2189
static void create_big_complete(struct hci_dev *hdev, void *data, int err)
2190
{
2191
struct hci_conn *conn = data;
2192
2193
bt_dev_dbg(hdev, "conn %p", conn);
2194
2195
if (err) {
2196
bt_dev_err(hdev, "Unable to create BIG: %d", err);
2197
hci_connect_cfm(conn, err);
2198
hci_conn_del(conn);
2199
}
2200
}
2201
2202
struct hci_conn *hci_bind_bis(struct hci_dev *hdev, bdaddr_t *dst, __u8 sid,
2203
struct bt_iso_qos *qos,
2204
__u8 base_len, __u8 *base, u16 timeout)
2205
{
2206
struct hci_conn *conn;
2207
struct hci_conn *parent;
2208
__u8 eir[HCI_MAX_PER_AD_LENGTH];
2209
struct hci_link *link;
2210
2211
/* Look for any BIS that is open for rebinding */
2212
conn = hci_conn_hash_lookup_big_state(hdev, qos->bcast.big, BT_OPEN,
2213
HCI_ROLE_MASTER);
2214
if (conn) {
2215
memcpy(qos, &conn->iso_qos, sizeof(*qos));
2216
conn->state = BT_CONNECTED;
2217
return conn;
2218
}
2219
2220
if (base_len && base)
2221
base_len = eir_append_service_data(eir, 0, 0x1851,
2222
base, base_len);
2223
2224
/* We need hci_conn object using the BDADDR_ANY as dst */
2225
conn = hci_add_bis(hdev, dst, sid, qos, base_len, eir, timeout);
2226
if (IS_ERR(conn))
2227
return conn;
2228
2229
/* Update LINK PHYs according to QoS preference */
2230
conn->le_tx_phy = qos->bcast.out.phy;
2231
conn->le_tx_phy = qos->bcast.out.phy;
2232
2233
/* Add Basic Announcement into Peridic Adv Data if BASE is set */
2234
if (base_len && base) {
2235
memcpy(conn->le_per_adv_data, eir, sizeof(eir));
2236
conn->le_per_adv_data_len = base_len;
2237
}
2238
2239
hci_iso_qos_setup(hdev, conn, &qos->bcast.out,
2240
conn->le_tx_phy ? conn->le_tx_phy :
2241
hdev->le_tx_def_phys);
2242
2243
conn->iso_qos = *qos;
2244
conn->state = BT_BOUND;
2245
2246
/* Link BISes together */
2247
parent = hci_conn_hash_lookup_big(hdev,
2248
conn->iso_qos.bcast.big);
2249
if (parent && parent != conn) {
2250
link = hci_conn_link(parent, conn);
2251
hci_conn_drop(conn);
2252
if (!link)
2253
return ERR_PTR(-ENOLINK);
2254
}
2255
2256
return conn;
2257
}
2258
2259
int hci_past_bis(struct hci_conn *conn, bdaddr_t *dst, __u8 dst_type)
2260
{
2261
struct hci_conn *le;
2262
2263
/* Lookup existing LE connection to rebind to */
2264
le = hci_conn_hash_lookup_le(conn->hdev, dst, dst_type);
2265
if (!le)
2266
return -EINVAL;
2267
2268
return hci_past_sync(conn, le);
2269
}
2270
2271
static void bis_mark_per_adv(struct hci_conn *conn, void *data)
2272
{
2273
struct iso_list_data *d = data;
2274
2275
/* Skip if not broadcast/ANY address */
2276
if (bacmp(&conn->dst, BDADDR_ANY))
2277
return;
2278
2279
if (d->big != conn->iso_qos.bcast.big ||
2280
d->bis == BT_ISO_QOS_BIS_UNSET ||
2281
d->bis != conn->iso_qos.bcast.bis)
2282
return;
2283
2284
set_bit(HCI_CONN_PER_ADV, &conn->flags);
2285
}
2286
2287
struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst,
2288
__u8 dst_type, __u8 sid,
2289
struct bt_iso_qos *qos,
2290
__u8 base_len, __u8 *base, u16 timeout)
2291
{
2292
struct hci_conn *conn;
2293
int err;
2294
struct iso_list_data data;
2295
2296
conn = hci_bind_bis(hdev, dst, sid, qos, base_len, base, timeout);
2297
if (IS_ERR(conn))
2298
return conn;
2299
2300
if (conn->state == BT_CONNECTED)
2301
return conn;
2302
2303
/* Check if SID needs to be allocated then search for the first
2304
* available.
