Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ceph/osdmap.c
49109 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include <linux/ceph/ceph_debug.h>
4
5
#include <linux/module.h>
6
#include <linux/slab.h>
7
8
#include <linux/ceph/libceph.h>
9
#include <linux/ceph/osdmap.h>
10
#include <linux/ceph/decode.h>
11
#include <linux/crush/hash.h>
12
#include <linux/crush/mapper.h>
13
14
static __printf(2, 3)
15
void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
16
{
17
struct va_format vaf;
18
va_list args;
19
20
va_start(args, fmt);
21
vaf.fmt = fmt;
22
vaf.va = &args;
23
24
printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
25
map->epoch, &vaf);
26
27
va_end(args);
28
}
29
30
char *ceph_osdmap_state_str(char *str, int len, u32 state)
31
{
32
if (!len)
33
return str;
34
35
if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36
snprintf(str, len, "exists, up");
37
else if (state & CEPH_OSD_EXISTS)
38
snprintf(str, len, "exists");
39
else if (state & CEPH_OSD_UP)
40
snprintf(str, len, "up");
41
else
42
snprintf(str, len, "doesn't exist");
43
44
return str;
45
}
46
47
/* maps */
48
49
static int calc_bits_of(unsigned int t)
50
{
51
int b = 0;
52
while (t) {
53
t = t >> 1;
54
b++;
55
}
56
return b;
57
}
58
59
/*
60
* the foo_mask is the smallest value 2^n-1 that is >= foo.
61
*/
62
static void calc_pg_masks(struct ceph_pg_pool_info *pi)
63
{
64
pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
65
pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
66
}
67
68
/*
69
* decode crush map
70
*/
71
static int crush_decode_uniform_bucket(void **p, void *end,
72
struct crush_bucket_uniform *b)
73
{
74
dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75
ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76
b->item_weight = ceph_decode_32(p);
77
return 0;
78
bad:
79
return -EINVAL;
80
}
81
82
static int crush_decode_list_bucket(void **p, void *end,
83
struct crush_bucket_list *b)
84
{
85
int j;
86
dout("crush_decode_list_bucket %p to %p\n", *p, end);
87
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
88
if (b->item_weights == NULL)
89
return -ENOMEM;
90
b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
91
if (b->sum_weights == NULL)
92
return -ENOMEM;
93
ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94
for (j = 0; j < b->h.size; j++) {
95
b->item_weights[j] = ceph_decode_32(p);
96
b->sum_weights[j] = ceph_decode_32(p);
97
}
98
return 0;
99
bad:
100
return -EINVAL;
101
}
102
103
static int crush_decode_tree_bucket(void **p, void *end,
104
struct crush_bucket_tree *b)
105
{
106
int j;
107
dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108
ceph_decode_8_safe(p, end, b->num_nodes, bad);
109
b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
110
if (b->node_weights == NULL)
111
return -ENOMEM;
112
ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113
for (j = 0; j < b->num_nodes; j++)
114
b->node_weights[j] = ceph_decode_32(p);
115
return 0;
116
bad:
117
return -EINVAL;
118
}
119
120
static int crush_decode_straw_bucket(void **p, void *end,
121
struct crush_bucket_straw *b)
122
{
123
int j;
124
dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
126
if (b->item_weights == NULL)
127
return -ENOMEM;
128
b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
129
if (b->straws == NULL)
130
return -ENOMEM;
131
ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132
for (j = 0; j < b->h.size; j++) {
133
b->item_weights[j] = ceph_decode_32(p);
134
b->straws[j] = ceph_decode_32(p);
135
}
136
return 0;
137
bad:
138
return -EINVAL;
139
}
140
141
static int crush_decode_straw2_bucket(void **p, void *end,
142
struct crush_bucket_straw2 *b)
143
{
144
int j;
145
dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
147
if (b->item_weights == NULL)
148
return -ENOMEM;
149
ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150
for (j = 0; j < b->h.size; j++)
151
b->item_weights[j] = ceph_decode_32(p);
152
return 0;
153
bad:
154
return -EINVAL;
155
}
156
157
struct crush_name_node {
158
struct rb_node cn_node;
159
int cn_id;
160
char cn_name[];
161
};
162
163
static struct crush_name_node *alloc_crush_name(size_t name_len)
164
{
165
struct crush_name_node *cn;
166
167
cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
168
if (!cn)
169
return NULL;
170
171
RB_CLEAR_NODE(&cn->cn_node);
172
return cn;
173
}
174
175
static void free_crush_name(struct crush_name_node *cn)
176
{
177
WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
178
179
kfree(cn);
180
}
181
182
DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
183
184
static int decode_crush_names(void **p, void *end, struct rb_root *root)
185
{
186
u32 n;
187
188
ceph_decode_32_safe(p, end, n, e_inval);
189
while (n--) {
190
struct crush_name_node *cn;
191
int id;
192
u32 name_len;
193
194
ceph_decode_32_safe(p, end, id, e_inval);
195
ceph_decode_32_safe(p, end, name_len, e_inval);
196
ceph_decode_need(p, end, name_len, e_inval);
197
198
cn = alloc_crush_name(name_len);
199
if (!cn)
200
return -ENOMEM;
201
202
cn->cn_id = id;
203
memcpy(cn->cn_name, *p, name_len);
204
cn->cn_name[name_len] = '\0';
205
*p += name_len;
206
207
if (!__insert_crush_name(root, cn)) {
208
free_crush_name(cn);
209
return -EEXIST;
210
}
211
}
212
213
return 0;
214
215
e_inval:
216
return -EINVAL;
217
}
218
219
void clear_crush_names(struct rb_root *root)
220
{
221
while (!RB_EMPTY_ROOT(root)) {
222
struct crush_name_node *cn =
223
rb_entry(rb_first(root), struct crush_name_node, cn_node);
224
225
erase_crush_name(root, cn);
226
free_crush_name(cn);
227
}
228
}
229
230
static struct crush_choose_arg_map *alloc_choose_arg_map(void)
231
{
232
struct crush_choose_arg_map *arg_map;
233
234
arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
235
if (!arg_map)
236
return NULL;
237
238
RB_CLEAR_NODE(&arg_map->node);
239
return arg_map;
240
}
241
242
static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
243
{
244
int i, j;
245
246
if (!arg_map)
247
return;
248
249
WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
250
251
if (arg_map->args) {
252
for (i = 0; i < arg_map->size; i++) {
253
struct crush_choose_arg *arg = &arg_map->args[i];
254
if (arg->weight_set) {
255
for (j = 0; j < arg->weight_set_size; j++)
256
kfree(arg->weight_set[j].weights);
257
kfree(arg->weight_set);
258
}
259
kfree(arg->ids);
260
}
261
kfree(arg_map->args);
262
}
263
kfree(arg_map);
264
}
265
266
DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
267
node);
268
269
void clear_choose_args(struct crush_map *c)
270
{
271
while (!RB_EMPTY_ROOT(&c->choose_args)) {
272
struct crush_choose_arg_map *arg_map =
273
rb_entry(rb_first(&c->choose_args),
274
struct crush_choose_arg_map, node);
275
276
erase_choose_arg_map(&c->choose_args, arg_map);
277
free_choose_arg_map(arg_map);
278
}
279
}
280
281
static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
282
{
283
u32 *a = NULL;
284
u32 len;
285
int ret;
286
287
ceph_decode_32_safe(p, end, len, e_inval);
288
if (len) {
289
u32 i;
290
291
a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
292
if (!a) {
293
ret = -ENOMEM;
294
goto fail;
295
}
296
297
ceph_decode_need(p, end, len * sizeof(u32), e_inval);
298
for (i = 0; i < len; i++)
299
a[i] = ceph_decode_32(p);
300
}
301
302
*plen = len;
303
return a;
304
305
e_inval:
306
ret = -EINVAL;
307
fail:
308
kfree(a);
309
return ERR_PTR(ret);
310
}
311
312
/*
313
* Assumes @arg is zero-initialized.
314
*/
315
static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
316
{
317
int ret;
318
319
ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
320
if (arg->weight_set_size) {
321
u32 i;
322
323
arg->weight_set = kmalloc_array(arg->weight_set_size,
324
sizeof(*arg->weight_set),
325
GFP_NOIO);
326
if (!arg->weight_set)
327
return -ENOMEM;
328
329
for (i = 0; i < arg->weight_set_size; i++) {
330
struct crush_weight_set *w = &arg->weight_set[i];
331
332
w->weights = decode_array_32_alloc(p, end, &w->size);
333
if (IS_ERR(w->weights)) {
334
ret = PTR_ERR(w->weights);
335
w->weights = NULL;
336
return ret;
337
}
338
}
339
}
340
341
arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
342
if (IS_ERR(arg->ids)) {
343
ret = PTR_ERR(arg->ids);
344
arg->ids = NULL;
345
return ret;
346
}
347
348
return 0;
349
350
e_inval:
351
return -EINVAL;
352
}
353
354
static int decode_choose_args(void **p, void *end, struct crush_map *c)
355
{
356
struct crush_choose_arg_map *arg_map = NULL;
357
u32 num_choose_arg_maps, num_buckets;
358
int ret;
359
360
ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
361
while (num_choose_arg_maps--) {
362
arg_map = alloc_choose_arg_map();
363
if (!arg_map) {
364
ret = -ENOMEM;
365
goto fail;
366
}
367
368
ceph_decode_64_safe(p, end, arg_map->choose_args_index,
369
e_inval);
370
arg_map->size = c->max_buckets;
371
arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
372
GFP_NOIO);
373
if (!arg_map->args) {
374
ret = -ENOMEM;
375
goto fail;
376
}
377
378
ceph_decode_32_safe(p, end, num_buckets, e_inval);
379
while (num_buckets--) {
380
struct crush_choose_arg *arg;
381
u32 bucket_index;
382
383
ceph_decode_32_safe(p, end, bucket_index, e_inval);
384
if (bucket_index >= arg_map->size)
385
goto e_inval;
386
387
arg = &arg_map->args[bucket_index];
388
ret = decode_choose_arg(p, end, arg);
389
if (ret)
390
goto fail;
391
392
if (arg->ids_size &&
393
arg->ids_size != c->buckets[bucket_index]->size)
394
goto e_inval;
395
}
396
397
insert_choose_arg_map(&c->choose_args, arg_map);
398
}
399
400
return 0;
401
402
e_inval:
403
ret = -EINVAL;
404
fail:
405
free_choose_arg_map(arg_map);
406
return ret;
407
}
408
409
static void crush_finalize(struct crush_map *c)
410
{
411
__s32 b;
412
413
/* Space for the array of pointers to per-bucket workspace */
414
c->working_size = sizeof(struct crush_work) +
415
c->max_buckets * sizeof(struct crush_work_bucket *);
416
417
for (b = 0; b < c->max_buckets; b++) {
418
if (!c->buckets[b])
419
continue;
420
421
switch (c->buckets[b]->alg) {
422
default:
423
/*
424
* The base case, permutation variables and
425
* the pointer to the permutation array.
