Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ceph/messenger_v2.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Ceph msgr2 protocol implementation
4
*
5
* Copyright (C) 2020 Ilya Dryomov <[email protected]>
6
*/
7
8
#include <linux/ceph/ceph_debug.h>
9
10
#include <crypto/aead.h>
11
#include <crypto/hash.h>
12
#include <crypto/sha2.h>
13
#include <crypto/utils.h>
14
#include <linux/bvec.h>
15
#include <linux/crc32c.h>
16
#include <linux/net.h>
17
#include <linux/scatterlist.h>
18
#include <linux/socket.h>
19
#include <linux/sched/mm.h>
20
#include <net/sock.h>
21
#include <net/tcp.h>
22
23
#include <linux/ceph/ceph_features.h>
24
#include <linux/ceph/decode.h>
25
#include <linux/ceph/libceph.h>
26
#include <linux/ceph/messenger.h>
27
28
#include "crypto.h" /* for CEPH_KEY_LEN and CEPH_MAX_CON_SECRET_LEN */
29
30
#define FRAME_TAG_HELLO 1
31
#define FRAME_TAG_AUTH_REQUEST 2
32
#define FRAME_TAG_AUTH_BAD_METHOD 3
33
#define FRAME_TAG_AUTH_REPLY_MORE 4
34
#define FRAME_TAG_AUTH_REQUEST_MORE 5
35
#define FRAME_TAG_AUTH_DONE 6
36
#define FRAME_TAG_AUTH_SIGNATURE 7
37
#define FRAME_TAG_CLIENT_IDENT 8
38
#define FRAME_TAG_SERVER_IDENT 9
39
#define FRAME_TAG_IDENT_MISSING_FEATURES 10
40
#define FRAME_TAG_SESSION_RECONNECT 11
41
#define FRAME_TAG_SESSION_RESET 12
42
#define FRAME_TAG_SESSION_RETRY 13
43
#define FRAME_TAG_SESSION_RETRY_GLOBAL 14
44
#define FRAME_TAG_SESSION_RECONNECT_OK 15
45
#define FRAME_TAG_WAIT 16
46
#define FRAME_TAG_MESSAGE 17
47
#define FRAME_TAG_KEEPALIVE2 18
48
#define FRAME_TAG_KEEPALIVE2_ACK 19
49
#define FRAME_TAG_ACK 20
50
51
#define FRAME_LATE_STATUS_ABORTED 0x1
52
#define FRAME_LATE_STATUS_COMPLETE 0xe
53
#define FRAME_LATE_STATUS_ABORTED_MASK 0xf
54
55
#define IN_S_HANDLE_PREAMBLE 1
56
#define IN_S_HANDLE_CONTROL 2
57
#define IN_S_HANDLE_CONTROL_REMAINDER 3
58
#define IN_S_PREPARE_READ_DATA 4
59
#define IN_S_PREPARE_READ_DATA_CONT 5
60
#define IN_S_PREPARE_READ_ENC_PAGE 6
61
#define IN_S_PREPARE_SPARSE_DATA 7
62
#define IN_S_PREPARE_SPARSE_DATA_CONT 8
63
#define IN_S_HANDLE_EPILOGUE 9
64
#define IN_S_FINISH_SKIP 10
65
66
#define OUT_S_QUEUE_DATA 1
67
#define OUT_S_QUEUE_DATA_CONT 2
68
#define OUT_S_QUEUE_ENC_PAGE 3
69
#define OUT_S_QUEUE_ZEROS 4
70
#define OUT_S_FINISH_MESSAGE 5
71
#define OUT_S_GET_NEXT 6
72
73
#define CTRL_BODY(p) ((void *)(p) + CEPH_PREAMBLE_LEN)
74
#define FRONT_PAD(p) ((void *)(p) + CEPH_EPILOGUE_SECURE_LEN)
75
#define MIDDLE_PAD(p) (FRONT_PAD(p) + CEPH_GCM_BLOCK_LEN)
76
#define DATA_PAD(p) (MIDDLE_PAD(p) + CEPH_GCM_BLOCK_LEN)
77
78
#define CEPH_MSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
79
80
static int do_recvmsg(struct socket *sock, struct iov_iter *it)
81
{
82
struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
83
int ret;
84
85
msg.msg_iter = *it;
86
while (iov_iter_count(it)) {
87
ret = sock_recvmsg(sock, &msg, msg.msg_flags);
88
if (ret <= 0) {
89
if (ret == -EAGAIN)
90
ret = 0;
91
return ret;
92
}
93
94
iov_iter_advance(it, ret);
95
}
96
97
WARN_ON(msg_data_left(&msg));
98
return 1;
99
}
100
101
/*
102
* Read as much as possible.
103
*
104
* Return:
105
* 1 - done, nothing (else) to read
106
* 0 - socket is empty, need to wait
107
* <0 - error
108
*/
109
static int ceph_tcp_recv(struct ceph_connection *con)
110
{
111
int ret;
112
113
dout("%s con %p %s %zu\n", __func__, con,
114
iov_iter_is_discard(&con->v2.in_iter) ? "discard" : "need",
115
iov_iter_count(&con->v2.in_iter));
116
ret = do_recvmsg(con->sock, &con->v2.in_iter);
117
dout("%s con %p ret %d left %zu\n", __func__, con, ret,
118
iov_iter_count(&con->v2.in_iter));
119
return ret;
120
}
121
122
static int do_sendmsg(struct socket *sock, struct iov_iter *it)
123
{
124
struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
125
int ret;
126
127
msg.msg_iter = *it;
128
while (iov_iter_count(it)) {
129
ret = sock_sendmsg(sock, &msg);
130
if (ret <= 0) {
131
if (ret == -EAGAIN)
132
ret = 0;
133
return ret;
134
}
135
136
iov_iter_advance(it, ret);
137
}
138
139
WARN_ON(msg_data_left(&msg));
140
return 1;
141
}
142
143
static int do_try_sendpage(struct socket *sock, struct iov_iter *it)
144
{
145
struct msghdr msg = { .msg_flags = CEPH_MSG_FLAGS };
146
struct bio_vec bv;
147
int ret;
148
149
if (WARN_ON(!iov_iter_is_bvec(it)))
150
return -EINVAL;
151
152
while (iov_iter_count(it)) {
153
/* iov_iter_iovec() for ITER_BVEC */
154
bvec_set_page(&bv, it->bvec->bv_page,
155
min(iov_iter_count(it),
156
it->bvec->bv_len - it->iov_offset),
157
it->bvec->bv_offset + it->iov_offset);
158
159
/*
160
* MSG_SPLICE_PAGES cannot properly handle pages with
161
* page_count == 0, we need to fall back to sendmsg if
162
* that's the case.
163
*
164
* Same goes for slab pages: skb_can_coalesce() allows
165
* coalescing neighboring slab objects into a single frag
166
* which triggers one of hardened usercopy checks.
167
*/
168
if (sendpage_ok(bv.bv_page))
169
msg.msg_flags |= MSG_SPLICE_PAGES;
170
else
171
msg.msg_flags &= ~MSG_SPLICE_PAGES;
172
173
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bv, 1, bv.bv_len);
174
ret = sock_sendmsg(sock, &msg);
175
if (ret <= 0) {
176
if (ret == -EAGAIN)
177
ret = 0;
178
return ret;
179
}
180
181
iov_iter_advance(it, ret);
182
}
183
184
return 1;
185
}
186
187
/*
188
* Write as much as possible. The socket is expected to be corked,
189
* so we don't bother with MSG_MORE here.
190
*
191
* Return:
192
* 1 - done, nothing (else) to write
193
* 0 - socket is full, need to wait
194
* <0 - error
195
*/
196
static int ceph_tcp_send(struct ceph_connection *con)
197
{
198
int ret;
199
200
dout("%s con %p have %zu try_sendpage %d\n", __func__, con,
201
iov_iter_count(&con->v2.out_iter), con->v2.out_iter_sendpage);
202
if (con->v2.out_iter_sendpage)
203
ret = do_try_sendpage(con->sock, &con->v2.out_iter);
204
else
205
ret = do_sendmsg(con->sock, &con->v2.out_iter);
206
dout("%s con %p ret %d left %zu\n", __func__, con, ret,
207
iov_iter_count(&con->v2.out_iter));
208
return ret;
209
}
210
211
static void add_in_kvec(struct ceph_connection *con, void *buf, int len)
212
{
213
BUG_ON(con->v2.in_kvec_cnt >= ARRAY_SIZE(con->v2.in_kvecs));
214
WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
215
216
con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_base = buf;
217
con->v2.in_kvecs[con->v2.in_kvec_cnt].iov_len = len;
218
con->v2.in_kvec_cnt++;
219
220
con->v2.in_iter.nr_segs++;
221
con->v2.in_iter.count += len;
222
}
223
224
static void reset_in_kvecs(struct ceph_connection *con)
225
{
226
WARN_ON(iov_iter_count(&con->v2.in_iter));
227
228
con->v2.in_kvec_cnt = 0;
229
iov_iter_kvec(&con->v2.in_iter, ITER_DEST, con->v2.in_kvecs, 0, 0);
230
}
231
232
static void set_in_bvec(struct ceph_connection *con, const struct bio_vec *bv)
233
{
234
WARN_ON(iov_iter_count(&con->v2.in_iter));
235
236
con->v2.in_bvec = *bv;
237
iov_iter_bvec(&con->v2.in_iter, ITER_DEST, &con->v2.in_bvec, 1, bv->bv_len);
238
}
239
240
static void set_in_skip(struct ceph_connection *con, int len)
241
{
242
WARN_ON(iov_iter_count(&con->v2.in_iter));
243
244
dout("%s con %p len %d\n", __func__, con, len);
245
iov_iter_discard(&con->v2.in_iter, ITER_DEST, len);
246
}
247
248
static void add_out_kvec(struct ceph_connection *con, void *buf, int len)
249
{
250
BUG_ON(con->v2.out_kvec_cnt >= ARRAY_SIZE(con->v2.out_kvecs));
251
WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
252
WARN_ON(con->v2.out_zero);
253
254
con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_base = buf;
255
con->v2.out_kvecs[con->v2.out_kvec_cnt].iov_len = len;
256
con->v2.out_kvec_cnt++;
257
258
con->v2.out_iter.nr_segs++;
259
con->v2.out_iter.count += len;
260
}
261
262
static void reset_out_kvecs(struct ceph_connection *con)
263
{
264
WARN_ON(iov_iter_count(&con->v2.out_iter));
265
WARN_ON(con->v2.out_zero);
266
267
con->v2.out_kvec_cnt = 0;
268
269
iov_iter_kvec(&con->v2.out_iter, ITER_SOURCE, con->v2.out_kvecs, 0, 0);
270
con->v2.out_iter_sendpage = false;
271
}
272
273
static void set_out_bvec(struct ceph_connection *con, const struct bio_vec *bv,
274
bool zerocopy)
275
{
276
WARN_ON(iov_iter_count(&con->v2.out_iter));
277
WARN_ON(con->v2.out_zero);
278
279
con->v2.out_bvec = *bv;
280
con->v2.out_iter_sendpage = zerocopy;
281
iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1,
282
con->v2.out_bvec.bv_len);
283
}
284
285
static void set_out_bvec_zero(struct ceph_connection *con)
286
{
287
WARN_ON(iov_iter_count(&con->v2.out_iter));
288
WARN_ON(!con->v2.out_zero);
289
290
bvec_set_page(&con->v2.out_bvec, ceph_zero_page,
291
min(con->v2.out_zero, (int)PAGE_SIZE), 0);
292
con->v2.out_iter_sendpage = true;
293
iov_iter_bvec(&con->v2.out_iter, ITER_SOURCE, &con->v2.out_bvec, 1,
294
con->v2.out_bvec.bv_len);
295
}
296
297
static void out_zero_add(struct ceph_connection *con, int len)
298
{
299
dout("%s con %p len %d\n", __func__, con, len);
300
con->v2.out_zero += len;
301
}
302
303
static void *alloc_conn_buf(struct ceph_connection *con, int len)
304
{
305
void *buf;
306
307
dout("%s con %p len %d\n", __func__, con, len);
308
309
if (WARN_ON(con->v2.conn_buf_cnt >= ARRAY_SIZE(con->v2.conn_bufs)))
310
return NULL;
311
312
buf = kvmalloc(len, GFP_NOIO);
313
if (!buf)
314
return NULL;
315
316
con->v2.conn_bufs[con->v2.conn_buf_cnt++] = buf;
317
return buf;
318
}
319
320
static void free_conn_bufs(struct ceph_connection *con)
321
{
322
while (con->v2.conn_buf_cnt)
323
kvfree(con->v2.conn_bufs[--con->v2.conn_buf_cnt]);
324
}
325
326
static void add_in_sign_kvec(struct ceph_connection *con, void *buf, int len)
327
{
328
BUG_ON(con->v2.in_sign_kvec_cnt >= ARRAY_SIZE(con->v2.in_sign_kvecs));
329
330
con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_base = buf;
331
con->v2.in_sign_kvecs[con->v2.in_sign_kvec_cnt].iov_len = len;
332
con->v2.in_sign_kvec_cnt++;
333
}
334
335
static void clear_in_sign_kvecs(struct ceph_connection *con)
336
{
337
con->v2.in_sign_kvec_cnt = 0;
338
}
339
340
static void add_out_sign_kvec(struct ceph_connection *con, void *buf, int len)
341
{
342
BUG_ON(con->v2.out_sign_kvec_cnt >= ARRAY_SIZE(con->v2.out_sign_kvecs));
343
344
con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_base = buf;
345
con->v2.out_sign_kvecs[con->v2.out_sign_kvec_cnt].iov_len = len;
346
con->v2.out_sign_kvec_cnt++;
347
}
348
349
static void clear_out_sign_kvecs(struct ceph_connection *con)
350
{
351
con->v2.out_sign_kvec_cnt = 0;
352
}
353
354
static bool con_secure(struct ceph_connection *con)
355
{
356
return con->v2.con_mode == CEPH_CON_MODE_SECURE;
357
}
358
359
static int front_len(const struct ceph_msg *msg)
360
{
361
return le32_to_cpu(msg->hdr.front_len);
362
}
363
364
static int middle_len(const struct ceph_msg *msg)
365
{
366
return le32_to_cpu(msg->hdr.middle_len);
367
}
368
369
static int data_len(const struct ceph_msg *msg)
370
{
371
return le32_to_cpu(msg->hdr.data_len);
372
}
373
374
static bool need_padding(int len)
375
{
376
return !IS_ALIGNED(len, CEPH_GCM_BLOCK_LEN);
377
}
378
379
static int padded_len(int len)
380
{
381
return ALIGN(len, CEPH_GCM_BLOCK_LEN);
382
}
383
384
static int padding_len(int len)
385
{
386
return padded_len(len) - len;
387
}
388
389
/* preamble + control segment */
390
static int head_onwire_len(int ctrl_len, bool secure)
391
{
392
int head_len;
393
int rem_len;
394
395
BUG_ON(ctrl_len < 0 || ctrl_len > CEPH_MSG_MAX_CONTROL_LEN);
396
397
if (secure) {
398
head_len = CEPH_PREAMBLE_SECURE_LEN;
399
if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
400
rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
401
head_len += padded_len(rem_len) + CEPH_GCM_TAG_LEN;
402
}
403
} else {
404
head_len = CEPH_PREAMBLE_PLAIN_LEN;
405
if (ctrl_len)
406
head_len += ctrl_len + CEPH_CRC_LEN;
407
}
408
return head_len;
409
}
410
411
/* front, middle and data segments + epilogue */
412
static int __tail_onwire_len(int front_len, int middle_len, int data_len,
413
bool secure)
414
{
415
BUG_ON(front_len < 0 || front_len > CEPH_MSG_MAX_FRONT_LEN ||
416
middle_len < 0 || middle_len > CEPH_MSG_MAX_MIDDLE_LEN ||
417
data_len < 0 || data_len > CEPH_MSG_MAX_DATA_LEN);
418
419
if (!front_len && !middle_len && !data_len)
420
return 0;
421
422
if (!secure)
423
return front_len + middle_len + data_len +
424
CEPH_EPILOGUE_PLAIN_LEN;
425
426
return padded_len(front_len) + padded_len(middle_len) +
427
padded_len(data_len) + CEPH_EPILOGUE_SECURE_LEN;
428
}
429
430
static int tail_onwire_len(const struct ceph_msg *msg, bool secure)
431
{
432
return __tail_onwire_len(front_len(msg), middle_len(msg),
433
data_len(msg), secure);
434
}
435
436
/* head_onwire_len(sizeof(struct ceph_msg_header2), false) */
437
#define MESSAGE_HEAD_PLAIN_LEN (CEPH_PREAMBLE_PLAIN_LEN + \
438
sizeof(struct ceph_msg_header2) + \
439
CEPH_CRC_LEN)
440
441
static const int frame_aligns[] = {
442
sizeof(void *),
443
sizeof(void *),
444
sizeof(void *),
445
PAGE_SIZE
446
};
447
448
/*
449
* Discards trailing empty segments, unless there is just one segment.
450
* A frame always has at least one (possibly empty) segment.
451
*/
452
static int calc_segment_count(const int *lens, int len_cnt)
453
{
454
int i;
455
456
for (i = len_cnt - 1; i >= 0; i--) {
457
if (lens[i])
458
return i + 1;
459
}
460
461
return 1;
462
}
463
464
static void init_frame_desc(struct ceph_frame_desc *desc, int tag,
465
const int *lens, int len_cnt)
466
{
467
int i;
468
469
memset(desc, 0, sizeof(*desc));
470
471
desc->fd_tag = tag;
472
desc->fd_seg_cnt = calc_segment_count(lens, len_cnt);
473
BUG_ON(desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT);
474
for (i = 0; i < desc->fd_seg_cnt; i++) {
475
desc->fd_lens[i] = lens[i];
476
desc->fd_aligns[i] = frame_aligns[i];
477
}
478
}
479
480
/*
481
* Preamble crc covers everything up to itself (28 bytes) and
482
* is calculated and verified irrespective of the connection mode
483
* (i.e. even if the frame is encrypted).
