Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/bluetooth/hci_sync.c
49527 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* BlueZ - Bluetooth protocol stack for Linux
4
*
5
* Copyright (C) 2021 Intel Corporation
6
* Copyright 2023 NXP
7
*/
8
9
#include <linux/property.h>
10
11
#include <net/bluetooth/bluetooth.h>
12
#include <net/bluetooth/hci_core.h>
13
#include <net/bluetooth/mgmt.h>
14
15
#include "hci_codec.h"
16
#include "hci_debugfs.h"
17
#include "smp.h"
18
#include "eir.h"
19
#include "msft.h"
20
#include "aosp.h"
21
#include "leds.h"
22
23
static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
24
struct sk_buff *skb)
25
{
26
bt_dev_dbg(hdev, "result 0x%2.2x", result);
27
28
if (hdev->req_status != HCI_REQ_PEND)
29
return;
30
31
hdev->req_result = result;
32
hdev->req_status = HCI_REQ_DONE;
33
34
/* Free the request command so it is not used as response */
35
kfree_skb(hdev->req_skb);
36
hdev->req_skb = NULL;
37
38
if (skb) {
39
struct sock *sk = hci_skb_sk(skb);
40
41
/* Drop sk reference if set */
42
if (sk)
43
sock_put(sk);
44
45
hdev->req_rsp = skb_get(skb);
46
}
47
48
wake_up_interruptible(&hdev->req_wait_q);
49
}
50
51
struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen,
52
const void *param, struct sock *sk)
53
{
54
int len = HCI_COMMAND_HDR_SIZE + plen;
55
struct hci_command_hdr *hdr;
56
struct sk_buff *skb;
57
58
skb = bt_skb_alloc(len, GFP_ATOMIC);
59
if (!skb)
60
return NULL;
61
62
hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
63
hdr->opcode = cpu_to_le16(opcode);
64
hdr->plen = plen;
65
66
if (plen)
67
skb_put_data(skb, param, plen);
68
69
bt_dev_dbg(hdev, "skb len %d", skb->len);
70
71
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
72
hci_skb_opcode(skb) = opcode;
73
74
/* Grab a reference if command needs to be associated with a sock (e.g.
75
* likely mgmt socket that initiated the command).
76
*/
77
if (sk) {
78
hci_skb_sk(skb) = sk;
79
sock_hold(sk);
80
}
81
82
return skb;
83
}
84
85
static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
86
const void *param, u8 event, struct sock *sk)
87
{
88
struct hci_dev *hdev = req->hdev;
89
struct sk_buff *skb;
90
91
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
92
93
/* If an error occurred during request building, there is no point in
94
* queueing the HCI command. We can simply return.
95
*/
96
if (req->err)
97
return;
98
99
skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
100
if (!skb) {
101
bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
102
opcode);
103
req->err = -ENOMEM;
104
return;
105
}
106
107
if (skb_queue_empty(&req->cmd_q))
108
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
109
110
hci_skb_event(skb) = event;
111
112
skb_queue_tail(&req->cmd_q, skb);
113
}
114
115
static int hci_req_sync_run(struct hci_request *req)
116
{
117
struct hci_dev *hdev = req->hdev;
118
struct sk_buff *skb;
119
unsigned long flags;
120
121
bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
122
123
/* If an error occurred during request building, remove all HCI
124
* commands queued on the HCI request queue.
125
*/
126
if (req->err) {
127
skb_queue_purge(&req->cmd_q);
128
return req->err;
129
}
130
131
/* Do not allow empty requests */
132
if (skb_queue_empty(&req->cmd_q))
133
return -ENODATA;
134
135
skb = skb_peek_tail(&req->cmd_q);
136
bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
137
bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
138
139
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
140
skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
141
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
142
143
queue_work(hdev->workqueue, &hdev->cmd_work);
144
145
return 0;
146
}
147
148
static void hci_request_init(struct hci_request *req, struct hci_dev *hdev)
149
{
150
skb_queue_head_init(&req->cmd_q);
151
req->hdev = hdev;
152
req->err = 0;
153
}
154
155
/* This function requires the caller holds hdev->req_lock. */
156
struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
157
const void *param, u8 event, u32 timeout,
158
struct sock *sk)
159
{
160
struct hci_request req;
161
struct sk_buff *skb;
162
int err = 0;
163
164
bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
165
166
hci_request_init(&req, hdev);
167
168
hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
169
170
hdev->req_status = HCI_REQ_PEND;
171
172
err = hci_req_sync_run(&req);
173
if (err < 0)
174
return ERR_PTR(err);
175
176
err = wait_event_interruptible_timeout(hdev->req_wait_q,
177
hdev->req_status != HCI_REQ_PEND,
178
timeout);
179
180
if (err == -ERESTARTSYS)
181
return ERR_PTR(-EINTR);
182
183
switch (hdev->req_status) {
184
case HCI_REQ_DONE:
185
err = -bt_to_errno(hdev->req_result);
186
break;
187
188
case HCI_REQ_CANCELED:
189
err = -hdev->req_result;
190
break;
191
192
default:
193
err = -ETIMEDOUT;
194
break;
195
}
196
197
hdev->req_status = 0;
198
hdev->req_result = 0;
199
skb = hdev->req_rsp;
200
hdev->req_rsp = NULL;
201
202
bt_dev_dbg(hdev, "end: err %d", err);
203
204
if (err < 0) {
205
kfree_skb(skb);
206
return ERR_PTR(err);
207
}
208
209
/* If command return a status event skb will be set to NULL as there are
210
* no parameters.
211
*/
212
if (!skb)
213
return ERR_PTR(-ENODATA);
214
215
return skb;
216
}
217
EXPORT_SYMBOL(__hci_cmd_sync_sk);
218
219
/* This function requires the caller holds hdev->req_lock. */
220
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
221
const void *param, u32 timeout)
222
{
223
return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
224
}
225
EXPORT_SYMBOL(__hci_cmd_sync);
226
227
/* Send HCI command and wait for command complete event */
228
struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
229
const void *param, u32 timeout)
230
{
231
struct sk_buff *skb;
232
233
if (!test_bit(HCI_UP, &hdev->flags))
234
return ERR_PTR(-ENETDOWN);
235
236
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
237
238
hci_req_sync_lock(hdev);
239
skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
240
hci_req_sync_unlock(hdev);
241
242
return skb;
243
}
244
EXPORT_SYMBOL(hci_cmd_sync);
245
246
/* This function requires the caller holds hdev->req_lock. */
247
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
248
const void *param, u8 event, u32 timeout)
249
{
250
return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
251
NULL);
252
}
253
EXPORT_SYMBOL(__hci_cmd_sync_ev);
254
255
/* This function requires the caller holds hdev->req_lock. */
256
int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
257
const void *param, u8 event, u32 timeout,
258
struct sock *sk)
259
{
260
struct sk_buff *skb;
261
u8 status;
262
263
skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
264
265
/* If command return a status event, skb will be set to -ENODATA */
266
if (skb == ERR_PTR(-ENODATA))
267
return 0;
268
269
if (IS_ERR(skb)) {
270
if (!event)
271
bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
272
PTR_ERR(skb));
273
return PTR_ERR(skb);
274
}
275
276
status = skb->data[0];
277
278
kfree_skb(skb);
279
280
return status;
281
}
282
EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
283
284
int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
285
const void *param, u32 timeout)
286
{
287
return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
288
NULL);
289
}
290
EXPORT_SYMBOL(__hci_cmd_sync_status);
291
292
int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
293
const void *param, u32 timeout)
294
{
295
int err;
296
297
hci_req_sync_lock(hdev);
298
err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout);
299
hci_req_sync_unlock(hdev);
300
301
return err;
302
}
303
EXPORT_SYMBOL(hci_cmd_sync_status);
304
305
static void hci_cmd_sync_work(struct work_struct *work)
306
{
307
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
308
309
bt_dev_dbg(hdev, "");
310
311
/* Dequeue all entries and run them */
312
while (1) {
313
struct hci_cmd_sync_work_entry *entry;
314
315
mutex_lock(&hdev->cmd_sync_work_lock);
316
entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
317
struct hci_cmd_sync_work_entry,
318
list);
319
if (entry)
320
list_del(&entry->list);
321
mutex_unlock(&hdev->cmd_sync_work_lock);
322
323
if (!entry)
324
break;
325
326
bt_dev_dbg(hdev, "entry %p", entry);
327
328
if (entry->func) {
329
int err;
330
331
hci_req_sync_lock(hdev);
332
err = entry->func(hdev, entry->data);
333
if (entry->destroy)
334
entry->destroy(hdev, entry->data, err);
335
hci_req_sync_unlock(hdev);
336
}
337
338
kfree(entry);
339
}
340
}
341
342
static void hci_cmd_sync_cancel_work(struct work_struct *work)
343
{
344
struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
345
346
cancel_delayed_work_sync(&hdev->cmd_timer);
347
cancel_delayed_work_sync(&hdev->ncmd_timer);
348
atomic_set(&hdev->cmd_cnt, 1);
349
350
wake_up_interruptible(&hdev->req_wait_q);
351
}
352
353
static int hci_scan_disable_sync(struct hci_dev *hdev);
354
static int scan_disable_sync(struct hci_dev *hdev, void *data)
355
{
356
return hci_scan_disable_sync(hdev);
357
}
358
359
static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
360
{
361
return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0);
362
}
363
364
static void le_scan_disable(struct work_struct *work)
365
{
366
struct hci_dev *hdev = container_of(work, struct hci_dev,
367
le_scan_disable.work);
368
int status;
369
370
bt_dev_dbg(hdev, "");
371
hci_dev_lock(hdev);
372
373
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
374
goto _return;
375
376
status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
377
if (status) {
378
bt_dev_err(hdev, "failed to disable LE scan: %d", status);
379
goto _return;
380
}
381
382
/* If we were running LE only scan, change discovery state. If
383
* we were running both LE and BR/EDR inquiry simultaneously,
384
* and BR/EDR inquiry is already finished, stop discovery,
385
* otherwise BR/EDR inquiry will stop discovery when finished.
386
* If we will resolve remote device name, do not change
387
* discovery state.
388
*/
389
390
if (hdev->discovery.type == DISCOV_TYPE_LE)
391
goto discov_stopped;
392
393
if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
394
goto _return;
395
396
if (hci_test_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY)) {
397
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
398
hdev->discovery.state != DISCOVERY_RESOLVING)
399
goto discov_stopped;
400
401
goto _return;
402
}
403
404
status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
405
if (status) {
406
bt_dev_err(hdev, "inquiry failed: status %d", status);
407
goto discov_stopped;
408
}
409
410
goto _return;
411
412
discov_stopped:
413
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
414
415
_return:
416
hci_dev_unlock(hdev);
417
}
418
419
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
420
u8 filter_dup);
421
422
static int reenable_adv_sync(struct hci_dev *hdev, void *data)
423
{
424
bt_dev_dbg(hdev, "");
425
426
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
427
list_empty(&hdev->adv_instances))
428
return 0;
429
430
if (hdev->cur_adv_instance) {
431
return hci_schedule_adv_instance_sync(hdev,
432
hdev->cur_adv_instance,
433
true);
434
} else {
435
if (ext_adv_capable(hdev)) {
436
hci_start_ext_adv_sync(hdev, 0x00);
437
} else {
438
hci_update_adv_data_sync(hdev, 0x00);
439
hci_update_scan_rsp_data_sync(hdev, 0x00);
440
hci_enable_advertising_sync(hdev);
441
}
442
}
443
444
return 0;
445
}
446
447
static void reenable_adv(struct work_struct *work)
448
{
449
struct hci_dev *hdev = container_of(work, struct hci_dev,
450
reenable_adv_work);
451
int status;
452
453
bt_dev_dbg(hdev, "");
454
455
hci_dev_lock(hdev);
456
457
status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
458
if (status)
459
bt_dev_err(hdev, "failed to reenable ADV: %d", status);
460
461
hci_dev_unlock(hdev);
462
}
463
464
static void cancel_adv_timeout(struct hci_dev *hdev)
465
{
466
if (hdev->adv_instance_timeout) {
467
hdev->adv_instance_timeout = 0;
468
cancel_delayed_work(&hdev->adv_instance_expire);
469
}
470
}
471
472
/* For a single instance:
473
* - force == true: The instance will be removed even when its remaining
474
* lifetime is not zero.
475
* - force == false: the instance will be deactivated but kept stored unless
476
* the remaining lifetime is zero.
477
*
478
* For instance == 0x00:
479
* - force == true: All instances will be removed regardless of their timeout
480
* setting.
481
* - force == false: Only instances that have a timeout will be removed.
482
*/
483
int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
484
u8 instance, bool force)
485
{
486
struct adv_info *adv_instance, *n, *next_instance = NULL;
487
int err;
488
u8 rem_inst;
489
490
/* Cancel any timeout concerning the removed instance(s). */
491
if (!instance || hdev->cur_adv_instance == instance)
492
cancel_adv_timeout(hdev);
493
494
/* Get the next instance to advertise BEFORE we remove
495
* the current one. This can be the same instance again
496
* if there is only one instance.
497
*/
498
if (instance && hdev->cur_adv_instance == instance)
499
next_instance = hci_get_next_instance(hdev, instance);
500
501
if (instance == 0x00) {
502
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
503
list) {
504
if (!(force || adv_instance->timeout))
505
continue;
506
507
rem_inst = adv_instance->instance;
508
err = hci_remove_adv_instance(hdev, rem_inst);
509
if (!err)
510
mgmt_advertising_removed(sk, hdev, rem_inst);
511
}
512
} else {
513
adv_instance = hci_find_adv_instance(hdev, instance);
514
515
if (force || (adv_instance && adv_instance->timeout &&
516
!adv_instance->remaining_time)) {
517
/* Don't advertise a removed instance. */
518
if (next_instance &&
519
next_instance->instance == instance)
520
next_instance = NULL;
521
522
err = hci_remove_adv_instance(hdev, instance);
523
if (!err)
524
mgmt_advertising_removed(sk, hdev, instance);
525
}
526
}
527
528
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
529
return 0;
530
531
if (next_instance && !ext_adv_capable(hdev))
532
return hci_schedule_adv_instance_sync(hdev,
533
next_instance->instance,
534
false);
535
536
return 0;
537
}
538
539
static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
540
{
541
u8 instance = *(u8 *)data;
542
543
kfree(data);
544
545
hci_clear_adv_instance_sync(hdev, NULL, instance, false);
546
547
if (list_empty(&hdev->adv_instances))
548
return hci_disable_advertising_sync(hdev);
549
550
return 0;
551
}
552
553
static void adv_timeout_expire(struct work_struct *work)
554
{
555
u8 *inst_ptr;
556
struct hci_dev *hdev = container_of(work, struct hci_dev,
557
adv_instance_expire.work);
558
559
bt_dev_dbg(hdev, "");
560
561
hci_dev_lock(hdev);
562
563
hdev->adv_instance_timeout = 0;
564
565
if (hdev->cur_adv_instance == 0x00)
566
goto unlock;
567
568
inst_ptr = kmalloc(1, GFP_KERNEL);
569
if (!inst_ptr)
570
goto unlock;
571
572
*inst_ptr = hdev->cur_adv_instance;
573
hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
574
575
unlock:
576
hci_dev_unlock(hdev);
577
}
578
579
static bool is_interleave_scanning(struct hci_dev *hdev)
580
{
581
return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
582
}
583
584
static int hci_passive_scan_sync(struct hci_dev *hdev);
585
586
static void interleave_scan_work(struct work_struct *work)
587
{
588
struct hci_dev *hdev = container_of(work, struct hci_dev,
589
interleave_scan.work);
590
unsigned long timeout;
591
592
if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
593
timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
594
} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
595
timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
596
} else {
597
bt_dev_err(hdev, "unexpected error");
598
return;
599
}
600
601
hci_passive_scan_sync(hdev);
602
603
hci_dev_lock(hdev);
604
605
switch (hdev->interleave_scan_state) {
606
case INTERLEAVE_SCAN_ALLOWLIST:
607
bt_dev_dbg(hdev, "next state: allowlist");
608
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
609
break;
610
case INTERLEAVE_SCAN_NO_FILTER:
611
bt_dev_dbg(hdev, "next state: no filter");
612
hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
613
break;
614
case INTERLEAVE_SCAN_NONE:
615
bt_dev_err(hdev, "unexpected error");
616
}
617
618
hci_dev_unlock(hdev);
619
620
/* Don't continue interleaving if it was canceled */
621
if (is_interleave_scanning(hdev))
622
queue_delayed_work(hdev->req_workqueue,
623
&hdev->interleave_scan, timeout);
624
}
625
626
void hci_cmd_sync_init(struct hci_dev *hdev)
627
{
628
INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
629
INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
630
mutex_init(&hdev->cmd_sync_work_lock);
631
mutex_init(&hdev->unregister_lock);
632
633
INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
634
INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
635
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
636
INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
637
INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
638
}
639
640
static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
641
struct hci_cmd_sync_work_entry *entry,
642
int err)
643
{
644
if (entry->destroy)
645
entry->destroy(hdev, entry->data, err);
646
647
list_del(&entry->list);
648
kfree(entry);
649
}
650
651
void hci_cmd_sync_clear(struct hci_dev *hdev)
652
{
653
struct hci_cmd_sync_work_entry *entry, *tmp;
654
655
cancel_work_sync(&hdev->cmd_sync_work);
656
cancel_work_sync(&hdev->reenable_adv_work);
657
658
mutex_lock(&hdev->cmd_sync_work_lock);
659
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list)
660
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
661
mutex_unlock(&hdev->cmd_sync_work_lock);
662
}
663
664
void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
665
{
666
bt_dev_dbg(hdev, "err 0x%2.2x", err);
667
668
if (hdev->req_status == HCI_REQ_PEND) {
669
hdev->req_result = err;
670
hdev->req_status = HCI_REQ_CANCELED;
671
672
queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
673
}
674
}
675
EXPORT_SYMBOL(hci_cmd_sync_cancel);
676
677
/* Cancel ongoing command request synchronously:
678
*
679
* - Set result and mark status to HCI_REQ_CANCELED
680
* - Wakeup command sync thread
681
*/
682
void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err)
683
{
684
bt_dev_dbg(hdev, "err 0x%2.2x", err);
685
686
if (hdev->req_status == HCI_REQ_PEND) {
687
/* req_result is __u32 so error must be positive to be properly
688
* propagated.
689
*/
690
hdev->req_result = err < 0 ? -err : err;
691
hdev->req_status = HCI_REQ_CANCELED;
692
693
wake_up_interruptible(&hdev->req_wait_q);
694
}
695
}
696
EXPORT_SYMBOL(hci_cmd_sync_cancel_sync);
697
698
/* Submit HCI command to be run in as cmd_sync_work:
699
*
700
* - hdev must _not_ be unregistered
701
*/
702
int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
703
void *data, hci_cmd_sync_work_destroy_t destroy)
704
{
705
struct hci_cmd_sync_work_entry *entry;
706
int err = 0;
707
708
mutex_lock(&hdev->unregister_lock);
709
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
710
err = -ENODEV;
711
goto unlock;
712
}
713
714
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
715
if (!entry) {
716
err = -ENOMEM;
717
goto unlock;
718
}
719
entry->func = func;
720
entry->data = data;
721
entry->destroy = destroy;
722
723
mutex_lock(&hdev->cmd_sync_work_lock);
724
list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
725
mutex_unlock(&hdev->cmd_sync_work_lock);
726
727
queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
728
729
unlock:
730
mutex_unlock(&hdev->unregister_lock);
731
return err;
732
}
733
EXPORT_SYMBOL(hci_cmd_sync_submit);
734
735
/* Queue HCI command:
736
*
737
* - hdev must be running
738
*/
739
int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
740
void *data, hci_cmd_sync_work_destroy_t destroy)
741
{
742
/* Only queue command if hdev is running which means it had been opened
743
* and is either on init phase or is already up.
744
*/
745
if (!test_bit(HCI_RUNNING, &hdev->flags))
746
return -ENETDOWN;
747
748
return hci_cmd_sync_submit(hdev, func, data, destroy);
749
}
750
EXPORT_SYMBOL(hci_cmd_sync_queue);
751
752
static struct hci_cmd_sync_work_entry *
753
_hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
754
void *data, hci_cmd_sync_work_destroy_t destroy)
755
{
756
struct hci_cmd_sync_work_entry *entry, *tmp;
757
758
list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
759
if (func && entry->func != func)
760
continue;
761
762
if (data && entry->data != data)
763
continue;
764
765
if (destroy && entry->destroy != destroy)
766
continue;
767
768
return entry;
769
}
770
771
return NULL;
772
}
773
774
/* Queue HCI command entry once:
775
*
776
* - Lookup if an entry already exist and only if it doesn't creates a new entry
777
* and queue it.
778
*/
779
int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
780
void *data, hci_cmd_sync_work_destroy_t destroy)
781
{
782
if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
783
return 0;
784
785
return hci_cmd_sync_queue(hdev, func, data, destroy);
786
}
787
EXPORT_SYMBOL(hci_cmd_sync_queue_once);
788
789
/* Run HCI command:
790
*
791
* - hdev must be running
792
* - if on cmd_sync_work then run immediately otherwise queue
793
*/
794
int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
795
void *data, hci_cmd_sync_work_destroy_t destroy)
796
{
797
/* Only queue command if hdev is running which means it had been opened
798
* and is either on init phase or is already up.
799
*/
800
if (!test_bit(HCI_RUNNING, &hdev->flags))
801
return -ENETDOWN;
802
803
/* If on cmd_sync_work then run immediately otherwise queue */
804
if (current_work() == &hdev->cmd_sync_work)
805
return func(hdev, data);
806
807
return hci_cmd_sync_submit(hdev, func, data, destroy);
808
}
809
EXPORT_SYMBOL(hci_cmd_sync_run);
810
811
/* Run HCI command entry once:
812
*
813
* - Lookup if an entry already exist and only if it doesn't creates a new entry
814
* and run it.
815
* - if on cmd_sync_work then run immediately otherwise queue
816
*/
817
int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
818
void *data, hci_cmd_sync_work_destroy_t destroy)
819
{
820
if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
821
return 0;
822
823
return hci_cmd_sync_run(hdev, func, data, destroy);
824
}
825
EXPORT_SYMBOL(hci_cmd_sync_run_once);
826
827
/* Lookup HCI command entry:
828
*
829
* - Return first entry that matches by function callback or data or
830
* destroy callback.
831
*/
832
struct hci_cmd_sync_work_entry *
833
hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
834
void *data, hci_cmd_sync_work_destroy_t destroy)
835
{
836
struct hci_cmd_sync_work_entry *entry;
837
838
mutex_lock(&hdev->cmd_sync_work_lock);
839
entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
840
mutex_unlock(&hdev->cmd_sync_work_lock);
841
842
return entry;
843
}
844
EXPORT_SYMBOL(hci_cmd_sync_lookup_entry);
845
846
/* Cancel HCI command entry */
847
void hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
848
struct hci_cmd_sync_work_entry *entry)
849
{
850
mutex_lock(&hdev->cmd_sync_work_lock);
851
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
852
mutex_unlock(&hdev->cmd_sync_work_lock);
853
}
854
EXPORT_SYMBOL(hci_cmd_sync_cancel_entry);
855
856
/* Dequeue one HCI command entry:
857
*
858
* - Lookup and cancel first entry that matches.
859
*/
860
bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev,
861
hci_cmd_sync_work_func_t func,
862
void *data, hci_cmd_sync_work_destroy_t destroy)
863
{
864
struct hci_cmd_sync_work_entry *entry;
865
866
mutex_lock(&hdev->cmd_sync_work_lock);
867
868
entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
869
if (!entry) {
870
mutex_unlock(&hdev->cmd_sync_work_lock);
871
return false;
872
}
873
874
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
875
876
mutex_unlock(&hdev->cmd_sync_work_lock);
877
878
return true;
879
}
880
EXPORT_SYMBOL(hci_cmd_sync_dequeue_once);
881
882
/* Dequeue HCI command entry:
883
*
884
* - Lookup and cancel any entry that matches by function callback or data or
885
* destroy callback.
886
*/
887
bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
888
void *data, hci_cmd_sync_work_destroy_t destroy)
889
{
890
struct hci_cmd_sync_work_entry *entry;
891
bool ret = false;
892
893
mutex_lock(&hdev->cmd_sync_work_lock);
894
while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data,
895
destroy))) {
896
_hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
897
ret = true;
898
}
899
mutex_unlock(&hdev->cmd_sync_work_lock);
900
901
return ret;
902
}
903
EXPORT_SYMBOL(hci_cmd_sync_dequeue);
904
905
int hci_update_eir_sync(struct hci_dev *hdev)
906
{
907
struct hci_cp_write_eir cp;
908
909
bt_dev_dbg(hdev, "");
910
911
if (!hdev_is_powered(hdev))
912
return 0;
913
914
if (!lmp_ext_inq_capable(hdev))
915
return 0;
916
917
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
918
return 0;
919
920
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
921
return 0;
922
923
memset(&cp, 0, sizeof(cp));
924
925
eir_create(hdev, cp.data);
926
927
if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
928
return 0;
929
930
memcpy(hdev->eir, cp.data, sizeof(cp.data));
931
932
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
933
HCI_CMD_TIMEOUT);
934
}
935
936
static u8 get_service_classes(struct hci_dev *hdev)
937
{
938
struct bt_uuid *uuid;
939
u8 val = 0;
940
941
list_for_each_entry(uuid, &hdev->uuids, list)
942
val |= uuid->svc_hint;
943
944
return val;
945
}
946
947
int hci_update_class_sync(struct hci_dev *hdev)
948
{
949
u8 cod[3];
950
951
bt_dev_dbg(hdev, "");
952
953
if (!hdev_is_powered(hdev))
954
return 0;
955
956
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
957
return 0;
958
959
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
960
return 0;
961
962
cod[0] = hdev->minor_class;
963
cod[1] = hdev->major_class;
964
cod[2] = get_service_classes(hdev);
965
966
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
967
cod[1] |= 0x20;
968
969
if (memcmp(cod, hdev->dev_class, 3) == 0)
970
return 0;
971
972
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
973
sizeof(cod), cod, HCI_CMD_TIMEOUT);
974
}
975
976
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
977
{
978
/* If there is no connection we are OK to advertise. */
979
if (hci_conn_num(hdev, LE_LINK) == 0)
980
return true;
981
982
/* Check le_states if there is any connection in peripheral role. */
983
if (hdev->conn_hash.le_num_peripheral > 0) {
984
/* Peripheral connection state and non connectable mode
985
* bit 20.
986
*/
987
if (!connectable && !(hdev->le_states[2] & 0x10))
988
return false;
989
990
/* Peripheral connection state and connectable mode bit 38
991
* and scannable bit 21.
992
*/
993
if (connectable && (!(hdev->le_states[4] & 0x40) ||
994
!(hdev->le_states[2] & 0x20)))
995
return false;
996
}
997
998
/* Check le_states if there is any connection in central role. */
999
if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
1000
/* Central connection state and non connectable mode bit 18. */
1001
if (!connectable && !(hdev->le_states[2] & 0x02))
1002
return false;
1003
1004
/* Central connection state and connectable mode bit 35 and
1005
* scannable 19.
1006
*/
1007
if (connectable && (!(hdev->le_states[4] & 0x08) ||
1008
!(hdev->le_states[2] & 0x08)))
1009
return false;
1010
}
1011
1012
return true;
1013
}
1014
1015
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1016
{
1017
/* If privacy is not enabled don't use RPA */
1018
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1019
return false;
1020
1021
/* If basic privacy mode is enabled use RPA */
1022
if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1023
return true;
1024
1025
/* If limited privacy mode is enabled don't use RPA if we're
1026
* both discoverable and bondable.
1027
*/
1028
if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1029
hci_dev_test_flag(hdev, HCI_BONDABLE))
1030
return false;
1031
1032
/* We're neither bondable nor discoverable in the limited
1033
* privacy mode, therefore use RPA.