426
*/
427
c->working_size += sizeof(struct crush_work_bucket);
428
break;
429
}
430
/* Every bucket has a permutation array. */
431
c->working_size += c->buckets[b]->size * sizeof(__u32);
432
}
433
}
434
435
static struct crush_map *crush_decode(void *pbyval, void *end)
436
{
437
struct crush_map *c;
438
int err;
439
int i, j;
440
void **p = &pbyval;
441
void *start = pbyval;
442
u32 magic;
443
444
dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
445
446
c = kzalloc(sizeof(*c), GFP_NOFS);
447
if (c == NULL)
448
return ERR_PTR(-ENOMEM);
449
450
c->type_names = RB_ROOT;
451
c->names = RB_ROOT;
452
c->choose_args = RB_ROOT;
453
454
/* set tunables to default values */
455
c->choose_local_tries = 2;
456
c->choose_local_fallback_tries = 5;
457
c->choose_total_tries = 19;
458
c->chooseleaf_descend_once = 0;
459
460
ceph_decode_need(p, end, 4*sizeof(u32), bad);
461
magic = ceph_decode_32(p);
462
if (magic != CRUSH_MAGIC) {
463
pr_err("crush_decode magic %x != current %x\n",
464
(unsigned int)magic, (unsigned int)CRUSH_MAGIC);
465
goto bad;
466
}
467
c->max_buckets = ceph_decode_32(p);
468
c->max_rules = ceph_decode_32(p);
469
c->max_devices = ceph_decode_32(p);
470
471
c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
472
if (c->buckets == NULL)
473
goto badmem;
474
c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
475
if (c->rules == NULL)
476
goto badmem;
477
478
/* buckets */
479
for (i = 0; i < c->max_buckets; i++) {
480
int size = 0;
481
u32 alg;
482
struct crush_bucket *b;
483
484
ceph_decode_32_safe(p, end, alg, bad);
485
if (alg == 0) {
486
c->buckets[i] = NULL;
487
continue;
488
}
489
dout("crush_decode bucket %d off %x %p to %p\n",
490
i, (int)(*p-start), *p, end);
491
492
switch (alg) {
493
case CRUSH_BUCKET_UNIFORM:
494
size = sizeof(struct crush_bucket_uniform);
495
break;
496
case CRUSH_BUCKET_LIST:
497
size = sizeof(struct crush_bucket_list);
498
break;
499
case CRUSH_BUCKET_TREE:
500
size = sizeof(struct crush_bucket_tree);
501
break;
502
case CRUSH_BUCKET_STRAW:
503
size = sizeof(struct crush_bucket_straw);
504
break;
505
case CRUSH_BUCKET_STRAW2:
506
size = sizeof(struct crush_bucket_straw2);
507
break;
508
default:
509
goto bad;
510
}
511
BUG_ON(size == 0);
512
b = c->buckets[i] = kzalloc(size, GFP_NOFS);
513
if (b == NULL)
514
goto badmem;
515
516
ceph_decode_need(p, end, 4*sizeof(u32), bad);
517
b->id = ceph_decode_32(p);
518
b->type = ceph_decode_16(p);
519
b->alg = ceph_decode_8(p);
520
b->hash = ceph_decode_8(p);
521
b->weight = ceph_decode_32(p);
522
b->size = ceph_decode_32(p);
523
524
dout("crush_decode bucket size %d off %x %p to %p\n",
525
b->size, (int)(*p-start), *p, end);
526
527
b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
528
if (b->items == NULL)
529
goto badmem;
530
531
ceph_decode_need(p, end, b->size*sizeof(u32), bad);
532
for (j = 0; j < b->size; j++)
533
b->items[j] = ceph_decode_32(p);
534
535
switch (b->alg) {
536
case CRUSH_BUCKET_UNIFORM:
537
err = crush_decode_uniform_bucket(p, end,
538
(struct crush_bucket_uniform *)b);
539
if (err < 0)
540
goto fail;
541
break;
542
case CRUSH_BUCKET_LIST:
543
err = crush_decode_list_bucket(p, end,
544
(struct crush_bucket_list *)b);
545
if (err < 0)
546
goto fail;
547
break;
548
case CRUSH_BUCKET_TREE:
549
err = crush_decode_tree_bucket(p, end,
550
(struct crush_bucket_tree *)b);
551
if (err < 0)
552
goto fail;
553
break;
554
case CRUSH_BUCKET_STRAW:
555
err = crush_decode_straw_bucket(p, end,
556
(struct crush_bucket_straw *)b);
557
if (err < 0)
558
goto fail;
559
break;
560
case CRUSH_BUCKET_STRAW2:
561
err = crush_decode_straw2_bucket(p, end,
562
(struct crush_bucket_straw2 *)b);
563
if (err < 0)
564
goto fail;
565
break;
566
}
567
}
568
569
/* rules */
570
dout("rule vec is %p\n", c->rules);
571
for (i = 0; i < c->max_rules; i++) {
572
u32 yes;
573
struct crush_rule *r;
574
575
ceph_decode_32_safe(p, end, yes, bad);
576
if (!yes) {
577
dout("crush_decode NO rule %d off %x %p to %p\n",
578
i, (int)(*p-start), *p, end);
579
c->rules[i] = NULL;
580
continue;
581
}
582
583
dout("crush_decode rule %d off %x %p to %p\n",
584
i, (int)(*p-start), *p, end);
585
586
/* len */
587
ceph_decode_32_safe(p, end, yes, bad);
588
#if BITS_PER_LONG == 32
589
if (yes > (ULONG_MAX - sizeof(*r))
590
/ sizeof(struct crush_rule_step))
591
goto bad;
592
#endif
593
r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
594
if (r == NULL)
595
goto badmem;
596
dout(" rule %d is at %p\n", i, r);
597
c->rules[i] = r;
598
r->len = yes;
599
ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
600
ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
601
for (j = 0; j < r->len; j++) {
602
r->steps[j].op = ceph_decode_32(p);
603
r->steps[j].arg1 = ceph_decode_32(p);
604
r->steps[j].arg2 = ceph_decode_32(p);
605
}
606
}
607
608
err = decode_crush_names(p, end, &c->type_names);
609
if (err)
610
goto fail;
611
612
err = decode_crush_names(p, end, &c->names);
613
if (err)
614
goto fail;
615
616
ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
617
618
/* tunables */
619
ceph_decode_need(p, end, 3*sizeof(u32), done);
620
c->choose_local_tries = ceph_decode_32(p);
621
c->choose_local_fallback_tries = ceph_decode_32(p);
622
c->choose_total_tries = ceph_decode_32(p);
623
dout("crush decode tunable choose_local_tries = %d\n",
624
c->choose_local_tries);
625
dout("crush decode tunable choose_local_fallback_tries = %d\n",
626
c->choose_local_fallback_tries);
627
dout("crush decode tunable choose_total_tries = %d\n",
628
c->choose_total_tries);
629
630
ceph_decode_need(p, end, sizeof(u32), done);
631
c->chooseleaf_descend_once = ceph_decode_32(p);
632
dout("crush decode tunable chooseleaf_descend_once = %d\n",
633
c->chooseleaf_descend_once);
634
635
ceph_decode_need(p, end, sizeof(u8), done);
636
c->chooseleaf_vary_r = ceph_decode_8(p);
637
dout("crush decode tunable chooseleaf_vary_r = %d\n",
638
c->chooseleaf_vary_r);
639
640
/* skip straw_calc_version, allowed_bucket_algs */
641
ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
642
*p += sizeof(u8) + sizeof(u32);
643
644
ceph_decode_need(p, end, sizeof(u8), done);
645
c->chooseleaf_stable = ceph_decode_8(p);
646
dout("crush decode tunable chooseleaf_stable = %d\n",
647
c->chooseleaf_stable);
648
649
if (*p != end) {
650
/* class_map */
651
ceph_decode_skip_map(p, end, 32, 32, bad);
652
/* class_name */
653
ceph_decode_skip_map(p, end, 32, string, bad);
654
/* class_bucket */
655
ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
656
}
657
658
if (*p != end) {
659
err = decode_choose_args(p, end, c);
660
if (err)
661
goto fail;
662
}
663
664
done:
665
crush_finalize(c);
666
dout("crush_decode success\n");
667
return c;
668
669
badmem:
670
err = -ENOMEM;
671
fail:
672
dout("crush_decode fail %d\n", err);
673
crush_destroy(c);
674
return ERR_PTR(err);
675
676
bad:
677
err = -EINVAL;
678
goto fail;
679
}
680
681
int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
682
{
683
if (lhs->pool < rhs->pool)
684
return -1;
685
if (lhs->pool > rhs->pool)
686
return 1;
687
if (lhs->seed < rhs->seed)
688
return -1;
689
if (lhs->seed > rhs->seed)
690
return 1;
691
692
return 0;
693
}
694
695
int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
696
{
697
int ret;
698
699
ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
700
if (ret)
701
return ret;
702
703
if (lhs->shard < rhs->shard)
704
return -1;
705
if (lhs->shard > rhs->shard)
706
return 1;
707
708
return 0;
709
}
710
711
static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
712
{
713
struct ceph_pg_mapping *pg;
714
715
pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
716
if (!pg)
717
return NULL;
718
719
RB_CLEAR_NODE(&pg->node);
720
return pg;
721
}
722
723
static void free_pg_mapping(struct ceph_pg_mapping *pg)
724
{
725
WARN_ON(!RB_EMPTY_NODE(&pg->node));
726
727
kfree(pg);
728
}
729
730
/*
731
* rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
732
* to a set of osds) and primary_temp (explicit primary setting)
733
*/
734
DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
735
RB_BYPTR, const struct ceph_pg *, node)
736
737
/*
738
* rbtree of pg pool info
739
*/
740
DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
741
742
struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
743
{
744
return lookup_pg_pool(&map->pg_pools, id);
745
}
746
747
const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
748
{
749
struct ceph_pg_pool_info *pi;
750
751
if (id == CEPH_NOPOOL)
752
return NULL;
753
754
if (WARN_ON_ONCE(id > (u64) INT_MAX))
755
return NULL;
756
757
pi = lookup_pg_pool(&map->pg_pools, id);
758
return pi ? pi->name : NULL;
759
}
760
EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
761
762
int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
763
{
764
struct rb_node *rbp;
765
766
for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
767
struct ceph_pg_pool_info *pi =
768
rb_entry(rbp, struct ceph_pg_pool_info, node);
769
if (pi->name && strcmp(pi->name, name) == 0)
770
return pi->id;
771
}
772
return -ENOENT;
773
}
774
EXPORT_SYMBOL(ceph_pg_poolid_by_name);
775
776
u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
777
{
778
struct ceph_pg_pool_info *pi;
779
780
pi = lookup_pg_pool(&map->pg_pools, id);
781
return pi ? pi->flags : 0;
782
}
783
EXPORT_SYMBOL(ceph_pg_pool_flags);
784
785
static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
786
{
787
erase_pg_pool(root, pi);
788
kfree(pi->name);
789
kfree(pi);
790
}
791
792
static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
793
{
794
u8 ev, cv;
795
unsigned len, num;
796
void *pool_end;
797
798
ceph_decode_need(p, end, 2 + 4, bad);
799
ev = ceph_decode_8(p); /* encoding version */
800
cv = ceph_decode_8(p); /* compat version */
801
if (ev < 5) {
802
pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
803
return -EINVAL;
804
}
805
if (cv > 9) {
806
pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
807
return -EINVAL;
808
}
809
len = ceph_decode_32(p);
810
ceph_decode_need(p, end, len, bad);