2305
*/
2306
if (conn->sid == HCI_SID_INVALID) {
2307
u8 sid;
2308
2309
for (sid = 0; sid <= 0x0f; sid++) {
2310
if (!hci_find_adv_sid(hdev, sid)) {
2311
conn->sid = sid;
2312
break;
2313
}
2314
}
2315
}
2316
2317
data.big = qos->bcast.big;
2318
data.bis = qos->bcast.bis;
2319
2320
/* Set HCI_CONN_PER_ADV for all bound connections, to mark that
2321
* the start periodic advertising and create BIG commands have
2322
* been queued
2323
*/
2324
hci_conn_hash_list_state(hdev, bis_mark_per_adv, BIS_LINK,
2325
BT_BOUND, &data);
2326
2327
/* Queue start periodic advertising and create BIG */
2328
err = hci_cmd_sync_queue(hdev, create_big_sync, conn,
2329
create_big_complete);
2330
if (err < 0) {
2331
hci_conn_drop(conn);
2332
return ERR_PTR(err);
2333
}
2334
2335
return conn;
2336
}
2337
2338
struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst,
2339
__u8 dst_type, struct bt_iso_qos *qos,
2340
u16 timeout)
2341
{
2342
struct hci_conn *le;
2343
struct hci_conn *cis;
2344
struct hci_link *link;
2345
2346
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2347
le = hci_connect_le(hdev, dst, dst_type, false,
2348
BT_SECURITY_LOW,
2349
HCI_LE_CONN_TIMEOUT,
2350
HCI_ROLE_SLAVE, 0, 0);
2351
else
2352
le = hci_connect_le_scan(hdev, dst, dst_type,
2353
BT_SECURITY_LOW,
2354
HCI_LE_CONN_TIMEOUT,
2355
CONN_REASON_ISO_CONNECT);
2356
if (IS_ERR(le))
2357
return le;
2358
2359
hci_iso_qos_setup(hdev, le, &qos->ucast.out,
2360
le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys);
2361
hci_iso_qos_setup(hdev, le, &qos->ucast.in,
2362
le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys);
2363
2364
cis = hci_bind_cis(hdev, dst, dst_type, qos, timeout);
2365
if (IS_ERR(cis)) {
2366
hci_conn_drop(le);
2367
return cis;
2368
}
2369
2370
link = hci_conn_link(le, cis);
2371
hci_conn_drop(cis);
2372
if (!link) {
2373
hci_conn_drop(le);
2374
return ERR_PTR(-ENOLINK);
2375
}
2376
2377
cis->state = BT_CONNECT;
2378
2379
hci_le_create_cis_pending(hdev);
2380
2381
return cis;
2382
}
2383
2384
/* Check link security requirement */
2385
int hci_conn_check_link_mode(struct hci_conn *conn)
2386
{
2387
BT_DBG("hcon %p", conn);
2388
2389
/* In Secure Connections Only mode, it is required that Secure
2390
* Connections is used and the link is encrypted with AES-CCM
2391
* using a P-256 authenticated combination key.
2392
*/
2393
if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
2394
if (!hci_conn_sc_enabled(conn) ||
2395
!test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
2396
conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
2397
return 0;
2398
}
2399
2400
/* AES encryption is required for Level 4:
2401
*
2402
* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
2403
* page 1319:
2404
*
2405
* 128-bit equivalent strength for link and encryption keys
2406
* required using FIPS approved algorithms (E0 not allowed,
2407
* SAFER+ not allowed, and P-192 not allowed; encryption key
2408
* not shortened)
2409
*/
2410
if (conn->sec_level == BT_SECURITY_FIPS &&
2411
!test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
2412
bt_dev_err(conn->hdev,
2413
"Invalid security: Missing AES-CCM usage");
2414
return 0;
2415
}
2416
2417
if (hci_conn_ssp_enabled(conn) &&
2418
!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2419
return 0;
2420
2421
return 1;
2422
}
2423
2424
/* Authenticate remote device */
2425
static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
2426
{
2427
BT_DBG("hcon %p", conn);
2428
2429
if (conn->pending_sec_level > sec_level)
2430
sec_level = conn->pending_sec_level;
2431
2432
if (sec_level > conn->sec_level)
2433
conn->pending_sec_level = sec_level;
2434
else if (test_bit(HCI_CONN_AUTH, &conn->flags))
2435
return 1;
2436
2437
/* Make sure we preserve an existing MITM requirement*/
2438
auth_type |= (conn->auth_type & 0x01);
2439
2440
conn->auth_type = auth_type;
2441
2442
if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
2443
struct hci_cp_auth_requested cp;
2444
2445
cp.handle = cpu_to_le16(conn->handle);
2446
hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
2447
sizeof(cp), &cp);
2448
2449
/* Set the ENCRYPT_PEND to trigger encryption after
2450
* authentication.