1034
*/
1035
return true;
1036
}
1037
1038
static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
1039
{
1040
/* If a random_addr has been set we're advertising or initiating an LE
1041
* connection we can't go ahead and change the random address at this
1042
* time. This is because the eventual initiator address used for the
1043
* subsequently created connection will be undefined (some
1044
* controllers use the new address and others the one we had
1045
* when the operation started).
1046
*
1047
* In this kind of scenario skip the update and let the random
1048
* address be updated at the next cycle.
1049
*/
1050
if (bacmp(&hdev->random_addr, BDADDR_ANY) &&
1051
(hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1052
hci_lookup_le_connect(hdev))) {
1053
bt_dev_dbg(hdev, "Deferring random address update");
1054
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1055
return 0;
1056
}
1057
1058
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
1059
6, rpa, HCI_CMD_TIMEOUT);
1060
}
1061
1062
int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
1063
bool rpa, u8 *own_addr_type)
1064
{
1065
int err;
1066
1067
/* If privacy is enabled use a resolvable private address. If
1068
* current RPA has expired or there is something else than
1069
* the current RPA in use, then generate a new one.
1070
*/
1071
if (rpa) {
1072
/* If Controller supports LL Privacy use own address type is
1073
* 0x03
1074
*/
1075
if (ll_privacy_capable(hdev))
1076
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
1077
else
1078
*own_addr_type = ADDR_LE_DEV_RANDOM;
1079
1080
/* Check if RPA is valid */
1081
if (rpa_valid(hdev))
1082
return 0;
1083
1084
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1085
if (err < 0) {
1086
bt_dev_err(hdev, "failed to generate new RPA");
1087
return err;
1088
}
1089
1090
err = hci_set_random_addr_sync(hdev, &hdev->rpa);
1091
if (err)
1092
return err;
1093
1094
return 0;
1095
}
1096
1097
/* In case of required privacy without resolvable private address,
1098
* use an non-resolvable private address. This is useful for active
1099
* scanning and non-connectable advertising.
1100
*/
1101
if (require_privacy) {
1102
bdaddr_t nrpa;
1103
1104
while (true) {
1105
/* The non-resolvable private address is generated
1106
* from random six bytes with the two most significant
1107
* bits cleared.
1108
*/
1109
get_random_bytes(&nrpa, 6);
1110
nrpa.b[5] &= 0x3f;
1111
1112
/* The non-resolvable private address shall not be
1113
* equal to the public address.
1114
*/
1115
if (bacmp(&hdev->bdaddr, &nrpa))
1116
break;
1117
}
1118
1119
*own_addr_type = ADDR_LE_DEV_RANDOM;
1120
1121
return hci_set_random_addr_sync(hdev, &nrpa);
1122
}
1123
1124
/* If forcing static address is in use or there is no public
1125
* address use the static address as random address (but skip
1126
* the HCI command if the current random address is already the
1127
* static one.
1128
*
1129
* In case BR/EDR has been disabled on a dual-mode controller
1130
* and a static address has been configured, then use that
1131
* address instead of the public BR/EDR address.
1132
*/
1133
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1134
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1135
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1136
bacmp(&hdev->static_addr, BDADDR_ANY))) {
1137
*own_addr_type = ADDR_LE_DEV_RANDOM;
1138
if (bacmp(&hdev->static_addr, &hdev->random_addr))
1139
return hci_set_random_addr_sync(hdev,
1140
&hdev->static_addr);
1141
return 0;
1142
}
1143
1144
/* Neither privacy nor static address is being used so use a
1145
* public address.
1146
*/
1147
*own_addr_type = ADDR_LE_DEV_PUBLIC;
1148
1149
return 0;
1150
}
1151
1152
static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1153
{
1154
struct hci_cp_le_set_ext_adv_enable *cp;
1155
struct hci_cp_ext_adv_set *set;
1156
u8 data[sizeof(*cp) + sizeof(*set) * 1];
1157
u8 size;
1158
struct adv_info *adv = NULL;
1159
1160
/* If request specifies an instance that doesn't exist, fail */
1161
if (instance > 0) {
1162
adv = hci_find_adv_instance(hdev, instance);
1163
if (!adv)
1164
return -EINVAL;
1165
1166
/* If not enabled there is nothing to do */
1167
if (!adv->enabled)
1168
return 0;
1169
}
1170
1171
memset(data, 0, sizeof(data));
1172
1173
cp = (void *)data;
1174
set = (void *)cp->data;
1175
1176
/* Instance 0x00 indicates all advertising instances will be disabled */
1177
cp->num_of_sets = !!instance;
1178
cp->enable = 0x00;
1179
1180
set->handle = adv ? adv->handle : instance;
1181
1182
size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1183
1184
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1185
size, data, HCI_CMD_TIMEOUT);
1186
}
1187
1188
static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1189
bdaddr_t *random_addr)
1190
{
1191
struct hci_cp_le_set_adv_set_rand_addr cp;
1192
int err;
1193
1194
if (!instance) {
1195
/* Instance 0x00 doesn't have an adv_info, instead it uses
1196
* hdev->random_addr to track its address so whenever it needs
1197
* to be updated this also set the random address since
1198
* hdev->random_addr is shared with scan state machine.
1199
*/
1200
err = hci_set_random_addr_sync(hdev, random_addr);
1201
if (err)
1202
return err;
1203
}
1204
1205
memset(&cp, 0, sizeof(cp));
1206
1207
cp.handle = instance;
1208
bacpy(&cp.bdaddr, random_addr);
1209
1210
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1211
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1212
}
1213
1214
static int
1215
hci_set_ext_adv_params_sync(struct hci_dev *hdev, struct adv_info *adv,
1216
const struct hci_cp_le_set_ext_adv_params *cp,
1217
struct hci_rp_le_set_ext_adv_params *rp)
1218
{
1219
struct sk_buff *skb;
1220
1221
skb = __hci_cmd_sync(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(*cp),
1222
cp, HCI_CMD_TIMEOUT);
1223
1224
/* If command return a status event, skb will be set to -ENODATA */
1225
if (skb == ERR_PTR(-ENODATA))
1226
return 0;
1227
1228
if (IS_ERR(skb)) {
1229
bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld",
1230
HCI_OP_LE_SET_EXT_ADV_PARAMS, PTR_ERR(skb));
1231
return PTR_ERR(skb);
1232
}
1233
1234
if (skb->len != sizeof(*rp)) {
1235
bt_dev_err(hdev, "Invalid response length for 0x%4.4x: %u",
1236
HCI_OP_LE_SET_EXT_ADV_PARAMS, skb->len);
1237
kfree_skb(skb);
1238
return -EIO;
1239
}
1240
1241
memcpy(rp, skb->data, sizeof(*rp));
1242
kfree_skb(skb);
1243
1244
if (!rp->status) {
1245
hdev->adv_addr_type = cp->own_addr_type;
1246
if (!cp->handle) {
1247
/* Store in hdev for instance 0 */
1248
hdev->adv_tx_power = rp->tx_power;
1249
} else if (adv) {
1250
adv->tx_power = rp->tx_power;
1251
}
1252
}
1253
1254
return rp->status;
1255
}
1256
1257
static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1258
{
1259
DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length,
1260
HCI_MAX_EXT_AD_LENGTH);
1261
u8 len;
1262
struct adv_info *adv = NULL;
1263
int err;
1264
1265
if (instance) {
1266
adv = hci_find_adv_instance(hdev, instance);
1267
if (!adv || !adv->adv_data_changed)
1268
return 0;
1269
}
1270
1271
len = eir_create_adv_data(hdev, instance, pdu->data,
1272
HCI_MAX_EXT_AD_LENGTH);
1273
1274
pdu->length = len;
1275
pdu->handle = adv ? adv->handle : instance;
1276
pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1277
pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1278
1279
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1280
struct_size(pdu, data, len), pdu,
1281
HCI_CMD_TIMEOUT);
1282
if (err)
1283
return err;
1284
1285
/* Update data if the command succeed */
1286
if (adv) {
1287
adv->adv_data_changed = false;
1288
} else {
1289
memcpy(hdev->adv_data, pdu->data, len);
1290
hdev->adv_data_len = len;
1291
}
1292
1293
return 0;
1294
}
1295
1296
static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1297
{
1298
struct hci_cp_le_set_adv_data cp;
1299
u8 len;
1300
1301
memset(&cp, 0, sizeof(cp));
1302
1303
len = eir_create_adv_data(hdev, instance, cp.data, sizeof(cp.data));
1304
1305
/* There's nothing to do if the data hasn't changed */
1306
if (hdev->adv_data_len == len &&
1307
memcmp(cp.data, hdev->adv_data, len) == 0)
1308
return 0;
1309
1310
memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1311
hdev->adv_data_len = len;
1312
1313
cp.length = len;
1314
1315
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1316
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1317
}
1318
1319
int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1320
{
1321
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1322
return 0;
1323
1324
if (ext_adv_capable(hdev))
1325
return hci_set_ext_adv_data_sync(hdev, instance);
1326
1327
return hci_set_adv_data_sync(hdev, instance);
1328
}
1329
1330
int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1331
{
1332
struct hci_cp_le_set_ext_adv_params cp;
1333
struct hci_rp_le_set_ext_adv_params rp;
1334
bool connectable, require_privacy;
1335
u32 flags;
1336
bdaddr_t random_addr;
1337
u8 own_addr_type;
1338
int err;
1339
struct adv_info *adv;
1340
bool secondary_adv;
1341
1342
if (instance > 0) {
1343
adv = hci_find_adv_instance(hdev, instance);
1344
if (!adv)
1345
return -EINVAL;
1346
} else {
1347
adv = NULL;
1348
}
1349
1350
/* Updating parameters of an active instance will return a
1351
* Command Disallowed error, so we must first disable the
1352
* instance if it is active.
1353
*/
1354
if (adv) {
1355
err = hci_disable_ext_adv_instance_sync(hdev, instance);
1356
if (err)
1357
return err;
1358
}
1359
1360
flags = hci_adv_instance_flags(hdev, instance);
1361
1362
/* If the "connectable" instance flag was not set, then choose between
1363
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1364
*/
1365
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1366
mgmt_get_connectable(hdev);
1367
1368
if (!is_advertising_allowed(hdev, connectable))
1369
return -EPERM;
1370
1371
/* Set require_privacy to true only when non-connectable
1372
* advertising is used and it is not periodic.
1373
* In that case it is fine to use a non-resolvable private address.
1374
*/
1375
require_privacy = !connectable && !(adv && adv->periodic);
1376
1377
err = hci_get_random_address(hdev, require_privacy,
1378
adv_use_rpa(hdev, flags), adv,
1379
&own_addr_type, &random_addr);
1380
if (err < 0)
1381
return err;
1382
1383
memset(&cp, 0, sizeof(cp));
1384
1385
if (adv) {
1386
hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1387
hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1388
cp.tx_power = adv->tx_power;
1389
cp.sid = adv->sid;
1390
} else {
1391
hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1392
hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1393
cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1394
cp.sid = 0x00;
1395
}
1396
1397
secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1398
1399
if (connectable) {
1400
if (secondary_adv)
1401
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1402
else
1403
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1404
} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1405
(flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1406
if (secondary_adv)
1407
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1408
else
1409
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1410
} else {
1411
if (secondary_adv)
1412
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1413
else
1414
cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1415
}
1416
1417
/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1418
* contains the peer’s Identity Address and the Peer_Address_Type
1419
* parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1420
* These parameters are used to locate the corresponding local IRK in
1421
* the resolving list; this IRK is used to generate their own address
1422
* used in the advertisement.
1423
*/
1424
if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1425
hci_copy_identity_address(hdev, &cp.peer_addr,
1426
&cp.peer_addr_type);
1427
1428
cp.own_addr_type = own_addr_type;
1429
cp.channel_map = hdev->le_adv_channel_map;
1430
cp.handle = adv ? adv->handle : instance;
1431
1432
if (flags & MGMT_ADV_FLAG_SEC_2M) {
1433
cp.primary_phy = HCI_ADV_PHY_1M;
1434
cp.secondary_phy = HCI_ADV_PHY_2M;
1435
} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1436
cp.primary_phy = HCI_ADV_PHY_CODED;
1437
cp.secondary_phy = HCI_ADV_PHY_CODED;
1438
} else {
1439
/* In all other cases use 1M */
1440
cp.primary_phy = HCI_ADV_PHY_1M;
1441
cp.secondary_phy = HCI_ADV_PHY_1M;
1442
}
1443
1444
err = hci_set_ext_adv_params_sync(hdev, adv, &cp, &rp);
1445
if (err)
1446
return err;
1447
1448
/* Update adv data as tx power is known now */
1449
err = hci_set_ext_adv_data_sync(hdev, cp.handle);
1450
if (err)
1451
return err;
1452
1453
if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1454
own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1455
bacmp(&random_addr, BDADDR_ANY)) {
1456
/* Check if random address need to be updated */
1457
if (adv) {
1458
if (!bacmp(&random_addr, &adv->random_addr))
1459
return 0;
1460
} else {
1461
if (!bacmp(&random_addr, &hdev->random_addr))
1462
return 0;
1463
}
1464
1465
return hci_set_adv_set_random_addr_sync(hdev, instance,
1466
&random_addr);
1467
}
1468
1469
return 0;
1470
}
1471
1472
static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1473
{
1474
DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length,
1475
HCI_MAX_EXT_AD_LENGTH);
1476
u8 len;
1477
struct adv_info *adv = NULL;
1478
int err;
1479
1480
if (instance) {
1481
adv = hci_find_adv_instance(hdev, instance);
1482
if (!adv || !adv->scan_rsp_changed)
1483
return 0;
1484
}
1485
1486
len = eir_create_scan_rsp(hdev, instance, pdu->data);
1487
1488
pdu->handle = adv ? adv->handle : instance;
1489
pdu->length = len;
1490
pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1491
pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1492
1493
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1494
struct_size(pdu, data, len), pdu,
1495
HCI_CMD_TIMEOUT);
1496
if (err)
1497
return err;
1498
1499
if (adv) {
1500
adv->scan_rsp_changed = false;
1501
} else {
1502
memcpy(hdev->scan_rsp_data, pdu->data, len);
1503
hdev->scan_rsp_data_len = len;
1504
}
1505
1506
return 0;
1507
}
1508
1509
static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1510
{
1511
struct hci_cp_le_set_scan_rsp_data cp;
1512
u8 len;
1513
1514
memset(&cp, 0, sizeof(cp));
1515
1516
len = eir_create_scan_rsp(hdev, instance, cp.data);
1517
1518
if (hdev->scan_rsp_data_len == len &&
1519
!memcmp(cp.data, hdev->scan_rsp_data, len))
1520
return 0;
1521
1522
memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1523
hdev->scan_rsp_data_len = len;
1524
1525
cp.length = len;
1526
1527
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1528
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1529
}
1530
1531
int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1532
{
1533
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1534
return 0;
1535
1536
if (ext_adv_capable(hdev))
1537
return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1538
1539
return __hci_set_scan_rsp_data_sync(hdev, instance);
1540
}
1541
1542
int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1543
{
1544
struct hci_cp_le_set_ext_adv_enable *cp;
1545
struct hci_cp_ext_adv_set *set;
1546
u8 data[sizeof(*cp) + sizeof(*set) * 1];
1547
struct adv_info *adv;
1548
1549
if (instance > 0) {
1550
adv = hci_find_adv_instance(hdev, instance);
1551
if (!adv)
1552
return -EINVAL;
1553
/* If already enabled there is nothing to do */
1554
if (adv->enabled)
1555
return 0;
1556
} else {
1557
adv = NULL;
1558
}
1559
1560
cp = (void *)data;
1561
set = (void *)cp->data;
1562
1563
memset(cp, 0, sizeof(*cp));
1564
1565
cp->enable = 0x01;
1566
cp->num_of_sets = 0x01;
1567
1568
memset(set, 0, sizeof(*set));
1569
1570
set->handle = adv ? adv->handle : instance;
1571
1572
/* Set duration per instance since controller is responsible for
1573
* scheduling it.
1574
*/
1575
if (adv && adv->timeout) {
1576
u16 duration = adv->timeout * MSEC_PER_SEC;
1577
1578
/* Time = N * 10 ms */
1579
set->duration = cpu_to_le16(duration / 10);
1580
}
1581
1582
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1583
sizeof(*cp) +
1584
sizeof(*set) * cp->num_of_sets,
1585
data, HCI_CMD_TIMEOUT);
1586
}
1587
1588
int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1589
{
1590
int err;
1591
1592
err = hci_setup_ext_adv_instance_sync(hdev, instance);
1593
if (err)
1594
return err;
1595
1596
err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1597
if (err)
1598
return err;
1599
1600
return hci_enable_ext_advertising_sync(hdev, instance);
1601
}
1602
1603
int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1604
{
1605
struct hci_cp_le_set_per_adv_enable cp;
1606
struct adv_info *adv = NULL;
1607
1608
/* If periodic advertising already disabled there is nothing to do. */
1609
adv = hci_find_adv_instance(hdev, instance);
1610
if (!adv || !adv->periodic_enabled)
1611
return 0;
1612
1613
memset(&cp, 0, sizeof(cp));
1614
1615
cp.enable = 0x00;
1616
cp.handle = instance;
1617
1618
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1619
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1620
}
1621
1622
static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1623
u16 min_interval, u16 max_interval)
1624
{
1625
struct hci_cp_le_set_per_adv_params cp;
1626
1627
memset(&cp, 0, sizeof(cp));
1628
1629
if (!min_interval)
1630
min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1631
1632
if (!max_interval)
1633
max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1634
1635
cp.handle = instance;
1636
cp.min_interval = cpu_to_le16(min_interval);
1637
cp.max_interval = cpu_to_le16(max_interval);
1638
cp.periodic_properties = 0x0000;
1639
1640
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1641
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1642
}
1643
1644
static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1645
{
1646
DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length,
1647
HCI_MAX_PER_AD_LENGTH);
1648
u8 len;
1649
struct adv_info *adv = NULL;
1650
1651
if (instance) {
1652
adv = hci_find_adv_instance(hdev, instance);
1653
if (!adv || !adv->periodic)
1654
return 0;
1655
}
1656
1657
len = eir_create_per_adv_data(hdev, instance, pdu->data);
1658
1659
pdu->length = len;
1660
pdu->handle = adv ? adv->handle : instance;
1661
pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1662
1663
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1664
struct_size(pdu, data, len), pdu,
1665
HCI_CMD_TIMEOUT);
1666
}
1667
1668
static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1669
{
1670
struct hci_cp_le_set_per_adv_enable cp;
1671
struct adv_info *adv = NULL;
1672
1673
/* If periodic advertising already enabled there is nothing to do. */
1674
adv = hci_find_adv_instance(hdev, instance);
1675
if (adv && adv->periodic_enabled)
1676
return 0;
1677
1678
memset(&cp, 0, sizeof(cp));
1679
1680
cp.enable = 0x01;
1681
cp.handle = instance;
1682
1683
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1684
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1685
}
1686
1687
/* Checks if periodic advertising data contains a Basic Announcement and if it
1688
* does generates a Broadcast ID and add Broadcast Announcement.
1689
*/
1690
static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1691
{
1692
u8 bid[3];
1693
u8 ad[HCI_MAX_EXT_AD_LENGTH];
1694
u8 len;
1695
1696
/* Skip if NULL adv as instance 0x00 is used for general purpose
1697
* advertising so it cannot used for the likes of Broadcast Announcement
1698
* as it can be overwritten at any point.
1699
*/
1700
if (!adv)
1701
return 0;
1702
1703
/* Check if PA data doesn't contains a Basic Audio Announcement then
1704
* there is nothing to do.
1705
*/
1706
if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1707
0x1851, NULL))
1708
return 0;
1709
1710
/* Check if advertising data already has a Broadcast Announcement since
1711
* the process may want to control the Broadcast ID directly and in that
1712
* case the kernel shall no interfere.
1713
*/
1714
if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1715
NULL))
1716
return 0;
1717
1718
/* Generate Broadcast ID */
1719
get_random_bytes(bid, sizeof(bid));
1720
len = eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1721
memcpy(ad + len, adv->adv_data, adv->adv_data_len);
1722
hci_set_adv_instance_data(hdev, adv->instance, len + adv->adv_data_len,
1723
ad, 0, NULL);
1724
1725
return hci_update_adv_data_sync(hdev, adv->instance);
1726
}
1727
1728
int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 sid,
1729
u8 data_len, u8 *data, u32 flags, u16 min_interval,
1730
u16 max_interval, u16 sync_interval)
1731
{
1732
struct adv_info *adv = NULL;
1733
int err;
1734
bool added = false;
1735
1736
hci_disable_per_advertising_sync(hdev, instance);
1737
1738
if (instance) {
1739
adv = hci_find_adv_instance(hdev, instance);
1740
if (adv) {
1741
if (sid != HCI_SID_INVALID && adv->sid != sid) {
1742
/* If the SID don't match attempt to find by
1743
* SID.
1744
*/
1745
adv = hci_find_adv_sid(hdev, sid);
1746
if (!adv) {
1747
bt_dev_err(hdev,
1748
"Unable to find adv_info");
1749
return -EINVAL;
1750
}
1751
}
1752
1753
/* Turn it into periodic advertising */
1754
adv->periodic = true;
1755
adv->per_adv_data_len = data_len;
1756
if (data)
1757
memcpy(adv->per_adv_data, data, data_len);
1758
adv->flags = flags;
1759
} else if (!adv) {
1760
/* Create an instance if that could not be found */
1761
adv = hci_add_per_instance(hdev, instance, sid, flags,
1762
data_len, data,
1763
sync_interval,
1764
sync_interval);
1765
if (IS_ERR(adv))
1766
return PTR_ERR(adv);
1767
adv->pending = false;
1768
added = true;
1769
}
1770
}
1771
1772
/* Start advertising */
1773
err = hci_start_ext_adv_sync(hdev, instance);
1774
if (err < 0)
1775
goto fail;
1776
1777
err = hci_adv_bcast_annoucement(hdev, adv);
1778
if (err < 0)
1779
goto fail;
1780
1781
err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1782
max_interval);
1783
if (err < 0)
1784
goto fail;
1785
1786
err = hci_set_per_adv_data_sync(hdev, instance);
1787
if (err < 0)
1788
goto fail;
1789
1790
err = hci_enable_per_advertising_sync(hdev, instance);
1791
if (err < 0)
1792
goto fail;
1793
1794
return 0;
1795
1796
fail:
1797
if (added)
1798
hci_remove_adv_instance(hdev, instance);
1799
1800
return err;
1801
}
1802
1803
static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1804
{
1805
int err;
1806
1807
if (ext_adv_capable(hdev))
1808
return hci_start_ext_adv_sync(hdev, instance);
1809
1810
err = hci_update_adv_data_sync(hdev, instance);
1811
if (err)
1812
return err;
1813
1814
err = hci_update_scan_rsp_data_sync(hdev, instance);
1815
if (err)
1816
return err;
1817
1818
return hci_enable_advertising_sync(hdev);
1819
}
1820
1821
int hci_enable_advertising_sync(struct hci_dev *hdev)
1822
{
1823
struct adv_info *adv_instance;
1824
struct hci_cp_le_set_adv_param cp;
1825
u8 own_addr_type, enable = 0x01;
1826
bool connectable;
1827
u16 adv_min_interval, adv_max_interval;
1828
u32 flags;
1829
u8 status;
1830
1831
if (ext_adv_capable(hdev))
1832
return hci_enable_ext_advertising_sync(hdev,
1833
hdev->cur_adv_instance);
1834
1835
flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1836
adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1837
1838
/* If the "connectable" instance flag was not set, then choose between
1839
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1840
*/
1841
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1842
mgmt_get_connectable(hdev);
1843
1844
if (!is_advertising_allowed(hdev, connectable))
1845
return -EINVAL;
1846
1847
status = hci_disable_advertising_sync(hdev);
1848
if (status)
1849
return status;
1850
1851
/* Clear the HCI_LE_ADV bit temporarily so that the
1852
* hci_update_random_address knows that it's safe to go ahead
1853
* and write a new random address. The flag will be set back on
1854
* as soon as the SET_ADV_ENABLE HCI command completes.
1855
*/
1856
hci_dev_clear_flag(hdev, HCI_LE_ADV);
1857
1858
/* Set require_privacy to true only when non-connectable
1859
* advertising is used. In that case it is fine to use a
1860
* non-resolvable private address.
1861
*/
1862
status = hci_update_random_address_sync(hdev, !connectable,
1863
adv_use_rpa(hdev, flags),
1864
&own_addr_type);
1865
if (status)
1866
return status;
1867
1868
memset(&cp, 0, sizeof(cp));
1869
1870
if (adv_instance) {
1871
adv_min_interval = adv_instance->min_interval;
1872
adv_max_interval = adv_instance->max_interval;
1873
} else {
1874
adv_min_interval = hdev->le_adv_min_interval;
1875
adv_max_interval = hdev->le_adv_max_interval;
1876
}
1877
1878
if (connectable) {
1879
cp.type = LE_ADV_IND;
1880
} else {
1881
if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1882
cp.type = LE_ADV_SCAN_IND;
1883
else
1884
cp.type = LE_ADV_NONCONN_IND;
1885
1886
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1887
hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1888
adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1889
adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1890
}
1891
}
1892
1893
cp.min_interval = cpu_to_le16(adv_min_interval);
1894
cp.max_interval = cpu_to_le16(adv_max_interval);
1895
cp.own_address_type = own_addr_type;
1896
cp.channel_map = hdev->le_adv_channel_map;
1897
1898
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1899
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1900
if (status)
1901
return status;
1902
1903
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1904
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1905
}
1906
1907
static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1908
{
1909
return hci_enable_advertising_sync(hdev);
1910
}
1911
1912
int hci_enable_advertising(struct hci_dev *hdev)
1913
{
1914
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1915
list_empty(&hdev->adv_instances))
1916
return 0;
1917
1918
return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1919
}
1920
1921
int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1922
struct sock *sk)
1923
{
1924
int err;
1925
1926
if (!ext_adv_capable(hdev))
1927
return 0;
1928
1929
err = hci_disable_ext_adv_instance_sync(hdev, instance);
1930
if (err)
1931
return err;
1932
1933
/* If request specifies an instance that doesn't exist, fail */
1934
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1935
return -EINVAL;
1936
1937
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1938
sizeof(instance), &instance, 0,
1939
HCI_CMD_TIMEOUT, sk);
1940
}
1941
1942
int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1943
{
1944
struct hci_cp_le_term_big cp;
1945
1946
memset(&cp, 0, sizeof(cp));
1947
cp.handle = handle;
1948
cp.reason = reason;
1949
1950
return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1951
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1952
}
1953
1954
int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1955
bool force)
1956
{
1957
struct adv_info *adv = NULL;
1958
u16 timeout;
1959
1960
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1961
return -EPERM;
1962
1963
if (hdev->adv_instance_timeout)
1964
return -EBUSY;
1965
1966
adv = hci_find_adv_instance(hdev, instance);
1967
if (!adv)
1968
return -ENOENT;
1969
1970
/* A zero timeout means unlimited advertising. As long as there is
1971
* only one instance, duration should be ignored. We still set a timeout
1972
* in case further instances are being added later on.
1973
*
1974
* If the remaining lifetime of the instance is more than the duration
1975
* then the timeout corresponds to the duration, otherwise it will be
1976
* reduced to the remaining instance lifetime.
1977
*/
1978
if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1979
timeout = adv->duration;
1980
else
1981
timeout = adv->remaining_time;
1982
1983
/* The remaining time is being reduced unless the instance is being
1984
* advertised without time limit.