811
pool_end = *p + len;
812
813
ceph_decode_need(p, end, 4 + 4 + 4, bad);
814
pi->type = ceph_decode_8(p);
815
pi->size = ceph_decode_8(p);
816
pi->crush_ruleset = ceph_decode_8(p);
817
pi->object_hash = ceph_decode_8(p);
818
pi->pg_num = ceph_decode_32(p);
819
pi->pgp_num = ceph_decode_32(p);
820
821
/* lpg*, last_change, snap_seq, snap_epoch */
822
ceph_decode_skip_n(p, end, 8 + 4 + 8 + 4, bad);
823
824
/* skip snaps */
825
ceph_decode_32_safe(p, end, num, bad);
826
while (num--) {
827
/* snapid key, pool snap (with versions) */
828
ceph_decode_skip_n(p, end, 8 + 2, bad);
829
ceph_decode_skip_string(p, end, bad);
830
}
831
832
/* removed_snaps */
833
ceph_decode_skip_map(p, end, 64, 64, bad);
834
835
ceph_decode_need(p, end, 8 + 8 + 4, bad);
836
*p += 8; /* skip auid */
837
pi->flags = ceph_decode_64(p);
838
*p += 4; /* skip crash_replay_interval */
839
840
if (ev >= 7)
841
ceph_decode_8_safe(p, end, pi->min_size, bad);
842
else
843
pi->min_size = pi->size - pi->size / 2;
844
845
if (ev >= 8)
846
/* quota_max_* */
847
ceph_decode_skip_n(p, end, 8 + 8, bad);
848
849
if (ev >= 9) {
850
/* tiers */
851
ceph_decode_skip_set(p, end, 64, bad);
852
853
ceph_decode_need(p, end, 8 + 1 + 8 + 8, bad);
854
*p += 8; /* skip tier_of */
855
*p += 1; /* skip cache_mode */
856
pi->read_tier = ceph_decode_64(p);
857
pi->write_tier = ceph_decode_64(p);
858
} else {
859
pi->read_tier = -1;
860
pi->write_tier = -1;
861
}
862
863
if (ev >= 10)
864
/* properties */
865
ceph_decode_skip_map(p, end, string, string, bad);
866
867
if (ev >= 11) {
868
/* hit_set_params (with versions) */
869
ceph_decode_skip_n(p, end, 2, bad);
870
ceph_decode_skip_string(p, end, bad);
871
872
/* hit_set_period, hit_set_count */
873
ceph_decode_skip_n(p, end, 4 + 4, bad);
874
}
875
876
if (ev >= 12)
877
/* stripe_width */
878
ceph_decode_skip_32(p, end, bad);
879
880
if (ev >= 13)
881
/* target_max_*, cache_target_*, cache_min_* */
882
ceph_decode_skip_n(p, end, 16 + 8 + 8, bad);
883
884
if (ev >= 14)
885
/* erasure_code_profile */
886
ceph_decode_skip_string(p, end, bad);
887
888
/*
889
* last_force_op_resend_preluminous, will be overridden if the
890
* map was encoded with RESEND_ON_SPLIT
891
*/
892
if (ev >= 15)
893
ceph_decode_32_safe(p, end, pi->last_force_request_resend, bad);
894
else
895
pi->last_force_request_resend = 0;
896
897
if (ev >= 16)
898
/* min_read_recency_for_promote */
899
ceph_decode_skip_32(p, end, bad);
900
901
if (ev >= 17)
902
/* expected_num_objects */
903
ceph_decode_skip_64(p, end, bad);
904
905
if (ev >= 19)
906
/* cache_target_dirty_high_ratio_micro */
907
ceph_decode_skip_32(p, end, bad);
908
909
if (ev >= 20)
910
/* min_write_recency_for_promote */
911
ceph_decode_skip_32(p, end, bad);
912
913
if (ev >= 21)
914
/* use_gmt_hitset */
915
ceph_decode_skip_8(p, end, bad);
916
917
if (ev >= 22)
918
/* fast_read */
919
ceph_decode_skip_8(p, end, bad);
920
921
if (ev >= 23)
922
/* hit_set_grade_decay_rate, hit_set_search_last_n */
923
ceph_decode_skip_n(p, end, 4 + 4, bad);
924
925
if (ev >= 24) {
926
/* opts (with versions) */
927
ceph_decode_skip_n(p, end, 2, bad);
928
ceph_decode_skip_string(p, end, bad);
929
}
930
931
if (ev >= 25)
932
ceph_decode_32_safe(p, end, pi->last_force_request_resend, bad);
933
934
/* ignore the rest */
935
936
*p = pool_end;
937
calc_pg_masks(pi);
938
return 0;
939
940
bad:
941
return -EINVAL;
942
}
943
944
static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
945
{
946
struct ceph_pg_pool_info *pi;
947
u32 num, len;
948
u64 pool;
949
950
ceph_decode_32_safe(p, end, num, bad);
951
dout(" %d pool names\n", num);
952
while (num--) {
953
ceph_decode_64_safe(p, end, pool, bad);
954
ceph_decode_32_safe(p, end, len, bad);
955
dout(" pool %llu len %d\n", pool, len);
956
ceph_decode_need(p, end, len, bad);
957
pi = lookup_pg_pool(&map->pg_pools, pool);
958
if (pi) {
959
char *name = kstrndup(*p, len, GFP_NOFS);
960
961
if (!name)
962
return -ENOMEM;
963
kfree(pi->name);
964
pi->name = name;
965
dout(" name is %s\n", pi->name);
966
}
967
*p += len;
968
}
969
return 0;
970
971
bad:
972
return -EINVAL;
973
}
974
975
/*
976
* CRUSH workspaces
977
*
978
* workspace_manager framework borrowed from fs/btrfs/compression.c.
979
* Two simplifications: there is only one type of workspace and there
980
* is always at least one workspace.
981
*/
982
static struct crush_work *alloc_workspace(const struct crush_map *c)
983
{
984
struct crush_work *work;
985
size_t work_size;
986
987
WARN_ON(!c->working_size);
988
work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
989
dout("%s work_size %zu bytes\n", __func__, work_size);
990
991
work = kvmalloc(work_size, GFP_NOIO);
992
if (!work)
993
return NULL;
994
995
INIT_LIST_HEAD(&work->item);
996
crush_init_workspace(c, work);
997
return work;
998
}
999
1000
static void free_workspace(struct crush_work *work)
1001
{
1002
WARN_ON(!list_empty(&work->item));
1003
kvfree(work);
1004
}
1005
1006
static void init_workspace_manager(struct workspace_manager *wsm)
1007
{
1008
INIT_LIST_HEAD(&wsm->idle_ws);
1009
spin_lock_init(&wsm->ws_lock);
1010
atomic_set(&wsm->total_ws, 0);
1011
wsm->free_ws = 0;
1012
init_waitqueue_head(&wsm->ws_wait);
1013
}
1014
1015
static void add_initial_workspace(struct workspace_manager *wsm,
1016
struct crush_work *work)
1017
{
1018
WARN_ON(!list_empty(&wsm->idle_ws));
1019
1020
list_add(&work->item, &wsm->idle_ws);
1021
atomic_set(&wsm->total_ws, 1);
1022
wsm->free_ws = 1;
1023
}
1024
1025
static void cleanup_workspace_manager(struct workspace_manager *wsm)
1026
{
1027
struct crush_work *work;
1028
1029
while (!list_empty(&wsm->idle_ws)) {
1030
work = list_first_entry(&wsm->idle_ws, struct crush_work,
1031
item);
1032
list_del_init(&work->item);
1033
free_workspace(work);
1034
}
1035
atomic_set(&wsm->total_ws, 0);
1036
wsm->free_ws = 0;
1037
}
1038
1039
/*
1040
* Finds an available workspace or allocates a new one. If it's not
1041
* possible to allocate a new one, waits until there is one.
1042
*/
1043
static struct crush_work *get_workspace(struct workspace_manager *wsm,
1044
const struct crush_map *c)
1045
{
1046
struct crush_work *work;
1047
int cpus = num_online_cpus();
1048
1049
again:
1050
spin_lock(&wsm->ws_lock);
1051
if (!list_empty(&wsm->idle_ws)) {
1052
work = list_first_entry(&wsm->idle_ws, struct crush_work,
1053
item);
1054
list_del_init(&work->item);
1055
wsm->free_ws--;
1056
spin_unlock(&wsm->ws_lock);
1057
return work;
1058
1059
}
1060
if (atomic_read(&wsm->total_ws) > cpus) {
1061
DEFINE_WAIT(wait);
1062
1063
spin_unlock(&wsm->ws_lock);
1064
prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1065
if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1066
schedule();
1067
finish_wait(&wsm->ws_wait, &wait);
1068
goto again;
1069
}
1070
atomic_inc(&wsm->total_ws);
1071
spin_unlock(&wsm->ws_lock);
1072
1073
work = alloc_workspace(c);
1074
if (!work) {
1075
atomic_dec(&wsm->total_ws);
1076
wake_up(&wsm->ws_wait);
1077
1078
/*
1079
* Do not return the error but go back to waiting. We
1080
* have the initial workspace and the CRUSH computation
1081
* time is bounded so we will get it eventually.
1082
*/
1083
WARN_ON(atomic_read(&wsm->total_ws) < 1);
1084
goto again;
1085
}
1086
return work;
1087
}
1088
1089
/*
1090
* Puts a workspace back on the list or frees it if we have enough
1091
* idle ones sitting around.
1092
*/
1093
static void put_workspace(struct workspace_manager *wsm,
1094
struct crush_work *work)
1095
{
1096
spin_lock(&wsm->ws_lock);
1097
if (wsm->free_ws <= num_online_cpus()) {
1098
list_add(&work->item, &wsm->idle_ws);
1099
wsm->free_ws++;
1100
spin_unlock(&wsm->ws_lock);
1101
goto wake;
1102
}
1103
spin_unlock(&wsm->ws_lock);
1104
1105
free_workspace(work);
1106
atomic_dec(&wsm->total_ws);
1107
wake:
1108
if (wq_has_sleeper(&wsm->ws_wait))
1109
wake_up(&wsm->ws_wait);
1110
}
1111
1112
/*
1113
* osd map
1114
*/
1115
struct ceph_osdmap *ceph_osdmap_alloc(void)
1116
{
1117
struct ceph_osdmap *map;
1118
1119
map = kzalloc(sizeof(*map), GFP_NOIO);
1120
if (!map)
1121
return NULL;
1122
1123
map->pg_pools = RB_ROOT;
1124
map->pool_max = -1;
1125
map->pg_temp = RB_ROOT;
1126
map->primary_temp = RB_ROOT;
1127
map->pg_upmap = RB_ROOT;
1128
map->pg_upmap_items = RB_ROOT;
1129
1130
init_workspace_manager(&map->crush_wsm);
1131
1132
return map;
1133
}
1134
1135
void ceph_osdmap_destroy(struct ceph_osdmap *map)
1136
{
1137
dout("osdmap_destroy %p\n", map);
1138
1139
if (map->crush)
1140
crush_destroy(map->crush);
1141
cleanup_workspace_manager(&map->crush_wsm);
1142
1143
while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1144
struct ceph_pg_mapping *pg =
1145
rb_entry(rb_first(&map->pg_temp),
1146
struct ceph_pg_mapping, node);
1147
erase_pg_mapping(&map->pg_temp, pg);
1148
free_pg_mapping(pg);
1149
}
1150
while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1151
struct ceph_pg_mapping *pg =
1152
rb_entry(rb_first(&map->primary_temp),
1153
struct ceph_pg_mapping, node);
1154
erase_pg_mapping(&map->primary_temp, pg);
1155
free_pg_mapping(pg);
1156
}
1157
while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1158
struct ceph_pg_mapping *pg =
1159
rb_entry(rb_first(&map->pg_upmap),
1160
struct ceph_pg_mapping, node);
1161
rb_erase(&pg->node, &map->pg_upmap);
1162
kfree(pg);
1163
}
1164
while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1165
struct ceph_pg_mapping *pg =
1166
rb_entry(rb_first(&map->pg_upmap_items),
1167
struct ceph_pg_mapping, node);
1168
rb_erase(&pg->node, &map->pg_upmap_items);
1169
kfree(pg);
1170
}
1171
while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1172
struct ceph_pg_pool_info *pi =
1173
rb_entry(rb_first(&map->pg_pools),
1174
struct ceph_pg_pool_info, node);
1175
__remove_pg_pool(&map->pg_pools, pi);
1176
}
1177
kvfree(map->osd_state);
1178
kvfree(map->osd_weight);
1179
kvfree(map->osd_addr);
1180
kvfree(map->osd_primary_affinity);
1181
kfree(map);
1182
}
1183
1184
/*
1185
* Adjust max_osd value, (re)allocate arrays.