2451
*/
2452
if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2453
set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
2454
}
2455
2456
return 0;
2457
}
2458
2459
/* Encrypt the link */
2460
static void hci_conn_encrypt(struct hci_conn *conn)
2461
{
2462
BT_DBG("hcon %p", conn);
2463
2464
if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
2465
struct hci_cp_set_conn_encrypt cp;
2466
cp.handle = cpu_to_le16(conn->handle);
2467
cp.encrypt = 0x01;
2468
hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
2469
&cp);
2470
}
2471
}
2472
2473
/* Enable security */
2474
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
2475
bool initiator)
2476
{
2477
BT_DBG("hcon %p", conn);
2478
2479
if (conn->type == LE_LINK)
2480
return smp_conn_security(conn, sec_level);
2481
2482
/* For sdp we don't need the link key. */
2483
if (sec_level == BT_SECURITY_SDP)
2484
return 1;
2485
2486
/* For non 2.1 devices and low security level we don't need the link
2487
key. */
2488
if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
2489
return 1;
2490
2491
/* For other security levels we need the link key. */
2492
if (!test_bit(HCI_CONN_AUTH, &conn->flags))
2493
goto auth;
2494
2495
switch (conn->key_type) {
2496
case HCI_LK_AUTH_COMBINATION_P256:
2497
/* An authenticated FIPS approved combination key has
2498
* sufficient security for security level 4 or lower.
2499
*/
2500
if (sec_level <= BT_SECURITY_FIPS)
2501
goto encrypt;
2502
break;
2503
case HCI_LK_AUTH_COMBINATION_P192:
2504
/* An authenticated combination key has sufficient security for
2505
* security level 3 or lower.
2506
*/
2507
if (sec_level <= BT_SECURITY_HIGH)
2508
goto encrypt;
2509
break;
2510
case HCI_LK_UNAUTH_COMBINATION_P192:
2511
case HCI_LK_UNAUTH_COMBINATION_P256:
2512
/* An unauthenticated combination key has sufficient security
2513
* for security level 2 or lower.
2514
*/
2515
if (sec_level <= BT_SECURITY_MEDIUM)
2516
goto encrypt;
2517
break;
2518
case HCI_LK_COMBINATION:
2519
/* A combination key has always sufficient security for the
2520
* security levels 2 or lower. High security level requires the
2521
* combination key is generated using maximum PIN code length
2522
* (16). For pre 2.1 units.
2523
*/
2524
if (sec_level <= BT_SECURITY_MEDIUM || conn->pin_length == 16)
2525
goto encrypt;
2526
break;
2527
default:
2528
break;
2529
}
2530
2531
auth:
2532
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
2533
return 0;
2534
2535
if (initiator)
2536
set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
2537
2538
if (!hci_conn_auth(conn, sec_level, auth_type))
2539
return 0;
2540
2541
encrypt:
2542
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
2543
/* Ensure that the encryption key size has been read,
2544
* otherwise stall the upper layer responses.