1985
*/
1986
if (adv->timeout)
1987
adv->remaining_time = adv->remaining_time - timeout;
1988
1989
/* Only use work for scheduling instances with legacy advertising */
1990
if (!ext_adv_capable(hdev)) {
1991
hdev->adv_instance_timeout = timeout;
1992
queue_delayed_work(hdev->req_workqueue,
1993
&hdev->adv_instance_expire,
1994
secs_to_jiffies(timeout));
1995
}
1996
1997
/* If we're just re-scheduling the same instance again then do not
1998
* execute any HCI commands. This happens when a single instance is
1999
* being advertised.
2000
*/
2001
if (!force && hdev->cur_adv_instance == instance &&
2002
hci_dev_test_flag(hdev, HCI_LE_ADV))
2003
return 0;
2004
2005
hdev->cur_adv_instance = instance;
2006
2007
return hci_start_adv_sync(hdev, instance);
2008
}
2009
2010
static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
2011
{
2012
int err;
2013
2014
if (!ext_adv_capable(hdev))
2015
return 0;
2016
2017
/* Disable instance 0x00 to disable all instances */
2018
err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
2019
if (err)
2020
return err;
2021
2022
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
2023
0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2024
}
2025
2026
static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
2027
{
2028
struct adv_info *adv, *n;
2029
2030
if (ext_adv_capable(hdev))
2031
/* Remove all existing sets */
2032
return hci_clear_adv_sets_sync(hdev, sk);
2033
2034
/* This is safe as long as there is no command send while the lock is
2035
* held.
2036
*/
2037
hci_dev_lock(hdev);
2038
2039
/* Cleanup non-ext instances */
2040
list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
2041
u8 instance = adv->instance;
2042
int err;
2043
2044
if (!(force || adv->timeout))
2045
continue;
2046
2047
err = hci_remove_adv_instance(hdev, instance);
2048
if (!err)
2049
mgmt_advertising_removed(sk, hdev, instance);
2050
}
2051
2052
hci_dev_unlock(hdev);
2053
2054
return 0;
2055
}
2056
2057
static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
2058
struct sock *sk)
2059
{
2060
int err;
2061
2062
/* If we use extended advertising, instance has to be removed first. */
2063
if (ext_adv_capable(hdev))
2064
return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
2065
2066
/* This is safe as long as there is no command send while the lock is
2067
* held.
2068
*/
2069
hci_dev_lock(hdev);
2070
2071
err = hci_remove_adv_instance(hdev, instance);
2072
if (!err)
2073
mgmt_advertising_removed(sk, hdev, instance);
2074
2075
hci_dev_unlock(hdev);
2076
2077
return err;
2078
}
2079
2080
/* For a single instance:
2081
* - force == true: The instance will be removed even when its remaining
2082
* lifetime is not zero.
2083
* - force == false: the instance will be deactivated but kept stored unless
2084
* the remaining lifetime is zero.
2085
*
2086
* For instance == 0x00:
2087
* - force == true: All instances will be removed regardless of their timeout
2088
* setting.
2089
* - force == false: Only instances that have a timeout will be removed.
2090
*/
2091
int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
2092
u8 instance, bool force)
2093
{
2094
struct adv_info *next = NULL;
2095
int err;
2096
2097
/* Cancel any timeout concerning the removed instance(s). */
2098
if (!instance || hdev->cur_adv_instance == instance)
2099
cancel_adv_timeout(hdev);
2100
2101
/* Get the next instance to advertise BEFORE we remove
2102
* the current one. This can be the same instance again
2103
* if there is only one instance.
2104
*/
2105
if (hdev->cur_adv_instance == instance)
2106
next = hci_get_next_instance(hdev, instance);
2107
2108
if (!instance) {
2109
err = hci_clear_adv_sync(hdev, sk, force);
2110
if (err)
2111
return err;
2112
} else {
2113
struct adv_info *adv = hci_find_adv_instance(hdev, instance);
2114
2115
if (force || (adv && adv->timeout && !adv->remaining_time)) {
2116
/* Don't advertise a removed instance. */
2117
if (next && next->instance == instance)
2118
next = NULL;
2119
2120
err = hci_remove_adv_sync(hdev, instance, sk);
2121
if (err)
2122
return err;
2123
}
2124
}
2125
2126
if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
2127
return 0;
2128
2129
if (next && !ext_adv_capable(hdev))
2130
hci_schedule_adv_instance_sync(hdev, next->instance, false);
2131
2132
return 0;
2133
}
2134
2135
int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
2136
{
2137
struct hci_cp_read_rssi cp;
2138
2139
cp.handle = handle;
2140
return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
2141
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2142
}
2143
2144
int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
2145
{
2146
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
2147
sizeof(*cp), cp, HCI_CMD_TIMEOUT);
2148
}
2149
2150
int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
2151
{
2152
struct hci_cp_read_tx_power cp;
2153
2154
cp.handle = handle;
2155
cp.type = type;
2156
return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
2157
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2158
}
2159
2160
int hci_disable_advertising_sync(struct hci_dev *hdev)
2161
{
2162
u8 enable = 0x00;
2163
2164
/* If controller is not advertising we are done. */
2165
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
2166
return 0;
2167
2168
if (ext_adv_capable(hdev))
2169
return hci_disable_ext_adv_instance_sync(hdev, 0x00);
2170
2171
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
2172
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
2173
}
2174
2175
static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
2176
u8 filter_dup)
2177
{
2178
struct hci_cp_le_set_ext_scan_enable cp;
2179
2180
memset(&cp, 0, sizeof(cp));
2181
cp.enable = val;
2182
2183
if (hci_dev_test_flag(hdev, HCI_MESH))
2184
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2185
else
2186
cp.filter_dup = filter_dup;
2187
2188
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2189
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2190
}
2191
2192
static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
2193
u8 filter_dup)
2194
{
2195
struct hci_cp_le_set_scan_enable cp;
2196
2197
if (use_ext_scan(hdev))
2198
return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2199
2200
memset(&cp, 0, sizeof(cp));
2201
cp.enable = val;
2202
2203
if (val && hci_dev_test_flag(hdev, HCI_MESH))
2204
cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2205
else
2206
cp.filter_dup = filter_dup;
2207
2208
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2209
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2210
}
2211
2212
static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2213
{
2214
if (!ll_privacy_capable(hdev))
2215
return 0;
2216
2217
/* If controller is not/already resolving we are done. */
2218
if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2219
return 0;
2220
2221
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2222
sizeof(val), &val, HCI_CMD_TIMEOUT);
2223
}
2224
2225
static int hci_scan_disable_sync(struct hci_dev *hdev)
2226
{
2227
int err;
2228
2229
/* If controller is not scanning we are done. */
2230
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2231
return 0;
2232
2233
if (hdev->scanning_paused) {
2234
bt_dev_dbg(hdev, "Scanning is paused for suspend");
2235
return 0;
2236
}
2237
2238
err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2239
if (err) {
2240
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2241
return err;
2242
}
2243
2244
return err;
2245
}
2246
2247
static bool scan_use_rpa(struct hci_dev *hdev)
2248
{
2249
return hci_dev_test_flag(hdev, HCI_PRIVACY);
2250
}
2251
2252
static void hci_start_interleave_scan(struct hci_dev *hdev)
2253
{
2254
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2255
queue_delayed_work(hdev->req_workqueue,
2256
&hdev->interleave_scan, 0);
2257
}
2258
2259
static void cancel_interleave_scan(struct hci_dev *hdev)
2260
{
2261
bt_dev_dbg(hdev, "cancelling interleave scan");
2262
2263
cancel_delayed_work_sync(&hdev->interleave_scan);
2264
2265
hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2266
}
2267
2268
/* Return true if interleave_scan wasn't started until exiting this function,
2269
* otherwise, return false
2270
*/
2271
static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2272
{
2273
/* Do interleaved scan only if all of the following are true:
2274
* - There is at least one ADV monitor
2275
* - At least one pending LE connection or one device to be scanned for
2276
* - Monitor offloading is not supported
2277
* If so, we should alternate between allowlist scan and one without
2278
* any filters to save power.
2279
*/
2280
bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2281
!(list_empty(&hdev->pend_le_conns) &&
2282
list_empty(&hdev->pend_le_reports)) &&
2283
hci_get_adv_monitor_offload_ext(hdev) ==
2284
HCI_ADV_MONITOR_EXT_NONE;
2285
bool is_interleaving = is_interleave_scanning(hdev);
2286
2287
if (use_interleaving && !is_interleaving) {
2288
hci_start_interleave_scan(hdev);
2289
bt_dev_dbg(hdev, "starting interleave scan");
2290
return true;
2291
}
2292
2293
if (!use_interleaving && is_interleaving)
2294
cancel_interleave_scan(hdev);
2295
2296
return false;
2297
}
2298
2299
/* Removes connection to resolve list if needed.*/
2300
static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2301
bdaddr_t *bdaddr, u8 bdaddr_type)
2302
{
2303
struct hci_cp_le_del_from_resolv_list cp;
2304
struct bdaddr_list_with_irk *entry;
2305
2306
if (!ll_privacy_capable(hdev))
2307
return 0;
2308
2309
/* Check if the IRK has been programmed */
2310
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2311
bdaddr_type);
2312
if (!entry)
2313
return 0;
2314
2315
cp.bdaddr_type = bdaddr_type;
2316
bacpy(&cp.bdaddr, bdaddr);
2317
2318
return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2319
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2320
}
2321
2322
static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2323
bdaddr_t *bdaddr, u8 bdaddr_type)
2324
{
2325
struct hci_cp_le_del_from_accept_list cp;
2326
int err;
2327
2328
/* Check if device is on accept list before removing it */
2329
if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2330
return 0;
2331
2332
cp.bdaddr_type = bdaddr_type;
2333
bacpy(&cp.bdaddr, bdaddr);
2334
2335
/* Ignore errors when removing from resolving list as that is likely
2336
* that the device was never added.
2337
*/
2338
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2339
2340
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2341
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2342
if (err) {
2343
bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2344
return err;
2345
}
2346
2347
bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2348
cp.bdaddr_type);
2349
2350
return 0;
2351
}
2352
2353
struct conn_params {
2354
bdaddr_t addr;
2355
u8 addr_type;
2356
hci_conn_flags_t flags;
2357
u8 privacy_mode;
2358
};
2359
2360
/* Adds connection to resolve list if needed.
2361
* Setting params to NULL programs local hdev->irk
2362
*/
2363
static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2364
struct conn_params *params)
2365
{
2366
struct hci_cp_le_add_to_resolv_list cp;
2367
struct smp_irk *irk;
2368
struct bdaddr_list_with_irk *entry;
2369
struct hci_conn_params *p;
2370
2371
if (!ll_privacy_capable(hdev))
2372
return 0;
2373
2374
/* Attempt to program local identity address, type and irk if params is
2375
* NULL.
2376
*/
2377
if (!params) {
2378
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2379
return 0;
2380
2381
hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2382
memcpy(cp.peer_irk, hdev->irk, 16);
2383
goto done;
2384
} else if (!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION))
2385
return 0;
2386
2387
irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2388
if (!irk)
2389
return 0;
2390
2391
/* Check if the IK has _not_ been programmed yet. */
2392
entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2393
&params->addr,
2394
params->addr_type);
2395
if (entry)
2396
return 0;
2397
2398
cp.bdaddr_type = params->addr_type;
2399
bacpy(&cp.bdaddr, &params->addr);
2400
memcpy(cp.peer_irk, irk->val, 16);
2401
2402
/* Default privacy mode is always Network */
2403
params->privacy_mode = HCI_NETWORK_PRIVACY;
2404
2405
rcu_read_lock();
2406
p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2407
&params->addr, params->addr_type);
2408
if (!p)
2409
p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2410
&params->addr, params->addr_type);
2411
if (p)
2412
WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2413
rcu_read_unlock();
2414
2415
done:
2416
if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2417
memcpy(cp.local_irk, hdev->irk, 16);
2418
else
2419
memset(cp.local_irk, 0, 16);
2420
2421
return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2422
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2423
}
2424
2425
/* Set Device Privacy Mode. */
2426
static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2427
struct conn_params *params)
2428
{
2429
struct hci_cp_le_set_privacy_mode cp;
2430
struct smp_irk *irk;
2431
2432
if (!ll_privacy_capable(hdev) ||
2433
!(params->flags & HCI_CONN_FLAG_ADDRESS_RESOLUTION))
2434
return 0;
2435
2436
/* If device privacy mode has already been set there is nothing to do */
2437
if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2438
return 0;
2439
2440
/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2441
* indicates that LL Privacy has been enabled and
2442
* HCI_OP_LE_SET_PRIVACY_MODE is supported.
2443
*/
2444
if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2445
return 0;
2446
2447
irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2448
if (!irk)
2449
return 0;
2450
2451
memset(&cp, 0, sizeof(cp));
2452
cp.bdaddr_type = irk->addr_type;
2453
bacpy(&cp.bdaddr, &irk->bdaddr);
2454
cp.mode = HCI_DEVICE_PRIVACY;
2455
2456
/* Note: params->privacy_mode is not updated since it is a copy */
2457
2458
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2459
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2460
}
2461
2462
/* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2463
* this attempts to program the device in the resolving list as well and
2464
* properly set the privacy mode.
2465
*/
2466
static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2467
struct conn_params *params,
2468
u8 *num_entries)
2469
{
2470
struct hci_cp_le_add_to_accept_list cp;
2471
int err;
2472
2473
/* During suspend, only wakeable devices can be in acceptlist */
2474
if (hdev->suspended &&
2475
!(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2476
hci_le_del_accept_list_sync(hdev, &params->addr,
2477
params->addr_type);
2478
return 0;
2479
}
2480
2481
/* Select filter policy to accept all advertising */
2482
if (*num_entries >= hdev->le_accept_list_size)
2483
return -ENOSPC;
2484
2485
/* Attempt to program the device in the resolving list first to avoid
2486
* having to rollback in case it fails since the resolving list is
2487
* dynamic it can probably be smaller than the accept list.
2488
*/
2489
err = hci_le_add_resolve_list_sync(hdev, params);
2490
if (err) {
2491
bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2492
return err;
2493
}
2494
2495
/* Set Privacy Mode */
2496
err = hci_le_set_privacy_mode_sync(hdev, params);
2497
if (err) {
2498
bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2499
return err;
2500
}
2501
2502
/* Check if already in accept list */
2503
if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2504
params->addr_type))
2505
return 0;
2506
2507
*num_entries += 1;
2508
cp.bdaddr_type = params->addr_type;
2509
bacpy(&cp.bdaddr, &params->addr);
2510
2511
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2512
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2513
if (err) {
2514
bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2515
/* Rollback the device from the resolving list */
2516
hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2517
return err;
2518
}
2519
2520
bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2521
cp.bdaddr_type);
2522
2523
return 0;
2524
}
2525
2526
/* This function disables/pause all advertising instances */
2527
static int hci_pause_advertising_sync(struct hci_dev *hdev)
2528
{
2529
int err;
2530
int old_state;
2531
2532
/* If controller is not advertising we are done. */
2533
if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
2534
return 0;
2535
2536
/* If already been paused there is nothing to do. */
2537
if (hdev->advertising_paused)
2538
return 0;
2539
2540
bt_dev_dbg(hdev, "Pausing directed advertising");
2541
2542
/* Stop directed advertising */
2543
old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2544
if (old_state) {
2545
/* When discoverable timeout triggers, then just make sure
2546
* the limited discoverable flag is cleared. Even in the case
2547
* of a timeout triggered from general discoverable, it is
2548
* safe to unconditionally clear the flag.
2549
*/
2550
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2551
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2552
hdev->discov_timeout = 0;
2553
}
2554
2555
bt_dev_dbg(hdev, "Pausing advertising instances");
2556
2557
/* Call to disable any advertisements active on the controller.
2558
* This will succeed even if no advertisements are configured.
2559
*/
2560
err = hci_disable_advertising_sync(hdev);
2561
if (err)
2562
return err;
2563
2564
/* If we are using software rotation, pause the loop */
2565
if (!ext_adv_capable(hdev))
2566
cancel_adv_timeout(hdev);
2567
2568
hdev->advertising_paused = true;
2569
hdev->advertising_old_state = old_state;
2570
2571
return 0;
2572
}
2573
2574
/* This function enables all user advertising instances */
2575
static int hci_resume_advertising_sync(struct hci_dev *hdev)
2576
{
2577
struct adv_info *adv, *tmp;
2578
int err;
2579
2580
/* If advertising has not been paused there is nothing to do. */
2581
if (!hdev->advertising_paused)
2582
return 0;
2583
2584
/* Resume directed advertising */
2585
hdev->advertising_paused = false;
2586
if (hdev->advertising_old_state) {
2587
hci_dev_set_flag(hdev, HCI_ADVERTISING);
2588
hdev->advertising_old_state = 0;
2589
}
2590
2591
bt_dev_dbg(hdev, "Resuming advertising instances");
2592
2593
if (ext_adv_capable(hdev)) {
2594
/* Call for each tracked instance to be re-enabled */
2595
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2596
err = hci_enable_ext_advertising_sync(hdev,
2597
adv->instance);
2598
if (!err)
2599
continue;
2600
2601
/* If the instance cannot be resumed remove it */
2602
hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2603
NULL);
2604
}
2605
2606
/* If current advertising instance is set to instance 0x00
2607
* then we need to re-enable it.
2608
*/
2609
if (hci_dev_test_and_clear_flag(hdev, HCI_LE_ADV_0))
2610
err = hci_enable_ext_advertising_sync(hdev, 0x00);
2611
} else {
2612
/* Schedule for most recent instance to be restarted and begin
2613
* the software rotation loop
2614
*/
2615
err = hci_schedule_adv_instance_sync(hdev,
2616
hdev->cur_adv_instance,
2617
true);
2618
}
2619
2620
hdev->advertising_paused = false;
2621
2622
return err;
2623
}
2624
2625
static int hci_pause_addr_resolution(struct hci_dev *hdev)
2626
{
2627
int err;
2628
2629
if (!ll_privacy_capable(hdev))
2630
return 0;
2631
2632
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2633
return 0;
2634
2635
/* Cannot disable addr resolution if scanning is enabled or
2636
* when initiating an LE connection.
2637
*/
2638
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2639
hci_lookup_le_connect(hdev)) {
2640
bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2641
return -EPERM;
2642
}
2643
2644
/* Cannot disable addr resolution if advertising is enabled. */
2645
err = hci_pause_advertising_sync(hdev);
2646
if (err) {
2647
bt_dev_err(hdev, "Pause advertising failed: %d", err);
2648
return err;
2649
}
2650
2651
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2652
if (err)
2653
bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2654
err);
2655
2656
/* Return if address resolution is disabled and RPA is not used. */
2657
if (!err && scan_use_rpa(hdev))
2658
return 0;
2659
2660
hci_resume_advertising_sync(hdev);
2661
return err;
2662
}
2663
2664
struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2665
bool extended, struct sock *sk)
2666
{
2667
u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2668
HCI_OP_READ_LOCAL_OOB_DATA;
2669
2670
return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2671
}
2672
2673
static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2674
{
2675
struct hci_conn_params *params;
2676
struct conn_params *p;
2677
size_t i;
2678
2679
rcu_read_lock();
2680
2681
i = 0;
2682
list_for_each_entry_rcu(params, list, action)
2683
++i;
2684
*n = i;
2685
2686
rcu_read_unlock();
2687
2688
p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2689
if (!p)
2690
return NULL;
2691
2692
rcu_read_lock();
2693
2694
i = 0;
2695
list_for_each_entry_rcu(params, list, action) {
2696
/* Racing adds are handled in next scan update */
2697
if (i >= *n)
2698
break;
2699
2700
/* No hdev->lock, but: addr, addr_type are immutable.
2701
* privacy_mode is only written by us or in
2702
* hci_cc_le_set_privacy_mode that we wait for.
2703
* We should be idempotent so MGMT updating flags
2704
* while we are processing is OK.
2705
*/
2706
bacpy(&p[i].addr, &params->addr);
2707
p[i].addr_type = params->addr_type;
2708
p[i].flags = READ_ONCE(params->flags);
2709
p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2710
++i;
2711
}
2712
2713
rcu_read_unlock();
2714
2715
*n = i;
2716
return p;
2717
}
2718
2719
/* Clear LE Accept List */
2720
static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
2721
{
2722
if (!(hdev->commands[26] & 0x80))
2723
return 0;
2724
2725
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
2726
HCI_CMD_TIMEOUT);
2727
}
2728
2729
/* Device must not be scanning when updating the accept list.
2730
*
2731
* Update is done using the following sequence:
2732
*
2733
* ll_privacy_capable((Disable Advertising) -> Disable Resolving List) ->
2734
* Remove Devices From Accept List ->
2735
* (has IRK && ll_privacy_capable(Remove Devices From Resolving List))->
2736
* Add Devices to Accept List ->
2737
* (has IRK && ll_privacy_capable(Remove Devices From Resolving List)) ->
2738
* ll_privacy_capable(Enable Resolving List -> (Enable Advertising)) ->
2739
* Enable Scanning
2740
*
2741
* In case of failure advertising shall be restored to its original state and
2742
* return would disable accept list since either accept or resolving list could
2743
* not be programmed.
2744
*
2745
*/
2746
static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2747
{
2748
struct conn_params *params;
2749
struct bdaddr_list *b, *t;
2750
u8 num_entries = 0;
2751
bool pend_conn, pend_report;
2752
u8 filter_policy;
2753
size_t i, n;
2754
int err;
2755
2756
/* Pause advertising if resolving list can be used as controllers
2757
* cannot accept resolving list modifications while advertising.
2758
*/
2759
if (ll_privacy_capable(hdev)) {
2760
err = hci_pause_advertising_sync(hdev);
2761
if (err) {
2762
bt_dev_err(hdev, "pause advertising failed: %d", err);
2763
return 0x00;
2764
}
2765
}
2766
2767
/* Disable address resolution while reprogramming accept list since
2768
* devices that do have an IRK will be programmed in the resolving list
2769
* when LL Privacy is enabled.
2770
*/
2771
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2772
if (err) {
2773
bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2774
goto done;
2775
}
2776
2777
/* Force address filtering if PA Sync is in progress */
2778
if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2779
struct hci_conn *conn;
2780
2781
conn = hci_conn_hash_lookup_create_pa_sync(hdev);
2782
if (conn) {
2783
struct conn_params pa;
2784
2785
memset(&pa, 0, sizeof(pa));
2786
2787
bacpy(&pa.addr, &conn->dst);
2788
pa.addr_type = conn->dst_type;
2789
2790
/* Clear first since there could be addresses left
2791
* behind.
2792
*/
2793
hci_le_clear_accept_list_sync(hdev);
2794
2795
num_entries = 1;
2796
err = hci_le_add_accept_list_sync(hdev, &pa,
2797
&num_entries);
2798
goto done;
2799
}
2800
}
2801
2802
/* Go through the current accept list programmed into the
2803
* controller one by one and check if that address is connected or is
2804
* still in the list of pending connections or list of devices to
2805
* report. If not present in either list, then remove it from
2806
* the controller.
2807
*/
2808
list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2809
if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2810
continue;
2811
2812
/* Pointers not dereferenced, no locks needed */
2813
pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2814
&b->bdaddr,
2815
b->bdaddr_type);
2816
pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2817
&b->bdaddr,
2818
b->bdaddr_type);
2819
2820
/* If the device is not likely to connect or report,
2821
* remove it from the acceptlist.
2822
*/
2823
if (!pend_conn && !pend_report) {
2824
hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2825
b->bdaddr_type);
2826
continue;
2827
}
2828
2829
num_entries++;
2830
}
2831
2832
/* Since all no longer valid accept list entries have been
2833
* removed, walk through the list of pending connections
2834
* and ensure that any new device gets programmed into
2835
* the controller.
2836
*
2837
* If the list of the devices is larger than the list of
2838
* available accept list entries in the controller, then
2839
* just abort and return filer policy value to not use the
2840
* accept list.
2841
*
2842
* The list and params may be mutated while we wait for events,
2843
* so make a copy and iterate it.
2844
*/
2845
2846
params = conn_params_copy(&hdev->pend_le_conns, &n);
2847
if (!params) {
2848
err = -ENOMEM;
2849
goto done;
2850
}
2851
2852
for (i = 0; i < n; ++i) {
2853
err = hci_le_add_accept_list_sync(hdev, &params[i],
2854
&num_entries);
2855
if (err) {
2856
kvfree(params);
2857
goto done;
2858
}
2859
}
2860
2861
kvfree(params);
2862
2863
/* After adding all new pending connections, walk through
2864
* the list of pending reports and also add these to the
2865
* accept list if there is still space. Abort if space runs out.
2866
*/
2867
2868
params = conn_params_copy(&hdev->pend_le_reports, &n);
2869
if (!params) {
2870
err = -ENOMEM;
2871
goto done;
2872
}
2873
2874
for (i = 0; i < n; ++i) {
2875
err = hci_le_add_accept_list_sync(hdev, &params[i],
2876
&num_entries);
2877
if (err) {
2878
kvfree(params);
2879
goto done;
2880
}
2881
}
2882
2883
kvfree(params);
2884
2885
/* Use the allowlist unless the following conditions are all true:
2886
* - We are not currently suspending
2887
* - There are 1 or more ADV monitors registered and it's not offloaded
2888
* - Interleaved scanning is not currently using the allowlist
2889
*/
2890
if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2891
hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2892
hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2893
err = -EINVAL;
2894
2895
done:
2896
filter_policy = err ? 0x00 : 0x01;
2897
2898
/* Enable address resolution when LL Privacy is enabled. */
2899
err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2900
if (err)
2901
bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2902
2903
/* Resume advertising if it was paused */
2904
if (ll_privacy_capable(hdev))
2905
hci_resume_advertising_sync(hdev);
2906
2907
/* Select filter policy to use accept list */
2908
return filter_policy;
2909
}
2910
2911
static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp,
2912
u8 type, u16 interval, u16 window)
2913
{
2914
cp->type = type;
2915
cp->interval = cpu_to_le16(interval);
2916
cp->window = cpu_to_le16(window);
2917
}
2918
2919
static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2920
u16 interval, u16 window,
2921
u8 own_addr_type, u8 filter_policy)
2922
{
2923
struct hci_cp_le_set_ext_scan_params *cp;
2924
struct hci_cp_le_scan_phy_params *phy;
2925
u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2926
u8 num_phy = 0x00;
2927
2928
cp = (void *)data;
2929
phy = (void *)cp->data;
2930
2931
memset(data, 0, sizeof(data));
2932
2933
cp->own_addr_type = own_addr_type;
2934
cp->filter_policy = filter_policy;
2935
2936
/* Check if PA Sync is in progress then select the PHY based on the
2937
* hci_conn.iso_qos.
