Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ceph/messenger.c
26289 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/ceph/ceph_debug.h>
3
4
#include <linux/crc32c.h>
5
#include <linux/ctype.h>
6
#include <linux/highmem.h>
7
#include <linux/inet.h>
8
#include <linux/kthread.h>
9
#include <linux/net.h>
10
#include <linux/nsproxy.h>
11
#include <linux/sched/mm.h>
12
#include <linux/slab.h>
13
#include <linux/socket.h>
14
#include <linux/string.h>
15
#ifdef CONFIG_BLOCK
16
#include <linux/bio.h>
17
#endif /* CONFIG_BLOCK */
18
#include <linux/dns_resolver.h>
19
#include <net/tcp.h>
20
#include <trace/events/sock.h>
21
22
#include <linux/ceph/ceph_features.h>
23
#include <linux/ceph/libceph.h>
24
#include <linux/ceph/messenger.h>
25
#include <linux/ceph/decode.h>
26
#include <linux/ceph/pagelist.h>
27
#include <linux/export.h>
28
29
/*
30
* Ceph uses the messenger to exchange ceph_msg messages with other
31
* hosts in the system. The messenger provides ordered and reliable
32
* delivery. We tolerate TCP disconnects by reconnecting (with
33
* exponential backoff) in the case of a fault (disconnection, bad
34
* crc, protocol error). Acks allow sent messages to be discarded by
35
* the sender.
36
*/
37
38
/*
39
* We track the state of the socket on a given connection using
40
* values defined below. The transition to a new socket state is
41
* handled by a function which verifies we aren't coming from an
42
* unexpected state.
43
*
44
* --------
45
* | NEW* | transient initial state
46
* --------
47
* | con_sock_state_init()
48
* v
49
* ----------
50
* | CLOSED | initialized, but no socket (and no
51
* ---------- TCP connection)
52
* ^ \
53
* | \ con_sock_state_connecting()
54
* | ----------------------
55
* | \
56
* + con_sock_state_closed() \
57
* |+--------------------------- \
58
* | \ \ \
59
* | ----------- \ \
60
* | | CLOSING | socket event; \ \
61
* | ----------- await close \ \
62
* | ^ \ |
63
* | | \ |
64
* | + con_sock_state_closing() \ |
65
* | / \ | |
66
* | / --------------- | |
67
* | / \ v v
68
* | / --------------
69
* | / -----------------| CONNECTING | socket created, TCP
70
* | | / -------------- connect initiated
71
* | | | con_sock_state_connected()
72
* | | v
73
* -------------
74
* | CONNECTED | TCP connection established
75
* -------------
76
*
77
* State values for ceph_connection->sock_state; NEW is assumed to be 0.
78
*/
79
80
#define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81
#define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82
#define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83
#define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84
#define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86
static bool con_flag_valid(unsigned long con_flag)
87
{
88
switch (con_flag) {
89
case CEPH_CON_F_LOSSYTX:
90
case CEPH_CON_F_KEEPALIVE_PENDING:
91
case CEPH_CON_F_WRITE_PENDING:
92
case CEPH_CON_F_SOCK_CLOSED:
93
case CEPH_CON_F_BACKOFF:
94
return true;
95
default:
96
return false;
97
}
98
}
99
100
void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101
{
102
BUG_ON(!con_flag_valid(con_flag));
103
104
clear_bit(con_flag, &con->flags);
105
}
106
107
void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108
{
109
BUG_ON(!con_flag_valid(con_flag));
110
111
set_bit(con_flag, &con->flags);
112
}
113
114
bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115
{
116
BUG_ON(!con_flag_valid(con_flag));
117
118
return test_bit(con_flag, &con->flags);
119
}
120
121
bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122
unsigned long con_flag)
123
{
124
BUG_ON(!con_flag_valid(con_flag));
125
126
return test_and_clear_bit(con_flag, &con->flags);
127
}
128
129
bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130
unsigned long con_flag)
131
{
132
BUG_ON(!con_flag_valid(con_flag));
133
134
return test_and_set_bit(con_flag, &con->flags);
135
}
136
137
/* Slab caches for frequently-allocated structures */
138
139
static struct kmem_cache *ceph_msg_cache;
140
141
#ifdef CONFIG_LOCKDEP
142
static struct lock_class_key socket_class;
143
#endif
144
145
static void queue_con(struct ceph_connection *con);
146
static void cancel_con(struct ceph_connection *con);
147
static void ceph_con_workfn(struct work_struct *);
148
static void con_fault(struct ceph_connection *con);
149
150
/*
151
* Nicely render a sockaddr as a string. An array of formatted
152
* strings is used, to approximate reentrancy.
153
*/
154
#define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155
#define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156
#define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157
#define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159
static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160
static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162
struct page *ceph_zero_page; /* used in certain error cases */
163
164
const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165
{
166
int i;
167
char *s;
168
struct sockaddr_storage ss = addr->in_addr; /* align */
169
struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170
struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172
i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173
s = addr_str[i];
174
175
switch (ss.ss_family) {
176
case AF_INET:
177
snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178
le32_to_cpu(addr->type), &in4->sin_addr,
179
ntohs(in4->sin_port));
180
break;
181
182
case AF_INET6:
183
snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184
le32_to_cpu(addr->type), &in6->sin6_addr,
185
ntohs(in6->sin6_port));
186
break;
187
188
default:
189
snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190
ss.ss_family);
191
}
192
193
return s;
194
}
195
EXPORT_SYMBOL(ceph_pr_addr);
196
197
void ceph_encode_my_addr(struct ceph_messenger *msgr)
198
{
199
if (!ceph_msgr2(from_msgr(msgr))) {
200
memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201
sizeof(msgr->my_enc_addr));
202
ceph_encode_banner_addr(&msgr->my_enc_addr);
203
}
204
}
205
206
/*
207
* work queue for all reading and writing to/from the socket.
208
*/
209
static struct workqueue_struct *ceph_msgr_wq;
210
211
static int ceph_msgr_slab_init(void)
212
{
213
BUG_ON(ceph_msg_cache);
214
ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215
if (!ceph_msg_cache)
216
return -ENOMEM;
217
218
return 0;
219
}
220
221
static void ceph_msgr_slab_exit(void)
222
{
223
BUG_ON(!ceph_msg_cache);
224
kmem_cache_destroy(ceph_msg_cache);
225
ceph_msg_cache = NULL;
226
}
227
228
static void _ceph_msgr_exit(void)
229
{
230
if (ceph_msgr_wq) {
231
destroy_workqueue(ceph_msgr_wq);
232
ceph_msgr_wq = NULL;
233
}
234
235
BUG_ON(!ceph_zero_page);
236
put_page(ceph_zero_page);
237
ceph_zero_page = NULL;
238
239
ceph_msgr_slab_exit();
240
}
241
242
int __init ceph_msgr_init(void)
243
{
244
if (ceph_msgr_slab_init())
245
return -ENOMEM;
246
247
BUG_ON(ceph_zero_page);
248
ceph_zero_page = ZERO_PAGE(0);
249
get_page(ceph_zero_page);
250
251
/*
252
* The number of active work items is limited by the number of
253
* connections, so leave @max_active at default.
