Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ceph/osdmap.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include <linux/ceph/ceph_debug.h>
4
5
#include <linux/module.h>
6
#include <linux/slab.h>
7
8
#include <linux/ceph/libceph.h>
9
#include <linux/ceph/osdmap.h>
10
#include <linux/ceph/decode.h>
11
#include <linux/crush/hash.h>
12
#include <linux/crush/mapper.h>
13
14
static __printf(2, 3)
15
void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
16
{
17
struct va_format vaf;
18
va_list args;
19
20
va_start(args, fmt);
21
vaf.fmt = fmt;
22
vaf.va = &args;
23
24
printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
25
map->epoch, &vaf);
26
27
va_end(args);
28
}
29
30
char *ceph_osdmap_state_str(char *str, int len, u32 state)
31
{
32
if (!len)
33
return str;
34
35
if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36
snprintf(str, len, "exists, up");
37
else if (state & CEPH_OSD_EXISTS)
38
snprintf(str, len, "exists");
39
else if (state & CEPH_OSD_UP)
40
snprintf(str, len, "up");
41
else
42
snprintf(str, len, "doesn't exist");
43
44
return str;
45
}
46
47
/* maps */
48
49
static int calc_bits_of(unsigned int t)
50
{
51
int b = 0;
52
while (t) {
53
t = t >> 1;
54
b++;
55
}
56
return b;
57
}
58
59
/*
60
* the foo_mask is the smallest value 2^n-1 that is >= foo.
61
*/
62
static void calc_pg_masks(struct ceph_pg_pool_info *pi)
63
{
64
pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
65
pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
66
}
67
68
/*
69
* decode crush map
70
*/
71
static int crush_decode_uniform_bucket(void **p, void *end,
72
struct crush_bucket_uniform *b)
73
{
74
dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75
ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76
b->item_weight = ceph_decode_32(p);
77
return 0;
78
bad:
79
return -EINVAL;
80
}
81
82
static int crush_decode_list_bucket(void **p, void *end,
83
struct crush_bucket_list *b)
84
{
85
int j;
86
dout("crush_decode_list_bucket %p to %p\n", *p, end);
87
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
88
if (b->item_weights == NULL)
89
return -ENOMEM;
90
b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
91
if (b->sum_weights == NULL)
92
return -ENOMEM;
93
ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94
for (j = 0; j < b->h.size; j++) {
95
b->item_weights[j] = ceph_decode_32(p);
96
b->sum_weights[j] = ceph_decode_32(p);
97
}
98
return 0;
99
bad:
100
return -EINVAL;
101
}
102
103
static int crush_decode_tree_bucket(void **p, void *end,
104
struct crush_bucket_tree *b)
105
{
106
int j;
107
dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108
ceph_decode_8_safe(p, end, b->num_nodes, bad);
109
b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
110
if (b->node_weights == NULL)
111
return -ENOMEM;
112
ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113
for (j = 0; j < b->num_nodes; j++)
114
b->node_weights[j] = ceph_decode_32(p);
115
return 0;
116
bad:
117
return -EINVAL;
118
}
119
120
static int crush_decode_straw_bucket(void **p, void *end,
121
struct crush_bucket_straw *b)
122
{
123
int j;
124
dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
126
if (b->item_weights == NULL)
127
return -ENOMEM;
128
b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
129
if (b->straws == NULL)
130
return -ENOMEM;
131
ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132
for (j = 0; j < b->h.size; j++) {
133
b->item_weights[j] = ceph_decode_32(p);
134
b->straws[j] = ceph_decode_32(p);
135
}
136
return 0;
137
bad:
138
return -EINVAL;
139
}
140
141
static int crush_decode_straw2_bucket(void **p, void *end,
142
struct crush_bucket_straw2 *b)
143
{
144
int j;
145
dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
147
if (b->item_weights == NULL)
148
return -ENOMEM;
149
ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150
for (j = 0; j < b->h.size; j++)
151
b->item_weights[j] = ceph_decode_32(p);
152
return 0;
153
bad:
154
return -EINVAL;
155
}
156
157
struct crush_name_node {
158
struct rb_node cn_node;
159
int cn_id;
160
char cn_name[];
161
};
162
163
static struct crush_name_node *alloc_crush_name(size_t name_len)
164
{
165
struct crush_name_node *cn;
166
167
cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
168
if (!cn)
169
return NULL;
170
171
RB_CLEAR_NODE(&cn->cn_node);
172
return cn;
173
}
174
175
static void free_crush_name(struct crush_name_node *cn)
176
{
177
WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
178
179
kfree(cn);
180
}
181
182
DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
183
184
static int decode_crush_names(void **p, void *end, struct rb_root *root)
185
{
186
u32 n;
187
188
ceph_decode_32_safe(p, end, n, e_inval);
189
while (n--) {
190
struct crush_name_node *cn;
191
int id;
192
u32 name_len;
193
194
ceph_decode_32_safe(p, end, id, e_inval);
195
ceph_decode_32_safe(p, end, name_len, e_inval);
196
ceph_decode_need(p, end, name_len, e_inval);
197
198
cn = alloc_crush_name(name_len);
199
if (!cn)
200
return -ENOMEM;
201
202
cn->cn_id = id;
203
memcpy(cn->cn_name, *p, name_len);
204
cn->cn_name[name_len] = '\0';
205
*p += name_len;
206
207
if (!__insert_crush_name(root, cn)) {
208
free_crush_name(cn);
209
return -EEXIST;
210
}
211
}
212
213
return 0;
214
215
e_inval:
216
return -EINVAL;
217
}
218
219
void clear_crush_names(struct rb_root *root)
220
{
221
while (!RB_EMPTY_ROOT(root)) {
222
struct crush_name_node *cn =
223
rb_entry(rb_first(root), struct crush_name_node, cn_node);
224
225
erase_crush_name(root, cn);
226
free_crush_name(cn);
227
}
228
}
229
230
static struct crush_choose_arg_map *alloc_choose_arg_map(void)
231
{
232
struct crush_choose_arg_map *arg_map;
233
234
arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
235
if (!arg_map)
236
return NULL;
237
238
RB_CLEAR_NODE(&arg_map->node);
239
return arg_map;
240
}
241
242
static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
243
{
244
if (arg_map) {
245
int i, j;
246
247
WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
248
249
for (i = 0; i < arg_map->size; i++) {
250
struct crush_choose_arg *arg = &arg_map->args[i];
251
252
for (j = 0; j < arg->weight_set_size; j++)
253
kfree(arg->weight_set[j].weights);
254
kfree(arg->weight_set);
255
kfree(arg->ids);
256
}
257
kfree(arg_map->args);
258
kfree(arg_map);
259
}
260
}
261
262
DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
263
node);
264
265
void clear_choose_args(struct crush_map *c)
266
{
267
while (!RB_EMPTY_ROOT(&c->choose_args)) {
268
struct crush_choose_arg_map *arg_map =
269
rb_entry(rb_first(&c->choose_args),
270
struct crush_choose_arg_map, node);
271
272
erase_choose_arg_map(&c->choose_args, arg_map);
273
free_choose_arg_map(arg_map);
274
}
275
}
276
277
static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
278
{
279
u32 *a = NULL;
280
u32 len;
281
int ret;
282
283
ceph_decode_32_safe(p, end, len, e_inval);
284
if (len) {
285
u32 i;
286
287
a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
288
if (!a) {
289
ret = -ENOMEM;
290
goto fail;
291
}
292
293
ceph_decode_need(p, end, len * sizeof(u32), e_inval);
294
for (i = 0; i < len; i++)
295
a[i] = ceph_decode_32(p);
296
}
297
298
*plen = len;
299
return a;
300
301
e_inval:
302
ret = -EINVAL;
303
fail:
304
kfree(a);
305
return ERR_PTR(ret);
306
}
307
308
/*
309
* Assumes @arg is zero-initialized.
310
*/
311
static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
312
{
313
int ret;
314
315
ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
316
if (arg->weight_set_size) {
317
u32 i;
318
319
arg->weight_set = kmalloc_array(arg->weight_set_size,
320
sizeof(*arg->weight_set),
321
GFP_NOIO);
322
if (!arg->weight_set)
323
return -ENOMEM;
324
325
for (i = 0; i < arg->weight_set_size; i++) {
326
struct crush_weight_set *w = &arg->weight_set[i];
327
328
w->weights = decode_array_32_alloc(p, end, &w->size);
329
if (IS_ERR(w->weights)) {
330
ret = PTR_ERR(w->weights);
331
w->weights = NULL;
332
return ret;
333
}
334
}
335
}
336
337
arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
338
if (IS_ERR(arg->ids)) {
339
ret = PTR_ERR(arg->ids);
340
arg->ids = NULL;
341
return ret;
342
}
343
344
return 0;
345
346
e_inval:
347
return -EINVAL;
348
}
349
350
static int decode_choose_args(void **p, void *end, struct crush_map *c)
351
{
352
struct crush_choose_arg_map *arg_map = NULL;
353
u32 num_choose_arg_maps, num_buckets;
354
int ret;
355
356
ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
357
while (num_choose_arg_maps--) {
358
arg_map = alloc_choose_arg_map();
359
if (!arg_map) {
360
ret = -ENOMEM;
361
goto fail;
362
}
363
364
ceph_decode_64_safe(p, end, arg_map->choose_args_index,
365
e_inval);
366
arg_map->size = c->max_buckets;
367
arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
368
GFP_NOIO);
369
if (!arg_map->args) {
370
ret = -ENOMEM;
371
goto fail;
372
}
373
374
ceph_decode_32_safe(p, end, num_buckets, e_inval);
375
while (num_buckets--) {
376
struct crush_choose_arg *arg;
377
u32 bucket_index;
378
379
ceph_decode_32_safe(p, end, bucket_index, e_inval);
380
if (bucket_index >= arg_map->size)
381
goto e_inval;
382
383
arg = &arg_map->args[bucket_index];
384
ret = decode_choose_arg(p, end, arg);
385
if (ret)
386
goto fail;
387
388
if (arg->ids_size &&
389
arg->ids_size != c->buckets[bucket_index]->size)
390
goto e_inval;
391
}
392
393
insert_choose_arg_map(&c->choose_args, arg_map);
394
}
395
396
return 0;
397
398
e_inval:
399
ret = -EINVAL;
400
fail:
401
free_choose_arg_map(arg_map);
402
return ret;
403
}
404
405
static void crush_finalize(struct crush_map *c)
406
{
407
__s32 b;
408
409
/* Space for the array of pointers to per-bucket workspace */
410
c->working_size = sizeof(struct crush_work) +
411
c->max_buckets * sizeof(struct crush_work_bucket *);
412
413
for (b = 0; b < c->max_buckets; b++) {
414
if (!c->buckets[b])
415
continue;
416
417
switch (c->buckets[b]->alg) {
418
default:
419
/*
420
* The base case, permutation variables and
421
* the pointer to the permutation array.