2938
*/
2939
if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2940
struct hci_cp_le_add_to_accept_list *sent;
2941
2942
sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST);
2943
if (sent) {
2944
struct hci_conn *conn;
2945
2946
conn = hci_conn_hash_lookup_ba(hdev, PA_LINK,
2947
&sent->bdaddr);
2948
if (conn) {
2949
struct bt_iso_qos *qos = &conn->iso_qos;
2950
2951
if (qos->bcast.in.phy & BT_ISO_PHY_1M ||
2952
qos->bcast.in.phy & BT_ISO_PHY_2M) {
2953
cp->scanning_phys |= LE_SCAN_PHY_1M;
2954
hci_le_scan_phy_params(phy, type,
2955
interval,
2956
window);
2957
num_phy++;
2958
phy++;
2959
}
2960
2961
if (qos->bcast.in.phy & BT_ISO_PHY_CODED) {
2962
cp->scanning_phys |= LE_SCAN_PHY_CODED;
2963
hci_le_scan_phy_params(phy, type,
2964
interval * 3,
2965
window * 3);
2966
num_phy++;
2967
phy++;
2968
}
2969
2970
if (num_phy)
2971
goto done;
2972
}
2973
}
2974
}
2975
2976
if (scan_1m(hdev) || scan_2m(hdev)) {
2977
cp->scanning_phys |= LE_SCAN_PHY_1M;
2978
hci_le_scan_phy_params(phy, type, interval, window);
2979
num_phy++;
2980
phy++;
2981
}
2982
2983
if (scan_coded(hdev)) {
2984
cp->scanning_phys |= LE_SCAN_PHY_CODED;
2985
hci_le_scan_phy_params(phy, type, interval * 3, window * 3);
2986
num_phy++;
2987
phy++;
2988
}
2989
2990
done:
2991
if (!num_phy)
2992
return -EINVAL;
2993
2994
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2995
sizeof(*cp) + sizeof(*phy) * num_phy,
2996
data, HCI_CMD_TIMEOUT);
2997
}
2998
2999
static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
3000
u16 interval, u16 window,
3001
u8 own_addr_type, u8 filter_policy)
3002
{
3003
struct hci_cp_le_set_scan_param cp;
3004
3005
if (use_ext_scan(hdev))
3006
return hci_le_set_ext_scan_param_sync(hdev, type, interval,
3007
window, own_addr_type,
3008
filter_policy);
3009
3010
memset(&cp, 0, sizeof(cp));
3011
cp.type = type;
3012
cp.interval = cpu_to_le16(interval);
3013
cp.window = cpu_to_le16(window);
3014
cp.own_address_type = own_addr_type;
3015
cp.filter_policy = filter_policy;
3016
3017
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
3018
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3019
}
3020
3021
static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
3022
u16 window, u8 own_addr_type, u8 filter_policy,
3023
u8 filter_dup)
3024
{
3025
int err;
3026
3027
if (hdev->scanning_paused) {
3028
bt_dev_dbg(hdev, "Scanning is paused for suspend");
3029
return 0;
3030
}
3031
3032
err = hci_le_set_scan_param_sync(hdev, type, interval, window,
3033
own_addr_type, filter_policy);
3034
if (err)
3035
return err;
3036
3037
return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
3038
}
3039
3040
static int hci_passive_scan_sync(struct hci_dev *hdev)
3041
{
3042
u8 own_addr_type;
3043
u8 filter_policy;
3044
u16 window, interval;
3045
u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
3046
int err;
3047
3048
if (hdev->scanning_paused) {
3049
bt_dev_dbg(hdev, "Scanning is paused for suspend");
3050
return 0;
3051
}
3052
3053
err = hci_scan_disable_sync(hdev);
3054
if (err) {
3055
bt_dev_err(hdev, "disable scanning failed: %d", err);
3056
return err;
3057
}
3058
3059
/* Set require_privacy to false since no SCAN_REQ are send
3060
* during passive scanning. Not using an non-resolvable address
3061
* here is important so that peer devices using direct
3062
* advertising with our address will be correctly reported
3063
* by the controller.
3064
*/
3065
if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
3066
&own_addr_type))
3067
return 0;
3068
3069
if (hdev->enable_advmon_interleave_scan &&
3070
hci_update_interleaved_scan_sync(hdev))
3071
return 0;
3072
3073
bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
3074
3075
/* Adding or removing entries from the accept list must
3076
* happen before enabling scanning. The controller does
3077
* not allow accept list modification while scanning.
3078
*/
3079
filter_policy = hci_update_accept_list_sync(hdev);
3080
3081
/* If suspended and filter_policy set to 0x00 (no acceptlist) then
3082
* passive scanning cannot be started since that would require the host
3083
* to be woken up to process the reports.
3084
*/
3085
if (hdev->suspended && !filter_policy) {
3086
/* Check if accept list is empty then there is no need to scan
3087
* while suspended.
3088
*/
3089
if (list_empty(&hdev->le_accept_list))
3090
return 0;
3091
3092
/* If there are devices is the accept_list that means some
3093
* devices could not be programmed which in non-suspended case
3094
* means filter_policy needs to be set to 0x00 so the host needs
3095
* to filter, but since this is treating suspended case we
3096
* can ignore device needing host to filter to allow devices in
3097
* the acceptlist to be able to wakeup the system.
3098
*/
3099
filter_policy = 0x01;
3100
}
3101
3102
/* When the controller is using random resolvable addresses and
3103
* with that having LE privacy enabled, then controllers with
3104
* Extended Scanner Filter Policies support can now enable support
3105
* for handling directed advertising.
3106
*
3107
* So instead of using filter polices 0x00 (no acceptlist)
3108
* and 0x01 (acceptlist enabled) use the new filter policies
3109
* 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
3110
*/
3111
if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
3112
(hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
3113
filter_policy |= 0x02;
3114
3115
if (hdev->suspended) {
3116
window = hdev->le_scan_window_suspend;
3117
interval = hdev->le_scan_int_suspend;
3118
} else if (hci_is_le_conn_scanning(hdev)) {
3119
window = hdev->le_scan_window_connect;
3120
interval = hdev->le_scan_int_connect;
3121
} else if (hci_is_adv_monitoring(hdev)) {
3122
window = hdev->le_scan_window_adv_monitor;
3123
interval = hdev->le_scan_int_adv_monitor;
3124
3125
/* Disable duplicates filter when scanning for advertisement
3126
* monitor for the following reasons.
3127
*
3128
* For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
3129
* controllers ignore RSSI_Sampling_Period when the duplicates
3130
* filter is enabled.
3131
*
3132
* For SW pattern filtering, when we're not doing interleaved
3133
* scanning, it is necessary to disable duplicates filter,
3134
* otherwise hosts can only receive one advertisement and it's
3135
* impossible to know if a peer is still in range.
3136
*/
3137
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
3138
} else {
3139
window = hdev->le_scan_window;
3140
interval = hdev->le_scan_interval;
3141
}
3142
3143
/* Disable all filtering for Mesh */
3144
if (hci_dev_test_flag(hdev, HCI_MESH)) {
3145
filter_policy = 0;
3146
filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
3147
}
3148
3149
bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
3150
3151
return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
3152
own_addr_type, filter_policy, filter_dups);
3153
}
3154
3155
/* This function controls the passive scanning based on hdev->pend_le_conns
3156
* list. If there are pending LE connection we start the background scanning,
3157
* otherwise we stop it in the following sequence:
3158
*
3159
* If there are devices to scan:
3160
*
3161
* Disable Scanning -> Update Accept List ->
3162
* ll_privacy_capable((Disable Advertising) -> Disable Resolving List ->
3163
* Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
3164
* Enable Scanning
3165
*
3166
* Otherwise:
3167
*
3168
* Disable Scanning
3169
*/
3170
int hci_update_passive_scan_sync(struct hci_dev *hdev)
3171
{
3172
int err;
3173
3174
if (!test_bit(HCI_UP, &hdev->flags) ||
3175
test_bit(HCI_INIT, &hdev->flags) ||
3176
hci_dev_test_flag(hdev, HCI_SETUP) ||
3177
hci_dev_test_flag(hdev, HCI_CONFIG) ||
3178
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3179
hci_dev_test_flag(hdev, HCI_UNREGISTER))
3180
return 0;
3181
3182
/* No point in doing scanning if LE support hasn't been enabled */
3183
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3184
return 0;
3185
3186
/* If discovery is active don't interfere with it */
3187
if (hdev->discovery.state != DISCOVERY_STOPPED)
3188
return 0;
3189
3190
/* Reset RSSI and UUID filters when starting background scanning
3191
* since these filters are meant for service discovery only.
3192
*
3193
* The Start Discovery and Start Service Discovery operations
3194
* ensure to set proper values for RSSI threshold and UUID
3195
* filter list. So it is safe to just reset them here.
3196
*/
3197
hci_discovery_filter_clear(hdev);
3198
3199
bt_dev_dbg(hdev, "ADV monitoring is %s",
3200
hci_is_adv_monitoring(hdev) ? "on" : "off");
3201
3202
if (!hci_dev_test_flag(hdev, HCI_MESH) &&
3203
list_empty(&hdev->pend_le_conns) &&
3204
list_empty(&hdev->pend_le_reports) &&
3205
!hci_is_adv_monitoring(hdev) &&
3206
!hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
3207
/* If there is no pending LE connections or devices
3208
* to be scanned for or no ADV monitors, we should stop the
3209
* background scanning.
3210
*/
3211
3212
bt_dev_dbg(hdev, "stopping background scanning");
3213
3214
err = hci_scan_disable_sync(hdev);
3215
if (err)
3216
bt_dev_err(hdev, "stop background scanning failed: %d",
3217
err);
3218
} else {
3219
/* If there is at least one pending LE connection, we should
3220
* keep the background scan running.
3221
*/
3222
3223
/* If controller is connecting, we should not start scanning
3224
* since some controllers are not able to scan and connect at
3225
* the same time.
3226
*/
3227
if (hci_lookup_le_connect(hdev))
3228
return 0;
3229
3230
bt_dev_dbg(hdev, "start background scanning");
3231
3232
err = hci_passive_scan_sync(hdev);
3233
if (err)
3234
bt_dev_err(hdev, "start background scanning failed: %d",
3235
err);
3236
}
3237
3238
return err;
3239
}
3240
3241
static int update_scan_sync(struct hci_dev *hdev, void *data)
3242
{
3243
return hci_update_scan_sync(hdev);
3244
}
3245
3246
int hci_update_scan(struct hci_dev *hdev)
3247
{
3248
return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
3249
}
3250
3251
static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
3252
{
3253
return hci_update_passive_scan_sync(hdev);
3254
}
3255
3256
int hci_update_passive_scan(struct hci_dev *hdev)
3257
{
3258
/* Only queue if it would have any effect */
3259
if (!test_bit(HCI_UP, &hdev->flags) ||
3260
test_bit(HCI_INIT, &hdev->flags) ||
3261
hci_dev_test_flag(hdev, HCI_SETUP) ||
3262
hci_dev_test_flag(hdev, HCI_CONFIG) ||
3263
hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3264
hci_dev_test_flag(hdev, HCI_UNREGISTER))
3265
return 0;
3266
3267
return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL,
3268
NULL);
3269
}
3270
3271
int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
3272
{
3273
int err;
3274
3275
if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
3276
return 0;
3277
3278
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3279
sizeof(val), &val, HCI_CMD_TIMEOUT);
3280
3281
if (!err) {
3282
if (val) {
3283
hdev->features[1][0] |= LMP_HOST_SC;
3284
hci_dev_set_flag(hdev, HCI_SC_ENABLED);
3285
} else {
3286
hdev->features[1][0] &= ~LMP_HOST_SC;
3287
hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
3288
}
3289
}
3290
3291
return err;
3292
}
3293
3294
int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
3295
{
3296
int err;
3297
3298
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3299
lmp_host_ssp_capable(hdev))
3300
return 0;
3301
3302
if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
3303
__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
3304
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3305
}
3306
3307
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3308
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3309
if (err)
3310
return err;
3311
3312
return hci_write_sc_support_sync(hdev, 0x01);
3313
}
3314
3315
int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
3316
{
3317
struct hci_cp_write_le_host_supported cp;
3318
3319
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3320
!lmp_bredr_capable(hdev))
3321
return 0;
3322
3323
/* Check first if we already have the right host state
3324
* (host features set)
3325
*/
3326
if (le == lmp_host_le_capable(hdev) &&
3327
simul == lmp_host_le_br_capable(hdev))
3328
return 0;
3329
3330
memset(&cp, 0, sizeof(cp));
3331
3332
cp.le = le;
3333
cp.simul = simul;
3334
3335
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3336
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3337
}
3338
3339
static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3340
{
3341
struct adv_info *adv, *tmp;
3342
int err;
3343
3344
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3345
return 0;
3346
3347
/* If RPA Resolution has not been enable yet it means the
3348
* resolving list is empty and we should attempt to program the
3349
* local IRK in order to support using own_addr_type
3350
* ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3351
*/
3352
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3353
hci_le_add_resolve_list_sync(hdev, NULL);
3354
hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3355
}
3356
3357
/* Make sure the controller has a good default for
3358
* advertising data. This also applies to the case
3359
* where BR/EDR was toggled during the AUTO_OFF phase.
3360
*/
3361
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
3362
list_empty(&hdev->adv_instances)) {
3363
if (ext_adv_capable(hdev)) {
3364
err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3365
if (!err)
3366
hci_update_scan_rsp_data_sync(hdev, 0x00);
3367
} else {
3368
err = hci_update_adv_data_sync(hdev, 0x00);
3369
if (!err)
3370
hci_update_scan_rsp_data_sync(hdev, 0x00);
3371
}
3372
3373
if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3374
hci_enable_advertising_sync(hdev);
3375
}
3376
3377
/* Call for each tracked instance to be scheduled */
3378
list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3379
hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3380
3381
return 0;
3382
}
3383
3384
static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3385
{
3386
u8 link_sec;
3387
3388
link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3389
if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3390
return 0;
3391
3392
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3393
sizeof(link_sec), &link_sec,
3394
HCI_CMD_TIMEOUT);
3395
}
3396
3397
int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3398
{
3399
struct hci_cp_write_page_scan_activity cp;
3400
u8 type;
3401
int err = 0;
3402
3403
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3404
return 0;
3405
3406
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3407
return 0;
3408
3409
memset(&cp, 0, sizeof(cp));
3410
3411
if (enable) {
3412
type = PAGE_SCAN_TYPE_INTERLACED;
3413
3414
/* 160 msec page scan interval */
3415
cp.interval = cpu_to_le16(0x0100);
3416
} else {
3417
type = hdev->def_page_scan_type;
3418
cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3419
}
3420
3421
cp.window = cpu_to_le16(hdev->def_page_scan_window);
3422
3423
if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3424
__cpu_to_le16(hdev->page_scan_window) != cp.window) {
3425
err = __hci_cmd_sync_status(hdev,
3426
HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3427
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3428
if (err)
3429
return err;
3430
}
3431
3432
if (hdev->page_scan_type != type)
3433
err = __hci_cmd_sync_status(hdev,
3434
HCI_OP_WRITE_PAGE_SCAN_TYPE,
3435
sizeof(type), &type,
3436
HCI_CMD_TIMEOUT);
3437
3438
return err;
3439
}
3440
3441
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3442
{
3443
struct bdaddr_list *b;
3444
3445
list_for_each_entry(b, &hdev->accept_list, list) {
3446
struct hci_conn *conn;
3447
3448
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3449
if (!conn)
3450
return true;
3451
3452
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3453
return true;
3454
}
3455
3456
return false;
3457
}
3458
3459
static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3460
{
3461
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3462
sizeof(val), &val,
3463
HCI_CMD_TIMEOUT);
3464
}
3465
3466
int hci_update_scan_sync(struct hci_dev *hdev)
3467
{
3468
u8 scan;
3469
3470
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3471
return 0;
3472
3473
if (!hdev_is_powered(hdev))
3474
return 0;
3475
3476
if (mgmt_powering_down(hdev))
3477
return 0;
3478
3479
if (hdev->scanning_paused)
3480
return 0;
3481
3482
if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3483
disconnected_accept_list_entries(hdev))
3484
scan = SCAN_PAGE;
3485
else
3486
scan = SCAN_DISABLED;
3487
3488
if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3489
scan |= SCAN_INQUIRY;
3490
3491
if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3492
test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3493
return 0;
3494
3495
return hci_write_scan_enable_sync(hdev, scan);
3496
}
3497
3498
int hci_update_name_sync(struct hci_dev *hdev, const u8 *name)
3499
{
3500
struct hci_cp_write_local_name cp;
3501
3502
memset(&cp, 0, sizeof(cp));
3503
3504
memcpy(cp.name, name, sizeof(cp.name));
3505
3506
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3507
sizeof(cp), &cp,
3508
HCI_CMD_TIMEOUT);
3509
}
3510
3511
/* This function perform powered update HCI command sequence after the HCI init
3512
* sequence which end up resetting all states, the sequence is as follows:
3513
*
3514
* HCI_SSP_ENABLED(Enable SSP)
3515
* HCI_LE_ENABLED(Enable LE)
3516
* HCI_LE_ENABLED(ll_privacy_capable(Add local IRK to Resolving List) ->
3517
* Update adv data)
3518
* Enable Authentication
3519
* lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3520
* Set Name -> Set EIR)
3521
* HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3522
*/
3523
int hci_powered_update_sync(struct hci_dev *hdev)
3524
{
3525
int err;
3526
3527
/* Register the available SMP channels (BR/EDR and LE) only when
3528
* successfully powering on the controller. This late
3529
* registration is required so that LE SMP can clearly decide if
3530
* the public address or static address is used.
3531
*/
3532
smp_register(hdev);
3533
3534
err = hci_write_ssp_mode_sync(hdev, 0x01);
3535
if (err)
3536
return err;
3537
3538
err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3539
if (err)
3540
return err;
3541
3542
err = hci_powered_update_adv_sync(hdev);
3543
if (err)
3544
return err;
3545
3546
err = hci_write_auth_enable_sync(hdev);
3547
if (err)
3548
return err;
3549
3550
if (lmp_bredr_capable(hdev)) {
3551
if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3552
hci_write_fast_connectable_sync(hdev, true);
3553
else
3554
hci_write_fast_connectable_sync(hdev, false);
3555
hci_update_scan_sync(hdev);
3556
hci_update_class_sync(hdev);
3557
hci_update_name_sync(hdev, hdev->dev_name);
3558
hci_update_eir_sync(hdev);
3559
}
3560
3561
/* If forcing static address is in use or there is no public
3562
* address use the static address as random address (but skip
3563
* the HCI command if the current random address is already the
3564
* static one.
3565
*
3566
* In case BR/EDR has been disabled on a dual-mode controller
3567
* and a static address has been configured, then use that
3568
* address instead of the public BR/EDR address.
3569
*/
3570
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3571
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3572
!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3573
if (bacmp(&hdev->static_addr, BDADDR_ANY))
3574
return hci_set_random_addr_sync(hdev,
3575
&hdev->static_addr);
3576
}
3577
3578
return 0;
3579
}
3580
3581
/**
3582
* hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3583
* (BD_ADDR) for a HCI device from
3584
* a firmware node property.
3585
* @hdev: The HCI device
3586
*
3587
* Search the firmware node for 'local-bd-address'.
3588
*
3589
* All-zero BD addresses are rejected, because those could be properties
3590
* that exist in the firmware tables, but were not updated by the firmware. For
3591
* example, the DTS could define 'local-bd-address', with zero BD addresses.
3592
*/
3593
static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3594
{
3595
struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3596
bdaddr_t ba;
3597
int ret;
3598
3599
ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3600
(u8 *)&ba, sizeof(ba));
3601
if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3602
return;
3603
3604
if (hci_test_quirk(hdev, HCI_QUIRK_BDADDR_PROPERTY_BROKEN))
3605
baswap(&hdev->public_addr, &ba);
3606
else
3607
bacpy(&hdev->public_addr, &ba);
3608
}
3609
3610
struct hci_init_stage {
3611
int (*func)(struct hci_dev *hdev);
3612
};
3613
3614
/* Run init stage NULL terminated function table */
3615
static int hci_init_stage_sync(struct hci_dev *hdev,
3616
const struct hci_init_stage *stage)
3617
{
3618
size_t i;
3619
3620
for (i = 0; stage[i].func; i++) {
3621
int err;
3622
3623
err = stage[i].func(hdev);
3624
if (err)
3625
return err;
3626
}
3627
3628
return 0;
3629
}
3630
3631
/* Read Local Version */
3632
static int hci_read_local_version_sync(struct hci_dev *hdev)
3633
{
3634
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3635
0, NULL, HCI_CMD_TIMEOUT);
3636
}
3637
3638
/* Read BD Address */
3639
static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3640
{
3641
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3642
0, NULL, HCI_CMD_TIMEOUT);
3643
}
3644
3645
#define HCI_INIT(_func) \
3646
{ \
3647
.func = _func, \
3648
}
3649
3650
static const struct hci_init_stage hci_init0[] = {
3651
/* HCI_OP_READ_LOCAL_VERSION */
3652
HCI_INIT(hci_read_local_version_sync),
3653
/* HCI_OP_READ_BD_ADDR */
3654
HCI_INIT(hci_read_bd_addr_sync),
3655
{}
3656
};
3657
3658
int hci_reset_sync(struct hci_dev *hdev)
3659
{
3660
int err;
3661
3662
set_bit(HCI_RESET, &hdev->flags);
3663
3664
err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3665
HCI_CMD_TIMEOUT);
3666
if (err)
3667
return err;
3668
3669
return 0;
3670
}
3671
3672
static int hci_init0_sync(struct hci_dev *hdev)
3673
{
3674
int err;
3675
3676
bt_dev_dbg(hdev, "");
3677
3678
/* Reset */
3679
if (!hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE)) {
3680
err = hci_reset_sync(hdev);
3681
if (err)
3682
return err;
3683
}
3684
3685
return hci_init_stage_sync(hdev, hci_init0);
3686
}
3687
3688
static int hci_unconf_init_sync(struct hci_dev *hdev)
3689
{
3690
int err;
3691
3692
if (hci_test_quirk(hdev, HCI_QUIRK_RAW_DEVICE))
3693
return 0;
3694
3695
err = hci_init0_sync(hdev);
3696
if (err < 0)
3697
return err;
3698
3699
if (hci_dev_test_flag(hdev, HCI_SETUP))
3700
hci_debugfs_create_basic(hdev);
3701
3702
return 0;
3703
}
3704
3705
/* Read Local Supported Features. */
3706
static int hci_read_local_features_sync(struct hci_dev *hdev)
3707
{
3708
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3709
0, NULL, HCI_CMD_TIMEOUT);
3710
}
3711
3712
/* BR Controller init stage 1 command sequence */
3713
static const struct hci_init_stage br_init1[] = {
3714
/* HCI_OP_READ_LOCAL_FEATURES */
3715
HCI_INIT(hci_read_local_features_sync),
3716
/* HCI_OP_READ_LOCAL_VERSION */
3717
HCI_INIT(hci_read_local_version_sync),
3718
/* HCI_OP_READ_BD_ADDR */
3719
HCI_INIT(hci_read_bd_addr_sync),
3720
{}
3721
};
3722
3723
/* Read Local Commands */
3724
static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3725
{
3726
/* All Bluetooth 1.2 and later controllers should support the
3727
* HCI command for reading the local supported commands.
3728
*
3729
* Unfortunately some controllers indicate Bluetooth 1.2 support,
3730
* but do not have support for this command. If that is the case,
3731
* the driver can quirk the behavior and skip reading the local
3732
* supported commands.
3733
*/
3734
if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3735
!hci_test_quirk(hdev, HCI_QUIRK_BROKEN_LOCAL_COMMANDS))
3736
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3737
0, NULL, HCI_CMD_TIMEOUT);
3738
3739
return 0;
3740
}
3741
3742
static int hci_init1_sync(struct hci_dev *hdev)
3743
{
3744
int err;
3745
3746
bt_dev_dbg(hdev, "");
3747
3748
/* Reset */
3749
if (!hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE)) {
3750
err = hci_reset_sync(hdev);
3751
if (err)
3752
return err;
3753
}
3754
3755
return hci_init_stage_sync(hdev, br_init1);
3756
}
3757
3758
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
3759
static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3760
{
3761
return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3762
0, NULL, HCI_CMD_TIMEOUT);
3763
}
3764
3765
/* Read Class of Device */
3766
static int hci_read_dev_class_sync(struct hci_dev *hdev)
3767
{
3768
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3769
0, NULL, HCI_CMD_TIMEOUT);
3770
}
3771
3772
/* Read Local Name */
3773
static int hci_read_local_name_sync(struct hci_dev *hdev)
3774
{
3775
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3776
0, NULL, HCI_CMD_TIMEOUT);
3777
}
3778
3779
/* Read Voice Setting */
3780
static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3781
{
3782
if (!read_voice_setting_capable(hdev))
3783
return 0;
3784
3785
return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3786
0, NULL, HCI_CMD_TIMEOUT);
3787
}
3788
3789
/* Read Number of Supported IAC */
3790
static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3791
{
3792
return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3793
0, NULL, HCI_CMD_TIMEOUT);
3794
}
3795
3796
/* Read Current IAC LAP */
3797
static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3798
{
3799
return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3800
0, NULL, HCI_CMD_TIMEOUT);
3801
}
3802
3803
static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3804
u8 cond_type, bdaddr_t *bdaddr,
3805
u8 auto_accept)
3806
{
3807
struct hci_cp_set_event_filter cp;
3808
3809
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3810
return 0;
3811
3812
if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL))
3813
return 0;
3814
3815
memset(&cp, 0, sizeof(cp));
3816
cp.flt_type = flt_type;
3817
3818
if (flt_type != HCI_FLT_CLEAR_ALL) {
3819
cp.cond_type = cond_type;
3820
bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3821
cp.addr_conn_flt.auto_accept = auto_accept;
3822
}
3823
3824
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3825
flt_type == HCI_FLT_CLEAR_ALL ?
3826
sizeof(cp.flt_type) : sizeof(cp), &cp,
3827
HCI_CMD_TIMEOUT);
3828
}
3829
3830
static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3831
{
3832
if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3833
return 0;
3834
3835
/* In theory the state machine should not reach here unless
3836
* a hci_set_event_filter_sync() call succeeds, but we do
3837
* the check both for parity and as a future reminder.
3838
*/
3839
if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL))
3840
return 0;
3841
3842
return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3843
BDADDR_ANY, 0x00);
3844
}
3845
3846
/* Connection accept timeout ~20 secs */
3847
static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3848
{
3849
__le16 param = cpu_to_le16(0x7d00);
3850
3851
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3852
sizeof(param), &param, HCI_CMD_TIMEOUT);
3853
}
3854
3855
/* Enable SCO flow control if supported */
3856
static int hci_write_sync_flowctl_sync(struct hci_dev *hdev)
3857
{
3858
struct hci_cp_write_sync_flowctl cp;
3859
int err;
3860
3861
/* Check if the controller supports SCO and HCI_OP_WRITE_SYNC_FLOWCTL */
3862
if (!lmp_sco_capable(hdev) || !(hdev->commands[10] & BIT(4)) ||
3863
!hci_test_quirk(hdev, HCI_QUIRK_SYNC_FLOWCTL_SUPPORTED))
3864
return 0;
3865
3866
memset(&cp, 0, sizeof(cp));
3867
cp.enable = 0x01;
3868
3869
err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SYNC_FLOWCTL,
3870
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3871
if (!err)
3872
hci_dev_set_flag(hdev, HCI_SCO_FLOWCTL);
3873
3874
return err;
3875
}
3876
3877
/* BR Controller init stage 2 command sequence */
3878
static const struct hci_init_stage br_init2[] = {
3879
/* HCI_OP_READ_BUFFER_SIZE */
3880
HCI_INIT(hci_read_buffer_size_sync),
3881
/* HCI_OP_READ_CLASS_OF_DEV */
3882
HCI_INIT(hci_read_dev_class_sync),
3883
/* HCI_OP_READ_LOCAL_NAME */
3884
HCI_INIT(hci_read_local_name_sync),
3885
/* HCI_OP_READ_VOICE_SETTING */
3886
HCI_INIT(hci_read_voice_setting_sync),
3887
/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3888
HCI_INIT(hci_read_num_supported_iac_sync),
3889
/* HCI_OP_READ_CURRENT_IAC_LAP */
3890
HCI_INIT(hci_read_current_iac_lap_sync),
3891
/* HCI_OP_SET_EVENT_FLT */
3892
HCI_INIT(hci_clear_event_filter_sync),
3893
/* HCI_OP_WRITE_CA_TIMEOUT */
3894
HCI_INIT(hci_write_ca_timeout_sync),
3895
/* HCI_OP_WRITE_SYNC_FLOWCTL */
3896
HCI_INIT(hci_write_sync_flowctl_sync),
3897
{}
3898
};
3899
3900
static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3901
{
3902
u8 mode = 0x01;
3903
3904
if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3905
return 0;
3906
3907
/* When SSP is available, then the host features page
3908
* should also be available as well. However some
3909
* controllers list the max_page as 0 as long as SSP
3910
* has not been enabled. To achieve proper debugging
3911
* output, force the minimum max_page to 1 at least.