484
*/
485
static void encode_preamble(const struct ceph_frame_desc *desc, void *p)
486
{
487
void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
488
void *start = p;
489
int i;
490
491
memset(p, 0, CEPH_PREAMBLE_LEN);
492
493
ceph_encode_8(&p, desc->fd_tag);
494
ceph_encode_8(&p, desc->fd_seg_cnt);
495
for (i = 0; i < desc->fd_seg_cnt; i++) {
496
ceph_encode_32(&p, desc->fd_lens[i]);
497
ceph_encode_16(&p, desc->fd_aligns[i]);
498
}
499
500
put_unaligned_le32(crc32c(0, start, crcp - start), crcp);
501
}
502
503
static int decode_preamble(void *p, struct ceph_frame_desc *desc)
504
{
505
void *crcp = p + CEPH_PREAMBLE_LEN - CEPH_CRC_LEN;
506
u32 crc, expected_crc;
507
int i;
508
509
crc = crc32c(0, p, crcp - p);
510
expected_crc = get_unaligned_le32(crcp);
511
if (crc != expected_crc) {
512
pr_err("bad preamble crc, calculated %u, expected %u\n",
513
crc, expected_crc);
514
return -EBADMSG;
515
}
516
517
memset(desc, 0, sizeof(*desc));
518
519
desc->fd_tag = ceph_decode_8(&p);
520
desc->fd_seg_cnt = ceph_decode_8(&p);
521
if (desc->fd_seg_cnt < 1 ||
522
desc->fd_seg_cnt > CEPH_FRAME_MAX_SEGMENT_COUNT) {
523
pr_err("bad segment count %d\n", desc->fd_seg_cnt);
524
return -EINVAL;
525
}
526
for (i = 0; i < desc->fd_seg_cnt; i++) {
527
desc->fd_lens[i] = ceph_decode_32(&p);
528
desc->fd_aligns[i] = ceph_decode_16(&p);
529
}
530
531
if (desc->fd_lens[0] < 0 ||
532
desc->fd_lens[0] > CEPH_MSG_MAX_CONTROL_LEN) {
533
pr_err("bad control segment length %d\n", desc->fd_lens[0]);
534
return -EINVAL;
535
}
536
if (desc->fd_lens[1] < 0 ||
537
desc->fd_lens[1] > CEPH_MSG_MAX_FRONT_LEN) {
538
pr_err("bad front segment length %d\n", desc->fd_lens[1]);
539
return -EINVAL;
540
}
541
if (desc->fd_lens[2] < 0 ||
542
desc->fd_lens[2] > CEPH_MSG_MAX_MIDDLE_LEN) {
543
pr_err("bad middle segment length %d\n", desc->fd_lens[2]);
544
return -EINVAL;
545
}
546
if (desc->fd_lens[3] < 0 ||
547
desc->fd_lens[3] > CEPH_MSG_MAX_DATA_LEN) {
548
pr_err("bad data segment length %d\n", desc->fd_lens[3]);
549
return -EINVAL;
550
}
551
552
/*
553
* This would fire for FRAME_TAG_WAIT (it has one empty
554
* segment), but we should never get it as client.
555
*/
556
if (!desc->fd_lens[desc->fd_seg_cnt - 1]) {
557
pr_err("last segment empty, segment count %d\n",
558
desc->fd_seg_cnt);
559
return -EINVAL;
560
}
561
562
return 0;
563
}
564
565
static void encode_epilogue_plain(struct ceph_connection *con, bool aborted)
566
{
567
con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
568
FRAME_LATE_STATUS_COMPLETE;
569
cpu_to_le32s(&con->v2.out_epil.front_crc);
570
cpu_to_le32s(&con->v2.out_epil.middle_crc);
571
cpu_to_le32s(&con->v2.out_epil.data_crc);
572
}
573
574
static void encode_epilogue_secure(struct ceph_connection *con, bool aborted)
575
{
576
memset(&con->v2.out_epil, 0, sizeof(con->v2.out_epil));
577
con->v2.out_epil.late_status = aborted ? FRAME_LATE_STATUS_ABORTED :
578
FRAME_LATE_STATUS_COMPLETE;
579
}
580
581
static int decode_epilogue(void *p, u32 *front_crc, u32 *middle_crc,
582
u32 *data_crc)
583
{
584
u8 late_status;
585
586
late_status = ceph_decode_8(&p);
587
if ((late_status & FRAME_LATE_STATUS_ABORTED_MASK) !=
588
FRAME_LATE_STATUS_COMPLETE) {
589
/* we should never get an aborted message as client */
590
pr_err("bad late_status 0x%x\n", late_status);
591
return -EINVAL;
592
}
593
594
if (front_crc && middle_crc && data_crc) {
595
*front_crc = ceph_decode_32(&p);
596
*middle_crc = ceph_decode_32(&p);
597
*data_crc = ceph_decode_32(&p);
598
}
599
600
return 0;
601
}
602
603
static void fill_header(struct ceph_msg_header *hdr,
604
const struct ceph_msg_header2 *hdr2,
605
int front_len, int middle_len, int data_len,
606
const struct ceph_entity_name *peer_name)
607
{
608
hdr->seq = hdr2->seq;
609
hdr->tid = hdr2->tid;
610
hdr->type = hdr2->type;
611
hdr->priority = hdr2->priority;
612
hdr->version = hdr2->version;
613
hdr->front_len = cpu_to_le32(front_len);
614
hdr->middle_len = cpu_to_le32(middle_len);
615
hdr->data_len = cpu_to_le32(data_len);
616
hdr->data_off = hdr2->data_off;
617
hdr->src = *peer_name;
618
hdr->compat_version = hdr2->compat_version;
619
hdr->reserved = 0;
620
hdr->crc = 0;
621
}
622
623
static void fill_header2(struct ceph_msg_header2 *hdr2,
624
const struct ceph_msg_header *hdr, u64 ack_seq)
625
{
626
hdr2->seq = hdr->seq;
627
hdr2->tid = hdr->tid;
628
hdr2->type = hdr->type;
629
hdr2->priority = hdr->priority;
630
hdr2->version = hdr->version;
631
hdr2->data_pre_padding_len = 0;
632
hdr2->data_off = hdr->data_off;
633
hdr2->ack_seq = cpu_to_le64(ack_seq);
634
hdr2->flags = 0;
635
hdr2->compat_version = hdr->compat_version;
636
hdr2->reserved = 0;
637
}
638
639
static int verify_control_crc(struct ceph_connection *con)
640
{
641
int ctrl_len = con->v2.in_desc.fd_lens[0];
642
u32 crc, expected_crc;
643
644
WARN_ON(con->v2.in_kvecs[0].iov_len != ctrl_len);
645
WARN_ON(con->v2.in_kvecs[1].iov_len != CEPH_CRC_LEN);
646
647
crc = crc32c(-1, con->v2.in_kvecs[0].iov_base, ctrl_len);
648
expected_crc = get_unaligned_le32(con->v2.in_kvecs[1].iov_base);
649
if (crc != expected_crc) {
650
pr_err("bad control crc, calculated %u, expected %u\n",
651
crc, expected_crc);
652
return -EBADMSG;
653
}
654
655
return 0;
656
}
657
658
static int verify_epilogue_crcs(struct ceph_connection *con, u32 front_crc,
659
u32 middle_crc, u32 data_crc)
660
{
661
if (front_len(con->in_msg)) {
662
con->in_front_crc = crc32c(-1, con->in_msg->front.iov_base,
663
front_len(con->in_msg));
664
} else {
665
WARN_ON(!middle_len(con->in_msg) && !data_len(con->in_msg));
666
con->in_front_crc = -1;
667
}
668
669
if (middle_len(con->in_msg))
670
con->in_middle_crc = crc32c(-1,
671
con->in_msg->middle->vec.iov_base,
672
middle_len(con->in_msg));
673
else if (data_len(con->in_msg))
674
con->in_middle_crc = -1;
675
else
676
con->in_middle_crc = 0;
677
678
if (!data_len(con->in_msg))
679
con->in_data_crc = 0;
680
681
dout("%s con %p msg %p crcs %u %u %u\n", __func__, con, con->in_msg,
682
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
683
684
if (con->in_front_crc != front_crc) {
685
pr_err("bad front crc, calculated %u, expected %u\n",
686
con->in_front_crc, front_crc);
687
return -EBADMSG;
688
}
689
if (con->in_middle_crc != middle_crc) {
690
pr_err("bad middle crc, calculated %u, expected %u\n",
691
con->in_middle_crc, middle_crc);
692
return -EBADMSG;
693
}
694
if (con->in_data_crc != data_crc) {
695
pr_err("bad data crc, calculated %u, expected %u\n",
696
con->in_data_crc, data_crc);
697
return -EBADMSG;
698
}
699
700
return 0;
701
}
702
703
static int setup_crypto(struct ceph_connection *con,
704
const u8 *session_key, int session_key_len,
705
const u8 *con_secret, int con_secret_len)
706
{
707
unsigned int noio_flag;
708
int ret;
709
710
dout("%s con %p con_mode %d session_key_len %d con_secret_len %d\n",
711
__func__, con, con->v2.con_mode, session_key_len, con_secret_len);
712
WARN_ON(con->v2.hmac_tfm || con->v2.gcm_tfm || con->v2.gcm_req);
713
714
if (con->v2.con_mode != CEPH_CON_MODE_CRC &&
715
con->v2.con_mode != CEPH_CON_MODE_SECURE) {
716
pr_err("bad con_mode %d\n", con->v2.con_mode);
717
return -EINVAL;
718
}
719
720
if (!session_key_len) {
721
WARN_ON(con->v2.con_mode != CEPH_CON_MODE_CRC);
722
WARN_ON(con_secret_len);
723
return 0; /* auth_none */
724
}
725
726
noio_flag = memalloc_noio_save();
727
con->v2.hmac_tfm = crypto_alloc_shash("hmac(sha256)", 0, 0);
728
memalloc_noio_restore(noio_flag);
729
if (IS_ERR(con->v2.hmac_tfm)) {
730
ret = PTR_ERR(con->v2.hmac_tfm);
731
con->v2.hmac_tfm = NULL;
732
pr_err("failed to allocate hmac tfm context: %d\n", ret);
733
return ret;
734
}
735
736
ret = crypto_shash_setkey(con->v2.hmac_tfm, session_key,
737
session_key_len);
738
if (ret) {
739
pr_err("failed to set hmac key: %d\n", ret);
740
return ret;
741
}
742
743
if (con->v2.con_mode == CEPH_CON_MODE_CRC) {
744
WARN_ON(con_secret_len);
745
return 0; /* auth_x, plain mode */
746
}
747
748
if (con_secret_len < CEPH_GCM_KEY_LEN + 2 * CEPH_GCM_IV_LEN) {
749
pr_err("con_secret too small %d\n", con_secret_len);
750
return -EINVAL;
751
}
752
753
noio_flag = memalloc_noio_save();
754
con->v2.gcm_tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
755
memalloc_noio_restore(noio_flag);
756
if (IS_ERR(con->v2.gcm_tfm)) {
757
ret = PTR_ERR(con->v2.gcm_tfm);
758
con->v2.gcm_tfm = NULL;
759
pr_err("failed to allocate gcm tfm context: %d\n", ret);
760
return ret;
761
}
762
763
WARN_ON((unsigned long)con_secret &
764
crypto_aead_alignmask(con->v2.gcm_tfm));
765
ret = crypto_aead_setkey(con->v2.gcm_tfm, con_secret, CEPH_GCM_KEY_LEN);
766
if (ret) {
767
pr_err("failed to set gcm key: %d\n", ret);
768
return ret;
769
}
770
771
WARN_ON(crypto_aead_ivsize(con->v2.gcm_tfm) != CEPH_GCM_IV_LEN);
772
ret = crypto_aead_setauthsize(con->v2.gcm_tfm, CEPH_GCM_TAG_LEN);
773
if (ret) {
774
pr_err("failed to set gcm tag size: %d\n", ret);
775
return ret;
776
}
777
778
con->v2.gcm_req = aead_request_alloc(con->v2.gcm_tfm, GFP_NOIO);
779
if (!con->v2.gcm_req) {
780
pr_err("failed to allocate gcm request\n");
781
return -ENOMEM;
782
}
783
784
crypto_init_wait(&con->v2.gcm_wait);
785
aead_request_set_callback(con->v2.gcm_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
786
crypto_req_done, &con->v2.gcm_wait);
787
788
memcpy(&con->v2.in_gcm_nonce, con_secret + CEPH_GCM_KEY_LEN,
789
CEPH_GCM_IV_LEN);
790
memcpy(&con->v2.out_gcm_nonce,
791
con_secret + CEPH_GCM_KEY_LEN + CEPH_GCM_IV_LEN,
792
CEPH_GCM_IV_LEN);
793
return 0; /* auth_x, secure mode */
794
}
795
796
static int ceph_hmac_sha256(struct ceph_connection *con,
797
const struct kvec *kvecs, int kvec_cnt, u8 *hmac)
798
{
799
SHASH_DESC_ON_STACK(desc, con->v2.hmac_tfm); /* tfm arg is ignored */
800
int ret;
801
int i;
802
803
dout("%s con %p hmac_tfm %p kvec_cnt %d\n", __func__, con,
804
con->v2.hmac_tfm, kvec_cnt);
805
806
if (!con->v2.hmac_tfm) {
807
memset(hmac, 0, SHA256_DIGEST_SIZE);
808
return 0; /* auth_none */
809
}
810
811
desc->tfm = con->v2.hmac_tfm;
812
ret = crypto_shash_init(desc);
813
if (ret)
814
goto out;
815
816
for (i = 0; i < kvec_cnt; i++) {
817
ret = crypto_shash_update(desc, kvecs[i].iov_base,
818
kvecs[i].iov_len);
819
if (ret)
820
goto out;
821
}
822
823
ret = crypto_shash_final(desc, hmac);
824
825
out:
826
shash_desc_zero(desc);
827
return ret; /* auth_x, both plain and secure modes */
828
}
829
830
static void gcm_inc_nonce(struct ceph_gcm_nonce *nonce)
831
{
832
u64 counter;
833
834
counter = le64_to_cpu(nonce->counter);
835
nonce->counter = cpu_to_le64(counter + 1);
836
}
837
838
static int gcm_crypt(struct ceph_connection *con, bool encrypt,
839
struct scatterlist *src, struct scatterlist *dst,
840
int src_len)
841
{
842
struct ceph_gcm_nonce *nonce;
843
int ret;
844
845
nonce = encrypt ? &con->v2.out_gcm_nonce : &con->v2.in_gcm_nonce;
846
847
aead_request_set_ad(con->v2.gcm_req, 0); /* no AAD */
848
aead_request_set_crypt(con->v2.gcm_req, src, dst, src_len, (u8 *)nonce);
849
ret = crypto_wait_req(encrypt ? crypto_aead_encrypt(con->v2.gcm_req) :
850
crypto_aead_decrypt(con->v2.gcm_req),
851
&con->v2.gcm_wait);
852
if (ret)
853
return ret;
854
855
gcm_inc_nonce(nonce);
856
return 0;
857
}
858
859
static void get_bvec_at(struct ceph_msg_data_cursor *cursor,
860
struct bio_vec *bv)
861
{
862
struct page *page;
863
size_t off, len;
864
865
WARN_ON(!cursor->total_resid);
866
867
/* skip zero-length data items */
868
while (!cursor->resid)
869
ceph_msg_data_advance(cursor, 0);
870
871
/* get a piece of data, cursor isn't advanced */
872
page = ceph_msg_data_next(cursor, &off, &len);
873
bvec_set_page(bv, page, len, off);
874
}
875
876
static int calc_sg_cnt(void *buf, int buf_len)
877
{
878
int sg_cnt;
879
880
if (!buf_len)
881
return 0;
882
883
sg_cnt = need_padding(buf_len) ? 1 : 0;
884
if (is_vmalloc_addr(buf)) {
885
WARN_ON(offset_in_page(buf));
886
sg_cnt += PAGE_ALIGN(buf_len) >> PAGE_SHIFT;
887
} else {
888
sg_cnt++;
889
}
890
891
return sg_cnt;
892
}
893
894
static int calc_sg_cnt_cursor(struct ceph_msg_data_cursor *cursor)
895
{
896
int data_len = cursor->total_resid;
897
struct bio_vec bv;
898
int sg_cnt;
899
900
if (!data_len)
901
return 0;
902
903
sg_cnt = need_padding(data_len) ? 1 : 0;
904
do {
905
get_bvec_at(cursor, &bv);
906
sg_cnt++;
907
908
ceph_msg_data_advance(cursor, bv.bv_len);
909
} while (cursor->total_resid);
910
911
return sg_cnt;
912
}
913
914
static void init_sgs(struct scatterlist **sg, void *buf, int buf_len, u8 *pad)
915
{
916
void *end = buf + buf_len;
917
struct page *page;
918
int len;
919
void *p;
920
921
if (!buf_len)
922
return;
923
924
if (is_vmalloc_addr(buf)) {
925
p = buf;
926
do {
927
page = vmalloc_to_page(p);
928
len = min_t(int, end - p, PAGE_SIZE);
929
WARN_ON(!page || !len || offset_in_page(p));
930
sg_set_page(*sg, page, len, 0);
931
*sg = sg_next(*sg);
932
p += len;
933
} while (p != end);
934
} else {
935
sg_set_buf(*sg, buf, buf_len);
936
*sg = sg_next(*sg);
937
}
938
939
if (need_padding(buf_len)) {
940
sg_set_buf(*sg, pad, padding_len(buf_len));
941
*sg = sg_next(*sg);
942
}
943
}
944
945
static void init_sgs_cursor(struct scatterlist **sg,
946
struct ceph_msg_data_cursor *cursor, u8 *pad)
947
{
948
int data_len = cursor->total_resid;
949
struct bio_vec bv;
950
951
if (!data_len)
952
return;
953
954
do {
955
get_bvec_at(cursor, &bv);
956
sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
957
*sg = sg_next(*sg);
958
959
ceph_msg_data_advance(cursor, bv.bv_len);
960
} while (cursor->total_resid);
961
962
if (need_padding(data_len)) {
963
sg_set_buf(*sg, pad, padding_len(data_len));
964
*sg = sg_next(*sg);
965
}
966
}
967
968
/**
969
* init_sgs_pages: set up scatterlist on an array of page pointers
970
* @sg: scatterlist to populate
971
* @pages: pointer to page array
972
* @dpos: position in the array to start (bytes)
973
* @dlen: len to add to sg (bytes)
974
* @pad: pointer to pad destination (if any)
975
*
976
* Populate the scatterlist from the page array, starting at an arbitrary
977
* byte in the array and running for a specified length.