422
*/
423
c->working_size += sizeof(struct crush_work_bucket);
424
break;
425
}
426
/* Every bucket has a permutation array. */
427
c->working_size += c->buckets[b]->size * sizeof(__u32);
428
}
429
}
430
431
static struct crush_map *crush_decode(void *pbyval, void *end)
432
{
433
struct crush_map *c;
434
int err;
435
int i, j;
436
void **p = &pbyval;
437
void *start = pbyval;
438
u32 magic;
439
440
dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
441
442
c = kzalloc(sizeof(*c), GFP_NOFS);
443
if (c == NULL)
444
return ERR_PTR(-ENOMEM);
445
446
c->type_names = RB_ROOT;
447
c->names = RB_ROOT;
448
c->choose_args = RB_ROOT;
449
450
/* set tunables to default values */
451
c->choose_local_tries = 2;
452
c->choose_local_fallback_tries = 5;
453
c->choose_total_tries = 19;
454
c->chooseleaf_descend_once = 0;
455
456
ceph_decode_need(p, end, 4*sizeof(u32), bad);
457
magic = ceph_decode_32(p);
458
if (magic != CRUSH_MAGIC) {
459
pr_err("crush_decode magic %x != current %x\n",
460
(unsigned int)magic, (unsigned int)CRUSH_MAGIC);
461
goto bad;
462
}
463
c->max_buckets = ceph_decode_32(p);
464
c->max_rules = ceph_decode_32(p);
465
c->max_devices = ceph_decode_32(p);
466
467
c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
468
if (c->buckets == NULL)
469
goto badmem;
470
c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
471
if (c->rules == NULL)
472
goto badmem;
473
474
/* buckets */
475
for (i = 0; i < c->max_buckets; i++) {
476
int size = 0;
477
u32 alg;
478
struct crush_bucket *b;
479
480
ceph_decode_32_safe(p, end, alg, bad);
481
if (alg == 0) {
482
c->buckets[i] = NULL;
483
continue;
484
}
485
dout("crush_decode bucket %d off %x %p to %p\n",
486
i, (int)(*p-start), *p, end);
487
488
switch (alg) {
489
case CRUSH_BUCKET_UNIFORM:
490
size = sizeof(struct crush_bucket_uniform);
491
break;
492
case CRUSH_BUCKET_LIST:
493
size = sizeof(struct crush_bucket_list);
494
break;
495
case CRUSH_BUCKET_TREE:
496
size = sizeof(struct crush_bucket_tree);
497
break;
498
case CRUSH_BUCKET_STRAW:
499
size = sizeof(struct crush_bucket_straw);
500
break;
501
case CRUSH_BUCKET_STRAW2:
502
size = sizeof(struct crush_bucket_straw2);
503
break;
504
default:
505
goto bad;
506
}
507
BUG_ON(size == 0);
508
b = c->buckets[i] = kzalloc(size, GFP_NOFS);
509
if (b == NULL)
510
goto badmem;
511
512
ceph_decode_need(p, end, 4*sizeof(u32), bad);
513
b->id = ceph_decode_32(p);
514
b->type = ceph_decode_16(p);
515
b->alg = ceph_decode_8(p);
516
b->hash = ceph_decode_8(p);
517
b->weight = ceph_decode_32(p);
518
b->size = ceph_decode_32(p);
519
520
dout("crush_decode bucket size %d off %x %p to %p\n",
521
b->size, (int)(*p-start), *p, end);
522
523
b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
524
if (b->items == NULL)
525
goto badmem;
526
527
ceph_decode_need(p, end, b->size*sizeof(u32), bad);
528
for (j = 0; j < b->size; j++)
529
b->items[j] = ceph_decode_32(p);
530
531
switch (b->alg) {
532
case CRUSH_BUCKET_UNIFORM:
533
err = crush_decode_uniform_bucket(p, end,
534
(struct crush_bucket_uniform *)b);
535
if (err < 0)
536
goto fail;
537
break;
538
case CRUSH_BUCKET_LIST:
539
err = crush_decode_list_bucket(p, end,
540
(struct crush_bucket_list *)b);
541
if (err < 0)
542
goto fail;
543
break;
544
case CRUSH_BUCKET_TREE:
545
err = crush_decode_tree_bucket(p, end,
546
(struct crush_bucket_tree *)b);
547
if (err < 0)
548
goto fail;
549
break;
550
case CRUSH_BUCKET_STRAW:
551
err = crush_decode_straw_bucket(p, end,
552
(struct crush_bucket_straw *)b);
553
if (err < 0)
554
goto fail;
555
break;
556
case CRUSH_BUCKET_STRAW2:
557
err = crush_decode_straw2_bucket(p, end,
558
(struct crush_bucket_straw2 *)b);
559
if (err < 0)
560
goto fail;
561
break;
562
}
563
}
564
565
/* rules */
566
dout("rule vec is %p\n", c->rules);
567
for (i = 0; i < c->max_rules; i++) {
568
u32 yes;
569
struct crush_rule *r;
570
571
ceph_decode_32_safe(p, end, yes, bad);
572
if (!yes) {
573
dout("crush_decode NO rule %d off %x %p to %p\n",
574
i, (int)(*p-start), *p, end);
575
c->rules[i] = NULL;
576
continue;
577
}
578
579
dout("crush_decode rule %d off %x %p to %p\n",
580
i, (int)(*p-start), *p, end);
581
582
/* len */
583
ceph_decode_32_safe(p, end, yes, bad);
584
#if BITS_PER_LONG == 32
585
if (yes > (ULONG_MAX - sizeof(*r))
586
/ sizeof(struct crush_rule_step))
587
goto bad;
588
#endif
589
r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
590
if (r == NULL)
591
goto badmem;
592
dout(" rule %d is at %p\n", i, r);
593
c->rules[i] = r;
594
r->len = yes;
595
ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
596
ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
597
for (j = 0; j < r->len; j++) {
598
r->steps[j].op = ceph_decode_32(p);
599
r->steps[j].arg1 = ceph_decode_32(p);
600
r->steps[j].arg2 = ceph_decode_32(p);
601
}
602
}
603
604
err = decode_crush_names(p, end, &c->type_names);
605
if (err)
606
goto fail;
607
608
err = decode_crush_names(p, end, &c->names);
609
if (err)
610
goto fail;
611
612
ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
613
614
/* tunables */
615
ceph_decode_need(p, end, 3*sizeof(u32), done);
616
c->choose_local_tries = ceph_decode_32(p);
617
c->choose_local_fallback_tries = ceph_decode_32(p);
618
c->choose_total_tries = ceph_decode_32(p);
619
dout("crush decode tunable choose_local_tries = %d\n",
620
c->choose_local_tries);
621
dout("crush decode tunable choose_local_fallback_tries = %d\n",
622
c->choose_local_fallback_tries);
623
dout("crush decode tunable choose_total_tries = %d\n",
624
c->choose_total_tries);
625
626
ceph_decode_need(p, end, sizeof(u32), done);
627
c->chooseleaf_descend_once = ceph_decode_32(p);
628
dout("crush decode tunable chooseleaf_descend_once = %d\n",
629
c->chooseleaf_descend_once);
630
631
ceph_decode_need(p, end, sizeof(u8), done);
632
c->chooseleaf_vary_r = ceph_decode_8(p);
633
dout("crush decode tunable chooseleaf_vary_r = %d\n",
634
c->chooseleaf_vary_r);
635
636
/* skip straw_calc_version, allowed_bucket_algs */
637
ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
638
*p += sizeof(u8) + sizeof(u32);
639
640
ceph_decode_need(p, end, sizeof(u8), done);
641
c->chooseleaf_stable = ceph_decode_8(p);
642
dout("crush decode tunable chooseleaf_stable = %d\n",
643
c->chooseleaf_stable);
644
645
if (*p != end) {
646
/* class_map */
647
ceph_decode_skip_map(p, end, 32, 32, bad);
648
/* class_name */
649
ceph_decode_skip_map(p, end, 32, string, bad);
650
/* class_bucket */
651
ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
652
}
653
654
if (*p != end) {
655
err = decode_choose_args(p, end, c);
656
if (err)
657
goto fail;
658
}
659
660
done:
661
crush_finalize(c);
662
dout("crush_decode success\n");
663
return c;
664
665
badmem:
666
err = -ENOMEM;
667
fail:
668
dout("crush_decode fail %d\n", err);
669
crush_destroy(c);
670
return ERR_PTR(err);
671
672
bad:
673
err = -EINVAL;
674
goto fail;
675
}
676
677
int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
678
{
679
if (lhs->pool < rhs->pool)
680
return -1;
681
if (lhs->pool > rhs->pool)
682
return 1;
683
if (lhs->seed < rhs->seed)
684
return -1;
685
if (lhs->seed > rhs->seed)
686
return 1;
687
688
return 0;
689
}
690
691
int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
692
{
693
int ret;
694
695
ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
696
if (ret)
697
return ret;
698
699
if (lhs->shard < rhs->shard)
700
return -1;
701
if (lhs->shard > rhs->shard)
702
return 1;
703
704
return 0;
705
}
706
707
static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
708
{
709
struct ceph_pg_mapping *pg;
710
711
pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
712
if (!pg)
713
return NULL;
714
715
RB_CLEAR_NODE(&pg->node);
716
return pg;
717
}
718
719
static void free_pg_mapping(struct ceph_pg_mapping *pg)
720
{
721
WARN_ON(!RB_EMPTY_NODE(&pg->node));
722
723
kfree(pg);
724
}
725
726
/*
727
* rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
728
* to a set of osds) and primary_temp (explicit primary setting)
729
*/
730
DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
731
RB_BYPTR, const struct ceph_pg *, node)
732
733
/*
734
* rbtree of pg pool info
735
*/
736
DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
737
738
struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
739
{
740
return lookup_pg_pool(&map->pg_pools, id);
741
}
742
743
const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
744
{
745
struct ceph_pg_pool_info *pi;
746
747
if (id == CEPH_NOPOOL)
748
return NULL;
749
750
if (WARN_ON_ONCE(id > (u64) INT_MAX))
751
return NULL;
752
753
pi = lookup_pg_pool(&map->pg_pools, id);
754
return pi ? pi->name : NULL;
755
}
756
EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
757
758
int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
759
{
760
struct rb_node *rbp;
761
762
for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
763
struct ceph_pg_pool_info *pi =
764
rb_entry(rbp, struct ceph_pg_pool_info, node);
765
if (pi->name && strcmp(pi->name, name) == 0)
766
return pi->id;
767
}
768
return -ENOENT;
769
}
770
EXPORT_SYMBOL(ceph_pg_poolid_by_name);
771
772
u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
773
{
774
struct ceph_pg_pool_info *pi;
775
776
pi = lookup_pg_pool(&map->pg_pools, id);
777
return pi ? pi->flags : 0;
778
}
779
EXPORT_SYMBOL(ceph_pg_pool_flags);
780
781
static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
782
{
783
erase_pg_pool(root, pi);
784
kfree(pi->name);
785
kfree(pi);
786
}
787
788
static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
789
{
790
u8 ev, cv;
791
unsigned len, num;
792
void *pool_end;
793
794
ceph_decode_need(p, end, 2 + 4, bad);
795
ev = ceph_decode_8(p); /* encoding version */
796
cv = ceph_decode_8(p); /* compat version */
797
if (ev < 5) {
798
pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
799
return -EINVAL;
800
}
801
if (cv > 9) {
802
pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
803
return -EINVAL;
804
}
805