3912
*/
3913
hdev->max_page = 0x01;
3914
3915
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3916
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3917
}
3918
3919
static int hci_write_eir_sync(struct hci_dev *hdev)
3920
{
3921
struct hci_cp_write_eir cp;
3922
3923
if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3924
return 0;
3925
3926
memset(hdev->eir, 0, sizeof(hdev->eir));
3927
memset(&cp, 0, sizeof(cp));
3928
3929
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3930
HCI_CMD_TIMEOUT);
3931
}
3932
3933
static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3934
{
3935
u8 mode;
3936
3937
if (!lmp_inq_rssi_capable(hdev) &&
3938
!hci_test_quirk(hdev, HCI_QUIRK_FIXUP_INQUIRY_MODE))
3939
return 0;
3940
3941
/* If Extended Inquiry Result events are supported, then
3942
* they are clearly preferred over Inquiry Result with RSSI
3943
* events.
3944
*/
3945
mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3946
3947
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3948
sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3949
}
3950
3951
static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3952
{
3953
if (!lmp_inq_tx_pwr_capable(hdev))
3954
return 0;
3955
3956
return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3957
0, NULL, HCI_CMD_TIMEOUT);
3958
}
3959
3960
static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3961
{
3962
struct hci_cp_read_local_ext_features cp;
3963
3964
if (!lmp_ext_feat_capable(hdev))
3965
return 0;
3966
3967
memset(&cp, 0, sizeof(cp));
3968
cp.page = page;
3969
3970
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3971
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3972
}
3973
3974
static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3975
{
3976
return hci_read_local_ext_features_sync(hdev, 0x01);
3977
}
3978
3979
/* HCI Controller init stage 2 command sequence */
3980
static const struct hci_init_stage hci_init2[] = {
3981
/* HCI_OP_READ_LOCAL_COMMANDS */
3982
HCI_INIT(hci_read_local_cmds_sync),
3983
/* HCI_OP_WRITE_SSP_MODE */
3984
HCI_INIT(hci_write_ssp_mode_1_sync),
3985
/* HCI_OP_WRITE_EIR */
3986
HCI_INIT(hci_write_eir_sync),
3987
/* HCI_OP_WRITE_INQUIRY_MODE */
3988
HCI_INIT(hci_write_inquiry_mode_sync),
3989
/* HCI_OP_READ_INQ_RSP_TX_POWER */
3990
HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3991
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3992
HCI_INIT(hci_read_local_ext_features_1_sync),
3993
/* HCI_OP_WRITE_AUTH_ENABLE */
3994
HCI_INIT(hci_write_auth_enable_sync),
3995
{}
3996
};
3997
3998
/* Read LE Buffer Size */
3999
static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
4000
{
4001
/* Use Read LE Buffer Size V2 if supported */
4002
if (iso_capable(hdev) && hdev->commands[41] & 0x20)
4003
return __hci_cmd_sync_status(hdev,
4004
HCI_OP_LE_READ_BUFFER_SIZE_V2,
4005
0, NULL, HCI_CMD_TIMEOUT);
4006
4007
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
4008
0, NULL, HCI_CMD_TIMEOUT);
4009
}
4010
4011
/* Read LE Local Supported Features */
4012
static int hci_le_read_local_features_sync(struct hci_dev *hdev)
4013
{
4014
int err;
4015
4016
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
4017
0, NULL, HCI_CMD_TIMEOUT);
4018
if (err)
4019
return err;
4020
4021
if (ll_ext_feature_capable(hdev) && hdev->commands[47] & BIT(2))
4022
return __hci_cmd_sync_status(hdev,
4023
HCI_OP_LE_READ_ALL_LOCAL_FEATURES,
4024
0, NULL, HCI_CMD_TIMEOUT);
4025
4026
return err;
4027
}
4028
4029
/* Read LE Supported States */
4030
static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
4031
{
4032
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
4033
0, NULL, HCI_CMD_TIMEOUT);
4034
}
4035
4036
/* LE Controller init stage 2 command sequence */
4037
static const struct hci_init_stage le_init2[] = {
4038
/* HCI_OP_LE_READ_LOCAL_FEATURES */
4039
HCI_INIT(hci_le_read_local_features_sync),
4040
/* HCI_OP_LE_READ_BUFFER_SIZE */
4041
HCI_INIT(hci_le_read_buffer_size_sync),
4042
/* HCI_OP_LE_READ_SUPPORTED_STATES */
4043
HCI_INIT(hci_le_read_supported_states_sync),
4044
{}
4045
};
4046
4047
static int hci_init2_sync(struct hci_dev *hdev)
4048
{
4049
int err;
4050
4051
bt_dev_dbg(hdev, "");
4052
4053
err = hci_init_stage_sync(hdev, hci_init2);
4054
if (err)
4055
return err;
4056
4057
if (lmp_bredr_capable(hdev)) {
4058
err = hci_init_stage_sync(hdev, br_init2);
4059
if (err)
4060
return err;
4061
} else {
4062
hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
4063
}
4064
4065
if (lmp_le_capable(hdev)) {
4066
err = hci_init_stage_sync(hdev, le_init2);
4067
if (err)
4068
return err;
4069
/* LE-only controllers have LE implicitly enabled */
4070
if (!lmp_bredr_capable(hdev))
4071
hci_dev_set_flag(hdev, HCI_LE_ENABLED);
4072
}
4073
4074
return 0;
4075
}
4076
4077
static int hci_set_event_mask_sync(struct hci_dev *hdev)
4078
{
4079
/* The second byte is 0xff instead of 0x9f (two reserved bits
4080
* disabled) since a Broadcom 1.2 dongle doesn't respond to the
4081
* command otherwise.
4082
*/
4083
u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
4084
4085
/* CSR 1.1 dongles does not accept any bitfield so don't try to set
4086
* any event mask for pre 1.2 devices.
4087
*/
4088
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4089
return 0;
4090
4091
if (lmp_bredr_capable(hdev)) {
4092
events[4] |= 0x01; /* Flow Specification Complete */
4093
4094
/* Don't set Disconnect Complete and mode change when
4095
* suspended as that would wakeup the host when disconnecting
4096
* due to suspend.
4097
*/
4098
if (hdev->suspended) {
4099
events[0] &= 0xef;
4100
events[2] &= 0xf7;
4101
}
4102
} else {
4103
/* Use a different default for LE-only devices */
4104
memset(events, 0, sizeof(events));
4105
events[1] |= 0x20; /* Command Complete */
4106
events[1] |= 0x40; /* Command Status */
4107
events[1] |= 0x80; /* Hardware Error */
4108
4109
/* If the controller supports the Disconnect command, enable
4110
* the corresponding event. In addition enable packet flow
4111
* control related events.
4112
*/
4113
if (hdev->commands[0] & 0x20) {
4114
/* Don't set Disconnect Complete when suspended as that
4115
* would wakeup the host when disconnecting due to
4116
* suspend.
4117
*/
4118
if (!hdev->suspended)
4119
events[0] |= 0x10; /* Disconnection Complete */
4120
events[2] |= 0x04; /* Number of Completed Packets */
4121
events[3] |= 0x02; /* Data Buffer Overflow */
4122
}
4123
4124
/* If the controller supports the Read Remote Version
4125
* Information command, enable the corresponding event.
4126
*/
4127
if (hdev->commands[2] & 0x80)
4128
events[1] |= 0x08; /* Read Remote Version Information
4129
* Complete
4130
*/
4131
4132
if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
4133
events[0] |= 0x80; /* Encryption Change */
4134
events[5] |= 0x80; /* Encryption Key Refresh Complete */
4135
}
4136
}
4137
4138
if (lmp_inq_rssi_capable(hdev) ||
4139
hci_test_quirk(hdev, HCI_QUIRK_FIXUP_INQUIRY_MODE))
4140
events[4] |= 0x02; /* Inquiry Result with RSSI */
4141
4142
if (lmp_ext_feat_capable(hdev))
4143
events[4] |= 0x04; /* Read Remote Extended Features Complete */
4144
4145
if (lmp_esco_capable(hdev)) {
4146
events[5] |= 0x08; /* Synchronous Connection Complete */
4147
events[5] |= 0x10; /* Synchronous Connection Changed */
4148
}
4149
4150
if (lmp_sniffsubr_capable(hdev))
4151
events[5] |= 0x20; /* Sniff Subrating */
4152
4153
if (lmp_pause_enc_capable(hdev))
4154
events[5] |= 0x80; /* Encryption Key Refresh Complete */
4155
4156
if (lmp_ext_inq_capable(hdev))
4157
events[5] |= 0x40; /* Extended Inquiry Result */
4158
4159
if (lmp_no_flush_capable(hdev))
4160
events[7] |= 0x01; /* Enhanced Flush Complete */
4161
4162
if (lmp_lsto_capable(hdev))
4163
events[6] |= 0x80; /* Link Supervision Timeout Changed */
4164
4165
if (lmp_ssp_capable(hdev)) {
4166
events[6] |= 0x01; /* IO Capability Request */
4167
events[6] |= 0x02; /* IO Capability Response */
4168
events[6] |= 0x04; /* User Confirmation Request */
4169
events[6] |= 0x08; /* User Passkey Request */
4170
events[6] |= 0x10; /* Remote OOB Data Request */
4171
events[6] |= 0x20; /* Simple Pairing Complete */
4172
events[7] |= 0x04; /* User Passkey Notification */
4173
events[7] |= 0x08; /* Keypress Notification */
4174
events[7] |= 0x10; /* Remote Host Supported
4175
* Features Notification
4176
*/
4177
}
4178
4179
if (lmp_le_capable(hdev))
4180
events[7] |= 0x20; /* LE Meta-Event */
4181
4182
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
4183
sizeof(events), events, HCI_CMD_TIMEOUT);
4184
}
4185
4186
static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
4187
{
4188
struct hci_cp_read_stored_link_key cp;
4189
4190
if (!(hdev->commands[6] & 0x20) ||
4191
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_STORED_LINK_KEY))
4192
return 0;
4193
4194
memset(&cp, 0, sizeof(cp));
4195
bacpy(&cp.bdaddr, BDADDR_ANY);
4196
cp.read_all = 0x01;
4197
4198
return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
4199
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4200
}
4201
4202
static int hci_setup_link_policy_sync(struct hci_dev *hdev)
4203
{
4204
struct hci_cp_write_def_link_policy cp;
4205
u16 link_policy = 0;
4206
4207
if (!(hdev->commands[5] & 0x10))
4208
return 0;
4209
4210
memset(&cp, 0, sizeof(cp));
4211
4212
if (lmp_rswitch_capable(hdev))
4213
link_policy |= HCI_LP_RSWITCH;
4214
if (lmp_hold_capable(hdev))
4215
link_policy |= HCI_LP_HOLD;
4216
if (lmp_sniff_capable(hdev))
4217
link_policy |= HCI_LP_SNIFF;
4218
if (lmp_park_capable(hdev))
4219
link_policy |= HCI_LP_PARK;
4220
4221
cp.policy = cpu_to_le16(link_policy);
4222
4223
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
4224
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4225
}
4226
4227
static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
4228
{
4229
if (!(hdev->commands[8] & 0x01))
4230
return 0;
4231
4232
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
4233
0, NULL, HCI_CMD_TIMEOUT);
4234
}
4235
4236
static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
4237
{
4238
if (!(hdev->commands[18] & 0x04) ||
4239
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4240
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_ERR_DATA_REPORTING))
4241
return 0;
4242
4243
return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
4244
0, NULL, HCI_CMD_TIMEOUT);
4245
}
4246
4247
static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
4248
{
4249
/* Some older Broadcom based Bluetooth 1.2 controllers do not
4250
* support the Read Page Scan Type command. Check support for
4251
* this command in the bit mask of supported commands.
4252
*/
4253
if (!(hdev->commands[13] & 0x01) ||
4254
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_READ_PAGE_SCAN_TYPE))
4255
return 0;
4256
4257
return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
4258
0, NULL, HCI_CMD_TIMEOUT);
4259
}
4260
4261
/* Read features beyond page 1 if available */
4262
static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
4263
{
4264
u8 page;
4265
int err;
4266
4267
if (!lmp_ext_feat_capable(hdev))
4268
return 0;
4269
4270
for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
4271
page++) {
4272
err = hci_read_local_ext_features_sync(hdev, page);
4273
if (err)
4274
return err;
4275
}
4276
4277
return 0;
4278
}
4279
4280
/* HCI Controller init stage 3 command sequence */
4281
static const struct hci_init_stage hci_init3[] = {
4282
/* HCI_OP_SET_EVENT_MASK */
4283
HCI_INIT(hci_set_event_mask_sync),
4284
/* HCI_OP_READ_STORED_LINK_KEY */
4285
HCI_INIT(hci_read_stored_link_key_sync),
4286
/* HCI_OP_WRITE_DEF_LINK_POLICY */
4287
HCI_INIT(hci_setup_link_policy_sync),
4288
/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4289
HCI_INIT(hci_read_page_scan_activity_sync),
4290
/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4291
HCI_INIT(hci_read_def_err_data_reporting_sync),
4292
/* HCI_OP_READ_PAGE_SCAN_TYPE */
4293
HCI_INIT(hci_read_page_scan_type_sync),
4294
/* HCI_OP_READ_LOCAL_EXT_FEATURES */
4295
HCI_INIT(hci_read_local_ext_features_all_sync),
4296
{}
4297
};
4298
4299
static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4300
{
4301
u8 events[8];
4302
4303
if (!lmp_le_capable(hdev))
4304
return 0;
4305
4306
memset(events, 0, sizeof(events));
4307
4308
if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4309
events[0] |= 0x10; /* LE Long Term Key Request */
4310
4311
/* If controller supports the Connection Parameters Request
4312
* Link Layer Procedure, enable the corresponding event.
4313
*/
4314
if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4315
/* LE Remote Connection Parameter Request */
4316
events[0] |= 0x20;
4317
4318
/* If the controller supports the Data Length Extension
4319
* feature, enable the corresponding event.
4320
*/
4321
if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4322
events[0] |= 0x40; /* LE Data Length Change */
4323
4324
/* If the controller supports LL Privacy feature or LE Extended Adv,
4325
* enable the corresponding event.
4326
*/
4327
if (use_enhanced_conn_complete(hdev))
4328
events[1] |= 0x02; /* LE Enhanced Connection Complete */
4329
4330
/* Mark Device Privacy if Privacy Mode is supported */
4331
if (privacy_mode_capable(hdev))
4332
hdev->conn_flags |= HCI_CONN_FLAG_DEVICE_PRIVACY;
4333
4334
/* Mark Address Resolution if LL Privacy is supported */
4335
if (ll_privacy_capable(hdev))
4336
hdev->conn_flags |= HCI_CONN_FLAG_ADDRESS_RESOLUTION;
4337
4338
/* Mark PAST if supported */
4339
if (past_capable(hdev))
4340
hdev->conn_flags |= HCI_CONN_FLAG_PAST;
4341
4342
/* If the controller supports Extended Scanner Filter
4343
* Policies, enable the corresponding event.
4344
*/
4345
if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4346
events[1] |= 0x04; /* LE Direct Advertising Report */
4347
4348
/* If the controller supports Channel Selection Algorithm #2
4349
* feature, enable the corresponding event.
4350
*/
4351
if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4352
events[2] |= 0x08; /* LE Channel Selection Algorithm */
4353
4354
/* If the controller supports the LE Set Scan Enable command,
4355
* enable the corresponding advertising report event.
4356
*/
4357
if (hdev->commands[26] & 0x08)
4358
events[0] |= 0x02; /* LE Advertising Report */
4359
4360
/* If the controller supports the LE Create Connection
4361
* command, enable the corresponding event.
4362
*/
4363
if (hdev->commands[26] & 0x10)
4364
events[0] |= 0x01; /* LE Connection Complete */
4365
4366
/* If the controller supports the LE Connection Update
4367
* command, enable the corresponding event.
4368
*/
4369
if (hdev->commands[27] & 0x04)
4370
events[0] |= 0x04; /* LE Connection Update Complete */
4371
4372
/* If the controller supports the LE Read Remote Used Features
4373
* command, enable the corresponding event.
4374
*/
4375
if (hdev->commands[27] & 0x20)
4376
/* LE Read Remote Used Features Complete */
4377
events[0] |= 0x08;
4378
4379
/* If the controller supports the LE Read Local P-256
4380
* Public Key command, enable the corresponding event.
4381
*/
4382
if (hdev->commands[34] & 0x02)
4383
/* LE Read Local P-256 Public Key Complete */
4384
events[0] |= 0x80;
4385
4386
/* If the controller supports the LE Generate DHKey
4387
* command, enable the corresponding event.
4388
*/
4389
if (hdev->commands[34] & 0x04)
4390
events[1] |= 0x01; /* LE Generate DHKey Complete */
4391
4392
/* If the controller supports the LE Set Default PHY or
4393
* LE Set PHY commands, enable the corresponding event.
4394
*/
4395
if (hdev->commands[35] & (0x20 | 0x40))
4396
events[1] |= 0x08; /* LE PHY Update Complete */
4397
4398
/* If the controller supports LE Set Extended Scan Parameters
4399
* and LE Set Extended Scan Enable commands, enable the
4400
* corresponding event.
4401
*/
4402
if (use_ext_scan(hdev))
4403
events[1] |= 0x10; /* LE Extended Advertising Report */
4404
4405
/* If the controller supports the LE Extended Advertising
4406
* command, enable the corresponding event.
4407
*/
4408
if (ext_adv_capable(hdev))
4409
events[2] |= 0x02; /* LE Advertising Set Terminated */
4410
4411
if (past_receiver_capable(hdev))
4412
events[2] |= 0x80; /* LE PAST Received */
4413
4414
if (cis_capable(hdev)) {
4415
events[3] |= 0x01; /* LE CIS Established */
4416
if (cis_peripheral_capable(hdev))
4417
events[3] |= 0x02; /* LE CIS Request */
4418
}
4419
4420
if (bis_capable(hdev)) {
4421
events[1] |= 0x20; /* LE PA Report */
4422
events[1] |= 0x40; /* LE PA Sync Established */
4423
events[1] |= 0x80; /* LE PA Sync Lost */
4424
events[3] |= 0x04; /* LE Create BIG Complete */
4425
events[3] |= 0x08; /* LE Terminate BIG Complete */
4426
events[3] |= 0x10; /* LE BIG Sync Established */
4427
events[3] |= 0x20; /* LE BIG Sync Loss */
4428
events[4] |= 0x02; /* LE BIG Info Advertising Report */
4429
}
4430
4431
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4432
sizeof(events), events, HCI_CMD_TIMEOUT);
4433
}
4434
4435
/* Read LE Advertising Channel TX Power */
4436
static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4437
{
4438
if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4439
/* HCI TS spec forbids mixing of legacy and extended
4440
* advertising commands wherein READ_ADV_TX_POWER is
4441
* also included. So do not call it if extended adv
4442
* is supported otherwise controller will return
4443
* COMMAND_DISALLOWED for extended commands.
4444
*/
4445
return __hci_cmd_sync_status(hdev,
4446
HCI_OP_LE_READ_ADV_TX_POWER,
4447
0, NULL, HCI_CMD_TIMEOUT);
4448
}
4449
4450
return 0;
4451
}
4452
4453
/* Read LE Min/Max Tx Power*/
4454
static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4455
{
4456
if (!(hdev->commands[38] & 0x80) ||
4457
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER))
4458
return 0;
4459
4460
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4461
0, NULL, HCI_CMD_TIMEOUT);
4462
}
4463
4464
/* Read LE Accept List Size */
4465
static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4466
{
4467
if (!(hdev->commands[26] & 0x40))
4468
return 0;
4469
4470
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4471
0, NULL, HCI_CMD_TIMEOUT);
4472
}
4473
4474
/* Read LE Resolving List Size */
4475
static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4476
{
4477
if (!(hdev->commands[34] & 0x40))
4478
return 0;
4479
4480
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4481
0, NULL, HCI_CMD_TIMEOUT);
4482
}
4483
4484
/* Clear LE Resolving List */
4485
static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4486
{
4487
if (!(hdev->commands[34] & 0x20))
4488
return 0;
4489
4490
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4491
HCI_CMD_TIMEOUT);
4492
}
4493
4494
/* Set RPA timeout */
4495
static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4496
{
4497
__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4498
4499
if (!(hdev->commands[35] & 0x04) ||
4500
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT))
4501
return 0;
4502
4503
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4504
sizeof(timeout), &timeout,
4505
HCI_CMD_TIMEOUT);
4506
}
4507
4508
/* Read LE Maximum Data Length */
4509
static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4510
{
4511
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4512
return 0;
4513
4514
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4515
HCI_CMD_TIMEOUT);
4516
}
4517
4518
/* Read LE Suggested Default Data Length */
4519
static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4520
{
4521
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4522
return 0;
4523
4524
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4525
HCI_CMD_TIMEOUT);
4526
}
4527
4528
/* Read LE Number of Supported Advertising Sets */
4529
static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4530
{
4531
if (!ext_adv_capable(hdev))
4532
return 0;
4533
4534
return __hci_cmd_sync_status(hdev,
4535
HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4536
0, NULL, HCI_CMD_TIMEOUT);
4537
}
4538
4539
/* Write LE Host Supported */
4540
static int hci_set_le_support_sync(struct hci_dev *hdev)
4541
{
4542
struct hci_cp_write_le_host_supported cp;
4543
4544
/* LE-only devices do not support explicit enablement */
4545
if (!lmp_bredr_capable(hdev))
4546
return 0;
4547
4548
memset(&cp, 0, sizeof(cp));
4549
4550
if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4551
cp.le = 0x01;
4552
cp.simul = 0x00;
4553
}
4554
4555
if (cp.le == lmp_host_le_capable(hdev))
4556
return 0;
4557
4558
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4559
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4560
}
4561
4562
/* LE Set Host Feature */
4563
static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4564
{
4565
struct hci_cp_le_set_host_feature cp;
4566
4567
if (!iso_capable(hdev))
4568
return 0;
4569
4570
memset(&cp, 0, sizeof(cp));
4571
4572
/* Connected Isochronous Channels (Host Support) */
4573
cp.bit_number = 32;
4574
cp.bit_value = iso_enabled(hdev) ? 0x01 : 0x00;
4575
4576
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4577
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4578
}
4579
4580
/* LE Controller init stage 3 command sequence */
4581
static const struct hci_init_stage le_init3[] = {
4582
/* HCI_OP_LE_SET_EVENT_MASK */
4583
HCI_INIT(hci_le_set_event_mask_sync),
4584
/* HCI_OP_LE_READ_ADV_TX_POWER */
4585
HCI_INIT(hci_le_read_adv_tx_power_sync),
4586
/* HCI_OP_LE_READ_TRANSMIT_POWER */
4587
HCI_INIT(hci_le_read_tx_power_sync),
4588
/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4589
HCI_INIT(hci_le_read_accept_list_size_sync),
4590
/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4591
HCI_INIT(hci_le_clear_accept_list_sync),
4592
/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4593
HCI_INIT(hci_le_read_resolv_list_size_sync),
4594
/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4595
HCI_INIT(hci_le_clear_resolv_list_sync),
4596
/* HCI_OP_LE_SET_RPA_TIMEOUT */
4597
HCI_INIT(hci_le_set_rpa_timeout_sync),
4598
/* HCI_OP_LE_READ_MAX_DATA_LEN */
4599
HCI_INIT(hci_le_read_max_data_len_sync),
4600
/* HCI_OP_LE_READ_DEF_DATA_LEN */
4601
HCI_INIT(hci_le_read_def_data_len_sync),
4602
/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4603
HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4604
/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4605
HCI_INIT(hci_set_le_support_sync),
4606
/* HCI_OP_LE_SET_HOST_FEATURE */
4607
HCI_INIT(hci_le_set_host_feature_sync),
4608
{}
4609
};
4610
4611
static int hci_init3_sync(struct hci_dev *hdev)
4612
{
4613
int err;
4614
4615
bt_dev_dbg(hdev, "");
4616
4617
err = hci_init_stage_sync(hdev, hci_init3);
4618
if (err)
4619
return err;
4620
4621
if (lmp_le_capable(hdev))
4622
return hci_init_stage_sync(hdev, le_init3);
4623
4624
return 0;
4625
}
4626
4627
static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4628
{
4629
struct hci_cp_delete_stored_link_key cp;
4630
4631
/* Some Broadcom based Bluetooth controllers do not support the
4632
* Delete Stored Link Key command. They are clearly indicating its
4633
* absence in the bit mask of supported commands.
4634
*
4635
* Check the supported commands and only if the command is marked
4636
* as supported send it. If not supported assume that the controller
4637
* does not have actual support for stored link keys which makes this
4638
* command redundant anyway.
4639
*
4640
* Some controllers indicate that they support handling deleting
4641
* stored link keys, but they don't. The quirk lets a driver
4642
* just disable this command.
4643
*/
4644
if (!(hdev->commands[6] & 0x80) ||
4645
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_STORED_LINK_KEY))
4646
return 0;
4647
4648
memset(&cp, 0, sizeof(cp));
4649
bacpy(&cp.bdaddr, BDADDR_ANY);
4650
cp.delete_all = 0x01;
4651
4652
return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4653
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4654
}
4655
4656
static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4657
{
4658
u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4659
bool changed = false;
4660
4661
/* Set event mask page 2 if the HCI command for it is supported */
4662
if (!(hdev->commands[22] & 0x04))
4663
return 0;
4664
4665
/* If Connectionless Peripheral Broadcast central role is supported
4666
* enable all necessary events for it.
4667
*/
4668
if (lmp_cpb_central_capable(hdev)) {
4669
events[1] |= 0x40; /* Triggered Clock Capture */
4670
events[1] |= 0x80; /* Synchronization Train Complete */
4671
events[2] |= 0x08; /* Truncated Page Complete */
4672
events[2] |= 0x20; /* CPB Channel Map Change */
4673
changed = true;
4674
}
4675
4676
/* If Connectionless Peripheral Broadcast peripheral role is supported
4677
* enable all necessary events for it.
4678
*/
4679
if (lmp_cpb_peripheral_capable(hdev)) {
4680
events[2] |= 0x01; /* Synchronization Train Received */
4681
events[2] |= 0x02; /* CPB Receive */
4682
events[2] |= 0x04; /* CPB Timeout */
4683
events[2] |= 0x10; /* Peripheral Page Response Timeout */
4684
changed = true;
4685
}
4686
4687
/* Enable Authenticated Payload Timeout Expired event if supported */
4688
if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4689
events[2] |= 0x80;
4690
changed = true;
4691
}
4692
4693
/* Some Broadcom based controllers indicate support for Set Event
4694
* Mask Page 2 command, but then actually do not support it. Since
4695
* the default value is all bits set to zero, the command is only
4696
* required if the event mask has to be changed. In case no change
4697
* to the event mask is needed, skip this command.