1186
*
1187
* The new elements are properly initialized.
1188
*/
1189
static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1190
{
1191
u32 *state;
1192
u32 *weight;
1193
struct ceph_entity_addr *addr;
1194
u32 to_copy;
1195
int i;
1196
1197
dout("%s old %u new %u\n", __func__, map->max_osd, max);
1198
if (max == map->max_osd)
1199
return 0;
1200
1201
state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1202
weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1203
addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1204
if (!state || !weight || !addr) {
1205
kvfree(state);
1206
kvfree(weight);
1207
kvfree(addr);
1208
return -ENOMEM;
1209
}
1210
1211
to_copy = min(map->max_osd, max);
1212
if (map->osd_state) {
1213
memcpy(state, map->osd_state, to_copy * sizeof(*state));
1214
memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1215
memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1216
kvfree(map->osd_state);
1217
kvfree(map->osd_weight);
1218
kvfree(map->osd_addr);
1219
}
1220
1221
map->osd_state = state;
1222
map->osd_weight = weight;
1223
map->osd_addr = addr;
1224
for (i = map->max_osd; i < max; i++) {
1225
map->osd_state[i] = 0;
1226
map->osd_weight[i] = CEPH_OSD_OUT;
1227
memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1228
}
1229
1230
if (map->osd_primary_affinity) {
1231
u32 *affinity;
1232
1233
affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1234
GFP_NOFS);
1235
if (!affinity)
1236
return -ENOMEM;
1237
1238
memcpy(affinity, map->osd_primary_affinity,
1239
to_copy * sizeof(*affinity));
1240
kvfree(map->osd_primary_affinity);
1241
1242
map->osd_primary_affinity = affinity;
1243
for (i = map->max_osd; i < max; i++)
1244
map->osd_primary_affinity[i] =
1245
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1246
}
1247
1248
map->max_osd = max;
1249
1250
return 0;
1251
}
1252
1253
static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1254
{
1255
struct crush_work *work;
1256
1257
if (IS_ERR(crush))
1258
return PTR_ERR(crush);
1259
1260
work = alloc_workspace(crush);
1261
if (!work) {
1262
crush_destroy(crush);
1263
return -ENOMEM;
1264
}
1265
1266
if (map->crush)
1267
crush_destroy(map->crush);
1268
cleanup_workspace_manager(&map->crush_wsm);
1269
map->crush = crush;
1270
add_initial_workspace(&map->crush_wsm, work);
1271
return 0;
1272
}
1273
1274
#define OSDMAP_WRAPPER_COMPAT_VER 7
1275
#define OSDMAP_CLIENT_DATA_COMPAT_VER 1
1276
1277
/*
1278
* Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps,
1279
* to struct_v of the client_data section for new (v7 and above)
1280
* osdmaps.
1281
*/
1282
static int get_osdmap_client_data_v(void **p, void *end,
1283
const char *prefix, u8 *v)
1284
{
1285
u8 struct_v;
1286
1287
ceph_decode_8_safe(p, end, struct_v, e_inval);
1288
if (struct_v >= 7) {
1289
u8 struct_compat;
1290
1291
ceph_decode_8_safe(p, end, struct_compat, e_inval);
1292
if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1293
pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1294
struct_v, struct_compat,
1295
OSDMAP_WRAPPER_COMPAT_VER, prefix);
1296
return -EINVAL;
1297
}
1298
*p += 4; /* ignore wrapper struct_len */
1299
1300
ceph_decode_8_safe(p, end, struct_v, e_inval);
1301
ceph_decode_8_safe(p, end, struct_compat, e_inval);
1302
if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1303
pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1304
struct_v, struct_compat,
1305
OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1306
return -EINVAL;
1307
}
1308
*p += 4; /* ignore client data struct_len */
1309
} else {
1310
u16 version;
1311
1312
*p -= 1;
1313
ceph_decode_16_safe(p, end, version, e_inval);
1314
if (version < 6) {
1315
pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1316
version, prefix);
1317
return -EINVAL;
1318
}
1319
1320
/* old osdmap encoding */
1321
struct_v = 0;
1322
}
1323
1324
*v = struct_v;
1325
return 0;
1326
1327
e_inval:
1328
return -EINVAL;
1329
}
1330
1331
static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1332
bool incremental)
1333
{
1334
u32 n;
1335
1336
ceph_decode_32_safe(p, end, n, e_inval);
1337
while (n--) {
1338
struct ceph_pg_pool_info *pi;
1339
u64 pool;
1340
int ret;
1341
1342
ceph_decode_64_safe(p, end, pool, e_inval);
1343
1344
pi = lookup_pg_pool(&map->pg_pools, pool);
1345
if (!incremental || !pi) {
1346
pi = kzalloc(sizeof(*pi), GFP_NOFS);
1347
if (!pi)
1348
return -ENOMEM;
1349
1350
RB_CLEAR_NODE(&pi->node);
1351
pi->id = pool;
1352
1353
if (!__insert_pg_pool(&map->pg_pools, pi)) {
1354
kfree(pi);
1355
return -EEXIST;
1356
}
1357
}
1358
1359
ret = decode_pool(p, end, pi);
1360
if (ret)
1361
return ret;
1362
}
1363
1364
return 0;
1365
1366
e_inval:
1367
return -EINVAL;
1368
}
1369
1370
static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1371
{
1372
return __decode_pools(p, end, map, false);
1373
}
1374
1375
static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1376
{
1377
return __decode_pools(p, end, map, true);
1378
}
1379
1380
typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1381
1382
static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1383
decode_mapping_fn_t fn, bool incremental)
1384
{
1385
u32 n;
1386
1387
WARN_ON(!incremental && !fn);
1388
1389
ceph_decode_32_safe(p, end, n, e_inval);
1390
while (n--) {
1391
struct ceph_pg_mapping *pg;
1392
struct ceph_pg pgid;
1393
int ret;
1394
1395
ret = ceph_decode_pgid(p, end, &pgid);
1396
if (ret)
1397
return ret;
1398
1399
pg = lookup_pg_mapping(mapping_root, &pgid);
1400
if (pg) {
1401
WARN_ON(!incremental);
1402
erase_pg_mapping(mapping_root, pg);
1403
free_pg_mapping(pg);
1404
}
1405
1406
if (fn) {
1407
pg = fn(p, end, incremental);
1408
if (IS_ERR(pg))
1409
return PTR_ERR(pg);
1410
1411
if (pg) {
1412
pg->pgid = pgid; /* struct */
1413
insert_pg_mapping(mapping_root, pg);
1414
}
1415
}
1416
}
1417
1418
return 0;
1419
1420
e_inval:
1421
return -EINVAL;
1422
}
1423
1424
static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1425
bool incremental)
1426
{
1427
struct ceph_pg_mapping *pg;
1428
u32 len, i;
1429
1430
ceph_decode_32_safe(p, end, len, e_inval);
1431
if (len == 0 && incremental)
1432
return NULL; /* new_pg_temp: [] to remove */
1433
if ((size_t)len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1434
return ERR_PTR(-EINVAL);
1435
1436
ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1437
pg = alloc_pg_mapping(len * sizeof(u32));
1438
if (!pg)
1439
return ERR_PTR(-ENOMEM);
1440
1441
pg->pg_temp.len = len;
1442
for (i = 0; i < len; i++)
1443
pg->pg_temp.osds[i] = ceph_decode_32(p);
1444
1445
return pg;
1446
1447
e_inval:
1448
return ERR_PTR(-EINVAL);
1449
}
1450
1451
static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1452
{
1453
return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1454
false);
1455
}
1456
1457
static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1458
{
1459
return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1460
true);
1461
}
1462
1463
static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1464
bool incremental)
1465
{
1466
struct ceph_pg_mapping *pg;
1467
u32 osd;
1468
1469
ceph_decode_32_safe(p, end, osd, e_inval);
1470
if (osd == (u32)-1 && incremental)
1471
return NULL; /* new_primary_temp: -1 to remove */
1472
1473
pg = alloc_pg_mapping(0);
1474
if (!pg)
1475
return ERR_PTR(-ENOMEM);
1476
1477
pg->primary_temp.osd = osd;
1478
return pg;
1479
1480
e_inval:
1481
return ERR_PTR(-EINVAL);
1482
}
1483
1484
static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1485
{
1486
return decode_pg_mapping(p, end, &map->primary_temp,
1487
__decode_primary_temp, false);
1488
}
1489
1490
static int decode_new_primary_temp(void **p, void *end,
1491
struct ceph_osdmap *map)
1492
{
1493
return decode_pg_mapping(p, end, &map->primary_temp,
1494
__decode_primary_temp, true);
1495
}
1496
1497
u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1498
{
1499
if (!map->osd_primary_affinity)
1500
return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1501
1502
return map->osd_primary_affinity[osd];
1503
}
1504
1505
static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1506
{
1507
if (!map->osd_primary_affinity) {
1508
int i;
1509
1510
map->osd_primary_affinity = kvmalloc(
1511
array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1512
GFP_NOFS);
1513
if (!map->osd_primary_affinity)
1514
return -ENOMEM;
1515
1516
for (i = 0; i < map->max_osd; i++)
1517
map->osd_primary_affinity[i] =
1518
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1519
}
1520
1521
map->osd_primary_affinity[osd] = aff;
1522
1523
return 0;
1524
}
1525
1526
static int decode_primary_affinity(void **p, void *end,
1527
struct ceph_osdmap *map)
1528
{
1529
u32 len, i;
1530
1531
ceph_decode_32_safe(p, end, len, e_inval);
1532
if (len == 0) {
1533
kvfree(map->osd_primary_affinity);
1534
map->osd_primary_affinity = NULL;
1535
return 0;
1536
}
1537
if (len != map->max_osd)
1538
goto e_inval;
1539
1540
ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1541
1542
for (i = 0; i < map->max_osd; i++) {
1543
int ret;
1544
1545
ret = set_primary_affinity(map, i, ceph_decode_32(p));
1546
if (ret)
1547
return ret;
1548
}
1549
1550
return 0;
1551
1552
e_inval:
1553
return -EINVAL;
1554
}
1555
1556
static int decode_new_primary_affinity(void **p, void *end,
1557
struct ceph_osdmap *map)
1558
{
1559
u32 n;
1560
1561
ceph_decode_32_safe(p, end, n, e_inval);
1562
while (n--) {
1563
u32 osd, aff;
1564
int ret;
1565
1566
ceph_decode_32_safe(p, end, osd, e_inval);
1567
ceph_decode_32_safe(p, end, aff, e_inval);
1568
if (osd >= map->max_osd)
1569
goto e_inval;
1570
1571
ret = set_primary_affinity(map, osd, aff);
1572
if (ret)
1573
return ret;
1574
1575
osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1576
}
1577
1578
return 0;
1579
1580
e_inval:
1581
return -EINVAL;
1582
}
1583
1584
static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1585
bool __unused)
1586
{
1587
return __decode_pg_temp(p, end, false);
1588
}
1589
1590
static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1591
{
1592
return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1593
false);
1594
}
1595
1596
static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1597
{
1598
return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1599
true);
1600
}
1601
1602
static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1603
{
1604
return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1605
}
1606
1607
static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1608
bool __unused)
1609
{
1610
struct ceph_pg_mapping *pg;
1611
u32 len, i;
1612
1613
ceph_decode_32_safe(p, end, len, e_inval);
1614
if ((size_t)len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1615
return ERR_PTR(-EINVAL);
1616
1617
ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1618
pg = alloc_pg_mapping(2 * len * sizeof(u32));
1619
if (!pg)
1620
return ERR_PTR(-ENOMEM);
1621
1622
pg->pg_upmap_items.len = len;
1623
for (i = 0; i < len; i++) {
1624
pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1625
pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1626
}
1627
1628
return pg;
1629
1630
e_inval:
1631
return ERR_PTR(-EINVAL);
1632
}
1633
1634
static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1635
{
1636
return decode_pg_mapping(p, end, &map->pg_upmap_items,
1637
__decode_pg_upmap_items, false);
1638
}
1639
1640
static int decode_new_pg_upmap_items(void **p, void *end,
1641
struct ceph_osdmap *map)
1642
{
1643
return decode_pg_mapping(p, end, &map->pg_upmap_items,
1644
__decode_pg_upmap_items, true);
1645
}
1646
1647
static int decode_old_pg_upmap_items(void **p, void *end,
1648
struct ceph_osdmap *map)
1649
{
1650
return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1651
}
1652
1653
/*
1654
* decode a full map.