len = ceph_decode_32(p);
806
ceph_decode_need(p, end, len, bad);
807
pool_end = *p + len;
808
809
pi->type = ceph_decode_8(p);
810
pi->size = ceph_decode_8(p);
811
pi->crush_ruleset = ceph_decode_8(p);
812
pi->object_hash = ceph_decode_8(p);
813
814
pi->pg_num = ceph_decode_32(p);
815
pi->pgp_num = ceph_decode_32(p);
816
817
*p += 4 + 4; /* skip lpg* */
818
*p += 4; /* skip last_change */
819
*p += 8 + 4; /* skip snap_seq, snap_epoch */
820
821
/* skip snaps */
822
num = ceph_decode_32(p);
823
while (num--) {
824
*p += 8; /* snapid key */
825
*p += 1 + 1; /* versions */
826
len = ceph_decode_32(p);
827
*p += len;
828
}
829
830
/* skip removed_snaps */
831
num = ceph_decode_32(p);
832
*p += num * (8 + 8);
833
834
*p += 8; /* skip auid */
835
pi->flags = ceph_decode_64(p);
836
*p += 4; /* skip crash_replay_interval */
837
838
if (ev >= 7)
839
pi->min_size = ceph_decode_8(p);
840
else
841
pi->min_size = pi->size - pi->size / 2;
842
843
if (ev >= 8)
844
*p += 8 + 8; /* skip quota_max_* */
845
846
if (ev >= 9) {
847
/* skip tiers */
848
num = ceph_decode_32(p);
849
*p += num * 8;
850
851
*p += 8; /* skip tier_of */
852
*p += 1; /* skip cache_mode */
853
854
pi->read_tier = ceph_decode_64(p);
855
pi->write_tier = ceph_decode_64(p);
856
} else {
857
pi->read_tier = -1;
858
pi->write_tier = -1;
859
}
860
861
if (ev >= 10) {
862
/* skip properties */
863
num = ceph_decode_32(p);
864
while (num--) {
865
len = ceph_decode_32(p);
866
*p += len; /* key */
867
len = ceph_decode_32(p);
868
*p += len; /* val */
869
}
870
}
871
872
if (ev >= 11) {
873
/* skip hit_set_params */
874
*p += 1 + 1; /* versions */
875
len = ceph_decode_32(p);
876
*p += len;
877
878
*p += 4; /* skip hit_set_period */
879
*p += 4; /* skip hit_set_count */
880
}
881
882
if (ev >= 12)
883
*p += 4; /* skip stripe_width */
884
885
if (ev >= 13) {
886
*p += 8; /* skip target_max_bytes */
887
*p += 8; /* skip target_max_objects */
888
*p += 4; /* skip cache_target_dirty_ratio_micro */
889
*p += 4; /* skip cache_target_full_ratio_micro */
890
*p += 4; /* skip cache_min_flush_age */
891
*p += 4; /* skip cache_min_evict_age */
892
}
893
894
if (ev >= 14) {
895
/* skip erasure_code_profile */
896
len = ceph_decode_32(p);
897
*p += len;
898
}
899
900
/*
901
* last_force_op_resend_preluminous, will be overridden if the
902
* map was encoded with RESEND_ON_SPLIT
903
*/
904
if (ev >= 15)
905
pi->last_force_request_resend = ceph_decode_32(p);
906
else
907
pi->last_force_request_resend = 0;
908
909
if (ev >= 16)
910
*p += 4; /* skip min_read_recency_for_promote */
911
912
if (ev >= 17)
913
*p += 8; /* skip expected_num_objects */
914
915
if (ev >= 19)
916
*p += 4; /* skip cache_target_dirty_high_ratio_micro */
917
918
if (ev >= 20)
919
*p += 4; /* skip min_write_recency_for_promote */
920
921
if (ev >= 21)
922
*p += 1; /* skip use_gmt_hitset */
923
924
if (ev >= 22)
925
*p += 1; /* skip fast_read */
926
927
if (ev >= 23) {
928
*p += 4; /* skip hit_set_grade_decay_rate */
929
*p += 4; /* skip hit_set_search_last_n */
930
}
931
932
if (ev >= 24) {
933
/* skip opts */
934
*p += 1 + 1; /* versions */
935
len = ceph_decode_32(p);
936
*p += len;
937
}
938
939
if (ev >= 25)
940
pi->last_force_request_resend = ceph_decode_32(p);
941
942
/* ignore the rest */
943
944
*p = pool_end;
945
calc_pg_masks(pi);
946
return 0;
947
948
bad:
949
return -EINVAL;
950
}
951
952
static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
953
{
954
struct ceph_pg_pool_info *pi;
955
u32 num, len;
956
u64 pool;
957
958
ceph_decode_32_safe(p, end, num, bad);
959
dout(" %d pool names\n", num);
960
while (num--) {
961
ceph_decode_64_safe(p, end, pool, bad);
962
ceph_decode_32_safe(p, end, len, bad);
963
dout(" pool %llu len %d\n", pool, len);
964
ceph_decode_need(p, end, len, bad);
965
pi = lookup_pg_pool(&map->pg_pools, pool);
966
if (pi) {
967
char *name = kstrndup(*p, len, GFP_NOFS);
968
969
if (!name)
970
return -ENOMEM;
971
kfree(pi->name);
972
pi->name = name;
973
dout(" name is %s\n", pi->name);
974
}
975
*p += len;
976
}
977
return 0;
978
979
bad:
980
return -EINVAL;
981
}
982
983
/*
984
* CRUSH workspaces
985
*
986
* workspace_manager framework borrowed from fs/btrfs/compression.c.
987
* Two simplifications: there is only one type of workspace and there
988
* is always at least one workspace.
989
*/
990
static struct crush_work *alloc_workspace(const struct crush_map *c)
991
{
992
struct crush_work *work;
993
size_t work_size;
994
995
WARN_ON(!c->working_size);
996
work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
997
dout("%s work_size %zu bytes\n", __func__, work_size);
998
999
work = kvmalloc(work_size, GFP_NOIO);
1000
if (!work)
1001
return NULL;
1002
1003
INIT_LIST_HEAD(&work->item);
1004
crush_init_workspace(c, work);
1005
return work;
1006
}
1007
1008
static void free_workspace(struct crush_work *work)
1009
{
1010
WARN_ON(!list_empty(&work->item));
1011
kvfree(work);
1012
}
1013
1014
static void init_workspace_manager(struct workspace_manager *wsm)
1015
{
1016
INIT_LIST_HEAD(&wsm->idle_ws);
1017
spin_lock_init(&wsm->ws_lock);
1018
atomic_set(&wsm->total_ws, 0);
1019
wsm->free_ws = 0;
1020
init_waitqueue_head(&wsm->ws_wait);
1021
}
1022
1023
static void add_initial_workspace(struct workspace_manager *wsm,
1024
struct crush_work *work)
1025
{
1026
WARN_ON(!list_empty(&wsm->idle_ws));
1027
1028
list_add(&work->item, &wsm->idle_ws);
1029
atomic_set(&wsm->total_ws, 1);
1030
wsm->free_ws = 1;
1031
}
1032
1033
static void cleanup_workspace_manager(struct workspace_manager *wsm)
1034
{
1035
struct crush_work *work;
1036
1037
while (!list_empty(&wsm->idle_ws)) {
1038
work = list_first_entry(&wsm->idle_ws, struct crush_work,
1039
item);
1040
list_del_init(&work->item);
1041
free_workspace(work);
1042
}
1043
atomic_set(&wsm->total_ws, 0);
1044
wsm->free_ws = 0;
1045
}
1046
1047
/*
1048
* Finds an available workspace or allocates a new one. If it's not
1049
* possible to allocate a new one, waits until there is one.
1050
*/
1051
static struct crush_work *get_workspace(struct workspace_manager *wsm,
1052
const struct crush_map *c)
1053
{
1054
struct crush_work *work;
1055
int cpus = num_online_cpus();
1056
1057
again:
1058
spin_lock(&wsm->ws_lock);
1059
if (!list_empty(&wsm->idle_ws)) {
1060
work = list_first_entry(&wsm->idle_ws, struct crush_work,
1061
item);
1062
list_del_init(&work->item);
1063
wsm->free_ws--;
1064
spin_unlock(&wsm->ws_lock);
1065
return work;
1066
1067
}
1068
if (atomic_read(&wsm->total_ws) > cpus) {
1069
DEFINE_WAIT(wait);
1070
1071
spin_unlock(&wsm->ws_lock);
1072
prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1073
if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1074
schedule();
1075
finish_wait(&wsm->ws_wait, &wait);
1076
goto again;
1077
}
1078
atomic_inc(&wsm->total_ws);
1079
spin_unlock(&wsm->ws_lock);
1080
1081
work = alloc_workspace(c);
1082
if (!work) {
1083
atomic_dec(&wsm->total_ws);
1084
wake_up(&wsm->ws_wait);
1085
1086
/*
1087
* Do not return the error but go back to waiting. We
1088
* have the initial workspace and the CRUSH computation
1089
* time is bounded so we will get it eventually.
1090
*/
1091
WARN_ON(atomic_read(&wsm->total_ws) < 1);
1092
goto again;
1093
}
1094
return work;
1095
}
1096
1097
/*
1098
* Puts a workspace back on the list or frees it if we have enough
1099
* idle ones sitting around.
1100
*/
1101
static void put_workspace(struct workspace_manager *wsm,
1102
struct crush_work *work)
1103
{
1104
spin_lock(&wsm->ws_lock);
1105
if (wsm->free_ws <= num_online_cpus()) {
1106
list_add(&work->item, &wsm->idle_ws);
1107
wsm->free_ws++;
1108
spin_unlock(&wsm->ws_lock);
1109
goto wake;
1110
}
1111
spin_unlock(&wsm->ws_lock);
1112
1113
free_workspace(work);
1114
atomic_dec(&wsm->total_ws);
1115
wake:
1116
if (wq_has_sleeper(&wsm->ws_wait))
1117
wake_up(&wsm->ws_wait);
1118
}
1119
1120
/*
1121
* osd map
1122
*/
1123
struct ceph_osdmap *ceph_osdmap_alloc(void)
1124
{
1125
struct ceph_osdmap *map;
1126
1127
map = kzalloc(sizeof(*map), GFP_NOIO);
1128
if (!map)
1129
return NULL;
1130
1131
map->pg_pools = RB_ROOT;
1132
map->pool_max = -1;
1133
map->pg_temp = RB_ROOT;
1134
map->primary_temp = RB_ROOT;
1135
map->pg_upmap = RB_ROOT;
1136
map->pg_upmap_items = RB_ROOT;
1137
1138
init_workspace_manager(&map->crush_wsm);
1139
1140
return map;
1141
}
1142
1143
void ceph_osdmap_destroy(struct ceph_osdmap *map)
1144
{
1145
dout("osdmap_destroy %p\n", map);
1146
1147
if (map->crush)
1148
crush_destroy(map->crush);
1149
cleanup_workspace_manager(&map->crush_wsm);
1150
1151
while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1152
struct ceph_pg_mapping *pg =
1153
rb_entry(rb_first(&map->pg_temp),
1154
struct ceph_pg_mapping, node);
1155
erase_pg_mapping(&map->pg_temp, pg);
1156
free_pg_mapping(pg);
1157
}
1158
while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1159
struct ceph_pg_mapping *pg =
1160
rb_entry(rb_first(&map->primary_temp),
1161
struct ceph_pg_mapping, node);
1162
erase_pg_mapping(&map->primary_temp, pg);
1163
free_pg_mapping(pg);
1164
}
1165
while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1166
struct ceph_pg_mapping *pg =
1167
rb_entry(rb_first(&map->pg_upmap),
1168
struct ceph_pg_mapping, node);
1169
rb_erase(&pg->node, &map->pg_upmap);
1170
kfree(pg);
1171
}
1172
while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1173
struct ceph_pg_mapping *pg =
1174
rb_entry(rb_first(&map->pg_upmap_items),
1175
struct ceph_pg_mapping, node);
1176
rb_erase(&pg->node, &map->pg_upmap_items);
1177
kfree(pg);
1178
}
1179
while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1180
struct ceph_pg_pool_info *pi =
1181
rb_entry(rb_first(&map->pg_pools),
1182
struct ceph_pg_pool_info, node);
1183
__remove_pg_pool(&map->pg_pools, pi);
1184
}
1185
kvfree(map->osd_state);
1186
kvfree(map->osd_weight);
1187
kvfree(map->osd_addr);
1188
kvfree(map->osd_primary_affinity);
1189
kfree(map);
1190
}
1191
1192
/*
1193
* Adjust max_osd value, (re)allocate arrays.