2545
*/
2546
if (!conn->enc_key_size)
2547
return 0;
2548
2549
/* Nothing else needed, all requirements are met */
2550
return 1;
2551
}
2552
2553
hci_conn_encrypt(conn);
2554
return 0;
2555
}
2556
EXPORT_SYMBOL(hci_conn_security);
2557
2558
/* Check secure link requirement */
2559
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
2560
{
2561
BT_DBG("hcon %p", conn);
2562
2563
/* Accept if non-secure or higher security level is required */
2564
if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
2565
return 1;
2566
2567
/* Accept if secure or higher security level is already present */
2568
if (conn->sec_level == BT_SECURITY_HIGH ||
2569
conn->sec_level == BT_SECURITY_FIPS)
2570
return 1;
2571
2572
/* Reject not secure link */
2573
return 0;
2574
}
2575
EXPORT_SYMBOL(hci_conn_check_secure);
2576
2577
/* Switch role */
2578
int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
2579
{
2580
BT_DBG("hcon %p", conn);
2581
2582
if (role == conn->role)
2583
return 1;
2584
2585
if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
2586
struct hci_cp_switch_role cp;
2587
bacpy(&cp.bdaddr, &conn->dst);
2588
cp.role = role;
2589
hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
2590
}
2591
2592
return 0;
2593
}
2594
EXPORT_SYMBOL(hci_conn_switch_role);
2595
2596
/* Enter active mode */
2597
void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
2598
{
2599
struct hci_dev *hdev = conn->hdev;
2600
2601
BT_DBG("hcon %p mode %d", conn, conn->mode);
2602
2603
if (conn->mode != HCI_CM_SNIFF)
2604
goto timer;
2605
2606
if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
2607
goto timer;
2608
2609
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
2610
struct hci_cp_exit_sniff_mode cp;
2611
cp.handle = cpu_to_le16(conn->handle);
2612
hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
2613
}
2614
2615
timer:
2616
if (hdev->idle_timeout > 0)
2617
queue_delayed_work(hdev->workqueue, &conn->idle_work,
2618
msecs_to_jiffies(hdev->idle_timeout));
2619
}
2620
2621
/* Drop all connection on the device */
2622
void hci_conn_hash_flush(struct hci_dev *hdev)
2623
{
2624
struct list_head *head = &hdev->conn_hash.list;
2625
struct hci_conn *conn;
2626
2627
BT_DBG("hdev %s", hdev->name);
2628
2629
/* We should not traverse the list here, because hci_conn_del
2630
* can remove extra links, which may cause the list traversal
2631
* to hit items that have already been released.
2632
*/
2633
while ((conn = list_first_entry_or_null(head,
2634
struct hci_conn,
2635
list)) != NULL) {
2636
conn->state = BT_CLOSED;
2637
hci_disconn_cfm(conn, HCI_ERROR_LOCAL_HOST_TERM);
2638
hci_conn_del(conn);
2639
}
2640
}
2641
2642
static u32 get_link_mode(struct hci_conn *conn)
2643
{
2644
u32 link_mode = 0;
2645
2646
if (conn->role == HCI_ROLE_MASTER)
2647
link_mode |= HCI_LM_MASTER;
2648
2649
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2650
link_mode |= HCI_LM_ENCRYPT;
2651
2652
if (test_bit(HCI_CONN_AUTH, &conn->flags))
2653
link_mode |= HCI_LM_AUTH;
2654
2655
if (test_bit(HCI_CONN_SECURE, &conn->flags))
2656
link_mode |= HCI_LM_SECURE;
2657
2658
if (test_bit(HCI_CONN_FIPS, &conn->flags))
2659
link_mode |= HCI_LM_FIPS;
2660
2661
return link_mode;
2662
}
2663
2664
int hci_get_conn_list(void __user *arg)
2665
{
2666
struct hci_conn *c;
2667
struct hci_conn_list_req req, *cl;
2668
struct hci_conn_info *ci;
2669
struct hci_dev *hdev;
2670
int n = 0, size, err;
2671
2672
if (copy_from_user(&req, arg, sizeof(req)))
2673
return -EFAULT;
2674
2675
if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
2676
return -EINVAL;
2677
2678
size = sizeof(req) + req.conn_num * sizeof(*ci);
2679
2680
cl = kmalloc(size, GFP_KERNEL);
2681
if (!cl)
2682
return -ENOMEM;
2683
2684
hdev = hci_dev_get(req.dev_id);
2685
if (!hdev) {
2686
kfree(cl);
2687
return -ENODEV;
2688
}
2689
2690
ci = cl->conn_info;
2691
2692
hci_dev_lock(hdev);
2693
list_for_each_entry(c, &hdev->conn_hash.list, list) {
2694
bacpy(&(ci + n)->bdaddr, &c->dst);
2695