1655
*/
1656
static int osdmap_decode(void **p, void *end, bool msgr2,
1657
struct ceph_osdmap *map)
1658
{
1659
u8 struct_v;
1660
u32 epoch = 0;
1661
void *start = *p;
1662
u32 max;
1663
u32 len, i;
1664
int err;
1665
1666
dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1667
1668
err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1669
if (err)
1670
goto bad;
1671
1672
/* fsid, epoch, created, modified */
1673
ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1674
sizeof(map->created) + sizeof(map->modified), e_inval);
1675
ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1676
epoch = map->epoch = ceph_decode_32(p);
1677
ceph_decode_copy(p, &map->created, sizeof(map->created));
1678
ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1679
1680
/* pools */
1681
err = decode_pools(p, end, map);
1682
if (err)
1683
goto bad;
1684
1685
/* pool_name */
1686
err = decode_pool_names(p, end, map);
1687
if (err)
1688
goto bad;
1689
1690
ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1691
1692
ceph_decode_32_safe(p, end, map->flags, e_inval);
1693
1694
/* max_osd */
1695
ceph_decode_32_safe(p, end, max, e_inval);
1696
1697
/* (re)alloc osd arrays */
1698
err = osdmap_set_max_osd(map, max);
1699
if (err)
1700
goto bad;
1701
1702
/* osd_state, osd_weight, osd_addrs->client_addr */
1703
ceph_decode_need(p, end, 3*sizeof(u32) +
1704
map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1705
sizeof(u8)) +
1706
sizeof(*map->osd_weight), e_inval);
1707
if (ceph_decode_32(p) != map->max_osd)
1708
goto e_inval;
1709
1710
if (struct_v >= 5) {
1711
for (i = 0; i < map->max_osd; i++)
1712
map->osd_state[i] = ceph_decode_32(p);
1713
} else {
1714
for (i = 0; i < map->max_osd; i++)
1715
map->osd_state[i] = ceph_decode_8(p);
1716
}
1717
1718
if (ceph_decode_32(p) != map->max_osd)
1719
goto e_inval;
1720
1721
for (i = 0; i < map->max_osd; i++)
1722
map->osd_weight[i] = ceph_decode_32(p);
1723
1724
if (ceph_decode_32(p) != map->max_osd)
1725
goto e_inval;
1726
1727
for (i = 0; i < map->max_osd; i++) {
1728
struct ceph_entity_addr *addr = &map->osd_addr[i];
1729
1730
if (struct_v >= 8)
1731
err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1732
else
1733
err = ceph_decode_entity_addr(p, end, addr);
1734
if (err)
1735
goto bad;
1736
1737
dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1738
}
1739
1740
/* pg_temp */
1741
err = decode_pg_temp(p, end, map);
1742
if (err)
1743
goto bad;
1744
1745
/* primary_temp */
1746
if (struct_v >= 1) {
1747
err = decode_primary_temp(p, end, map);
1748
if (err)
1749
goto bad;
1750
}
1751
1752
/* primary_affinity */
1753
if (struct_v >= 2) {
1754
err = decode_primary_affinity(p, end, map);
1755
if (err)
1756
goto bad;
1757
} else {
1758
WARN_ON(map->osd_primary_affinity);
1759
}
1760
1761
/* crush */
1762
ceph_decode_32_safe(p, end, len, e_inval);
1763
err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1764
if (err)
1765
goto bad;
1766
1767
*p += len;
1768
if (struct_v >= 3) {
1769
/* erasure_code_profiles */
1770
ceph_decode_skip_map_of_map(p, end, string, string, string,
1771
e_inval);
1772
}
1773
1774
if (struct_v >= 4) {
1775
err = decode_pg_upmap(p, end, map);
1776
if (err)
1777
goto bad;
1778
1779
err = decode_pg_upmap_items(p, end, map);
1780
if (err)
1781
goto bad;
1782
} else {
1783
WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1784
WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1785
}
1786
1787
/* ignore the rest */
1788
*p = end;
1789
1790
dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1791
return 0;
1792
1793
e_inval:
1794
err = -EINVAL;
1795
bad:
1796
pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1797
err, epoch, (int)(*p - start), *p, start, end);
1798
print_hex_dump(KERN_DEBUG, "osdmap: ",
1799
DUMP_PREFIX_OFFSET, 16, 1,
1800
start, end - start, true);
1801
return err;
1802
}
1803
1804
/*
1805
* Allocate and decode a full map.
1806
*/
1807
struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1808
{
1809
struct ceph_osdmap *map;
1810
int ret;
1811
1812
map = ceph_osdmap_alloc();
1813
if (!map)
1814
return ERR_PTR(-ENOMEM);
1815
1816
ret = osdmap_decode(p, end, msgr2, map);
1817
if (ret) {
1818
ceph_osdmap_destroy(map);
1819
return ERR_PTR(ret);
1820
}
1821
1822
return map;
1823
}
1824
1825
/*
1826
* Encoding order is (new_up_client, new_state, new_weight). Need to
1827
* apply in the (new_weight, new_state, new_up_client) order, because
1828
* an incremental map may look like e.g.
1829
*
1830
* new_up_client: { osd=6, addr=... } # set osd_state and addr
1831
* new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1832
*/
1833
static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1834
bool msgr2, struct ceph_osdmap *map)
1835
{
1836
void *new_up_client;
1837
void *new_state;
1838
void *new_weight_end;
1839
u32 len;
1840
int ret;
1841
int i;
1842
1843
new_up_client = *p;
1844
ceph_decode_32_safe(p, end, len, e_inval);
1845
for (i = 0; i < len; ++i) {
1846
struct ceph_entity_addr addr;
1847
1848
ceph_decode_skip_32(p, end, e_inval);
1849
if (struct_v >= 7)
1850
ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1851
else
1852
ret = ceph_decode_entity_addr(p, end, &addr);
1853
if (ret)
1854
return ret;
1855
}
1856
1857
new_state = *p;
1858
ceph_decode_32_safe(p, end, len, e_inval);
1859
len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1860
ceph_decode_need(p, end, len, e_inval);
1861
*p += len;
1862
1863
/* new_weight */
1864
ceph_decode_32_safe(p, end, len, e_inval);
1865
while (len--) {
1866
s32 osd;
1867
u32 w;
1868
1869
ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1870
osd = ceph_decode_32(p);
1871
w = ceph_decode_32(p);
1872
if (osd >= map->max_osd)
1873
goto e_inval;
1874
1875
osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1876
w == CEPH_OSD_IN ? "(in)" :
1877
(w == CEPH_OSD_OUT ? "(out)" : ""));
1878
map->osd_weight[osd] = w;
1879
1880
/*
1881
* If we are marking in, set the EXISTS, and clear the
1882
* AUTOOUT and NEW bits.
1883
*/
1884
if (w) {
1885
map->osd_state[osd] |= CEPH_OSD_EXISTS;
1886
map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1887
CEPH_OSD_NEW);
1888
}
1889
}
1890
new_weight_end = *p;
1891
1892
/* new_state (up/down) */
1893
*p = new_state;
1894
len = ceph_decode_32(p);
1895
while (len--) {
1896
s32 osd;
1897
u32 xorstate;
1898
1899
osd = ceph_decode_32(p);
1900
if (osd >= map->max_osd)
1901
goto e_inval;
1902
1903
if (struct_v >= 5)
1904
xorstate = ceph_decode_32(p);
1905
else
1906
xorstate = ceph_decode_8(p);
1907
if (xorstate == 0)
1908
xorstate = CEPH_OSD_UP;
1909
if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1910
(xorstate & CEPH_OSD_UP))
1911
osdmap_info(map, "osd%d down\n", osd);
1912
if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1913
(xorstate & CEPH_OSD_EXISTS)) {
1914
osdmap_info(map, "osd%d does not exist\n", osd);
1915
ret = set_primary_affinity(map, osd,
1916
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1917
if (ret)
1918
return ret;
1919
memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1920
map->osd_state[osd] = 0;
1921
} else {
1922
map->osd_state[osd] ^= xorstate;
1923
}
1924
}
1925
1926
/* new_up_client */
1927
*p = new_up_client;
1928
len = ceph_decode_32(p);
1929
while (len--) {
1930
s32 osd;
1931
struct ceph_entity_addr addr;
1932
1933
osd = ceph_decode_32(p);
1934
if (osd >= map->max_osd)
1935
goto e_inval;
1936
1937
if (struct_v >= 7)
1938
ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1939
else
1940
ret = ceph_decode_entity_addr(p, end, &addr);
1941
if (ret)
1942
return ret;
1943
1944
dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1945
1946
osdmap_info(map, "osd%d up\n", osd);
1947
map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1948
map->osd_addr[osd] = addr;
1949
}
1950
1951
*p = new_weight_end;
1952
return 0;
1953
1954
e_inval:
1955
return -EINVAL;
1956
}
1957
1958
/*
1959
* decode and apply an incremental map update.