1194
*
1195
* The new elements are properly initialized.
1196
*/
1197
static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1198
{
1199
u32 *state;
1200
u32 *weight;
1201
struct ceph_entity_addr *addr;
1202
u32 to_copy;
1203
int i;
1204
1205
dout("%s old %u new %u\n", __func__, map->max_osd, max);
1206
if (max == map->max_osd)
1207
return 0;
1208
1209
state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1210
weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1211
addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1212
if (!state || !weight || !addr) {
1213
kvfree(state);
1214
kvfree(weight);
1215
kvfree(addr);
1216
return -ENOMEM;
1217
}
1218
1219
to_copy = min(map->max_osd, max);
1220
if (map->osd_state) {
1221
memcpy(state, map->osd_state, to_copy * sizeof(*state));
1222
memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1223
memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1224
kvfree(map->osd_state);
1225
kvfree(map->osd_weight);
1226
kvfree(map->osd_addr);
1227
}
1228
1229
map->osd_state = state;
1230
map->osd_weight = weight;
1231
map->osd_addr = addr;
1232
for (i = map->max_osd; i < max; i++) {
1233
map->osd_state[i] = 0;
1234
map->osd_weight[i] = CEPH_OSD_OUT;
1235
memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1236
}
1237
1238
if (map->osd_primary_affinity) {
1239
u32 *affinity;
1240
1241
affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1242
GFP_NOFS);
1243
if (!affinity)
1244
return -ENOMEM;
1245
1246
memcpy(affinity, map->osd_primary_affinity,
1247
to_copy * sizeof(*affinity));
1248
kvfree(map->osd_primary_affinity);
1249
1250
map->osd_primary_affinity = affinity;
1251
for (i = map->max_osd; i < max; i++)
1252
map->osd_primary_affinity[i] =
1253
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1254
}
1255
1256
map->max_osd = max;
1257
1258
return 0;
1259
}
1260
1261
static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1262
{
1263
struct crush_work *work;
1264
1265
if (IS_ERR(crush))
1266
return PTR_ERR(crush);
1267
1268
work = alloc_workspace(crush);
1269
if (!work) {
1270
crush_destroy(crush);
1271
return -ENOMEM;
1272
}
1273
1274
if (map->crush)
1275
crush_destroy(map->crush);
1276
cleanup_workspace_manager(&map->crush_wsm);
1277
map->crush = crush;
1278
add_initial_workspace(&map->crush_wsm, work);
1279
return 0;
1280
}
1281
1282
#define OSDMAP_WRAPPER_COMPAT_VER 7
1283
#define OSDMAP_CLIENT_DATA_COMPAT_VER 1
1284
1285
/*
1286
* Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps,
1287
* to struct_v of the client_data section for new (v7 and above)
1288
* osdmaps.
1289
*/
1290
static int get_osdmap_client_data_v(void **p, void *end,
1291
const char *prefix, u8 *v)
1292
{
1293
u8 struct_v;
1294
1295
ceph_decode_8_safe(p, end, struct_v, e_inval);
1296
if (struct_v >= 7) {
1297
u8 struct_compat;
1298
1299
ceph_decode_8_safe(p, end, struct_compat, e_inval);
1300
if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1301
pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1302
struct_v, struct_compat,
1303
OSDMAP_WRAPPER_COMPAT_VER, prefix);
1304
return -EINVAL;
1305
}
1306
*p += 4; /* ignore wrapper struct_len */
1307
1308
ceph_decode_8_safe(p, end, struct_v, e_inval);
1309
ceph_decode_8_safe(p, end, struct_compat, e_inval);
1310
if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1311
pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1312
struct_v, struct_compat,
1313
OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1314
return -EINVAL;
1315
}
1316
*p += 4; /* ignore client data struct_len */
1317
} else {
1318
u16 version;
1319
1320
*p -= 1;
1321
ceph_decode_16_safe(p, end, version, e_inval);
1322
if (version < 6) {
1323
pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1324
version, prefix);
1325
return -EINVAL;
1326
}
1327
1328
/* old osdmap encoding */
1329
struct_v = 0;
1330
}
1331
1332
*v = struct_v;
1333
return 0;
1334
1335
e_inval:
1336
return -EINVAL;
1337
}
1338
1339
static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1340
bool incremental)
1341
{
1342
u32 n;
1343
1344
ceph_decode_32_safe(p, end, n, e_inval);
1345
while (n--) {
1346
struct ceph_pg_pool_info *pi;
1347
u64 pool;
1348
int ret;
1349
1350
ceph_decode_64_safe(p, end, pool, e_inval);
1351
1352
pi = lookup_pg_pool(&map->pg_pools, pool);
1353
if (!incremental || !pi) {
1354
pi = kzalloc(sizeof(*pi), GFP_NOFS);
1355
if (!pi)
1356
return -ENOMEM;
1357
1358
RB_CLEAR_NODE(&pi->node);
1359
pi->id = pool;
1360
1361
if (!__insert_pg_pool(&map->pg_pools, pi)) {
1362
kfree(pi);
1363
return -EEXIST;
1364
}
1365
}
1366
1367
ret = decode_pool(p, end, pi);
1368
if (ret)
1369
return ret;
1370
}
1371
1372
return 0;
1373
1374
e_inval:
1375
return -EINVAL;
1376
}
1377
1378
static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1379
{
1380
return __decode_pools(p, end, map, false);
1381
}
1382
1383
static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1384
{
1385
return __decode_pools(p, end, map, true);
1386
}
1387
1388
typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1389
1390
static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1391
decode_mapping_fn_t fn, bool incremental)
1392
{
1393
u32 n;
1394
1395
WARN_ON(!incremental && !fn);
1396
1397
ceph_decode_32_safe(p, end, n, e_inval);
1398
while (n--) {
1399
struct ceph_pg_mapping *pg;
1400
struct ceph_pg pgid;
1401
int ret;
1402
1403
ret = ceph_decode_pgid(p, end, &pgid);
1404
if (ret)
1405
return ret;
1406
1407
pg = lookup_pg_mapping(mapping_root, &pgid);
1408
if (pg) {
1409
WARN_ON(!incremental);
1410
erase_pg_mapping(mapping_root, pg);
1411
free_pg_mapping(pg);
1412
}
1413
1414
if (fn) {
1415
pg = fn(p, end, incremental);
1416
if (IS_ERR(pg))
1417
return PTR_ERR(pg);
1418
1419
if (pg) {
1420
pg->pgid = pgid; /* struct */
1421
insert_pg_mapping(mapping_root, pg);
1422
}
1423
}
1424
}
1425
1426
return 0;
1427
1428
e_inval:
1429
return -EINVAL;
1430
}
1431
1432
static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1433
bool incremental)
1434
{
1435
struct ceph_pg_mapping *pg;
1436
u32 len, i;
1437
1438
ceph_decode_32_safe(p, end, len, e_inval);
1439
if (len == 0 && incremental)
1440
return NULL; /* new_pg_temp: [] to remove */
1441
if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1442
return ERR_PTR(-EINVAL);
1443
1444
ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1445
pg = alloc_pg_mapping(len * sizeof(u32));
1446
if (!pg)
1447
return ERR_PTR(-ENOMEM);
1448
1449
pg->pg_temp.len = len;
1450
for (i = 0; i < len; i++)
1451
pg->pg_temp.osds[i] = ceph_decode_32(p);
1452
1453
return pg;
1454
1455
e_inval:
1456
return ERR_PTR(-EINVAL);
1457
}
1458
1459
static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1460
{
1461
return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1462
false);
1463
}
1464
1465
static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1466
{
1467
return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1468
true);
1469
}
1470
1471
static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1472
bool incremental)
1473
{
1474
struct ceph_pg_mapping *pg;
1475
u32 osd;
1476
1477
ceph_decode_32_safe(p, end, osd, e_inval);
1478
if (osd == (u32)-1 && incremental)
1479
return NULL; /* new_primary_temp: -1 to remove */
1480
1481
pg = alloc_pg_mapping(0);
1482
if (!pg)
1483
return ERR_PTR(-ENOMEM);
1484
1485
pg->primary_temp.osd = osd;
1486
return pg;
1487
1488
e_inval:
1489
return ERR_PTR(-EINVAL);
1490
}
1491
1492
static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1493
{
1494
return decode_pg_mapping(p, end, &map->primary_temp,
1495
__decode_primary_temp, false);
1496
}
1497
1498
static int decode_new_primary_temp(void **p, void *end,
1499
struct ceph_osdmap *map)
1500
{
1501
return decode_pg_mapping(p, end, &map->primary_temp,
1502
__decode_primary_temp, true);
1503
}
1504
1505
u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1506
{
1507
BUG_ON(osd >= map->max_osd);
1508
1509
if (!map->osd_primary_affinity)
1510
return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1511
1512
return map->osd_primary_affinity[osd];
1513
}
1514
1515
static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1516
{
1517
BUG_ON(osd >= map->max_osd);
1518
1519
if (!map->osd_primary_affinity) {
1520
int i;
1521
1522
map->osd_primary_affinity = kvmalloc(
1523
array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1524
GFP_NOFS);
1525
if (!map->osd_primary_affinity)
1526
return -ENOMEM;
1527
1528
for (i = 0; i < map->max_osd; i++)
1529
map->osd_primary_affinity[i] =
1530
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1531
}
1532
1533
map->osd_primary_affinity[osd] = aff;
1534
1535
return 0;
1536
}
1537
1538
static int decode_primary_affinity(void **p, void *end,
1539
struct ceph_osdmap *map)
1540
{
1541
u32 len, i;
1542
1543
ceph_decode_32_safe(p, end, len, e_inval);
1544
if (len == 0) {
1545
kvfree(map->osd_primary_affinity);
1546
map->osd_primary_affinity = NULL;
1547
return 0;
1548
}
1549
if (len != map->max_osd)
1550
goto e_inval;
1551
1552
ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1553
1554
for (i = 0; i < map->max_osd; i++) {
1555
int ret;
1556
1557
ret = set_primary_affinity(map, i, ceph_decode_32(p));
1558
if (ret)
1559
return ret;
1560
}
1561
1562
return 0;
1563
1564
e_inval:
1565
return -EINVAL;
1566
}
1567
1568
static int decode_new_primary_affinity(void **p, void *end,
1569
struct ceph_osdmap *map)
1570
{
1571
u32 n;
1572
1573
ceph_decode_32_safe(p, end, n, e_inval);
1574
while (n--) {
1575
u32 osd, aff;
1576
int ret;
1577
1578
ceph_decode_32_safe(p, end, osd, e_inval);
1579
ceph_decode_32_safe(p, end, aff, e_inval);
1580
1581
ret = set_primary_affinity(map, osd, aff);
1582
if (ret)
1583
return ret;
1584
1585
osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1586
}
1587
1588
return 0;
1589
1590
e_inval:
1591
return -EINVAL;
1592
}
1593
1594
static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1595
bool __unused)
1596
{
1597
return __decode_pg_temp(p, end, false);
1598
}
1599
1600
static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1601
{
1602
return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1603
false);
1604
}
1605
1606
static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1607
{
1608
return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1609
true);
1610
}
1611
1612
static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1613
{
1614
return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1615
}
1616
1617
static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1618
bool __unused)
1619
{
1620
struct ceph_pg_mapping *pg;
1621
u32 len, i;
1622
1623
ceph_decode_32_safe(p, end, len, e_inval);
1624
if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1625
return ERR_PTR(-EINVAL);
1626
1627
ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1628
pg = alloc_pg_mapping(2 * len * sizeof(u32));
1629
if (!pg)
1630
return ERR_PTR(-ENOMEM);
1631
1632
pg->pg_upmap_items.len = len;
1633
for (i = 0; i < len; i++) {
1634
pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1635
pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1636
}
1637
1638
return pg;
1639
1640
e_inval:
1641
return ERR_PTR(-EINVAL);
1642
}
1643
1644
static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1645
{
1646
return decode_pg_mapping(p, end, &map->pg_upmap_items,
1647
__decode_pg_upmap_items, false);
1648
}
1649
1650
static int decode_new_pg_upmap_items(void **p, void *end,
1651
struct ceph_osdmap *map)
1652
{
1653
return decode_pg_mapping(p, end, &map->pg_upmap_items,
1654
__decode_pg_upmap_items, true);
1655
}
1656
1657
static int decode_old_pg_upmap_items(void **p, void *end,
1658
struct ceph_osdmap *map)
1659
{
1660
return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1661
}
1662
1663
/*
1664
* decode a full map.