(ci + n)->handle = c->handle;
2696
(ci + n)->type = c->type;
2697
(ci + n)->out = c->out;
2698
(ci + n)->state = c->state;
2699
(ci + n)->link_mode = get_link_mode(c);
2700
if (++n >= req.conn_num)
2701
break;
2702
}
2703
hci_dev_unlock(hdev);
2704
2705
cl->dev_id = hdev->id;
2706
cl->conn_num = n;
2707
size = sizeof(req) + n * sizeof(*ci);
2708
2709
hci_dev_put(hdev);
2710
2711
err = copy_to_user(arg, cl, size);
2712
kfree(cl);
2713
2714
return err ? -EFAULT : 0;
2715
}
2716
2717
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
2718
{
2719
struct hci_conn_info_req req;
2720
struct hci_conn_info ci;
2721
struct hci_conn *conn;
2722
char __user *ptr = arg + sizeof(req);
2723
2724
if (copy_from_user(&req, arg, sizeof(req)))
2725
return -EFAULT;
2726
2727
hci_dev_lock(hdev);
2728
conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
2729
if (conn) {
2730
bacpy(&ci.bdaddr, &conn->dst);
2731
ci.handle = conn->handle;
2732
ci.type = conn->type;
2733
ci.out = conn->out;
2734
ci.state = conn->state;
2735
ci.link_mode = get_link_mode(conn);
2736
}
2737
hci_dev_unlock(hdev);
2738
2739
if (!conn)
2740
return -ENOENT;
2741
2742
return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
2743
}
2744
2745
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
2746
{
2747
struct hci_auth_info_req req;
2748
struct hci_conn *conn;
2749
2750
if (copy_from_user(&req, arg, sizeof(req)))
2751
return -EFAULT;
2752
2753
hci_dev_lock(hdev);
2754
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
2755
if (conn)
2756
req.type = conn->auth_type;
2757
hci_dev_unlock(hdev);
2758
2759
if (!conn)
2760
return -ENOENT;
2761
2762
return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
2763
}
2764
2765
struct hci_chan *hci_chan_create(struct hci_conn *conn)
2766
{
2767
struct hci_dev *hdev = conn->hdev;
2768
struct hci_chan *chan;
2769
2770
BT_DBG("%s hcon %p", hdev->name, conn);
2771
2772
if (test_bit(HCI_CONN_DROP, &conn->flags)) {
2773
BT_DBG("Refusing to create new hci_chan");
2774
return NULL;
2775
}
2776
2777
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2778
if (!chan)
2779
return NULL;
2780
2781
chan->conn = hci_conn_get(conn);
2782
skb_queue_head_init(&chan->data_q);
2783
chan->state = BT_CONNECTED;
2784
2785
list_add_rcu(&chan->list, &conn->chan_list);
2786
2787
return chan;
2788
}
2789
2790
void hci_chan_del(struct hci_chan *chan)
2791
{
2792
struct hci_conn *conn = chan->conn;
2793
struct hci_dev *hdev = conn->hdev;
2794
2795
BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
2796
2797
list_del_rcu(&chan->list);
2798
2799
synchronize_rcu();
2800
2801
/* Prevent new hci_chan's to be created for this hci_conn */
2802
set_bit(HCI_CONN_DROP, &conn->flags);
2803
2804
hci_conn_put(conn);
2805
2806
skb_queue_purge(&chan->data_q);
2807
kfree(chan);
2808
}
2809
2810
void hci_chan_list_flush(struct hci_conn *conn)
2811
{
2812
struct hci_chan *chan, *n;
2813
2814
BT_DBG("hcon %p", conn);
2815
2816
list_for_each_entry_safe(chan, n, &conn->chan_list, list)
2817
hci_chan_del(chan);
2818
}
2819
2820
static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
2821
__u16 handle)
2822
{
2823
struct hci_chan *hchan;
2824
2825
list_for_each_entry(hchan, &hcon->chan_list, list) {
2826
if (hchan->handle == handle)
2827
return hchan;
2828
}
2829
2830
return NULL;
2831
}
2832
2833
struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
2834
{
2835
struct hci_conn_hash *h = &hdev->conn_hash;
2836
struct hci_conn *hcon;
2837
struct hci_chan *hchan = NULL;
2838
2839
rcu_read_lock();
2840
2841
list_for_each_entry_rcu(hcon, &h->list, list) {
2842
hchan = __hci_chan_lookup_handle(hcon, handle);
2843
if (hchan)
2844
break;
2845
}
2846
2847
rcu_read_unlock();
2848
2849
return hchan;
2850
}
2851
2852
u32 hci_conn_get_phy(struct hci_conn *conn)
2853
{
2854
u32 phys = 0;
2855
2856
/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
2857
* Table 6.2: Packets defined for synchronous, asynchronous, and
2858
* CPB logical transport types.
