Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/can/af_can.c
26278 views
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2
/* af_can.c - Protocol family CAN core module
3
* (used by different CAN protocol modules)
4
*
5
* Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
* 3. Neither the name of Volkswagen nor the names of its contributors
17
* may be used to endorse or promote products derived from this software
18
* without specific prior written permission.
19
*
20
* Alternatively, provided that this notice is retained in full, this
21
* software may be distributed under the terms of the GNU General
22
* Public License ("GPL") version 2, in which case the provisions of the
23
* GPL apply INSTEAD OF those given above.
24
*
25
* The provided data structures and external interfaces from this code
26
* are not restricted to be used by modules with a GPL compatible license.
27
*
28
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39
* DAMAGE.
40
*
41
*/
42
43
#include <linux/module.h>
44
#include <linux/stddef.h>
45
#include <linux/init.h>
46
#include <linux/kmod.h>
47
#include <linux/slab.h>
48
#include <linux/list.h>
49
#include <linux/spinlock.h>
50
#include <linux/rcupdate.h>
51
#include <linux/uaccess.h>
52
#include <linux/net.h>
53
#include <linux/netdevice.h>
54
#include <linux/socket.h>
55
#include <linux/if_ether.h>
56
#include <linux/if_arp.h>
57
#include <linux/skbuff.h>
58
#include <linux/can.h>
59
#include <linux/can/core.h>
60
#include <linux/can/skb.h>
61
#include <linux/can/can-ml.h>
62
#include <linux/ratelimit.h>
63
#include <net/net_namespace.h>
64
#include <net/sock.h>
65
66
#include "af_can.h"
67
68
MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69
MODULE_LICENSE("Dual BSD/GPL");
70
MODULE_AUTHOR("Urs Thuermann <[email protected]>, "
71
"Oliver Hartkopp <[email protected]>");
72
73
MODULE_ALIAS_NETPROTO(PF_CAN);
74
75
static int stats_timer __read_mostly = 1;
76
module_param(stats_timer, int, 0444);
77
MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79
static struct kmem_cache *rcv_cache __read_mostly;
80
81
/* table of registered CAN protocols */
82
static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83
static DEFINE_MUTEX(proto_tab_lock);
84
85
static atomic_t skbcounter = ATOMIC_INIT(0);
86
87
/* af_can socket functions */
88
89
void can_sock_destruct(struct sock *sk)
90
{
91
skb_queue_purge(&sk->sk_receive_queue);
92
skb_queue_purge(&sk->sk_error_queue);
93
}
94
EXPORT_SYMBOL(can_sock_destruct);
95
96
static const struct can_proto *can_get_proto(int protocol)
97
{
98
const struct can_proto *cp;
99
100
rcu_read_lock();
101
cp = rcu_dereference(proto_tab[protocol]);
102
if (cp && !try_module_get(cp->prot->owner))
103
cp = NULL;
104
rcu_read_unlock();
105
106
return cp;
107
}
108
109
static inline void can_put_proto(const struct can_proto *cp)
110
{
111
module_put(cp->prot->owner);
112
}
113
114
static int can_create(struct net *net, struct socket *sock, int protocol,
115
int kern)
116
{
117
struct sock *sk;
118
const struct can_proto *cp;
119
int err = 0;
120
121
sock->state = SS_UNCONNECTED;
122
123
if (protocol < 0 || protocol >= CAN_NPROTO)
124
return -EINVAL;
125
126
cp = can_get_proto(protocol);
127
128
#ifdef CONFIG_MODULES
129
if (!cp) {
130
/* try to load protocol module if kernel is modular */
131
132
err = request_module("can-proto-%d", protocol);
133
134
/* In case of error we only print a message but don't
135
* return the error code immediately. Below we will
136
* return -EPROTONOSUPPORT
137
*/
138
if (err)
139
pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140
protocol);
141
142
cp = can_get_proto(protocol);
143
}
144
#endif
145
146
/* check for available protocol and correct usage */
147
148
if (!cp)
149
return -EPROTONOSUPPORT;
150
151
if (cp->type != sock->type) {
152
err = -EPROTOTYPE;
153
goto errout;
154
}
155
156
sock->ops = cp->ops;
157
158
sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159
if (!sk) {
160
err = -ENOMEM;
161
goto errout;
162
}
163
164
sock_init_data(sock, sk);
165
sk->sk_destruct = can_sock_destruct;
166
167
if (sk->sk_prot->init)
168
err = sk->sk_prot->init(sk);
169
170
if (err) {
171
/* release sk on errors */
172
sock_orphan(sk);
173
sock_put(sk);
174
sock->sk = NULL;
175
} else {
176
sock_prot_inuse_add(net, sk->sk_prot, 1);
177
}
178
179
errout:
180
can_put_proto(cp);
181
return err;
182
}
183
184
/* af_can tx path */
185
186
/**
187
* can_send - transmit a CAN frame (optional with local loopback)
188
* @skb: pointer to socket buffer with CAN frame in data section
189
* @loop: loopback for listeners on local CAN sockets (recommended default!)