254
*/
255
ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256
if (ceph_msgr_wq)
257
return 0;
258
259
pr_err("msgr_init failed to create workqueue\n");
260
_ceph_msgr_exit();
261
262
return -ENOMEM;
263
}
264
265
void ceph_msgr_exit(void)
266
{
267
BUG_ON(ceph_msgr_wq == NULL);
268
269
_ceph_msgr_exit();
270
}
271
272
void ceph_msgr_flush(void)
273
{
274
flush_workqueue(ceph_msgr_wq);
275
}
276
EXPORT_SYMBOL(ceph_msgr_flush);
277
278
/* Connection socket state transition functions */
279
280
static void con_sock_state_init(struct ceph_connection *con)
281
{
282
int old_state;
283
284
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285
if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286
printk("%s: unexpected old state %d\n", __func__, old_state);
287
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288
CON_SOCK_STATE_CLOSED);
289
}
290
291
static void con_sock_state_connecting(struct ceph_connection *con)
292
{
293
int old_state;
294
295
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296
if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297
printk("%s: unexpected old state %d\n", __func__, old_state);
298
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299
CON_SOCK_STATE_CONNECTING);
300
}
301
302
static void con_sock_state_connected(struct ceph_connection *con)
303
{
304
int old_state;
305
306
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308
printk("%s: unexpected old state %d\n", __func__, old_state);
309
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310
CON_SOCK_STATE_CONNECTED);
311
}
312
313
static void con_sock_state_closing(struct ceph_connection *con)
314
{
315
int old_state;
316
317
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319
old_state != CON_SOCK_STATE_CONNECTED &&
320
old_state != CON_SOCK_STATE_CLOSING))
321
printk("%s: unexpected old state %d\n", __func__, old_state);
322
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323
CON_SOCK_STATE_CLOSING);
324
}
325
326
static void con_sock_state_closed(struct ceph_connection *con)
327
{
328
int old_state;
329
330
old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331
if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332
old_state != CON_SOCK_STATE_CLOSING &&
333
old_state != CON_SOCK_STATE_CONNECTING &&
334
old_state != CON_SOCK_STATE_CLOSED))
335
printk("%s: unexpected old state %d\n", __func__, old_state);
336
dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337
CON_SOCK_STATE_CLOSED);
338
}
339
340
/*
341
* socket callback functions
342
*/
343
344
/* data available on socket, or listen socket received a connect */
345
static void ceph_sock_data_ready(struct sock *sk)
346
{
347
struct ceph_connection *con = sk->sk_user_data;
348
349
trace_sk_data_ready(sk);
350
351
if (atomic_read(&con->msgr->stopping)) {
352
return;
353
}
354
355
if (sk->sk_state != TCP_CLOSE_WAIT) {
356
dout("%s %p state = %d, queueing work\n", __func__,
357
con, con->state);
358
queue_con(con);
359
}
360
}
361
362
/* socket has buffer space for writing */
363
static void ceph_sock_write_space(struct sock *sk)
364
{
365
struct ceph_connection *con = sk->sk_user_data;
366
367
/* only queue to workqueue if there is data we want to write,
368
* and there is sufficient space in the socket buffer to accept
369
* more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370
* doesn't get called again until try_write() fills the socket
371
* buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372
* and net/core/stream.c:sk_stream_write_space().
373
*/
374
if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375
if (sk_stream_is_writeable(sk)) {
376
dout("%s %p queueing write work\n", __func__, con);
377
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378
queue_con(con);
379
}
380
} else {
381
dout("%s %p nothing to write\n", __func__, con);
382
}
383
}
384
385
/* socket's state has changed */
386
static void ceph_sock_state_change(struct sock *sk)
387
{
388
struct ceph_connection *con = sk->sk_user_data;
389
390
dout("%s %p state = %d sk_state = %u\n", __func__,
391
con, con->state, sk->sk_state);
392
393
switch (sk->sk_state) {
394
case TCP_CLOSE:
395
dout("%s TCP_CLOSE\n", __func__);
396
fallthrough;
397
case TCP_CLOSE_WAIT:
398
dout("%s TCP_CLOSE_WAIT\n", __func__);
399
con_sock_state_closing(con);
400
ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401
queue_con(con);
402
break;
403
case TCP_ESTABLISHED:
404
dout("%s TCP_ESTABLISHED\n", __func__);
405
con_sock_state_connected(con);
406
queue_con(con);
407
break;
408
default: /* Everything else is uninteresting */
409
break;
410
}
411
}
412
413
/*
414
* set up socket callbacks
415
*/
416
static void set_sock_callbacks(struct socket *sock,
417
struct ceph_connection *con)
418
{
419
struct sock *sk = sock->sk;
420
sk->sk_user_data = con;
421
sk->sk_data_ready = ceph_sock_data_ready;
422
sk->sk_write_space = ceph_sock_write_space;
423
sk->sk_state_change = ceph_sock_state_change;
424
}
425
426
427
/*
428
* socket helpers
429
*/
430
431
/*
432
* initiate connection to a remote socket.
433
*/
434
int ceph_tcp_connect(struct ceph_connection *con)
435
{
436
struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437
struct socket *sock;
438
unsigned int noio_flag;
439
int ret;
440
441
dout("%s con %p peer_addr %s\n", __func__, con,
442
ceph_pr_addr(&con->peer_addr));
443
BUG_ON(con->sock);
444
445
/* sock_create_kern() allocates with GFP_KERNEL */
446
noio_flag = memalloc_noio_save();
447
ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448
SOCK_STREAM, IPPROTO_TCP, &sock);
449
memalloc_noio_restore(noio_flag);
450
if (ret)
451
return ret;
452
sock->sk->sk_allocation = GFP_NOFS;
453
sock->sk->sk_use_task_frag = false;
454
455
#ifdef CONFIG_LOCKDEP
456
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457
#endif
458
459
set_sock_callbacks(sock, con);
460
461
con_sock_state_connecting(con);
462
ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463
O_NONBLOCK);
464
if (ret == -EINPROGRESS) {
465
dout("connect %s EINPROGRESS sk_state = %u\n",
466
ceph_pr_addr(&con->peer_addr),
467
sock->sk->sk_state);
468
} else if (ret < 0) {
469
pr_err("connect %s error %d\n",
470
ceph_pr_addr(&con->peer_addr), ret);
471
sock_release(sock);
472
return ret;
473
}
474
475
if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476
tcp_sock_set_nodelay(sock->sk);
477
478
con->sock = sock;
479
return 0;
480
}
481
482
/*
483
* Shutdown/close the socket for the given connection.
484
*/
485
int ceph_con_close_socket(struct ceph_connection *con)
486
{
487
int rc = 0;
488
489
dout("%s con %p sock %p\n", __func__, con, con->sock);
490
if (con->sock) {
491
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492
sock_release(con->sock);
493
con->sock = NULL;
494
}
495
496
/*
497
* Forcibly clear the SOCK_CLOSED flag. It gets set
498
* independent of the connection mutex, and we could have
499
* received a socket close event before we had the chance to
500
* shut the socket down.
501
*/
502
ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504
con_sock_state_closed(con);
505
return rc;
506
}
507
508
static void ceph_con_reset_protocol(struct ceph_connection *con)
509
{
510
dout("%s con %p\n", __func__, con);
511
512
ceph_con_close_socket(con);
513
if (con->in_msg) {
514
WARN_ON(con->in_msg->con != con);
515
ceph_msg_put(con->in_msg);
516
con->in_msg = NULL;
517
}
518
if (con->out_msg) {
519
WARN_ON(con->out_msg->con != con);
520
ceph_msg_put(con->out_msg);
521
con->out_msg = NULL;
522
}
523
if (con->bounce_page) {
524
__free_page(con->bounce_page);
525
con->bounce_page = NULL;
526
}
527
528
if (ceph_msgr2(from_msgr(con->msgr)))
529
ceph_con_v2_reset_protocol(con);
530
else
531
ceph_con_v1_reset_protocol(con);
532
}
533
534
/*
535
* Reset a connection. Discard all incoming and outgoing messages
536
* and clear *_seq state.
537
*/
538
static void ceph_msg_remove(struct ceph_msg *msg)
539
{
540
list_del_init(&msg->list_head);
541
542
ceph_msg_put(msg);
543
}
544
545
static void ceph_msg_remove_list(struct list_head *head)
546
{
547
while (!list_empty(head)) {
548
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549
list_head);
550
ceph_msg_remove(msg);
551
}
552
}
553
554
void ceph_con_reset_session(struct ceph_connection *con)
555
{
556
dout("%s con %p\n", __func__, con);
557
558
WARN_ON(con->in_msg);
559
WARN_ON(con->out_msg);
560
ceph_msg_remove_list(&con->out_queue);
561
ceph_msg_remove_list(&con->out_sent);
562
con->out_seq = 0;
563
con->in_seq = 0;
564
con->in_seq_acked = 0;
565
566
if (ceph_msgr2(from_msgr(con->msgr)))
567
ceph_con_v2_reset_session(con);
568
else
569
ceph_con_v1_reset_session(con);
570
}
571
572
/*
573
* mark a peer down. drop any open connections.
