Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/bluetooth/hci_conn.c
26282 views
1
/*
2
BlueZ - Bluetooth protocol stack for Linux
3
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
Copyright 2023-2024 NXP
5
6
Written 2000,2001 by Maxim Krasnyansky <[email protected]>
7
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License version 2 as
10
published by the Free Software Foundation;
11
12
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23
SOFTWARE IS DISCLAIMED.
24
*/
25
26
/* Bluetooth HCI connection handling. */
27
28
#include <linux/export.h>
29
#include <linux/debugfs.h>
30
#include <linux/errqueue.h>
31
32
#include <net/bluetooth/bluetooth.h>
33
#include <net/bluetooth/hci_core.h>
34
#include <net/bluetooth/l2cap.h>
35
#include <net/bluetooth/iso.h>
36
#include <net/bluetooth/mgmt.h>
37
38
#include "smp.h"
39
#include "eir.h"
40
41
struct sco_param {
42
u16 pkt_type;
43
u16 max_latency;
44
u8 retrans_effort;
45
};
46
47
struct conn_handle_t {
48
struct hci_conn *conn;
49
__u16 handle;
50
};
51
52
static const struct sco_param esco_param_cvsd[] = {
53
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
54
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
55
{ EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
56
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
57
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
58
};
59
60
static const struct sco_param sco_param_cvsd[] = {
61
{ EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
62
{ EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
63
};
64
65
static const struct sco_param esco_param_msbc[] = {
66
{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
67
{ EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
68
};
69
70
/* This function requires the caller holds hdev->lock */
71
void hci_connect_le_scan_cleanup(struct hci_conn *conn, u8 status)
72
{
73
struct hci_conn_params *params;
74
struct hci_dev *hdev = conn->hdev;
75
struct smp_irk *irk;
76
bdaddr_t *bdaddr;
77
u8 bdaddr_type;
78
79
bdaddr = &conn->dst;
80
bdaddr_type = conn->dst_type;
81
82
/* Check if we need to convert to identity address */
83
irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
84
if (irk) {
85
bdaddr = &irk->bdaddr;
86
bdaddr_type = irk->addr_type;
87
}
88
89
params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
90
bdaddr_type);
91
if (!params)
92
return;
93
94
if (params->conn) {
95
hci_conn_drop(params->conn);
96
hci_conn_put(params->conn);
97
params->conn = NULL;
98
}
99
100
if (!params->explicit_connect)
101
return;
102
103
/* If the status indicates successful cancellation of
104
* the attempt (i.e. Unknown Connection Id) there's no point of
105
* notifying failure since we'll go back to keep trying to
106
* connect. The only exception is explicit connect requests
107
* where a timeout + cancel does indicate an actual failure.
108
*/
109
if (status && status != HCI_ERROR_UNKNOWN_CONN_ID)
110
mgmt_connect_failed(hdev, conn, status);
111
112
/* The connection attempt was doing scan for new RPA, and is
113
* in scan phase. If params are not associated with any other
114
* autoconnect action, remove them completely. If they are, just unmark
115
* them as waiting for connection, by clearing explicit_connect field.
116
*/
117
params->explicit_connect = false;
118
119
hci_pend_le_list_del_init(params);
120
121
switch (params->auto_connect) {
122
case HCI_AUTO_CONN_EXPLICIT:
123
hci_conn_params_del(hdev, bdaddr, bdaddr_type);
124
/* return instead of break to avoid duplicate scan update */
125
return;
126
case HCI_AUTO_CONN_DIRECT:
127
case HCI_AUTO_CONN_ALWAYS:
128
hci_pend_le_list_add(params, &hdev->pend_le_conns);
129
break;
130
case HCI_AUTO_CONN_REPORT:
131
hci_pend_le_list_add(params, &hdev->pend_le_reports);
132
break;
133
default:
134
break;
135
}
136
137
hci_update_passive_scan(hdev);
138
}
139
140
static void hci_conn_cleanup(struct hci_conn *conn)
141
{
142
struct hci_dev *hdev = conn->hdev;
143
144
if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
145
hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
146
147
if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags))
148
hci_remove_link_key(hdev, &conn->dst);
149
150
hci_chan_list_flush(conn);
151
152
if (HCI_CONN_HANDLE_UNSET(conn->handle))
153
ida_free(&hdev->unset_handle_ida, conn->handle);
154
155
if (conn->cleanup)
156
conn->cleanup(conn);
157
158
if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
159
switch (conn->setting & SCO_AIRMODE_MASK) {
160
case SCO_AIRMODE_CVSD:
161
case SCO_AIRMODE_TRANSP:
162
if (hdev->notify)
163
hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
164
break;
165
}
166
} else {
167
if (hdev->notify)
168
hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
169
}
170
171
debugfs_remove_recursive(conn->debugfs);
172
173
hci_conn_del_sysfs(conn);
174
175
hci_dev_put(hdev);
176
}
177
178
int hci_disconnect(struct hci_conn *conn, __u8 reason)
179
{
180
BT_DBG("hcon %p", conn);
181
182
/* When we are central of an established connection and it enters
183
* the disconnect timeout, then go ahead and try to read the
184
* current clock offset. Processing of the result is done
185
* within the event handling and hci_clock_offset_evt function.
186
*/
187
if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
188
(conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
189
struct hci_dev *hdev = conn->hdev;
190
struct hci_cp_read_clock_offset clkoff_cp;
191
192
clkoff_cp.handle = cpu_to_le16(conn->handle);
193
hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
194
&clkoff_cp);
195
}
196
197
return hci_abort_conn(conn, reason);
198
}
199
200
static void hci_add_sco(struct hci_conn *conn, __u16 handle)
201
{
202
struct hci_dev *hdev = conn->hdev;
203
struct hci_cp_add_sco cp;
204
205
BT_DBG("hcon %p", conn);
206
207
conn->state = BT_CONNECT;
208
conn->out = true;
209
210
conn->attempt++;
211
212
cp.handle = cpu_to_le16(handle);
213
cp.pkt_type = cpu_to_le16(conn->pkt_type);
214
215
hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
216
}
217
218
static bool find_next_esco_param(struct hci_conn *conn,
219
const struct sco_param *esco_param, int size)
220
{
221
if (!conn->parent)
222
return false;
223
224
for (; conn->attempt <= size; conn->attempt++) {
225
if (lmp_esco_2m_capable(conn->parent) ||
226
(esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
227
break;
228
BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
229
conn, conn->attempt);
230
}
231
232
return conn->attempt <= size;
233
}
234
235
static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec)
236
{
237
int err;
238
__u8 vnd_len, *vnd_data = NULL;
239
struct hci_op_configure_data_path *cmd = NULL;
240
241
/* Do not take below 2 checks as error since the 1st means user do not
242
* want to use HFP offload mode and the 2nd means the vendor controller
243
* do not need to send below HCI command for offload mode.
244
*/
245
if (!codec->data_path || !hdev->get_codec_config_data)
246
return 0;
247
248
err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
249
&vnd_data);
250
if (err < 0)
251
goto error;
252
253
cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
254
if (!cmd) {
255
err = -ENOMEM;
256
goto error;
257
}
258
259
err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
260
if (err < 0)
261
goto error;
262
263
cmd->vnd_len = vnd_len;
264
memcpy(cmd->vnd_data, vnd_data, vnd_len);
265
266
cmd->direction = 0x00;
267
__hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH,
268
sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT);
269
270
cmd->direction = 0x01;
271
err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH,
272
sizeof(*cmd) + vnd_len, cmd,
273
HCI_CMD_TIMEOUT);
274
error:
275
276
kfree(cmd);
277
kfree(vnd_data);
278
return err;
279
}
280
281
static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data)
282
{
283
struct conn_handle_t *conn_handle = data;
284
struct hci_conn *conn = conn_handle->conn;
285
__u16 handle = conn_handle->handle;
286
struct hci_cp_enhanced_setup_sync_conn cp;
287
const struct sco_param *param;
288
289
kfree(conn_handle);
290
291
if (!hci_conn_valid(hdev, conn))
292
return -ECANCELED;
293
294
bt_dev_dbg(hdev, "hcon %p", conn);
295
296
configure_datapath_sync(hdev, &conn->codec);
297
298
conn->state = BT_CONNECT;
299
conn->out = true;
300
301
conn->attempt++;
302
303
memset(&cp, 0x00, sizeof(cp));
304
305
cp.handle = cpu_to_le16(handle);
306
307
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
308
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
309
310
switch (conn->codec.id) {
311
case BT_CODEC_MSBC:
312
if (!find_next_esco_param(conn, esco_param_msbc,
313
ARRAY_SIZE(esco_param_msbc)))
314
return -EINVAL;
315
316
param = &esco_param_msbc[conn->attempt - 1];
317
cp.tx_coding_format.id = 0x05;
318
cp.rx_coding_format.id = 0x05;
319
cp.tx_codec_frame_size = __cpu_to_le16(60);
320
cp.rx_codec_frame_size = __cpu_to_le16(60);
321
cp.in_bandwidth = __cpu_to_le32(32000);
322
cp.out_bandwidth = __cpu_to_le32(32000);
323
cp.in_coding_format.id = 0x04;
324
cp.out_coding_format.id = 0x04;
325
cp.in_coded_data_size = __cpu_to_le16(16);
326
cp.out_coded_data_size = __cpu_to_le16(16);
327
cp.in_pcm_data_format = 2;
328
cp.out_pcm_data_format = 2;
329
cp.in_pcm_sample_payload_msb_pos = 0;
330
cp.out_pcm_sample_payload_msb_pos = 0;
331
cp.in_data_path = conn->codec.data_path;
332
cp.out_data_path = conn->codec.data_path;
333
cp.in_transport_unit_size = 1;
334
cp.out_transport_unit_size = 1;
335
break;
336
337
case BT_CODEC_TRANSPARENT:
338
if (!find_next_esco_param(conn, esco_param_msbc,
339
ARRAY_SIZE(esco_param_msbc)))
340
return -EINVAL;
341
342
param = &esco_param_msbc[conn->attempt - 1];
343
cp.tx_coding_format.id = 0x03;
344
cp.rx_coding_format.id = 0x03;
345
cp.tx_codec_frame_size = __cpu_to_le16(60);
346
cp.rx_codec_frame_size = __cpu_to_le16(60);
347
cp.in_bandwidth = __cpu_to_le32(0x1f40);
348
cp.out_bandwidth = __cpu_to_le32(0x1f40);
349
cp.in_coding_format.id = 0x03;
350
cp.out_coding_format.id = 0x03;
351
cp.in_coded_data_size = __cpu_to_le16(16);
352
cp.out_coded_data_size = __cpu_to_le16(16);
353
cp.in_pcm_data_format = 2;
354
cp.out_pcm_data_format = 2;
355
cp.in_pcm_sample_payload_msb_pos = 0;
356
cp.out_pcm_sample_payload_msb_pos = 0;
357
cp.in_data_path = conn->codec.data_path;
358
cp.out_data_path = conn->codec.data_path;
359
cp.in_transport_unit_size = 1;
360
cp.out_transport_unit_size = 1;
361
break;
362
363
case BT_CODEC_CVSD:
364
if (conn->parent && lmp_esco_capable(conn->parent)) {
365
if (!find_next_esco_param(conn, esco_param_cvsd,
366
ARRAY_SIZE(esco_param_cvsd)))
367
return -EINVAL;
368
param = &esco_param_cvsd[conn->attempt - 1];
369
} else {
370
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
371
return -EINVAL;
372
param = &sco_param_cvsd[conn->attempt - 1];
373
}
374
cp.tx_coding_format.id = 2;
375
cp.rx_coding_format.id = 2;
376
cp.tx_codec_frame_size = __cpu_to_le16(60);
377
cp.rx_codec_frame_size = __cpu_to_le16(60);
378
cp.in_bandwidth = __cpu_to_le32(16000);
379
cp.out_bandwidth = __cpu_to_le32(16000);
380
cp.in_coding_format.id = 4;
381
cp.out_coding_format.id = 4;
382
cp.in_coded_data_size = __cpu_to_le16(16);
383
cp.out_coded_data_size = __cpu_to_le16(16);
384
cp.in_pcm_data_format = 2;
385
cp.out_pcm_data_format = 2;
386
cp.in_pcm_sample_payload_msb_pos = 0;
387
cp.out_pcm_sample_payload_msb_pos = 0;
388
cp.in_data_path = conn->codec.data_path;
389
cp.out_data_path = conn->codec.data_path;
390
cp.in_transport_unit_size = 16;
391
cp.out_transport_unit_size = 16;
392
break;
393
default:
394
return -EINVAL;
395
}
396
397