4698
*/
4699
if (!changed)
4700
return 0;
4701
4702
return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4703
sizeof(events), events, HCI_CMD_TIMEOUT);
4704
}
4705
4706
/* Read local codec list if the HCI command is supported */
4707
static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4708
{
4709
if (hdev->commands[45] & 0x04)
4710
hci_read_supported_codecs_v2(hdev);
4711
else if (hdev->commands[29] & 0x20)
4712
hci_read_supported_codecs(hdev);
4713
4714
return 0;
4715
}
4716
4717
/* Read local pairing options if the HCI command is supported */
4718
static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4719
{
4720
if (!(hdev->commands[41] & 0x08))
4721
return 0;
4722
4723
return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4724
0, NULL, HCI_CMD_TIMEOUT);
4725
}
4726
4727
/* Get MWS transport configuration if the HCI command is supported */
4728
static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4729
{
4730
if (!mws_transport_config_capable(hdev))
4731
return 0;
4732
4733
return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4734
0, NULL, HCI_CMD_TIMEOUT);
4735
}
4736
4737
/* Check for Synchronization Train support */
4738
static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4739
{
4740
if (!lmp_sync_train_capable(hdev))
4741
return 0;
4742
4743
return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4744
0, NULL, HCI_CMD_TIMEOUT);
4745
}
4746
4747
/* Enable Secure Connections if supported and configured */
4748
static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4749
{
4750
u8 support = 0x01;
4751
4752
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4753
!bredr_sc_enabled(hdev))
4754
return 0;
4755
4756
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4757
sizeof(support), &support,
4758
HCI_CMD_TIMEOUT);
4759
}
4760
4761
/* Set erroneous data reporting if supported to the wideband speech
4762
* setting value
4763
*/
4764
static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4765
{
4766
struct hci_cp_write_def_err_data_reporting cp;
4767
bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4768
4769
if (!(hdev->commands[18] & 0x08) ||
4770
!(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4771
hci_test_quirk(hdev, HCI_QUIRK_BROKEN_ERR_DATA_REPORTING))
4772
return 0;
4773
4774
if (enabled == hdev->err_data_reporting)
4775
return 0;
4776
4777
memset(&cp, 0, sizeof(cp));
4778
cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4779
ERR_DATA_REPORTING_DISABLED;
4780
4781
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4782
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4783
}
4784
4785
static const struct hci_init_stage hci_init4[] = {
4786
/* HCI_OP_DELETE_STORED_LINK_KEY */
4787
HCI_INIT(hci_delete_stored_link_key_sync),
4788
/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4789
HCI_INIT(hci_set_event_mask_page_2_sync),
4790
/* HCI_OP_READ_LOCAL_CODECS */
4791
HCI_INIT(hci_read_local_codecs_sync),
4792
/* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4793
HCI_INIT(hci_read_local_pairing_opts_sync),
4794
/* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4795
HCI_INIT(hci_get_mws_transport_config_sync),
4796
/* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4797
HCI_INIT(hci_read_sync_train_params_sync),
4798
/* HCI_OP_WRITE_SC_SUPPORT */
4799
HCI_INIT(hci_write_sc_support_1_sync),
4800
/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4801
HCI_INIT(hci_set_err_data_report_sync),
4802
{}
4803
};
4804
4805
/* Set Suggested Default Data Length to maximum if supported */
4806
static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4807
{
4808
struct hci_cp_le_write_def_data_len cp;
4809
4810
if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4811
return 0;
4812
4813
memset(&cp, 0, sizeof(cp));
4814
cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4815
cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4816
4817
return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4818
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4819
}
4820
4821
/* Set Default PHY parameters if command is supported, enables all supported
4822
* PHYs according to the LE Features bits.
4823
*/
4824
static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4825
{
4826
struct hci_cp_le_set_default_phy cp;
4827
4828
if (!(hdev->commands[35] & 0x20)) {
4829
/* If the command is not supported it means only 1M PHY is
4830
* supported.
4831
*/
4832
hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4833
hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4834
return 0;
4835
}
4836
4837
memset(&cp, 0, sizeof(cp));
4838
cp.all_phys = 0x00;
4839
cp.tx_phys = HCI_LE_SET_PHY_1M;
4840
cp.rx_phys = HCI_LE_SET_PHY_1M;
4841
4842
/* Enables 2M PHY if supported */
4843
if (le_2m_capable(hdev)) {
4844
cp.tx_phys |= HCI_LE_SET_PHY_2M;
4845
cp.rx_phys |= HCI_LE_SET_PHY_2M;
4846
}
4847
4848
/* Enables Coded PHY if supported */
4849
if (le_coded_capable(hdev)) {
4850
cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4851
cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4852
}
4853
4854
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4855
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4856
}
4857
4858
static const struct hci_init_stage le_init4[] = {
4859
/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4860
HCI_INIT(hci_le_set_write_def_data_len_sync),
4861
/* HCI_OP_LE_SET_DEFAULT_PHY */
4862
HCI_INIT(hci_le_set_default_phy_sync),
4863
{}
4864
};
4865
4866
static int hci_init4_sync(struct hci_dev *hdev)
4867
{
4868
int err;
4869
4870
bt_dev_dbg(hdev, "");
4871
4872
err = hci_init_stage_sync(hdev, hci_init4);
4873
if (err)
4874
return err;
4875
4876
if (lmp_le_capable(hdev))
4877
return hci_init_stage_sync(hdev, le_init4);
4878
4879
return 0;
4880
}
4881
4882
static int hci_init_sync(struct hci_dev *hdev)
4883
{
4884
int err;
4885
4886
err = hci_init1_sync(hdev);
4887
if (err < 0)
4888
return err;
4889
4890
if (hci_dev_test_flag(hdev, HCI_SETUP))
4891
hci_debugfs_create_basic(hdev);
4892
4893
err = hci_init2_sync(hdev);
4894
if (err < 0)
4895
return err;
4896
4897
err = hci_init3_sync(hdev);
4898
if (err < 0)
4899
return err;
4900
4901
err = hci_init4_sync(hdev);
4902
if (err < 0)
4903
return err;
4904
4905
/* This function is only called when the controller is actually in
4906
* configured state. When the controller is marked as unconfigured,
4907
* this initialization procedure is not run.
4908
*
4909
* It means that it is possible that a controller runs through its
4910
* setup phase and then discovers missing settings. If that is the
4911
* case, then this function will not be called. It then will only
4912
* be called during the config phase.
4913
*
4914
* So only when in setup phase or config phase, create the debugfs
4915
* entries and register the SMP channels.
4916
*/
4917
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4918
!hci_dev_test_flag(hdev, HCI_CONFIG))
4919
return 0;
4920
4921
if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4922
return 0;
4923
4924
hci_debugfs_create_common(hdev);
4925
4926
if (lmp_bredr_capable(hdev))
4927
hci_debugfs_create_bredr(hdev);
4928
4929
if (lmp_le_capable(hdev))
4930
hci_debugfs_create_le(hdev);
4931
4932
return 0;
4933
}
4934
4935
#define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4936
4937
static const struct {
4938
unsigned long quirk;
4939
const char *desc;
4940
} hci_broken_table[] = {
4941
HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4942
"HCI Read Local Supported Commands not supported"),
4943
HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4944
"HCI Delete Stored Link Key command is advertised, "
4945
"but not supported."),
4946
HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4947
"HCI Read Default Erroneous Data Reporting command is "
4948
"advertised, but not supported."),
4949
HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4950
"HCI Read Transmit Power Level command is advertised, "
4951
"but not supported."),
4952
HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4953
"HCI Set Event Filter command not supported."),
4954
HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4955
"HCI Enhanced Setup Synchronous Connection command is "
4956
"advertised, but not supported."),
4957
HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4958
"HCI LE Set Random Private Address Timeout command is "
4959
"advertised, but not supported."),
4960
HCI_QUIRK_BROKEN(EXT_CREATE_CONN,
4961
"HCI LE Extended Create Connection command is "
4962
"advertised, but not supported."),
4963
HCI_QUIRK_BROKEN(WRITE_AUTH_PAYLOAD_TIMEOUT,
4964
"HCI WRITE AUTH PAYLOAD TIMEOUT command leads "
4965
"to unexpected SMP errors when pairing "
4966
"and will not be used."),
4967
HCI_QUIRK_BROKEN(LE_CODED,
4968
"HCI LE Coded PHY feature bit is set, "
4969
"but its usage is not supported.")
4970
};
4971
4972
/* This function handles hdev setup stage:
4973
*
4974
* Calls hdev->setup
4975
* Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4976
*/
4977
static int hci_dev_setup_sync(struct hci_dev *hdev)
4978
{
4979
int ret = 0;
4980
bool invalid_bdaddr;
4981
size_t i;
4982
4983
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4984
!hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_SETUP))
4985
return 0;
4986
4987
bt_dev_dbg(hdev, "");
4988
4989
hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4990
4991
if (hdev->setup)
4992
ret = hdev->setup(hdev);
4993
4994
for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4995
if (hci_test_quirk(hdev, hci_broken_table[i].quirk))
4996
bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4997
}
4998
4999
/* The transport driver can set the quirk to mark the
5000
* BD_ADDR invalid before creating the HCI device or in
5001
* its setup callback.
5002
*/
5003
invalid_bdaddr = hci_test_quirk(hdev, HCI_QUIRK_INVALID_BDADDR) ||
5004
hci_test_quirk(hdev, HCI_QUIRK_USE_BDADDR_PROPERTY);
5005
if (!ret) {
5006
if (hci_test_quirk(hdev, HCI_QUIRK_USE_BDADDR_PROPERTY) &&
5007
!bacmp(&hdev->public_addr, BDADDR_ANY))
5008
hci_dev_get_bd_addr_from_property(hdev);
5009
5010
if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
5011
hdev->set_bdaddr) {
5012
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
5013
if (!ret)
5014
invalid_bdaddr = false;
5015
}
5016
}
5017
5018
/* The transport driver can set these quirks before
5019
* creating the HCI device or in its setup callback.
5020
*
5021
* For the invalid BD_ADDR quirk it is possible that
5022
* it becomes a valid address if the bootloader does
5023
* provide it (see above).
5024
*
5025
* In case any of them is set, the controller has to
5026
* start up as unconfigured.
5027
*/
5028
if (hci_test_quirk(hdev, HCI_QUIRK_EXTERNAL_CONFIG) ||
5029
invalid_bdaddr)
5030
hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
5031
5032
/* For an unconfigured controller it is required to
5033
* read at least the version information provided by
5034
* the Read Local Version Information command.
5035
*
5036
* If the set_bdaddr driver callback is provided, then
5037
* also the original Bluetooth public device address
5038
* will be read using the Read BD Address command.
5039
*/
5040
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5041
return hci_unconf_init_sync(hdev);
5042
5043
return ret;
5044
}
5045
5046
/* This function handles hdev init stage:
5047
*
5048
* Calls hci_dev_setup_sync to perform setup stage
5049
* Calls hci_init_sync to perform HCI command init sequence
5050
*/
5051
static int hci_dev_init_sync(struct hci_dev *hdev)
5052
{
5053
int ret;
5054
5055
bt_dev_dbg(hdev, "");
5056
5057
atomic_set(&hdev->cmd_cnt, 1);
5058
set_bit(HCI_INIT, &hdev->flags);
5059
5060
ret = hci_dev_setup_sync(hdev);
5061
5062
if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
5063
/* If public address change is configured, ensure that
5064
* the address gets programmed. If the driver does not
5065
* support changing the public address, fail the power
5066
* on procedure.
5067
*/
5068
if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
5069
hdev->set_bdaddr)
5070
ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
5071
else
5072
ret = -EADDRNOTAVAIL;
5073
}
5074
5075
if (!ret) {
5076
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
5077
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5078
ret = hci_init_sync(hdev);
5079
if (!ret && hdev->post_init)
5080
ret = hdev->post_init(hdev);
5081
}
5082
}
5083
5084
/* If the HCI Reset command is clearing all diagnostic settings,
5085
* then they need to be reprogrammed after the init procedure
5086
* completed.
5087
*/
5088
if (hci_test_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_DIAG) &&
5089
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5090
hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
5091
ret = hdev->set_diag(hdev, true);
5092
5093
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5094
msft_do_open(hdev);
5095
aosp_do_open(hdev);
5096
}
5097
5098
clear_bit(HCI_INIT, &hdev->flags);
5099
5100
return ret;
5101
}
5102
5103
int hci_dev_open_sync(struct hci_dev *hdev)
5104
{
5105
int ret;
5106
5107
bt_dev_dbg(hdev, "");
5108
5109
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
5110
ret = -ENODEV;
5111
goto done;
5112
}
5113
5114
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
5115
!hci_dev_test_flag(hdev, HCI_CONFIG)) {
5116
/* Check for rfkill but allow the HCI setup stage to
5117
* proceed (which in itself doesn't cause any RF activity).
5118
*/
5119
if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
5120
ret = -ERFKILL;
5121
goto done;
5122
}
5123
5124
/* Check for valid public address or a configured static
5125
* random address, but let the HCI setup proceed to
5126
* be able to determine if there is a public address
5127
* or not.
5128
*
5129
* In case of user channel usage, it is not important
5130
* if a public address or static random address is
5131
* available.
5132
*/
5133
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5134
!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5135
!bacmp(&hdev->static_addr, BDADDR_ANY)) {
5136
ret = -EADDRNOTAVAIL;
5137
goto done;
5138
}
5139
}
5140
5141
if (test_bit(HCI_UP, &hdev->flags)) {
5142
ret = -EALREADY;
5143
goto done;
5144
}
5145
5146
if (hdev->open(hdev)) {
5147
ret = -EIO;
5148
goto done;
5149
}
5150
5151
hci_devcd_reset(hdev);
5152
5153
set_bit(HCI_RUNNING, &hdev->flags);
5154
hci_sock_dev_event(hdev, HCI_DEV_OPEN);
5155
5156
ret = hci_dev_init_sync(hdev);
5157
if (!ret) {
5158
hci_dev_hold(hdev);
5159
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
5160
hci_adv_instances_set_rpa_expired(hdev, true);
5161
set_bit(HCI_UP, &hdev->flags);
5162
hci_sock_dev_event(hdev, HCI_DEV_UP);
5163
hci_leds_update_powered(hdev, true);
5164
if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
5165
!hci_dev_test_flag(hdev, HCI_CONFIG) &&
5166
!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
5167
!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5168
hci_dev_test_flag(hdev, HCI_MGMT)) {
5169
ret = hci_powered_update_sync(hdev);
5170
mgmt_power_on(hdev, ret);
5171
}
5172
} else {
5173
/* Init failed, cleanup */
5174
flush_work(&hdev->tx_work);
5175
5176
/* Since hci_rx_work() is possible to awake new cmd_work
5177
* it should be flushed first to avoid unexpected call of
5178
* hci_cmd_work()
5179
*/
5180
flush_work(&hdev->rx_work);
5181
flush_work(&hdev->cmd_work);
5182
5183
skb_queue_purge(&hdev->cmd_q);
5184
skb_queue_purge(&hdev->rx_q);
5185
5186
if (hdev->flush)
5187
hdev->flush(hdev);
5188
5189
if (hdev->sent_cmd) {
5190
cancel_delayed_work_sync(&hdev->cmd_timer);
5191
kfree_skb(hdev->sent_cmd);
5192
hdev->sent_cmd = NULL;
5193
}
5194
5195
if (hdev->req_skb) {
5196
kfree_skb(hdev->req_skb);
5197
hdev->req_skb = NULL;
5198
}
5199
5200
clear_bit(HCI_RUNNING, &hdev->flags);
5201
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5202
5203
hdev->close(hdev);
5204
hdev->flags &= BIT(HCI_RAW);
5205
}
5206
5207
done:
5208
return ret;
5209
}
5210
5211
/* This function requires the caller holds hdev->lock */
5212
static void hci_pend_le_actions_clear(struct hci_dev *hdev)
5213
{
5214
struct hci_conn_params *p;
5215
5216
list_for_each_entry(p, &hdev->le_conn_params, list) {
5217
hci_pend_le_list_del_init(p);
5218
if (p->conn) {
5219
hci_conn_drop(p->conn);
5220
hci_conn_put(p->conn);
5221
p->conn = NULL;
5222
}
5223
}
5224
5225
BT_DBG("All LE pending actions cleared");
5226
}
5227
5228
static int hci_dev_shutdown(struct hci_dev *hdev)
5229
{
5230
int err = 0;
5231
/* Similar to how we first do setup and then set the exclusive access
5232
* bit for userspace, we must first unset userchannel and then clean up.
5233
* Otherwise, the kernel can't properly use the hci channel to clean up
5234
* the controller (some shutdown routines require sending additional
5235
* commands to the controller for example).
5236
*/
5237
bool was_userchannel =
5238
hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
5239
5240
if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
5241
test_bit(HCI_UP, &hdev->flags)) {
5242
/* Execute vendor specific shutdown routine */
5243
if (hdev->shutdown)
5244
err = hdev->shutdown(hdev);
5245
}
5246
5247
if (was_userchannel)
5248
hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
5249
5250
return err;
5251
}
5252
5253
int hci_dev_close_sync(struct hci_dev *hdev)
5254
{
5255
bool auto_off;
5256
int err = 0;
5257
5258
bt_dev_dbg(hdev, "");
5259
5260
if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
5261
disable_delayed_work(&hdev->power_off);
5262
disable_delayed_work(&hdev->ncmd_timer);
5263
disable_delayed_work(&hdev->le_scan_disable);
5264
} else {
5265
cancel_delayed_work(&hdev->power_off);
5266
cancel_delayed_work(&hdev->ncmd_timer);
5267
cancel_delayed_work(&hdev->le_scan_disable);
5268
}
5269
5270
hci_cmd_sync_cancel_sync(hdev, ENODEV);
5271
5272
cancel_interleave_scan(hdev);
5273
5274
if (hdev->adv_instance_timeout) {
5275
cancel_delayed_work_sync(&hdev->adv_instance_expire);
5276
hdev->adv_instance_timeout = 0;
5277
}
5278
5279
err = hci_dev_shutdown(hdev);
5280
5281
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
5282
cancel_delayed_work_sync(&hdev->cmd_timer);
5283
return err;
5284
}
5285
5286
hci_leds_update_powered(hdev, false);
5287
5288
/* Flush RX and TX works */
5289
flush_work(&hdev->tx_work);
5290
flush_work(&hdev->rx_work);
5291
5292
if (hdev->discov_timeout > 0) {
5293
hdev->discov_timeout = 0;
5294
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
5295
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
5296
}
5297
5298
if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
5299
cancel_delayed_work(&hdev->service_cache);
5300
5301
if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5302
struct adv_info *adv_instance;
5303
5304
cancel_delayed_work_sync(&hdev->rpa_expired);
5305
5306
list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5307
cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5308
}
5309
5310
/* Avoid potential lockdep warnings from the *_flush() calls by
5311
* ensuring the workqueue is empty up front.
5312
*/
5313
drain_workqueue(hdev->workqueue);
5314
5315
hci_dev_lock(hdev);
5316
5317
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5318
5319
auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5320
5321
if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5322
hci_dev_test_flag(hdev, HCI_MGMT))
5323
__mgmt_power_off(hdev);
5324
5325
hci_inquiry_cache_flush(hdev);
5326
hci_pend_le_actions_clear(hdev);
5327
hci_conn_hash_flush(hdev);
5328
/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5329
smp_unregister(hdev);
5330
hci_dev_unlock(hdev);
5331
5332
hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5333
5334
if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5335
aosp_do_close(hdev);
5336
msft_do_close(hdev);
5337
}
5338
5339
if (hdev->flush)
5340
hdev->flush(hdev);
5341
5342
/* Reset device */
5343
skb_queue_purge(&hdev->cmd_q);
5344
atomic_set(&hdev->cmd_cnt, 1);
5345
if (hci_test_quirk(hdev, HCI_QUIRK_RESET_ON_CLOSE) &&
5346
!auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5347
set_bit(HCI_INIT, &hdev->flags);
5348
hci_reset_sync(hdev);
5349
clear_bit(HCI_INIT, &hdev->flags);
5350
}
5351
5352
/* flush cmd work */
5353
flush_work(&hdev->cmd_work);
5354
5355
/* Drop queues */
5356
skb_queue_purge(&hdev->rx_q);
5357
skb_queue_purge(&hdev->cmd_q);
5358
skb_queue_purge(&hdev->raw_q);
5359
5360
/* Drop last sent command */
5361
if (hdev->sent_cmd) {
5362
cancel_delayed_work_sync(&hdev->cmd_timer);
5363
kfree_skb(hdev->sent_cmd);
5364
hdev->sent_cmd = NULL;
5365
}
5366
5367
/* Drop last request */
5368
if (hdev->req_skb) {
5369
kfree_skb(hdev->req_skb);
5370
hdev->req_skb = NULL;
5371
}
5372
5373
clear_bit(HCI_RUNNING, &hdev->flags);
5374
hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5375
5376
/* After this point our queues are empty and no tasks are scheduled. */
5377
hdev->close(hdev);
5378
5379
/* Clear flags */
5380
hdev->flags &= BIT(HCI_RAW);
5381
hci_dev_clear_volatile_flags(hdev);
5382
5383
memset(hdev->eir, 0, sizeof(hdev->eir));
5384
memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5385
bacpy(&hdev->random_addr, BDADDR_ANY);
5386
hci_codec_list_clear(&hdev->local_codecs);
5387
5388
hci_dev_put(hdev);
5389
return err;
5390
}
5391
5392
/* This function perform power on HCI command sequence as follows:
5393
*
5394
* If controller is already up (HCI_UP) performs hci_powered_update_sync
5395
* sequence otherwise run hci_dev_open_sync which will follow with
5396
* hci_powered_update_sync after the init sequence is completed.
5397
*/
5398
static int hci_power_on_sync(struct hci_dev *hdev)
5399
{
5400
int err;
5401
5402
if (test_bit(HCI_UP, &hdev->flags) &&
5403
hci_dev_test_flag(hdev, HCI_MGMT) &&
5404
hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5405
cancel_delayed_work(&hdev->power_off);
5406
return hci_powered_update_sync(hdev);
5407
}
5408
5409
err = hci_dev_open_sync(hdev);
5410
if (err < 0)
5411
return err;
5412
5413
/* During the HCI setup phase, a few error conditions are
5414
* ignored and they need to be checked now. If they are still
5415
* valid, it is important to return the device back off.
5416
*/
5417
if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5418
hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5419
(!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5420
!bacmp(&hdev->static_addr, BDADDR_ANY))) {
5421
hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5422
hci_dev_close_sync(hdev);
5423
} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5424
queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5425
HCI_AUTO_OFF_TIMEOUT);
5426
}
5427
5428
if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5429
/* For unconfigured devices, set the HCI_RAW flag
5430
* so that userspace can easily identify them.
5431
*/
5432
if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5433
set_bit(HCI_RAW, &hdev->flags);
5434
5435
/* For fully configured devices, this will send
5436
* the Index Added event. For unconfigured devices,
5437
* it will send Unconfigued Index Added event.
5438
*
5439
* Devices with HCI_QUIRK_RAW_DEVICE are ignored
5440
* and no event will be send.
5441
*/
5442
mgmt_index_added(hdev);
5443
} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5444
/* When the controller is now configured, then it
5445
* is important to clear the HCI_RAW flag.
5446
*/
5447
if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5448
clear_bit(HCI_RAW, &hdev->flags);
5449
5450
/* Powering on the controller with HCI_CONFIG set only
5451
* happens with the transition from unconfigured to
5452
* configured. This will send the Index Added event.
5453
*/
5454
mgmt_index_added(hdev);
5455
}
5456
5457
return 0;
5458
}
5459
5460
static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5461
{
5462
struct hci_cp_remote_name_req_cancel cp;
5463
5464
memset(&cp, 0, sizeof(cp));
5465
bacpy(&cp.bdaddr, addr);
5466
5467
return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5468
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5469
}
5470
5471
int hci_stop_discovery_sync(struct hci_dev *hdev)
5472
{
5473
struct discovery_state *d = &hdev->discovery;
5474
struct inquiry_entry *e;
5475
int err;
5476
5477
bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5478
5479
if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5480
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5481
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5482
0, NULL, HCI_CMD_TIMEOUT);
5483
if (err)
5484
return err;
5485
}
5486
5487
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5488
cancel_delayed_work(&hdev->le_scan_disable);
5489
5490
err = hci_scan_disable_sync(hdev);
5491
if (err)
5492
return err;
5493
}
5494
5495
} else {
5496
err = hci_scan_disable_sync(hdev);
5497
if (err)
5498
return err;
5499
}
5500
5501
/* Resume advertising if it was paused */
5502
if (ll_privacy_capable(hdev))
5503
hci_resume_advertising_sync(hdev);
5504
5505
/* No further actions needed for LE-only discovery */
5506
if (d->type == DISCOV_TYPE_LE)
5507
return 0;
5508
5509
if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5510
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5511
NAME_PENDING);
5512
if (!e)
5513
return 0;
5514
5515
/* Ignore cancel errors since it should interfere with stopping
5516
* of the discovery.
5517
*/
5518
hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5519
}
5520
5521
return 0;
5522
}
5523
5524
static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5525
u8 reason)
5526
{
5527
struct hci_cp_disconnect cp;
5528
5529
if (conn->type == BIS_LINK || conn->type == PA_LINK) {
5530
/* This is a BIS connection, hci_conn_del will
5531
* do the necessary cleanup.
5532
*/
5533
hci_dev_lock(hdev);
5534
hci_conn_failed(conn, reason);
5535
hci_dev_unlock(hdev);
5536
5537
return 0;
5538
}
5539
5540
memset(&cp, 0, sizeof(cp));
5541
cp.handle = cpu_to_le16(conn->handle);
5542
cp.reason = reason;
5543
5544
/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5545
* reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5546
* used when suspending or powering off, where we don't want to wait
5547
* for the peer's response.
5548
*/
5549
if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5550
return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5551
sizeof(cp), &cp,
5552
HCI_EV_DISCONN_COMPLETE,
5553
HCI_CMD_TIMEOUT, NULL);
5554
5555
return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5556
HCI_CMD_TIMEOUT);
5557
}
5558
5559
static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5560
struct hci_conn *conn, u8 reason)
5561
{
5562
/* Return reason if scanning since the connection shall probably be
5563
* cleanup directly.
5564
*/
5565
if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5566
return reason;
5567
5568
if (conn->role == HCI_ROLE_SLAVE ||
5569
test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5570
return 0;
5571
5572
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5573
0, NULL, HCI_CMD_TIMEOUT);
5574
}
5575
5576
static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5577
u8 reason)
5578
{
5579
if (conn->type == LE_LINK)
5580
return hci_le_connect_cancel_sync(hdev, conn, reason);
5581
5582
if (conn->type == CIS_LINK) {
5583
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5584
* page 1857:
5585
*
5586
* If this command is issued for a CIS on the Central and the
5587
* CIS is successfully terminated before being established,
5588
* then an HCI_LE_CIS_Established event shall also be sent for
5589
* this CIS with the Status Operation Cancelled by Host (0x44).
5590
*/
5591
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5592
return hci_disconnect_sync(hdev, conn, reason);
5593
5594
/* CIS with no Create CIS sent have nothing to cancel */
5595
return HCI_ERROR_LOCAL_HOST_TERM;
5596
}
5597
5598
if (conn->type == BIS_LINK || conn->type == PA_LINK) {
5599
/* There is no way to cancel a BIS without terminating the BIG
5600
* which is done later on connection cleanup.
5601
*/
5602
return 0;
5603
}
5604
5605
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5606
return 0;
5607
5608
/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5609
* reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5610
* used when suspending or powering off, where we don't want to wait
5611
* for the peer's response.
5612
*/
5613
if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5614
return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5615
6, &conn->dst,
5616
HCI_EV_CONN_COMPLETE,
5617
HCI_CMD_TIMEOUT, NULL);
5618
5619
return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5620
6, &conn->dst, HCI_CMD_TIMEOUT);
5621
}
5622
5623
static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5624
u8 reason)
5625
{
5626
struct hci_cp_reject_sync_conn_req cp;
5627
5628
memset(&cp, 0, sizeof(cp));
5629
bacpy(&cp.bdaddr, &conn->dst);
5630
cp.reason = reason;
5631
5632
/* SCO rejection has its own limited set of
5633
* allowed error values (0x0D-0x0F).