190
*
191
* Due to the loopback this routine must not be called from hardirq context.
192
*
193
* Return:
194
* 0 on success
195
* -ENETDOWN when the selected interface is down
196
* -ENOBUFS on full driver queue (see net_xmit_errno())
197
* -ENOMEM when local loopback failed at calling skb_clone()
198
* -EPERM when trying to send on a non-CAN interface
199
* -EMSGSIZE CAN frame size is bigger than CAN interface MTU
200
* -EINVAL when the skb->data does not contain a valid CAN frame
201
*/
202
int can_send(struct sk_buff *skb, int loop)
203
{
204
struct sk_buff *newskb = NULL;
205
struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
206
int err = -EINVAL;
207
208
if (can_is_canxl_skb(skb)) {
209
skb->protocol = htons(ETH_P_CANXL);
210
} else if (can_is_can_skb(skb)) {
211
skb->protocol = htons(ETH_P_CAN);
212
} else if (can_is_canfd_skb(skb)) {
213
struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
214
215
skb->protocol = htons(ETH_P_CANFD);
216
217
/* set CAN FD flag for CAN FD frames by default */
218
cfd->flags |= CANFD_FDF;
219
} else {
220
goto inval_skb;
221
}
222
223
/* Make sure the CAN frame can pass the selected CAN netdevice. */
224
if (unlikely(skb->len > skb->dev->mtu)) {
225
err = -EMSGSIZE;
226
goto inval_skb;
227
}
228
229
if (unlikely(skb->dev->type != ARPHRD_CAN)) {
230
err = -EPERM;
231
goto inval_skb;
232
}
233
234
if (unlikely(!(skb->dev->flags & IFF_UP))) {
235
err = -ENETDOWN;
236
goto inval_skb;
237
}
238
239
skb->ip_summed = CHECKSUM_UNNECESSARY;
240
241
skb_reset_mac_header(skb);
242
skb_reset_network_header(skb);
243
skb_reset_transport_header(skb);
244
245
if (loop) {
246
/* local loopback of sent CAN frames */
247
248
/* indication for the CAN driver: do loopback */
249
skb->pkt_type = PACKET_LOOPBACK;
250
251
/* The reference to the originating sock may be required
252
* by the receiving socket to check whether the frame is
253
* its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
254
* Therefore we have to ensure that skb->sk remains the
255
* reference to the originating sock by restoring skb->sk
256
* after each skb_clone() or skb_orphan() usage.
257
*/
258
259
if (!(skb->dev->flags & IFF_ECHO)) {
260
/* If the interface is not capable to do loopback
261
* itself, we do it here.