cp.retrans_effort = param->retrans_effort;
398
cp.pkt_type = __cpu_to_le16(param->pkt_type);
399
cp.max_latency = __cpu_to_le16(param->max_latency);
400
401
if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
402
return -EIO;
403
404
return 0;
405
}
406
407
static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle)
408
{
409
struct hci_dev *hdev = conn->hdev;
410
struct hci_cp_setup_sync_conn cp;
411
const struct sco_param *param;
412
413
bt_dev_dbg(hdev, "hcon %p", conn);
414
415
conn->state = BT_CONNECT;
416
conn->out = true;
417
418
conn->attempt++;
419
420
cp.handle = cpu_to_le16(handle);
421
422
cp.tx_bandwidth = cpu_to_le32(0x00001f40);
423
cp.rx_bandwidth = cpu_to_le32(0x00001f40);
424
cp.voice_setting = cpu_to_le16(conn->setting);
425
426
switch (conn->setting & SCO_AIRMODE_MASK) {
427
case SCO_AIRMODE_TRANSP:
428
if (!find_next_esco_param(conn, esco_param_msbc,
429
ARRAY_SIZE(esco_param_msbc)))
430
return false;
431
param = &esco_param_msbc[conn->attempt - 1];
432
break;
433
case SCO_AIRMODE_CVSD:
434
if (conn->parent && lmp_esco_capable(conn->parent)) {
435
if (!find_next_esco_param(conn, esco_param_cvsd,
436
ARRAY_SIZE(esco_param_cvsd)))
437
return false;
438
param = &esco_param_cvsd[conn->attempt - 1];
439
} else {
440
if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
441
return false;
442
param = &sco_param_cvsd[conn->attempt - 1];
443
}
444
break;
445
default:
446
return false;
447
}
448
449
cp.retrans_effort = param->retrans_effort;
450
cp.pkt_type = __cpu_to_le16(param->pkt_type);
451
cp.max_latency = __cpu_to_le16(param->max_latency);
452
453
if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
454
return false;
455
456
return true;
457
}
458
459
bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
460
{
461
int result;
462
struct conn_handle_t *conn_handle;
463
464
if (enhanced_sync_conn_capable(conn->hdev)) {
465
conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL);
466
467
if (!conn_handle)
468
return false;
469
470
conn_handle->conn = conn;
471
conn_handle->handle = handle;
472
result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync,
473
conn_handle, NULL);
474
if (result < 0)
475
kfree(conn_handle);
476
477
return result == 0;
478
}
479
480
return hci_setup_sync_conn(conn, handle);
481
}
482
483
u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
484
u16 to_multiplier)
485
{
486
struct hci_dev *hdev = conn->hdev;
487
struct hci_conn_params *params;
488
struct hci_cp_le_conn_update cp;
489
490
hci_dev_lock(hdev);
491
492
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
493
if (params) {
494
params->conn_min_interval = min;
495
params->conn_max_interval = max;
496
params->conn_latency = latency;
497
params->supervision_timeout = to_multiplier;
498
}
499
500
hci_dev_unlock(hdev);
501
502
memset(&cp, 0, sizeof(cp));
503
cp.handle = cpu_to_le16(conn->handle);
504
cp.conn_interval_min = cpu_to_le16(min);
505
cp.conn_interval_max = cpu_to_le16(max);
506
cp.conn_latency = cpu_to_le16(latency);
507
cp.supervision_timeout = cpu_to_le16(to_multiplier);
508
cp.min_ce_len = cpu_to_le16(0x0000);
509
cp.max_ce_len = cpu_to_le16(0x0000);
510
511
hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
512
513
if (params)
514
return 0x01;
515
516
return 0x00;
517
}
518
519
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
520
__u8 ltk[16], __u8 key_size)
521
{
522
struct hci_dev *hdev = conn->hdev;
523
struct hci_cp_le_start_enc cp;
524
525
BT_DBG("hcon %p", conn);
526
527
memset(&cp, 0, sizeof(cp));
528
529
cp.handle = cpu_to_le16(conn->handle);
530
cp.rand = rand;
531
cp.ediv = ediv;
532
memcpy(cp.ltk, ltk, key_size);
533
534
hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
535
}
536
537
/* Device _must_ be locked */
538
void hci_sco_setup(struct hci_conn *conn, __u8 status)
539
{
540
struct hci_link *link;
541
542
link = list_first_entry_or_null(&conn->link_list, struct hci_link, list);
543
if (!link || !link->conn)
544
return;
545
546
BT_DBG("hcon %p", conn);
547
548
if (!status) {
549
if (lmp_esco_capable(conn->hdev))
550
hci_setup_sync(link->conn, conn->handle);
551
else
552
hci_add_sco(link->conn, conn->handle);
553
} else {
554
hci_connect_cfm(link->conn, status);
555
hci_conn_del(link->conn);
556
}
557
}
558
559
static void hci_conn_timeout(struct work_struct *work)
560
{
561
struct hci_conn *conn = container_of(work, struct hci_conn,
562
disc_work.work);
563
int refcnt = atomic_read(&conn->refcnt);
564
565
BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
566
567
WARN_ON(refcnt < 0);
568
569
/* FIXME: It was observed that in pairing failed scenario, refcnt
570
* drops below 0. Probably this is because l2cap_conn_del calls
571
* l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
572
* dropped. After that loop hci_chan_del is called which also drops
573
* conn. For now make sure that ACL is alive if refcnt is higher then 0,
574
* otherwise drop it.
575
*/
576
if (refcnt > 0)
577
return;
578
579
hci_abort_conn(conn, hci_proto_disconn_ind(conn));
580
}
581
582
/* Enter sniff mode */
583
static void hci_conn_idle(struct work_struct *work)
584
{
585
struct hci_conn *conn = container_of(work, struct hci_conn,
586
idle_work.work);
587
struct hci_dev *hdev = conn->hdev;
588
589
BT_DBG("hcon %p mode %d", conn, conn->mode);
590
591
if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
592
return;
593
594
if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
595
return;
596
597
if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
598
struct hci_cp_sniff_subrate cp;
599
cp.handle = cpu_to_le16(conn->handle);
600
cp.max_latency = cpu_to_le16(0);
601
cp.min_remote_timeout = cpu_to_le16(0);
602
cp.min_local_timeout = cpu_to_le16(0);
603
hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
604
}
605
606
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
607
struct hci_cp_sniff_mode cp;
608
cp.handle = cpu_to_le16(conn->handle);
609
cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
610
cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
611
cp.attempt = cpu_to_le16(4);
612
cp.timeout = cpu_to_le16(1);
613
hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
614
}
615
}
616
617
static void hci_conn_auto_accept(struct work_struct *work)
618
{
619
struct hci_conn *conn = container_of(work, struct hci_conn,
620
auto_accept_work.work);
621
622
hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
623
&conn->dst);
624
}
625
626
static void le_disable_advertising(struct hci_dev *hdev)
627
{
628
if (ext_adv_capable(hdev)) {
629
struct hci_cp_le_set_ext_adv_enable cp;
630
631
cp.enable = 0x00;
632
cp.num_of_sets = 0x00;
633
634
hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
635
&cp);
636
} else {
637
u8 enable = 0x00;
638
hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
639
&enable);
640
}
641
}
642
643
static void le_conn_timeout(struct work_struct *work)
644
{
645
struct hci_conn *conn = container_of(work, struct hci_conn,
646
le_conn_timeout.work);
647
struct hci_dev *hdev = conn->hdev;
648
649
BT_DBG("");
650
651
/* We could end up here due to having done directed advertising,
652
* so clean up the state if necessary. This should however only
653
* happen with broken hardware or if low duty cycle was used
654
* (which doesn't have a timeout of its own).
655
*/
656
if (conn->role == HCI_ROLE_SLAVE) {
657
/* Disable LE Advertising */
658
le_disable_advertising(hdev);
659
hci_dev_lock(hdev);
660
hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
661
hci_dev_unlock(hdev);
662
return;
663
}
664
665
hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
666
}
667
668
struct iso_list_data {
669
union {
670
u8 cig;
671
u8 big;
672
};
673
union {
674
u8 cis;
675
u8 bis;
676
u16 sync_handle;
677
};
678
int count;
679
bool big_term;
680
bool pa_sync_term;
681
bool big_sync_term;
682
};
683
684
static void bis_list(struct hci_conn *conn, void *data)
685
{
686
struct iso_list_data *d = data;
687
688
/* Skip if not broadcast/ANY address */
689
if (bacmp(&conn->dst, BDADDR_ANY))
690
return;
691
692
if (d->big != conn->iso_qos.bcast.big || d->bis == BT_ISO_QOS_BIS_UNSET ||
693
d->bis != conn->iso_qos.bcast.bis)
694
return;
695
696
d->count++;
697
}
698
699
static int terminate_big_sync(struct hci_dev *hdev, void *data)
700
{
701
struct iso_list_data *d = data;
702
703
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis);
704
705
hci_disable_per_advertising_sync(hdev, d->bis);
706
hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL);
707
708
/* Only terminate BIG if it has been created */
709
if (!d->big_term)
710
return 0;
711
712
return hci_le_terminate_big_sync(hdev, d->big,
713
HCI_ERROR_LOCAL_HOST_TERM);
714
}
715
716
static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err)
717
{
718
kfree(data);
719
}
720
721
static int hci_le_terminate_big(struct hci_dev *hdev, struct hci_conn *conn)
722
{
723
struct iso_list_data *d;
724
int ret;
725
726
bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", conn->iso_qos.bcast.big,
727
conn->iso_qos.bcast.bis);
728
729
d = kzalloc(sizeof(*d), GFP_KERNEL);
730
if (!d)
731
return -ENOMEM;
732
733
d->big = conn->iso_qos.bcast.big;
734
d->bis = conn->iso_qos.bcast.bis;
735
d->big_term = test_and_clear_bit(HCI_CONN_BIG_CREATED, &conn->flags);
736
737
ret = hci_cmd_sync_queue(hdev, terminate_big_sync, d,
738
terminate_big_destroy);
739
if (ret)
740
kfree(d);
741
742
return ret;
743
}
744
745
static int big_terminate_sync(struct hci_dev *hdev, void *data)
746
{
747
struct iso_list_data *d = data;
748
749
bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big,
750
d->sync_handle);
751
752
if (d->big_sync_term)
753
hci_le_big_terminate_sync(hdev, d->big);
754
755
if (d->pa_sync_term)
756
return hci_le_pa_terminate_sync(hdev, d->sync_handle);
757
758
return 0;
759
}
760
761
static void find_bis(struct hci_conn *conn, void *data)
762
{
763
struct iso_list_data *d = data;
764
765
/* Ignore if BIG doesn't match */
766
if (d->big != conn->iso_qos.bcast.big)
767
return;
768
769
d->count++;
770
}
771
772
static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, struct hci_conn *conn)
773
{
774
struct iso_list_data *d;
775
int ret;
776
777
bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, conn->sync_handle);
778
779
d = kzalloc(sizeof(*d), GFP_KERNEL);
780
if (!d)
781
return -ENOMEM;
782
783
d->big = big;
784
d->sync_handle = conn->sync_handle;
785
786
if (test_and_clear_bit(HCI_CONN_PA_SYNC, &conn->flags)) {
787
hci_conn_hash_list_flag(hdev, find_bis, PA_LINK,
788
HCI_CONN_PA_SYNC, d);
789
790
if (!d->count)
791
d->pa_sync_term = true;
792
793
d->count = 0;
794
}
795
796
if (test_and_clear_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
797
hci_conn_hash_list_flag(hdev, find_bis, BIS_LINK,
798
HCI_CONN_BIG_SYNC, d);
799
800
if (!d->count)
801
d->big_sync_term = true;
802
}
803
804
ret = hci_cmd_sync_queue(hdev, big_terminate_sync, d,
805
terminate_big_destroy);
806
if (ret)
807
kfree(d);
808
809
return ret;
810
}
811
812
/* Cleanup BIS connection
813
*
814
* Detects if there any BIS left connected in a BIG
815
* broadcaster: Remove advertising instance and terminate BIG.
816
* broadcaster receiver: Terminate BIG sync and terminate PA sync.
817
*/
818
static void bis_cleanup(struct hci_conn *conn)
819
{
820
struct hci_dev *hdev = conn->hdev;
821
struct hci_conn *bis;
822
823
bt_dev_dbg(hdev, "conn %p", conn);
824
825
if (conn->role == HCI_ROLE_MASTER) {
826
if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags))
827
return;
828
829
/* Check if ISO connection is a BIS and terminate advertising
830
* set and BIG if there are no other connections using it.