5634
*/
5635
if (reason < 0x0d || reason > 0x0f)
5636
cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5637
5638
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5639
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5640
}
5641
5642
static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5643
u8 reason)
5644
{
5645
struct hci_cp_le_reject_cis cp;
5646
5647
memset(&cp, 0, sizeof(cp));
5648
cp.handle = cpu_to_le16(conn->handle);
5649
cp.reason = reason;
5650
5651
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5652
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5653
}
5654
5655
static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5656
u8 reason)
5657
{
5658
struct hci_cp_reject_conn_req cp;
5659
5660
if (conn->type == CIS_LINK)
5661
return hci_le_reject_cis_sync(hdev, conn, reason);
5662
5663
if (conn->type == BIS_LINK || conn->type == PA_LINK)
5664
return -EINVAL;
5665
5666
if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5667
return hci_reject_sco_sync(hdev, conn, reason);
5668
5669
memset(&cp, 0, sizeof(cp));
5670
bacpy(&cp.bdaddr, &conn->dst);
5671
cp.reason = reason;
5672
5673
return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5674
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5675
}
5676
5677
int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5678
{
5679
int err = 0;
5680
u16 handle = conn->handle;
5681
bool disconnect = false;
5682
struct hci_conn *c;
5683
5684
switch (conn->state) {
5685
case BT_CONNECTED:
5686
case BT_CONFIG:
5687
err = hci_disconnect_sync(hdev, conn, reason);
5688
break;
5689
case BT_CONNECT:
5690
err = hci_connect_cancel_sync(hdev, conn, reason);
5691
break;
5692
case BT_CONNECT2:
5693
err = hci_reject_conn_sync(hdev, conn, reason);
5694
break;
5695
case BT_OPEN:
5696
case BT_BOUND:
5697
break;
5698
default:
5699
disconnect = true;
5700
break;
5701
}
5702
5703
hci_dev_lock(hdev);
5704
5705
/* Check if the connection has been cleaned up concurrently */
5706
c = hci_conn_hash_lookup_handle(hdev, handle);
5707
if (!c || c != conn) {
5708
err = 0;
5709
goto unlock;
5710
}
5711
5712
/* Cleanup hci_conn object if it cannot be cancelled as it
5713
* likely means the controller and host stack are out of sync
5714
* or in case of LE it was still scanning so it can be cleanup
5715
* safely.
5716
*/
5717
if (disconnect) {
5718
conn->state = BT_CLOSED;
5719
hci_disconn_cfm(conn, reason);
5720
hci_conn_del(conn);
5721
} else {
5722
hci_conn_failed(conn, reason);
5723
}
5724
5725
unlock:
5726
hci_dev_unlock(hdev);
5727
return err;
5728
}
5729
5730
static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5731
{
5732
struct list_head *head = &hdev->conn_hash.list;
5733
struct hci_conn *conn;
5734
5735
rcu_read_lock();
5736
while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5737
/* Make sure the connection is not freed while unlocking */
5738
conn = hci_conn_get(conn);
5739
rcu_read_unlock();
5740
/* Disregard possible errors since hci_conn_del shall have been
5741
* called even in case of errors had occurred since it would
5742
* then cause hci_conn_failed to be called which calls
5743
* hci_conn_del internally.
5744
*/
5745
hci_abort_conn_sync(hdev, conn, reason);
5746
hci_conn_put(conn);
5747
rcu_read_lock();
5748
}
5749
rcu_read_unlock();
5750
5751
return 0;
5752
}
5753
5754
/* This function perform power off HCI command sequence as follows:
5755
*
5756
* Clear Advertising
5757
* Stop Discovery
5758
* Disconnect all connections
5759
* hci_dev_close_sync
5760
*/
5761
static int hci_power_off_sync(struct hci_dev *hdev)
5762
{
5763
int err;
5764
5765
/* If controller is already down there is nothing to do */
5766
if (!test_bit(HCI_UP, &hdev->flags))
5767
return 0;
5768
5769
hci_dev_set_flag(hdev, HCI_POWERING_DOWN);
5770
5771
if (test_bit(HCI_ISCAN, &hdev->flags) ||
5772
test_bit(HCI_PSCAN, &hdev->flags)) {
5773
err = hci_write_scan_enable_sync(hdev, 0x00);
5774
if (err)
5775
goto out;
5776
}
5777
5778
err = hci_clear_adv_sync(hdev, NULL, false);
5779
if (err)
5780
goto out;
5781
5782
err = hci_stop_discovery_sync(hdev);
5783
if (err)
5784
goto out;
5785
5786
/* Terminated due to Power Off */
5787
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5788
if (err)
5789
goto out;
5790
5791
err = hci_dev_close_sync(hdev);
5792
5793
out:
5794
hci_dev_clear_flag(hdev, HCI_POWERING_DOWN);
5795
return err;
5796
}
5797
5798
int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5799
{
5800
if (val)
5801
return hci_power_on_sync(hdev);
5802
5803
return hci_power_off_sync(hdev);
5804
}
5805
5806
static int hci_write_iac_sync(struct hci_dev *hdev)
5807
{
5808
struct hci_cp_write_current_iac_lap cp;
5809
5810
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5811
return 0;
5812
5813
memset(&cp, 0, sizeof(cp));
5814
5815
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5816
/* Limited discoverable mode */
5817
cp.num_iac = min_t(u8, hdev->num_iac, 2);
5818
cp.iac_lap[0] = 0x00; /* LIAC */
5819
cp.iac_lap[1] = 0x8b;
5820
cp.iac_lap[2] = 0x9e;
5821
cp.iac_lap[3] = 0x33; /* GIAC */
5822
cp.iac_lap[4] = 0x8b;
5823
cp.iac_lap[5] = 0x9e;
5824
} else {
5825
/* General discoverable mode */
5826
cp.num_iac = 1;
5827
cp.iac_lap[0] = 0x33; /* GIAC */
5828
cp.iac_lap[1] = 0x8b;
5829
cp.iac_lap[2] = 0x9e;
5830
}
5831
5832
return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5833
(cp.num_iac * 3) + 1, &cp,
5834
HCI_CMD_TIMEOUT);
5835
}
5836
5837
int hci_update_discoverable_sync(struct hci_dev *hdev)
5838
{
5839
int err = 0;
5840
5841
if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5842
err = hci_write_iac_sync(hdev);
5843
if (err)
5844
return err;
5845
5846
err = hci_update_scan_sync(hdev);
5847
if (err)
5848
return err;
5849
5850
err = hci_update_class_sync(hdev);
5851
if (err)
5852
return err;
5853
}
5854
5855
/* Advertising instances don't use the global discoverable setting, so
5856
* only update AD if advertising was enabled using Set Advertising.
5857
*/
5858
if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5859
err = hci_update_adv_data_sync(hdev, 0x00);
5860
if (err)
5861
return err;
5862
5863
/* Discoverable mode affects the local advertising
5864
* address in limited privacy mode.
5865
*/
5866
if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5867
if (ext_adv_capable(hdev))
5868
err = hci_start_ext_adv_sync(hdev, 0x00);
5869
else
5870
err = hci_enable_advertising_sync(hdev);
5871
}
5872
}
5873
5874
return err;
5875
}
5876
5877
static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5878
{
5879
return hci_update_discoverable_sync(hdev);
5880
}
5881
5882
int hci_update_discoverable(struct hci_dev *hdev)
5883
{
5884
/* Only queue if it would have any effect */
5885
if (hdev_is_powered(hdev) &&
5886
hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5887
hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5888
hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5889
return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5890
NULL);
5891
5892
return 0;
5893
}
5894
5895
int hci_update_connectable_sync(struct hci_dev *hdev)
5896
{
5897
int err;
5898
5899
err = hci_update_scan_sync(hdev);
5900
if (err)
5901
return err;
5902
5903
/* If BR/EDR is not enabled and we disable advertising as a
5904
* by-product of disabling connectable, we need to update the
5905
* advertising flags.
5906
*/
5907
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5908
err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5909
5910
/* Update the advertising parameters if necessary */
5911
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5912
!list_empty(&hdev->adv_instances)) {
5913
if (ext_adv_capable(hdev))
5914
err = hci_start_ext_adv_sync(hdev,
5915
hdev->cur_adv_instance);
5916
else
5917
err = hci_enable_advertising_sync(hdev);
5918
5919
if (err)
5920
return err;
5921
}
5922
5923
return hci_update_passive_scan_sync(hdev);
5924
}
5925
5926
int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp)
5927
{
5928
const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5929
const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5930
struct hci_cp_inquiry cp;
5931
5932
bt_dev_dbg(hdev, "");
5933
5934
if (test_bit(HCI_INQUIRY, &hdev->flags))
5935
return 0;
5936
5937
hci_dev_lock(hdev);
5938
hci_inquiry_cache_flush(hdev);
5939
hci_dev_unlock(hdev);
5940
5941
memset(&cp, 0, sizeof(cp));
5942
5943
if (hdev->discovery.limited)
5944
memcpy(&cp.lap, liac, sizeof(cp.lap));
5945
else
5946
memcpy(&cp.lap, giac, sizeof(cp.lap));
5947
5948
cp.length = length;
5949
cp.num_rsp = num_rsp;
5950
5951
return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5952
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5953
}
5954
5955
static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5956
{
5957
u8 own_addr_type;
5958
/* Accept list is not used for discovery */
5959
u8 filter_policy = 0x00;
5960
/* Default is to enable duplicates filter */
5961
u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5962
int err;
5963
5964
bt_dev_dbg(hdev, "");
5965
5966
/* If controller is scanning, it means the passive scanning is
5967
* running. Thus, we should temporarily stop it in order to set the
5968
* discovery scanning parameters.
5969
*/
5970
err = hci_scan_disable_sync(hdev);
5971
if (err) {
5972
bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5973
return err;
5974
}
5975
5976
cancel_interleave_scan(hdev);
5977
5978
/* Pause address resolution for active scan and stop advertising if
5979
* privacy is enabled.
5980
*/
5981
err = hci_pause_addr_resolution(hdev);
5982
if (err)
5983
goto failed;
5984
5985
/* All active scans will be done with either a resolvable private
5986
* address (when privacy feature has been enabled) or non-resolvable
5987
* private address.
5988
*/
5989
err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5990
&own_addr_type);
5991
if (err < 0)
5992
own_addr_type = ADDR_LE_DEV_PUBLIC;
5993
5994
if (hci_is_adv_monitoring(hdev) ||
5995
(hci_test_quirk(hdev, HCI_QUIRK_STRICT_DUPLICATE_FILTER) &&
5996
hdev->discovery.result_filtering)) {
5997
/* Duplicate filter should be disabled when some advertisement
5998
* monitor is activated, otherwise AdvMon can only receive one
5999
* advertisement for one peer(*) during active scanning, and
6000
* might report loss to these peers.
6001
*
6002
* If controller does strict duplicate filtering and the
6003
* discovery requires result filtering disables controller based
6004
* filtering since that can cause reports that would match the
6005
* host filter to not be reported.
6006
*/
6007
filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
6008
}
6009
6010
err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
6011
hdev->le_scan_window_discovery,
6012
own_addr_type, filter_policy, filter_dup);
6013
if (!err)
6014
return err;
6015
6016
failed:
6017
/* Resume advertising if it was paused */
6018
if (ll_privacy_capable(hdev))
6019
hci_resume_advertising_sync(hdev);
6020
6021
/* Resume passive scanning */
6022
hci_update_passive_scan_sync(hdev);
6023
return err;
6024
}
6025
6026
static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
6027
{
6028
int err;
6029
6030
bt_dev_dbg(hdev, "");
6031
6032
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
6033
if (err)
6034
return err;
6035
6036
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
6037
}
6038
6039
int hci_start_discovery_sync(struct hci_dev *hdev)
6040
{
6041
unsigned long timeout;
6042
int err;
6043
6044
bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
6045
6046
switch (hdev->discovery.type) {
6047
case DISCOV_TYPE_BREDR:
6048
return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
6049
case DISCOV_TYPE_INTERLEAVED:
6050
/* When running simultaneous discovery, the LE scanning time
6051
* should occupy the whole discovery time sine BR/EDR inquiry
6052
* and LE scanning are scheduled by the controller.
6053
*
6054
* For interleaving discovery in comparison, BR/EDR inquiry
6055
* and LE scanning are done sequentially with separate
6056
* timeouts.
6057
*/
6058
if (hci_test_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY)) {
6059
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
6060
/* During simultaneous discovery, we double LE scan
6061
* interval. We must leave some time for the controller
6062
* to do BR/EDR inquiry.
6063
*/
6064
err = hci_start_interleaved_discovery_sync(hdev);
6065
break;
6066
}
6067
6068
timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
6069
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
6070
break;
6071
case DISCOV_TYPE_LE:
6072
timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
6073
err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
6074
break;
6075
default:
6076
return -EINVAL;
6077
}
6078
6079
if (err)
6080
return err;
6081
6082
bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
6083
6084
queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
6085
timeout);
6086
return 0;
6087
}
6088
6089
static void hci_suspend_monitor_sync(struct hci_dev *hdev)
6090
{
6091
switch (hci_get_adv_monitor_offload_ext(hdev)) {
6092
case HCI_ADV_MONITOR_EXT_MSFT:
6093
msft_suspend_sync(hdev);
6094
break;
6095
default:
6096
return;
6097
}
6098
}
6099
6100
/* This function disables discovery and mark it as paused */
6101
static int hci_pause_discovery_sync(struct hci_dev *hdev)
6102
{
6103
int old_state = hdev->discovery.state;
6104
int err;
6105
6106
/* If discovery already stopped/stopping/paused there nothing to do */
6107
if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
6108
hdev->discovery_paused)
6109
return 0;
6110
6111
hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
6112
err = hci_stop_discovery_sync(hdev);
6113
if (err)
6114
return err;
6115
6116
hdev->discovery_paused = true;
6117
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
6118
6119
return 0;
6120
}
6121
6122
static int hci_update_event_filter_sync(struct hci_dev *hdev)
6123
{
6124
struct bdaddr_list_with_flags *b;
6125
u8 scan = SCAN_DISABLED;
6126
bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
6127
int err;
6128
6129
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
6130
return 0;
6131
6132
/* Some fake CSR controllers lock up after setting this type of
6133
* filter, so avoid sending the request altogether.
6134
*/
6135
if (hci_test_quirk(hdev, HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL))
6136
return 0;
6137
6138
/* Always clear event filter when starting */
6139
hci_clear_event_filter_sync(hdev);
6140
6141
list_for_each_entry(b, &hdev->accept_list, list) {
6142
if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
6143
continue;
6144
6145
bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
6146
6147
err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
6148
HCI_CONN_SETUP_ALLOW_BDADDR,
6149
&b->bdaddr,
6150
HCI_CONN_SETUP_AUTO_ON);
6151
if (err)
6152
bt_dev_err(hdev, "Failed to set event filter for %pMR",
6153
&b->bdaddr);
6154
else
6155
scan = SCAN_PAGE;
6156
}
6157
6158
if (scan && !scanning)
6159
hci_write_scan_enable_sync(hdev, scan);
6160
else if (!scan && scanning)
6161
hci_write_scan_enable_sync(hdev, scan);
6162
6163
return 0;
6164
}
6165
6166
/* This function disables scan (BR and LE) and mark it as paused */
6167
static int hci_pause_scan_sync(struct hci_dev *hdev)
6168
{
6169
if (hdev->scanning_paused)
6170
return 0;
6171
6172
/* Disable page scan if enabled */
6173
if (test_bit(HCI_PSCAN, &hdev->flags))
6174
hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
6175
6176
hci_scan_disable_sync(hdev);
6177
6178
hdev->scanning_paused = true;
6179
6180
return 0;
6181
}
6182
6183
/* This function performs the HCI suspend procedures in the follow order:
6184
*
6185
* Pause discovery (active scanning/inquiry)
6186
* Pause Directed Advertising/Advertising
6187
* Pause Scanning (passive scanning in case discovery was not active)
6188
* Disconnect all connections
6189
* Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
6190
* otherwise:
6191
* Update event mask (only set events that are allowed to wake up the host)
6192
* Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
6193
* Update passive scanning (lower duty cycle)
6194
* Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
6195
*/
6196
int hci_suspend_sync(struct hci_dev *hdev)
6197
{
6198
int err;
6199
6200
/* If marked as suspended there nothing to do */
6201
if (hdev->suspended)
6202
return 0;
6203
6204
/* Mark device as suspended */
6205
hdev->suspended = true;
6206
6207
/* Pause discovery if not already stopped */
6208
hci_pause_discovery_sync(hdev);
6209
6210
/* Pause other advertisements */
6211
hci_pause_advertising_sync(hdev);
6212
6213
/* Suspend monitor filters */
6214
hci_suspend_monitor_sync(hdev);
6215
6216
/* Prevent disconnects from causing scanning to be re-enabled */
6217
hci_pause_scan_sync(hdev);
6218
6219
if (hci_conn_count(hdev)) {
6220
/* Soft disconnect everything (power off) */
6221
err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
6222
if (err) {
6223
/* Set state to BT_RUNNING so resume doesn't notify */
6224
hdev->suspend_state = BT_RUNNING;
6225
hci_resume_sync(hdev);
6226
return err;
6227
}
6228
6229
/* Update event mask so only the allowed event can wakeup the
6230
* host.
6231
*/
6232
hci_set_event_mask_sync(hdev);
6233
}
6234
6235
/* Only configure accept list if disconnect succeeded and wake
6236
* isn't being prevented.
6237
*/
6238
if (!hdev->wakeup || !hdev->wakeup(hdev)) {
6239
hdev->suspend_state = BT_SUSPEND_DISCONNECT;
6240
return 0;
6241
}
6242
6243
/* Unpause to take care of updating scanning params */
6244
hdev->scanning_paused = false;
6245
6246
/* Enable event filter for paired devices */
6247
hci_update_event_filter_sync(hdev);
6248
6249
/* Update LE passive scan if enabled */
6250
hci_update_passive_scan_sync(hdev);
6251
6252
/* Pause scan changes again. */
6253
hdev->scanning_paused = true;
6254
6255
hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
6256
6257
return 0;
6258
}
6259
6260
/* This function resumes discovery */
6261
static int hci_resume_discovery_sync(struct hci_dev *hdev)
6262
{
6263
int err;
6264
6265
/* If discovery not paused there nothing to do */
6266
if (!hdev->discovery_paused)
6267
return 0;
6268
6269
hdev->discovery_paused = false;
6270
6271
hci_discovery_set_state(hdev, DISCOVERY_STARTING);
6272
6273
err = hci_start_discovery_sync(hdev);
6274
6275
hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
6276
DISCOVERY_FINDING);
6277
6278
return err;
6279
}
6280
6281
static void hci_resume_monitor_sync(struct hci_dev *hdev)
6282
{
6283
switch (hci_get_adv_monitor_offload_ext(hdev)) {
6284
case HCI_ADV_MONITOR_EXT_MSFT:
6285
msft_resume_sync(hdev);
6286
break;
6287
default:
6288
return;
6289
}
6290
}
6291
6292
/* This function resume scan and reset paused flag */
6293
static int hci_resume_scan_sync(struct hci_dev *hdev)
6294
{
6295
if (!hdev->scanning_paused)
6296
return 0;
6297
6298
hdev->scanning_paused = false;
6299
6300
hci_update_scan_sync(hdev);
6301
6302
/* Reset passive scanning to normal */
6303
hci_update_passive_scan_sync(hdev);
6304
6305
return 0;
6306
}
6307
6308
/* This function performs the HCI suspend procedures in the follow order:
6309
*
6310
* Restore event mask
6311
* Clear event filter
6312
* Update passive scanning (normal duty cycle)
6313
* Resume Directed Advertising/Advertising
6314
* Resume discovery (active scanning/inquiry)
6315
*/
6316
int hci_resume_sync(struct hci_dev *hdev)
6317
{
6318
/* If not marked as suspended there nothing to do */
6319
if (!hdev->suspended)
6320
return 0;
6321
6322
hdev->suspended = false;
6323
6324
/* Restore event mask */
6325
hci_set_event_mask_sync(hdev);
6326
6327
/* Clear any event filters and restore scan state */
6328
hci_clear_event_filter_sync(hdev);
6329
6330
/* Resume scanning */
6331
hci_resume_scan_sync(hdev);
6332
6333
/* Resume monitor filters */
6334
hci_resume_monitor_sync(hdev);
6335
6336
/* Resume other advertisements */
6337
hci_resume_advertising_sync(hdev);
6338
6339
/* Resume discovery */
6340
hci_resume_discovery_sync(hdev);
6341
6342
return 0;
6343
}
6344
6345
static bool conn_use_rpa(struct hci_conn *conn)
6346
{
6347
struct hci_dev *hdev = conn->hdev;
6348
6349
return hci_dev_test_flag(hdev, HCI_PRIVACY);
6350
}
6351
6352
static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6353
struct hci_conn *conn)
6354
{
6355
struct hci_cp_le_set_ext_adv_params cp;
6356
struct hci_rp_le_set_ext_adv_params rp;
6357
int err;
6358
bdaddr_t random_addr;
6359
u8 own_addr_type;
6360
6361
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6362
&own_addr_type);
6363
if (err)
6364
return err;
6365
6366
/* Set require_privacy to false so that the remote device has a
6367
* chance of identifying us.
6368
*/
6369
err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6370
&own_addr_type, &random_addr);
6371
if (err)
6372
return err;
6373
6374
memset(&cp, 0, sizeof(cp));
6375
6376
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6377
cp.channel_map = hdev->le_adv_channel_map;
6378
cp.tx_power = HCI_TX_POWER_INVALID;
6379
cp.primary_phy = HCI_ADV_PHY_1M;
6380
cp.secondary_phy = HCI_ADV_PHY_1M;
6381
cp.handle = 0x00; /* Use instance 0 for directed adv */
6382
cp.own_addr_type = own_addr_type;
6383
cp.peer_addr_type = conn->dst_type;
6384
bacpy(&cp.peer_addr, &conn->dst);
6385
6386
/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6387
* advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6388
* does not supports advertising data when the advertising set already
6389
* contains some, the controller shall return erroc code 'Invalid
6390
* HCI Command Parameters(0x12).
6391
* So it is required to remove adv set for handle 0x00. since we use
6392
* instance 0 for directed adv.
6393
*/
6394
err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6395
if (err)
6396
return err;
6397
6398
err = hci_set_ext_adv_params_sync(hdev, NULL, &cp, &rp);
6399
if (err)
6400
return err;
6401
6402
/* Update adv data as tx power is known now */
6403
err = hci_set_ext_adv_data_sync(hdev, cp.handle);
6404
if (err)
6405
return err;
6406
6407
/* Check if random address need to be updated */
6408
if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6409
bacmp(&random_addr, BDADDR_ANY) &&
6410
bacmp(&random_addr, &hdev->random_addr)) {
6411
err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6412
&random_addr);
6413
if (err)
6414
return err;
6415
}
6416
6417
return hci_enable_ext_advertising_sync(hdev, 0x00);
6418
}
6419
6420
static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6421
struct hci_conn *conn)
6422
{
6423
struct hci_cp_le_set_adv_param cp;
6424
u8 status;
6425
u8 own_addr_type;
6426
u8 enable;
6427
6428
if (ext_adv_capable(hdev))
6429
return hci_le_ext_directed_advertising_sync(hdev, conn);
6430
6431
/* Clear the HCI_LE_ADV bit temporarily so that the
6432
* hci_update_random_address knows that it's safe to go ahead
6433
* and write a new random address. The flag will be set back on
6434
* as soon as the SET_ADV_ENABLE HCI command completes.
6435
*/
6436
hci_dev_clear_flag(hdev, HCI_LE_ADV);
6437
6438
/* Set require_privacy to false so that the remote device has a
6439
* chance of identifying us.
6440
*/
6441
status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6442
&own_addr_type);
6443
if (status)
6444
return status;
6445
6446
memset(&cp, 0, sizeof(cp));
6447
6448
/* Some controllers might reject command if intervals are not
6449
* within range for undirected advertising.
6450
* BCM20702A0 is known to be affected by this.
6451
*/
6452
cp.min_interval = cpu_to_le16(0x0020);
6453
cp.max_interval = cpu_to_le16(0x0020);
6454
6455
cp.type = LE_ADV_DIRECT_IND;
6456
cp.own_address_type = own_addr_type;
6457
cp.direct_addr_type = conn->dst_type;
6458
bacpy(&cp.direct_addr, &conn->dst);
6459
cp.channel_map = hdev->le_adv_channel_map;
6460
6461
status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6462
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6463
if (status)
6464
return status;
6465
6466
enable = 0x01;
6467
6468
return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6469
sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6470
}
6471
6472
static void set_ext_conn_params(struct hci_conn *conn,
6473
struct hci_cp_le_ext_conn_param *p)
6474
{
6475
struct hci_dev *hdev = conn->hdev;
6476
6477
memset(p, 0, sizeof(*p));
6478
6479
p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6480
p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6481
p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6482
p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6483
p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6484
p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6485
p->min_ce_len = cpu_to_le16(0x0000);
6486
p->max_ce_len = cpu_to_le16(0x0000);
6487
}
6488
6489
static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6490
struct hci_conn *conn, u8 own_addr_type)
6491
{
6492
struct hci_cp_le_ext_create_conn *cp;
6493
struct hci_cp_le_ext_conn_param *p;
6494
u8 data[sizeof(*cp) + sizeof(*p) * 3];
6495
u32 plen;
6496
6497
cp = (void *)data;
6498
p = (void *)cp->data;
6499
6500
memset(cp, 0, sizeof(*cp));
6501
6502
bacpy(&cp->peer_addr, &conn->dst);
6503
cp->peer_addr_type = conn->dst_type;
6504
cp->own_addr_type = own_addr_type;
6505
6506
plen = sizeof(*cp);
6507
6508
if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M ||
6509
conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) {
6510
cp->phys |= LE_SCAN_PHY_1M;
6511
set_ext_conn_params(conn, p);
6512
6513
p++;
6514
plen += sizeof(*p);
6515
}
6516
6517
if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M ||
6518
conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) {
6519
cp->phys |= LE_SCAN_PHY_2M;
6520
set_ext_conn_params(conn, p);
6521
6522
p++;
6523
plen += sizeof(*p);
6524
}
6525
6526
if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED ||
6527
conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) {
6528
cp->phys |= LE_SCAN_PHY_CODED;
6529
set_ext_conn_params(conn, p);
6530
6531
plen += sizeof(*p);
6532
}
6533
6534
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6535
plen, data,
6536
HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6537
conn->conn_timeout, NULL);
6538
}
6539
6540
static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data)
6541
{
6542
struct hci_cp_le_create_conn cp;
6543
struct hci_conn_params *params;
6544
u8 own_addr_type;
6545
int err;
6546
struct hci_conn *conn = data;
6547
6548
if (!hci_conn_valid(hdev, conn))
6549
return -ECANCELED;
6550
6551
bt_dev_dbg(hdev, "conn %p", conn);
6552
6553
clear_bit(HCI_CONN_SCANNING, &conn->flags);
6554
conn->state = BT_CONNECT;
6555
6556
/* If requested to connect as peripheral use directed advertising */
6557
if (conn->role == HCI_ROLE_SLAVE) {
6558
/* If we're active scanning and simultaneous roles is not
6559
* enabled simply reject the attempt.
6560
*/
6561
if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6562
hdev->le_scan_type == LE_SCAN_ACTIVE &&
6563
!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6564
hci_conn_del(conn);
6565
return -EBUSY;
6566
}
6567
6568
/* Pause advertising while doing directed advertising. */
6569
hci_pause_advertising_sync(hdev);
6570
6571
err = hci_le_directed_advertising_sync(hdev, conn);
6572
goto done;
6573
}
6574
6575
/* Disable advertising if simultaneous roles is not in use. */
6576
if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6577
hci_pause_advertising_sync(hdev);
6578
6579
params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6580
if (params) {
6581
conn->le_conn_min_interval = params->conn_min_interval;
6582
conn->le_conn_max_interval = params->conn_max_interval;
6583
conn->le_conn_latency = params->conn_latency;
6584
conn->le_supv_timeout = params->supervision_timeout;
6585
} else {
6586
conn->le_conn_min_interval = hdev->le_conn_min_interval;
6587
conn->le_conn_max_interval = hdev->le_conn_max_interval;
6588
conn->le_conn_latency = hdev->le_conn_latency;
6589
conn->le_supv_timeout = hdev->le_supv_timeout;
6590
}
6591
6592
/* If controller is scanning, we stop it since some controllers are
6593
* not able to scan and connect at the same time. Also set the
6594
* HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6595
* handler for scan disabling knows to set the correct discovery
6596
* state.