1960
*/
1961
struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1962
struct ceph_osdmap *map)
1963
{
1964
struct ceph_fsid fsid;
1965
u32 epoch = 0;
1966
struct ceph_timespec modified;
1967
s32 len;
1968
u64 pool;
1969
__s64 new_pool_max;
1970
__s32 new_flags, max;
1971
void *start = *p;
1972
int err;
1973
u8 struct_v;
1974
1975
dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1976
1977
err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1978
if (err)
1979
goto bad;
1980
1981
/* fsid, epoch, modified, new_pool_max, new_flags */
1982
ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1983
sizeof(u64) + sizeof(u32), e_inval);
1984
ceph_decode_copy(p, &fsid, sizeof(fsid));
1985
epoch = ceph_decode_32(p);
1986
ceph_decode_copy(p, &modified, sizeof(modified));
1987
new_pool_max = ceph_decode_64(p);
1988
new_flags = ceph_decode_32(p);
1989
1990
if (epoch != map->epoch + 1)
1991
goto e_inval;
1992
1993
/* full map? */
1994
ceph_decode_32_safe(p, end, len, e_inval);
1995
if (len > 0) {
1996
dout("apply_incremental full map len %d, %p to %p\n",
1997
len, *p, end);
1998
return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
1999
}
2000
2001
/* new crush? */
2002
ceph_decode_32_safe(p, end, len, e_inval);
2003
if (len > 0) {
2004
err = osdmap_set_crush(map,
2005
crush_decode(*p, min(*p + len, end)));
2006
if (err)
2007
goto bad;
2008
*p += len;
2009
}
2010
2011
/* new flags? */
2012
if (new_flags >= 0)
2013
map->flags = new_flags;
2014
if (new_pool_max >= 0)
2015
map->pool_max = new_pool_max;
2016
2017
/* new max? */
2018
ceph_decode_32_safe(p, end, max, e_inval);
2019
if (max >= 0) {
2020
err = osdmap_set_max_osd(map, max);
2021
if (err)
2022
goto bad;
2023
}
2024
2025
map->epoch++;
2026
map->modified = modified;
2027
2028
/* new_pools */
2029
err = decode_new_pools(p, end, map);
2030
if (err)
2031
goto bad;
2032
2033
/* new_pool_names */
2034
err = decode_pool_names(p, end, map);
2035
if (err)
2036
goto bad;
2037
2038
/* old_pool */
2039
ceph_decode_32_safe(p, end, len, e_inval);
2040
while (len--) {
2041
struct ceph_pg_pool_info *pi;
2042
2043
ceph_decode_64_safe(p, end, pool, e_inval);
2044
pi = lookup_pg_pool(&map->pg_pools, pool);
2045
if (pi)
2046
__remove_pg_pool(&map->pg_pools, pi);
2047
}
2048
2049
/* new_up_client, new_state, new_weight */
2050
err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2051
if (err)
2052
goto bad;
2053
2054
/* new_pg_temp */
2055
err = decode_new_pg_temp(p, end, map);
2056
if (err)
2057
goto bad;
2058
2059
/* new_primary_temp */
2060
if (struct_v >= 1) {
2061
err = decode_new_primary_temp(p, end, map);
2062
if (err)
2063
goto bad;
2064
}
2065
2066
/* new_primary_affinity */
2067
if (struct_v >= 2) {
2068
err = decode_new_primary_affinity(p, end, map);
2069
if (err)
2070
goto bad;
2071
}
2072
2073
if (struct_v >= 3) {
2074
/* new_erasure_code_profiles */
2075
ceph_decode_skip_map_of_map(p, end, string, string, string,
2076
e_inval);
2077
/* old_erasure_code_profiles */
2078
ceph_decode_skip_set(p, end, string, e_inval);
2079
}
2080
2081
if (struct_v >= 4) {
2082
err = decode_new_pg_upmap(p, end, map);
2083
if (err)
2084
goto bad;
2085
2086
err = decode_old_pg_upmap(p, end, map);
2087
if (err)
2088
goto bad;
2089
2090
err = decode_new_pg_upmap_items(p, end, map);
2091
if (err)
2092
goto bad;
2093
2094
err = decode_old_pg_upmap_items(p, end, map);
2095
if (err)
2096
goto bad;
2097
}
2098
2099
/* ignore the rest */
2100
*p = end;
2101
2102
dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2103
return map;
2104
2105
e_inval:
2106
err = -EINVAL;
2107
bad:
2108
pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2109
err, epoch, (int)(*p - start), *p, start, end);
2110
print_hex_dump(KERN_DEBUG, "osdmap: ",
2111
DUMP_PREFIX_OFFSET, 16, 1,
2112
start, end - start, true);
2113
return ERR_PTR(err);
2114
}
2115
2116
void ceph_oloc_copy(struct ceph_object_locator *dest,
2117
const struct ceph_object_locator *src)
2118
{
2119
ceph_oloc_destroy(dest);
2120
2121
dest->pool = src->pool;
2122
if (src->pool_ns)
2123
dest->pool_ns = ceph_get_string(src->pool_ns);
2124
else
2125
dest->pool_ns = NULL;
2126
}
2127
EXPORT_SYMBOL(ceph_oloc_copy);
2128
2129
void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2130
{
2131
ceph_put_string(oloc->pool_ns);
2132
}
2133
EXPORT_SYMBOL(ceph_oloc_destroy);
2134
2135
void ceph_oid_copy(struct ceph_object_id *dest,
2136
const struct ceph_object_id *src)
2137
{
2138
ceph_oid_destroy(dest);
2139
2140
if (src->name != src->inline_name) {
2141
/* very rare, see ceph_object_id definition */
2142
dest->name = kmalloc(src->name_len + 1,
2143
GFP_NOIO | __GFP_NOFAIL);
2144
} else {
2145
dest->name = dest->inline_name;
2146
}
2147
memcpy(dest->name, src->name, src->name_len + 1);
2148
dest->name_len = src->name_len;
2149
}
2150
EXPORT_SYMBOL(ceph_oid_copy);
2151
2152
static __printf(2, 0)
2153
int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2154
{
2155
int len;
2156
2157
WARN_ON(!ceph_oid_empty(oid));
2158
2159
len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2160
if (len >= sizeof(oid->inline_name))
2161
return len;
2162
2163
oid->name_len = len;
2164
return 0;
2165
}
2166
2167
/*
2168
* If oid doesn't fit into inline buffer, BUG.
2169
*/
2170
void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2171
{
2172
va_list ap;
2173
2174
va_start(ap, fmt);
2175
BUG_ON(oid_printf_vargs(oid, fmt, ap));
2176
va_end(ap);
2177
}
2178
EXPORT_SYMBOL(ceph_oid_printf);
2179
2180
static __printf(3, 0)
2181
int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2182
const char *fmt, va_list ap)
2183
{
2184
va_list aq;
2185
int len;
2186
2187
va_copy(aq, ap);
2188
len = oid_printf_vargs(oid, fmt, aq);
2189
va_end(aq);
2190
2191
if (len) {
2192
char *external_name;
2193
2194
external_name = kmalloc(len + 1, gfp);
2195
if (!external_name)
2196
return -ENOMEM;
2197
2198
oid->name = external_name;
2199
WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2200
oid->name_len = len;
2201
}
2202
2203
return 0;
2204
}
2205
2206
/*
2207
* If oid doesn't fit into inline buffer, allocate.
2208
*/
2209
int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2210
const char *fmt, ...)
2211
{
2212
va_list ap;
2213
int ret;
2214
2215
va_start(ap, fmt);
2216
ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2217
va_end(ap);
2218
2219
return ret;
2220
}
2221
EXPORT_SYMBOL(ceph_oid_aprintf);
2222
2223
void ceph_oid_destroy(struct ceph_object_id *oid)
2224
{
2225
if (oid->name != oid->inline_name)
2226
kfree(oid->name);
2227
}
2228
EXPORT_SYMBOL(ceph_oid_destroy);
2229
2230
/*
2231
* osds only
2232
*/
2233
static bool __osds_equal(const struct ceph_osds *lhs,
2234
const struct ceph_osds *rhs)
2235
{
2236
if (lhs->size == rhs->size &&
2237
!memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2238
return true;
2239
2240
return false;
2241
}
2242
2243
/*
2244
* osds + primary
2245
*/
2246
static bool osds_equal(const struct ceph_osds *lhs,
2247
const struct ceph_osds *rhs)
2248
{
2249
if (__osds_equal(lhs, rhs) &&
2250
lhs->primary == rhs->primary)
2251
return true;
2252
2253
return false;
2254
}
2255
2256
static bool osds_valid(const struct ceph_osds *set)
2257
{
2258
/* non-empty set */
2259
if (set->size > 0 && set->primary >= 0)
2260
return true;
2261
2262
/* empty can_shift_osds set */
2263
if (!set->size && set->primary == -1)
2264
return true;
2265
2266
/* empty !can_shift_osds set - all NONE */
2267
if (set->size > 0 && set->primary == -1) {
2268
int i;
2269
2270
for (i = 0; i < set->size; i++) {
2271
if (set->osds[i] != CRUSH_ITEM_NONE)
2272
break;
2273
}
2274
if (i == set->size)
2275
return true;
2276
}
2277
2278
return false;
2279
}
2280
2281
void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2282
{
2283
memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2284
dest->size = src->size;
2285
dest->primary = src->primary;
2286
}
2287
2288
bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2289
u32 new_pg_num)
2290
{
2291
int old_bits = calc_bits_of(old_pg_num);
2292
int old_mask = (1 << old_bits) - 1;
2293
int n;
2294
2295
WARN_ON(pgid->seed >= old_pg_num);
2296
if (new_pg_num <= old_pg_num)
2297
return false;
2298
2299
for (n = 1; ; n++) {
2300
int next_bit = n << (old_bits - 1);
2301
u32 s = next_bit | pgid->seed;
2302
2303
if (s < old_pg_num || s == pgid->seed)
2304
continue;
2305
if (s >= new_pg_num)
2306
break;
2307
2308
s = ceph_stable_mod(s, old_pg_num, old_mask);
2309
if (s == pgid->seed)
2310
return true;
2311
}
2312
2313
return false;
2314
}
2315
2316
bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2317
const struct ceph_osds *new_acting,
2318
const struct ceph_osds *old_up,
2319
const struct ceph_osds *new_up,
2320
int old_size,
2321
int new_size,
2322
int old_min_size,
2323
int new_min_size,
2324
u32 old_pg_num,
2325
u32 new_pg_num,
2326
bool old_sort_bitwise,
2327
bool new_sort_bitwise,
2328
bool old_recovery_deletes,
2329
bool new_recovery_deletes,
2330
const struct ceph_pg *pgid)
2331
{
2332
return !osds_equal(old_acting, new_acting) ||
2333
!osds_equal(old_up, new_up) ||
2334
old_size != new_size ||
2335
old_min_size != new_min_size ||
2336
ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2337
old_sort_bitwise != new_sort_bitwise ||
2338
old_recovery_deletes != new_recovery_deletes;
2339
}
2340
2341
static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2342
{
2343
int i;
2344
2345
for (i = 0; i < acting->size; i++) {
2346
if (acting->osds[i] == osd)
2347
return i;
2348
}
2349
2350
return -1;
2351
}
2352
2353
static bool primary_changed(const struct ceph_osds *old_acting,
2354
const struct ceph_osds *new_acting)
2355
{
2356
if (!old_acting->size && !new_acting->size)
2357
return false; /* both still empty */
2358
2359
if (!old_acting->size ^ !new_acting->size)
2360
return true; /* was empty, now not, or vice versa */
2361
2362
if (old_acting->primary != new_acting->primary)
2363
return true; /* primary changed */
2364
2365
if (calc_pg_rank(old_acting->primary, old_acting) !=
2366
calc_pg_rank(new_acting->primary, new_acting))
2367
return true;
2368
2369
return false; /* same primary (tho replicas may have changed) */
2370
}
2371
2372
bool ceph_osds_changed(const struct ceph_osds *old_acting,
2373
const struct ceph_osds *new_acting,
2374
bool any_change)
2375
{
2376
if (primary_changed(old_acting, new_acting))
2377
return true;
2378
2379
if (any_change && !__osds_equal(old_acting, new_acting))
2380
return true;
2381
2382
return false;
2383
}
2384
2385
/*
2386
* Map an object into a PG.