831
*/
832
bis = hci_conn_hash_lookup_big_state(hdev,
833
conn->iso_qos.bcast.big,
834
BT_CONNECTED,
835
HCI_ROLE_MASTER);
836
if (bis)
837
return;
838
839
bis = hci_conn_hash_lookup_big_state(hdev,
840
conn->iso_qos.bcast.big,
841
BT_CONNECT,
842
HCI_ROLE_MASTER);
843
if (bis)
844
return;
845
846
hci_le_terminate_big(hdev, conn);
847
} else {
848
hci_le_big_terminate(hdev, conn->iso_qos.bcast.big,
849
conn);
850
}
851
}
852
853
static int remove_cig_sync(struct hci_dev *hdev, void *data)
854
{
855
u8 handle = PTR_UINT(data);
856
857
return hci_le_remove_cig_sync(hdev, handle);
858
}
859
860
static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle)
861
{
862
bt_dev_dbg(hdev, "handle 0x%2.2x", handle);
863
864
return hci_cmd_sync_queue(hdev, remove_cig_sync, UINT_PTR(handle),
865
NULL);
866
}
867
868
static void find_cis(struct hci_conn *conn, void *data)
869
{
870
struct iso_list_data *d = data;
871
872
/* Ignore broadcast or if CIG don't match */
873
if (!bacmp(&conn->dst, BDADDR_ANY) || d->cig != conn->iso_qos.ucast.cig)
874
return;
875
876
d->count++;
877
}
878
879
/* Cleanup CIS connection:
880
*
881
* Detects if there any CIS left connected in a CIG and remove it.
882
*/
883
static void cis_cleanup(struct hci_conn *conn)
884
{
885
struct hci_dev *hdev = conn->hdev;
886
struct iso_list_data d;
887
888
if (conn->iso_qos.ucast.cig == BT_ISO_QOS_CIG_UNSET)
889
return;
890
891
memset(&d, 0, sizeof(d));
892
d.cig = conn->iso_qos.ucast.cig;
893
894
/* Check if ISO connection is a CIS and remove CIG if there are
895
* no other connections using it.
896
*/
897
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_BOUND, &d);
898
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_CONNECT,
899
&d);
900
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK, BT_CONNECTED,
901
&d);
902
if (d.count)
903
return;
904
905
hci_le_remove_cig(hdev, conn->iso_qos.ucast.cig);
906
}
907
908
static int hci_conn_hash_alloc_unset(struct hci_dev *hdev)
909
{
910
return ida_alloc_range(&hdev->unset_handle_ida, HCI_CONN_HANDLE_MAX + 1,
911
U16_MAX, GFP_ATOMIC);
912
}
913
914
static struct hci_conn *__hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
915
u8 role, u16 handle)
916
{
917
struct hci_conn *conn;
918
919
switch (type) {
920
case ACL_LINK:
921
if (!hdev->acl_mtu)
922
return ERR_PTR(-ECONNREFUSED);
923
break;
924
case CIS_LINK:
925
case BIS_LINK:
926
case PA_LINK:
927
if (hdev->iso_mtu)
928
/* Dedicated ISO Buffer exists */
929
break;
930
fallthrough;
931
case LE_LINK:
932
if (hdev->le_mtu && hdev->le_mtu < HCI_MIN_LE_MTU)
933
return ERR_PTR(-ECONNREFUSED);
934
if (!hdev->le_mtu && hdev->acl_mtu < HCI_MIN_LE_MTU)
935
return ERR_PTR(-ECONNREFUSED);
936
break;
937
case SCO_LINK:
938
case ESCO_LINK:
939
if (!hdev->sco_pkts)
940
/* Controller does not support SCO or eSCO over HCI */
941
return ERR_PTR(-ECONNREFUSED);
942
break;
943
default:
944
return ERR_PTR(-ECONNREFUSED);
945
}
946
947
bt_dev_dbg(hdev, "dst %pMR handle 0x%4.4x", dst, handle);
948
949
conn = kzalloc(sizeof(*conn), GFP_KERNEL);
950
if (!conn)
951
return ERR_PTR(-ENOMEM);
952
953
bacpy(&conn->dst, dst);
954
bacpy(&conn->src, &hdev->bdaddr);
955
conn->handle = handle;
956
conn->hdev = hdev;
957
conn->type = type;
958
conn->role = role;
959
conn->mode = HCI_CM_ACTIVE;
960
conn->state = BT_OPEN;
961
conn->auth_type = HCI_AT_GENERAL_BONDING;
962
conn->io_capability = hdev->io_capability;
963
conn->remote_auth = 0xff;
964
conn->key_type = 0xff;
965
conn->rssi = HCI_RSSI_INVALID;
966
conn->tx_power = HCI_TX_POWER_INVALID;
967
conn->max_tx_power = HCI_TX_POWER_INVALID;
968
conn->sync_handle = HCI_SYNC_HANDLE_INVALID;
969
conn->sid = HCI_SID_INVALID;
970
971
set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
972
conn->disc_timeout = HCI_DISCONN_TIMEOUT;
973
974
/* Set Default Authenticated payload timeout to 30s */
975
conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
976
977
if (conn->role == HCI_ROLE_MASTER)
978
conn->out = true;
979
980
switch (type) {
981
case ACL_LINK:
982
conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
983
conn->mtu = hdev->acl_mtu;
984
break;
985
case LE_LINK:
986
/* conn->src should reflect the local identity address */
987
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
988
conn->mtu = hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu;
989
break;
990
case CIS_LINK:
991
case BIS_LINK:
992
case PA_LINK:
993
/* conn->src should reflect the local identity address */
994
hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
995
996
/* set proper cleanup function */
997
if (!bacmp(dst, BDADDR_ANY))
998
conn->cleanup = bis_cleanup;
999
else if (conn->role == HCI_ROLE_MASTER)
1000
conn->cleanup = cis_cleanup;
1001
1002
conn->mtu = hdev->iso_mtu ? hdev->iso_mtu :
1003
hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu;
1004
break;
1005
case SCO_LINK:
1006
if (lmp_esco_capable(hdev))
1007
conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
1008
(hdev->esco_type & EDR_ESCO_MASK);
1009
else
1010
conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
1011
1012
conn->mtu = hdev->sco_mtu;
1013
break;
1014
case ESCO_LINK:
1015
conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
1016
conn->mtu = hdev->sco_mtu;
1017
break;
1018
}
1019
1020
skb_queue_head_init(&conn->data_q);
1021
skb_queue_head_init(&conn->tx_q.queue);
1022
1023
INIT_LIST_HEAD(&conn->chan_list);
1024
INIT_LIST_HEAD(&conn->link_list);
1025
1026
INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
1027
INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
1028
INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
1029
INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
1030
1031
atomic_set(&conn->refcnt, 0);
1032
1033
hci_dev_hold(hdev);
1034
1035
hci_conn_hash_add(hdev, conn);
1036
1037
/* The SCO and eSCO connections will only be notified when their
1038
* setup has been completed. This is different to ACL links which
1039
* can be notified right away.
1040
*/
1041
if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
1042
if (hdev->notify)
1043
hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
1044
}
1045
1046
hci_conn_init_sysfs(conn);
1047
return conn;
1048
}
1049
1050
struct hci_conn *hci_conn_add_unset(struct hci_dev *hdev, int type,
1051
bdaddr_t *dst, u8 role)
1052
{
1053
int handle;
1054
1055
bt_dev_dbg(hdev, "dst %pMR", dst);
1056
1057
handle = hci_conn_hash_alloc_unset(hdev);
1058
if (unlikely(handle < 0))
1059
return ERR_PTR(-ECONNREFUSED);
1060
1061
return __hci_conn_add(hdev, type, dst, role, handle);
1062
}
1063
1064
struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
1065
u8 role, u16 handle)
1066
{
1067
if (handle > HCI_CONN_HANDLE_MAX)
1068
return ERR_PTR(-EINVAL);
1069
1070
return __hci_conn_add(hdev, type, dst, role, handle);
1071
}
1072
1073
static void hci_conn_cleanup_child(struct hci_conn *conn, u8 reason)
1074
{
1075
if (!reason)
1076
reason = HCI_ERROR_REMOTE_USER_TERM;
1077
1078
/* Due to race, SCO/ISO conn might be not established yet at this point,
1079
* and nothing else will clean it up. In other cases it is done via HCI
1080
* events.
1081
*/
1082
switch (conn->type) {
1083
case SCO_LINK:
1084
case ESCO_LINK:
1085
if (HCI_CONN_HANDLE_UNSET(conn->handle))
1086
hci_conn_failed(conn, reason);
1087
break;
1088
case CIS_LINK:
1089
case BIS_LINK:
1090
case PA_LINK:
1091
if ((conn->state != BT_CONNECTED &&
1092
!test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) ||
1093
test_bit(HCI_CONN_BIG_CREATED, &conn->flags))
1094
hci_conn_failed(conn, reason);
1095
break;
1096
}
1097
}
1098
1099
static void hci_conn_unlink(struct hci_conn *conn)
1100
{
1101
struct hci_dev *hdev = conn->hdev;
1102
1103
bt_dev_dbg(hdev, "hcon %p", conn);
1104
1105
if (!conn->parent) {
1106
struct hci_link *link, *t;
1107
1108
list_for_each_entry_safe(link, t, &conn->link_list, list) {
1109
struct hci_conn *child = link->conn;
1110
1111
hci_conn_unlink(child);
1112
1113
/* If hdev is down it means
1114
* hci_dev_close_sync/hci_conn_hash_flush is in progress
1115
* and links don't need to be cleanup as all connections
1116
* would be cleanup.
1117
*/
1118
if (!test_bit(HCI_UP, &hdev->flags))
1119
continue;
1120
1121
hci_conn_cleanup_child(child, conn->abort_reason);
1122
}
1123
1124
return;
1125
}
1126
1127
if (!conn->link)
1128
return;
1129
1130
list_del_rcu(&conn->link->list);
1131
synchronize_rcu();
1132
1133
hci_conn_drop(conn->parent);
1134
hci_conn_put(conn->parent);
1135
conn->parent = NULL;
1136
1137
kfree(conn->link);
1138
conn->link = NULL;
1139
}
1140
1141
void hci_conn_del(struct hci_conn *conn)
1142
{
1143
struct hci_dev *hdev = conn->hdev;
1144
1145
BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
1146
1147
hci_conn_unlink(conn);
1148
1149
disable_delayed_work_sync(&conn->disc_work);
1150
disable_delayed_work_sync(&conn->auto_accept_work);
1151
disable_delayed_work_sync(&conn->idle_work);
1152
1153
/* Remove the connection from the list so unacked logic can detect when
1154
* a certain pool is not being utilized.
1155
*/
1156
hci_conn_hash_del(hdev, conn);
1157
1158
/* Handle unacked frames:
1159
*
1160
* - In case there are no connection, or if restoring the buffers
1161
* considered in transist would overflow, restore all buffers to the
1162
* pool.
1163
* - Otherwise restore just the buffers considered in transit for the
1164
* hci_conn
1165
*/
1166
switch (conn->type) {
1167
case ACL_LINK:
1168
if (!hci_conn_num(hdev, ACL_LINK) ||
1169
hdev->acl_cnt + conn->sent > hdev->acl_pkts)
1170
hdev->acl_cnt = hdev->acl_pkts;
1171
else
1172
hdev->acl_cnt += conn->sent;
1173
break;
1174
case LE_LINK:
1175
cancel_delayed_work(&conn->le_conn_timeout);
1176
1177
if (hdev->le_pkts) {
1178
if (!hci_conn_num(hdev, LE_LINK) ||
1179
hdev->le_cnt + conn->sent > hdev->le_pkts)
1180
hdev->le_cnt = hdev->le_pkts;
1181
else
1182
hdev->le_cnt += conn->sent;
1183
} else {
1184
if ((!hci_conn_num(hdev, LE_LINK) &&
1185
!hci_conn_num(hdev, ACL_LINK)) ||
1186
hdev->acl_cnt + conn->sent > hdev->acl_pkts)
1187
hdev->acl_cnt = hdev->acl_pkts;
1188
else
1189
hdev->acl_cnt += conn->sent;
1190
}
1191
break;
1192
case CIS_LINK:
1193
case BIS_LINK:
1194
case PA_LINK:
1195
if (!hci_iso_count(hdev) ||
1196
hdev->iso_cnt + conn->sent > hdev->iso_pkts)
1197
hdev->iso_cnt = hdev->iso_pkts;
1198
else
1199
hdev->iso_cnt += conn->sent;
1200
break;
1201
}
1202
1203
skb_queue_purge(&conn->data_q);
1204
skb_queue_purge(&conn->tx_q.queue);
1205
1206
/* Remove the connection from the list and cleanup its remaining
1207
* state. This is a separate function since for some cases like
1208
* BT_CONNECT_SCAN we *only* want the cleanup part without the
1209
* rest of hci_conn_del.