574
*/
575
void ceph_con_close(struct ceph_connection *con)
576
{
577
mutex_lock(&con->mutex);
578
dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579
con->state = CEPH_CON_S_CLOSED;
580
581
ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
582
connect */
583
ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585
ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587
ceph_con_reset_protocol(con);
588
ceph_con_reset_session(con);
589
cancel_con(con);
590
mutex_unlock(&con->mutex);
591
}
592
EXPORT_SYMBOL(ceph_con_close);
593
594
/*
595
* Reopen a closed connection, with a new peer address.
596
*/
597
void ceph_con_open(struct ceph_connection *con,
598
__u8 entity_type, __u64 entity_num,
599
struct ceph_entity_addr *addr)
600
{
601
mutex_lock(&con->mutex);
602
dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604
WARN_ON(con->state != CEPH_CON_S_CLOSED);
605
con->state = CEPH_CON_S_PREOPEN;
606
607
con->peer_name.type = (__u8) entity_type;
608
con->peer_name.num = cpu_to_le64(entity_num);
609
610
memcpy(&con->peer_addr, addr, sizeof(*addr));
611
con->delay = 0; /* reset backoff memory */
612
mutex_unlock(&con->mutex);
613
queue_con(con);
614
}
615
EXPORT_SYMBOL(ceph_con_open);
616
617
/*
618
* return true if this connection ever successfully opened
619
*/
620
bool ceph_con_opened(struct ceph_connection *con)
621
{
622
if (ceph_msgr2(from_msgr(con->msgr)))
623
return ceph_con_v2_opened(con);
624
625
return ceph_con_v1_opened(con);
626
}
627
628
/*
629
* initialize a new connection.
630
*/
631
void ceph_con_init(struct ceph_connection *con, void *private,
632
const struct ceph_connection_operations *ops,
633
struct ceph_messenger *msgr)
634
{
635
dout("con_init %p\n", con);
636
memset(con, 0, sizeof(*con));
637
con->private = private;
638
con->ops = ops;
639
con->msgr = msgr;
640
641
con_sock_state_init(con);
642
643
mutex_init(&con->mutex);
644
INIT_LIST_HEAD(&con->out_queue);
645
INIT_LIST_HEAD(&con->out_sent);
646
INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648
con->state = CEPH_CON_S_CLOSED;
649
}
650
EXPORT_SYMBOL(ceph_con_init);
651
652
/*
653
* We maintain a global counter to order connection attempts. Get
654
* a unique seq greater than @gt.
655
*/
656
u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657
{
658
u32 ret;
659
660
spin_lock(&msgr->global_seq_lock);
661
if (msgr->global_seq < gt)
662
msgr->global_seq = gt;
663
ret = ++msgr->global_seq;
664
spin_unlock(&msgr->global_seq_lock);
665
return ret;
666
}
667
668
/*
669
* Discard messages that have been acked by the server.
670
*/
671
void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672
{
673
struct ceph_msg *msg;
674
u64 seq;
675
676
dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677
while (!list_empty(&con->out_sent)) {
678
msg = list_first_entry(&con->out_sent, struct ceph_msg,
679
list_head);
680
WARN_ON(msg->needs_out_seq);
681
seq = le64_to_cpu(msg->hdr.seq);
682
if (seq > ack_seq)
683
break;
684
685
dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686
msg, seq);
687
ceph_msg_remove(msg);
688
}
689
}
690
691
/*
692
* Discard messages that have been requeued in con_fault(), up to
693
* reconnect_seq. This avoids gratuitously resending messages that
694
* the server had received and handled prior to reconnect.
695
*/
696
void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697
{
698
struct ceph_msg *msg;
699
u64 seq;
700
701
dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702
while (!list_empty(&con->out_queue)) {
703
msg = list_first_entry(&con->out_queue, struct ceph_msg,
704
list_head);
705
if (msg->needs_out_seq)
706
break;
707
seq = le64_to_cpu(msg->hdr.seq);
708
if (seq > reconnect_seq)
709
break;
710
711
dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712
msg, seq);
713
ceph_msg_remove(msg);
714
}
715
}
716
717
#ifdef CONFIG_BLOCK
718
719
/*
720
* For a bio data item, a piece is whatever remains of the next
721
* entry in the current bio iovec, or the first entry in the next
722
* bio in the list.
723
*/
724
static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725
size_t length)
726
{
727
struct ceph_msg_data *data = cursor->data;
728
struct ceph_bio_iter *it = &cursor->bio_iter;
729
730
cursor->resid = min_t(size_t, length, data->bio_length);
731
*it = data->bio_pos;
732
if (cursor->resid < it->iter.bi_size)
733
it->iter.bi_size = cursor->resid;
734
735
BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736
}
737
738
static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739
size_t *page_offset,
740
size_t *length)
741
{
742
struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743
cursor->bio_iter.iter);
744
745
*page_offset = bv.bv_offset;
746
*length = bv.bv_len;
747
return bv.bv_page;
748
}
749
750
static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751
size_t bytes)
752
{
753
struct ceph_bio_iter *it = &cursor->bio_iter;
754
struct page *page = bio_iter_page(it->bio, it->iter);
755
756
BUG_ON(bytes > cursor->resid);
757
BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758
cursor->resid -= bytes;
759
bio_advance_iter(it->bio, &it->iter, bytes);
760
761
if (!cursor->resid)
762
return false; /* no more data */
763
764
if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765
page == bio_iter_page(it->bio, it->iter)))
766
return false; /* more bytes to process in this segment */
767
768
if (!it->iter.bi_size) {
769
it->bio = it->bio->bi_next;
770
it->iter = it->bio->bi_iter;
771
if (cursor->resid < it->iter.bi_size)
772
it->iter.bi_size = cursor->resid;
773
}
774
775
BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776
return true;
777
}
778
#endif /* CONFIG_BLOCK */
779
780
static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781
size_t length)
782
{
783
struct ceph_msg_data *data = cursor->data;
784
struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786
cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787
cursor->bvec_iter = data->bvec_pos.iter;
788
cursor->bvec_iter.bi_size = cursor->resid;
789
790
BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791
}
792
793
static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794
size_t *page_offset,
795
size_t *length)
796
{
797
struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798
cursor->bvec_iter);
799
800
*page_offset = bv.bv_offset;
801
*length = bv.bv_len;
802
return bv.bv_page;
803
}
804
805
static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806
size_t bytes)
807
{
808
struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809
struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811
BUG_ON(bytes > cursor->resid);
812
BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813
cursor->resid -= bytes;
814
bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816
if (!cursor->resid)
817
return false; /* no more data */
818
819
if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820
page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821
return false; /* more bytes to process in this segment */
822
823
BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824
return true;
825
}
826
827
/*
828
* For a page array, a piece comes from the first page in the array
829
* that has not already been fully consumed.