978
*/
979
static void init_sgs_pages(struct scatterlist **sg, struct page **pages,
980
int dpos, int dlen, u8 *pad)
981
{
982
int idx = dpos >> PAGE_SHIFT;
983
int off = offset_in_page(dpos);
984
int resid = dlen;
985
986
do {
987
int len = min(resid, (int)PAGE_SIZE - off);
988
989
sg_set_page(*sg, pages[idx], len, off);
990
*sg = sg_next(*sg);
991
off = 0;
992
++idx;
993
resid -= len;
994
} while (resid);
995
996
if (need_padding(dlen)) {
997
sg_set_buf(*sg, pad, padding_len(dlen));
998
*sg = sg_next(*sg);
999
}
1000
}
1001
1002
static int setup_message_sgs(struct sg_table *sgt, struct ceph_msg *msg,
1003
u8 *front_pad, u8 *middle_pad, u8 *data_pad,
1004
void *epilogue, struct page **pages, int dpos,
1005
bool add_tag)
1006
{
1007
struct ceph_msg_data_cursor cursor;
1008
struct scatterlist *cur_sg;
1009
int dlen = data_len(msg);
1010
int sg_cnt;
1011
int ret;
1012
1013
if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
1014
return 0;
1015
1016
sg_cnt = 1; /* epilogue + [auth tag] */
1017
if (front_len(msg))
1018
sg_cnt += calc_sg_cnt(msg->front.iov_base,
1019
front_len(msg));
1020
if (middle_len(msg))
1021
sg_cnt += calc_sg_cnt(msg->middle->vec.iov_base,
1022
middle_len(msg));
1023
if (dlen) {
1024
if (pages) {
1025
sg_cnt += calc_pages_for(dpos, dlen);
1026
if (need_padding(dlen))
1027
sg_cnt++;
1028
} else {
1029
ceph_msg_data_cursor_init(&cursor, msg, dlen);
1030
sg_cnt += calc_sg_cnt_cursor(&cursor);
1031
}
1032
}
1033
1034
ret = sg_alloc_table(sgt, sg_cnt, GFP_NOIO);
1035
if (ret)
1036
return ret;
1037
1038
cur_sg = sgt->sgl;
1039
if (front_len(msg))
1040
init_sgs(&cur_sg, msg->front.iov_base, front_len(msg),
1041
front_pad);
1042
if (middle_len(msg))
1043
init_sgs(&cur_sg, msg->middle->vec.iov_base, middle_len(msg),
1044
middle_pad);
1045
if (dlen) {
1046
if (pages) {
1047
init_sgs_pages(&cur_sg, pages, dpos, dlen, data_pad);
1048
} else {
1049
ceph_msg_data_cursor_init(&cursor, msg, dlen);
1050
init_sgs_cursor(&cur_sg, &cursor, data_pad);
1051
}
1052
}
1053
1054
WARN_ON(!sg_is_last(cur_sg));
1055
sg_set_buf(cur_sg, epilogue,
1056
CEPH_GCM_BLOCK_LEN + (add_tag ? CEPH_GCM_TAG_LEN : 0));
1057
return 0;
1058
}
1059
1060
static int decrypt_preamble(struct ceph_connection *con)
1061
{
1062
struct scatterlist sg;
1063
1064
sg_init_one(&sg, con->v2.in_buf, CEPH_PREAMBLE_SECURE_LEN);
1065
return gcm_crypt(con, false, &sg, &sg, CEPH_PREAMBLE_SECURE_LEN);
1066
}
1067
1068
static int decrypt_control_remainder(struct ceph_connection *con)
1069
{
1070
int ctrl_len = con->v2.in_desc.fd_lens[0];
1071
int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1072
int pt_len = padding_len(rem_len) + CEPH_GCM_TAG_LEN;
1073
struct scatterlist sgs[2];
1074
1075
WARN_ON(con->v2.in_kvecs[0].iov_len != rem_len);
1076
WARN_ON(con->v2.in_kvecs[1].iov_len != pt_len);
1077
1078
sg_init_table(sgs, 2);
1079
sg_set_buf(&sgs[0], con->v2.in_kvecs[0].iov_base, rem_len);
1080
sg_set_buf(&sgs[1], con->v2.in_buf, pt_len);
1081
1082
return gcm_crypt(con, false, sgs, sgs,
1083
padded_len(rem_len) + CEPH_GCM_TAG_LEN);
1084
}
1085
1086
/* Process sparse read data that lives in a buffer */
1087
static int process_v2_sparse_read(struct ceph_connection *con,
1088
struct page **pages, int spos)
1089
{
1090
struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor;
1091
int ret;
1092
1093
for (;;) {
1094
char *buf = NULL;
1095
1096
ret = con->ops->sparse_read(con, cursor, &buf);
1097
if (ret <= 0)
1098
return ret;
1099
1100
dout("%s: sparse_read return %x buf %p\n", __func__, ret, buf);
1101
1102
do {
1103
int idx = spos >> PAGE_SHIFT;
1104
int soff = offset_in_page(spos);
1105
struct page *spage = con->v2.in_enc_pages[idx];
1106
int len = min_t(int, ret, PAGE_SIZE - soff);
1107
1108
if (buf) {
1109
memcpy_from_page(buf, spage, soff, len);
1110
buf += len;
1111
} else {
1112
struct bio_vec bv;
1113
1114
get_bvec_at(cursor, &bv);
1115
len = min_t(int, len, bv.bv_len);
1116
memcpy_page(bv.bv_page, bv.bv_offset,
1117
spage, soff, len);
1118
ceph_msg_data_advance(cursor, len);
1119
}
1120
spos += len;
1121
ret -= len;
1122
} while (ret);
1123
}
1124
}
1125
1126
static int decrypt_tail(struct ceph_connection *con)
1127
{
1128
struct sg_table enc_sgt = {};
1129
struct sg_table sgt = {};
1130
struct page **pages = NULL;
1131
bool sparse = !!con->in_msg->sparse_read_total;
1132
int dpos = 0;
1133
int tail_len;
1134
int ret;
1135
1136
tail_len = tail_onwire_len(con->in_msg, true);
1137
ret = sg_alloc_table_from_pages(&enc_sgt, con->v2.in_enc_pages,
1138
con->v2.in_enc_page_cnt, 0, tail_len,
1139
GFP_NOIO);
1140
if (ret)
1141
goto out;
1142
1143
if (sparse) {
1144
dpos = padded_len(front_len(con->in_msg) + padded_len(middle_len(con->in_msg)));
1145
pages = con->v2.in_enc_pages;
1146
}
1147
1148
ret = setup_message_sgs(&sgt, con->in_msg, FRONT_PAD(con->v2.in_buf),
1149
MIDDLE_PAD(con->v2.in_buf), DATA_PAD(con->v2.in_buf),
1150
con->v2.in_buf, pages, dpos, true);
1151
if (ret)
1152
goto out;
1153
1154
dout("%s con %p msg %p enc_page_cnt %d sg_cnt %d\n", __func__, con,
1155
con->in_msg, con->v2.in_enc_page_cnt, sgt.orig_nents);
1156
ret = gcm_crypt(con, false, enc_sgt.sgl, sgt.sgl, tail_len);
1157
if (ret)
1158
goto out;
1159
1160
if (sparse && data_len(con->in_msg)) {
1161
ret = process_v2_sparse_read(con, con->v2.in_enc_pages, dpos);
1162
if (ret)
1163
goto out;
1164
}
1165
1166
WARN_ON(!con->v2.in_enc_page_cnt);
1167
ceph_release_page_vector(con->v2.in_enc_pages,
1168
con->v2.in_enc_page_cnt);
1169
con->v2.in_enc_pages = NULL;
1170
con->v2.in_enc_page_cnt = 0;
1171
1172
out:
1173
sg_free_table(&sgt);
1174
sg_free_table(&enc_sgt);
1175
return ret;
1176
}
1177
1178
static int prepare_banner(struct ceph_connection *con)
1179
{
1180
int buf_len = CEPH_BANNER_V2_LEN + 2 + 8 + 8;
1181
void *buf, *p;
1182
1183
buf = alloc_conn_buf(con, buf_len);
1184
if (!buf)
1185
return -ENOMEM;
1186
1187
p = buf;
1188
ceph_encode_copy(&p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN);
1189
ceph_encode_16(&p, sizeof(u64) + sizeof(u64));
1190
ceph_encode_64(&p, CEPH_MSGR2_SUPPORTED_FEATURES);
1191
ceph_encode_64(&p, CEPH_MSGR2_REQUIRED_FEATURES);
1192
WARN_ON(p != buf + buf_len);
1193
1194
add_out_kvec(con, buf, buf_len);
1195
add_out_sign_kvec(con, buf, buf_len);
1196
ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1197
return 0;
1198
}
1199
1200
/*
1201
* base:
1202
* preamble
1203
* control body (ctrl_len bytes)
1204
* space for control crc
1205
*
1206
* extdata (optional):
1207
* control body (extdata_len bytes)
1208
*
1209
* Compute control crc and gather base and extdata into:
1210
*
1211
* preamble
1212
* control body (ctrl_len + extdata_len bytes)
1213
* control crc
1214
*
1215
* Preamble should already be encoded at the start of base.
1216
*/
1217
static void prepare_head_plain(struct ceph_connection *con, void *base,
1218
int ctrl_len, void *extdata, int extdata_len,
1219
bool to_be_signed)
1220
{
1221
int base_len = CEPH_PREAMBLE_LEN + ctrl_len + CEPH_CRC_LEN;
1222
void *crcp = base + base_len - CEPH_CRC_LEN;
1223
u32 crc;
1224
1225
crc = crc32c(-1, CTRL_BODY(base), ctrl_len);
1226
if (extdata_len)
1227
crc = crc32c(crc, extdata, extdata_len);
1228
put_unaligned_le32(crc, crcp);
1229
1230
if (!extdata_len) {
1231
add_out_kvec(con, base, base_len);
1232
if (to_be_signed)
1233
add_out_sign_kvec(con, base, base_len);
1234
return;
1235
}
1236
1237
add_out_kvec(con, base, crcp - base);
1238
add_out_kvec(con, extdata, extdata_len);
1239
add_out_kvec(con, crcp, CEPH_CRC_LEN);
1240
if (to_be_signed) {
1241
add_out_sign_kvec(con, base, crcp - base);
1242
add_out_sign_kvec(con, extdata, extdata_len);
1243
add_out_sign_kvec(con, crcp, CEPH_CRC_LEN);
1244
}
1245
}
1246
1247
static int prepare_head_secure_small(struct ceph_connection *con,
1248
void *base, int ctrl_len)
1249
{
1250
struct scatterlist sg;
1251
int ret;
1252
1253
/* inline buffer padding? */
1254
if (ctrl_len < CEPH_PREAMBLE_INLINE_LEN)
1255
memset(CTRL_BODY(base) + ctrl_len, 0,
1256
CEPH_PREAMBLE_INLINE_LEN - ctrl_len);
1257
1258
sg_init_one(&sg, base, CEPH_PREAMBLE_SECURE_LEN);
1259
ret = gcm_crypt(con, true, &sg, &sg,
1260
CEPH_PREAMBLE_SECURE_LEN - CEPH_GCM_TAG_LEN);
1261
if (ret)
1262
return ret;
1263
1264
add_out_kvec(con, base, CEPH_PREAMBLE_SECURE_LEN);
1265
return 0;
1266
}
1267
1268
/*
1269
* base:
1270
* preamble
1271
* control body (ctrl_len bytes)
1272
* space for padding, if needed
1273
* space for control remainder auth tag
1274
* space for preamble auth tag
1275
*
1276
* Encrypt preamble and the inline portion, then encrypt the remainder
1277
* and gather into:
1278
*
1279
* preamble
1280
* control body (48 bytes)
1281
* preamble auth tag
1282
* control body (ctrl_len - 48 bytes)
1283
* zero padding, if needed
1284
* control remainder auth tag
1285
*
1286
* Preamble should already be encoded at the start of base.
1287
*/
1288
static int prepare_head_secure_big(struct ceph_connection *con,
1289
void *base, int ctrl_len)
1290
{
1291
int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1292
void *rem = CTRL_BODY(base) + CEPH_PREAMBLE_INLINE_LEN;
1293
void *rem_tag = rem + padded_len(rem_len);
1294
void *pmbl_tag = rem_tag + CEPH_GCM_TAG_LEN;
1295
struct scatterlist sgs[2];
1296
int ret;
1297
1298
sg_init_table(sgs, 2);
1299
sg_set_buf(&sgs[0], base, rem - base);
1300
sg_set_buf(&sgs[1], pmbl_tag, CEPH_GCM_TAG_LEN);
1301
ret = gcm_crypt(con, true, sgs, sgs, rem - base);
1302
if (ret)
1303
return ret;
1304
1305
/* control remainder padding? */
1306
if (need_padding(rem_len))
1307
memset(rem + rem_len, 0, padding_len(rem_len));
1308
1309
sg_init_one(&sgs[0], rem, pmbl_tag - rem);
1310
ret = gcm_crypt(con, true, sgs, sgs, rem_tag - rem);
1311
if (ret)
1312
return ret;
1313
1314
add_out_kvec(con, base, rem - base);
1315
add_out_kvec(con, pmbl_tag, CEPH_GCM_TAG_LEN);
1316
add_out_kvec(con, rem, pmbl_tag - rem);
1317
return 0;
1318
}
1319
1320
static int __prepare_control(struct ceph_connection *con, int tag,
1321
void *base, int ctrl_len, void *extdata,
1322
int extdata_len, bool to_be_signed)
1323
{
1324
int total_len = ctrl_len + extdata_len;
1325
struct ceph_frame_desc desc;
1326
int ret;
1327
1328
dout("%s con %p tag %d len %d (%d+%d)\n", __func__, con, tag,
1329
total_len, ctrl_len, extdata_len);
1330
1331
/* extdata may be vmalloc'ed but not base */
1332
if (WARN_ON(is_vmalloc_addr(base) || !ctrl_len))
1333
return -EINVAL;
1334
1335
init_frame_desc(&desc, tag, &total_len, 1);
1336
encode_preamble(&desc, base);
1337
1338
if (con_secure(con)) {
1339
if (WARN_ON(extdata_len || to_be_signed))
1340
return -EINVAL;
1341
1342
if (ctrl_len <= CEPH_PREAMBLE_INLINE_LEN)
1343
/* fully inlined, inline buffer may need padding */
1344
ret = prepare_head_secure_small(con, base, ctrl_len);
1345
else
1346
/* partially inlined, inline buffer is full */
1347
ret = prepare_head_secure_big(con, base, ctrl_len);
1348
if (ret)
1349
return ret;
1350
} else {
1351
prepare_head_plain(con, base, ctrl_len, extdata, extdata_len,
1352
to_be_signed);
1353
}
1354
1355
ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1356
return 0;
1357
}
1358
1359
static int prepare_control(struct ceph_connection *con, int tag,
1360
void *base, int ctrl_len)
1361
{
1362
return __prepare_control(con, tag, base, ctrl_len, NULL, 0, false);
1363
}
1364
1365
static int prepare_hello(struct ceph_connection *con)
1366
{
1367
void *buf, *p;
1368
int ctrl_len;
1369
1370
ctrl_len = 1 + ceph_entity_addr_encoding_len(&con->peer_addr);
1371
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1372
if (!buf)
1373
return -ENOMEM;
1374
1375
p = CTRL_BODY(buf);
1376
ceph_encode_8(&p, CEPH_ENTITY_TYPE_CLIENT);
1377
ceph_encode_entity_addr(&p, &con->peer_addr);
1378
WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1379
1380
return __prepare_control(con, FRAME_TAG_HELLO, buf, ctrl_len,
1381
NULL, 0, true);
1382
}
1383
1384
/* so that head_onwire_len(AUTH_BUF_LEN, false) is 512 */
1385
#define AUTH_BUF_LEN (512 - CEPH_CRC_LEN - CEPH_PREAMBLE_PLAIN_LEN)
1386
1387
static int prepare_auth_request(struct ceph_connection *con)
1388
{
1389
void *authorizer, *authorizer_copy;
1390
int ctrl_len, authorizer_len;
1391
void *buf;
1392
int ret;
1393
1394
ctrl_len = AUTH_BUF_LEN;
1395
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1396
if (!buf)
1397
return -ENOMEM;
1398
1399
mutex_unlock(&con->mutex);
1400
ret = con->ops->get_auth_request(con, CTRL_BODY(buf), &ctrl_len,
1401
&authorizer, &authorizer_len);
1402
mutex_lock(&con->mutex);
1403
if (con->state != CEPH_CON_S_V2_HELLO) {
1404
dout("%s con %p state changed to %d\n", __func__, con,
1405
con->state);
1406
return -EAGAIN;
1407
}
1408
1409
dout("%s con %p get_auth_request ret %d\n", __func__, con, ret);
1410
if (ret)
1411
return ret;
1412
1413
authorizer_copy = alloc_conn_buf(con, authorizer_len);
1414
if (!authorizer_copy)
1415
return -ENOMEM;
1416
1417
memcpy(authorizer_copy, authorizer, authorizer_len);
1418
1419
return __prepare_control(con, FRAME_TAG_AUTH_REQUEST, buf, ctrl_len,
1420
authorizer_copy, authorizer_len, true);
1421
}
1422
1423
static int prepare_auth_request_more(struct ceph_connection *con,
1424
void *reply, int reply_len)
1425
{
1426
int ctrl_len, authorizer_len;
1427
void *authorizer;
1428
void *buf;
1429
int ret;
1430
1431
ctrl_len = AUTH_BUF_LEN;
1432
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, false));
1433
if (!buf)
1434
return -ENOMEM;
1435
1436
mutex_unlock(&con->mutex);
1437
ret = con->ops->handle_auth_reply_more(con, reply, reply_len,
1438
CTRL_BODY(buf), &ctrl_len,
1439
&authorizer, &authorizer_len);
1440
mutex_lock(&con->mutex);
1441
if (con->state != CEPH_CON_S_V2_AUTH) {
1442
dout("%s con %p state changed to %d\n", __func__, con,
1443
con->state);
1444
return -EAGAIN;
1445
}
1446
1447
dout("%s con %p handle_auth_reply_more ret %d\n", __func__, con, ret);
1448
if (ret)
1449
return ret;
1450
1451
return __prepare_control(con, FRAME_TAG_AUTH_REQUEST_MORE, buf,
1452
ctrl_len, authorizer, authorizer_len, true);
1453
}
1454
1455
static int prepare_auth_signature(struct ceph_connection *con)
1456
{
1457
void *buf;
1458
int ret;
1459
1460
buf = alloc_conn_buf(con, head_onwire_len(SHA256_DIGEST_SIZE,
1461
con_secure(con)));
1462
if (!buf)
1463
return -ENOMEM;
1464
1465
ret = ceph_hmac_sha256(con, con->v2.in_sign_kvecs,