262
*/
263
newskb = skb_clone(skb, GFP_ATOMIC);
264
if (!newskb) {
265
kfree_skb(skb);
266
return -ENOMEM;
267
}
268
269
can_skb_set_owner(newskb, skb->sk);
270
newskb->ip_summed = CHECKSUM_UNNECESSARY;
271
newskb->pkt_type = PACKET_BROADCAST;
272
}
273
} else {
274
/* indication for the CAN driver: no loopback required */
275
skb->pkt_type = PACKET_HOST;
276
}
277
278
/* send to netdevice */
279
err = dev_queue_xmit(skb);
280
if (err > 0)
281
err = net_xmit_errno(err);
282
283
if (err) {
284
kfree_skb(newskb);
285
return err;
286
}
287
288
if (newskb)
289
netif_rx(newskb);
290
291
/* update statistics */
292
atomic_long_inc(&pkg_stats->tx_frames);
293
atomic_long_inc(&pkg_stats->tx_frames_delta);
294
295
return 0;
296
297
inval_skb:
298
kfree_skb(skb);
299
return err;
300
}
301
EXPORT_SYMBOL(can_send);
302
303
/* af_can rx path */
304
305
static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
306
struct net_device *dev)
307
{
308
if (dev) {
309
struct can_ml_priv *can_ml = can_get_ml_priv(dev);
310
return &can_ml->dev_rcv_lists;
311
} else {
312
return net->can.rx_alldev_list;
313
}
314
}
315
316
/**
317
* effhash - hash function for 29 bit CAN identifier reduction
318
* @can_id: 29 bit CAN identifier
319
*
320
* Description:
321
* To reduce the linear traversal in one linked list of _single_ EFF CAN
322
* frame subscriptions the 29 bit identifier is mapped to 10 bits.
323
* (see CAN_EFF_RCV_HASH_BITS definition)
324
*
325
* Return:
326
* Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
327
*/
328
static unsigned int effhash(canid_t can_id)
329
{
330
unsigned int hash;
331
332
hash = can_id;
333
hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
334
hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
335
336
return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
337
}
338
339
/**
340
* can_rcv_list_find - determine optimal filterlist inside device filter struct
341
* @can_id: pointer to CAN identifier of a given can_filter
342
* @mask: pointer to CAN mask of a given can_filter
343
* @dev_rcv_lists: pointer to the device filter struct
344
*
345
* Description:
346
* Returns the optimal filterlist to reduce the filter handling in the
347
* receive path. This function is called by service functions that need
348
* to register or unregister a can_filter in the filter lists.
349
*
350
* A filter matches in general, when
351
*
352
* <received_can_id> & mask == can_id & mask
353
*
354
* so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
355
* relevant bits for the filter.
356
*
357
* The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
358
* filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
359
* frames there is a special filterlist and a special rx path filter handling.
360
*
361
* Return:
362
* Pointer to optimal filterlist for the given can_id/mask pair.
363
* Consistency checked mask.
364
* Reduced can_id to have a preprocessed filter compare value.
365
*/
366
static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
367
struct can_dev_rcv_lists *dev_rcv_lists)
368
{
369
canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
370
371
/* filter for error message frames in extra filterlist */
372
if (*mask & CAN_ERR_FLAG) {
373
/* clear CAN_ERR_FLAG in filter entry */
374
*mask &= CAN_ERR_MASK;
375
return &dev_rcv_lists->rx[RX_ERR];
376
}
377
378
/* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
379
380
#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
381
382
/* ensure valid values in can_mask for 'SFF only' frame filtering */
383
if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
384
*mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
385
386
/* reduce condition testing at receive time */
387
*can_id &= *mask;
388
389
/* inverse can_id/can_mask filter */
390
if (inv)
391
return &dev_rcv_lists->rx[RX_INV];
392
393
/* mask == 0 => no condition testing at receive time */
394
if (!(*mask))
395
return &dev_rcv_lists->rx[RX_ALL];
396
397
/* extra filterlists for the subscription of a single non-RTR can_id */
398
if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
399
!(*can_id & CAN_RTR_FLAG)) {
400
if (*can_id & CAN_EFF_FLAG) {
401
if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
402
return &dev_rcv_lists->rx_eff[effhash(*can_id)];
403
} else {
404
if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
405
return &dev_rcv_lists->rx_sff[*can_id];
406
}
407
}
408
409
/* default: filter via can_id/can_mask */
410
return &dev_rcv_lists->rx[RX_FIL];
411
}
412
413
/**
414
* can_rx_register - subscribe CAN frames from a specific interface
415
* @net: the applicable net namespace
416
* @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
417
* @can_id: CAN identifier (see description)
418
* @mask: CAN mask (see description)
419
* @func: callback function on filter match
420
* @data: returned parameter for callback function
421
* @ident: string for calling module identification
422
* @sk: socket pointer (might be NULL)
423
*
424
* Description:
425
* Invokes the callback function with the received sk_buff and the given
426
* parameter 'data' on a matching receive filter. A filter matches, when
427
*
428
* <received_can_id> & mask == can_id & mask
429
*
430
* The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
431
* filter for error message frames (CAN_ERR_FLAG bit set in mask).