830
*/
831
static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832
size_t length)
833
{
834
struct ceph_msg_data *data = cursor->data;
835
int page_count;
836
837
BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839
BUG_ON(!data->pages);
840
BUG_ON(!data->length);
841
842
cursor->resid = min(length, data->length);
843
page_count = calc_pages_for(data->alignment, (u64)data->length);
844
cursor->page_offset = data->alignment & ~PAGE_MASK;
845
cursor->page_index = 0;
846
BUG_ON(page_count > (int)USHRT_MAX);
847
cursor->page_count = (unsigned short)page_count;
848
BUG_ON(length > SIZE_MAX - cursor->page_offset);
849
}
850
851
static struct page *
852
ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853
size_t *page_offset, size_t *length)
854
{
855
struct ceph_msg_data *data = cursor->data;
856
857
BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859
BUG_ON(cursor->page_index >= cursor->page_count);
860
BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862
*page_offset = cursor->page_offset;
863
*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864
return data->pages[cursor->page_index];
865
}
866
867
static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868
size_t bytes)
869
{
870
BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872
BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874
/* Advance the cursor page offset */
875
876
cursor->resid -= bytes;
877
cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878
if (!bytes || cursor->page_offset)
879
return false; /* more bytes to process in the current page */
880
881
if (!cursor->resid)
882
return false; /* no more data */
883
884
/* Move on to the next page; offset is already at 0 */
885
886
BUG_ON(cursor->page_index >= cursor->page_count);
887
cursor->page_index++;
888
return true;
889
}
890
891
/*
892
* For a pagelist, a piece is whatever remains to be consumed in the
893
* first page in the list, or the front of the next page.
894
*/
895
static void
896
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897
size_t length)
898
{
899
struct ceph_msg_data *data = cursor->data;
900
struct ceph_pagelist *pagelist;
901
struct page *page;
902
903
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905
pagelist = data->pagelist;
906
BUG_ON(!pagelist);
907
908
if (!length)
909
return; /* pagelist can be assigned but empty */
910
911
BUG_ON(list_empty(&pagelist->head));
912
page = list_first_entry(&pagelist->head, struct page, lru);
913
914
cursor->resid = min(length, pagelist->length);
915
cursor->page = page;
916
cursor->offset = 0;
917
}
918
919
static struct page *
920
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921
size_t *page_offset, size_t *length)
922
{
923
struct ceph_msg_data *data = cursor->data;
924
struct ceph_pagelist *pagelist;
925
926
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928
pagelist = data->pagelist;
929
BUG_ON(!pagelist);
930
931
BUG_ON(!cursor->page);
932
BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934
/* offset of first page in pagelist is always 0 */
935
*page_offset = cursor->offset & ~PAGE_MASK;
936
*length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937
return cursor->page;
938
}
939
940
static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941
size_t bytes)
942
{
943
struct ceph_msg_data *data = cursor->data;
944
struct ceph_pagelist *pagelist;
945
946
BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948
pagelist = data->pagelist;
949
BUG_ON(!pagelist);
950
951
BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952
BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954
/* Advance the cursor offset */
955
956
cursor->resid -= bytes;
957
cursor->offset += bytes;
958
/* offset of first page in pagelist is always 0 */
959
if (!bytes || cursor->offset & ~PAGE_MASK)
960
return false; /* more bytes to process in the current page */
961
962
if (!cursor->resid)
963
return false; /* no more data */
964
965
/* Move on to the next page */
966
967
BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968
cursor->page = list_next_entry(cursor->page, lru);
969
return true;
970
}
971
972
static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
973
size_t length)
974
{
975
struct ceph_msg_data *data = cursor->data;
976
977
cursor->iov_iter = data->iter;
978
cursor->lastlen = 0;
979
iov_iter_truncate(&cursor->iov_iter, length);
980
cursor->resid = iov_iter_count(&cursor->iov_iter);
981
}
982
983
static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
984
size_t *page_offset, size_t *length)
985
{
986
struct page *page;
987
ssize_t len;
988
989
if (cursor->lastlen)
990
iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
991
992
len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
993
1, page_offset);
994
BUG_ON(len < 0);
995
996
cursor->lastlen = len;
997
998
/*
999
* FIXME: The assumption is that the pages represented by the iov_iter
1000
* are pinned, with the references held by the upper-level
1001
* callers, or by virtue of being under writeback. Eventually,
1002
* we'll get an iov_iter_get_pages2 variant that doesn't take
1003
* page refs. Until then, just put the page ref.
1004
*/
1005
VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006
put_page(page);
1007
1008
*length = min_t(size_t, len, cursor->resid);
1009
return page;
1010
}
1011
1012
static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013
size_t bytes)
1014
{
1015
BUG_ON(bytes > cursor->resid);
1016
cursor->resid -= bytes;
1017
1018
if (bytes < cursor->lastlen) {
1019
cursor->lastlen -= bytes;
1020
} else {
1021
iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022
cursor->lastlen = 0;
1023
}
1024
1025
return cursor->resid;
1026
}
1027
1028
/*
1029
* Message data is handled (sent or received) in pieces, where each
1030
* piece resides on a single page. The network layer might not
1031
* consume an entire piece at once. A data item's cursor keeps
1032
* track of which piece is next to process and how much remains to
1033
* be processed in that piece. It also tracks whether the current
1034
* piece is the last one in the data item.
1035
*/
1036
static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037
{
1038
size_t length = cursor->total_resid;
1039
1040
switch (cursor->data->type) {
1041
case CEPH_MSG_DATA_PAGELIST:
1042
ceph_msg_data_pagelist_cursor_init(cursor, length);
1043
break;
1044
case CEPH_MSG_DATA_PAGES:
1045
ceph_msg_data_pages_cursor_init(cursor, length);
1046
break;
1047
#ifdef CONFIG_BLOCK
1048
case CEPH_MSG_DATA_BIO:
1049
ceph_msg_data_bio_cursor_init(cursor, length);
1050
break;
1051
#endif /* CONFIG_BLOCK */
1052
case CEPH_MSG_DATA_BVECS:
1053
ceph_msg_data_bvecs_cursor_init(cursor, length);
1054
break;
1055
case CEPH_MSG_DATA_ITER:
1056
ceph_msg_data_iter_cursor_init(cursor, length);
1057
break;
1058
case CEPH_MSG_DATA_NONE:
1059
default:
1060
/* BUG(); */
1061
break;
1062
}
1063
cursor->need_crc = true;
1064
}
1065
1066
void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067
struct ceph_msg *msg, size_t length)
1068
{
1069
BUG_ON(!length);
1070
BUG_ON(length > msg->data_length);
1071
BUG_ON(!msg->num_data_items);
1072
1073
cursor->total_resid = length;
1074
cursor->data = msg->data;
1075
cursor->sr_resid = 0;
1076
1077
__ceph_msg_data_cursor_init(cursor);
1078
}
1079
1080
/*
1081
* Return the page containing the next piece to process for a given
1082
* data item, and supply the page offset and length of that piece.
1083
* Indicate whether this is the last piece in this data item.
1084
*/
1085
struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086
size_t *page_offset, size_t *length)
1087
{
1088
struct page *page;
1089
1090
switch (cursor->data->type) {
1091
case CEPH_MSG_DATA_PAGELIST:
1092
page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093
break;
1094
case CEPH_MSG_DATA_PAGES:
1095
page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096
break;
1097
#ifdef CONFIG_BLOCK
1098
case CEPH_MSG_DATA_BIO:
1099
page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100
break;
1101
#endif /* CONFIG_BLOCK */
1102
case CEPH_MSG_DATA_BVECS:
1103
page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104
break;
1105
case CEPH_MSG_DATA_ITER:
1106
page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107
break;
1108
case CEPH_MSG_DATA_NONE:
1109
default:
1110
page = NULL;
1111
break;
1112
}
1113
1114
BUG_ON(!page);
1115
BUG_ON(*page_offset + *length > PAGE_SIZE);
1116
BUG_ON(!*length);
1117
BUG_ON(*length > cursor->resid);
1118
1119
return page;
1120
}
1121
1122
/*
1123
* Returns true if the result moves the cursor on to the next piece
1124
* of the data item.