1466
con->v2.in_sign_kvec_cnt, CTRL_BODY(buf));
1467
if (ret)
1468
return ret;
1469
1470
return prepare_control(con, FRAME_TAG_AUTH_SIGNATURE, buf,
1471
SHA256_DIGEST_SIZE);
1472
}
1473
1474
static int prepare_client_ident(struct ceph_connection *con)
1475
{
1476
struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1477
struct ceph_client *client = from_msgr(con->msgr);
1478
u64 global_id = ceph_client_gid(client);
1479
void *buf, *p;
1480
int ctrl_len;
1481
1482
WARN_ON(con->v2.server_cookie);
1483
WARN_ON(con->v2.connect_seq);
1484
WARN_ON(con->v2.peer_global_seq);
1485
1486
if (!con->v2.client_cookie) {
1487
do {
1488
get_random_bytes(&con->v2.client_cookie,
1489
sizeof(con->v2.client_cookie));
1490
} while (!con->v2.client_cookie);
1491
dout("%s con %p generated cookie 0x%llx\n", __func__, con,
1492
con->v2.client_cookie);
1493
} else {
1494
dout("%s con %p cookie already set 0x%llx\n", __func__, con,
1495
con->v2.client_cookie);
1496
}
1497
1498
dout("%s con %p my_addr %s/%u peer_addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx cookie 0x%llx\n",
1499
__func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1500
ceph_pr_addr(&con->peer_addr), le32_to_cpu(con->peer_addr.nonce),
1501
global_id, con->v2.global_seq, client->supported_features,
1502
client->required_features, con->v2.client_cookie);
1503
1504
ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) +
1505
ceph_entity_addr_encoding_len(&con->peer_addr) + 6 * 8;
1506
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1507
if (!buf)
1508
return -ENOMEM;
1509
1510
p = CTRL_BODY(buf);
1511
ceph_encode_8(&p, 2); /* addrvec marker */
1512
ceph_encode_32(&p, 1); /* addr_cnt */
1513
ceph_encode_entity_addr(&p, my_addr);
1514
ceph_encode_entity_addr(&p, &con->peer_addr);
1515
ceph_encode_64(&p, global_id);
1516
ceph_encode_64(&p, con->v2.global_seq);
1517
ceph_encode_64(&p, client->supported_features);
1518
ceph_encode_64(&p, client->required_features);
1519
ceph_encode_64(&p, 0); /* flags */
1520
ceph_encode_64(&p, con->v2.client_cookie);
1521
WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1522
1523
return prepare_control(con, FRAME_TAG_CLIENT_IDENT, buf, ctrl_len);
1524
}
1525
1526
static int prepare_session_reconnect(struct ceph_connection *con)
1527
{
1528
struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
1529
void *buf, *p;
1530
int ctrl_len;
1531
1532
WARN_ON(!con->v2.client_cookie);
1533
WARN_ON(!con->v2.server_cookie);
1534
WARN_ON(!con->v2.connect_seq);
1535
WARN_ON(!con->v2.peer_global_seq);
1536
1537
dout("%s con %p my_addr %s/%u client_cookie 0x%llx server_cookie 0x%llx global_seq %llu connect_seq %llu in_seq %llu\n",
1538
__func__, con, ceph_pr_addr(my_addr), le32_to_cpu(my_addr->nonce),
1539
con->v2.client_cookie, con->v2.server_cookie, con->v2.global_seq,
1540
con->v2.connect_seq, con->in_seq);
1541
1542
ctrl_len = 1 + 4 + ceph_entity_addr_encoding_len(my_addr) + 5 * 8;
1543
buf = alloc_conn_buf(con, head_onwire_len(ctrl_len, con_secure(con)));
1544
if (!buf)
1545
return -ENOMEM;
1546
1547
p = CTRL_BODY(buf);
1548
ceph_encode_8(&p, 2); /* entity_addrvec_t marker */
1549
ceph_encode_32(&p, 1); /* my_addrs len */
1550
ceph_encode_entity_addr(&p, my_addr);
1551
ceph_encode_64(&p, con->v2.client_cookie);
1552
ceph_encode_64(&p, con->v2.server_cookie);
1553
ceph_encode_64(&p, con->v2.global_seq);
1554
ceph_encode_64(&p, con->v2.connect_seq);
1555
ceph_encode_64(&p, con->in_seq);
1556
WARN_ON(p != CTRL_BODY(buf) + ctrl_len);
1557
1558
return prepare_control(con, FRAME_TAG_SESSION_RECONNECT, buf, ctrl_len);
1559
}
1560
1561
static int prepare_keepalive2(struct ceph_connection *con)
1562
{
1563
struct ceph_timespec *ts = CTRL_BODY(con->v2.out_buf);
1564
struct timespec64 now;
1565
1566
ktime_get_real_ts64(&now);
1567
dout("%s con %p timestamp %lld.%09ld\n", __func__, con, now.tv_sec,
1568
now.tv_nsec);
1569
1570
ceph_encode_timespec64(ts, &now);
1571
1572
reset_out_kvecs(con);
1573
return prepare_control(con, FRAME_TAG_KEEPALIVE2, con->v2.out_buf,
1574
sizeof(struct ceph_timespec));
1575
}
1576
1577
static int prepare_ack(struct ceph_connection *con)
1578
{
1579
void *p;
1580
1581
dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1582
con->in_seq_acked, con->in_seq);
1583
con->in_seq_acked = con->in_seq;
1584
1585
p = CTRL_BODY(con->v2.out_buf);
1586
ceph_encode_64(&p, con->in_seq_acked);
1587
1588
reset_out_kvecs(con);
1589
return prepare_control(con, FRAME_TAG_ACK, con->v2.out_buf, 8);
1590
}
1591
1592
static void prepare_epilogue_plain(struct ceph_connection *con, bool aborted)
1593
{
1594
dout("%s con %p msg %p aborted %d crcs %u %u %u\n", __func__, con,
1595
con->out_msg, aborted, con->v2.out_epil.front_crc,
1596
con->v2.out_epil.middle_crc, con->v2.out_epil.data_crc);
1597
1598
encode_epilogue_plain(con, aborted);
1599
add_out_kvec(con, &con->v2.out_epil, CEPH_EPILOGUE_PLAIN_LEN);
1600
}
1601
1602
/*
1603
* For "used" empty segments, crc is -1. For unused (trailing)
1604
* segments, crc is 0.
1605
*/
1606
static void prepare_message_plain(struct ceph_connection *con)
1607
{
1608
struct ceph_msg *msg = con->out_msg;
1609
1610
prepare_head_plain(con, con->v2.out_buf,
1611
sizeof(struct ceph_msg_header2), NULL, 0, false);
1612
1613
if (!front_len(msg) && !middle_len(msg)) {
1614
if (!data_len(msg)) {
1615
/*
1616
* Empty message: once the head is written,
1617
* we are done -- there is no epilogue.
1618
*/
1619
con->v2.out_state = OUT_S_FINISH_MESSAGE;
1620
return;
1621
}
1622
1623
con->v2.out_epil.front_crc = -1;
1624
con->v2.out_epil.middle_crc = -1;
1625
con->v2.out_state = OUT_S_QUEUE_DATA;
1626
return;
1627
}
1628
1629
if (front_len(msg)) {
1630
con->v2.out_epil.front_crc = crc32c(-1, msg->front.iov_base,
1631
front_len(msg));
1632
add_out_kvec(con, msg->front.iov_base, front_len(msg));
1633
} else {
1634
/* middle (at least) is there, checked above */
1635
con->v2.out_epil.front_crc = -1;
1636
}
1637
1638
if (middle_len(msg)) {
1639
con->v2.out_epil.middle_crc =
1640
crc32c(-1, msg->middle->vec.iov_base, middle_len(msg));
1641
add_out_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
1642
} else {
1643
con->v2.out_epil.middle_crc = data_len(msg) ? -1 : 0;
1644
}
1645
1646
if (data_len(msg)) {
1647
con->v2.out_state = OUT_S_QUEUE_DATA;
1648
} else {
1649
con->v2.out_epil.data_crc = 0;
1650
prepare_epilogue_plain(con, false);
1651
con->v2.out_state = OUT_S_FINISH_MESSAGE;
1652
}
1653
}
1654
1655
/*
1656
* Unfortunately the kernel crypto API doesn't support streaming
1657
* (piecewise) operation for AEAD algorithms, so we can't get away
1658
* with a fixed size buffer and a couple sgs. Instead, we have to
1659
* allocate pages for the entire tail of the message (currently up
1660
* to ~32M) and two sgs arrays (up to ~256K each)...
1661
*/
1662
static int prepare_message_secure(struct ceph_connection *con)
1663
{
1664
void *zerop = page_address(ceph_zero_page);
1665
struct sg_table enc_sgt = {};
1666
struct sg_table sgt = {};
1667
struct page **enc_pages;
1668
int enc_page_cnt;
1669
int tail_len;
1670
int ret;
1671
1672
ret = prepare_head_secure_small(con, con->v2.out_buf,
1673
sizeof(struct ceph_msg_header2));
1674
if (ret)
1675
return ret;
1676
1677
tail_len = tail_onwire_len(con->out_msg, true);
1678
if (!tail_len) {
1679
/*
1680
* Empty message: once the head is written,
1681
* we are done -- there is no epilogue.
1682
*/
1683
con->v2.out_state = OUT_S_FINISH_MESSAGE;
1684
return 0;
1685
}
1686
1687
encode_epilogue_secure(con, false);
1688
ret = setup_message_sgs(&sgt, con->out_msg, zerop, zerop, zerop,
1689
&con->v2.out_epil, NULL, 0, false);
1690
if (ret)
1691
goto out;
1692
1693
enc_page_cnt = calc_pages_for(0, tail_len);
1694
enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
1695
if (IS_ERR(enc_pages)) {
1696
ret = PTR_ERR(enc_pages);
1697
goto out;
1698
}
1699
1700
WARN_ON(con->v2.out_enc_pages || con->v2.out_enc_page_cnt);
1701
con->v2.out_enc_pages = enc_pages;
1702
con->v2.out_enc_page_cnt = enc_page_cnt;
1703
con->v2.out_enc_resid = tail_len;
1704
con->v2.out_enc_i = 0;
1705
1706
ret = sg_alloc_table_from_pages(&enc_sgt, enc_pages, enc_page_cnt,
1707
0, tail_len, GFP_NOIO);
1708
if (ret)
1709
goto out;
1710
1711
ret = gcm_crypt(con, true, sgt.sgl, enc_sgt.sgl,
1712
tail_len - CEPH_GCM_TAG_LEN);
1713
if (ret)
1714
goto out;
1715
1716
dout("%s con %p msg %p sg_cnt %d enc_page_cnt %d\n", __func__, con,
1717
con->out_msg, sgt.orig_nents, enc_page_cnt);
1718
con->v2.out_state = OUT_S_QUEUE_ENC_PAGE;
1719
1720
out:
1721
sg_free_table(&sgt);
1722
sg_free_table(&enc_sgt);
1723
return ret;
1724
}
1725
1726
static int prepare_message(struct ceph_connection *con)
1727
{
1728
int lens[] = {
1729
sizeof(struct ceph_msg_header2),
1730
front_len(con->out_msg),
1731
middle_len(con->out_msg),
1732
data_len(con->out_msg)
1733
};
1734
struct ceph_frame_desc desc;
1735
int ret;
1736
1737
dout("%s con %p msg %p logical %d+%d+%d+%d\n", __func__, con,
1738
con->out_msg, lens[0], lens[1], lens[2], lens[3]);
1739
1740
if (con->in_seq > con->in_seq_acked) {
1741
dout("%s con %p in_seq_acked %llu -> %llu\n", __func__, con,
1742
con->in_seq_acked, con->in_seq);
1743
con->in_seq_acked = con->in_seq;
1744
}
1745
1746
reset_out_kvecs(con);
1747
init_frame_desc(&desc, FRAME_TAG_MESSAGE, lens, 4);
1748
encode_preamble(&desc, con->v2.out_buf);
1749
fill_header2(CTRL_BODY(con->v2.out_buf), &con->out_msg->hdr,
1750
con->in_seq_acked);
1751
1752
if (con_secure(con)) {
1753
ret = prepare_message_secure(con);
1754
if (ret)
1755
return ret;
1756
} else {
1757
prepare_message_plain(con);
1758
}
1759
1760
ceph_con_flag_set(con, CEPH_CON_F_WRITE_PENDING);
1761
return 0;
1762
}
1763
1764
static int prepare_read_banner_prefix(struct ceph_connection *con)
1765
{
1766
void *buf;
1767
1768
buf = alloc_conn_buf(con, CEPH_BANNER_V2_PREFIX_LEN);
1769
if (!buf)
1770
return -ENOMEM;
1771
1772
reset_in_kvecs(con);
1773
add_in_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1774
add_in_sign_kvec(con, buf, CEPH_BANNER_V2_PREFIX_LEN);
1775
con->state = CEPH_CON_S_V2_BANNER_PREFIX;
1776
return 0;
1777
}
1778
1779
static int prepare_read_banner_payload(struct ceph_connection *con,
1780
int payload_len)
1781
{
1782
void *buf;
1783
1784
buf = alloc_conn_buf(con, payload_len);
1785
if (!buf)
1786
return -ENOMEM;
1787
1788
reset_in_kvecs(con);
1789
add_in_kvec(con, buf, payload_len);
1790
add_in_sign_kvec(con, buf, payload_len);
1791
con->state = CEPH_CON_S_V2_BANNER_PAYLOAD;
1792
return 0;
1793
}
1794
1795
static void prepare_read_preamble(struct ceph_connection *con)
1796
{
1797
reset_in_kvecs(con);
1798
add_in_kvec(con, con->v2.in_buf,
1799
con_secure(con) ? CEPH_PREAMBLE_SECURE_LEN :
1800
CEPH_PREAMBLE_PLAIN_LEN);
1801
con->v2.in_state = IN_S_HANDLE_PREAMBLE;
1802
}
1803
1804
static int prepare_read_control(struct ceph_connection *con)
1805
{
1806
int ctrl_len = con->v2.in_desc.fd_lens[0];
1807
int head_len;
1808
void *buf;
1809
1810
reset_in_kvecs(con);
1811
if (con->state == CEPH_CON_S_V2_HELLO ||
1812
con->state == CEPH_CON_S_V2_AUTH) {
1813
head_len = head_onwire_len(ctrl_len, false);
1814
buf = alloc_conn_buf(con, head_len);
1815
if (!buf)
1816
return -ENOMEM;
1817
1818
/* preserve preamble */
1819
memcpy(buf, con->v2.in_buf, CEPH_PREAMBLE_LEN);
1820
1821
add_in_kvec(con, CTRL_BODY(buf), ctrl_len);
1822
add_in_kvec(con, CTRL_BODY(buf) + ctrl_len, CEPH_CRC_LEN);
1823
add_in_sign_kvec(con, buf, head_len);
1824
} else {
1825
if (ctrl_len > CEPH_PREAMBLE_INLINE_LEN) {
1826
buf = alloc_conn_buf(con, ctrl_len);
1827
if (!buf)
1828
return -ENOMEM;
1829
1830
add_in_kvec(con, buf, ctrl_len);
1831
} else {
1832
add_in_kvec(con, CTRL_BODY(con->v2.in_buf), ctrl_len);
1833
}
1834
add_in_kvec(con, con->v2.in_buf, CEPH_CRC_LEN);
1835
}
1836
con->v2.in_state = IN_S_HANDLE_CONTROL;
1837
return 0;
1838
}
1839
1840
static int prepare_read_control_remainder(struct ceph_connection *con)
1841
{
1842
int ctrl_len = con->v2.in_desc.fd_lens[0];
1843
int rem_len = ctrl_len - CEPH_PREAMBLE_INLINE_LEN;
1844
void *buf;
1845
1846
buf = alloc_conn_buf(con, ctrl_len);
1847
if (!buf)
1848
return -ENOMEM;
1849
1850
memcpy(buf, CTRL_BODY(con->v2.in_buf), CEPH_PREAMBLE_INLINE_LEN);
1851
1852
reset_in_kvecs(con);
1853
add_in_kvec(con, buf + CEPH_PREAMBLE_INLINE_LEN, rem_len);
1854
add_in_kvec(con, con->v2.in_buf,
1855
padding_len(rem_len) + CEPH_GCM_TAG_LEN);
1856
con->v2.in_state = IN_S_HANDLE_CONTROL_REMAINDER;
1857
return 0;
1858
}
1859
1860
static int prepare_read_data(struct ceph_connection *con)
1861
{
1862
struct bio_vec bv;
1863
1864
con->in_data_crc = -1;
1865
ceph_msg_data_cursor_init(&con->v2.in_cursor, con->in_msg,
1866
data_len(con->in_msg));
1867
1868
get_bvec_at(&con->v2.in_cursor, &bv);
1869
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1870
if (unlikely(!con->bounce_page)) {
1871
con->bounce_page = alloc_page(GFP_NOIO);
1872
if (!con->bounce_page) {
1873
pr_err("failed to allocate bounce page\n");
1874
return -ENOMEM;
1875
}
1876
}
1877
1878
bv.bv_page = con->bounce_page;
1879
bv.bv_offset = 0;
1880
}
1881
set_in_bvec(con, &bv);
1882
con->v2.in_state = IN_S_PREPARE_READ_DATA_CONT;
1883
return 0;
1884
}
1885
1886
static void prepare_read_data_cont(struct ceph_connection *con)
1887
{
1888
struct bio_vec bv;
1889
1890
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1891
con->in_data_crc = crc32c(con->in_data_crc,
1892
page_address(con->bounce_page),
1893
con->v2.in_bvec.bv_len);
1894
1895
get_bvec_at(&con->v2.in_cursor, &bv);
1896
memcpy_to_page(bv.bv_page, bv.bv_offset,
1897
page_address(con->bounce_page),
1898
con->v2.in_bvec.bv_len);
1899
} else {
1900
con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1901
con->v2.in_bvec.bv_page,
1902
con->v2.in_bvec.bv_offset,
1903
con->v2.in_bvec.bv_len);
1904
}
1905
1906
ceph_msg_data_advance(&con->v2.in_cursor, con->v2.in_bvec.bv_len);
1907
if (con->v2.in_cursor.total_resid) {
1908
get_bvec_at(&con->v2.in_cursor, &bv);
1909
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1910
bv.bv_page = con->bounce_page;
1911
bv.bv_offset = 0;
1912
}
1913
set_in_bvec(con, &bv);
1914
WARN_ON(con->v2.in_state != IN_S_PREPARE_READ_DATA_CONT);
1915
return;
1916
}
1917
1918
/*
1919
* We've read all data. Prepare to read epilogue.