2859
*/
2860
switch (conn->type) {
2861
case SCO_LINK:
2862
/* SCO logical transport (1 Mb/s):
2863
* HV1, HV2, HV3 and DV.
2864
*/
2865
phys |= BT_PHY_BR_1M_1SLOT;
2866
2867
break;
2868
2869
case ACL_LINK:
2870
/* ACL logical transport (1 Mb/s) ptt=0:
2871
* DH1, DM3, DH3, DM5 and DH5.
2872
*/
2873
phys |= BT_PHY_BR_1M_1SLOT;
2874
2875
if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
2876
phys |= BT_PHY_BR_1M_3SLOT;
2877
2878
if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
2879
phys |= BT_PHY_BR_1M_5SLOT;
2880
2881
/* ACL logical transport (2 Mb/s) ptt=1:
2882
* 2-DH1, 2-DH3 and 2-DH5.
2883
*/
2884
if (!(conn->pkt_type & HCI_2DH1))
2885
phys |= BT_PHY_EDR_2M_1SLOT;
2886
2887
if (!(conn->pkt_type & HCI_2DH3))
2888
phys |= BT_PHY_EDR_2M_3SLOT;
2889
2890
if (!(conn->pkt_type & HCI_2DH5))
2891
phys |= BT_PHY_EDR_2M_5SLOT;
2892
2893
/* ACL logical transport (3 Mb/s) ptt=1:
2894
* 3-DH1, 3-DH3 and 3-DH5.
2895
*/
2896
if (!(conn->pkt_type & HCI_3DH1))
2897
phys |= BT_PHY_EDR_3M_1SLOT;
2898
2899
if (!(conn->pkt_type & HCI_3DH3))
2900
phys |= BT_PHY_EDR_3M_3SLOT;
2901
2902
if (!(conn->pkt_type & HCI_3DH5))
2903
phys |= BT_PHY_EDR_3M_5SLOT;
2904
2905
break;
2906
2907
case ESCO_LINK:
2908
/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
2909
phys |= BT_PHY_BR_1M_1SLOT;
2910
2911
if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
2912
phys |= BT_PHY_BR_1M_3SLOT;
2913
2914
/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
2915
if (!(conn->pkt_type & ESCO_2EV3))
2916
phys |= BT_PHY_EDR_2M_1SLOT;
2917
2918
if (!(conn->pkt_type & ESCO_2EV5))
2919
phys |= BT_PHY_EDR_2M_3SLOT;
2920
2921
/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
2922
if (!(conn->pkt_type & ESCO_3EV3))
2923
phys |= BT_PHY_EDR_3M_1SLOT;
2924
2925
if (!(conn->pkt_type & ESCO_3EV5))
2926
phys |= BT_PHY_EDR_3M_3SLOT;
2927
2928
break;
2929
2930
case LE_LINK:
2931
if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
2932
phys |= BT_PHY_LE_1M_TX;
2933
2934
if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
2935
phys |= BT_PHY_LE_1M_RX;
2936
2937
if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
2938
phys |= BT_PHY_LE_2M_TX;
2939
2940
if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
2941
phys |= BT_PHY_LE_2M_RX;
2942
2943
if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
2944
phys |= BT_PHY_LE_CODED_TX;
2945
2946
if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
2947
phys |= BT_PHY_LE_CODED_RX;
2948
2949
break;
2950
}
2951
2952
return phys;
2953
}
2954
2955
static int abort_conn_sync(struct hci_dev *hdev, void *data)
2956
{
2957
struct hci_conn *conn = data;
2958
2959
if (!hci_conn_valid(hdev, conn))
2960
return -ECANCELED;
2961
2962
return hci_abort_conn_sync(hdev, conn, conn->abort_reason);
2963
}
2964
2965
int hci_abort_conn(struct hci_conn *conn, u8 reason)
2966
{
2967
struct hci_dev *hdev = conn->hdev;
2968
2969
/* If abort_reason has already been set it means the connection is
2970
* already being aborted so don't attempt to overwrite it.