1125
*/
1126
void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1127
{
1128
bool new_piece;
1129
1130
BUG_ON(bytes > cursor->resid);
1131
switch (cursor->data->type) {
1132
case CEPH_MSG_DATA_PAGELIST:
1133
new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134
break;
1135
case CEPH_MSG_DATA_PAGES:
1136
new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137
break;
1138
#ifdef CONFIG_BLOCK
1139
case CEPH_MSG_DATA_BIO:
1140
new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141
break;
1142
#endif /* CONFIG_BLOCK */
1143
case CEPH_MSG_DATA_BVECS:
1144
new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145
break;
1146
case CEPH_MSG_DATA_ITER:
1147
new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148
break;
1149
case CEPH_MSG_DATA_NONE:
1150
default:
1151
BUG();
1152
break;
1153
}
1154
cursor->total_resid -= bytes;
1155
1156
if (!cursor->resid && cursor->total_resid) {
1157
cursor->data++;
1158
__ceph_msg_data_cursor_init(cursor);
1159
new_piece = true;
1160
}
1161
cursor->need_crc = new_piece;
1162
}
1163
1164
u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165
unsigned int length)
1166
{
1167
char *kaddr;
1168
1169
kaddr = kmap(page);
1170
BUG_ON(kaddr == NULL);
1171
crc = crc32c(crc, kaddr + page_offset, length);
1172
kunmap(page);
1173
1174
return crc;
1175
}
1176
1177
bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178
{
1179
struct sockaddr_storage ss = addr->in_addr; /* align */
1180
struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181
struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183
switch (ss.ss_family) {
1184
case AF_INET:
1185
return addr4->s_addr == htonl(INADDR_ANY);
1186
case AF_INET6:
1187
return ipv6_addr_any(addr6);
1188
default:
1189
return true;
1190
}
1191
}
1192
EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194
int ceph_addr_port(const struct ceph_entity_addr *addr)
1195
{
1196
switch (get_unaligned(&addr->in_addr.ss_family)) {
1197
case AF_INET:
1198
return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199
case AF_INET6:
1200
return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201
}
1202
return 0;
1203
}
1204
1205
void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206
{
1207
switch (get_unaligned(&addr->in_addr.ss_family)) {
1208
case AF_INET:
1209
put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210
break;
1211
case AF_INET6:
1212
put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213
break;
1214
}
1215
}
1216
1217
/*
1218
* Unlike other *_pton function semantics, zero indicates success.
1219
*/
1220
static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221
char delim, const char **ipend)
1222
{
1223
memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225
if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226
put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227
return 0;
1228
}
1229
1230
if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231
put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232
return 0;
1233
}
1234
1235
return -EINVAL;
1236
}
1237
1238
/*
1239
* Extract hostname string and resolve using kernel DNS facility.
1240
*/
1241
#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242
static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243
struct ceph_entity_addr *addr, char delim, const char **ipend)
1244
{
1245
const char *end, *delim_p;
1246
char *colon_p, *ip_addr = NULL;
1247
int ip_len, ret;
1248
1249
/*
1250
* The end of the hostname occurs immediately preceding the delimiter or
1251
* the port marker (':') where the delimiter takes precedence.
1252
*/
1253
delim_p = memchr(name, delim, namelen);
1254
colon_p = memchr(name, ':', namelen);
1255
1256
if (delim_p && colon_p)
1257
end = min(delim_p, colon_p);
1258
else if (!delim_p && colon_p)
1259
end = colon_p;
1260
else {
1261
end = delim_p;
1262
if (!end) /* case: hostname:/ */
1263
end = name + namelen;
1264
}
1265
1266
if (end <= name)
1267
return -EINVAL;
1268
1269
/* do dns_resolve upcall */
1270
ip_len = dns_query(current->nsproxy->net_ns,
1271
NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272
if (ip_len > 0)
1273
ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274
else
1275
ret = -ESRCH;
1276
1277
kfree(ip_addr);
1278
1279
*ipend = end;
1280
1281
pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282
ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284
return ret;
1285
}
1286
#else
1287
static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288
struct ceph_entity_addr *addr, char delim, const char **ipend)
1289
{
1290
return -EINVAL;
1291
}
1292
#endif
1293
1294
/*
1295
* Parse a server name (IP or hostname). If a valid IP address is not found
1296
* then try to extract a hostname to resolve using userspace DNS upcall.
1297
*/
1298
static int ceph_parse_server_name(const char *name, size_t namelen,
1299
struct ceph_entity_addr *addr, char delim, const char **ipend)
1300
{
1301
int ret;
1302
1303
ret = ceph_pton(name, namelen, addr, delim, ipend);
1304
if (ret)
1305
ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307
return ret;
1308
}
1309
1310
/*
1311
* Parse an ip[:port] list into an addr array. Use the default
1312
* monitor port if a port isn't specified.
1313
*/
1314
int ceph_parse_ips(const char *c, const char *end,
1315
struct ceph_entity_addr *addr,
1316
int max_count, int *count, char delim)
1317
{
1318
int i, ret = -EINVAL;
1319
const char *p = c;
1320
1321
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322
for (i = 0; i < max_count; i++) {
1323
char cur_delim = delim;
1324
const char *ipend;
1325
int port;
1326
1327
if (*p == '[') {
1328
cur_delim = ']';
1329
p++;
1330
}
1331
1332
ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333
&ipend);
1334
if (ret)
1335
goto bad;
1336
ret = -EINVAL;
1337
1338
p = ipend;
1339
1340
if (cur_delim == ']') {
1341
if (*p != ']') {
1342
dout("missing matching ']'\n");
1343
goto bad;
1344
}
1345
p++;
1346
}
1347
1348
/* port? */
1349
if (p < end && *p == ':') {
1350
port = 0;
1351
p++;
1352
while (p < end && *p >= '0' && *p <= '9') {
1353
port = (port * 10) + (*p - '0');
1354
p++;
1355
}
1356
if (port == 0)
1357
port = CEPH_MON_PORT;
1358
else if (port > 65535)
1359
goto bad;
1360
} else {
1361
port = CEPH_MON_PORT;
1362
}
1363
1364
ceph_addr_set_port(&addr[i], port);
1365
/*
1366
* We want the type to be set according to ms_mode
1367
* option, but options are normally parsed after mon
1368
* addresses. Rather than complicating parsing, set
1369
* to LEGACY and override in build_initial_monmap()
1370
* for mon addresses and ceph_messenger_init() for
1371
* ip option.
1372
*/
1373
addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374
addr[i].nonce = 0;
1375
1376
dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378
if (p == end)
1379
break;
1380
if (*p != delim)
1381
goto bad;
1382
p++;
1383
}
1384
1385
if (p != end)
1386
goto bad;
1387
1388
if (count)
1389
*count = i + 1;
1390
return 0;
1391
1392
bad:
1393
return ret;
1394
}
1395
1396
/*
1397
* Process message. This happens in the worker thread. The callback should
1398
* be careful not to do anything that waits on other incoming messages or it
1399
* may deadlock.
1400
*/
1401
void ceph_con_process_message(struct ceph_connection *con)
1402
{
1403
struct ceph_msg *msg = con->in_msg;
1404
1405
BUG_ON(con->in_msg->con != con);
1406
con->in_msg = NULL;
1407
1408
/* if first message, set peer_name */
1409
if (con->peer_name.type == 0)
1410
con->peer_name = msg->hdr.src;
1411
1412
con->in_seq++;
1413
mutex_unlock(&con->mutex);
1414
1415
dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416
msg, le64_to_cpu(msg->hdr.seq),
1417
ENTITY_NAME(msg->hdr.src),
1418
le16_to_cpu(msg->hdr.type),
1419
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420
le32_to_cpu(msg->hdr.front_len),
1421
le32_to_cpu(msg->hdr.middle_len),
1422
le32_to_cpu(msg->hdr.data_len),
1423
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424
con->ops->dispatch(con, msg);
1425
1426
mutex_lock(&con->mutex);
1427
}
1428
1429
/*
1430
* Atomically queue work on a connection after the specified delay.
1431
* Bump @con reference to avoid races with connection teardown.
1432
* Returns 0 if work was queued, or an error code otherwise.