6597
*/
6598
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6599
hci_scan_disable_sync(hdev);
6600
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6601
}
6602
6603
/* Update random address, but set require_privacy to false so
6604
* that we never connect with an non-resolvable address.
6605
*/
6606
err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6607
&own_addr_type);
6608
if (err)
6609
goto done;
6610
/* Send command LE Extended Create Connection if supported */
6611
if (use_ext_conn(hdev)) {
6612
err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6613
goto done;
6614
}
6615
6616
memset(&cp, 0, sizeof(cp));
6617
6618
cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6619
cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6620
6621
bacpy(&cp.peer_addr, &conn->dst);
6622
cp.peer_addr_type = conn->dst_type;
6623
cp.own_address_type = own_addr_type;
6624
cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6625
cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6626
cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6627
cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6628
cp.min_ce_len = cpu_to_le16(0x0000);
6629
cp.max_ce_len = cpu_to_le16(0x0000);
6630
6631
/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6632
*
6633
* If this event is unmasked and the HCI_LE_Connection_Complete event
6634
* is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6635
* sent when a new connection has been created.
6636
*/
6637
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6638
sizeof(cp), &cp,
6639
use_enhanced_conn_complete(hdev) ?
6640
HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6641
HCI_EV_LE_CONN_COMPLETE,
6642
conn->conn_timeout, NULL);
6643
6644
done:
6645
if (err == -ETIMEDOUT)
6646
hci_le_connect_cancel_sync(hdev, conn, 0x00);
6647
6648
/* Re-enable advertising after the connection attempt is finished. */
6649
hci_resume_advertising_sync(hdev);
6650
return err;
6651
}
6652
6653
int hci_le_create_cis_sync(struct hci_dev *hdev)
6654
{
6655
DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f);
6656
size_t aux_num_cis = 0;
6657
struct hci_conn *conn;
6658
u8 cig = BT_ISO_QOS_CIG_UNSET;
6659
6660
/* The spec allows only one pending LE Create CIS command at a time. If
6661
* the command is pending now, don't do anything. We check for pending
6662
* connections after each CIS Established event.
6663
*
6664
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6665
* page 2566:
6666
*
6667
* If the Host issues this command before all the
6668
* HCI_LE_CIS_Established events from the previous use of the
6669
* command have been generated, the Controller shall return the
6670
* error code Command Disallowed (0x0C).
6671
*
6672
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6673
* page 2567:
6674
*
6675
* When the Controller receives the HCI_LE_Create_CIS command, the
6676
* Controller sends the HCI_Command_Status event to the Host. An
6677
* HCI_LE_CIS_Established event will be generated for each CIS when it
6678
* is established or if it is disconnected or considered lost before
6679
* being established; until all the events are generated, the command
6680
* remains pending.
6681
*/
6682
6683
hci_dev_lock(hdev);
6684
6685
rcu_read_lock();
6686
6687
/* Wait until previous Create CIS has completed */
6688
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6689
if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6690
goto done;
6691
}
6692
6693
/* Find CIG with all CIS ready */
6694
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6695
struct hci_conn *link;
6696
6697
if (hci_conn_check_create_cis(conn))
6698
continue;
6699
6700
cig = conn->iso_qos.ucast.cig;
6701
6702
list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6703
if (hci_conn_check_create_cis(link) > 0 &&
6704
link->iso_qos.ucast.cig == cig &&
6705
link->state != BT_CONNECTED) {
6706
cig = BT_ISO_QOS_CIG_UNSET;
6707
break;
6708
}
6709
}
6710
6711
if (cig != BT_ISO_QOS_CIG_UNSET)
6712
break;
6713
}
6714
6715
if (cig == BT_ISO_QOS_CIG_UNSET)
6716
goto done;
6717
6718
list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6719
struct hci_cis *cis = &cmd->cis[aux_num_cis];
6720
6721
if (hci_conn_check_create_cis(conn) ||
6722
conn->iso_qos.ucast.cig != cig)
6723
continue;
6724
6725
set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6726
cis->acl_handle = cpu_to_le16(conn->parent->handle);
6727
cis->cis_handle = cpu_to_le16(conn->handle);
6728
aux_num_cis++;
6729
6730
if (aux_num_cis >= cmd->num_cis)
6731
break;
6732
}
6733
cmd->num_cis = aux_num_cis;
6734
6735
done:
6736
rcu_read_unlock();
6737
6738
hci_dev_unlock(hdev);
6739
6740
if (!aux_num_cis)
6741
return 0;
6742
6743
/* Wait for HCI_LE_CIS_Established */
6744
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6745
struct_size(cmd, cis, cmd->num_cis),
6746
cmd, HCI_EVT_LE_CIS_ESTABLISHED,
6747
conn->conn_timeout, NULL);
6748
}
6749
6750
int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6751
{
6752
struct hci_cp_le_remove_cig cp;
6753
6754
memset(&cp, 0, sizeof(cp));
6755
cp.cig_id = handle;
6756
6757
return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6758
&cp, HCI_CMD_TIMEOUT);
6759
}
6760
6761
int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6762
{
6763
struct hci_cp_le_big_term_sync cp;
6764
6765
memset(&cp, 0, sizeof(cp));
6766
cp.handle = handle;
6767
6768
return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6769
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6770
}
6771
6772
int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6773
{
6774
struct hci_cp_le_pa_term_sync cp;
6775
6776
memset(&cp, 0, sizeof(cp));
6777
cp.handle = cpu_to_le16(handle);
6778
6779
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6780
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6781
}
6782
6783
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6784
bool use_rpa, struct adv_info *adv_instance,
6785
u8 *own_addr_type, bdaddr_t *rand_addr)
6786
{
6787
int err;
6788
6789
bacpy(rand_addr, BDADDR_ANY);
6790
6791
/* If privacy is enabled use a resolvable private address. If
6792
* current RPA has expired then generate a new one.
6793
*/
6794
if (use_rpa) {
6795
/* If Controller supports LL Privacy use own address type is
6796
* 0x03
6797
*/
6798
if (ll_privacy_capable(hdev))
6799
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6800
else
6801
*own_addr_type = ADDR_LE_DEV_RANDOM;
6802
6803
if (adv_instance) {
6804
if (adv_rpa_valid(adv_instance))
6805
return 0;
6806
} else {
6807
if (rpa_valid(hdev))
6808
return 0;
6809
}
6810
6811
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6812
if (err < 0) {
6813
bt_dev_err(hdev, "failed to generate new RPA");
6814
return err;
6815
}
6816
6817
bacpy(rand_addr, &hdev->rpa);
6818
6819
return 0;
6820
}
6821
6822
/* In case of required privacy without resolvable private address,
6823
* use an non-resolvable private address. This is useful for
6824
* non-connectable advertising.
6825
*/
6826
if (require_privacy) {
6827
bdaddr_t nrpa;
6828
6829
while (true) {
6830
/* The non-resolvable private address is generated
6831
* from random six bytes with the two most significant
6832
* bits cleared.
6833
*/
6834
get_random_bytes(&nrpa, 6);
6835
nrpa.b[5] &= 0x3f;
6836
6837
/* The non-resolvable private address shall not be
6838
* equal to the public address.
6839
*/
6840
if (bacmp(&hdev->bdaddr, &nrpa))
6841
break;
6842
}
6843
6844
*own_addr_type = ADDR_LE_DEV_RANDOM;
6845
bacpy(rand_addr, &nrpa);
6846
6847
return 0;
6848
}
6849
6850
/* No privacy, use the current address */
6851
hci_copy_identity_address(hdev, rand_addr, own_addr_type);
6852
6853
return 0;
6854
}
6855
6856
static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6857
{
6858
u8 instance = PTR_UINT(data);
6859
6860
return hci_update_adv_data_sync(hdev, instance);
6861
}
6862
6863
int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6864
{
6865
return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6866
UINT_PTR(instance), NULL);
6867
}
6868
6869
static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data)
6870
{
6871
struct hci_conn *conn = data;
6872
struct inquiry_entry *ie;
6873
struct hci_cp_create_conn cp;
6874
int err;
6875
6876
if (!hci_conn_valid(hdev, conn))
6877
return -ECANCELED;
6878
6879
/* Many controllers disallow HCI Create Connection while it is doing
6880
* HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
6881
* Connection. This may cause the MGMT discovering state to become false
6882
* without user space's request but it is okay since the MGMT Discovery
6883
* APIs do not promise that discovery should be done forever. Instead,
6884
* the user space monitors the status of MGMT discovering and it may
6885
* request for discovery again when this flag becomes false.
6886
*/
6887
if (test_bit(HCI_INQUIRY, &hdev->flags)) {
6888
err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0,
6889
NULL, HCI_CMD_TIMEOUT);
6890
if (err)
6891
bt_dev_warn(hdev, "Failed to cancel inquiry %d", err);
6892
}
6893
6894
conn->state = BT_CONNECT;
6895
conn->out = true;
6896
conn->role = HCI_ROLE_MASTER;
6897
6898
conn->attempt++;
6899
6900
conn->link_policy = hdev->link_policy;
6901
6902
memset(&cp, 0, sizeof(cp));
6903
bacpy(&cp.bdaddr, &conn->dst);
6904
cp.pscan_rep_mode = 0x02;
6905
6906
ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
6907
if (ie) {
6908
if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
6909
cp.pscan_rep_mode = ie->data.pscan_rep_mode;
6910
cp.pscan_mode = ie->data.pscan_mode;
6911
cp.clock_offset = ie->data.clock_offset |
6912
cpu_to_le16(0x8000);
6913
}
6914
6915
memcpy(conn->dev_class, ie->data.dev_class, 3);
6916
}
6917
6918
cp.pkt_type = cpu_to_le16(conn->pkt_type);
6919
if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
6920
cp.role_switch = 0x01;
6921
else
6922
cp.role_switch = 0x00;
6923
6924
return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN,
6925
sizeof(cp), &cp,
6926
HCI_EV_CONN_COMPLETE,
6927
conn->conn_timeout, NULL);
6928
}
6929
6930
int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn)
6931
{
6932
return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn,
6933
NULL);
6934
}
6935
6936
static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err)
6937
{
6938
struct hci_conn *conn = data;
6939
6940
bt_dev_dbg(hdev, "err %d", err);
6941
6942
if (err == -ECANCELED)
6943
return;
6944
6945
hci_dev_lock(hdev);
6946
6947
if (!hci_conn_valid(hdev, conn))
6948
goto done;
6949
6950
if (!err) {
6951
hci_connect_le_scan_cleanup(conn, 0x00);
6952
goto done;
6953
}
6954
6955
/* Check if connection is still pending */
6956
if (conn != hci_lookup_le_connect(hdev))
6957
goto done;
6958
6959
/* Flush to make sure we send create conn cancel command if needed */
6960
flush_delayed_work(&conn->le_conn_timeout);
6961
hci_conn_failed(conn, bt_status(err));
6962
6963
done:
6964
hci_dev_unlock(hdev);
6965
}
6966
6967
int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn)
6968
{
6969
return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn,
6970
create_le_conn_complete);
6971
}
6972
6973
int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn)
6974
{
6975
if (conn->state != BT_OPEN)
6976
return -EINVAL;
6977
6978
switch (conn->type) {
6979
case ACL_LINK:
6980
return !hci_cmd_sync_dequeue_once(hdev,
6981
hci_acl_create_conn_sync,
6982
conn, NULL);
6983
case LE_LINK:
6984
return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync,
6985
conn, create_le_conn_complete);
6986
}
6987
6988
return -ENOENT;
6989
}
6990
6991
int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn,
6992
struct hci_conn_params *params)
6993
{
6994
struct hci_cp_le_conn_update cp;
6995
6996
memset(&cp, 0, sizeof(cp));
6997
cp.handle = cpu_to_le16(conn->handle);
6998
cp.conn_interval_min = cpu_to_le16(params->conn_min_interval);
6999
cp.conn_interval_max = cpu_to_le16(params->conn_max_interval);
7000
cp.conn_latency = cpu_to_le16(params->conn_latency);
7001
cp.supervision_timeout = cpu_to_le16(params->supervision_timeout);
7002
cp.min_ce_len = cpu_to_le16(0x0000);
7003
cp.max_ce_len = cpu_to_le16(0x0000);
7004
7005
return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE,
7006
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7007
}
7008
7009
static void create_pa_complete(struct hci_dev *hdev, void *data, int err)
7010
{
7011
struct hci_conn *conn = data;
7012
struct hci_conn *pa_sync;
7013
7014
bt_dev_dbg(hdev, "err %d", err);
7015
7016
if (err == -ECANCELED)
7017
return;
7018
7019
hci_dev_lock(hdev);
7020
7021
if (hci_conn_valid(hdev, conn))
7022
clear_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags);
7023
7024
if (!err)
7025
goto unlock;
7026
7027
/* Add connection to indicate PA sync error */
7028
pa_sync = hci_conn_add_unset(hdev, PA_LINK, BDADDR_ANY, 0,
7029
HCI_ROLE_SLAVE);
7030
7031
if (IS_ERR(pa_sync))
7032
goto unlock;
7033
7034
set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags);
7035
7036
/* Notify iso layer */
7037
hci_connect_cfm(pa_sync, bt_status(err));
7038
7039
unlock:
7040
hci_dev_unlock(hdev);
7041
}
7042
7043
static int hci_le_past_params_sync(struct hci_dev *hdev, struct hci_conn *conn,
7044
struct hci_conn *acl, struct bt_iso_qos *qos)
7045
{
7046
struct hci_cp_le_past_params cp;
7047
int err;
7048
7049
memset(&cp, 0, sizeof(cp));
7050
cp.handle = cpu_to_le16(acl->handle);
7051
/* An HCI_LE_Periodic_Advertising_Sync_Transfer_Received event is sent
7052
* to the Host. HCI_LE_Periodic_Advertising_Report events will be
7053
* enabled with duplicate filtering enabled.
7054
*/
7055
cp.mode = 0x03;
7056
cp.skip = cpu_to_le16(qos->bcast.skip);
7057
cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout);
7058
cp.cte_type = qos->bcast.sync_cte_type;
7059
7060
/* HCI_LE_PAST_PARAMS command returns a command complete event so it
7061
* cannot wait for HCI_EV_LE_PAST_RECEIVED.
7062
*/
7063
err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST_PARAMS,
7064
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7065
if (err)
7066
return err;
7067
7068
/* Wait for HCI_EV_LE_PAST_RECEIVED event */
7069
return __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL,
7070
HCI_EV_LE_PAST_RECEIVED,
7071
conn->conn_timeout, NULL);
7072
}
7073
7074
static int hci_le_pa_create_sync(struct hci_dev *hdev, void *data)
7075
{
7076
struct hci_cp_le_pa_create_sync cp;
7077
struct hci_conn *conn = data, *le;
7078
struct bt_iso_qos *qos = &conn->iso_qos;
7079
int err;
7080
7081
if (!hci_conn_valid(hdev, conn))
7082
return -ECANCELED;
7083
7084
if (conn->sync_handle != HCI_SYNC_HANDLE_INVALID)
7085
return -EINVAL;
7086
7087
if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC))
7088
return -EBUSY;
7089
7090
/* Stop scanning if SID has not been set and active scanning is enabled
7091
* so we use passive scanning which will be scanning using the allow
7092
* list programmed to contain only the connection address.
7093
*/
7094
if (conn->sid == HCI_SID_INVALID &&
7095
hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
7096
hci_scan_disable_sync(hdev);
7097
hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
7098
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
7099
}
7100
7101
/* Mark HCI_CONN_CREATE_PA_SYNC so hci_update_passive_scan_sync can
7102
* program the address in the allow list so PA advertisements can be
7103
* received.
7104
*/
7105
set_bit(HCI_CONN_CREATE_PA_SYNC, &conn->flags);
7106
7107
hci_update_passive_scan_sync(hdev);
7108
7109
/* Check if PAST is possible:
7110
*
7111
* 1. Check if an ACL connection with the destination address exists
7112
* 2. Check if that HCI_CONN_FLAG_PAST has been set which indicates that
7113
* user really intended to use PAST.
7114
*/
7115
le = hci_conn_hash_lookup_le(hdev, &conn->dst, conn->dst_type);
7116
if (le) {
7117
struct hci_conn_params *params;
7118
7119
params = hci_conn_params_lookup(hdev, &le->dst, le->dst_type);
7120
if (params && params->flags & HCI_CONN_FLAG_PAST) {
7121
err = hci_le_past_params_sync(hdev, conn, le, qos);
7122
if (!err)
7123
goto done;
7124
}
7125
}
7126
7127
/* SID has not been set listen for HCI_EV_LE_EXT_ADV_REPORT to update
7128
* it.
7129
*/
7130
if (conn->sid == HCI_SID_INVALID) {
7131
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_NOP, 0, NULL,
7132
HCI_EV_LE_EXT_ADV_REPORT,
7133
conn->conn_timeout, NULL);
7134
if (err == -ETIMEDOUT)
7135
goto done;
7136
}
7137
7138
memset(&cp, 0, sizeof(cp));
7139
cp.options = qos->bcast.options;
7140
cp.sid = conn->sid;
7141
cp.addr_type = conn->dst_type;
7142
bacpy(&cp.addr, &conn->dst);
7143
cp.skip = cpu_to_le16(qos->bcast.skip);
7144
cp.sync_timeout = cpu_to_le16(qos->bcast.sync_timeout);
7145
cp.sync_cte_type = qos->bcast.sync_cte_type;
7146
7147
/* The spec allows only one pending LE Periodic Advertising Create
7148
* Sync command at a time so we forcefully wait for PA Sync Established
7149
* event since cmd_work can only schedule one command at a time.
7150
*
7151
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
7152
* page 2493:
7153
*
7154
* If the Host issues this command when another HCI_LE_Periodic_
7155
* Advertising_Create_Sync command is pending, the Controller shall
7156
* return the error code Command Disallowed (0x0C).
7157
*/
7158
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_PA_CREATE_SYNC,
7159
sizeof(cp), &cp,
7160
HCI_EV_LE_PA_SYNC_ESTABLISHED,
7161
conn->conn_timeout, NULL);
7162
if (err == -ETIMEDOUT)
7163
__hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC_CANCEL,
7164
0, NULL, HCI_CMD_TIMEOUT);
7165
7166
done:
7167
hci_dev_clear_flag(hdev, HCI_PA_SYNC);
7168
7169
/* Update passive scan since HCI_PA_SYNC flag has been cleared */
7170
hci_update_passive_scan_sync(hdev);
7171
7172
return err;
7173
}
7174
7175
int hci_connect_pa_sync(struct hci_dev *hdev, struct hci_conn *conn)
7176
{
7177
return hci_cmd_sync_queue_once(hdev, hci_le_pa_create_sync, conn,
7178
create_pa_complete);
7179
}
7180
7181
static void create_big_complete(struct hci_dev *hdev, void *data, int err)
7182
{
7183
struct hci_conn *conn = data;
7184
7185
bt_dev_dbg(hdev, "err %d", err);
7186
7187
if (err == -ECANCELED)
7188
return;
7189
7190
if (hci_conn_valid(hdev, conn))
7191
clear_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags);
7192
}
7193
7194
static int hci_le_big_create_sync(struct hci_dev *hdev, void *data)
7195
{
7196
DEFINE_FLEX(struct hci_cp_le_big_create_sync, cp, bis, num_bis, 0x11);
7197
struct hci_conn *conn = data;
7198
struct bt_iso_qos *qos = &conn->iso_qos;
7199
int err;
7200
7201
if (!hci_conn_valid(hdev, conn))
7202
return -ECANCELED;
7203
7204
set_bit(HCI_CONN_CREATE_BIG_SYNC, &conn->flags);
7205
7206
memset(cp, 0, sizeof(*cp));
7207
cp->handle = qos->bcast.big;
7208
cp->sync_handle = cpu_to_le16(conn->sync_handle);
7209
cp->encryption = qos->bcast.encryption;
7210
memcpy(cp->bcode, qos->bcast.bcode, sizeof(cp->bcode));
7211
cp->mse = qos->bcast.mse;
7212
cp->timeout = cpu_to_le16(qos->bcast.timeout);
7213
cp->num_bis = conn->num_bis;
7214
memcpy(cp->bis, conn->bis, conn->num_bis);
7215
7216
/* The spec allows only one pending LE BIG Create Sync command at
7217
* a time, so we forcefully wait for BIG Sync Established event since
7218
* cmd_work can only schedule one command at a time.
7219
*
7220
* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
7221
* page 2586:
7222
*
7223
* If the Host sends this command when the Controller is in the
7224
* process of synchronizing to any BIG, i.e. the HCI_LE_BIG_Sync_
7225
* Established event has not been generated, the Controller shall
7226
* return the error code Command Disallowed (0x0C).
7227
*/
7228
err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_BIG_CREATE_SYNC,
7229
struct_size(cp, bis, cp->num_bis), cp,
7230
HCI_EVT_LE_BIG_SYNC_ESTABLISHED,
7231
conn->conn_timeout, NULL);
7232
if (err == -ETIMEDOUT)
7233
hci_le_big_terminate_sync(hdev, cp->handle);
7234
7235
return err;
7236
}
7237
7238
int hci_connect_big_sync(struct hci_dev *hdev, struct hci_conn *conn)
7239
{
7240
return hci_cmd_sync_queue_once(hdev, hci_le_big_create_sync, conn,
7241
create_big_complete);
7242
}
7243
7244
struct past_data {
7245
struct hci_conn *conn;
7246
struct hci_conn *le;
7247
};
7248
7249
static void past_complete(struct hci_dev *hdev, void *data, int err)
7250
{
7251
struct past_data *past = data;
7252
7253
bt_dev_dbg(hdev, "err %d", err);
7254
7255
kfree(past);
7256
}
7257
7258
static int hci_le_past_set_info_sync(struct hci_dev *hdev, void *data)
7259
{
7260
struct past_data *past = data;
7261
struct hci_cp_le_past_set_info cp;
7262
7263
hci_dev_lock(hdev);
7264
7265
if (!hci_conn_valid(hdev, past->conn) ||
7266
!hci_conn_valid(hdev, past->le)) {
7267
hci_dev_unlock(hdev);
7268
return -ECANCELED;
7269
}
7270
7271
memset(&cp, 0, sizeof(cp));
7272
cp.handle = cpu_to_le16(past->le->handle);
7273
cp.adv_handle = past->conn->iso_qos.bcast.bis;
7274
7275
hci_dev_unlock(hdev);
7276
7277
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST_SET_INFO,
7278
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7279
}
7280
7281
static int hci_le_past_sync(struct hci_dev *hdev, void *data)
7282
{
7283
struct past_data *past = data;
7284
struct hci_cp_le_past cp;
7285
7286
hci_dev_lock(hdev);
7287
7288
if (!hci_conn_valid(hdev, past->conn) ||
7289
!hci_conn_valid(hdev, past->le)) {
7290
hci_dev_unlock(hdev);
7291
return -ECANCELED;
7292
}
7293
7294
memset(&cp, 0, sizeof(cp));
7295
cp.handle = cpu_to_le16(past->le->handle);
7296
cp.sync_handle = cpu_to_le16(past->conn->sync_handle);
7297
7298
hci_dev_unlock(hdev);
7299
7300
return __hci_cmd_sync_status(hdev, HCI_OP_LE_PAST,
7301
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7302
}
7303
7304
int hci_past_sync(struct hci_conn *conn, struct hci_conn *le)
7305
{
7306
struct past_data *data;
7307
int err;
7308
7309
if (conn->type != BIS_LINK && conn->type != PA_LINK)
7310
return -EINVAL;
7311
7312
if (!past_sender_capable(conn->hdev))
7313
return -EOPNOTSUPP;
7314
7315
data = kmalloc(sizeof(*data), GFP_KERNEL);
7316
if (!data)
7317
return -ENOMEM;
7318
7319
data->conn = conn;
7320
data->le = le;
7321
7322
if (conn->role == HCI_ROLE_MASTER)
7323
err = hci_cmd_sync_queue_once(conn->hdev,
7324
hci_le_past_set_info_sync, data,
7325
past_complete);
7326
else
7327
err = hci_cmd_sync_queue_once(conn->hdev, hci_le_past_sync,
7328
data, past_complete);
7329
7330
if (err)
7331
kfree(data);
7332
7333
return err;
7334
}
7335
7336
static void le_read_features_complete(struct hci_dev *hdev, void *data, int err)
7337
{
7338
struct hci_conn *conn = data;
7339
7340
bt_dev_dbg(hdev, "err %d", err);
7341
7342
if (err == -ECANCELED)
7343
return;
7344
7345
hci_conn_drop(conn);
7346
}
7347
7348
static int hci_le_read_all_remote_features_sync(struct hci_dev *hdev,
7349
void *data)
7350
{
7351
struct hci_conn *conn = data;
7352
struct hci_cp_le_read_all_remote_features cp;
7353
7354
memset(&cp, 0, sizeof(cp));
7355
cp.handle = cpu_to_le16(conn->handle);
7356
cp.pages = 10; /* Attempt to read all pages */
7357
7358
/* Wait for HCI_EVT_LE_ALL_REMOTE_FEATURES_COMPLETE event otherwise
7359
* hci_conn_drop may run prematurely causing a disconnection.
7360
*/
7361
return __hci_cmd_sync_status_sk(hdev,
7362
HCI_OP_LE_READ_ALL_REMOTE_FEATURES,
7363
sizeof(cp), &cp,
7364
HCI_EVT_LE_ALL_REMOTE_FEATURES_COMPLETE,
7365
HCI_CMD_TIMEOUT, NULL);
7366
7367
return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ALL_REMOTE_FEATURES,
7368
sizeof(cp), &cp, HCI_CMD_TIMEOUT);
7369
}
7370
7371
static int hci_le_read_remote_features_sync(struct hci_dev *hdev, void *data)
7372
{
7373
struct hci_conn *conn = data;
7374
struct hci_cp_le_read_remote_features cp;
7375
7376
if (!hci_conn_valid(hdev, conn))
7377
return -ECANCELED;
7378
7379
/* Check if LL Extended Feature Set is supported and
7380
* HCI_OP_LE_READ_ALL_REMOTE_FEATURES is supported then use that to read
7381
* all features.
7382
*/
7383
if (ll_ext_feature_capable(hdev) && hdev->commands[47] & BIT(3))
7384
return hci_le_read_all_remote_features_sync(hdev, data);
7385
7386
memset(&cp, 0, sizeof(cp));
7387
cp.handle = cpu_to_le16(conn->handle);
7388
7389
/* Wait for HCI_EV_LE_REMOTE_FEAT_COMPLETE event otherwise
7390
* hci_conn_drop may run prematurely causing a disconnection.
7391
*/
7392
return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_READ_REMOTE_FEATURES,
7393
sizeof(cp), &cp,
7394
HCI_EV_LE_REMOTE_FEAT_COMPLETE,
7395
HCI_CMD_TIMEOUT, NULL);
7396
}
7397
7398
int hci_le_read_remote_features(struct hci_conn *conn)
7399
{
7400
struct hci_dev *hdev = conn->hdev;
7401
int err;
7402
7403
/* The remote features procedure is defined for central
7404
* role only. So only in case of an initiated connection
7405
* request the remote features.
7406
*
7407
* If the local controller supports peripheral-initiated features
7408
* exchange, then requesting the remote features in peripheral
7409
* role is possible. Otherwise just transition into the
7410
* connected state without requesting the remote features.
7411
*/
7412
if (conn->out || (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES))
7413
err = hci_cmd_sync_queue_once(hdev,
7414
hci_le_read_remote_features_sync,
7415
hci_conn_hold(conn),
7416
le_read_features_complete);
7417
else
7418
err = -EOPNOTSUPP;
7419
7420
return err;
7421
}
7422
7423