1210
*/
1211
hci_conn_cleanup(conn);
1212
1213
/* Dequeue callbacks using connection pointer as data */
1214
hci_cmd_sync_dequeue(hdev, NULL, conn, NULL);
1215
}
1216
1217
struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
1218
{
1219
int use_src = bacmp(src, BDADDR_ANY);
1220
struct hci_dev *hdev = NULL, *d;
1221
1222
BT_DBG("%pMR -> %pMR", src, dst);
1223
1224
read_lock(&hci_dev_list_lock);
1225
1226
list_for_each_entry(d, &hci_dev_list, list) {
1227
if (!test_bit(HCI_UP, &d->flags) ||
1228
hci_dev_test_flag(d, HCI_USER_CHANNEL))
1229
continue;
1230
1231
/* Simple routing:
1232
* No source address - find interface with bdaddr != dst
1233
* Source address - find interface with bdaddr == src
1234
*/
1235
1236
if (use_src) {
1237
bdaddr_t id_addr;
1238
u8 id_addr_type;
1239
1240
if (src_type == BDADDR_BREDR) {
1241
if (!lmp_bredr_capable(d))
1242
continue;
1243
bacpy(&id_addr, &d->bdaddr);
1244
id_addr_type = BDADDR_BREDR;
1245
} else {
1246
if (!lmp_le_capable(d))
1247
continue;
1248
1249
hci_copy_identity_address(d, &id_addr,
1250
&id_addr_type);
1251
1252
/* Convert from HCI to three-value type */
1253
if (id_addr_type == ADDR_LE_DEV_PUBLIC)
1254
id_addr_type = BDADDR_LE_PUBLIC;
1255
else
1256
id_addr_type = BDADDR_LE_RANDOM;
1257
}
1258
1259
if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
1260
hdev = d; break;
1261
}
1262
} else {
1263
if (bacmp(&d->bdaddr, dst)) {
1264
hdev = d; break;
1265
}
1266
}
1267
}
1268
1269
if (hdev)
1270
hdev = hci_dev_hold(hdev);
1271
1272
read_unlock(&hci_dev_list_lock);
1273
return hdev;
1274
}
1275
EXPORT_SYMBOL(hci_get_route);
1276
1277
/* This function requires the caller holds hdev->lock */
1278
static void hci_le_conn_failed(struct hci_conn *conn, u8 status)
1279
{
1280
struct hci_dev *hdev = conn->hdev;
1281
1282
hci_connect_le_scan_cleanup(conn, status);
1283
1284
/* Enable advertising in case this was a failed connection
1285
* attempt as a peripheral.
1286
*/
1287
hci_enable_advertising(hdev);
1288
}
1289
1290
/* This function requires the caller holds hdev->lock */
1291
void hci_conn_failed(struct hci_conn *conn, u8 status)
1292
{
1293
struct hci_dev *hdev = conn->hdev;
1294
1295
bt_dev_dbg(hdev, "status 0x%2.2x", status);
1296
1297
switch (conn->type) {
1298
case LE_LINK:
1299
hci_le_conn_failed(conn, status);
1300
break;
1301
case ACL_LINK:
1302
mgmt_connect_failed(hdev, conn, status);
1303
break;
1304
}
1305
1306
/* In case of BIG/PA sync failed, clear conn flags so that
1307
* the conns will be correctly cleaned up by ISO layer
1308
*/
1309
test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags);
1310
test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags);
1311
1312
conn->state = BT_CLOSED;
1313
hci_connect_cfm(conn, status);
1314
hci_conn_del(conn);
1315
}
1316
1317
/* This function requires the caller holds hdev->lock */
1318
u8 hci_conn_set_handle(struct hci_conn *conn, u16 handle)
1319
{
1320
struct hci_dev *hdev = conn->hdev;
1321
1322
bt_dev_dbg(hdev, "hcon %p handle 0x%4.4x", conn, handle);
1323
1324
if (conn->handle == handle)
1325
return 0;
1326
1327
if (handle > HCI_CONN_HANDLE_MAX) {
1328
bt_dev_err(hdev, "Invalid handle: 0x%4.4x > 0x%4.4x",
1329
handle, HCI_CONN_HANDLE_MAX);
1330
return HCI_ERROR_INVALID_PARAMETERS;
1331
}
1332
1333
/* If abort_reason has been sent it means the connection is being
1334
* aborted and the handle shall not be changed.
1335
*/
1336
if (conn->abort_reason)
1337
return conn->abort_reason;
1338
1339
if (HCI_CONN_HANDLE_UNSET(conn->handle))
1340
ida_free(&hdev->unset_handle_ida, conn->handle);
1341
1342
conn->handle = handle;
1343
1344
return 0;
1345
}
1346
1347
struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1348
u8 dst_type, bool dst_resolved, u8 sec_level,
1349
u16 conn_timeout, u8 role, u8 phy, u8 sec_phy)
1350
{
1351
struct hci_conn *conn;
1352
struct smp_irk *irk;
1353
int err;
1354
1355
/* Let's make sure that le is enabled.*/
1356
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1357
if (lmp_le_capable(hdev))
1358
return ERR_PTR(-ECONNREFUSED);
1359
1360
return ERR_PTR(-EOPNOTSUPP);
1361
}
1362
1363
/* Since the controller supports only one LE connection attempt at a
1364
* time, we return -EBUSY if there is any connection attempt running.
1365
*/
1366
if (hci_lookup_le_connect(hdev))
1367
return ERR_PTR(-EBUSY);
1368
1369
/* If there's already a connection object but it's not in
1370
* scanning state it means it must already be established, in
1371
* which case we can't do anything else except report a failure
1372
* to connect.
1373
*/
1374
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1375
if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1376
return ERR_PTR(-EBUSY);
1377
}
1378
1379
/* Check if the destination address has been resolved by the controller
1380
* since if it did then the identity address shall be used.
1381
*/
1382
if (!dst_resolved) {
1383
/* When given an identity address with existing identity
1384
* resolving key, the connection needs to be established
1385
* to a resolvable random address.
1386
*
1387
* Storing the resolvable random address is required here
1388
* to handle connection failures. The address will later
1389
* be resolved back into the original identity address
1390
* from the connect request.
1391
*/
1392
irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1393
if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1394
dst = &irk->rpa;
1395
dst_type = ADDR_LE_DEV_RANDOM;
1396
}
1397
}
1398
1399
if (conn) {
1400
bacpy(&conn->dst, dst);
1401
} else {
1402
conn = hci_conn_add_unset(hdev, LE_LINK, dst, role);
1403
if (IS_ERR(conn))
1404
return conn;
1405
hci_conn_hold(conn);
1406
conn->pending_sec_level = sec_level;
1407
}
1408
1409
conn->dst_type = dst_type;
1410
conn->sec_level = BT_SECURITY_LOW;
1411
conn->conn_timeout = conn_timeout;
1412
conn->le_adv_phy = phy;
1413
conn->le_adv_sec_phy = sec_phy;
1414
1415
err = hci_connect_le_sync(hdev, conn);
1416
if (err) {
1417
hci_conn_del(conn);
1418
return ERR_PTR(err);
1419
}
1420
1421
return conn;
1422
}
1423
1424
static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1425
{
1426
struct hci_conn *conn;
1427
1428
conn = hci_conn_hash_lookup_le(hdev, addr, type);
1429
if (!conn)
1430
return false;
1431
1432
if (conn->state != BT_CONNECTED)
1433
return false;
1434
1435
return true;
1436
}
1437
1438
/* This function requires the caller holds hdev->lock */
1439
static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1440
bdaddr_t *addr, u8 addr_type)
1441
{
1442
struct hci_conn_params *params;
1443
1444
if (is_connected(hdev, addr, addr_type))
1445
return -EISCONN;
1446
1447
params = hci_conn_params_lookup(hdev, addr, addr_type);
1448
if (!params) {
1449
params = hci_conn_params_add(hdev, addr, addr_type);
1450
if (!params)
1451
return -ENOMEM;
1452
1453
/* If we created new params, mark them to be deleted in
1454
* hci_connect_le_scan_cleanup. It's different case than
1455
* existing disabled params, those will stay after cleanup.
1456
*/
1457
params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1458
}
1459
1460
/* We're trying to connect, so make sure params are at pend_le_conns */
1461
if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1462
params->auto_connect == HCI_AUTO_CONN_REPORT ||
1463
params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1464
hci_pend_le_list_del_init(params);
1465
hci_pend_le_list_add(params, &hdev->pend_le_conns);
1466
}
1467
1468
params->explicit_connect = true;
1469
1470
BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1471
params->auto_connect);
1472
1473
return 0;
1474
}
1475
1476
static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos)
1477
{
1478
struct hci_conn *conn;
1479
u8 big;
1480
1481
/* Allocate a BIG if not set */
1482
if (qos->bcast.big == BT_ISO_QOS_BIG_UNSET) {
1483
for (big = 0x00; big < 0xef; big++) {
1484
1485
conn = hci_conn_hash_lookup_big(hdev, big);
1486
if (!conn)
1487
break;
1488
}
1489
1490
if (big == 0xef)
1491
return -EADDRNOTAVAIL;
1492
1493
/* Update BIG */
1494
qos->bcast.big = big;
1495
}
1496
1497
return 0;
1498
}
1499
1500
static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos)
1501
{
1502
struct hci_conn *conn;
1503
u8 bis;
1504
1505
/* Allocate BIS if not set */
1506
if (qos->bcast.bis == BT_ISO_QOS_BIS_UNSET) {
1507
if (qos->bcast.big != BT_ISO_QOS_BIG_UNSET) {
1508
conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big);
1509
1510
if (conn) {
1511
/* If the BIG handle is already matched to an advertising
1512
* handle, do not allocate a new one.
1513
*/
1514
qos->bcast.bis = conn->iso_qos.bcast.bis;
1515
return 0;
1516
}
1517
}
1518
1519
/* Find an unused adv set to advertise BIS, skip instance 0x00
1520
* since it is reserved as general purpose set.
1521
*/
1522
for (bis = 0x01; bis < hdev->le_num_of_adv_sets;
1523
bis++) {
1524
1525
conn = hci_conn_hash_lookup_bis(hdev, BDADDR_ANY, bis);
1526
if (!conn)
1527
break;
1528
}
1529
1530
if (bis == hdev->le_num_of_adv_sets)
1531
return -EADDRNOTAVAIL;
1532
1533
/* Update BIS */
1534
qos->bcast.bis = bis;
1535
}
1536
1537
return 0;
1538
}
1539
1540
/* This function requires the caller holds hdev->lock */
1541
static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst,
1542
__u8 sid, struct bt_iso_qos *qos,
1543
__u8 base_len, __u8 *base)
1544
{
1545
struct hci_conn *conn;
1546
int err;
1547
1548
/* Let's make sure that le is enabled.*/
1549
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1550
if (lmp_le_capable(hdev))
1551
return ERR_PTR(-ECONNREFUSED);
1552
return ERR_PTR(-EOPNOTSUPP);
1553
}
1554
1555
err = qos_set_big(hdev, qos);
1556
if (err)
1557
return ERR_PTR(err);
1558
1559
err = qos_set_bis(hdev, qos);
1560
if (err)
1561
return ERR_PTR(err);
1562
1563
/* Check if the LE Create BIG command has already been sent */
1564
conn = hci_conn_hash_lookup_per_adv_bis(hdev, dst, qos->bcast.big,
1565
qos->bcast.big);
1566
if (conn)
1567
return ERR_PTR(-EADDRINUSE);
1568
1569
/* Check BIS settings against other bound BISes, since all
1570
* BISes in a BIG must have the same value for all parameters
1571
*/
1572
conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big);
1573
1574
if (conn && (memcmp(qos, &conn->iso_qos, sizeof(*qos)) ||
1575
base_len != conn->le_per_adv_data_len ||
1576
memcmp(conn->le_per_adv_data, base, base_len)))
1577
return ERR_PTR(-EADDRINUSE);
1578
1579
conn = hci_conn_add_unset(hdev, BIS_LINK, dst, HCI_ROLE_MASTER);
1580
if (IS_ERR(conn))
1581
return conn;
1582
1583
conn->state = BT_CONNECT;
1584
conn->sid = sid;
1585
1586
hci_conn_hold(conn);
1587
return conn;
1588
}
1589
1590
/* This function requires the caller holds hdev->lock */
1591
struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1592
u8 dst_type, u8 sec_level,
1593
u16 conn_timeout,
1594
enum conn_reasons conn_reason)
1595
{
1596
struct hci_conn *conn;
1597
1598
/* Let's make sure that le is enabled.*/
1599
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1600
if (lmp_le_capable(hdev))
1601
return ERR_PTR(-ECONNREFUSED);
1602
1603
return ERR_PTR(-EOPNOTSUPP);
1604
}
1605
1606
/* Some devices send ATT messages as soon as the physical link is
1607
* established. To be able to handle these ATT messages, the user-
1608
* space first establishes the connection and then starts the pairing
1609
* process.
1610
*
1611
* So if a hci_conn object already exists for the following connection
1612
* attempt, we simply update pending_sec_level and auth_type fields
1613
* and return the object found.