1433
*/
1434
static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435
{
1436
if (!con->ops->get(con)) {
1437
dout("%s %p ref count 0\n", __func__, con);
1438
return -ENOENT;
1439
}
1440
1441
if (delay >= HZ)
1442
delay = round_jiffies_relative(delay);
1443
1444
dout("%s %p %lu\n", __func__, con, delay);
1445
if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446
dout("%s %p - already queued\n", __func__, con);
1447
con->ops->put(con);
1448
return -EBUSY;
1449
}
1450
1451
return 0;
1452
}
1453
1454
static void queue_con(struct ceph_connection *con)
1455
{
1456
(void) queue_con_delay(con, 0);
1457
}
1458
1459
static void cancel_con(struct ceph_connection *con)
1460
{
1461
if (cancel_delayed_work(&con->work)) {
1462
dout("%s %p\n", __func__, con);
1463
con->ops->put(con);
1464
}
1465
}
1466
1467
static bool con_sock_closed(struct ceph_connection *con)
1468
{
1469
if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470
return false;
1471
1472
#define CASE(x) \
1473
case CEPH_CON_S_ ## x: \
1474
con->error_msg = "socket closed (con state " #x ")"; \
1475
break;
1476
1477
switch (con->state) {
1478
CASE(CLOSED);
1479
CASE(PREOPEN);
1480
CASE(V1_BANNER);
1481
CASE(V1_CONNECT_MSG);
1482
CASE(V2_BANNER_PREFIX);
1483
CASE(V2_BANNER_PAYLOAD);
1484
CASE(V2_HELLO);
1485
CASE(V2_AUTH);
1486
CASE(V2_AUTH_SIGNATURE);
1487
CASE(V2_SESSION_CONNECT);
1488
CASE(V2_SESSION_RECONNECT);
1489
CASE(OPEN);
1490
CASE(STANDBY);
1491
default:
1492
BUG();
1493
}
1494
#undef CASE
1495
1496
return true;
1497
}
1498
1499
static bool con_backoff(struct ceph_connection *con)
1500
{
1501
int ret;
1502
1503
if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504
return false;
1505
1506
ret = queue_con_delay(con, con->delay);
1507
if (ret) {
1508
dout("%s: con %p FAILED to back off %lu\n", __func__,
1509
con, con->delay);
1510
BUG_ON(ret == -ENOENT);
1511
ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512
}
1513
1514
return true;
1515
}
1516
1517
/* Finish fault handling; con->mutex must *not* be held here */
1518
1519
static void con_fault_finish(struct ceph_connection *con)
1520
{
1521
dout("%s %p\n", __func__, con);
1522
1523
/*
1524
* in case we faulted due to authentication, invalidate our
1525
* current tickets so that we can get new ones.
1526
*/
1527
if (con->v1.auth_retry) {
1528
dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529
if (con->ops->invalidate_authorizer)
1530
con->ops->invalidate_authorizer(con);
1531
con->v1.auth_retry = 0;
1532
}
1533
1534
if (con->ops->fault)
1535
con->ops->fault(con);
1536
}
1537
1538
/*
1539
* Do some work on a connection. Drop a connection ref when we're done.
1540
*/
1541
static void ceph_con_workfn(struct work_struct *work)
1542
{
1543
struct ceph_connection *con = container_of(work, struct ceph_connection,
1544
work.work);
1545
bool fault;
1546
1547
mutex_lock(&con->mutex);
1548
while (true) {
1549
int ret;
1550
1551
if ((fault = con_sock_closed(con))) {
1552
dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553
break;
1554
}
1555
if (con_backoff(con)) {
1556
dout("%s: con %p BACKOFF\n", __func__, con);
1557
break;
1558
}
1559
if (con->state == CEPH_CON_S_STANDBY) {
1560
dout("%s: con %p STANDBY\n", __func__, con);
1561
break;
1562
}
1563
if (con->state == CEPH_CON_S_CLOSED) {
1564
dout("%s: con %p CLOSED\n", __func__, con);
1565
BUG_ON(con->sock);
1566
break;
1567
}
1568
if (con->state == CEPH_CON_S_PREOPEN) {
1569
dout("%s: con %p PREOPEN\n", __func__, con);
1570
BUG_ON(con->sock);
1571
}
1572
1573
if (ceph_msgr2(from_msgr(con->msgr)))
1574
ret = ceph_con_v2_try_read(con);
1575
else
1576
ret = ceph_con_v1_try_read(con);
1577
if (ret < 0) {
1578
if (ret == -EAGAIN)
1579
continue;
1580
if (!con->error_msg)
1581
con->error_msg = "socket error on read";
1582
fault = true;
1583
break;
1584
}
1585
1586
if (ceph_msgr2(from_msgr(con->msgr)))
1587
ret = ceph_con_v2_try_write(con);
1588
else
1589
ret = ceph_con_v1_try_write(con);
1590
if (ret < 0) {
1591
if (ret == -EAGAIN)
1592
continue;
1593
if (!con->error_msg)
1594
con->error_msg = "socket error on write";
1595
fault = true;
1596
}
1597
1598
break; /* If we make it to here, we're done */
1599
}
1600
if (fault)
1601
con_fault(con);
1602
mutex_unlock(&con->mutex);
1603
1604
if (fault)
1605
con_fault_finish(con);
1606
1607
con->ops->put(con);
1608
}
1609
1610
/*
1611
* Generic error/fault handler. A retry mechanism is used with
1612
* exponential backoff
1613
*/
1614
static void con_fault(struct ceph_connection *con)
1615
{
1616
dout("fault %p state %d to peer %s\n",
1617
con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619
pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620
ceph_pr_addr(&con->peer_addr), con->error_msg);
1621
con->error_msg = NULL;
1622
1623
WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624
con->state == CEPH_CON_S_CLOSED);
1625
1626
ceph_con_reset_protocol(con);
1627
1628
if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629
dout("fault on LOSSYTX channel, marking CLOSED\n");
1630
con->state = CEPH_CON_S_CLOSED;
1631
return;
1632
}
1633
1634
/* Requeue anything that hasn't been acked */
1635
list_splice_init(&con->out_sent, &con->out_queue);
1636
1637
/* If there are no messages queued or keepalive pending, place
1638
* the connection in a STANDBY state */
1639
if (list_empty(&con->out_queue) &&
1640
!ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641
dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643
con->state = CEPH_CON_S_STANDBY;
1644
} else {
1645
/* retry after a delay. */
1646
con->state = CEPH_CON_S_PREOPEN;
1647
if (!con->delay) {
1648
con->delay = BASE_DELAY_INTERVAL;
1649
} else if (con->delay < MAX_DELAY_INTERVAL) {
1650
con->delay *= 2;
1651
if (con->delay > MAX_DELAY_INTERVAL)
1652
con->delay = MAX_DELAY_INTERVAL;
1653
}
1654
ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655
queue_con(con);
1656
}
1657
}
1658
1659
void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660
{
1661
u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662
msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663
ceph_encode_my_addr(msgr);
1664
}
1665
1666
/*
1667
* initialize a new messenger instance
1668
*/
1669
void ceph_messenger_init(struct ceph_messenger *msgr,
1670
struct ceph_entity_addr *myaddr)
1671
{
1672
spin_lock_init(&msgr->global_seq_lock);
1673
1674
if (myaddr) {
1675
memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676
sizeof(msgr->inst.addr.in_addr));
1677
ceph_addr_set_port(&msgr->inst.addr, 0);
1678
}
1679
1680
/*
1681
* Since nautilus, clients are identified using type ANY.
1682
* For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683
*/
1684
msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686
/* generate a random non-zero nonce */
1687
do {
1688
get_random_bytes(&msgr->inst.addr.nonce,
1689
sizeof(msgr->inst.addr.nonce));
1690
} while (!msgr->inst.addr.nonce);
1691
ceph_encode_my_addr(msgr);
1692
1693
atomic_set(&msgr->stopping, 0);
1694
write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696
dout("%s %p\n", __func__, msgr);
1697
}
1698
1699
void ceph_messenger_fini(struct ceph_messenger *msgr)
1700
{
1701
put_net(read_pnet(&msgr->net));
1702
}
1703
1704
static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705
{
1706
if (msg->con)
1707
msg->con->ops->put(msg->con);
1708
1709
msg->con = con ? con->ops->get(con) : NULL;
1710
BUG_ON(msg->con != con);
1711
}
1712
1713
static void clear_standby(struct ceph_connection *con)
1714
{
1715
/* come back from STANDBY? */
1716
if (con->state == CEPH_CON_S_STANDBY) {
1717
dout("clear_standby %p and ++connect_seq\n", con);
1718
con->state = CEPH_CON_S_PREOPEN;
1719
con->v1.connect_seq++;
1720
WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721
WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722
}
1723
}
1724
1725
/*
1726
* Queue up an outgoing message on the given connection.