1665
*/
1666
static int osdmap_decode(void **p, void *end, bool msgr2,
1667
struct ceph_osdmap *map)
1668
{
1669
u8 struct_v;
1670
u32 epoch = 0;
1671
void *start = *p;
1672
u32 max;
1673
u32 len, i;
1674
int err;
1675
1676
dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1677
1678
err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1679
if (err)
1680
goto bad;
1681
1682
/* fsid, epoch, created, modified */
1683
ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1684
sizeof(map->created) + sizeof(map->modified), e_inval);
1685
ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1686
epoch = map->epoch = ceph_decode_32(p);
1687
ceph_decode_copy(p, &map->created, sizeof(map->created));
1688
ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1689
1690
/* pools */
1691
err = decode_pools(p, end, map);
1692
if (err)
1693
goto bad;
1694
1695
/* pool_name */
1696
err = decode_pool_names(p, end, map);
1697
if (err)
1698
goto bad;
1699
1700
ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1701
1702
ceph_decode_32_safe(p, end, map->flags, e_inval);
1703
1704
/* max_osd */
1705
ceph_decode_32_safe(p, end, max, e_inval);
1706
1707
/* (re)alloc osd arrays */
1708
err = osdmap_set_max_osd(map, max);
1709
if (err)
1710
goto bad;
1711
1712
/* osd_state, osd_weight, osd_addrs->client_addr */
1713
ceph_decode_need(p, end, 3*sizeof(u32) +
1714
map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1715
sizeof(u8)) +
1716
sizeof(*map->osd_weight), e_inval);
1717
if (ceph_decode_32(p) != map->max_osd)
1718
goto e_inval;
1719
1720
if (struct_v >= 5) {
1721
for (i = 0; i < map->max_osd; i++)
1722
map->osd_state[i] = ceph_decode_32(p);
1723
} else {
1724
for (i = 0; i < map->max_osd; i++)
1725
map->osd_state[i] = ceph_decode_8(p);
1726
}
1727
1728
if (ceph_decode_32(p) != map->max_osd)
1729
goto e_inval;
1730
1731
for (i = 0; i < map->max_osd; i++)
1732
map->osd_weight[i] = ceph_decode_32(p);
1733
1734
if (ceph_decode_32(p) != map->max_osd)
1735
goto e_inval;
1736
1737
for (i = 0; i < map->max_osd; i++) {
1738
struct ceph_entity_addr *addr = &map->osd_addr[i];
1739
1740
if (struct_v >= 8)
1741
err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1742
else
1743
err = ceph_decode_entity_addr(p, end, addr);
1744
if (err)
1745
goto bad;
1746
1747
dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1748
}
1749
1750
/* pg_temp */
1751
err = decode_pg_temp(p, end, map);
1752
if (err)
1753
goto bad;
1754
1755
/* primary_temp */
1756
if (struct_v >= 1) {
1757
err = decode_primary_temp(p, end, map);
1758
if (err)
1759
goto bad;
1760
}
1761
1762
/* primary_affinity */
1763
if (struct_v >= 2) {
1764
err = decode_primary_affinity(p, end, map);
1765
if (err)
1766
goto bad;
1767
} else {
1768
WARN_ON(map->osd_primary_affinity);
1769
}
1770
1771
/* crush */
1772
ceph_decode_32_safe(p, end, len, e_inval);
1773
err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1774
if (err)
1775
goto bad;
1776
1777
*p += len;
1778
if (struct_v >= 3) {
1779
/* erasure_code_profiles */
1780
ceph_decode_skip_map_of_map(p, end, string, string, string,
1781
e_inval);
1782
}
1783
1784
if (struct_v >= 4) {
1785
err = decode_pg_upmap(p, end, map);
1786
if (err)
1787
goto bad;
1788
1789
err = decode_pg_upmap_items(p, end, map);
1790
if (err)
1791
goto bad;
1792
} else {
1793
WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1794
WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1795
}
1796
1797
/* ignore the rest */
1798
*p = end;
1799
1800
dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1801
return 0;
1802
1803
e_inval:
1804
err = -EINVAL;
1805
bad:
1806
pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1807
err, epoch, (int)(*p - start), *p, start, end);
1808
print_hex_dump(KERN_DEBUG, "osdmap: ",
1809
DUMP_PREFIX_OFFSET, 16, 1,
1810
start, end - start, true);
1811
return err;
1812
}
1813
1814
/*
1815
* Allocate and decode a full map.
1816
*/
1817
struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1818
{
1819
struct ceph_osdmap *map;
1820
int ret;
1821
1822
map = ceph_osdmap_alloc();
1823
if (!map)
1824
return ERR_PTR(-ENOMEM);
1825
1826
ret = osdmap_decode(p, end, msgr2, map);
1827
if (ret) {
1828
ceph_osdmap_destroy(map);
1829
return ERR_PTR(ret);
1830
}
1831
1832
return map;
1833
}
1834
1835
/*
1836
* Encoding order is (new_up_client, new_state, new_weight). Need to
1837
* apply in the (new_weight, new_state, new_up_client) order, because
1838
* an incremental map may look like e.g.
1839
*
1840
* new_up_client: { osd=6, addr=... } # set osd_state and addr
1841
* new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1842
*/
1843
static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1844
bool msgr2, struct ceph_osdmap *map)
1845
{
1846
void *new_up_client;
1847
void *new_state;
1848
void *new_weight_end;
1849
u32 len;
1850
int ret;
1851
int i;
1852
1853
new_up_client = *p;
1854
ceph_decode_32_safe(p, end, len, e_inval);
1855
for (i = 0; i < len; ++i) {
1856
struct ceph_entity_addr addr;
1857
1858
ceph_decode_skip_32(p, end, e_inval);
1859
if (struct_v >= 7)
1860
ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1861
else
1862
ret = ceph_decode_entity_addr(p, end, &addr);
1863
if (ret)
1864
return ret;
1865
}
1866
1867
new_state = *p;
1868
ceph_decode_32_safe(p, end, len, e_inval);
1869
len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1870
ceph_decode_need(p, end, len, e_inval);
1871
*p += len;
1872
1873
/* new_weight */
1874
ceph_decode_32_safe(p, end, len, e_inval);
1875
while (len--) {
1876
s32 osd;
1877
u32 w;
1878
1879
ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1880
osd = ceph_decode_32(p);
1881
w = ceph_decode_32(p);
1882
BUG_ON(osd >= map->max_osd);
1883
osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1884
w == CEPH_OSD_IN ? "(in)" :
1885
(w == CEPH_OSD_OUT ? "(out)" : ""));
1886
map->osd_weight[osd] = w;
1887
1888
/*
1889
* If we are marking in, set the EXISTS, and clear the
1890
* AUTOOUT and NEW bits.
1891
*/
1892
if (w) {
1893
map->osd_state[osd] |= CEPH_OSD_EXISTS;
1894
map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1895
CEPH_OSD_NEW);
1896
}
1897
}
1898
new_weight_end = *p;
1899
1900
/* new_state (up/down) */
1901
*p = new_state;
1902
len = ceph_decode_32(p);
1903
while (len--) {
1904
s32 osd;
1905
u32 xorstate;
1906
1907
osd = ceph_decode_32(p);
1908
if (struct_v >= 5)
1909
xorstate = ceph_decode_32(p);
1910
else
1911
xorstate = ceph_decode_8(p);
1912
if (xorstate == 0)
1913
xorstate = CEPH_OSD_UP;
1914
BUG_ON(osd >= map->max_osd);
1915
if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1916
(xorstate & CEPH_OSD_UP))
1917
osdmap_info(map, "osd%d down\n", osd);
1918
if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1919
(xorstate & CEPH_OSD_EXISTS)) {
1920
osdmap_info(map, "osd%d does not exist\n", osd);
1921
ret = set_primary_affinity(map, osd,
1922
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1923
if (ret)
1924
return ret;
1925
memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1926
map->osd_state[osd] = 0;
1927
} else {
1928
map->osd_state[osd] ^= xorstate;
1929
}
1930
}
1931
1932
/* new_up_client */
1933
*p = new_up_client;
1934
len = ceph_decode_32(p);
1935
while (len--) {
1936
s32 osd;
1937
struct ceph_entity_addr addr;
1938
1939
osd = ceph_decode_32(p);
1940
BUG_ON(osd >= map->max_osd);
1941
if (struct_v >= 7)
1942
ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1943
else
1944
ret = ceph_decode_entity_addr(p, end, &addr);
1945
if (ret)
1946
return ret;
1947
1948
dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1949
1950
osdmap_info(map, "osd%d up\n", osd);
1951
map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1952
map->osd_addr[osd] = addr;
1953
}
1954
1955
*p = new_weight_end;
1956
return 0;
1957
1958
e_inval:
1959
return -EINVAL;
1960
}
1961
1962
/*
1963
* decode and apply an incremental map update.