2387
*
2388
* Should only be called with target_oid and target_oloc (as opposed to
2389
* base_oid and base_oloc), since tiering isn't taken into account.
2390
*/
2391
void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2392
const struct ceph_object_id *oid,
2393
const struct ceph_object_locator *oloc,
2394
struct ceph_pg *raw_pgid)
2395
{
2396
WARN_ON(pi->id != oloc->pool);
2397
2398
if (!oloc->pool_ns) {
2399
raw_pgid->pool = oloc->pool;
2400
raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2401
oid->name_len);
2402
dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2403
raw_pgid->pool, raw_pgid->seed);
2404
} else {
2405
char stack_buf[256];
2406
char *buf = stack_buf;
2407
int nsl = oloc->pool_ns->len;
2408
size_t total = nsl + 1 + oid->name_len;
2409
2410
if (total > sizeof(stack_buf))
2411
buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2412
memcpy(buf, oloc->pool_ns->str, nsl);
2413
buf[nsl] = '\037';
2414
memcpy(buf + nsl + 1, oid->name, oid->name_len);
2415
raw_pgid->pool = oloc->pool;
2416
raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2417
if (buf != stack_buf)
2418
kfree(buf);
2419
dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2420
oid->name, nsl, oloc->pool_ns->str,
2421
raw_pgid->pool, raw_pgid->seed);
2422
}
2423
}
2424
2425
int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2426
const struct ceph_object_id *oid,
2427
const struct ceph_object_locator *oloc,
2428
struct ceph_pg *raw_pgid)
2429
{
2430
struct ceph_pg_pool_info *pi;
2431
2432
pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2433
if (!pi)
2434
return -ENOENT;
2435
2436
__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2437
return 0;
2438
}
2439
EXPORT_SYMBOL(ceph_object_locator_to_pg);
2440
2441
/*
2442
* Map a raw PG (full precision ps) into an actual PG.
2443
*/
2444
static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2445
const struct ceph_pg *raw_pgid,
2446
struct ceph_pg *pgid)
2447
{
2448
pgid->pool = raw_pgid->pool;
2449
pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2450
pi->pg_num_mask);
2451
}
2452
2453
/*
2454
* Map a raw PG (full precision ps) into a placement ps (placement
2455
* seed). Include pool id in that value so that different pools don't
2456
* use the same seeds.
2457
*/
2458
static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2459
const struct ceph_pg *raw_pgid)
2460
{
2461
if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2462
/* hash pool id and seed so that pool PGs do not overlap */
2463
return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2464
ceph_stable_mod(raw_pgid->seed,
2465
pi->pgp_num,
2466
pi->pgp_num_mask),
2467
raw_pgid->pool);
2468
} else {
2469
/*
2470
* legacy behavior: add ps and pool together. this is
2471
* not a great approach because the PGs from each pool
2472
* will overlap on top of each other: 0.5 == 1.4 ==
2473
* 2.3 == ...
2474
*/
2475
return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2476
pi->pgp_num_mask) +
2477
(unsigned)raw_pgid->pool;
2478
}
2479
}
2480
2481
/*
2482
* Magic value used for a "default" fallback choose_args, used if the
2483
* crush_choose_arg_map passed to do_crush() does not exist. If this
2484
* also doesn't exist, fall back to canonical weights.
2485
*/
2486
#define CEPH_DEFAULT_CHOOSE_ARGS -1
2487
2488
static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2489
int *result, int result_max,
2490
const __u32 *weight, int weight_max,
2491
s64 choose_args_index)
2492
{
2493
struct crush_choose_arg_map *arg_map;
2494
struct crush_work *work;
2495
int r;
2496
2497
BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2498
2499
arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2500
choose_args_index);
2501
if (!arg_map)
2502
arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2503
CEPH_DEFAULT_CHOOSE_ARGS);
2504
2505
work = get_workspace(&map->crush_wsm, map->crush);
2506
r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2507
weight, weight_max, work,
2508
arg_map ? arg_map->args : NULL);
2509
put_workspace(&map->crush_wsm, work);
2510
return r;
2511
}
2512
2513
static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2514
struct ceph_pg_pool_info *pi,
2515
struct ceph_osds *set)
2516
{
2517
int i;
2518
2519
if (ceph_can_shift_osds(pi)) {
2520
int removed = 0;
2521
2522
/* shift left */
2523
for (i = 0; i < set->size; i++) {
2524
if (!ceph_osd_exists(osdmap, set->osds[i])) {
2525
removed++;
2526
continue;
2527
}
2528
if (removed)
2529
set->osds[i - removed] = set->osds[i];
2530
}
2531
set->size -= removed;
2532
} else {
2533
/* set dne devices to NONE */
2534
for (i = 0; i < set->size; i++) {
2535
if (!ceph_osd_exists(osdmap, set->osds[i]))
2536
set->osds[i] = CRUSH_ITEM_NONE;
2537
}
2538
}
2539
}
2540
2541
/*
2542
* Calculate raw set (CRUSH output) for given PG and filter out
2543
* nonexistent OSDs. ->primary is undefined for a raw set.
2544
*
2545
* Placement seed (CRUSH input) is returned through @ppps.
2546
*/
2547
static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2548
struct ceph_pg_pool_info *pi,
2549
const struct ceph_pg *raw_pgid,
2550
struct ceph_osds *raw,
2551
u32 *ppps)
2552
{
2553
u32 pps = raw_pg_to_pps(pi, raw_pgid);
2554
int ruleno;
2555
int len;
2556
2557
ceph_osds_init(raw);
2558
if (ppps)
2559
*ppps = pps;
2560
2561
ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2562
pi->size);
2563
if (ruleno < 0) {
2564
pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2565
pi->id, pi->crush_ruleset, pi->type, pi->size);
2566
return;
2567
}
2568
2569
if (pi->size > ARRAY_SIZE(raw->osds)) {
2570
pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2571
pi->id, pi->crush_ruleset, pi->type, pi->size,
2572
ARRAY_SIZE(raw->osds));
2573
return;
2574
}
2575
2576
len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2577
osdmap->osd_weight, osdmap->max_osd, pi->id);
2578
if (len < 0) {
2579
pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2580
len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2581
pi->size);
2582
return;
2583
}
2584
2585
raw->size = len;
2586
remove_nonexistent_osds(osdmap, pi, raw);
2587
}
2588
2589
/* apply pg_upmap[_items] mappings */
2590
static void apply_upmap(struct ceph_osdmap *osdmap,
2591
const struct ceph_pg *pgid,
2592
struct ceph_osds *raw)
2593
{
2594
struct ceph_pg_mapping *pg;
2595
int i, j;
2596
2597
pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2598
if (pg) {
2599
/* make sure targets aren't marked out */
2600
for (i = 0; i < pg->pg_upmap.len; i++) {
2601
int osd = pg->pg_upmap.osds[i];
2602
2603
if (osd != CRUSH_ITEM_NONE &&
2604
osd < osdmap->max_osd &&
2605
osdmap->osd_weight[osd] == 0) {
2606
/* reject/ignore explicit mapping */
2607
return;
2608
}
2609
}
2610
for (i = 0; i < pg->pg_upmap.len; i++)
2611
raw->osds[i] = pg->pg_upmap.osds[i];
2612
raw->size = pg->pg_upmap.len;
2613
/* check and apply pg_upmap_items, if any */
2614
}
2615
2616
pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2617
if (pg) {
2618
/*
2619
* Note: this approach does not allow a bidirectional swap,
2620
* e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2621
*/
2622
for (i = 0; i < pg->pg_upmap_items.len; i++) {
2623
int from = pg->pg_upmap_items.from_to[i][0];
2624
int to = pg->pg_upmap_items.from_to[i][1];
2625
int pos = -1;
2626
bool exists = false;
2627
2628
/* make sure replacement doesn't already appear */
2629
for (j = 0; j < raw->size; j++) {
2630
int osd = raw->osds[j];
2631
2632
if (osd == to) {
2633
exists = true;
2634
break;
2635
}
2636
/* ignore mapping if target is marked out */
2637
if (osd == from && pos < 0 &&
2638
!(to != CRUSH_ITEM_NONE &&
2639
to < osdmap->max_osd &&
2640
osdmap->osd_weight[to] == 0)) {
2641
pos = j;
2642
}
2643
}
2644
if (!exists && pos >= 0)
2645
raw->osds[pos] = to;
2646
}
2647
}
2648
}
2649
2650
/*
2651
* Given raw set, calculate up set and up primary. By definition of an
2652
* up set, the result won't contain nonexistent or down OSDs.
2653
*
2654
* This is done in-place - on return @set is the up set. If it's
2655
* empty, ->primary will remain undefined.
2656
*/
2657
static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2658
struct ceph_pg_pool_info *pi,
2659
struct ceph_osds *set)
2660
{
2661
int i;
2662
2663
/* ->primary is undefined for a raw set */
2664
BUG_ON(set->primary != -1);
2665
2666
if (ceph_can_shift_osds(pi)) {
2667
int removed = 0;
2668
2669
/* shift left */
2670
for (i = 0; i < set->size; i++) {
2671
if (ceph_osd_is_down(osdmap, set->osds[i])) {
2672
removed++;
2673
continue;
2674
}
2675
if (removed)
2676
set->osds[i - removed] = set->osds[i];
2677
}
2678
set->size -= removed;
2679
if (set->size > 0)
2680
set->primary = set->osds[0];
2681
} else {
2682
/* set down/dne devices to NONE */
2683
for (i = set->size - 1; i >= 0; i--) {
2684
if (ceph_osd_is_down(osdmap, set->osds[i]))
2685
set->osds[i] = CRUSH_ITEM_NONE;
2686
else
2687
set->primary = set->osds[i];
2688
}
2689
}
2690
}
2691
2692
static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2693
struct ceph_pg_pool_info *pi,
2694
u32 pps,
2695
struct ceph_osds *up)
2696
{
2697
int i;
2698
int pos = -1;
2699
2700
/*
2701
* Do we have any non-default primary_affinity values for these
2702
* osds?
2703
*/
2704
if (!osdmap->osd_primary_affinity)
2705
return;
2706
2707
for (i = 0; i < up->size; i++) {
2708
int osd = up->osds[i];
2709
2710
if (osd != CRUSH_ITEM_NONE &&
2711
osdmap->osd_primary_affinity[osd] !=
2712
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2713
break;
2714
}
2715
}
2716
if (i == up->size)
2717
return;
2718
2719
/*
2720
* Pick the primary. Feed both the seed (for the pg) and the
2721
* osd into the hash/rng so that a proportional fraction of an
2722
* osd's pgs get rejected as primary.
2723
*/
2724
for (i = 0; i < up->size; i++) {
2725
int osd = up->osds[i];
2726
u32 aff;
2727
2728
if (osd == CRUSH_ITEM_NONE)
2729
continue;
2730
2731
aff = osdmap->osd_primary_affinity[osd];
2732
if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2733
(crush_hash32_2(CRUSH_HASH_RJENKINS1,
2734
pps, osd) >> 16) >= aff) {
2735
/*
2736
* We chose not to use this primary. Note it
2737
* anyway as a fallback in case we don't pick
2738
* anyone else, but keep looking.