432
*
433
* The provided pointer to the sk_buff is guaranteed to be valid as long as
434
* the callback function is running. The callback function must *not* free
435
* the given sk_buff while processing it's task. When the given sk_buff is
436
* needed after the end of the callback function it must be cloned inside
437
* the callback function with skb_clone().
438
*
439
* Return:
440
* 0 on success
441
* -ENOMEM on missing cache mem to create subscription entry
442
* -ENODEV unknown device
443
*/
444
int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
445
canid_t mask, void (*func)(struct sk_buff *, void *),
446
void *data, char *ident, struct sock *sk)
447
{
448
struct receiver *rcv;
449
struct hlist_head *rcv_list;
450
struct can_dev_rcv_lists *dev_rcv_lists;
451
struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
452
453
/* insert new receiver (dev,canid,mask) -> (func,data) */
454
455
if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
456
return -ENODEV;
457
458
if (dev && !net_eq(net, dev_net(dev)))
459
return -ENODEV;
460
461
rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
462
if (!rcv)
463
return -ENOMEM;
464
465
spin_lock_bh(&net->can.rcvlists_lock);
466
467
dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
468
rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
469
470
rcv->can_id = can_id;
471
rcv->mask = mask;
472
rcv->matches = 0;
473
rcv->func = func;
474
rcv->data = data;
475
rcv->ident = ident;
476
rcv->sk = sk;
477
478
hlist_add_head_rcu(&rcv->list, rcv_list);
479
dev_rcv_lists->entries++;
480
481
rcv_lists_stats->rcv_entries++;
482
rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
483
rcv_lists_stats->rcv_entries);
484
spin_unlock_bh(&net->can.rcvlists_lock);
485
486
return 0;
487
}
488
EXPORT_SYMBOL(can_rx_register);
489
490
/* can_rx_delete_receiver - rcu callback for single receiver entry removal */
491
static void can_rx_delete_receiver(struct rcu_head *rp)
492
{
493
struct receiver *rcv = container_of(rp, struct receiver, rcu);
494
struct sock *sk = rcv->sk;
495
496
kmem_cache_free(rcv_cache, rcv);
497
if (sk)
498
sock_put(sk);
499
}
500
501
/**
502
* can_rx_unregister - unsubscribe CAN frames from a specific interface
503
* @net: the applicable net namespace
504
* @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
505
* @can_id: CAN identifier
506
* @mask: CAN mask
507
* @func: callback function on filter match
508
* @data: returned parameter for callback function
509
*
510
* Description:
511
* Removes subscription entry depending on given (subscription) values.
512
*/
513
void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
514
canid_t mask, void (*func)(struct sk_buff *, void *),
515
void *data)
516
{
517
struct receiver *rcv = NULL;
518
struct hlist_head *rcv_list;
519
struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
520
struct can_dev_rcv_lists *dev_rcv_lists;
521
522
if (dev && dev->type != ARPHRD_CAN)
523
return;
524
525
if (dev && !net_eq(net, dev_net(dev)))
526
return;
527
528
spin_lock_bh(&net->can.rcvlists_lock);
529
530
dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
531
rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
532
533
/* Search the receiver list for the item to delete. This should
534
* exist, since no receiver may be unregistered that hasn't
535
* been registered before.