1614
*/
1615
conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1616
if (conn) {
1617
if (conn->pending_sec_level < sec_level)
1618
conn->pending_sec_level = sec_level;
1619
goto done;
1620
}
1621
1622
BT_DBG("requesting refresh of dst_addr");
1623
1624
conn = hci_conn_add_unset(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1625
if (IS_ERR(conn))
1626
return conn;
1627
1628
if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1629
hci_conn_del(conn);
1630
return ERR_PTR(-EBUSY);
1631
}
1632
1633
conn->state = BT_CONNECT;
1634
set_bit(HCI_CONN_SCANNING, &conn->flags);
1635
conn->dst_type = dst_type;
1636
conn->sec_level = BT_SECURITY_LOW;
1637
conn->pending_sec_level = sec_level;
1638
conn->conn_timeout = conn_timeout;
1639
conn->conn_reason = conn_reason;
1640
1641
hci_update_passive_scan(hdev);
1642
1643
done:
1644
hci_conn_hold(conn);
1645
return conn;
1646
}
1647
1648
struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1649
u8 sec_level, u8 auth_type,
1650
enum conn_reasons conn_reason, u16 timeout)
1651
{
1652
struct hci_conn *acl;
1653
1654
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1655
if (lmp_bredr_capable(hdev))
1656
return ERR_PTR(-ECONNREFUSED);
1657
1658
return ERR_PTR(-EOPNOTSUPP);
1659
}
1660
1661
/* Reject outgoing connection to device with same BD ADDR against
1662
* CVE-2020-26555
1663
*/
1664
if (!bacmp(&hdev->bdaddr, dst)) {
1665
bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n",
1666
dst);
1667
return ERR_PTR(-ECONNREFUSED);
1668
}
1669
1670
acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1671
if (!acl) {
1672
acl = hci_conn_add_unset(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1673
if (IS_ERR(acl))
1674
return acl;
1675
}
1676
1677
hci_conn_hold(acl);
1678
1679
acl->conn_reason = conn_reason;
1680
if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1681
int err;
1682
1683
acl->sec_level = BT_SECURITY_LOW;
1684
acl->pending_sec_level = sec_level;
1685
acl->auth_type = auth_type;
1686
acl->conn_timeout = timeout;
1687
1688
err = hci_connect_acl_sync(hdev, acl);
1689
if (err) {
1690
hci_conn_del(acl);
1691
return ERR_PTR(err);
1692
}
1693
}
1694
1695
return acl;
1696
}
1697
1698
static struct hci_link *hci_conn_link(struct hci_conn *parent,
1699
struct hci_conn *conn)
1700
{
1701
struct hci_dev *hdev = parent->hdev;
1702
struct hci_link *link;
1703
1704
bt_dev_dbg(hdev, "parent %p hcon %p", parent, conn);
1705
1706
if (conn->link)
1707
return conn->link;
1708
1709
if (conn->parent)
1710
return NULL;
1711
1712
link = kzalloc(sizeof(*link), GFP_KERNEL);
1713
if (!link)
1714
return NULL;
1715
1716
link->conn = hci_conn_hold(conn);
1717
conn->link = link;
1718
conn->parent = hci_conn_get(parent);
1719
1720
/* Use list_add_tail_rcu append to the list */
1721
list_add_tail_rcu(&link->list, &parent->link_list);
1722
1723
return link;
1724
}
1725
1726
struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1727
__u16 setting, struct bt_codec *codec,
1728
u16 timeout)
1729
{
1730
struct hci_conn *acl;
1731
struct hci_conn *sco;
1732
struct hci_link *link;
1733
1734
acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1735
CONN_REASON_SCO_CONNECT, timeout);
1736
if (IS_ERR(acl))
1737
return acl;
1738
1739
sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1740
if (!sco) {
1741
sco = hci_conn_add_unset(hdev, type, dst, HCI_ROLE_MASTER);
1742
if (IS_ERR(sco)) {
1743
hci_conn_drop(acl);
1744
return sco;
1745
}
1746
}
1747
1748
link = hci_conn_link(acl, sco);
1749
if (!link) {
1750
hci_conn_drop(acl);
1751
hci_conn_drop(sco);
1752
return ERR_PTR(-ENOLINK);
1753
}
1754
1755
sco->setting = setting;
1756
sco->codec = *codec;
1757
1758
if (acl->state == BT_CONNECTED &&
1759
(sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1760
set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1761
hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1762
1763
if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1764
/* defer SCO setup until mode change completed */
1765
set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1766
return sco;
1767
}
1768
1769
hci_sco_setup(acl, 0x00);
1770
}
1771
1772
return sco;
1773
}
1774
1775
static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos)
1776
{
1777
struct hci_dev *hdev = conn->hdev;
1778
struct hci_cp_le_create_big cp;
1779
struct iso_list_data data;
1780
1781
memset(&cp, 0, sizeof(cp));
1782
1783
data.big = qos->bcast.big;
1784
data.bis = qos->bcast.bis;
1785
data.count = 0;
1786
1787
/* Create a BIS for each bound connection */
1788
hci_conn_hash_list_state(hdev, bis_list, BIS_LINK,
1789
BT_BOUND, &data);
1790
1791
cp.handle = qos->bcast.big;
1792
cp.adv_handle = qos->bcast.bis;
1793
cp.num_bis = data.count;
1794
hci_cpu_to_le24(qos->bcast.out.interval, cp.bis.sdu_interval);
1795
cp.bis.sdu = cpu_to_le16(qos->bcast.out.sdu);
1796
cp.bis.latency = cpu_to_le16(qos->bcast.out.latency);
1797
cp.bis.rtn = qos->bcast.out.rtn;
1798
cp.bis.phy = qos->bcast.out.phy;
1799
cp.bis.packing = qos->bcast.packing;
1800
cp.bis.framing = qos->bcast.framing;
1801
cp.bis.encryption = qos->bcast.encryption;
1802
memcpy(cp.bis.bcode, qos->bcast.bcode, sizeof(cp.bis.bcode));
1803
1804
return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp);
1805
}
1806
1807
static int set_cig_params_sync(struct hci_dev *hdev, void *data)
1808
{
1809
DEFINE_FLEX(struct hci_cp_le_set_cig_params, pdu, cis, num_cis, 0x1f);
1810
u8 cig_id = PTR_UINT(data);
1811
struct hci_conn *conn;
1812
struct bt_iso_qos *qos;
1813
u8 aux_num_cis = 0;
1814
u8 cis_id;
1815
1816
conn = hci_conn_hash_lookup_cig(hdev, cig_id);
1817
if (!conn)
1818
return 0;
1819
1820
qos = &conn->iso_qos;
1821
pdu->cig_id = cig_id;
1822
hci_cpu_to_le24(qos->ucast.out.interval, pdu->c_interval);
1823
hci_cpu_to_le24(qos->ucast.in.interval, pdu->p_interval);
1824
pdu->sca = qos->ucast.sca;
1825
pdu->packing = qos->ucast.packing;
1826
pdu->framing = qos->ucast.framing;
1827
pdu->c_latency = cpu_to_le16(qos->ucast.out.latency);
1828
pdu->p_latency = cpu_to_le16(qos->ucast.in.latency);
1829
1830
/* Reprogram all CIS(s) with the same CIG, valid range are:
1831
* num_cis: 0x00 to 0x1F
1832
* cis_id: 0x00 to 0xEF
1833
*/
1834
for (cis_id = 0x00; cis_id < 0xf0 &&
1835
aux_num_cis < pdu->num_cis; cis_id++) {
1836
struct hci_cis_params *cis;
1837
1838
conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, cig_id, cis_id);
1839
if (!conn)
1840
continue;
1841
1842
qos = &conn->iso_qos;
1843
1844
cis = &pdu->cis[aux_num_cis++];
1845
cis->cis_id = cis_id;
1846
cis->c_sdu = cpu_to_le16(conn->iso_qos.ucast.out.sdu);
1847
cis->p_sdu = cpu_to_le16(conn->iso_qos.ucast.in.sdu);
1848
cis->c_phy = qos->ucast.out.phy ? qos->ucast.out.phy :
1849
qos->ucast.in.phy;
1850
cis->p_phy = qos->ucast.in.phy ? qos->ucast.in.phy :
1851
qos->ucast.out.phy;
1852
cis->c_rtn = qos->ucast.out.rtn;
1853
cis->p_rtn = qos->ucast.in.rtn;
1854
}
1855
pdu->num_cis = aux_num_cis;
1856
1857
if (!pdu->num_cis)
1858
return 0;
1859
1860
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_CIG_PARAMS,
1861
struct_size(pdu, cis, pdu->num_cis),
1862
pdu, HCI_CMD_TIMEOUT);
1863
}
1864
1865
static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos)
1866
{
1867
struct hci_dev *hdev = conn->hdev;
1868
struct iso_list_data data;
1869
1870
memset(&data, 0, sizeof(data));
1871
1872
/* Allocate first still reconfigurable CIG if not set */
1873
if (qos->ucast.cig == BT_ISO_QOS_CIG_UNSET) {
1874
for (data.cig = 0x00; data.cig < 0xf0; data.cig++) {
1875
data.count = 0;
1876
1877
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK,
1878
BT_CONNECT, &data);
1879
if (data.count)
1880
continue;
1881
1882
hci_conn_hash_list_state(hdev, find_cis, CIS_LINK,
1883
BT_CONNECTED, &data);
1884
if (!data.count)
1885
break;
1886
}
1887
1888
if (data.cig == 0xf0)
1889
return false;
1890
1891
/* Update CIG */
1892
qos->ucast.cig = data.cig;
1893
}
1894
1895
if (qos->ucast.cis != BT_ISO_QOS_CIS_UNSET) {
1896
if (hci_conn_hash_lookup_cis(hdev, NULL, 0, qos->ucast.cig,
1897
qos->ucast.cis))
1898
return false;
1899
goto done;
1900
}
1901
1902
/* Allocate first available CIS if not set */
1903
for (data.cig = qos->ucast.cig, data.cis = 0x00; data.cis < 0xf0;
1904
data.cis++) {
1905
if (!hci_conn_hash_lookup_cis(hdev, NULL, 0, data.cig,
1906
data.cis)) {
1907
/* Update CIS */
1908
qos->ucast.cis = data.cis;
1909
break;
1910
}
1911
}
1912
1913
if (qos->ucast.cis == BT_ISO_QOS_CIS_UNSET)
1914
return false;
1915
1916
done:
1917
if (hci_cmd_sync_queue(hdev, set_cig_params_sync,
1918
UINT_PTR(qos->ucast.cig), NULL) < 0)
1919
return false;
1920
1921
return true;
1922
}
1923
1924
struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst,
1925
__u8 dst_type, struct bt_iso_qos *qos)
1926
{
1927
struct hci_conn *cis;
1928
1929
cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type, qos->ucast.cig,
1930
qos->ucast.cis);
1931
if (!cis) {
1932
cis = hci_conn_add_unset(hdev, CIS_LINK, dst,
1933
HCI_ROLE_MASTER);
1934
if (IS_ERR(cis))
1935
return cis;
1936
cis->cleanup = cis_cleanup;
1937
cis->dst_type = dst_type;
1938
cis->iso_qos.ucast.cig = BT_ISO_QOS_CIG_UNSET;
1939
cis->iso_qos.ucast.cis = BT_ISO_QOS_CIS_UNSET;
1940
}
1941
1942
if (cis->state == BT_CONNECTED)
1943
return cis;
1944
1945
/* Check if CIS has been set and the settings matches */
1946
if (cis->state == BT_BOUND &&
1947
!memcmp(&cis->iso_qos, qos, sizeof(*qos)))
1948
return cis;
1949
1950
/* Update LINK PHYs according to QoS preference */
1951
cis->le_tx_phy = qos->ucast.out.phy;
1952
cis->le_rx_phy = qos->ucast.in.phy;
1953
1954
/* If output interval is not set use the input interval as it cannot be
1955
* 0x000000.
1956
*/
1957
if (!qos->ucast.out.interval)
1958
qos->ucast.out.interval = qos->ucast.in.interval;
1959
1960
/* If input interval is not set use the output interval as it cannot be
1961
* 0x000000.
1962
*/
1963
if (!qos->ucast.in.interval)
1964
qos->ucast.in.interval = qos->ucast.out.interval;
1965
1966
/* If output latency is not set use the input latency as it cannot be
1967
* 0x0000.
1968
*/
1969
if (!qos->ucast.out.latency)
1970
qos->ucast.out.latency = qos->ucast.in.latency;
1971
1972
/* If input latency is not set use the output latency as it cannot be
1973
* 0x0000.