1727
*
1728
* Consumes a ref on @msg.
1729
*/
1730
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731
{
1732
/* set src+dst */
1733
msg->hdr.src = con->msgr->inst.name;
1734
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735
msg->needs_out_seq = true;
1736
1737
mutex_lock(&con->mutex);
1738
1739
if (con->state == CEPH_CON_S_CLOSED) {
1740
dout("con_send %p closed, dropping %p\n", con, msg);
1741
ceph_msg_put(msg);
1742
mutex_unlock(&con->mutex);
1743
return;
1744
}
1745
1746
msg_con_set(msg, con);
1747
1748
BUG_ON(!list_empty(&msg->list_head));
1749
list_add_tail(&msg->list_head, &con->out_queue);
1750
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753
le32_to_cpu(msg->hdr.front_len),
1754
le32_to_cpu(msg->hdr.middle_len),
1755
le32_to_cpu(msg->hdr.data_len));
1756
1757
clear_standby(con);
1758
mutex_unlock(&con->mutex);
1759
1760
/* if there wasn't anything waiting to send before, queue
1761
* new work */
1762
if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763
queue_con(con);
1764
}
1765
EXPORT_SYMBOL(ceph_con_send);
1766
1767
/*
1768
* Revoke a message that was previously queued for send
1769
*/
1770
void ceph_msg_revoke(struct ceph_msg *msg)
1771
{
1772
struct ceph_connection *con = msg->con;
1773
1774
if (!con) {
1775
dout("%s msg %p null con\n", __func__, msg);
1776
return; /* Message not in our possession */
1777
}
1778
1779
mutex_lock(&con->mutex);
1780
if (list_empty(&msg->list_head)) {
1781
WARN_ON(con->out_msg == msg);
1782
dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783
mutex_unlock(&con->mutex);
1784
return;
1785
}
1786
1787
dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788
msg->hdr.seq = 0;
1789
ceph_msg_remove(msg);
1790
1791
if (con->out_msg == msg) {
1792
WARN_ON(con->state != CEPH_CON_S_OPEN);
1793
dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794
if (ceph_msgr2(from_msgr(con->msgr)))
1795
ceph_con_v2_revoke(con);
1796
else
1797
ceph_con_v1_revoke(con);
1798
ceph_msg_put(con->out_msg);
1799
con->out_msg = NULL;
1800
} else {
1801
dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802
con, msg, con->out_msg);
1803
}
1804
mutex_unlock(&con->mutex);
1805
}
1806
1807
/*
1808
* Revoke a message that we may be reading data into
1809
*/
1810
void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811
{
1812
struct ceph_connection *con = msg->con;
1813
1814
if (!con) {
1815
dout("%s msg %p null con\n", __func__, msg);
1816
return; /* Message not in our possession */
1817
}
1818
1819
mutex_lock(&con->mutex);
1820
if (con->in_msg == msg) {
1821
WARN_ON(con->state != CEPH_CON_S_OPEN);
1822
dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823
if (ceph_msgr2(from_msgr(con->msgr)))
1824
ceph_con_v2_revoke_incoming(con);
1825
else
1826
ceph_con_v1_revoke_incoming(con);
1827
ceph_msg_put(con->in_msg);
1828
con->in_msg = NULL;
1829
} else {
1830
dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831
con, msg, con->in_msg);
1832
}
1833
mutex_unlock(&con->mutex);
1834
}
1835
1836
/*
1837
* Queue a keepalive byte to ensure the tcp connection is alive.
1838
*/
1839
void ceph_con_keepalive(struct ceph_connection *con)
1840
{
1841
dout("con_keepalive %p\n", con);
1842
mutex_lock(&con->mutex);
1843
clear_standby(con);
1844
ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845
mutex_unlock(&con->mutex);
1846
1847
if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848
queue_con(con);
1849
}
1850
EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852
bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853
unsigned long interval)
1854
{
1855
if (interval > 0 &&
1856
(con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857
struct timespec64 now;
1858
struct timespec64 ts;
1859
ktime_get_real_ts64(&now);
1860
jiffies_to_timespec64(interval, &ts);
1861
ts = timespec64_add(con->last_keepalive_ack, ts);
1862
return timespec64_compare(&now, &ts) >= 0;
1863
}
1864
return false;
1865
}
1866
1867
static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868
{
1869
BUG_ON(msg->num_data_items >= msg->max_data_items);
1870
return &msg->data[msg->num_data_items++];
1871
}
1872
1873
static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874
{
1875
if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876
int num_pages = calc_pages_for(data->alignment, data->length);
1877
ceph_release_page_vector(data->pages, num_pages);
1878
} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879
ceph_pagelist_release(data->pagelist);
1880
}
1881
}
1882
1883
void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884
size_t length, size_t alignment, bool own_pages)
1885
{
1886
struct ceph_msg_data *data;
1887
1888
BUG_ON(!pages);
1889
BUG_ON(!length);
1890
1891
data = ceph_msg_data_add(msg);
1892
data->type = CEPH_MSG_DATA_PAGES;
1893
data->pages = pages;
1894
data->length = length;
1895
data->alignment = alignment & ~PAGE_MASK;
1896
data->own_pages = own_pages;
1897
1898
msg->data_length += length;
1899
}
1900
EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902
void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903
struct ceph_pagelist *pagelist)
1904
{
1905
struct ceph_msg_data *data;
1906
1907
BUG_ON(!pagelist);
1908
BUG_ON(!pagelist->length);
1909
1910
data = ceph_msg_data_add(msg);
1911
data->type = CEPH_MSG_DATA_PAGELIST;
1912
refcount_inc(&pagelist->refcnt);
1913
data->pagelist = pagelist;
1914
1915
msg->data_length += pagelist->length;
1916
}
1917
EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919
#ifdef CONFIG_BLOCK
1920
void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921
u32 length)
1922
{
1923
struct ceph_msg_data *data;
1924
1925
data = ceph_msg_data_add(msg);
1926
data->type = CEPH_MSG_DATA_BIO;
1927
data->bio_pos = *bio_pos;
1928
data->bio_length = length;
1929
1930
msg->data_length += length;
1931
}
1932
EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933
#endif /* CONFIG_BLOCK */
1934
1935
void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936
struct ceph_bvec_iter *bvec_pos)
1937
{
1938
struct ceph_msg_data *data;
1939
1940
data = ceph_msg_data_add(msg);
1941
data->type = CEPH_MSG_DATA_BVECS;
1942
data->bvec_pos = *bvec_pos;
1943
1944
msg->data_length += bvec_pos->iter.bi_size;
1945
}
1946
EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948
void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949
struct iov_iter *iter)
1950
{
1951
struct ceph_msg_data *data;
1952
1953
data = ceph_msg_data_add(msg);
1954
data->type = CEPH_MSG_DATA_ITER;
1955
data->iter = *iter;
1956
1957
msg->data_length += iov_iter_count(&data->iter);
1958
}
1959
1960
/*
1961
* construct a new message with given type, size
1962
* the new msg has a ref count of 1.