536
*/
537
hlist_for_each_entry_rcu(rcv, rcv_list, list) {
538
if (rcv->can_id == can_id && rcv->mask == mask &&
539
rcv->func == func && rcv->data == data)
540
break;
541
}
542
543
/* Check for bugs in CAN protocol implementations using af_can.c:
544
* 'rcv' will be NULL if no matching list item was found for removal.
545
* As this case may potentially happen when closing a socket while
546
* the notifier for removing the CAN netdev is running we just print
547
* a warning here.
548
*/
549
if (!rcv) {
550
pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
551
DNAME(dev), can_id, mask);
552
goto out;
553
}
554
555
hlist_del_rcu(&rcv->list);
556
dev_rcv_lists->entries--;
557
558
if (rcv_lists_stats->rcv_entries > 0)
559
rcv_lists_stats->rcv_entries--;
560
561
out:
562
spin_unlock_bh(&net->can.rcvlists_lock);
563
564
/* schedule the receiver item for deletion */
565
if (rcv) {
566
if (rcv->sk)
567
sock_hold(rcv->sk);
568
call_rcu(&rcv->rcu, can_rx_delete_receiver);
569
}
570
}
571
EXPORT_SYMBOL(can_rx_unregister);
572
573
static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
574
{
575
rcv->func(skb, rcv->data);
576
rcv->matches++;
577
}
578
579
static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
580
{
581
struct receiver *rcv;
582
int matches = 0;
583
struct can_frame *cf = (struct can_frame *)skb->data;
584
canid_t can_id = cf->can_id;
585
586
if (dev_rcv_lists->entries == 0)
587
return 0;
588
589
if (can_id & CAN_ERR_FLAG) {
590
/* check for error message frame entries only */
591
hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
592
if (can_id & rcv->mask) {
593
deliver(skb, rcv);
594
matches++;
595
}
596
}
597
return matches;
598
}
599
600
/* check for unfiltered entries */
601
hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
602
deliver(skb, rcv);
603
matches++;
604
}
605
606
/* check for can_id/mask entries */
607
hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
608
if ((can_id & rcv->mask) == rcv->can_id) {
609
deliver(skb, rcv);
610
matches++;
611
}
612
}
613
614
/* check for inverted can_id/mask entries */
615
hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
616
if ((can_id & rcv->mask) != rcv->can_id) {
617
deliver(skb, rcv);
618
matches++;
619
}
620
}
621
622
/* check filterlists for single non-RTR can_ids */
623
if (can_id & CAN_RTR_FLAG)
624
return matches;
625
626
if (can_id & CAN_EFF_FLAG) {
627
hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
628
if (rcv->can_id == can_id) {
629
deliver(skb, rcv);
630
matches++;
631
}
632
}
633
} else {
634
can_id &= CAN_SFF_MASK;
635
hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
636
deliver(skb, rcv);
637
matches++;
638
}
639
}
640
641
return matches;
642
}
643
644
static void can_receive(struct sk_buff *skb, struct net_device *dev)
645
{
646
struct can_dev_rcv_lists *dev_rcv_lists;
647
struct net *net = dev_net(dev);
648
struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
649
int matches;
650
651
/* update statistics */
652
atomic_long_inc(&pkg_stats->rx_frames);
653
atomic_long_inc(&pkg_stats->rx_frames_delta);
654
655
/* create non-zero unique skb identifier together with *skb */
656
while (!(can_skb_prv(skb)->skbcnt))
657
can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
658
659
rcu_read_lock();
660
661
/* deliver the packet to sockets listening on all devices */
662
matches = can_rcv_filter(net->can.rx_alldev_list, skb);