1974
*/
1975
if (!qos->ucast.in.latency)
1976
qos->ucast.in.latency = qos->ucast.out.latency;
1977
1978
if (!hci_le_set_cig_params(cis, qos)) {
1979
hci_conn_drop(cis);
1980
return ERR_PTR(-EINVAL);
1981
}
1982
1983
hci_conn_hold(cis);
1984
1985
cis->iso_qos = *qos;
1986
cis->state = BT_BOUND;
1987
1988
return cis;
1989
}
1990
1991
bool hci_iso_setup_path(struct hci_conn *conn)
1992
{
1993
struct hci_dev *hdev = conn->hdev;
1994
struct hci_cp_le_setup_iso_path cmd;
1995
1996
memset(&cmd, 0, sizeof(cmd));
1997
1998
if (conn->iso_qos.ucast.out.sdu) {
1999
cmd.handle = cpu_to_le16(conn->handle);
2000
cmd.direction = 0x00; /* Input (Host to Controller) */
2001
cmd.path = 0x00; /* HCI path if enabled */
2002
cmd.codec = 0x03; /* Transparent Data */
2003
2004
if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd),
2005
&cmd) < 0)
2006
return false;
2007
}
2008
2009
if (conn->iso_qos.ucast.in.sdu) {
2010
cmd.handle = cpu_to_le16(conn->handle);
2011
cmd.direction = 0x01; /* Output (Controller to Host) */
2012
cmd.path = 0x00; /* HCI path if enabled */
2013
cmd.codec = 0x03; /* Transparent Data */
2014
2015
if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd),
2016
&cmd) < 0)
2017
return false;
2018
}
2019
2020
return true;
2021
}
2022
2023
int hci_conn_check_create_cis(struct hci_conn *conn)
2024
{
2025
if (conn->type != CIS_LINK)
2026
return -EINVAL;
2027
2028
if (!conn->parent || conn->parent->state != BT_CONNECTED ||
2029
conn->state != BT_CONNECT || HCI_CONN_HANDLE_UNSET(conn->handle))
2030
return 1;
2031
2032
return 0;
2033
}
2034
2035
static int hci_create_cis_sync(struct hci_dev *hdev, void *data)
2036
{
2037
return hci_le_create_cis_sync(hdev);
2038
}
2039
2040
int hci_le_create_cis_pending(struct hci_dev *hdev)
2041
{
2042
struct hci_conn *conn;
2043
bool pending = false;
2044
2045
rcu_read_lock();
2046
2047
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
2048
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) {
2049
rcu_read_unlock();
2050
return -EBUSY;
2051
}
2052
2053
if (!hci_conn_check_create_cis(conn))
2054
pending = true;
2055
}
2056
2057
rcu_read_unlock();
2058
2059
if (!pending)
2060
return 0;
2061
2062
/* Queue Create CIS */
2063
return hci_cmd_sync_queue(hdev, hci_create_cis_sync, NULL, NULL);
2064
}
2065
2066
static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn,
2067
struct bt_iso_io_qos *qos, __u8 phy)
2068
{
2069
/* Only set MTU if PHY is enabled */
2070
if (!qos->sdu && qos->phy)
2071
qos->sdu = conn->mtu;
2072
2073
/* Use the same PHY as ACL if set to any */
2074
if (qos->phy == BT_ISO_PHY_ANY)
2075
qos->phy = phy;
2076
2077
/* Use LE ACL connection interval if not set */
2078
if (!qos->interval)
2079
/* ACL interval unit in 1.25 ms to us */
2080
qos->interval = conn->le_conn_interval * 1250;
2081
2082
/* Use LE ACL connection latency if not set */
2083
if (!qos->latency)
2084
qos->latency = conn->le_conn_latency;
2085
}
2086
2087
static int create_big_sync(struct hci_dev *hdev, void *data)
2088
{
2089
struct hci_conn *conn = data;
2090
struct bt_iso_qos *qos = &conn->iso_qos;
2091
u16 interval, sync_interval = 0;
2092
u32 flags = 0;
2093
int err;
2094
2095
if (qos->bcast.out.phy == 0x02)
2096
flags |= MGMT_ADV_FLAG_SEC_2M;
2097
2098
/* Align intervals */
2099
interval = (qos->bcast.out.interval / 1250) * qos->bcast.sync_factor;
2100
2101
if (qos->bcast.bis)
2102
sync_interval = interval * 4;
2103
2104
err = hci_start_per_adv_sync(hdev, qos->bcast.bis, conn->sid,
2105
conn->le_per_adv_data_len,
2106
conn->le_per_adv_data, flags, interval,
2107
interval, sync_interval);
2108
if (err)
2109
return err;
2110
2111
return hci_le_create_big(conn, &conn->iso_qos);
2112
}
2113
2114
struct hci_conn *hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst,
2115
__u8 dst_type, __u8 sid,
2116
struct bt_iso_qos *qos)
2117
{
2118
struct hci_conn *conn;
2119
2120
bt_dev_dbg(hdev, "dst %pMR type %d sid %d", dst, dst_type, sid);
2121
2122
conn = hci_conn_add_unset(hdev, PA_LINK, dst, HCI_ROLE_SLAVE);
2123
if (IS_ERR(conn))
2124
return conn;
2125
2126
conn->iso_qos = *qos;
2127
conn->dst_type = dst_type;
2128
conn->sid = sid;
2129
conn->state = BT_LISTEN;
2130
conn->conn_timeout = msecs_to_jiffies(qos->bcast.sync_timeout * 10);
2131
2132
hci_conn_hold(conn);
2133
2134
hci_connect_pa_sync(hdev, conn);
2135
2136
return conn;
2137
}
2138
2139
int hci_conn_big_create_sync(struct hci_dev *hdev, struct hci_conn *hcon,
2140
struct bt_iso_qos *qos, __u16 sync_handle,
2141
__u8 num_bis, __u8 bis[])
2142
{
2143
int err;
2144
2145
if (num_bis < 0x01 || num_bis > ISO_MAX_NUM_BIS)
2146
return -EINVAL;
2147
2148
err = qos_set_big(hdev, qos);
2149
if (err)
2150
return err;
2151
2152
if (hcon) {
2153
/* Update hcon QoS */
2154
hcon->iso_qos = *qos;
2155
2156
hcon->num_bis = num_bis;
2157
memcpy(hcon->bis, bis, num_bis);
2158
hcon->conn_timeout = msecs_to_jiffies(qos->bcast.timeout * 10);
2159
}
2160
2161
return hci_connect_big_sync(hdev, hcon);
2162
}
2163
2164
static void create_big_complete(struct hci_dev *hdev, void *data, int err)
2165
{
2166
struct hci_conn *conn = data;
2167
2168
bt_dev_dbg(hdev, "conn %p", conn);
2169
2170
if (err) {
2171
bt_dev_err(hdev, "Unable to create BIG: %d", err);
2172
hci_connect_cfm(conn, err);
2173
hci_conn_del(conn);
2174
}
2175
}
2176
2177
struct hci_conn *hci_bind_bis(struct hci_dev *hdev, bdaddr_t *dst, __u8 sid,
2178
struct bt_iso_qos *qos,
2179
__u8 base_len, __u8 *base)
2180
{
2181
struct hci_conn *conn;
2182
struct hci_conn *parent;
2183
__u8 eir[HCI_MAX_PER_AD_LENGTH];
2184
struct hci_link *link;
2185
2186
/* Look for any BIS that is open for rebinding */
2187
conn = hci_conn_hash_lookup_big_state(hdev, qos->bcast.big, BT_OPEN,
2188
HCI_ROLE_MASTER);
2189
if (conn) {
2190
memcpy(qos, &conn->iso_qos, sizeof(*qos));
2191
conn->state = BT_CONNECTED;
2192
return conn;
2193
}
2194
2195
if (base_len && base)
2196
base_len = eir_append_service_data(eir, 0, 0x1851,
2197
base, base_len);
2198
2199
/* We need hci_conn object using the BDADDR_ANY as dst */
2200
conn = hci_add_bis(hdev, dst, sid, qos, base_len, eir);
2201
if (IS_ERR(conn))
2202
return conn;
2203
2204
/* Update LINK PHYs according to QoS preference */
2205
conn->le_tx_phy = qos->bcast.out.phy;
2206
conn->le_tx_phy = qos->bcast.out.phy;
2207
2208
/* Add Basic Announcement into Peridic Adv Data if BASE is set */
2209
if (base_len && base) {
2210
memcpy(conn->le_per_adv_data, eir, sizeof(eir));
2211
conn->le_per_adv_data_len = base_len;
2212
}
2213
2214
hci_iso_qos_setup(hdev, conn, &qos->bcast.out,
2215
conn->le_tx_phy ? conn->le_tx_phy :
2216
hdev->le_tx_def_phys);
2217
2218
conn->iso_qos = *qos;
2219
conn->state = BT_BOUND;
2220
2221
/* Link BISes together */
2222
parent = hci_conn_hash_lookup_big(hdev,
2223
conn->iso_qos.bcast.big);
2224
if (parent && parent != conn) {
2225
link = hci_conn_link(parent, conn);
2226
hci_conn_drop(conn);
2227
if (!link)
2228
return ERR_PTR(-ENOLINK);
2229
}
2230
2231
return conn;
2232
}
2233
2234
static void bis_mark_per_adv(struct hci_conn *conn, void *data)
2235
{
2236
struct iso_list_data *d = data;
2237
2238
/* Skip if not broadcast/ANY address */
2239
if (bacmp(&conn->dst, BDADDR_ANY))
2240
return;
2241
2242
if (d->big != conn->iso_qos.bcast.big ||
2243
d->bis == BT_ISO_QOS_BIS_UNSET ||
2244
d->bis != conn->iso_qos.bcast.bis)
2245
return;
2246
2247
set_bit(HCI_CONN_PER_ADV, &conn->flags);
2248
}
2249
2250
struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst,
2251
__u8 dst_type, __u8 sid,
2252
struct bt_iso_qos *qos,
2253
__u8 base_len, __u8 *base)
2254
{
2255
struct hci_conn *conn;
2256
int err;
2257
struct iso_list_data data;
2258
2259
conn = hci_bind_bis(hdev, dst, sid, qos, base_len, base);
2260
if (IS_ERR(conn))
2261
return conn;
2262
2263
if (conn->state == BT_CONNECTED)
2264
return conn;
2265
2266
/* Check if SID needs to be allocated then search for the first
2267
* available.
2268
*/
2269
if (conn->sid == HCI_SID_INVALID) {
2270
u8 sid;
2271
2272
for (sid = 0; sid <= 0x0f; sid++) {
2273
if (!hci_find_adv_sid(hdev, sid)) {
2274
conn->sid = sid;
2275
break;
2276
}
2277
}
2278
}
2279
2280
data.big = qos->bcast.big;
2281
data.bis = qos->bcast.bis;
2282
2283
/* Set HCI_CONN_PER_ADV for all bound connections, to mark that
2284
* the start periodic advertising and create BIG commands have
2285
* been queued
2286
*/
2287
hci_conn_hash_list_state(hdev, bis_mark_per_adv, BIS_LINK,
2288
BT_BOUND, &data);
2289
2290
/* Queue start periodic advertising and create BIG */
2291
err = hci_cmd_sync_queue(hdev, create_big_sync, conn,
2292
create_big_complete);
2293
if (err < 0) {
2294
hci_conn_drop(conn);
2295
return ERR_PTR(err);
2296
}
2297
2298
return conn;
2299
}
2300
2301
struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst,
2302
__u8 dst_type, struct bt_iso_qos *qos)
2303
{
2304
struct hci_conn *le;
2305
struct hci_conn *cis;
2306
struct hci_link *link;
2307
2308
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2309
le = hci_connect_le(hdev, dst, dst_type, false,
2310
BT_SECURITY_LOW,
2311
HCI_LE_CONN_TIMEOUT,
2312
HCI_ROLE_SLAVE, 0, 0);
2313
else
2314
le = hci_connect_le_scan(hdev, dst, dst_type,
2315
BT_SECURITY_LOW,
2316
HCI_LE_CONN_TIMEOUT,
2317
CONN_REASON_ISO_CONNECT);
2318
if (IS_ERR(le))
2319
return le;
2320
2321
hci_iso_qos_setup(hdev, le, &qos->ucast.out,
2322
le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys);
2323
hci_iso_qos_setup(hdev, le, &qos->ucast.in,
2324
le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys);
2325
2326
cis = hci_bind_cis(hdev, dst, dst_type, qos);
2327
if (IS_ERR(cis)) {
2328
hci_conn_drop(le);
2329
return cis;
2330
}
2331
2332
link = hci_conn_link(le, cis);
2333
hci_conn_drop(cis);
2334
if (!link) {
2335
hci_conn_drop(le);
2336
return ERR_PTR(-ENOLINK);
2337
}
2338
2339
cis->state = BT_CONNECT;
2340
2341
hci_le_create_cis_pending(hdev);
2342
2343
return cis;
2344
}
2345
2346
/* Check link security requirement */
2347
int hci_conn_check_link_mode(struct hci_conn *conn)
2348
{
2349
BT_DBG("hcon %p", conn);
2350
2351
/* In Secure Connections Only mode, it is required that Secure
2352
* Connections is used and the link is encrypted with AES-CCM
2353
* using a P-256 authenticated combination key.