2971
*/
2972
if (conn->abort_reason)
2973
return 0;
2974
2975
bt_dev_dbg(hdev, "handle 0x%2.2x reason 0x%2.2x", conn->handle, reason);
2976
2977
conn->abort_reason = reason;
2978
2979
/* If the connection is pending check the command opcode since that
2980
* might be blocking on hci_cmd_sync_work while waiting its respective
2981
* event so we need to hci_cmd_sync_cancel to cancel it.
2982
*
2983
* hci_connect_le serializes the connection attempts so only one
2984
* connection can be in BT_CONNECT at time.
2985
*/
2986
if (conn->state == BT_CONNECT && hdev->req_status == HCI_REQ_PEND) {
2987
switch (hci_skb_event(hdev->sent_cmd)) {
2988
case HCI_EV_CONN_COMPLETE:
2989
case HCI_EV_LE_CONN_COMPLETE:
2990
case HCI_EV_LE_ENHANCED_CONN_COMPLETE:
2991
case HCI_EVT_LE_CIS_ESTABLISHED:
2992
hci_cmd_sync_cancel(hdev, ECANCELED);
2993
break;
2994
}
2995
/* Cancel connect attempt if still queued/pending */
2996
} else if (!hci_cancel_connect_sync(hdev, conn)) {
2997
return 0;
2998
}
2999
3000
/* Run immediately if on cmd_sync_work since this may be called
3001
* as a result to MGMT_OP_DISCONNECT/MGMT_OP_UNPAIR which does
3002
* already queue its callback on cmd_sync_work.
3003
*/
3004
return hci_cmd_sync_run_once(hdev, abort_conn_sync, conn, NULL);
3005
}
3006
3007
void hci_setup_tx_timestamp(struct sk_buff *skb, size_t key_offset,
3008
const struct sockcm_cookie *sockc)
3009
{
3010
struct sock *sk = skb ? skb->sk : NULL;
3011
int key;
3012
3013
/* This shall be called on a single skb of those generated by user
3014
* sendmsg(), and only when the sendmsg() does not return error to
3015
* user. This is required for keeping the tskey that increments here in
3016
* sync with possible sendmsg() counting by user.
3017
*
3018
* Stream sockets shall set key_offset to sendmsg() length in bytes
3019
* and call with the last fragment, others to 1 and first fragment.
3020
*/
3021
3022
if (!skb || !sockc || !sk || !key_offset)
3023
return;
3024
3025
sock_tx_timestamp(sk, sockc, &skb_shinfo(skb)->tx_flags);
3026
3027
if (sk->sk_type == SOCK_STREAM)
3028
key = atomic_add_return(key_offset, &sk->sk_tskey);
3029
3030
if (sockc->tsflags & SOF_TIMESTAMPING_OPT_ID &&
3031
sockc->tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
3032
if (sockc->tsflags & SOCKCM_FLAG_TS_OPT_ID) {
3033
skb_shinfo(skb)->tskey = sockc->ts_opt_id;
3034
} else {
3035
if (sk->sk_type != SOCK_STREAM)
3036
key = atomic_inc_return(&sk->sk_tskey);
3037
skb_shinfo(skb)->tskey = key - 1;
3038
}
3039
}
3040
}
3041
3042
void hci_conn_tx_queue(struct hci_conn *conn, struct sk_buff *skb)
3043
{
3044
struct tx_queue *comp = &conn->tx_q;
3045
bool track = false;
3046
3047
/* Emit SND now, ie. just before sending to driver */
3048
if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3049
__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SND);
3050
3051
/* COMPLETION tstamp is emitted for tracked skb later in Number of
3052
* Completed Packets event. Available only for flow controlled cases.