663
664
/* find receive list for this device */
665
dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
666
matches += can_rcv_filter(dev_rcv_lists, skb);
667
668
rcu_read_unlock();
669
670
/* consume the skbuff allocated by the netdevice driver */
671
consume_skb(skb);
672
673
if (matches > 0) {
674
atomic_long_inc(&pkg_stats->matches);
675
atomic_long_inc(&pkg_stats->matches_delta);
676
}
677
}
678
679
static int can_rcv(struct sk_buff *skb, struct net_device *dev,
680
struct packet_type *pt, struct net_device *orig_dev)
681
{
682
if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) {
683
pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
684
dev->type, skb->len);
685
686
kfree_skb_reason(skb, SKB_DROP_REASON_CAN_RX_INVALID_FRAME);
687
return NET_RX_DROP;
688
}
689
690
can_receive(skb, dev);
691
return NET_RX_SUCCESS;
692
}
693
694
static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
695
struct packet_type *pt, struct net_device *orig_dev)
696
{
697
if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) {
698
pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
699
dev->type, skb->len);
700
701
kfree_skb_reason(skb, SKB_DROP_REASON_CANFD_RX_INVALID_FRAME);
702
return NET_RX_DROP;
703
}
704
705
can_receive(skb, dev);
706
return NET_RX_SUCCESS;
707
}
708
709
static int canxl_rcv(struct sk_buff *skb, struct net_device *dev,
710
struct packet_type *pt, struct net_device *orig_dev)
711
{
712
if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) {
713
pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n",
714
dev->type, skb->len);
715
716
kfree_skb_reason(skb, SKB_DROP_REASON_CANXL_RX_INVALID_FRAME);
717
return NET_RX_DROP;
718
}
719
720
can_receive(skb, dev);
721
return NET_RX_SUCCESS;
722
}
723
724
/* af_can protocol functions */
725
726
/**
727
* can_proto_register - register CAN transport protocol
728
* @cp: pointer to CAN protocol structure
729
*
730
* Return:
731
* 0 on success
732
* -EINVAL invalid (out of range) protocol number
733
* -EBUSY protocol already in use
734
* -ENOBUF if proto_register() fails
735
*/
736
int can_proto_register(const struct can_proto *cp)
737
{
738
int proto = cp->protocol;
739
int err = 0;
740
741
if (proto < 0 || proto >= CAN_NPROTO) {
742
pr_err("can: protocol number %d out of range\n", proto);
743
return -EINVAL;
744
}
745
746
err = proto_register(cp->prot, 0);
747
if (err < 0)
748
return err;
749
750
mutex_lock(&proto_tab_lock);
751
752
if (rcu_access_pointer(proto_tab[proto])) {
753
pr_err("can: protocol %d already registered\n", proto);
754
err = -EBUSY;
755
} else {
756
RCU_INIT_POINTER(proto_tab[proto], cp);
757
}
758
759
mutex_unlock(&proto_tab_lock);
760
761
if (err < 0)
762
proto_unregister(cp->prot);
763
764
return err;
765
}
766
EXPORT_SYMBOL(can_proto_register);
767
768
/**
769
* can_proto_unregister - unregister CAN transport protocol
770
* @cp: pointer to CAN protocol structure
771
*/
772
void can_proto_unregister(const struct can_proto *cp)
773
{
774
int proto = cp->protocol;
775
776
mutex_lock(&proto_tab_lock);
777
BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
778
RCU_INIT_POINTER(proto_tab[proto], NULL);
779
mutex_unlock(&proto_tab_lock);
780
781
synchronize_rcu();
782
783
proto_unregister(cp->prot);
784
}
785
EXPORT_SYMBOL(can_proto_unregister);
786
787
static int can_pernet_init(struct net *net)
788
{
789
spin_lock_init(&net->can.rcvlists_lock);
790