2354
*/
2355
if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
2356
if (!hci_conn_sc_enabled(conn) ||
2357
!test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
2358
conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
2359
return 0;
2360
}
2361
2362
/* AES encryption is required for Level 4:
2363
*
2364
* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
2365
* page 1319:
2366
*
2367
* 128-bit equivalent strength for link and encryption keys
2368
* required using FIPS approved algorithms (E0 not allowed,
2369
* SAFER+ not allowed, and P-192 not allowed; encryption key
2370
* not shortened)
2371
*/
2372
if (conn->sec_level == BT_SECURITY_FIPS &&
2373
!test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
2374
bt_dev_err(conn->hdev,
2375
"Invalid security: Missing AES-CCM usage");
2376
return 0;
2377
}
2378
2379
if (hci_conn_ssp_enabled(conn) &&
2380
!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2381
return 0;
2382
2383
return 1;
2384
}
2385
2386
/* Authenticate remote device */
2387
static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
2388
{
2389
BT_DBG("hcon %p", conn);
2390
2391
if (conn->pending_sec_level > sec_level)
2392
sec_level = conn->pending_sec_level;
2393
2394
if (sec_level > conn->sec_level)
2395
conn->pending_sec_level = sec_level;
2396
else if (test_bit(HCI_CONN_AUTH, &conn->flags))
2397
return 1;
2398
2399
/* Make sure we preserve an existing MITM requirement*/
2400
auth_type |= (conn->auth_type & 0x01);
2401
2402
conn->auth_type = auth_type;
2403
2404
if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
2405
struct hci_cp_auth_requested cp;
2406
2407
cp.handle = cpu_to_le16(conn->handle);
2408
hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
2409
sizeof(cp), &cp);
2410
2411
/* Set the ENCRYPT_PEND to trigger encryption after
2412
* authentication.
2413
*/
2414
if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2415
set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
2416
}
2417
2418
return 0;
2419
}
2420
2421
/* Encrypt the link */
2422
static void hci_conn_encrypt(struct hci_conn *conn)
2423
{
2424
BT_DBG("hcon %p", conn);
2425
2426
if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
2427
struct hci_cp_set_conn_encrypt cp;
2428
cp.handle = cpu_to_le16(conn->handle);
2429
cp.encrypt = 0x01;
2430
hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
2431
&cp);
2432
}
2433
}
2434
2435
/* Enable security */
2436
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
2437
bool initiator)
2438
{
2439
BT_DBG("hcon %p", conn);
2440
2441
if (conn->type == LE_LINK)
2442
return smp_conn_security(conn, sec_level);
2443
2444
/* For sdp we don't need the link key. */
2445
if (sec_level == BT_SECURITY_SDP)
2446
return 1;
2447
2448
/* For non 2.1 devices and low security level we don't need the link
2449
key. */
2450
if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
2451
return 1;
2452
2453
/* For other security levels we need the link key. */
2454
if (!test_bit(HCI_CONN_AUTH, &conn->flags))
2455
goto auth;
2456
2457
switch (conn->key_type) {
2458
case HCI_LK_AUTH_COMBINATION_P256:
2459
/* An authenticated FIPS approved combination key has
2460
* sufficient security for security level 4 or lower.
2461
*/
2462
if (sec_level <= BT_SECURITY_FIPS)
2463
goto encrypt;
2464
break;
2465
case HCI_LK_AUTH_COMBINATION_P192:
2466
/* An authenticated combination key has sufficient security for
2467
* security level 3 or lower.
2468
*/
2469
if (sec_level <= BT_SECURITY_HIGH)
2470
goto encrypt;
2471
break;
2472
case HCI_LK_UNAUTH_COMBINATION_P192:
2473
case HCI_LK_UNAUTH_COMBINATION_P256:
2474
/* An unauthenticated combination key has sufficient security
2475
* for security level 2 or lower.
2476
*/
2477
if (sec_level <= BT_SECURITY_MEDIUM)
2478
goto encrypt;
2479
break;
2480
case HCI_LK_COMBINATION:
2481
/* A combination key has always sufficient security for the
2482
* security levels 2 or lower. High security level requires the
2483
* combination key is generated using maximum PIN code length
2484
* (16). For pre 2.1 units.
2485
*/
2486
if (sec_level <= BT_SECURITY_MEDIUM || conn->pin_length == 16)
2487
goto encrypt;
2488
break;
2489
default:
2490
break;
2491
}
2492
2493
auth:
2494
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
2495
return 0;
2496
2497
if (initiator)
2498
set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
2499
2500
if (!hci_conn_auth(conn, sec_level, auth_type))
2501
return 0;
2502
2503
encrypt:
2504
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
2505
/* Ensure that the encryption key size has been read,
2506
* otherwise stall the upper layer responses.
2507
*/
2508
if (!conn->enc_key_size)
2509
return 0;
2510
2511
/* Nothing else needed, all requirements are met */
2512
return 1;
2513
}
2514
2515
hci_conn_encrypt(conn);
2516
return 0;
2517
}
2518
EXPORT_SYMBOL(hci_conn_security);
2519
2520
/* Check secure link requirement */
2521
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
2522
{
2523
BT_DBG("hcon %p", conn);
2524
2525
/* Accept if non-secure or higher security level is required */
2526
if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
2527
return 1;
2528
2529
/* Accept if secure or higher security level is already present */
2530
if (conn->sec_level == BT_SECURITY_HIGH ||
2531
conn->sec_level == BT_SECURITY_FIPS)
2532
return 1;
2533
2534
/* Reject not secure link */
2535
return 0;
2536
}
2537
EXPORT_SYMBOL(hci_conn_check_secure);
2538
2539
/* Switch role */
2540
int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
2541
{
2542
BT_DBG("hcon %p", conn);
2543
2544
if (role == conn->role)
2545
return 1;
2546
2547
if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
2548
struct hci_cp_switch_role cp;
2549
bacpy(&cp.bdaddr, &conn->dst);
2550
cp.role = role;
2551
hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
2552
}
2553
2554
return 0;
2555
}
2556
EXPORT_SYMBOL(hci_conn_switch_role);
2557
2558
/* Enter active mode */
2559
void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
2560
{
2561
struct hci_dev *hdev = conn->hdev;
2562
2563
BT_DBG("hcon %p mode %d", conn, conn->mode);
2564
2565
if (conn->mode != HCI_CM_SNIFF)
2566
goto timer;
2567
2568
if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
2569
goto timer;
2570
2571
if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
2572
struct hci_cp_exit_sniff_mode cp;
2573
cp.handle = cpu_to_le16(conn->handle);
2574
hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
2575
}
2576
2577
timer:
2578
if (hdev->idle_timeout > 0)
2579
queue_delayed_work(hdev->workqueue, &conn->idle_work,
2580
msecs_to_jiffies(hdev->idle_timeout));
2581
}
2582
2583
/* Drop all connection on the device */
2584
void hci_conn_hash_flush(struct hci_dev *hdev)
2585
{
2586
struct list_head *head = &hdev->conn_hash.list;
2587
struct hci_conn *conn;
2588
2589
BT_DBG("hdev %s", hdev->name);
2590
2591
/* We should not traverse the list here, because hci_conn_del
2592
* can remove extra links, which may cause the list traversal
2593
* to hit items that have already been released.
2594
*/
2595
while ((conn = list_first_entry_or_null(head,
2596
struct hci_conn,
2597
list)) != NULL) {
2598
conn->state = BT_CLOSED;
2599
hci_disconn_cfm(conn, HCI_ERROR_LOCAL_HOST_TERM);
2600
hci_conn_del(conn);
2601
}
2602
}
2603
2604
static u32 get_link_mode(struct hci_conn *conn)
2605
{
2606
u32 link_mode = 0;
2607
2608
if (conn->role == HCI_ROLE_MASTER)
2609
link_mode |= HCI_LM_MASTER;
2610
2611
if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
2612
link_mode |= HCI_LM_ENCRYPT;
2613
2614
if (test_bit(HCI_CONN_AUTH, &conn->flags))
2615
link_mode |= HCI_LM_AUTH;
2616
2617
if (test_bit(HCI_CONN_SECURE, &conn->flags))
2618
link_mode |= HCI_LM_SECURE;
2619
2620
if (test_bit(HCI_CONN_FIPS, &conn->flags))
2621
link_mode |= HCI_LM_FIPS;
2622
2623
return link_mode;
2624
}
2625
2626
int hci_get_conn_list(void __user *arg)
2627
{
2628
struct hci_conn *c;
2629
struct hci_conn_list_req req, *cl;
2630
struct hci_conn_info *ci;
2631
struct hci_dev *hdev;
2632
int n = 0, size, err;
2633
2634
if (copy_from_user(&req, arg, sizeof(req)))
2635
return -EFAULT;
2636
2637
if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
2638
return -EINVAL;
2639
2640
size = sizeof(req) + req.conn_num * sizeof(*ci);
2641
2642
cl = kmalloc(size, GFP_KERNEL);
2643
if (!cl)
2644
return -ENOMEM;
2645
2646
hdev = hci_dev_get(req.dev_id);
2647
if (!hdev) {
2648
kfree(cl);
2649
return -ENODEV;
2650
}
2651
2652
ci = cl->conn_info;
2653
2654
hci_dev_lock(hdev);
2655
list_for_each_entry(c, &hdev->conn_hash.list, list) {
2656
bacpy(&(ci + n)->bdaddr, &c->dst);
2657
(ci + n)->handle = c->handle;
2658
(ci + n)->type = c->type;
2659
(ci + n)->out = c->out;
2660
(ci + n)->state = c->state;
2661
(ci + n)->link_mode = get_link_mode(c);
2662
if (++n >= req.conn_num)
2663
break;
2664
}
2665
hci_dev_unlock(hdev);
2666
2667
cl->dev_id = hdev->id;
2668
cl->conn_num = n;
2669
size = sizeof(req) + n * sizeof(*ci);
2670
2671
hci_dev_put(hdev);
2672
2673
err = copy_to_user(arg, cl, size);
2674
kfree(cl);
2675
2676
return err ? -EFAULT : 0;
2677
}
2678
2679
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
2680
{
2681
struct hci_conn_info_req req;
2682
struct hci_conn_info ci;
2683
struct hci_conn *conn;
2684
char __user *ptr = arg + sizeof(req);
2685
2686
if (copy_from_user(&req, arg, sizeof(req)))
2687
return -EFAULT;
2688
2689
hci_dev_lock(hdev);
2690
conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
2691
if (conn) {
2692
bacpy(&ci.bdaddr, &conn->dst);
2693
ci.handle = conn->handle;
2694
ci.type = conn->type;
2695
ci.out = conn->out;
2696
ci.state = conn->state;
2697
ci.link_mode = get_link_mode(conn);
2698
}
2699
hci_dev_unlock(hdev);
2700
2701
if (!conn)
2702
return -ENOENT;
2703
2704
return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
2705
}
2706
2707
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
2708
{
2709
struct hci_auth_info_req req;
2710
struct hci_conn *conn;
2711
2712
if (copy_from_user(&req, arg, sizeof(req)))
2713
return -EFAULT;
2714
2715
hci_dev_lock(hdev);
2716
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
2717
if (conn)
2718
req.type = conn->auth_type;
2719
hci_dev_unlock(hdev);
2720
2721
if (!conn)
2722
return -ENOENT;
2723
2724
return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
2725
}
2726
2727
struct hci_chan *hci_chan_create(struct hci_conn *conn)
2728
{
2729
struct hci_dev *hdev = conn->hdev;
2730
struct hci_chan *chan;
2731
2732
BT_DBG("%s hcon %p", hdev->name, conn);
2733
2734
if (test_bit(HCI_CONN_DROP, &conn->flags)) {
2735
BT_DBG("Refusing to create new hci_chan");
2736
return NULL;
2737
}
2738
2739
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2740
if (!chan)
2741
return NULL;
2742
2743
chan->conn = hci_conn_get(conn);
2744
skb_queue_head_init(&chan->data_q);
2745
chan->state = BT_CONNECTED;
2746
2747
list_add_rcu(&chan->list, &conn->chan_list);
2748
2749
return chan;
2750
}
2751
2752
void hci_chan_del(struct hci_chan *chan)
2753
{
2754
struct hci_conn *conn = chan->conn;
2755
struct hci_dev *hdev = conn->hdev;
2756
2757
BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
2758
2759
list_del_rcu(&chan->list);
2760
2761
synchronize_rcu();
2762
2763
/* Prevent new hci_chan's to be created for this hci_conn */
2764
set_bit(HCI_CONN_DROP, &conn->flags);
2765
2766
hci_conn_put(conn);
2767
2768
skb_queue_purge(&chan->data_q);
2769
kfree(chan);
2770
}
2771
2772
void hci_chan_list_flush(struct hci_conn *conn)
2773
{
2774
struct hci_chan *chan, *n;
2775
2776
BT_DBG("hcon %p", conn);
2777
2778
list_for_each_entry_safe(chan, n, &conn->chan_list, list)
2779
hci_chan_del(chan);
2780
}
2781
2782
static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
2783
__u16 handle)
2784
{
2785
struct hci_chan *hchan;
2786
2787
list_for_each_entry(hchan, &hcon->chan_list, list) {
2788
if (hchan->handle == handle)
2789
return hchan;
2790
}
2791
2792
return NULL;
2793
}
2794
2795
struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
2796
{
2797
struct hci_conn_hash *h = &hdev->conn_hash;
2798
struct hci_conn *hcon;
2799
struct hci_chan *hchan = NULL;
2800
2801
rcu_read_lock();
2802
2803
list_for_each_entry_rcu(hcon, &h->list, list) {
2804
hchan = __hci_chan_lookup_handle(hcon, handle);
2805
if (hchan)
2806
break;
2807
}
2808
2809
rcu_read_unlock();
2810
2811
return hchan;
2812
}
2813
2814
u32 hci_conn_get_phy(struct hci_conn *conn)
2815
{
2816
u32 phys = 0;
2817
2818
/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
2819
* Table 6.2: Packets defined for synchronous, asynchronous, and
2820
* CPB logical transport types.