1920
*/
1921
reset_in_kvecs(con);
1922
add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1923
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1924
}
1925
1926
static int prepare_sparse_read_cont(struct ceph_connection *con)
1927
{
1928
int ret;
1929
struct bio_vec bv;
1930
char *buf = NULL;
1931
struct ceph_msg_data_cursor *cursor = &con->v2.in_cursor;
1932
1933
WARN_ON(con->v2.in_state != IN_S_PREPARE_SPARSE_DATA_CONT);
1934
1935
if (iov_iter_is_bvec(&con->v2.in_iter)) {
1936
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1937
con->in_data_crc = crc32c(con->in_data_crc,
1938
page_address(con->bounce_page),
1939
con->v2.in_bvec.bv_len);
1940
get_bvec_at(cursor, &bv);
1941
memcpy_to_page(bv.bv_page, bv.bv_offset,
1942
page_address(con->bounce_page),
1943
con->v2.in_bvec.bv_len);
1944
} else {
1945
con->in_data_crc = ceph_crc32c_page(con->in_data_crc,
1946
con->v2.in_bvec.bv_page,
1947
con->v2.in_bvec.bv_offset,
1948
con->v2.in_bvec.bv_len);
1949
}
1950
1951
ceph_msg_data_advance(cursor, con->v2.in_bvec.bv_len);
1952
cursor->sr_resid -= con->v2.in_bvec.bv_len;
1953
dout("%s: advance by 0x%x sr_resid 0x%x\n", __func__,
1954
con->v2.in_bvec.bv_len, cursor->sr_resid);
1955
WARN_ON_ONCE(cursor->sr_resid > cursor->total_resid);
1956
if (cursor->sr_resid) {
1957
get_bvec_at(cursor, &bv);
1958
if (bv.bv_len > cursor->sr_resid)
1959
bv.bv_len = cursor->sr_resid;
1960
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
1961
bv.bv_page = con->bounce_page;
1962
bv.bv_offset = 0;
1963
}
1964
set_in_bvec(con, &bv);
1965
con->v2.data_len_remain -= bv.bv_len;
1966
return 0;
1967
}
1968
} else if (iov_iter_is_kvec(&con->v2.in_iter)) {
1969
/* On first call, we have no kvec so don't compute crc */
1970
if (con->v2.in_kvec_cnt) {
1971
WARN_ON_ONCE(con->v2.in_kvec_cnt > 1);
1972
con->in_data_crc = crc32c(con->in_data_crc,
1973
con->v2.in_kvecs[0].iov_base,
1974
con->v2.in_kvecs[0].iov_len);
1975
}
1976
} else {
1977
return -EIO;
1978
}
1979
1980
/* get next extent */
1981
ret = con->ops->sparse_read(con, cursor, &buf);
1982
if (ret <= 0) {
1983
if (ret < 0)
1984
return ret;
1985
1986
reset_in_kvecs(con);
1987
add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
1988
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
1989
return 0;
1990
}
1991
1992
if (buf) {
1993
/* receive into buffer */
1994
reset_in_kvecs(con);
1995
add_in_kvec(con, buf, ret);
1996
con->v2.data_len_remain -= ret;
1997
return 0;
1998
}
1999
2000
if (ret > cursor->total_resid) {
2001
pr_warn("%s: ret 0x%x total_resid 0x%zx resid 0x%zx\n",
2002
__func__, ret, cursor->total_resid, cursor->resid);
2003
return -EIO;
2004
}
2005
get_bvec_at(cursor, &bv);
2006
if (bv.bv_len > cursor->sr_resid)
2007
bv.bv_len = cursor->sr_resid;
2008
if (ceph_test_opt(from_msgr(con->msgr), RXBOUNCE)) {
2009
if (unlikely(!con->bounce_page)) {
2010
con->bounce_page = alloc_page(GFP_NOIO);
2011
if (!con->bounce_page) {
2012
pr_err("failed to allocate bounce page\n");
2013
return -ENOMEM;
2014
}
2015
}
2016
2017
bv.bv_page = con->bounce_page;
2018
bv.bv_offset = 0;
2019
}
2020
set_in_bvec(con, &bv);
2021
con->v2.data_len_remain -= ret;
2022
return ret;
2023
}
2024
2025
static int prepare_sparse_read_data(struct ceph_connection *con)
2026
{
2027
struct ceph_msg *msg = con->in_msg;
2028
2029
dout("%s: starting sparse read\n", __func__);
2030
2031
if (WARN_ON_ONCE(!con->ops->sparse_read))
2032
return -EOPNOTSUPP;
2033
2034
if (!con_secure(con))
2035
con->in_data_crc = -1;
2036
2037
ceph_msg_data_cursor_init(&con->v2.in_cursor, msg,
2038
msg->sparse_read_total);
2039
2040
reset_in_kvecs(con);
2041
con->v2.in_state = IN_S_PREPARE_SPARSE_DATA_CONT;
2042
con->v2.data_len_remain = data_len(msg);
2043
return prepare_sparse_read_cont(con);
2044
}
2045
2046
static int prepare_read_tail_plain(struct ceph_connection *con)
2047
{
2048
struct ceph_msg *msg = con->in_msg;
2049
2050
if (!front_len(msg) && !middle_len(msg)) {
2051
WARN_ON(!data_len(msg));
2052
return prepare_read_data(con);
2053
}
2054
2055
reset_in_kvecs(con);
2056
if (front_len(msg)) {
2057
add_in_kvec(con, msg->front.iov_base, front_len(msg));
2058
WARN_ON(msg->front.iov_len != front_len(msg));
2059
}
2060
if (middle_len(msg)) {
2061
add_in_kvec(con, msg->middle->vec.iov_base, middle_len(msg));
2062
WARN_ON(msg->middle->vec.iov_len != middle_len(msg));
2063
}
2064
2065
if (data_len(msg)) {
2066
if (msg->sparse_read_total)
2067
con->v2.in_state = IN_S_PREPARE_SPARSE_DATA;
2068
else
2069
con->v2.in_state = IN_S_PREPARE_READ_DATA;
2070
} else {
2071
add_in_kvec(con, con->v2.in_buf, CEPH_EPILOGUE_PLAIN_LEN);
2072
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
2073
}
2074
return 0;
2075
}
2076
2077
static void prepare_read_enc_page(struct ceph_connection *con)
2078
{
2079
struct bio_vec bv;
2080
2081
dout("%s con %p i %d resid %d\n", __func__, con, con->v2.in_enc_i,
2082
con->v2.in_enc_resid);
2083
WARN_ON(!con->v2.in_enc_resid);
2084
2085
bvec_set_page(&bv, con->v2.in_enc_pages[con->v2.in_enc_i],
2086
min(con->v2.in_enc_resid, (int)PAGE_SIZE), 0);
2087
2088
set_in_bvec(con, &bv);
2089
con->v2.in_enc_i++;
2090
con->v2.in_enc_resid -= bv.bv_len;
2091
2092
if (con->v2.in_enc_resid) {
2093
con->v2.in_state = IN_S_PREPARE_READ_ENC_PAGE;
2094
return;
2095
}
2096
2097
/*
2098
* We are set to read the last piece of ciphertext (ending
2099
* with epilogue) + auth tag.
2100
*/
2101
WARN_ON(con->v2.in_enc_i != con->v2.in_enc_page_cnt);
2102
con->v2.in_state = IN_S_HANDLE_EPILOGUE;
2103
}
2104
2105
static int prepare_read_tail_secure(struct ceph_connection *con)
2106
{
2107
struct page **enc_pages;
2108
int enc_page_cnt;
2109
int tail_len;
2110
2111
tail_len = tail_onwire_len(con->in_msg, true);
2112
WARN_ON(!tail_len);
2113
2114
enc_page_cnt = calc_pages_for(0, tail_len);
2115
enc_pages = ceph_alloc_page_vector(enc_page_cnt, GFP_NOIO);
2116
if (IS_ERR(enc_pages))
2117
return PTR_ERR(enc_pages);
2118
2119
WARN_ON(con->v2.in_enc_pages || con->v2.in_enc_page_cnt);
2120
con->v2.in_enc_pages = enc_pages;
2121
con->v2.in_enc_page_cnt = enc_page_cnt;
2122
con->v2.in_enc_resid = tail_len;
2123
con->v2.in_enc_i = 0;
2124
2125
prepare_read_enc_page(con);
2126
return 0;
2127
}
2128
2129
static void __finish_skip(struct ceph_connection *con)
2130
{
2131
con->in_seq++;
2132
prepare_read_preamble(con);
2133
}
2134
2135
static void prepare_skip_message(struct ceph_connection *con)
2136
{
2137
struct ceph_frame_desc *desc = &con->v2.in_desc;
2138
int tail_len;
2139
2140
dout("%s con %p %d+%d+%d\n", __func__, con, desc->fd_lens[1],
2141
desc->fd_lens[2], desc->fd_lens[3]);
2142
2143
tail_len = __tail_onwire_len(desc->fd_lens[1], desc->fd_lens[2],
2144
desc->fd_lens[3], con_secure(con));
2145
if (!tail_len) {
2146
__finish_skip(con);
2147
} else {
2148
set_in_skip(con, tail_len);
2149
con->v2.in_state = IN_S_FINISH_SKIP;
2150
}
2151
}
2152
2153
static int process_banner_prefix(struct ceph_connection *con)
2154
{
2155
int payload_len;
2156
void *p;
2157
2158
WARN_ON(con->v2.in_kvecs[0].iov_len != CEPH_BANNER_V2_PREFIX_LEN);
2159
2160
p = con->v2.in_kvecs[0].iov_base;
2161
if (memcmp(p, CEPH_BANNER_V2, CEPH_BANNER_V2_LEN)) {
2162
if (!memcmp(p, CEPH_BANNER, CEPH_BANNER_LEN))
2163
con->error_msg = "server is speaking msgr1 protocol";
2164
else
2165
con->error_msg = "protocol error, bad banner";
2166
return -EINVAL;
2167
}
2168
2169
p += CEPH_BANNER_V2_LEN;
2170
payload_len = ceph_decode_16(&p);
2171
dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2172
2173
return prepare_read_banner_payload(con, payload_len);
2174
}
2175
2176
static int process_banner_payload(struct ceph_connection *con)
2177
{
2178
void *end = con->v2.in_kvecs[0].iov_base + con->v2.in_kvecs[0].iov_len;
2179
u64 feat = CEPH_MSGR2_SUPPORTED_FEATURES;
2180
u64 req_feat = CEPH_MSGR2_REQUIRED_FEATURES;
2181
u64 server_feat, server_req_feat;
2182
void *p;
2183
int ret;
2184
2185
p = con->v2.in_kvecs[0].iov_base;
2186
ceph_decode_64_safe(&p, end, server_feat, bad);
2187
ceph_decode_64_safe(&p, end, server_req_feat, bad);
2188
2189
dout("%s con %p server_feat 0x%llx server_req_feat 0x%llx\n",
2190
__func__, con, server_feat, server_req_feat);
2191
2192
if (req_feat & ~server_feat) {
2193
pr_err("msgr2 feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2194
server_feat, req_feat & ~server_feat);
2195
con->error_msg = "missing required protocol features";
2196
return -EINVAL;
2197
}
2198
if (server_req_feat & ~feat) {
2199
pr_err("msgr2 feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2200
feat, server_req_feat & ~feat);
2201
con->error_msg = "missing required protocol features";
2202
return -EINVAL;
2203
}
2204
2205
/* no reset_out_kvecs() as our banner may still be pending */
2206
ret = prepare_hello(con);
2207
if (ret) {
2208
pr_err("prepare_hello failed: %d\n", ret);
2209
return ret;
2210
}
2211
2212
con->state = CEPH_CON_S_V2_HELLO;
2213
prepare_read_preamble(con);
2214
return 0;
2215
2216
bad:
2217
pr_err("failed to decode banner payload\n");
2218
return -EINVAL;
2219
}
2220
2221
static int process_hello(struct ceph_connection *con, void *p, void *end)
2222
{
2223
struct ceph_entity_addr *my_addr = &con->msgr->inst.addr;
2224
struct ceph_entity_addr addr_for_me;
2225
u8 entity_type;
2226
int ret;
2227
2228
if (con->state != CEPH_CON_S_V2_HELLO) {
2229
con->error_msg = "protocol error, unexpected hello";
2230
return -EINVAL;
2231
}
2232
2233
ceph_decode_8_safe(&p, end, entity_type, bad);
2234
ret = ceph_decode_entity_addr(&p, end, &addr_for_me);
2235
if (ret) {
2236
pr_err("failed to decode addr_for_me: %d\n", ret);
2237
return ret;
2238
}
2239
2240
dout("%s con %p entity_type %d addr_for_me %s\n", __func__, con,
2241
entity_type, ceph_pr_addr(&addr_for_me));
2242
2243
if (entity_type != con->peer_name.type) {
2244
pr_err("bad peer type, want %d, got %d\n",
2245
con->peer_name.type, entity_type);
2246
con->error_msg = "wrong peer at address";
2247
return -EINVAL;
2248
}
2249
2250
/*
2251
* Set our address to the address our first peer (i.e. monitor)
2252
* sees that we are connecting from. If we are behind some sort
2253
* of NAT and want to be identified by some private (not NATed)
2254
* address, ip option should be used.
2255
*/
2256
if (ceph_addr_is_blank(my_addr)) {
2257
memcpy(&my_addr->in_addr, &addr_for_me.in_addr,
2258
sizeof(my_addr->in_addr));
2259
ceph_addr_set_port(my_addr, 0);
2260
dout("%s con %p set my addr %s, as seen by peer %s\n",
2261
__func__, con, ceph_pr_addr(my_addr),
2262
ceph_pr_addr(&con->peer_addr));
2263
} else {
2264
dout("%s con %p my addr already set %s\n",
2265
__func__, con, ceph_pr_addr(my_addr));
2266
}
2267
2268
WARN_ON(ceph_addr_is_blank(my_addr) || ceph_addr_port(my_addr));
2269
WARN_ON(my_addr->type != CEPH_ENTITY_ADDR_TYPE_ANY);
2270
WARN_ON(!my_addr->nonce);
2271
2272
/* no reset_out_kvecs() as our hello may still be pending */
2273
ret = prepare_auth_request(con);
2274
if (ret) {
2275
if (ret != -EAGAIN)
2276
pr_err("prepare_auth_request failed: %d\n", ret);
2277
return ret;
2278
}
2279
2280
con->state = CEPH_CON_S_V2_AUTH;
2281
return 0;
2282
2283
bad:
2284
pr_err("failed to decode hello\n");
2285
return -EINVAL;
2286
}
2287
2288
static int process_auth_bad_method(struct ceph_connection *con,
2289
void *p, void *end)
2290
{
2291
int allowed_protos[8], allowed_modes[8];
2292
int allowed_proto_cnt, allowed_mode_cnt;
2293
int used_proto, result;
2294
int ret;
2295
int i;
2296
2297
if (con->state != CEPH_CON_S_V2_AUTH) {
2298
con->error_msg = "protocol error, unexpected auth_bad_method";
2299
return -EINVAL;
2300
}
2301
2302
ceph_decode_32_safe(&p, end, used_proto, bad);
2303
ceph_decode_32_safe(&p, end, result, bad);
2304
dout("%s con %p used_proto %d result %d\n", __func__, con, used_proto,
2305
result);
2306
2307
ceph_decode_32_safe(&p, end, allowed_proto_cnt, bad);
2308
if (allowed_proto_cnt > ARRAY_SIZE(allowed_protos)) {
2309
pr_err("allowed_protos too big %d\n", allowed_proto_cnt);
2310
return -EINVAL;
2311
}
2312
for (i = 0; i < allowed_proto_cnt; i++) {
2313
ceph_decode_32_safe(&p, end, allowed_protos[i], bad);
2314
dout("%s con %p allowed_protos[%d] %d\n", __func__, con,
2315
i, allowed_protos[i]);
2316
}
2317
2318
ceph_decode_32_safe(&p, end, allowed_mode_cnt, bad);
2319
if (allowed_mode_cnt > ARRAY_SIZE(allowed_modes)) {
2320
pr_err("allowed_modes too big %d\n", allowed_mode_cnt);
2321
return -EINVAL;
2322
}
2323
for (i = 0; i < allowed_mode_cnt; i++) {
2324
ceph_decode_32_safe(&p, end, allowed_modes[i], bad);
2325
dout("%s con %p allowed_modes[%d] %d\n", __func__, con,
2326
i, allowed_modes[i]);
2327
}
2328
2329
mutex_unlock(&con->mutex);
2330
ret = con->ops->handle_auth_bad_method(con, used_proto, result,
2331
allowed_protos,
2332
allowed_proto_cnt,
2333
allowed_modes,
2334
allowed_mode_cnt);
2335
mutex_lock(&con->mutex);
2336
if (con->state != CEPH_CON_S_V2_AUTH) {
2337
dout("%s con %p state changed to %d\n", __func__, con,
2338
con->state);
2339
return -EAGAIN;
2340
}
2341
2342
dout("%s con %p handle_auth_bad_method ret %d\n", __func__, con, ret);
2343
return ret;
2344
2345
bad:
2346
pr_err("failed to decode auth_bad_method\n");
2347
return -EINVAL;
2348
}
2349
2350
static int process_auth_reply_more(struct ceph_connection *con,
2351
void *p, void *end)
2352
{
2353
int payload_len;
2354
int ret;
2355
2356
if (con->state != CEPH_CON_S_V2_AUTH) {
2357
con->error_msg = "protocol error, unexpected auth_reply_more";
2358
return -EINVAL;
2359
}
2360
2361
ceph_decode_32_safe(&p, end, payload_len, bad);
2362
ceph_decode_need(&p, end, payload_len, bad);
2363
2364
dout("%s con %p payload_len %d\n", __func__, con, payload_len);
2365
2366
reset_out_kvecs(con);
2367
ret = prepare_auth_request_more(con, p, payload_len);
2368
if (ret) {
2369
if (ret != -EAGAIN)
2370
pr_err("prepare_auth_request_more failed: %d\n", ret);
2371
return ret;
2372
}
2373
2374
return 0;
2375
2376
bad:
2377
pr_err("failed to decode auth_reply_more\n");
2378
return -EINVAL;
2379
}
2380
2381
/*
2382
* Align session_key and con_secret to avoid GFP_ATOMIC allocation
2383
* inside crypto_shash_setkey() and crypto_aead_setkey() called from
2384
* setup_crypto(). __aligned(16) isn't guaranteed to work for stack
2385
* objects, so do it by hand.