1964
*/
1965
struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1966
struct ceph_osdmap *map)
1967
{
1968
struct ceph_fsid fsid;
1969
u32 epoch = 0;
1970
struct ceph_timespec modified;
1971
s32 len;
1972
u64 pool;
1973
__s64 new_pool_max;
1974
__s32 new_flags, max;
1975
void *start = *p;
1976
int err;
1977
u8 struct_v;
1978
1979
dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1980
1981
err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1982
if (err)
1983
goto bad;
1984
1985
/* fsid, epoch, modified, new_pool_max, new_flags */
1986
ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1987
sizeof(u64) + sizeof(u32), e_inval);
1988
ceph_decode_copy(p, &fsid, sizeof(fsid));
1989
epoch = ceph_decode_32(p);
1990
BUG_ON(epoch != map->epoch+1);
1991
ceph_decode_copy(p, &modified, sizeof(modified));
1992
new_pool_max = ceph_decode_64(p);
1993
new_flags = ceph_decode_32(p);
1994
1995
/* full map? */
1996
ceph_decode_32_safe(p, end, len, e_inval);
1997
if (len > 0) {
1998
dout("apply_incremental full map len %d, %p to %p\n",
1999
len, *p, end);
2000
return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
2001
}
2002
2003
/* new crush? */
2004
ceph_decode_32_safe(p, end, len, e_inval);
2005
if (len > 0) {
2006
err = osdmap_set_crush(map,
2007
crush_decode(*p, min(*p + len, end)));
2008
if (err)
2009
goto bad;
2010
*p += len;
2011
}
2012
2013
/* new flags? */
2014
if (new_flags >= 0)
2015
map->flags = new_flags;
2016
if (new_pool_max >= 0)
2017
map->pool_max = new_pool_max;
2018
2019
/* new max? */
2020
ceph_decode_32_safe(p, end, max, e_inval);
2021
if (max >= 0) {
2022
err = osdmap_set_max_osd(map, max);
2023
if (err)
2024
goto bad;
2025
}
2026
2027
map->epoch++;
2028
map->modified = modified;
2029
2030
/* new_pools */
2031
err = decode_new_pools(p, end, map);
2032
if (err)
2033
goto bad;
2034
2035
/* new_pool_names */
2036
err = decode_pool_names(p, end, map);
2037
if (err)
2038
goto bad;
2039
2040
/* old_pool */
2041
ceph_decode_32_safe(p, end, len, e_inval);
2042
while (len--) {
2043
struct ceph_pg_pool_info *pi;
2044
2045
ceph_decode_64_safe(p, end, pool, e_inval);
2046
pi = lookup_pg_pool(&map->pg_pools, pool);
2047
if (pi)
2048
__remove_pg_pool(&map->pg_pools, pi);
2049
}
2050
2051
/* new_up_client, new_state, new_weight */
2052
err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2053
if (err)
2054
goto bad;
2055
2056
/* new_pg_temp */
2057
err = decode_new_pg_temp(p, end, map);
2058
if (err)
2059
goto bad;
2060
2061
/* new_primary_temp */
2062
if (struct_v >= 1) {
2063
err = decode_new_primary_temp(p, end, map);
2064
if (err)
2065
goto bad;
2066
}
2067
2068
/* new_primary_affinity */
2069
if (struct_v >= 2) {
2070
err = decode_new_primary_affinity(p, end, map);
2071
if (err)
2072
goto bad;
2073
}
2074
2075
if (struct_v >= 3) {
2076
/* new_erasure_code_profiles */
2077
ceph_decode_skip_map_of_map(p, end, string, string, string,
2078
e_inval);
2079
/* old_erasure_code_profiles */
2080
ceph_decode_skip_set(p, end, string, e_inval);
2081
}
2082
2083
if (struct_v >= 4) {
2084
err = decode_new_pg_upmap(p, end, map);
2085
if (err)
2086
goto bad;
2087
2088
err = decode_old_pg_upmap(p, end, map);
2089
if (err)
2090
goto bad;
2091
2092
err = decode_new_pg_upmap_items(p, end, map);
2093
if (err)
2094
goto bad;
2095
2096
err = decode_old_pg_upmap_items(p, end, map);
2097
if (err)
2098
goto bad;
2099
}
2100
2101
/* ignore the rest */
2102
*p = end;
2103
2104
dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2105
return map;
2106
2107
e_inval:
2108
err = -EINVAL;
2109
bad:
2110
pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2111
err, epoch, (int)(*p - start), *p, start, end);
2112
print_hex_dump(KERN_DEBUG, "osdmap: ",
2113
DUMP_PREFIX_OFFSET, 16, 1,
2114
start, end - start, true);
2115
return ERR_PTR(err);
2116
}
2117
2118
void ceph_oloc_copy(struct ceph_object_locator *dest,
2119
const struct ceph_object_locator *src)
2120
{
2121
ceph_oloc_destroy(dest);
2122
2123
dest->pool = src->pool;
2124
if (src->pool_ns)
2125
dest->pool_ns = ceph_get_string(src->pool_ns);
2126
else
2127
dest->pool_ns = NULL;
2128
}
2129
EXPORT_SYMBOL(ceph_oloc_copy);
2130
2131
void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2132
{
2133
ceph_put_string(oloc->pool_ns);
2134
}
2135
EXPORT_SYMBOL(ceph_oloc_destroy);
2136
2137
void ceph_oid_copy(struct ceph_object_id *dest,
2138
const struct ceph_object_id *src)
2139
{
2140
ceph_oid_destroy(dest);
2141
2142
if (src->name != src->inline_name) {
2143
/* very rare, see ceph_object_id definition */
2144
dest->name = kmalloc(src->name_len + 1,
2145
GFP_NOIO | __GFP_NOFAIL);
2146
} else {
2147
dest->name = dest->inline_name;
2148
}
2149
memcpy(dest->name, src->name, src->name_len + 1);
2150
dest->name_len = src->name_len;
2151
}
2152
EXPORT_SYMBOL(ceph_oid_copy);
2153
2154
static __printf(2, 0)
2155
int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2156
{
2157
int len;
2158
2159
WARN_ON(!ceph_oid_empty(oid));
2160
2161
len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2162
if (len >= sizeof(oid->inline_name))
2163
return len;
2164
2165
oid->name_len = len;
2166
return 0;
2167
}
2168
2169
/*
2170
* If oid doesn't fit into inline buffer, BUG.
2171
*/
2172
void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2173
{
2174
va_list ap;
2175
2176
va_start(ap, fmt);
2177
BUG_ON(oid_printf_vargs(oid, fmt, ap));
2178
va_end(ap);
2179
}
2180
EXPORT_SYMBOL(ceph_oid_printf);
2181
2182
static __printf(3, 0)
2183
int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2184
const char *fmt, va_list ap)
2185
{
2186
va_list aq;
2187
int len;
2188
2189
va_copy(aq, ap);
2190
len = oid_printf_vargs(oid, fmt, aq);
2191
va_end(aq);
2192
2193
if (len) {
2194
char *external_name;
2195
2196
external_name = kmalloc(len + 1, gfp);
2197
if (!external_name)
2198
return -ENOMEM;
2199
2200
oid->name = external_name;
2201
WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2202
oid->name_len = len;
2203
}
2204
2205
return 0;
2206
}
2207
2208
/*
2209
* If oid doesn't fit into inline buffer, allocate.
2210
*/
2211
int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2212
const char *fmt, ...)
2213
{
2214
va_list ap;
2215
int ret;
2216
2217
va_start(ap, fmt);
2218
ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2219
va_end(ap);
2220
2221
return ret;
2222
}
2223
EXPORT_SYMBOL(ceph_oid_aprintf);
2224
2225
void ceph_oid_destroy(struct ceph_object_id *oid)
2226
{
2227
if (oid->name != oid->inline_name)
2228
kfree(oid->name);
2229
}
2230
EXPORT_SYMBOL(ceph_oid_destroy);
2231
2232
/*
2233
* osds only
2234
*/
2235
static bool __osds_equal(const struct ceph_osds *lhs,
2236
const struct ceph_osds *rhs)
2237
{
2238
if (lhs->size == rhs->size &&
2239
!memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2240
return true;
2241
2242
return false;
2243
}
2244
2245
/*
2246
* osds + primary
2247
*/
2248
static bool osds_equal(const struct ceph_osds *lhs,
2249
const struct ceph_osds *rhs)
2250
{
2251
if (__osds_equal(lhs, rhs) &&
2252
lhs->primary == rhs->primary)
2253
return true;
2254
2255
return false;
2256
}
2257
2258
static bool osds_valid(const struct ceph_osds *set)
2259
{
2260
/* non-empty set */
2261
if (set->size > 0 && set->primary >= 0)
2262
return true;
2263
2264
/* empty can_shift_osds set */
2265
if (!set->size && set->primary == -1)
2266
return true;
2267
2268
/* empty !can_shift_osds set - all NONE */
2269
if (set->size > 0 && set->primary == -1) {
2270
int i;
2271
2272
for (i = 0; i < set->size; i++) {
2273
if (set->osds[i] != CRUSH_ITEM_NONE)
2274
break;
2275
}
2276
if (i == set->size)
2277
return true;
2278
}
2279
2280
return false;
2281
}
2282
2283
void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2284
{
2285
memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2286
dest->size = src->size;
2287
dest->primary = src->primary;
2288
}
2289
2290
bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2291
u32 new_pg_num)
2292
{
2293
int old_bits = calc_bits_of(old_pg_num);
2294
int old_mask = (1 << old_bits) - 1;
2295
int n;
2296
2297
WARN_ON(pgid->seed >= old_pg_num);
2298
if (new_pg_num <= old_pg_num)
2299
return false;
2300
2301
for (n = 1; ; n++) {
2302
int next_bit = n << (old_bits - 1);
2303
u32 s = next_bit | pgid->seed;
2304
2305
if (s < old_pg_num || s == pgid->seed)
2306
continue;
2307
if (s >= new_pg_num)
2308
break;
2309
2310
s = ceph_stable_mod(s, old_pg_num, old_mask);
2311
if (s == pgid->seed)
2312
return true;
2313
}
2314
2315
return false;
2316
}
2317
2318
bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2319
const struct ceph_osds *new_acting,
2320
const struct ceph_osds *old_up,
2321
const struct ceph_osds *new_up,
2322
int old_size,
2323
int new_size,
2324
int old_min_size,
2325
int new_min_size,
2326
u32 old_pg_num,
2327
u32 new_pg_num,
2328
bool old_sort_bitwise,
2329
bool new_sort_bitwise,
2330
bool old_recovery_deletes,
2331
bool new_recovery_deletes,
2332
const struct ceph_pg *pgid)
2333
{
2334
return !osds_equal(old_acting, new_acting) ||
2335
!osds_equal(old_up, new_up) ||
2336
old_size != new_size ||
2337
old_min_size != new_min_size ||
2338
ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2339
old_sort_bitwise != new_sort_bitwise ||
2340
old_recovery_deletes != new_recovery_deletes;
2341
}
2342
2343
static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2344
{
2345
int i;
2346
2347
for (i = 0; i < acting->size; i++) {
2348
if (acting->osds[i] == osd)
2349
return i;
2350
}
2351
2352
return -1;
2353
}
2354
2355
static bool primary_changed(const struct ceph_osds *old_acting,
2356
const struct ceph_osds *new_acting)
2357
{
2358
if (!old_acting->size && !new_acting->size)
2359
return false; /* both still empty */
2360
2361
if (!old_acting->size ^ !new_acting->size)
2362
return true; /* was empty, now not, or vice versa */
2363
2364
if (old_acting->primary != new_acting->primary)
2365
return true; /* primary changed */
2366
2367
if (calc_pg_rank(old_acting->primary, old_acting) !=
2368
calc_pg_rank(new_acting->primary, new_acting))
2369
return true;
2370
2371
return false; /* same primary (tho replicas may have changed) */
2372
}
2373
2374
bool ceph_osds_changed(const struct ceph_osds *old_acting,
2375
const struct ceph_osds *new_acting,
2376
bool any_change)
2377
{
2378
if (primary_changed(old_acting, new_acting))
2379
return true;
2380
2381
if (any_change && !__osds_equal(old_acting, new_acting))
2382
return true;
2383
2384
return false;
2385
}
2386
2387
/*
2388
* Map an object into a PG.