net->can.rx_alldev_list =
791
kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
792
if (!net->can.rx_alldev_list)
793
goto out;
794
net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
795
if (!net->can.pkg_stats)
796
goto out_free_rx_alldev_list;
797
net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
798
if (!net->can.rcv_lists_stats)
799
goto out_free_pkg_stats;
800
801
if (IS_ENABLED(CONFIG_PROC_FS)) {
802
/* the statistics are updated every second (timer triggered) */
803
if (stats_timer) {
804
timer_setup(&net->can.stattimer, can_stat_update,
805
0);
806
mod_timer(&net->can.stattimer,
807
round_jiffies(jiffies + HZ));
808
}
809
net->can.pkg_stats->jiffies_init = jiffies;
810
can_init_proc(net);
811
}
812
813
return 0;
814
815
out_free_pkg_stats:
816
kfree(net->can.pkg_stats);
817
out_free_rx_alldev_list:
818
kfree(net->can.rx_alldev_list);
819
out:
820
return -ENOMEM;
821
}
822
823
static void can_pernet_exit(struct net *net)
824
{
825
if (IS_ENABLED(CONFIG_PROC_FS)) {
826
can_remove_proc(net);
827
if (stats_timer)
828
timer_delete_sync(&net->can.stattimer);
829
}
830
831
kfree(net->can.rx_alldev_list);
832
kfree(net->can.pkg_stats);
833
kfree(net->can.rcv_lists_stats);
834
}
835
836
/* af_can module init/exit functions */
837
838
static struct packet_type can_packet __read_mostly = {
839
.type = cpu_to_be16(ETH_P_CAN),
840
.func = can_rcv,
841
};
842
843
static struct packet_type canfd_packet __read_mostly = {
844
.type = cpu_to_be16(ETH_P_CANFD),
845
.func = canfd_rcv,
846
};
847
848
static struct packet_type canxl_packet __read_mostly = {
849
.type = cpu_to_be16(ETH_P_CANXL),
850
.func = canxl_rcv,
851
};
852
853
static const struct net_proto_family can_family_ops = {
854
.family = PF_CAN,
855
.create = can_create,
856
.owner = THIS_MODULE,
857
};
858
859
static struct pernet_operations can_pernet_ops __read_mostly = {
860
.init = can_pernet_init,
861
.exit = can_pernet_exit,
862
};
863
864
static __init int can_init(void)
865
{
866
int err;
867
868
/* check for correct padding to be able to use the structs similarly */
869
BUILD_BUG_ON(offsetof(struct can_frame, len) !=
870
offsetof(struct canfd_frame, len) ||
871
offsetof(struct can_frame, len) !=
872
offsetof(struct canxl_frame, flags) ||
873
offsetof(struct can_frame, data) !=
874
offsetof(struct canfd_frame, data));
875
876
pr_info("can: controller area network core\n");
877
878
rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
879
0, 0, NULL);
880
if (!rcv_cache)
881
return -ENOMEM;
882
883
err = register_pernet_subsys(&can_pernet_ops);
884
if (err)
885
goto out_pernet;
886
887
/* protocol register */
888
err = sock_register(&can_family_ops);
889
if (err)
890
goto out_sock;
891
892
dev_add_pack(&can_packet);
893
dev_add_pack(&canfd_packet);
894
dev_add_pack(&canxl_packet);
895
896
return 0;
897
898
out_sock:
899
unregister_pernet_subsys(&can_pernet_ops);
900
out_pernet:
901
kmem_cache_destroy(rcv_cache);
902
903
return err;
904
}
905
906
static __exit void can_exit(void)
907
{
908
/* protocol unregister */
909
dev_remove_pack(&canxl_packet);
910
dev_remove_pack(&canfd_packet);
911
dev_remove_pack(&can_packet);
912
sock_unregister(PF_CAN);
913
914
unregister_pernet_subsys(&can_pernet_ops);
915
916
rcu_barrier(); /* Wait for completion of call_rcu()'s */
917
918
kmem_cache_destroy(rcv_cache);
919
}
920
921
module_init(can_init);
922
module_exit(can_exit);
923
924