2386
*/
2387
static int process_auth_done(struct ceph_connection *con, void *p, void *end)
2388
{
2389
u8 session_key_buf[CEPH_KEY_LEN + 16];
2390
u8 con_secret_buf[CEPH_MAX_CON_SECRET_LEN + 16];
2391
u8 *session_key = PTR_ALIGN(&session_key_buf[0], 16);
2392
u8 *con_secret = PTR_ALIGN(&con_secret_buf[0], 16);
2393
int session_key_len, con_secret_len;
2394
int payload_len;
2395
u64 global_id;
2396
int ret;
2397
2398
if (con->state != CEPH_CON_S_V2_AUTH) {
2399
con->error_msg = "protocol error, unexpected auth_done";
2400
return -EINVAL;
2401
}
2402
2403
ceph_decode_64_safe(&p, end, global_id, bad);
2404
ceph_decode_32_safe(&p, end, con->v2.con_mode, bad);
2405
ceph_decode_32_safe(&p, end, payload_len, bad);
2406
2407
dout("%s con %p global_id %llu con_mode %d payload_len %d\n",
2408
__func__, con, global_id, con->v2.con_mode, payload_len);
2409
2410
mutex_unlock(&con->mutex);
2411
session_key_len = 0;
2412
con_secret_len = 0;
2413
ret = con->ops->handle_auth_done(con, global_id, p, payload_len,
2414
session_key, &session_key_len,
2415
con_secret, &con_secret_len);
2416
mutex_lock(&con->mutex);
2417
if (con->state != CEPH_CON_S_V2_AUTH) {
2418
dout("%s con %p state changed to %d\n", __func__, con,
2419
con->state);
2420
ret = -EAGAIN;
2421
goto out;
2422
}
2423
2424
dout("%s con %p handle_auth_done ret %d\n", __func__, con, ret);
2425
if (ret)
2426
goto out;
2427
2428
ret = setup_crypto(con, session_key, session_key_len, con_secret,
2429
con_secret_len);
2430
if (ret)
2431
goto out;
2432
2433
reset_out_kvecs(con);
2434
ret = prepare_auth_signature(con);
2435
if (ret) {
2436
pr_err("prepare_auth_signature failed: %d\n", ret);
2437
goto out;
2438
}
2439
2440
con->state = CEPH_CON_S_V2_AUTH_SIGNATURE;
2441
2442
out:
2443
memzero_explicit(session_key_buf, sizeof(session_key_buf));
2444
memzero_explicit(con_secret_buf, sizeof(con_secret_buf));
2445
return ret;
2446
2447
bad:
2448
pr_err("failed to decode auth_done\n");
2449
return -EINVAL;
2450
}
2451
2452
static int process_auth_signature(struct ceph_connection *con,
2453
void *p, void *end)
2454
{
2455
u8 hmac[SHA256_DIGEST_SIZE];
2456
int ret;
2457
2458
if (con->state != CEPH_CON_S_V2_AUTH_SIGNATURE) {
2459
con->error_msg = "protocol error, unexpected auth_signature";
2460
return -EINVAL;
2461
}
2462
2463
ret = ceph_hmac_sha256(con, con->v2.out_sign_kvecs,
2464
con->v2.out_sign_kvec_cnt, hmac);
2465
if (ret)
2466
return ret;
2467
2468
ceph_decode_need(&p, end, SHA256_DIGEST_SIZE, bad);
2469
if (crypto_memneq(p, hmac, SHA256_DIGEST_SIZE)) {
2470
con->error_msg = "integrity error, bad auth signature";
2471
return -EBADMSG;
2472
}
2473
2474
dout("%s con %p auth signature ok\n", __func__, con);
2475
2476
/* no reset_out_kvecs() as our auth_signature may still be pending */
2477
if (!con->v2.server_cookie) {
2478
ret = prepare_client_ident(con);
2479
if (ret) {
2480
pr_err("prepare_client_ident failed: %d\n", ret);
2481
return ret;
2482
}
2483
2484
con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2485
} else {
2486
ret = prepare_session_reconnect(con);
2487
if (ret) {
2488
pr_err("prepare_session_reconnect failed: %d\n", ret);
2489
return ret;
2490
}
2491
2492
con->state = CEPH_CON_S_V2_SESSION_RECONNECT;
2493
}
2494
2495
return 0;
2496
2497
bad:
2498
pr_err("failed to decode auth_signature\n");
2499
return -EINVAL;
2500
}
2501
2502
static int process_server_ident(struct ceph_connection *con,
2503
void *p, void *end)
2504
{
2505
struct ceph_client *client = from_msgr(con->msgr);
2506
u64 features, required_features;
2507
struct ceph_entity_addr addr;
2508
u64 global_seq;
2509
u64 global_id;
2510
u64 cookie;
2511
u64 flags;
2512
int ret;
2513
2514
if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2515
con->error_msg = "protocol error, unexpected server_ident";
2516
return -EINVAL;
2517
}
2518
2519
ret = ceph_decode_entity_addrvec(&p, end, true, &addr);
2520
if (ret) {
2521
pr_err("failed to decode server addrs: %d\n", ret);
2522
return ret;
2523
}
2524
2525
ceph_decode_64_safe(&p, end, global_id, bad);
2526
ceph_decode_64_safe(&p, end, global_seq, bad);
2527
ceph_decode_64_safe(&p, end, features, bad);
2528
ceph_decode_64_safe(&p, end, required_features, bad);
2529
ceph_decode_64_safe(&p, end, flags, bad);
2530
ceph_decode_64_safe(&p, end, cookie, bad);
2531
2532
dout("%s con %p addr %s/%u global_id %llu global_seq %llu features 0x%llx required_features 0x%llx flags 0x%llx cookie 0x%llx\n",
2533
__func__, con, ceph_pr_addr(&addr), le32_to_cpu(addr.nonce),
2534
global_id, global_seq, features, required_features, flags, cookie);
2535
2536
/* is this who we intended to talk to? */
2537
if (memcmp(&addr, &con->peer_addr, sizeof(con->peer_addr))) {
2538
pr_err("bad peer addr/nonce, want %s/%u, got %s/%u\n",
2539
ceph_pr_addr(&con->peer_addr),
2540
le32_to_cpu(con->peer_addr.nonce),
2541
ceph_pr_addr(&addr), le32_to_cpu(addr.nonce));
2542
con->error_msg = "wrong peer at address";
2543
return -EINVAL;
2544
}
2545
2546
if (client->required_features & ~features) {
2547
pr_err("RADOS feature set mismatch: my required > server's supported 0x%llx, need 0x%llx\n",
2548
features, client->required_features & ~features);
2549
con->error_msg = "missing required protocol features";
2550
return -EINVAL;
2551
}
2552
2553
/*
2554
* Both name->type and name->num are set in ceph_con_open() but
2555
* name->num may be bogus in the initial monmap. name->type is
2556
* verified in handle_hello().
2557
*/
2558
WARN_ON(!con->peer_name.type);
2559
con->peer_name.num = cpu_to_le64(global_id);
2560
con->v2.peer_global_seq = global_seq;
2561
con->peer_features = features;
2562
WARN_ON(required_features & ~client->supported_features);
2563
con->v2.server_cookie = cookie;
2564
2565
if (flags & CEPH_MSG_CONNECT_LOSSY) {
2566
ceph_con_flag_set(con, CEPH_CON_F_LOSSYTX);
2567
WARN_ON(con->v2.server_cookie);
2568
} else {
2569
WARN_ON(!con->v2.server_cookie);
2570
}
2571
2572
clear_in_sign_kvecs(con);
2573
clear_out_sign_kvecs(con);
2574
free_conn_bufs(con);
2575
con->delay = 0; /* reset backoff memory */
2576
2577
con->state = CEPH_CON_S_OPEN;
2578
con->v2.out_state = OUT_S_GET_NEXT;
2579
return 0;
2580
2581
bad:
2582
pr_err("failed to decode server_ident\n");
2583
return -EINVAL;
2584
}
2585
2586
static int process_ident_missing_features(struct ceph_connection *con,
2587
void *p, void *end)
2588
{
2589
struct ceph_client *client = from_msgr(con->msgr);
2590
u64 missing_features;
2591
2592
if (con->state != CEPH_CON_S_V2_SESSION_CONNECT) {
2593
con->error_msg = "protocol error, unexpected ident_missing_features";
2594
return -EINVAL;
2595
}
2596
2597
ceph_decode_64_safe(&p, end, missing_features, bad);
2598
pr_err("RADOS feature set mismatch: server's required > my supported 0x%llx, missing 0x%llx\n",
2599
client->supported_features, missing_features);
2600
con->error_msg = "missing required protocol features";
2601
return -EINVAL;
2602
2603
bad:
2604
pr_err("failed to decode ident_missing_features\n");
2605
return -EINVAL;
2606
}
2607
2608
static int process_session_reconnect_ok(struct ceph_connection *con,
2609
void *p, void *end)
2610
{
2611
u64 seq;
2612
2613
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2614
con->error_msg = "protocol error, unexpected session_reconnect_ok";
2615
return -EINVAL;
2616
}
2617
2618
ceph_decode_64_safe(&p, end, seq, bad);
2619
2620
dout("%s con %p seq %llu\n", __func__, con, seq);
2621
ceph_con_discard_requeued(con, seq);
2622
2623
clear_in_sign_kvecs(con);
2624
clear_out_sign_kvecs(con);
2625
free_conn_bufs(con);
2626
con->delay = 0; /* reset backoff memory */
2627
2628
con->state = CEPH_CON_S_OPEN;
2629
con->v2.out_state = OUT_S_GET_NEXT;
2630
return 0;
2631
2632
bad:
2633
pr_err("failed to decode session_reconnect_ok\n");
2634
return -EINVAL;
2635
}
2636
2637
static int process_session_retry(struct ceph_connection *con,
2638
void *p, void *end)
2639
{
2640
u64 connect_seq;
2641
int ret;
2642
2643
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2644
con->error_msg = "protocol error, unexpected session_retry";
2645
return -EINVAL;
2646
}
2647
2648
ceph_decode_64_safe(&p, end, connect_seq, bad);
2649
2650
dout("%s con %p connect_seq %llu\n", __func__, con, connect_seq);
2651
WARN_ON(connect_seq <= con->v2.connect_seq);
2652
con->v2.connect_seq = connect_seq + 1;
2653
2654
free_conn_bufs(con);
2655
2656
reset_out_kvecs(con);
2657
ret = prepare_session_reconnect(con);
2658
if (ret) {
2659
pr_err("prepare_session_reconnect (cseq) failed: %d\n", ret);
2660
return ret;
2661
}
2662
2663
return 0;
2664
2665
bad:
2666
pr_err("failed to decode session_retry\n");
2667
return -EINVAL;
2668
}
2669
2670
static int process_session_retry_global(struct ceph_connection *con,
2671
void *p, void *end)
2672
{
2673
u64 global_seq;
2674
int ret;
2675
2676
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2677
con->error_msg = "protocol error, unexpected session_retry_global";
2678
return -EINVAL;
2679
}
2680
2681
ceph_decode_64_safe(&p, end, global_seq, bad);
2682
2683
dout("%s con %p global_seq %llu\n", __func__, con, global_seq);
2684
WARN_ON(global_seq <= con->v2.global_seq);
2685
con->v2.global_seq = ceph_get_global_seq(con->msgr, global_seq);
2686
2687
free_conn_bufs(con);
2688
2689
reset_out_kvecs(con);
2690
ret = prepare_session_reconnect(con);
2691
if (ret) {
2692
pr_err("prepare_session_reconnect (gseq) failed: %d\n", ret);
2693
return ret;
2694
}
2695
2696
return 0;
2697
2698
bad:
2699
pr_err("failed to decode session_retry_global\n");
2700
return -EINVAL;
2701
}
2702
2703
static int process_session_reset(struct ceph_connection *con,
2704
void *p, void *end)
2705
{
2706
bool full;
2707
int ret;
2708
2709
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2710
con->error_msg = "protocol error, unexpected session_reset";
2711
return -EINVAL;
2712
}
2713
2714
ceph_decode_8_safe(&p, end, full, bad);
2715
if (!full) {
2716
con->error_msg = "protocol error, bad session_reset";
2717
return -EINVAL;
2718
}
2719
2720
pr_info("%s%lld %s session reset\n", ENTITY_NAME(con->peer_name),
2721
ceph_pr_addr(&con->peer_addr));
2722
ceph_con_reset_session(con);
2723
2724
mutex_unlock(&con->mutex);
2725
if (con->ops->peer_reset)
2726
con->ops->peer_reset(con);
2727
mutex_lock(&con->mutex);
2728
if (con->state != CEPH_CON_S_V2_SESSION_RECONNECT) {
2729
dout("%s con %p state changed to %d\n", __func__, con,
2730
con->state);
2731
return -EAGAIN;
2732
}
2733
2734
free_conn_bufs(con);
2735
2736
reset_out_kvecs(con);
2737
ret = prepare_client_ident(con);
2738
if (ret) {
2739
pr_err("prepare_client_ident (rst) failed: %d\n", ret);
2740
return ret;
2741
}
2742
2743
con->state = CEPH_CON_S_V2_SESSION_CONNECT;
2744
return 0;
2745
2746
bad:
2747
pr_err("failed to decode session_reset\n");
2748
return -EINVAL;
2749
}
2750
2751
static int process_keepalive2_ack(struct ceph_connection *con,
2752
void *p, void *end)
2753
{
2754
if (con->state != CEPH_CON_S_OPEN) {
2755
con->error_msg = "protocol error, unexpected keepalive2_ack";
2756
return -EINVAL;
2757
}
2758
2759
ceph_decode_need(&p, end, sizeof(struct ceph_timespec), bad);
2760
ceph_decode_timespec64(&con->last_keepalive_ack, p);
2761
2762
dout("%s con %p timestamp %lld.%09ld\n", __func__, con,
2763
con->last_keepalive_ack.tv_sec, con->last_keepalive_ack.tv_nsec);
2764
2765
return 0;
2766
2767
bad:
2768
pr_err("failed to decode keepalive2_ack\n");
2769
return -EINVAL;
2770
}
2771
2772
static int process_ack(struct ceph_connection *con, void *p, void *end)
2773
{
2774
u64 seq;
2775
2776
if (con->state != CEPH_CON_S_OPEN) {
2777
con->error_msg = "protocol error, unexpected ack";
2778
return -EINVAL;
2779
}
2780
2781
ceph_decode_64_safe(&p, end, seq, bad);
2782
2783
dout("%s con %p seq %llu\n", __func__, con, seq);
2784
ceph_con_discard_sent(con, seq);
2785
return 0;
2786
2787
bad:
2788
pr_err("failed to decode ack\n");
2789
return -EINVAL;
2790
}
2791
2792
static int process_control(struct ceph_connection *con, void *p, void *end)
2793
{
2794
int tag = con->v2.in_desc.fd_tag;
2795
int ret;
2796
2797
dout("%s con %p tag %d len %d\n", __func__, con, tag, (int)(end - p));
2798
2799
switch (tag) {
2800
case FRAME_TAG_HELLO:
2801
ret = process_hello(con, p, end);
2802
break;
2803
case FRAME_TAG_AUTH_BAD_METHOD:
2804
ret = process_auth_bad_method(con, p, end);
2805
break;
2806
case FRAME_TAG_AUTH_REPLY_MORE:
2807
ret = process_auth_reply_more(con, p, end);
2808
break;
2809
case FRAME_TAG_AUTH_DONE:
2810
ret = process_auth_done(con, p, end);
2811
break;
2812
case FRAME_TAG_AUTH_SIGNATURE:
2813
ret = process_auth_signature(con, p, end);
2814
break;
2815
case FRAME_TAG_SERVER_IDENT:
2816
ret = process_server_ident(con, p, end);
2817
break;
2818
case FRAME_TAG_IDENT_MISSING_FEATURES:
2819
ret = process_ident_missing_features(con, p, end);
2820
break;
2821
case FRAME_TAG_SESSION_RECONNECT_OK:
2822
ret = process_session_reconnect_ok(con, p, end);
2823
break;
2824
case FRAME_TAG_SESSION_RETRY:
2825
ret = process_session_retry(con, p, end);
2826
break;
2827
case FRAME_TAG_SESSION_RETRY_GLOBAL:
2828
ret = process_session_retry_global(con, p, end);
2829
break;
2830
case FRAME_TAG_SESSION_RESET:
2831
ret = process_session_reset(con, p, end);
2832
break;
2833
case FRAME_TAG_KEEPALIVE2_ACK:
2834
ret = process_keepalive2_ack(con, p, end);
2835
break;
2836
case FRAME_TAG_ACK:
2837
ret = process_ack(con, p, end);
2838
break;
2839
default:
2840
pr_err("bad tag %d\n", tag);
2841
con->error_msg = "protocol error, bad tag";
2842
return -EINVAL;
2843
}
2844
if (ret) {
2845
dout("%s con %p error %d\n", __func__, con, ret);
2846
return ret;
2847
}
2848
2849
prepare_read_preamble(con);
2850
return 0;
2851
}
2852
2853
/*
2854
* Return:
2855
* 1 - con->in_msg set, read message
2856
* 0 - skip message
2857
* <0 - error
2858
*/
2859
static int process_message_header(struct ceph_connection *con,
2860
void *p, void *end)
2861
{
2862
struct ceph_frame_desc *desc = &con->v2.in_desc;
2863
struct ceph_msg_header2 *hdr2 = p;
2864
struct ceph_msg_header hdr;
2865
int skip;
2866
int ret;
2867
u64 seq;
2868
2869
/* verify seq# */
2870
seq = le64_to_cpu(hdr2->seq);
2871
if ((s64)seq - (s64)con->in_seq < 1) {
2872
pr_info("%s%lld %s skipping old message: seq %llu, expected %llu\n",
2873
ENTITY_NAME(con->peer_name),
2874
ceph_pr_addr(&con->peer_addr),
2875
seq, con->in_seq + 1);
2876
return 0;
2877
}
2878
if ((s64)seq - (s64)con->in_seq > 1) {
2879
pr_err("bad seq %llu, expected %llu\n", seq, con->in_seq + 1);
2880
con->error_msg = "bad message sequence # for incoming message";
2881
return -EBADE;
2882
}
2883
2884
ceph_con_discard_sent(con, le64_to_cpu(hdr2->ack_seq));
2885
2886
fill_header(&hdr, hdr2, desc->fd_lens[1], desc->fd_lens[2],
2887
desc->fd_lens[3], &con->peer_name);
2888
ret = ceph_con_in_msg_alloc(con, &hdr, &skip);
2889
if (ret)
2890
return ret;
2891
2892
WARN_ON(!con->in_msg ^ skip);
2893
if (skip)
2894
return 0;
2895
2896
WARN_ON(!con->in_msg);
2897
WARN_ON(con->in_msg->con != con);
2898
return 1;
2899
}
2900
2901
static int process_message(struct ceph_connection *con)
2902
{
2903
ceph_con_process_message(con);
2904
2905
/*
2906
* We could have been closed by ceph_con_close() because
2907
* ceph_con_process_message() temporarily drops con->mutex.