1963
*/
1964
struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965
gfp_t flags, bool can_fail)
1966
{
1967
struct ceph_msg *m;
1968
1969
m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970
if (m == NULL)
1971
goto out;
1972
1973
m->hdr.type = cpu_to_le16(type);
1974
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975
m->hdr.front_len = cpu_to_le32(front_len);
1976
1977
INIT_LIST_HEAD(&m->list_head);
1978
kref_init(&m->kref);
1979
1980
/* front */
1981
if (front_len) {
1982
m->front.iov_base = kvmalloc(front_len, flags);
1983
if (m->front.iov_base == NULL) {
1984
dout("ceph_msg_new can't allocate %d bytes\n",
1985
front_len);
1986
goto out2;
1987
}
1988
} else {
1989
m->front.iov_base = NULL;
1990
}
1991
m->front_alloc_len = m->front.iov_len = front_len;
1992
1993
if (max_data_items) {
1994
m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995
flags);
1996
if (!m->data)
1997
goto out2;
1998
1999
m->max_data_items = max_data_items;
2000
}
2001
2002
dout("ceph_msg_new %p front %d\n", m, front_len);
2003
return m;
2004
2005
out2:
2006
ceph_msg_put(m);
2007
out:
2008
if (!can_fail) {
2009
pr_err("msg_new can't create type %d front %d\n", type,
2010
front_len);
2011
WARN_ON(1);
2012
} else {
2013
dout("msg_new can't create type %d front %d\n", type,
2014
front_len);
2015
}
2016
return NULL;
2017
}
2018
EXPORT_SYMBOL(ceph_msg_new2);
2019
2020
struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021
bool can_fail)
2022
{
2023
return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024
}
2025
EXPORT_SYMBOL(ceph_msg_new);
2026
2027
/*
2028
* Allocate "middle" portion of a message, if it is needed and wasn't
2029
* allocated by alloc_msg. This allows us to read a small fixed-size
2030
* per-type header in the front and then gracefully fail (i.e.,
2031
* propagate the error to the caller based on info in the front) when
2032
* the middle is too large.
2033
*/
2034
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035
{
2036
int type = le16_to_cpu(msg->hdr.type);
2037
int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040
ceph_msg_type_name(type), middle_len);
2041
BUG_ON(!middle_len);
2042
BUG_ON(msg->middle);
2043
2044
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045
if (!msg->middle)
2046
return -ENOMEM;
2047
return 0;
2048
}
2049
2050
/*
2051
* Allocate a message for receiving an incoming message on a
2052
* connection, and save the result in con->in_msg. Uses the
2053
* connection's private alloc_msg op if available.
2054
*
2055
* Returns 0 on success, or a negative error code.
2056
*
2057
* On success, if we set *skip = 1:
2058
* - the next message should be skipped and ignored.
2059
* - con->in_msg == NULL
2060
* or if we set *skip = 0:
2061
* - con->in_msg is non-null.
2062
* On error (ENOMEM, EAGAIN, ...),
2063
* - con->in_msg == NULL
2064
*/
2065
int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066
struct ceph_msg_header *hdr, int *skip)
2067
{
2068
int middle_len = le32_to_cpu(hdr->middle_len);
2069
struct ceph_msg *msg;
2070
int ret = 0;
2071
2072
BUG_ON(con->in_msg != NULL);
2073
BUG_ON(!con->ops->alloc_msg);
2074
2075
mutex_unlock(&con->mutex);
2076
msg = con->ops->alloc_msg(con, hdr, skip);
2077
mutex_lock(&con->mutex);
2078
if (con->state != CEPH_CON_S_OPEN) {
2079
if (msg)
2080
ceph_msg_put(msg);
2081
return -EAGAIN;
2082
}
2083
if (msg) {
2084
BUG_ON(*skip);
2085
msg_con_set(msg, con);
2086
con->in_msg = msg;
2087
} else {
2088
/*
2089
* Null message pointer means either we should skip
2090
* this message or we couldn't allocate memory. The
2091
* former is not an error.
2092
*/
2093
if (*skip)
2094
return 0;
2095
2096
con->error_msg = "error allocating memory for incoming message";
2097
return -ENOMEM;
2098
}
2099
memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101
if (middle_len && !con->in_msg->middle) {
2102
ret = ceph_alloc_middle(con, con->in_msg);
2103
if (ret < 0) {
2104
ceph_msg_put(con->in_msg);
2105
con->in_msg = NULL;
2106
}
2107
}
2108
2109
return ret;
2110
}
2111
2112
void ceph_con_get_out_msg(struct ceph_connection *con)
2113
{
2114
struct ceph_msg *msg;
2115
2116
BUG_ON(list_empty(&con->out_queue));
2117
msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118
WARN_ON(msg->con != con);
2119
2120
/*
2121
* Put the message on "sent" list using a ref from ceph_con_send().
2122
* It is put when the message is acked or revoked.
2123
*/
2124
list_move_tail(&msg->list_head, &con->out_sent);
2125
2126
/*
2127
* Only assign outgoing seq # if we haven't sent this message
2128
* yet. If it is requeued, resend with it's original seq.
2129
*/
2130
if (msg->needs_out_seq) {
2131
msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132
msg->needs_out_seq = false;
2133
2134
if (con->ops->reencode_message)
2135
con->ops->reencode_message(msg);
2136
}
2137
2138
/*
2139
* Get a ref for out_msg. It is put when we are done sending the
2140
* message or in case of a fault.
2141
*/
2142
WARN_ON(con->out_msg);
2143
con->out_msg = ceph_msg_get(msg);
2144
}
2145
2146
/*
2147
* Free a generically kmalloc'd message.
2148
*/
2149
static void ceph_msg_free(struct ceph_msg *m)
2150
{
2151
dout("%s %p\n", __func__, m);
2152
kvfree(m->front.iov_base);
2153
kfree(m->data);
2154
kmem_cache_free(ceph_msg_cache, m);
2155
}
2156
2157
static void ceph_msg_release(struct kref *kref)
2158
{
2159
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160
int i;
2161
2162
dout("%s %p\n", __func__, m);
2163
WARN_ON(!list_empty(&m->list_head));
2164
2165
msg_con_set(m, NULL);
2166
2167
/* drop middle, data, if any */
2168
if (m->middle) {
2169
ceph_buffer_put(m->middle);
2170
m->middle = NULL;
2171
}
2172
2173
for (i = 0; i < m->num_data_items; i++)
2174
ceph_msg_data_destroy(&m->data[i]);
2175
2176
if (m->pool)
2177
ceph_msgpool_put(m->pool, m);
2178
else
2179
ceph_msg_free(m);
2180
}
2181
2182
struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183
{
2184
dout("%s %p (was %d)\n", __func__, msg,
2185
kref_read(&msg->kref));
2186
kref_get(&msg->kref);
2187
return msg;
2188
}
2189
EXPORT_SYMBOL(ceph_msg_get);
2190
2191
void ceph_msg_put(struct ceph_msg *msg)
2192
{
2193
dout("%s %p (was %d)\n", __func__, msg,
2194
kref_read(&msg->kref));
2195
kref_put(&msg->kref, ceph_msg_release);
2196
}
2197
EXPORT_SYMBOL(ceph_msg_put);
2198
2199
void ceph_msg_dump(struct ceph_msg *msg)
2200
{
2201
pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202
msg->front_alloc_len, msg->data_length);
2203
print_hex_dump(KERN_DEBUG, "header: ",
2204
DUMP_PREFIX_OFFSET, 16, 1,
2205
&msg->hdr, sizeof(msg->hdr), true);
2206
print_hex_dump(KERN_DEBUG, " front: ",
2207
DUMP_PREFIX_OFFSET, 16, 1,
2208
msg->front.iov_base, msg->front.iov_len, true);
2209
if (msg->middle)
2210
print_hex_dump(KERN_DEBUG, "middle: ",
2211
DUMP_PREFIX_OFFSET, 16, 1,
2212
msg->middle->vec.iov_base,
2213
msg->middle->vec.iov_len, true);
2214
print_hex_dump(KERN_DEBUG, "footer: ",
2215
DUMP_PREFIX_OFFSET, 16, 1,
2216
&msg->footer, sizeof(msg->footer), true);
2217
}
2218
EXPORT_SYMBOL(ceph_msg_dump);
2219
2220