2821
*/
2822
switch (conn->type) {
2823
case SCO_LINK:
2824
/* SCO logical transport (1 Mb/s):
2825
* HV1, HV2, HV3 and DV.
2826
*/
2827
phys |= BT_PHY_BR_1M_1SLOT;
2828
2829
break;
2830
2831
case ACL_LINK:
2832
/* ACL logical transport (1 Mb/s) ptt=0:
2833
* DH1, DM3, DH3, DM5 and DH5.
2834
*/
2835
phys |= BT_PHY_BR_1M_1SLOT;
2836
2837
if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
2838
phys |= BT_PHY_BR_1M_3SLOT;
2839
2840
if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
2841
phys |= BT_PHY_BR_1M_5SLOT;
2842
2843
/* ACL logical transport (2 Mb/s) ptt=1:
2844
* 2-DH1, 2-DH3 and 2-DH5.
2845
*/
2846
if (!(conn->pkt_type & HCI_2DH1))
2847
phys |= BT_PHY_EDR_2M_1SLOT;
2848
2849
if (!(conn->pkt_type & HCI_2DH3))
2850
phys |= BT_PHY_EDR_2M_3SLOT;
2851
2852
if (!(conn->pkt_type & HCI_2DH5))
2853
phys |= BT_PHY_EDR_2M_5SLOT;
2854
2855
/* ACL logical transport (3 Mb/s) ptt=1:
2856
* 3-DH1, 3-DH3 and 3-DH5.
2857
*/
2858
if (!(conn->pkt_type & HCI_3DH1))
2859
phys |= BT_PHY_EDR_3M_1SLOT;
2860
2861
if (!(conn->pkt_type & HCI_3DH3))
2862
phys |= BT_PHY_EDR_3M_3SLOT;
2863
2864
if (!(conn->pkt_type & HCI_3DH5))
2865
phys |= BT_PHY_EDR_3M_5SLOT;
2866
2867
break;
2868
2869
case ESCO_LINK:
2870
/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
2871
phys |= BT_PHY_BR_1M_1SLOT;
2872
2873
if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
2874
phys |= BT_PHY_BR_1M_3SLOT;
2875
2876
/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
2877
if (!(conn->pkt_type & ESCO_2EV3))
2878
phys |= BT_PHY_EDR_2M_1SLOT;
2879
2880
if (!(conn->pkt_type & ESCO_2EV5))
2881
phys |= BT_PHY_EDR_2M_3SLOT;
2882
2883
/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
2884
if (!(conn->pkt_type & ESCO_3EV3))
2885
phys |= BT_PHY_EDR_3M_1SLOT;
2886
2887
if (!(conn->pkt_type & ESCO_3EV5))
2888
phys |= BT_PHY_EDR_3M_3SLOT;
2889
2890
break;
2891
2892
case LE_LINK:
2893
if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
2894
phys |= BT_PHY_LE_1M_TX;
2895
2896
if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
2897
phys |= BT_PHY_LE_1M_RX;
2898
2899
if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
2900
phys |= BT_PHY_LE_2M_TX;
2901
2902
if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
2903
phys |= BT_PHY_LE_2M_RX;
2904
2905
if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
2906
phys |= BT_PHY_LE_CODED_TX;
2907
2908
if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
2909
phys |= BT_PHY_LE_CODED_RX;
2910
2911
break;
2912
}
2913
2914
return phys;
2915
}
2916
2917
static int abort_conn_sync(struct hci_dev *hdev, void *data)
2918
{
2919
struct hci_conn *conn = data;
2920
2921
if (!hci_conn_valid(hdev, conn))
2922
return -ECANCELED;
2923
2924
return hci_abort_conn_sync(hdev, conn, conn->abort_reason);
2925
}
2926
2927
int hci_abort_conn(struct hci_conn *conn, u8 reason)
2928
{
2929
struct hci_dev *hdev = conn->hdev;
2930
2931
/* If abort_reason has already been set it means the connection is
2932
* already being aborted so don't attempt to overwrite it.
2933
*/
2934
if (conn->abort_reason)
2935
return 0;
2936
2937
bt_dev_dbg(hdev, "handle 0x%2.2x reason 0x%2.2x", conn->handle, reason);
2938
2939
conn->abort_reason = reason;
2940
2941
/* If the connection is pending check the command opcode since that
2942
* might be blocking on hci_cmd_sync_work while waiting its respective
2943
* event so we need to hci_cmd_sync_cancel to cancel it.
2944
*
2945
* hci_connect_le serializes the connection attempts so only one
2946
* connection can be in BT_CONNECT at time.
2947
*/
2948
if (conn->state == BT_CONNECT && hdev->req_status == HCI_REQ_PEND) {
2949
switch (hci_skb_event(hdev->sent_cmd)) {
2950
case HCI_EV_CONN_COMPLETE:
2951
case HCI_EV_LE_CONN_COMPLETE:
2952
case HCI_EV_LE_ENHANCED_CONN_COMPLETE:
2953
case HCI_EVT_LE_CIS_ESTABLISHED:
2954
hci_cmd_sync_cancel(hdev, ECANCELED);
2955
break;
2956
}
2957
/* Cancel connect attempt if still queued/pending */
2958
} else if (!hci_cancel_connect_sync(hdev, conn)) {
2959
return 0;
2960
}
2961
2962
/* Run immediately if on cmd_sync_work since this may be called
2963
* as a result to MGMT_OP_DISCONNECT/MGMT_OP_UNPAIR which does
2964
* already queue its callback on cmd_sync_work.
2965
*/
2966
return hci_cmd_sync_run_once(hdev, abort_conn_sync, conn, NULL);
2967
}
2968
2969
void hci_setup_tx_timestamp(struct sk_buff *skb, size_t key_offset,
2970
const struct sockcm_cookie *sockc)
2971
{
2972
struct sock *sk = skb ? skb->sk : NULL;
2973
int key;
2974
2975
/* This shall be called on a single skb of those generated by user
2976
* sendmsg(), and only when the sendmsg() does not return error to
2977
* user. This is required for keeping the tskey that increments here in
2978
* sync with possible sendmsg() counting by user.
2979
*
2980
* Stream sockets shall set key_offset to sendmsg() length in bytes
2981
* and call with the last fragment, others to 1 and first fragment.
2982
*/
2983
2984
if (!skb || !sockc || !sk || !key_offset)
2985
return;
2986
2987
sock_tx_timestamp(sk, sockc, &skb_shinfo(skb)->tx_flags);
2988
2989
if (sk->sk_type == SOCK_STREAM)
2990
key = atomic_add_return(key_offset, &sk->sk_tskey);
2991
2992
if (sockc->tsflags & SOF_TIMESTAMPING_OPT_ID &&
2993
sockc->tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2994
if (sockc->tsflags & SOCKCM_FLAG_TS_OPT_ID) {
2995
skb_shinfo(skb)->tskey = sockc->ts_opt_id;
2996
} else {
2997
if (sk->sk_type != SOCK_STREAM)
2998
key = atomic_inc_return(&sk->sk_tskey);
2999
skb_shinfo(skb)->tskey = key - 1;
3000
}
3001
}
3002
}
3003
3004
void hci_conn_tx_queue(struct hci_conn *conn, struct sk_buff *skb)
3005
{
3006
struct tx_queue *comp = &conn->tx_q;
3007
bool track = false;
3008
3009
/* Emit SND now, ie. just before sending to driver */
3010
if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3011
__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SND);
3012
3013
/* COMPLETION tstamp is emitted for tracked skb later in Number of
3014
* Completed Packets event. Available only for flow controlled cases.
3015
*
3016
* TODO: SCO support without flowctl (needs to be done in drivers)
3017
*/
3018
switch (conn->type) {
3019
case CIS_LINK:
3020
case BIS_LINK:
3021
case PA_LINK:
3022
case ACL_LINK:
3023
case LE_LINK:
3024
break;
3025
case SCO_LINK:
3026
case ESCO_LINK:
3027
if (!hci_dev_test_flag(conn->hdev, HCI_SCO_FLOWCTL))
3028
return;
3029
break;
3030
default:
3031
return;
3032
}
3033
3034
if (skb->sk && (skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP))
3035
track = true;
3036
3037
/* If nothing is tracked, just count extra skbs at the queue head */
3038
if (!track && !comp->tracked) {
3039
comp->extra++;
3040
return;
3041
}
3042
3043
if (track) {
3044
skb = skb_clone_sk(skb);
3045
if (!skb)
3046
goto count_only;
3047
3048
comp->tracked++;
3049
} else {
3050
skb = skb_clone(skb, GFP_KERNEL);
3051
if (!skb)
3052
goto count_only;
3053
}
3054
3055
skb_queue_tail(&comp->queue, skb);
3056
return;
3057
3058
count_only:
3059
/* Stop tracking skbs, and only count. This will not emit timestamps for
3060
* the packets, but if we get here something is more seriously wrong.
3061
*/
3062
comp->tracked = 0;
3063
comp->extra += skb_queue_len(&comp->queue) + 1;
3064
skb_queue_purge(&comp->queue);
3065
}
3066
3067
void hci_conn_tx_dequeue(struct hci_conn *conn)
3068
{
3069
struct tx_queue *comp = &conn->tx_q;
3070
struct sk_buff *skb;
3071
3072
/* If there are tracked skbs, the counted extra go before dequeuing real
3073
* skbs, to keep ordering. When nothing is tracked, the ordering doesn't
3074
* matter so dequeue real skbs first to get rid of them ASAP.
3075
*/
3076
if (comp->extra && (comp->tracked || skb_queue_empty(&comp->queue))) {
3077
comp->extra--;
3078
return;
3079
}
3080
3081
skb = skb_dequeue(&comp->queue);
3082
if (!skb)
3083
return;
3084
3085
if (skb->sk) {
3086
comp->tracked--;
3087
__skb_tstamp_tx(skb, NULL, NULL, skb->sk,
3088
SCM_TSTAMP_COMPLETION);
3089
}
3090
3091
kfree_skb(skb);
3092
}
3093
3094
u8 *hci_conn_key_enc_size(struct hci_conn *conn)
3095
{
3096
if (conn->type == ACL_LINK) {
3097
struct link_key *key;
3098
3099
key = hci_find_link_key(conn->hdev, &conn->dst);
3100
if (!key)
3101
return NULL;
3102
3103
return &key->pin_len;
3104
} else if (conn->type == LE_LINK) {
3105
struct smp_ltk *ltk;
3106
3107
ltk = hci_find_ltk(conn->hdev, &conn->dst, conn->dst_type,
3108
conn->role);
3109
if (!ltk)
3110
return NULL;
3111
3112
return &ltk->enc_size;
3113
}
3114
3115
return NULL;
3116
}
3117
3118
int hci_ethtool_ts_info(unsigned int index, int sk_proto,
3119
struct kernel_ethtool_ts_info *info)
3120
{
3121
struct hci_dev *hdev;
3122
3123
hdev = hci_dev_get(index);
3124
if (!hdev)
3125
return -ENODEV;
3126
3127
info->so_timestamping =
3128
SOF_TIMESTAMPING_RX_SOFTWARE |
3129
SOF_TIMESTAMPING_SOFTWARE;
3130
info->phc_index = -1;
3131
info->tx_types = BIT(HWTSTAMP_TX_OFF);
3132
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
3133
3134
switch (sk_proto) {
3135
case BTPROTO_ISO:
3136
case BTPROTO_L2CAP:
3137
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE;
3138
info->so_timestamping |= SOF_TIMESTAMPING_TX_COMPLETION;
3139
break;
3140
case BTPROTO_SCO:
3141
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE;
3142
if (hci_dev_test_flag(hdev, HCI_SCO_FLOWCTL))
3143
info->so_timestamping |= SOF_TIMESTAMPING_TX_COMPLETION;
3144
break;
3145
}
3146
3147
hci_dev_put(hdev);
3148
return 0;
3149
}
3150
3151