3053
*
3054
* TODO: SCO support without flowctl (needs to be done in drivers)
3055
*/
3056
switch (conn->type) {
3057
case CIS_LINK:
3058
case BIS_LINK:
3059
case PA_LINK:
3060
case ACL_LINK:
3061
case LE_LINK:
3062
break;
3063
case SCO_LINK:
3064
case ESCO_LINK:
3065
if (!hci_dev_test_flag(conn->hdev, HCI_SCO_FLOWCTL))
3066
return;
3067
break;
3068
default:
3069
return;
3070
}
3071
3072
if (skb->sk && (skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP))
3073
track = true;
3074
3075
/* If nothing is tracked, just count extra skbs at the queue head */
3076
if (!track && !comp->tracked) {
3077
comp->extra++;
3078
return;
3079
}
3080
3081
if (track) {
3082
skb = skb_clone_sk(skb);
3083
if (!skb)
3084
goto count_only;
3085
3086
comp->tracked++;
3087
} else {
3088
skb = skb_clone(skb, GFP_KERNEL);
3089
if (!skb)
3090
goto count_only;
3091
}
3092
3093
skb_queue_tail(&comp->queue, skb);
3094
return;
3095
3096
count_only:
3097
/* Stop tracking skbs, and only count. This will not emit timestamps for
3098
* the packets, but if we get here something is more seriously wrong.
3099
*/
3100
comp->tracked = 0;
3101
comp->extra += skb_queue_len(&comp->queue) + 1;
3102
skb_queue_purge(&comp->queue);
3103
}
3104
3105
void hci_conn_tx_dequeue(struct hci_conn *conn)
3106
{
3107
struct tx_queue *comp = &conn->tx_q;
3108
struct sk_buff *skb;
3109
3110
/* If there are tracked skbs, the counted extra go before dequeuing real
3111
* skbs, to keep ordering. When nothing is tracked, the ordering doesn't
3112
* matter so dequeue real skbs first to get rid of them ASAP.
3113
*/
3114
if (comp->extra && (comp->tracked || skb_queue_empty(&comp->queue))) {
3115
comp->extra--;
3116
return;
3117
}
3118
3119
skb = skb_dequeue(&comp->queue);
3120
if (!skb)
3121
return;
3122
3123
if (skb->sk) {
3124
comp->tracked--;
3125
__skb_tstamp_tx(skb, NULL, NULL, skb->sk,
3126
SCM_TSTAMP_COMPLETION);
3127
}
3128
3129
kfree_skb(skb);
3130
}
3131
3132
u8 *hci_conn_key_enc_size(struct hci_conn *conn)
3133
{
3134
if (conn->type == ACL_LINK) {
3135
struct link_key *key;
3136
3137
key = hci_find_link_key(conn->hdev, &conn->dst);
3138
if (!key)
3139
return NULL;
3140
3141
return &key->pin_len;
3142
} else if (conn->type == LE_LINK) {
3143
struct smp_ltk *ltk;
3144
3145
ltk = hci_find_ltk(conn->hdev, &conn->dst, conn->dst_type,
3146
conn->role);
3147
if (!ltk)
3148
return NULL;
3149
3150
return &ltk->enc_size;
3151
}
3152
3153
return NULL;
3154
}
3155
3156
int hci_ethtool_ts_info(unsigned int index, int sk_proto,
3157
struct kernel_ethtool_ts_info *info)
3158
{
3159
struct hci_dev *hdev;
3160
3161
hdev = hci_dev_get(index);
3162
if (!hdev)
3163
return -ENODEV;
3164
3165
info->so_timestamping =
3166
SOF_TIMESTAMPING_RX_SOFTWARE |
3167
SOF_TIMESTAMPING_SOFTWARE;
3168
info->phc_index = -1;
3169
info->tx_types = BIT(HWTSTAMP_TX_OFF);
3170
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
3171
3172
switch (sk_proto) {
3173
case BTPROTO_ISO:
3174
case BTPROTO_L2CAP:
3175
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE;
3176
info->so_timestamping |= SOF_TIMESTAMPING_TX_COMPLETION;
3177
break;
3178
case BTPROTO_SCO:
3179
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE;
3180
if (hci_dev_test_flag(hdev, HCI_SCO_FLOWCTL))
3181
info->so_timestamping |= SOF_TIMESTAMPING_TX_COMPLETION;
3182
break;
3183
}
3184
3185
hci_dev_put(hdev);
3186
return 0;
3187
}
3188
3189