2739
*/
2740
if (pos < 0)
2741
pos = i;
2742
} else {
2743
pos = i;
2744
break;
2745
}
2746
}
2747
if (pos < 0)
2748
return;
2749
2750
up->primary = up->osds[pos];
2751
2752
if (ceph_can_shift_osds(pi) && pos > 0) {
2753
/* move the new primary to the front */
2754
for (i = pos; i > 0; i--)
2755
up->osds[i] = up->osds[i - 1];
2756
up->osds[0] = up->primary;
2757
}
2758
}
2759
2760
/*
2761
* Get pg_temp and primary_temp mappings for given PG.
2762
*
2763
* Note that a PG may have none, only pg_temp, only primary_temp or
2764
* both pg_temp and primary_temp mappings. This means @temp isn't
2765
* always a valid OSD set on return: in the "only primary_temp" case,
2766
* @temp will have its ->primary >= 0 but ->size == 0.
2767
*/
2768
static void get_temp_osds(struct ceph_osdmap *osdmap,
2769
struct ceph_pg_pool_info *pi,
2770
const struct ceph_pg *pgid,
2771
struct ceph_osds *temp)
2772
{
2773
struct ceph_pg_mapping *pg;
2774
int i;
2775
2776
ceph_osds_init(temp);
2777
2778
/* pg_temp? */
2779
pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2780
if (pg) {
2781
for (i = 0; i < pg->pg_temp.len; i++) {
2782
if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2783
if (ceph_can_shift_osds(pi))
2784
continue;
2785
2786
temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2787
} else {
2788
temp->osds[temp->size++] = pg->pg_temp.osds[i];
2789
}
2790
}
2791
2792
/* apply pg_temp's primary */
2793
for (i = 0; i < temp->size; i++) {
2794
if (temp->osds[i] != CRUSH_ITEM_NONE) {
2795
temp->primary = temp->osds[i];
2796
break;
2797
}
2798
}
2799
}
2800
2801
/* primary_temp? */
2802
pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2803
if (pg)
2804
temp->primary = pg->primary_temp.osd;
2805
}
2806
2807
/*
2808
* Map a PG to its acting set as well as its up set.
2809
*
2810
* Acting set is used for data mapping purposes, while up set can be
2811
* recorded for detecting interval changes and deciding whether to
2812
* resend a request.
2813
*/
2814
void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2815
struct ceph_pg_pool_info *pi,
2816
const struct ceph_pg *raw_pgid,
2817
struct ceph_osds *up,
2818
struct ceph_osds *acting)
2819
{
2820
struct ceph_pg pgid;
2821
u32 pps;
2822
2823
WARN_ON(pi->id != raw_pgid->pool);
2824
raw_pg_to_pg(pi, raw_pgid, &pgid);
2825
2826
pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2827
apply_upmap(osdmap, &pgid, up);
2828
raw_to_up_osds(osdmap, pi, up);
2829
apply_primary_affinity(osdmap, pi, pps, up);
2830
get_temp_osds(osdmap, pi, &pgid, acting);
2831
if (!acting->size) {
2832
memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2833
acting->size = up->size;
2834
if (acting->primary == -1)
2835
acting->primary = up->primary;
2836
}
2837
WARN_ON(!osds_valid(up) || !osds_valid(acting));
2838
}
2839
2840
bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2841
struct ceph_pg_pool_info *pi,
2842
const struct ceph_pg *raw_pgid,
2843
struct ceph_spg *spgid)
2844
{
2845
struct ceph_pg pgid;
2846
struct ceph_osds up, acting;
2847
int i;
2848
2849
WARN_ON(pi->id != raw_pgid->pool);
2850
raw_pg_to_pg(pi, raw_pgid, &pgid);
2851
2852
if (ceph_can_shift_osds(pi)) {
2853
spgid->pgid = pgid; /* struct */
2854
spgid->shard = CEPH_SPG_NOSHARD;
2855
return true;
2856
}
2857
2858
ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2859
for (i = 0; i < acting.size; i++) {
2860
if (acting.osds[i] == acting.primary) {
2861
spgid->pgid = pgid; /* struct */
2862
spgid->shard = i;
2863
return true;
2864
}
2865
}
2866
2867
return false;
2868
}
2869
2870
/*
2871
* Return acting primary for given PG, or -1 if none.
2872
*/
2873
int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2874
const struct ceph_pg *raw_pgid)
2875
{
2876
struct ceph_pg_pool_info *pi;
2877
struct ceph_osds up, acting;
2878
2879
pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2880
if (!pi)
2881
return -1;
2882
2883
ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2884
return acting.primary;
2885
}
2886
EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2887
2888
static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2889
size_t name_len)
2890
{
2891
struct crush_loc_node *loc;
2892
2893
loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2894
if (!loc)
2895
return NULL;
2896
2897
RB_CLEAR_NODE(&loc->cl_node);
2898
return loc;
2899
}
2900
2901
static void free_crush_loc(struct crush_loc_node *loc)
2902
{
2903
WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2904
2905
kfree(loc);
2906
}
2907
2908
static int crush_loc_compare(const struct crush_loc *loc1,
2909
const struct crush_loc *loc2)
2910
{
2911
return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2912
strcmp(loc1->cl_name, loc2->cl_name);
2913
}
2914
2915
DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2916
RB_BYPTR, const struct crush_loc *, cl_node)
2917
2918
/*
2919
* Parses a set of <bucket type name>':'<bucket name> pairs separated
2920
* by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2921
*
2922
* Note that @crush_location is modified by strsep().
2923
*/
2924
int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2925
{
2926
struct crush_loc_node *loc;
2927
const char *type_name, *name, *colon;
2928
size_t type_name_len, name_len;
2929
2930
dout("%s '%s'\n", __func__, crush_location);
2931
while ((type_name = strsep(&crush_location, "|"))) {
2932
colon = strchr(type_name, ':');
2933
if (!colon)
2934
return -EINVAL;
2935
2936
type_name_len = colon - type_name;
2937
if (type_name_len == 0)
2938
return -EINVAL;
2939
2940
name = colon + 1;
2941
name_len = strlen(name);
2942
if (name_len == 0)
2943
return -EINVAL;
2944
2945
loc = alloc_crush_loc(type_name_len, name_len);
2946
if (!loc)
2947
return -ENOMEM;
2948
2949
loc->cl_loc.cl_type_name = loc->cl_data;
2950
memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2951
loc->cl_loc.cl_type_name[type_name_len] = '\0';
2952
2953
loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2954
memcpy(loc->cl_loc.cl_name, name, name_len);
2955
loc->cl_loc.cl_name[name_len] = '\0';
2956
2957
if (!__insert_crush_loc(locs, loc)) {
2958
free_crush_loc(loc);
2959
return -EEXIST;
2960
}
2961
2962
dout("%s type_name '%s' name '%s'\n", __func__,
2963
loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2964
}
2965
2966
return 0;
2967
}
2968
2969
int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2970
{
2971
struct rb_node *n1 = rb_first(locs1);
2972
struct rb_node *n2 = rb_first(locs2);
2973
int ret;
2974
2975
for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2976
struct crush_loc_node *loc1 =
2977
rb_entry(n1, struct crush_loc_node, cl_node);
2978
struct crush_loc_node *loc2 =
2979
rb_entry(n2, struct crush_loc_node, cl_node);
2980
2981
ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2982
if (ret)
2983
return ret;
2984
}
2985
2986
if (!n1 && n2)
2987
return -1;
2988
if (n1 && !n2)
2989
return 1;
2990
return 0;
2991
}
2992
2993
void ceph_clear_crush_locs(struct rb_root *locs)
2994
{
2995
while (!RB_EMPTY_ROOT(locs)) {
2996
struct crush_loc_node *loc =
2997
rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
2998
2999
erase_crush_loc(locs, loc);
3000
free_crush_loc(loc);
3001
}
3002
}
3003
3004
/*
3005
* [a-zA-Z0-9-_.]+
3006
*/
3007
static bool is_valid_crush_name(const char *name)
3008
{
3009
do {
3010
if (!('a' <= *name && *name <= 'z') &&
3011
!('A' <= *name && *name <= 'Z') &&
3012
!('0' <= *name && *name <= '9') &&
3013
*name != '-' && *name != '_' && *name != '.')
3014
return false;
3015
} while (*++name != '\0');
3016
3017
return true;
3018
}
3019
3020
/*
3021
* Gets the parent of an item. Returns its id (<0 because the
3022
* parent is always a bucket), type id (>0 for the same reason,
3023
* via @parent_type_id) and location (via @parent_loc). If no
3024
* parent, returns 0.
3025
*
3026
* Does a linear search, as there are no parent pointers of any
3027
* kind. Note that the result is ambiguous for items that occur
3028
* multiple times in the map.
3029
*/
3030
static int get_immediate_parent(struct crush_map *c, int id,
3031
u16 *parent_type_id,
3032
struct crush_loc *parent_loc)
3033
{
3034
struct crush_bucket *b;
3035
struct crush_name_node *type_cn, *cn;
3036
int i, j;
3037
3038
for (i = 0; i < c->max_buckets; i++) {
3039
b = c->buckets[i];
3040
if (!b)
3041
continue;
3042
3043
/* ignore per-class shadow hierarchy */
3044
cn = lookup_crush_name(&c->names, b->id);
3045
if (!cn || !is_valid_crush_name(cn->cn_name))
3046
continue;
3047
3048
for (j = 0; j < b->size; j++) {
3049
if (b->items[j] != id)
3050
continue;
3051
3052
*parent_type_id = b->type;
3053
type_cn = lookup_crush_name(&c->type_names, b->type);
3054
parent_loc->cl_type_name = type_cn->cn_name;
3055
parent_loc->cl_name = cn->cn_name;
3056
return b->id;
3057
}
3058
}
3059
3060
return 0; /* no parent */
3061
}
3062
3063
/*
3064
* Calculates the locality/distance from an item to a client
3065
* location expressed in terms of CRUSH hierarchy as a set of
3066
* (bucket type name, bucket name) pairs. Specifically, looks
3067
* for the lowest-valued bucket type for which the location of
3068
* @id matches one of the locations in @locs, so for standard
3069
* bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3070
* a matching host is closer than a matching rack and a matching
3071
* data center is closer than a matching zone.
3072
*
3073
* Specifying multiple locations (a "multipath" location) such
3074
* as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3075
* is a multimap. The locality will be:
3076
*
3077
* - 3 for OSDs in racks foo1 and foo2
3078
* - 8 for OSDs in data center bar
3079
* - -1 for all other OSDs
3080
*
3081
* The lowest possible bucket type is 1, so the best locality
3082
* for an OSD is 1 (i.e. a matching host). Locality 0 would be
3083
* the OSD itself.
3084
*/
3085
int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3086
struct rb_root *locs)
3087
{
3088
struct crush_loc loc;
3089
u16 type_id;
3090
3091
/*
3092
* Instead of repeated get_immediate_parent() calls,
3093
* the location of @id could be obtained with a single
3094
* depth-first traversal.
3095
*/
3096
for (;;) {
3097
id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3098
if (id >= 0)
3099
return -1; /* not local */
3100
3101
if (lookup_crush_loc(locs, &loc))
3102
return type_id;
3103
}
3104
}
3105
3106