2908
*/
2909
if (con->state != CEPH_CON_S_OPEN) {
2910
dout("%s con %p state changed to %d\n", __func__, con,
2911
con->state);
2912
return -EAGAIN;
2913
}
2914
2915
prepare_read_preamble(con);
2916
return 0;
2917
}
2918
2919
static int __handle_control(struct ceph_connection *con, void *p)
2920
{
2921
void *end = p + con->v2.in_desc.fd_lens[0];
2922
struct ceph_msg *msg;
2923
int ret;
2924
2925
if (con->v2.in_desc.fd_tag != FRAME_TAG_MESSAGE)
2926
return process_control(con, p, end);
2927
2928
ret = process_message_header(con, p, end);
2929
if (ret < 0)
2930
return ret;
2931
if (ret == 0) {
2932
prepare_skip_message(con);
2933
return 0;
2934
}
2935
2936
msg = con->in_msg; /* set in process_message_header() */
2937
if (front_len(msg)) {
2938
WARN_ON(front_len(msg) > msg->front_alloc_len);
2939
msg->front.iov_len = front_len(msg);
2940
} else {
2941
msg->front.iov_len = 0;
2942
}
2943
if (middle_len(msg)) {
2944
WARN_ON(middle_len(msg) > msg->middle->alloc_len);
2945
msg->middle->vec.iov_len = middle_len(msg);
2946
} else if (msg->middle) {
2947
msg->middle->vec.iov_len = 0;
2948
}
2949
2950
if (!front_len(msg) && !middle_len(msg) && !data_len(msg))
2951
return process_message(con);
2952
2953
if (con_secure(con))
2954
return prepare_read_tail_secure(con);
2955
2956
return prepare_read_tail_plain(con);
2957
}
2958
2959
static int handle_preamble(struct ceph_connection *con)
2960
{
2961
struct ceph_frame_desc *desc = &con->v2.in_desc;
2962
int ret;
2963
2964
if (con_secure(con)) {
2965
ret = decrypt_preamble(con);
2966
if (ret) {
2967
if (ret == -EBADMSG)
2968
con->error_msg = "integrity error, bad preamble auth tag";
2969
return ret;
2970
}
2971
}
2972
2973
ret = decode_preamble(con->v2.in_buf, desc);
2974
if (ret) {
2975
if (ret == -EBADMSG)
2976
con->error_msg = "integrity error, bad crc";
2977
else
2978
con->error_msg = "protocol error, bad preamble";
2979
return ret;
2980
}
2981
2982
dout("%s con %p tag %d seg_cnt %d %d+%d+%d+%d\n", __func__,
2983
con, desc->fd_tag, desc->fd_seg_cnt, desc->fd_lens[0],
2984
desc->fd_lens[1], desc->fd_lens[2], desc->fd_lens[3]);
2985
2986
if (!con_secure(con))
2987
return prepare_read_control(con);
2988
2989
if (desc->fd_lens[0] > CEPH_PREAMBLE_INLINE_LEN)
2990
return prepare_read_control_remainder(con);
2991
2992
return __handle_control(con, CTRL_BODY(con->v2.in_buf));
2993
}
2994
2995
static int handle_control(struct ceph_connection *con)
2996
{
2997
int ctrl_len = con->v2.in_desc.fd_lens[0];
2998
void *buf;
2999
int ret;
3000
3001
WARN_ON(con_secure(con));
3002
3003
ret = verify_control_crc(con);
3004
if (ret) {
3005
con->error_msg = "integrity error, bad crc";
3006
return ret;
3007
}
3008
3009
if (con->state == CEPH_CON_S_V2_AUTH) {
3010
buf = alloc_conn_buf(con, ctrl_len);
3011
if (!buf)
3012
return -ENOMEM;
3013
3014
memcpy(buf, con->v2.in_kvecs[0].iov_base, ctrl_len);
3015
return __handle_control(con, buf);
3016
}
3017
3018
return __handle_control(con, con->v2.in_kvecs[0].iov_base);
3019
}
3020
3021
static int handle_control_remainder(struct ceph_connection *con)
3022
{
3023
int ret;
3024
3025
WARN_ON(!con_secure(con));
3026
3027
ret = decrypt_control_remainder(con);
3028
if (ret) {
3029
if (ret == -EBADMSG)
3030
con->error_msg = "integrity error, bad control remainder auth tag";
3031
return ret;
3032
}
3033
3034
return __handle_control(con, con->v2.in_kvecs[0].iov_base -
3035
CEPH_PREAMBLE_INLINE_LEN);
3036
}
3037
3038
static int handle_epilogue(struct ceph_connection *con)
3039
{
3040
u32 front_crc, middle_crc, data_crc;
3041
int ret;
3042
3043
if (con_secure(con)) {
3044
ret = decrypt_tail(con);
3045
if (ret) {
3046
if (ret == -EBADMSG)
3047
con->error_msg = "integrity error, bad epilogue auth tag";
3048
return ret;
3049
}
3050
3051
/* just late_status */
3052
ret = decode_epilogue(con->v2.in_buf, NULL, NULL, NULL);
3053
if (ret) {
3054
con->error_msg = "protocol error, bad epilogue";
3055
return ret;
3056
}
3057
} else {
3058
ret = decode_epilogue(con->v2.in_buf, &front_crc,
3059
&middle_crc, &data_crc);
3060
if (ret) {
3061
con->error_msg = "protocol error, bad epilogue";
3062
return ret;
3063
}
3064
3065
ret = verify_epilogue_crcs(con, front_crc, middle_crc,
3066
data_crc);
3067
if (ret) {
3068
con->error_msg = "integrity error, bad crc";
3069
return ret;
3070
}
3071
}
3072
3073
return process_message(con);
3074
}
3075
3076
static void finish_skip(struct ceph_connection *con)
3077
{
3078
dout("%s con %p\n", __func__, con);
3079
3080
if (con_secure(con))
3081
gcm_inc_nonce(&con->v2.in_gcm_nonce);
3082
3083
__finish_skip(con);
3084
}
3085
3086
static int populate_in_iter(struct ceph_connection *con)
3087
{
3088
int ret;
3089
3090
dout("%s con %p state %d in_state %d\n", __func__, con, con->state,
3091
con->v2.in_state);
3092
WARN_ON(iov_iter_count(&con->v2.in_iter));
3093
3094
if (con->state == CEPH_CON_S_V2_BANNER_PREFIX) {
3095
ret = process_banner_prefix(con);
3096
} else if (con->state == CEPH_CON_S_V2_BANNER_PAYLOAD) {
3097
ret = process_banner_payload(con);
3098
} else if ((con->state >= CEPH_CON_S_V2_HELLO &&
3099
con->state <= CEPH_CON_S_V2_SESSION_RECONNECT) ||
3100
con->state == CEPH_CON_S_OPEN) {
3101
switch (con->v2.in_state) {
3102
case IN_S_HANDLE_PREAMBLE:
3103
ret = handle_preamble(con);
3104
break;
3105
case IN_S_HANDLE_CONTROL:
3106
ret = handle_control(con);
3107
break;
3108
case IN_S_HANDLE_CONTROL_REMAINDER:
3109
ret = handle_control_remainder(con);
3110
break;
3111
case IN_S_PREPARE_READ_DATA:
3112
ret = prepare_read_data(con);
3113
break;
3114
case IN_S_PREPARE_READ_DATA_CONT:
3115
prepare_read_data_cont(con);
3116
ret = 0;
3117
break;
3118
case IN_S_PREPARE_READ_ENC_PAGE:
3119
prepare_read_enc_page(con);
3120
ret = 0;
3121
break;
3122
case IN_S_PREPARE_SPARSE_DATA:
3123
ret = prepare_sparse_read_data(con);
3124
break;
3125
case IN_S_PREPARE_SPARSE_DATA_CONT:
3126
ret = prepare_sparse_read_cont(con);
3127
break;
3128
case IN_S_HANDLE_EPILOGUE:
3129
ret = handle_epilogue(con);
3130
break;
3131
case IN_S_FINISH_SKIP:
3132
finish_skip(con);
3133
ret = 0;
3134
break;
3135
default:
3136
WARN(1, "bad in_state %d", con->v2.in_state);
3137
return -EINVAL;
3138
}
3139
} else {
3140
WARN(1, "bad state %d", con->state);
3141
return -EINVAL;
3142
}
3143
if (ret) {
3144
dout("%s con %p error %d\n", __func__, con, ret);
3145
return ret;
3146
}
3147
3148
if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
3149
return -ENODATA;
3150
dout("%s con %p populated %zu\n", __func__, con,
3151
iov_iter_count(&con->v2.in_iter));
3152
return 1;
3153
}
3154
3155
int ceph_con_v2_try_read(struct ceph_connection *con)
3156
{
3157
int ret;
3158
3159
dout("%s con %p state %d need %zu\n", __func__, con, con->state,
3160
iov_iter_count(&con->v2.in_iter));
3161
3162
if (con->state == CEPH_CON_S_PREOPEN)
3163
return 0;
3164
3165
/*
3166
* We should always have something pending here. If not,
3167
* avoid calling populate_in_iter() as if we read something
3168
* (ceph_tcp_recv() would immediately return 1).
3169
*/
3170
if (WARN_ON(!iov_iter_count(&con->v2.in_iter)))
3171
return -ENODATA;
3172
3173
for (;;) {
3174
ret = ceph_tcp_recv(con);
3175
if (ret <= 0)
3176
return ret;
3177
3178
ret = populate_in_iter(con);
3179
if (ret <= 0) {
3180
if (ret && ret != -EAGAIN && !con->error_msg)
3181
con->error_msg = "read processing error";
3182
return ret;
3183
}
3184
}
3185
}
3186
3187
static void queue_data(struct ceph_connection *con)
3188
{
3189
struct bio_vec bv;
3190
3191
con->v2.out_epil.data_crc = -1;
3192
ceph_msg_data_cursor_init(&con->v2.out_cursor, con->out_msg,
3193
data_len(con->out_msg));
3194
3195
get_bvec_at(&con->v2.out_cursor, &bv);
3196
set_out_bvec(con, &bv, true);
3197
con->v2.out_state = OUT_S_QUEUE_DATA_CONT;
3198
}
3199
3200
static void queue_data_cont(struct ceph_connection *con)
3201
{
3202
struct bio_vec bv;
3203
3204
con->v2.out_epil.data_crc = ceph_crc32c_page(
3205
con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3206
con->v2.out_bvec.bv_offset, con->v2.out_bvec.bv_len);
3207
3208
ceph_msg_data_advance(&con->v2.out_cursor, con->v2.out_bvec.bv_len);
3209
if (con->v2.out_cursor.total_resid) {
3210
get_bvec_at(&con->v2.out_cursor, &bv);
3211
set_out_bvec(con, &bv, true);
3212
WARN_ON(con->v2.out_state != OUT_S_QUEUE_DATA_CONT);
3213
return;
3214
}
3215
3216
/*
3217
* We've written all data. Queue epilogue. Once it's written,
3218
* we are done.
3219
*/
3220
reset_out_kvecs(con);
3221
prepare_epilogue_plain(con, false);
3222
con->v2.out_state = OUT_S_FINISH_MESSAGE;
3223
}
3224
3225
static void queue_enc_page(struct ceph_connection *con)
3226
{
3227
struct bio_vec bv;
3228
3229
dout("%s con %p i %d resid %d\n", __func__, con, con->v2.out_enc_i,
3230
con->v2.out_enc_resid);
3231
WARN_ON(!con->v2.out_enc_resid);
3232
3233
bvec_set_page(&bv, con->v2.out_enc_pages[con->v2.out_enc_i],
3234
min(con->v2.out_enc_resid, (int)PAGE_SIZE), 0);
3235
3236
set_out_bvec(con, &bv, false);
3237
con->v2.out_enc_i++;
3238
con->v2.out_enc_resid -= bv.bv_len;
3239
3240
if (con->v2.out_enc_resid) {
3241
WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE);
3242
return;
3243
}
3244
3245
/*
3246
* We've queued the last piece of ciphertext (ending with
3247
* epilogue) + auth tag. Once it's written, we are done.
3248
*/
3249
WARN_ON(con->v2.out_enc_i != con->v2.out_enc_page_cnt);
3250
con->v2.out_state = OUT_S_FINISH_MESSAGE;
3251
}
3252
3253
static void queue_zeros(struct ceph_connection *con)
3254
{
3255
dout("%s con %p out_zero %d\n", __func__, con, con->v2.out_zero);
3256
3257
if (con->v2.out_zero) {
3258
set_out_bvec_zero(con);
3259
con->v2.out_zero -= con->v2.out_bvec.bv_len;
3260
con->v2.out_state = OUT_S_QUEUE_ZEROS;
3261
return;
3262
}
3263
3264
/*
3265
* We've zero-filled everything up to epilogue. Queue epilogue
3266
* with late_status set to ABORTED and crcs adjusted for zeros.
3267
* Once it's written, we are done patching up for the revoke.
3268
*/
3269
reset_out_kvecs(con);
3270
prepare_epilogue_plain(con, true);
3271
con->v2.out_state = OUT_S_FINISH_MESSAGE;
3272
}
3273
3274
static void finish_message(struct ceph_connection *con)
3275
{
3276
dout("%s con %p msg %p\n", __func__, con, con->out_msg);
3277
3278
/* we end up here both plain and secure modes */
3279
if (con->v2.out_enc_pages) {
3280
WARN_ON(!con->v2.out_enc_page_cnt);
3281
ceph_release_page_vector(con->v2.out_enc_pages,
3282
con->v2.out_enc_page_cnt);
3283
con->v2.out_enc_pages = NULL;
3284
con->v2.out_enc_page_cnt = 0;
3285
}
3286
/* message may have been revoked */
3287
if (con->out_msg) {
3288
ceph_msg_put(con->out_msg);
3289
con->out_msg = NULL;
3290
}
3291
3292
con->v2.out_state = OUT_S_GET_NEXT;
3293
}
3294
3295
static int populate_out_iter(struct ceph_connection *con)
3296
{
3297
int ret;
3298
3299
dout("%s con %p state %d out_state %d\n", __func__, con, con->state,
3300
con->v2.out_state);
3301
WARN_ON(iov_iter_count(&con->v2.out_iter));
3302
3303
if (con->state != CEPH_CON_S_OPEN) {
3304
WARN_ON(con->state < CEPH_CON_S_V2_BANNER_PREFIX ||
3305
con->state > CEPH_CON_S_V2_SESSION_RECONNECT);
3306
goto nothing_pending;
3307
}
3308
3309
switch (con->v2.out_state) {
3310
case OUT_S_QUEUE_DATA:
3311
WARN_ON(!con->out_msg);
3312
queue_data(con);
3313
goto populated;
3314
case OUT_S_QUEUE_DATA_CONT:
3315
WARN_ON(!con->out_msg);
3316
queue_data_cont(con);
3317
goto populated;
3318
case OUT_S_QUEUE_ENC_PAGE:
3319
queue_enc_page(con);
3320
goto populated;
3321
case OUT_S_QUEUE_ZEROS:
3322
WARN_ON(con->out_msg); /* revoked */
3323
queue_zeros(con);
3324
goto populated;
3325
case OUT_S_FINISH_MESSAGE:
3326
finish_message(con);
3327
break;
3328
case OUT_S_GET_NEXT:
3329
break;
3330
default:
3331
WARN(1, "bad out_state %d", con->v2.out_state);
3332
return -EINVAL;
3333
}
3334
3335
WARN_ON(con->v2.out_state != OUT_S_GET_NEXT);
3336
if (ceph_con_flag_test_and_clear(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
3337
ret = prepare_keepalive2(con);
3338
if (ret) {
3339
pr_err("prepare_keepalive2 failed: %d\n", ret);
3340
return ret;
3341
}
3342
} else if (!list_empty(&con->out_queue)) {
3343
ceph_con_get_out_msg(con);
3344
ret = prepare_message(con);
3345
if (ret) {
3346
pr_err("prepare_message failed: %d\n", ret);
3347
return ret;
3348
}
3349
} else if (con->in_seq > con->in_seq_acked) {
3350
ret = prepare_ack(con);
3351
if (ret) {
3352
pr_err("prepare_ack failed: %d\n", ret);
3353
return ret;
3354
}
3355
} else {
3356
goto nothing_pending;
3357
}
3358
3359
populated:
3360
if (WARN_ON(!iov_iter_count(&con->v2.out_iter)))
3361
return -ENODATA;
3362
dout("%s con %p populated %zu\n", __func__, con,
3363
iov_iter_count(&con->v2.out_iter));
3364
return 1;
3365
3366
nothing_pending:
3367
WARN_ON(iov_iter_count(&con->v2.out_iter));
3368
dout("%s con %p nothing pending\n", __func__, con);
3369
ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
3370
return 0;
3371
}
3372
3373
int ceph_con_v2_try_write(struct ceph_connection *con)
3374
{
3375
int ret;
3376
3377
dout("%s con %p state %d have %zu\n", __func__, con, con->state,
3378
iov_iter_count(&con->v2.out_iter));
3379
3380
/* open the socket first? */
3381
if (con->state == CEPH_CON_S_PREOPEN) {
3382
WARN_ON(con->peer_addr.type != CEPH_ENTITY_ADDR_TYPE_MSGR2);
3383
3384
/*
3385
* Always bump global_seq. Bump connect_seq only if
3386
* there is a session (i.e. we are reconnecting and will
3387
* send session_reconnect instead of client_ident).