2389
*
2390
* Should only be called with target_oid and target_oloc (as opposed to
2391
* base_oid and base_oloc), since tiering isn't taken into account.
2392
*/
2393
void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2394
const struct ceph_object_id *oid,
2395
const struct ceph_object_locator *oloc,
2396
struct ceph_pg *raw_pgid)
2397
{
2398
WARN_ON(pi->id != oloc->pool);
2399
2400
if (!oloc->pool_ns) {
2401
raw_pgid->pool = oloc->pool;
2402
raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2403
oid->name_len);
2404
dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2405
raw_pgid->pool, raw_pgid->seed);
2406
} else {
2407
char stack_buf[256];
2408
char *buf = stack_buf;
2409
int nsl = oloc->pool_ns->len;
2410
size_t total = nsl + 1 + oid->name_len;
2411
2412
if (total > sizeof(stack_buf))
2413
buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2414
memcpy(buf, oloc->pool_ns->str, nsl);
2415
buf[nsl] = '\037';
2416
memcpy(buf + nsl + 1, oid->name, oid->name_len);
2417
raw_pgid->pool = oloc->pool;
2418
raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2419
if (buf != stack_buf)
2420
kfree(buf);
2421
dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2422
oid->name, nsl, oloc->pool_ns->str,
2423
raw_pgid->pool, raw_pgid->seed);
2424
}
2425
}
2426
2427
int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2428
const struct ceph_object_id *oid,
2429
const struct ceph_object_locator *oloc,
2430
struct ceph_pg *raw_pgid)
2431
{
2432
struct ceph_pg_pool_info *pi;
2433
2434
pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2435
if (!pi)
2436
return -ENOENT;
2437
2438
__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2439
return 0;
2440
}
2441
EXPORT_SYMBOL(ceph_object_locator_to_pg);
2442
2443
/*
2444
* Map a raw PG (full precision ps) into an actual PG.
2445
*/
2446
static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2447
const struct ceph_pg *raw_pgid,
2448
struct ceph_pg *pgid)
2449
{
2450
pgid->pool = raw_pgid->pool;
2451
pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2452
pi->pg_num_mask);
2453
}
2454
2455
/*
2456
* Map a raw PG (full precision ps) into a placement ps (placement
2457
* seed). Include pool id in that value so that different pools don't
2458
* use the same seeds.
2459
*/
2460
static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2461
const struct ceph_pg *raw_pgid)
2462
{
2463
if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2464
/* hash pool id and seed so that pool PGs do not overlap */
2465
return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2466
ceph_stable_mod(raw_pgid->seed,
2467
pi->pgp_num,
2468
pi->pgp_num_mask),
2469
raw_pgid->pool);
2470
} else {
2471
/*
2472
* legacy behavior: add ps and pool together. this is
2473
* not a great approach because the PGs from each pool
2474
* will overlap on top of each other: 0.5 == 1.4 ==
2475
* 2.3 == ...
2476
*/
2477
return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2478
pi->pgp_num_mask) +
2479
(unsigned)raw_pgid->pool;
2480
}
2481
}
2482
2483
/*
2484
* Magic value used for a "default" fallback choose_args, used if the
2485
* crush_choose_arg_map passed to do_crush() does not exist. If this
2486
* also doesn't exist, fall back to canonical weights.
2487
*/
2488
#define CEPH_DEFAULT_CHOOSE_ARGS -1
2489
2490
static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2491
int *result, int result_max,
2492
const __u32 *weight, int weight_max,
2493
s64 choose_args_index)
2494
{
2495
struct crush_choose_arg_map *arg_map;
2496
struct crush_work *work;
2497
int r;
2498
2499
BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2500
2501
arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2502
choose_args_index);
2503
if (!arg_map)
2504
arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2505
CEPH_DEFAULT_CHOOSE_ARGS);
2506
2507
work = get_workspace(&map->crush_wsm, map->crush);
2508
r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2509
weight, weight_max, work,
2510
arg_map ? arg_map->args : NULL);
2511
put_workspace(&map->crush_wsm, work);
2512
return r;
2513
}
2514
2515
static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2516
struct ceph_pg_pool_info *pi,
2517
struct ceph_osds *set)
2518
{
2519
int i;
2520
2521
if (ceph_can_shift_osds(pi)) {
2522
int removed = 0;
2523
2524
/* shift left */
2525
for (i = 0; i < set->size; i++) {
2526
if (!ceph_osd_exists(osdmap, set->osds[i])) {
2527
removed++;
2528
continue;
2529
}
2530
if (removed)
2531
set->osds[i - removed] = set->osds[i];
2532
}
2533
set->size -= removed;
2534
} else {
2535
/* set dne devices to NONE */
2536
for (i = 0; i < set->size; i++) {
2537
if (!ceph_osd_exists(osdmap, set->osds[i]))
2538
set->osds[i] = CRUSH_ITEM_NONE;
2539
}
2540
}
2541
}
2542
2543
/*
2544
* Calculate raw set (CRUSH output) for given PG and filter out
2545
* nonexistent OSDs. ->primary is undefined for a raw set.
2546
*
2547
* Placement seed (CRUSH input) is returned through @ppps.
2548
*/
2549
static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2550
struct ceph_pg_pool_info *pi,
2551
const struct ceph_pg *raw_pgid,
2552
struct ceph_osds *raw,
2553
u32 *ppps)
2554
{
2555
u32 pps = raw_pg_to_pps(pi, raw_pgid);
2556
int ruleno;
2557
int len;
2558
2559
ceph_osds_init(raw);
2560
if (ppps)
2561
*ppps = pps;
2562
2563
ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2564
pi->size);
2565
if (ruleno < 0) {
2566
pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2567
pi->id, pi->crush_ruleset, pi->type, pi->size);
2568
return;
2569
}
2570
2571
if (pi->size > ARRAY_SIZE(raw->osds)) {
2572
pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2573
pi->id, pi->crush_ruleset, pi->type, pi->size,
2574
ARRAY_SIZE(raw->osds));
2575
return;
2576
}
2577
2578
len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2579
osdmap->osd_weight, osdmap->max_osd, pi->id);
2580
if (len < 0) {
2581
pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2582
len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2583
pi->size);
2584
return;
2585
}
2586
2587
raw->size = len;
2588
remove_nonexistent_osds(osdmap, pi, raw);
2589
}
2590
2591
/* apply pg_upmap[_items] mappings */
2592
static void apply_upmap(struct ceph_osdmap *osdmap,
2593
const struct ceph_pg *pgid,
2594
struct ceph_osds *raw)
2595
{
2596
struct ceph_pg_mapping *pg;
2597
int i, j;
2598
2599
pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2600
if (pg) {
2601
/* make sure targets aren't marked out */
2602
for (i = 0; i < pg->pg_upmap.len; i++) {
2603
int osd = pg->pg_upmap.osds[i];
2604
2605
if (osd != CRUSH_ITEM_NONE &&
2606
osd < osdmap->max_osd &&
2607
osdmap->osd_weight[osd] == 0) {
2608
/* reject/ignore explicit mapping */
2609
return;
2610
}
2611
}
2612
for (i = 0; i < pg->pg_upmap.len; i++)
2613
raw->osds[i] = pg->pg_upmap.osds[i];
2614
raw->size = pg->pg_upmap.len;
2615
/* check and apply pg_upmap_items, if any */
2616
}
2617
2618
pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2619
if (pg) {
2620
/*
2621
* Note: this approach does not allow a bidirectional swap,
2622
* e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2623
*/
2624
for (i = 0; i < pg->pg_upmap_items.len; i++) {
2625
int from = pg->pg_upmap_items.from_to[i][0];
2626
int to = pg->pg_upmap_items.from_to[i][1];
2627
int pos = -1;
2628
bool exists = false;
2629
2630
/* make sure replacement doesn't already appear */
2631
for (j = 0; j < raw->size; j++) {
2632
int osd = raw->osds[j];
2633
2634
if (osd == to) {
2635
exists = true;
2636
break;
2637
}
2638
/* ignore mapping if target is marked out */
2639
if (osd == from && pos < 0 &&
2640
!(to != CRUSH_ITEM_NONE &&
2641
to < osdmap->max_osd &&
2642
osdmap->osd_weight[to] == 0)) {
2643
pos = j;
2644
}
2645
}
2646
if (!exists && pos >= 0)
2647
raw->osds[pos] = to;
2648
}
2649
}
2650
}
2651
2652
/*
2653
* Given raw set, calculate up set and up primary. By definition of an
2654
* up set, the result won't contain nonexistent or down OSDs.
2655
*
2656
* This is done in-place - on return @set is the up set. If it's
2657
* empty, ->primary will remain undefined.
2658
*/
2659
static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2660
struct ceph_pg_pool_info *pi,
2661
struct ceph_osds *set)
2662
{
2663
int i;
2664
2665
/* ->primary is undefined for a raw set */
2666
BUG_ON(set->primary != -1);
2667
2668
if (ceph_can_shift_osds(pi)) {
2669
int removed = 0;
2670
2671
/* shift left */
2672
for (i = 0; i < set->size; i++) {
2673
if (ceph_osd_is_down(osdmap, set->osds[i])) {
2674
removed++;
2675
continue;
2676
}
2677
if (removed)
2678
set->osds[i - removed] = set->osds[i];
2679
}
2680
set->size -= removed;
2681
if (set->size > 0)
2682
set->primary = set->osds[0];
2683
} else {
2684
/* set down/dne devices to NONE */
2685
for (i = set->size - 1; i >= 0; i--) {
2686
if (ceph_osd_is_down(osdmap, set->osds[i]))
2687
set->osds[i] = CRUSH_ITEM_NONE;
2688
else
2689
set->primary = set->osds[i];
2690
}
2691
}
2692
}
2693
2694
static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2695
struct ceph_pg_pool_info *pi,
2696
u32 pps,
2697
struct ceph_osds *up)
2698
{
2699
int i;
2700
int pos = -1;
2701
2702
/*
2703
* Do we have any non-default primary_affinity values for these
2704
* osds?
2705
*/
2706
if (!osdmap->osd_primary_affinity)
2707
return;
2708
2709
for (i = 0; i < up->size; i++) {
2710
int osd = up->osds[i];
2711
2712
if (osd != CRUSH_ITEM_NONE &&
2713
osdmap->osd_primary_affinity[osd] !=
2714
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2715
break;
2716
}
2717
}
2718
if (i == up->size)
2719
return;
2720
2721
/*
2722
* Pick the primary. Feed both the seed (for the pg) and the
2723
* osd into the hash/rng so that a proportional fraction of an
2724
* osd's pgs get rejected as primary.
2725
*/
2726
for (i = 0; i < up->size; i++) {
2727
int osd = up->osds[i];
2728
u32 aff;
2729
2730
if (osd == CRUSH_ITEM_NONE)
2731
continue;
2732
2733
aff = osdmap->osd_primary_affinity[osd];
2734
if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2735
(crush_hash32_2(CRUSH_HASH_RJENKINS1,
2736
pps, osd) >> 16) >= aff) {
2737
/*
2738
* We chose not to use this primary. Note it
2739
* anyway as a fallback in case we don't pick
2740
* anyone else, but keep looking.