3388
*/
3389
con->v2.global_seq = ceph_get_global_seq(con->msgr, 0);
3390
if (con->v2.server_cookie)
3391
con->v2.connect_seq++;
3392
3393
ret = prepare_read_banner_prefix(con);
3394
if (ret) {
3395
pr_err("prepare_read_banner_prefix failed: %d\n", ret);
3396
con->error_msg = "connect error";
3397
return ret;
3398
}
3399
3400
reset_out_kvecs(con);
3401
ret = prepare_banner(con);
3402
if (ret) {
3403
pr_err("prepare_banner failed: %d\n", ret);
3404
con->error_msg = "connect error";
3405
return ret;
3406
}
3407
3408
ret = ceph_tcp_connect(con);
3409
if (ret) {
3410
pr_err("ceph_tcp_connect failed: %d\n", ret);
3411
con->error_msg = "connect error";
3412
return ret;
3413
}
3414
}
3415
3416
if (!iov_iter_count(&con->v2.out_iter)) {
3417
ret = populate_out_iter(con);
3418
if (ret <= 0) {
3419
if (ret && ret != -EAGAIN && !con->error_msg)
3420
con->error_msg = "write processing error";
3421
return ret;
3422
}
3423
}
3424
3425
tcp_sock_set_cork(con->sock->sk, true);
3426
for (;;) {
3427
ret = ceph_tcp_send(con);
3428
if (ret <= 0)
3429
break;
3430
3431
ret = populate_out_iter(con);
3432
if (ret <= 0) {
3433
if (ret && ret != -EAGAIN && !con->error_msg)
3434
con->error_msg = "write processing error";
3435
break;
3436
}
3437
}
3438
3439
tcp_sock_set_cork(con->sock->sk, false);
3440
return ret;
3441
}
3442
3443
static u32 crc32c_zeros(u32 crc, int zero_len)
3444
{
3445
int len;
3446
3447
while (zero_len) {
3448
len = min(zero_len, (int)PAGE_SIZE);
3449
crc = crc32c(crc, page_address(ceph_zero_page), len);
3450
zero_len -= len;
3451
}
3452
3453
return crc;
3454
}
3455
3456
static void prepare_zero_front(struct ceph_connection *con, int resid)
3457
{
3458
int sent;
3459
3460
WARN_ON(!resid || resid > front_len(con->out_msg));
3461
sent = front_len(con->out_msg) - resid;
3462
dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3463
3464
if (sent) {
3465
con->v2.out_epil.front_crc =
3466
crc32c(-1, con->out_msg->front.iov_base, sent);
3467
con->v2.out_epil.front_crc =
3468
crc32c_zeros(con->v2.out_epil.front_crc, resid);
3469
} else {
3470
con->v2.out_epil.front_crc = crc32c_zeros(-1, resid);
3471
}
3472
3473
con->v2.out_iter.count -= resid;
3474
out_zero_add(con, resid);
3475
}
3476
3477
static void prepare_zero_middle(struct ceph_connection *con, int resid)
3478
{
3479
int sent;
3480
3481
WARN_ON(!resid || resid > middle_len(con->out_msg));
3482
sent = middle_len(con->out_msg) - resid;
3483
dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3484
3485
if (sent) {
3486
con->v2.out_epil.middle_crc =
3487
crc32c(-1, con->out_msg->middle->vec.iov_base, sent);
3488
con->v2.out_epil.middle_crc =
3489
crc32c_zeros(con->v2.out_epil.middle_crc, resid);
3490
} else {
3491
con->v2.out_epil.middle_crc = crc32c_zeros(-1, resid);
3492
}
3493
3494
con->v2.out_iter.count -= resid;
3495
out_zero_add(con, resid);
3496
}
3497
3498
static void prepare_zero_data(struct ceph_connection *con)
3499
{
3500
dout("%s con %p\n", __func__, con);
3501
con->v2.out_epil.data_crc = crc32c_zeros(-1, data_len(con->out_msg));
3502
out_zero_add(con, data_len(con->out_msg));
3503
}
3504
3505
static void revoke_at_queue_data(struct ceph_connection *con)
3506
{
3507
int boundary;
3508
int resid;
3509
3510
WARN_ON(!data_len(con->out_msg));
3511
WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3512
resid = iov_iter_count(&con->v2.out_iter);
3513
3514
boundary = front_len(con->out_msg) + middle_len(con->out_msg);
3515
if (resid > boundary) {
3516
resid -= boundary;
3517
WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3518
dout("%s con %p was sending head\n", __func__, con);
3519
if (front_len(con->out_msg))
3520
prepare_zero_front(con, front_len(con->out_msg));
3521
if (middle_len(con->out_msg))
3522
prepare_zero_middle(con, middle_len(con->out_msg));
3523
prepare_zero_data(con);
3524
WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3525
con->v2.out_state = OUT_S_QUEUE_ZEROS;
3526
return;
3527
}
3528
3529
boundary = middle_len(con->out_msg);
3530
if (resid > boundary) {
3531
resid -= boundary;
3532
dout("%s con %p was sending front\n", __func__, con);
3533
prepare_zero_front(con, resid);
3534
if (middle_len(con->out_msg))
3535
prepare_zero_middle(con, middle_len(con->out_msg));
3536
prepare_zero_data(con);
3537
queue_zeros(con);
3538
return;
3539
}
3540
3541
WARN_ON(!resid);
3542
dout("%s con %p was sending middle\n", __func__, con);
3543
prepare_zero_middle(con, resid);
3544
prepare_zero_data(con);
3545
queue_zeros(con);
3546
}
3547
3548
static void revoke_at_queue_data_cont(struct ceph_connection *con)
3549
{
3550
int sent, resid; /* current piece of data */
3551
3552
WARN_ON(!data_len(con->out_msg));
3553
WARN_ON(!iov_iter_is_bvec(&con->v2.out_iter));
3554
resid = iov_iter_count(&con->v2.out_iter);
3555
WARN_ON(!resid || resid > con->v2.out_bvec.bv_len);
3556
sent = con->v2.out_bvec.bv_len - resid;
3557
dout("%s con %p sent %d resid %d\n", __func__, con, sent, resid);
3558
3559
if (sent) {
3560
con->v2.out_epil.data_crc = ceph_crc32c_page(
3561
con->v2.out_epil.data_crc, con->v2.out_bvec.bv_page,
3562
con->v2.out_bvec.bv_offset, sent);
3563
ceph_msg_data_advance(&con->v2.out_cursor, sent);
3564
}
3565
WARN_ON(resid > con->v2.out_cursor.total_resid);
3566
con->v2.out_epil.data_crc = crc32c_zeros(con->v2.out_epil.data_crc,
3567
con->v2.out_cursor.total_resid);
3568
3569
con->v2.out_iter.count -= resid;
3570
out_zero_add(con, con->v2.out_cursor.total_resid);
3571
queue_zeros(con);
3572
}
3573
3574
static void revoke_at_finish_message(struct ceph_connection *con)
3575
{
3576
int boundary;
3577
int resid;
3578
3579
WARN_ON(!iov_iter_is_kvec(&con->v2.out_iter));
3580
resid = iov_iter_count(&con->v2.out_iter);
3581
3582
if (!front_len(con->out_msg) && !middle_len(con->out_msg) &&
3583
!data_len(con->out_msg)) {
3584
WARN_ON(!resid || resid > MESSAGE_HEAD_PLAIN_LEN);
3585
dout("%s con %p was sending head (empty message) - noop\n",
3586
__func__, con);
3587
return;
3588
}
3589
3590
boundary = front_len(con->out_msg) + middle_len(con->out_msg) +
3591
CEPH_EPILOGUE_PLAIN_LEN;
3592
if (resid > boundary) {
3593
resid -= boundary;
3594
WARN_ON(resid > MESSAGE_HEAD_PLAIN_LEN);
3595
dout("%s con %p was sending head\n", __func__, con);
3596
if (front_len(con->out_msg))
3597
prepare_zero_front(con, front_len(con->out_msg));
3598
if (middle_len(con->out_msg))
3599
prepare_zero_middle(con, middle_len(con->out_msg));
3600
con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3601
WARN_ON(iov_iter_count(&con->v2.out_iter) != resid);
3602
con->v2.out_state = OUT_S_QUEUE_ZEROS;
3603
return;
3604
}
3605
3606
boundary = middle_len(con->out_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3607
if (resid > boundary) {
3608
resid -= boundary;
3609
dout("%s con %p was sending front\n", __func__, con);
3610
prepare_zero_front(con, resid);
3611
if (middle_len(con->out_msg))
3612
prepare_zero_middle(con, middle_len(con->out_msg));
3613
con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3614
queue_zeros(con);
3615
return;
3616
}
3617
3618
boundary = CEPH_EPILOGUE_PLAIN_LEN;
3619
if (resid > boundary) {
3620
resid -= boundary;
3621
dout("%s con %p was sending middle\n", __func__, con);
3622
prepare_zero_middle(con, resid);
3623
con->v2.out_iter.count -= CEPH_EPILOGUE_PLAIN_LEN;
3624
queue_zeros(con);
3625
return;
3626
}
3627
3628
WARN_ON(!resid);
3629
dout("%s con %p was sending epilogue - noop\n", __func__, con);
3630
}
3631
3632
void ceph_con_v2_revoke(struct ceph_connection *con)
3633
{
3634
WARN_ON(con->v2.out_zero);
3635
3636
if (con_secure(con)) {
3637
WARN_ON(con->v2.out_state != OUT_S_QUEUE_ENC_PAGE &&
3638
con->v2.out_state != OUT_S_FINISH_MESSAGE);
3639
dout("%s con %p secure - noop\n", __func__, con);
3640
return;
3641
}
3642
3643
switch (con->v2.out_state) {
3644
case OUT_S_QUEUE_DATA:
3645
revoke_at_queue_data(con);
3646
break;
3647
case OUT_S_QUEUE_DATA_CONT:
3648
revoke_at_queue_data_cont(con);
3649
break;
3650
case OUT_S_FINISH_MESSAGE:
3651
revoke_at_finish_message(con);
3652
break;
3653
default:
3654
WARN(1, "bad out_state %d", con->v2.out_state);
3655
break;
3656
}
3657
}
3658
3659
static void revoke_at_prepare_read_data(struct ceph_connection *con)
3660
{
3661
int remaining;
3662
int resid;
3663
3664
WARN_ON(con_secure(con));
3665
WARN_ON(!data_len(con->in_msg));
3666
WARN_ON(!iov_iter_is_kvec(&con->v2.in_iter));
3667
resid = iov_iter_count(&con->v2.in_iter);
3668
WARN_ON(!resid);
3669
3670
remaining = data_len(con->in_msg) + CEPH_EPILOGUE_PLAIN_LEN;
3671
dout("%s con %p resid %d remaining %d\n", __func__, con, resid,
3672
remaining);
3673
con->v2.in_iter.count -= resid;
3674
set_in_skip(con, resid + remaining);
3675
con->v2.in_state = IN_S_FINISH_SKIP;
3676
}
3677
3678
static void revoke_at_prepare_read_data_cont(struct ceph_connection *con)
3679
{
3680
int recved, resid; /* current piece of data */
3681
int remaining;
3682
3683
WARN_ON(con_secure(con));
3684
WARN_ON(!data_len(con->in_msg));
3685
WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3686
resid = iov_iter_count(&con->v2.in_iter);
3687
WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3688
recved = con->v2.in_bvec.bv_len - resid;
3689
dout("%s con %p recved %d resid %d\n", __func__, con, recved, resid);
3690
3691
if (recved)
3692
ceph_msg_data_advance(&con->v2.in_cursor, recved);
3693
WARN_ON(resid > con->v2.in_cursor.total_resid);
3694
3695
remaining = CEPH_EPILOGUE_PLAIN_LEN;
3696
dout("%s con %p total_resid %zu remaining %d\n", __func__, con,
3697
con->v2.in_cursor.total_resid, remaining);
3698
con->v2.in_iter.count -= resid;
3699
set_in_skip(con, con->v2.in_cursor.total_resid + remaining);
3700
con->v2.in_state = IN_S_FINISH_SKIP;
3701
}
3702
3703
static void revoke_at_prepare_read_enc_page(struct ceph_connection *con)
3704
{
3705
int resid; /* current enc page (not necessarily data) */
3706
3707
WARN_ON(!con_secure(con));
3708
WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3709
resid = iov_iter_count(&con->v2.in_iter);
3710
WARN_ON(!resid || resid > con->v2.in_bvec.bv_len);
3711
3712
dout("%s con %p resid %d enc_resid %d\n", __func__, con, resid,
3713
con->v2.in_enc_resid);
3714
con->v2.in_iter.count -= resid;
3715
set_in_skip(con, resid + con->v2.in_enc_resid);
3716
con->v2.in_state = IN_S_FINISH_SKIP;
3717
}
3718
3719
static void revoke_at_prepare_sparse_data(struct ceph_connection *con)
3720
{
3721
int resid; /* current piece of data */
3722
int remaining;
3723
3724
WARN_ON(con_secure(con));
3725
WARN_ON(!data_len(con->in_msg));
3726
WARN_ON(!iov_iter_is_bvec(&con->v2.in_iter));
3727
resid = iov_iter_count(&con->v2.in_iter);
3728
dout("%s con %p resid %d\n", __func__, con, resid);
3729
3730
remaining = CEPH_EPILOGUE_PLAIN_LEN + con->v2.data_len_remain;
3731
con->v2.in_iter.count -= resid;
3732
set_in_skip(con, resid + remaining);
3733
con->v2.in_state = IN_S_FINISH_SKIP;
3734
}
3735
3736
static void revoke_at_handle_epilogue(struct ceph_connection *con)
3737
{
3738
int resid;
3739
3740
resid = iov_iter_count(&con->v2.in_iter);
3741
WARN_ON(!resid);
3742
3743
dout("%s con %p resid %d\n", __func__, con, resid);
3744
con->v2.in_iter.count -= resid;
3745
set_in_skip(con, resid);
3746
con->v2.in_state = IN_S_FINISH_SKIP;
3747
}
3748
3749
void ceph_con_v2_revoke_incoming(struct ceph_connection *con)
3750
{
3751
switch (con->v2.in_state) {
3752
case IN_S_PREPARE_SPARSE_DATA:
3753
case IN_S_PREPARE_READ_DATA:
3754
revoke_at_prepare_read_data(con);
3755
break;
3756
case IN_S_PREPARE_READ_DATA_CONT:
3757
revoke_at_prepare_read_data_cont(con);
3758
break;
3759
case IN_S_PREPARE_READ_ENC_PAGE:
3760
revoke_at_prepare_read_enc_page(con);
3761
break;
3762
case IN_S_PREPARE_SPARSE_DATA_CONT:
3763
revoke_at_prepare_sparse_data(con);
3764
break;
3765
case IN_S_HANDLE_EPILOGUE:
3766
revoke_at_handle_epilogue(con);
3767
break;
3768
default:
3769
WARN(1, "bad in_state %d", con->v2.in_state);
3770
break;
3771
}
3772
}
3773
3774
bool ceph_con_v2_opened(struct ceph_connection *con)
3775
{
3776
return con->v2.peer_global_seq;
3777
}
3778
3779
void ceph_con_v2_reset_session(struct ceph_connection *con)
3780
{
3781
con->v2.client_cookie = 0;
3782
con->v2.server_cookie = 0;
3783
con->v2.global_seq = 0;
3784
con->v2.connect_seq = 0;
3785
con->v2.peer_global_seq = 0;
3786
}
3787
3788
void ceph_con_v2_reset_protocol(struct ceph_connection *con)
3789
{
3790
iov_iter_truncate(&con->v2.in_iter, 0);
3791
iov_iter_truncate(&con->v2.out_iter, 0);
3792
con->v2.out_zero = 0;
3793
3794
clear_in_sign_kvecs(con);
3795
clear_out_sign_kvecs(con);
3796
free_conn_bufs(con);
3797
3798
if (con->v2.in_enc_pages) {
3799
WARN_ON(!con->v2.in_enc_page_cnt);
3800
ceph_release_page_vector(con->v2.in_enc_pages,
3801
con->v2.in_enc_page_cnt);
3802
con->v2.in_enc_pages = NULL;
3803
con->v2.in_enc_page_cnt = 0;
3804
}
3805
if (con->v2.out_enc_pages) {
3806
WARN_ON(!con->v2.out_enc_page_cnt);
3807
ceph_release_page_vector(con->v2.out_enc_pages,
3808
con->v2.out_enc_page_cnt);
3809
con->v2.out_enc_pages = NULL;
3810
con->v2.out_enc_page_cnt = 0;
3811
}
3812
3813
con->v2.con_mode = CEPH_CON_MODE_UNKNOWN;
3814
memzero_explicit(&con->v2.in_gcm_nonce, CEPH_GCM_IV_LEN);
3815
memzero_explicit(&con->v2.out_gcm_nonce, CEPH_GCM_IV_LEN);
3816
3817
if (con->v2.hmac_tfm) {
3818
crypto_free_shash(con->v2.hmac_tfm);
3819
con->v2.hmac_tfm = NULL;
3820
}
3821
if (con->v2.gcm_req) {
3822
aead_request_free(con->v2.gcm_req);
3823
con->v2.gcm_req = NULL;
3824
}
3825
if (con->v2.gcm_tfm) {
3826
crypto_free_aead(con->v2.gcm_tfm);
3827
con->v2.gcm_tfm = NULL;
3828
}
3829
}
3830
3831