2741
*/
2742
if (pos < 0)
2743
pos = i;
2744
} else {
2745
pos = i;
2746
break;
2747
}
2748
}
2749
if (pos < 0)
2750
return;
2751
2752
up->primary = up->osds[pos];
2753
2754
if (ceph_can_shift_osds(pi) && pos > 0) {
2755
/* move the new primary to the front */
2756
for (i = pos; i > 0; i--)
2757
up->osds[i] = up->osds[i - 1];
2758
up->osds[0] = up->primary;
2759
}
2760
}
2761
2762
/*
2763
* Get pg_temp and primary_temp mappings for given PG.
2764
*
2765
* Note that a PG may have none, only pg_temp, only primary_temp or
2766
* both pg_temp and primary_temp mappings. This means @temp isn't
2767
* always a valid OSD set on return: in the "only primary_temp" case,
2768
* @temp will have its ->primary >= 0 but ->size == 0.
2769
*/
2770
static void get_temp_osds(struct ceph_osdmap *osdmap,
2771
struct ceph_pg_pool_info *pi,
2772
const struct ceph_pg *pgid,
2773
struct ceph_osds *temp)
2774
{
2775
struct ceph_pg_mapping *pg;
2776
int i;
2777
2778
ceph_osds_init(temp);
2779
2780
/* pg_temp? */
2781
pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2782
if (pg) {
2783
for (i = 0; i < pg->pg_temp.len; i++) {
2784
if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2785
if (ceph_can_shift_osds(pi))
2786
continue;
2787
2788
temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2789
} else {
2790
temp->osds[temp->size++] = pg->pg_temp.osds[i];
2791
}
2792
}
2793
2794
/* apply pg_temp's primary */
2795
for (i = 0; i < temp->size; i++) {
2796
if (temp->osds[i] != CRUSH_ITEM_NONE) {
2797
temp->primary = temp->osds[i];
2798
break;
2799
}
2800
}
2801
}
2802
2803
/* primary_temp? */
2804
pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2805
if (pg)
2806
temp->primary = pg->primary_temp.osd;
2807
}
2808
2809
/*
2810
* Map a PG to its acting set as well as its up set.
2811
*
2812
* Acting set is used for data mapping purposes, while up set can be
2813
* recorded for detecting interval changes and deciding whether to
2814
* resend a request.
2815
*/
2816
void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2817
struct ceph_pg_pool_info *pi,
2818
const struct ceph_pg *raw_pgid,
2819
struct ceph_osds *up,
2820
struct ceph_osds *acting)
2821
{
2822
struct ceph_pg pgid;
2823
u32 pps;
2824
2825
WARN_ON(pi->id != raw_pgid->pool);
2826
raw_pg_to_pg(pi, raw_pgid, &pgid);
2827
2828
pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2829
apply_upmap(osdmap, &pgid, up);
2830
raw_to_up_osds(osdmap, pi, up);
2831
apply_primary_affinity(osdmap, pi, pps, up);
2832
get_temp_osds(osdmap, pi, &pgid, acting);
2833
if (!acting->size) {
2834
memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2835
acting->size = up->size;
2836
if (acting->primary == -1)
2837
acting->primary = up->primary;
2838
}
2839
WARN_ON(!osds_valid(up) || !osds_valid(acting));
2840
}
2841
2842
bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2843
struct ceph_pg_pool_info *pi,
2844
const struct ceph_pg *raw_pgid,
2845
struct ceph_spg *spgid)
2846
{
2847
struct ceph_pg pgid;
2848
struct ceph_osds up, acting;
2849
int i;
2850
2851
WARN_ON(pi->id != raw_pgid->pool);
2852
raw_pg_to_pg(pi, raw_pgid, &pgid);
2853
2854
if (ceph_can_shift_osds(pi)) {
2855
spgid->pgid = pgid; /* struct */
2856
spgid->shard = CEPH_SPG_NOSHARD;
2857
return true;
2858
}
2859
2860
ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2861
for (i = 0; i < acting.size; i++) {
2862
if (acting.osds[i] == acting.primary) {
2863
spgid->pgid = pgid; /* struct */
2864
spgid->shard = i;
2865
return true;
2866
}
2867
}
2868
2869
return false;
2870
}
2871
2872
/*
2873
* Return acting primary for given PG, or -1 if none.
2874
*/
2875
int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2876
const struct ceph_pg *raw_pgid)
2877
{
2878
struct ceph_pg_pool_info *pi;
2879
struct ceph_osds up, acting;
2880
2881
pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2882
if (!pi)
2883
return -1;
2884
2885
ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2886
return acting.primary;
2887
}
2888
EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2889
2890
static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2891
size_t name_len)
2892
{
2893
struct crush_loc_node *loc;
2894
2895
loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2896
if (!loc)
2897
return NULL;
2898
2899
RB_CLEAR_NODE(&loc->cl_node);
2900
return loc;
2901
}
2902
2903
static void free_crush_loc(struct crush_loc_node *loc)
2904
{
2905
WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2906
2907
kfree(loc);
2908
}
2909
2910
static int crush_loc_compare(const struct crush_loc *loc1,
2911
const struct crush_loc *loc2)
2912
{
2913
return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2914
strcmp(loc1->cl_name, loc2->cl_name);
2915
}
2916
2917
DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2918
RB_BYPTR, const struct crush_loc *, cl_node)
2919
2920
/*
2921
* Parses a set of <bucket type name>':'<bucket name> pairs separated
2922
* by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2923
*
2924
* Note that @crush_location is modified by strsep().
2925
*/
2926
int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2927
{
2928
struct crush_loc_node *loc;
2929
const char *type_name, *name, *colon;
2930
size_t type_name_len, name_len;
2931
2932
dout("%s '%s'\n", __func__, crush_location);
2933
while ((type_name = strsep(&crush_location, "|"))) {
2934
colon = strchr(type_name, ':');
2935
if (!colon)
2936
return -EINVAL;
2937
2938
type_name_len = colon - type_name;
2939
if (type_name_len == 0)
2940
return -EINVAL;
2941
2942
name = colon + 1;
2943
name_len = strlen(name);
2944
if (name_len == 0)
2945
return -EINVAL;
2946
2947
loc = alloc_crush_loc(type_name_len, name_len);
2948
if (!loc)
2949
return -ENOMEM;
2950
2951
loc->cl_loc.cl_type_name = loc->cl_data;
2952
memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2953
loc->cl_loc.cl_type_name[type_name_len] = '\0';
2954
2955
loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2956
memcpy(loc->cl_loc.cl_name, name, name_len);
2957
loc->cl_loc.cl_name[name_len] = '\0';
2958
2959
if (!__insert_crush_loc(locs, loc)) {
2960
free_crush_loc(loc);
2961
return -EEXIST;
2962
}
2963
2964
dout("%s type_name '%s' name '%s'\n", __func__,
2965
loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2966
}
2967
2968
return 0;
2969
}
2970
2971
int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2972
{
2973
struct rb_node *n1 = rb_first(locs1);
2974
struct rb_node *n2 = rb_first(locs2);
2975
int ret;
2976
2977
for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2978
struct crush_loc_node *loc1 =
2979
rb_entry(n1, struct crush_loc_node, cl_node);
2980
struct crush_loc_node *loc2 =
2981
rb_entry(n2, struct crush_loc_node, cl_node);
2982
2983
ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2984
if (ret)
2985
return ret;
2986
}
2987
2988
if (!n1 && n2)
2989
return -1;
2990
if (n1 && !n2)
2991
return 1;
2992
return 0;
2993
}
2994
2995
void ceph_clear_crush_locs(struct rb_root *locs)
2996
{
2997
while (!RB_EMPTY_ROOT(locs)) {
2998
struct crush_loc_node *loc =
2999
rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
3000
3001
erase_crush_loc(locs, loc);
3002
free_crush_loc(loc);
3003
}
3004
}
3005
3006
/*
3007
* [a-zA-Z0-9-_.]+
3008
*/
3009
static bool is_valid_crush_name(const char *name)
3010
{
3011
do {
3012
if (!('a' <= *name && *name <= 'z') &&
3013
!('A' <= *name && *name <= 'Z') &&
3014
!('0' <= *name && *name <= '9') &&
3015
*name != '-' && *name != '_' && *name != '.')
3016
return false;
3017
} while (*++name != '\0');
3018
3019
return true;
3020
}
3021
3022
/*
3023
* Gets the parent of an item. Returns its id (<0 because the
3024
* parent is always a bucket), type id (>0 for the same reason,
3025
* via @parent_type_id) and location (via @parent_loc). If no
3026
* parent, returns 0.
3027
*
3028
* Does a linear search, as there are no parent pointers of any
3029
* kind. Note that the result is ambiguous for items that occur
3030
* multiple times in the map.
3031
*/
3032
static int get_immediate_parent(struct crush_map *c, int id,
3033
u16 *parent_type_id,
3034
struct crush_loc *parent_loc)
3035
{
3036
struct crush_bucket *b;
3037
struct crush_name_node *type_cn, *cn;
3038
int i, j;
3039
3040
for (i = 0; i < c->max_buckets; i++) {
3041
b = c->buckets[i];
3042
if (!b)
3043
continue;
3044
3045
/* ignore per-class shadow hierarchy */
3046
cn = lookup_crush_name(&c->names, b->id);
3047
if (!cn || !is_valid_crush_name(cn->cn_name))
3048
continue;
3049
3050
for (j = 0; j < b->size; j++) {
3051
if (b->items[j] != id)
3052
continue;
3053
3054
*parent_type_id = b->type;
3055
type_cn = lookup_crush_name(&c->type_names, b->type);
3056
parent_loc->cl_type_name = type_cn->cn_name;
3057
parent_loc->cl_name = cn->cn_name;
3058
return b->id;
3059
}
3060
}
3061
3062
return 0; /* no parent */
3063
}
3064
3065
/*
3066
* Calculates the locality/distance from an item to a client
3067
* location expressed in terms of CRUSH hierarchy as a set of
3068
* (bucket type name, bucket name) pairs. Specifically, looks
3069
* for the lowest-valued bucket type for which the location of
3070
* @id matches one of the locations in @locs, so for standard
3071
* bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3072
* a matching host is closer than a matching rack and a matching
3073
* data center is closer than a matching zone.
3074
*
3075
* Specifying multiple locations (a "multipath" location) such
3076
* as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3077
* is a multimap. The locality will be:
3078
*
3079
* - 3 for OSDs in racks foo1 and foo2
3080
* - 8 for OSDs in data center bar
3081
* - -1 for all other OSDs
3082
*
3083
* The lowest possible bucket type is 1, so the best locality
3084
* for an OSD is 1 (i.e. a matching host). Locality 0 would be
3085
* the OSD itself.
3086
*/
3087
int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3088
struct rb_root *locs)
3089
{
3090
struct crush_loc loc;
3091
u16 type_id;
3092
3093
/*
3094
* Instead of repeated get_immediate_parent() calls,
3095
* the location of @id could be obtained with a single
3096
* depth-first traversal.
3097
*/
3098
for (;;) {
3099
id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3100
if (id >= 0)
3101
return -1; /* not local */
3102
3103
if (lookup_crush_loc(locs, &loc))
3104
return type_id;
3105
}
3106
}
3107
3108