Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/core/dev.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* NET3 Protocol independent device support routines.
4
*
5
* Derived from the non IP parts of dev.c 1.0.19
6
* Authors: Ross Biro
7
* Fred N. van Kempen, <[email protected]>
8
* Mark Evans, <[email protected]>
9
*
10
* Additional Authors:
11
* Florian la Roche <[email protected]>
12
* Alan Cox <[email protected]>
13
* David Hinds <[email protected]>
14
* Alexey Kuznetsov <[email protected]>
15
* Adam Sulmicki <[email protected]>
16
* Pekka Riikonen <[email protected]>
17
*
18
* Changes:
19
* D.J. Barrow : Fixed bug where dev->refcnt gets set
20
* to 2 if register_netdev gets called
21
* before net_dev_init & also removed a
22
* few lines of code in the process.
23
* Alan Cox : device private ioctl copies fields back.
24
* Alan Cox : Transmit queue code does relevant
25
* stunts to keep the queue safe.
26
* Alan Cox : Fixed double lock.
27
* Alan Cox : Fixed promisc NULL pointer trap
28
* ???????? : Support the full private ioctl range
29
* Alan Cox : Moved ioctl permission check into
30
* drivers
31
* Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32
* Alan Cox : 100 backlog just doesn't cut it when
33
* you start doing multicast video 8)
34
* Alan Cox : Rewrote net_bh and list manager.
35
* Alan Cox : Fix ETH_P_ALL echoback lengths.
36
* Alan Cox : Took out transmit every packet pass
37
* Saved a few bytes in the ioctl handler
38
* Alan Cox : Network driver sets packet type before
39
* calling netif_rx. Saves a function
40
* call a packet.
41
* Alan Cox : Hashed net_bh()
42
* Richard Kooijman: Timestamp fixes.
43
* Alan Cox : Wrong field in SIOCGIFDSTADDR
44
* Alan Cox : Device lock protection.
45
* Alan Cox : Fixed nasty side effect of device close
46
* changes.
47
* Rudi Cilibrasi : Pass the right thing to
48
* set_mac_address()
49
* Dave Miller : 32bit quantity for the device lock to
50
* make it work out on a Sparc.
51
* Bjorn Ekwall : Added KERNELD hack.
52
* Alan Cox : Cleaned up the backlog initialise.
53
* Craig Metz : SIOCGIFCONF fix if space for under
54
* 1 device.
55
* Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56
* is no device open function.
57
* Andi Kleen : Fix error reporting for SIOCGIFCONF
58
* Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59
* Cyrus Durgin : Cleaned for KMOD
60
* Adam Sulmicki : Bug Fix : Network Device Unload
61
* A network device unload needs to purge
62
* the backlog queue.
63
* Paul Rusty Russell : SIOCSIFNAME
64
* Pekka Riikonen : Netdev boot-time settings code
65
* Andrew Morton : Make unregister_netdevice wait
66
* indefinitely on dev->refcnt
67
* J Hadi Salim : - Backlog queue sampling
68
* - netif_rx() feedback
69
*/
70
71
#include <linux/uaccess.h>
72
#include <linux/bitmap.h>
73
#include <linux/capability.h>
74
#include <linux/cpu.h>
75
#include <linux/types.h>
76
#include <linux/kernel.h>
77
#include <linux/hash.h>
78
#include <linux/slab.h>
79
#include <linux/sched.h>
80
#include <linux/sched/isolation.h>
81
#include <linux/sched/mm.h>
82
#include <linux/smpboot.h>
83
#include <linux/mutex.h>
84
#include <linux/rwsem.h>
85
#include <linux/string.h>
86
#include <linux/mm.h>
87
#include <linux/socket.h>
88
#include <linux/sockios.h>
89
#include <linux/errno.h>
90
#include <linux/interrupt.h>
91
#include <linux/if_ether.h>
92
#include <linux/netdevice.h>
93
#include <linux/etherdevice.h>
94
#include <linux/ethtool.h>
95
#include <linux/ethtool_netlink.h>
96
#include <linux/skbuff.h>
97
#include <linux/kthread.h>
98
#include <linux/bpf.h>
99
#include <linux/bpf_trace.h>
100
#include <net/net_namespace.h>
101
#include <net/sock.h>
102
#include <net/busy_poll.h>
103
#include <linux/rtnetlink.h>
104
#include <linux/stat.h>
105
#include <net/dsa.h>
106
#include <net/dst.h>
107
#include <net/dst_metadata.h>
108
#include <net/gro.h>
109
#include <net/netdev_queues.h>
110
#include <net/pkt_sched.h>
111
#include <net/pkt_cls.h>
112
#include <net/checksum.h>
113
#include <net/xfrm.h>
114
#include <net/tcx.h>
115
#include <linux/highmem.h>
116
#include <linux/init.h>
117
#include <linux/module.h>
118
#include <linux/netpoll.h>
119
#include <linux/rcupdate.h>
120
#include <linux/delay.h>
121
#include <net/iw_handler.h>
122
#include <asm/current.h>
123
#include <linux/audit.h>
124
#include <linux/dmaengine.h>
125
#include <linux/err.h>
126
#include <linux/ctype.h>
127
#include <linux/if_arp.h>
128
#include <linux/if_vlan.h>
129
#include <linux/ip.h>
130
#include <net/ip.h>
131
#include <net/mpls.h>
132
#include <linux/ipv6.h>
133
#include <linux/in.h>
134
#include <linux/jhash.h>
135
#include <linux/random.h>
136
#include <trace/events/napi.h>
137
#include <trace/events/net.h>
138
#include <trace/events/skb.h>
139
#include <trace/events/qdisc.h>
140
#include <trace/events/xdp.h>
141
#include <linux/inetdevice.h>
142
#include <linux/cpu_rmap.h>
143
#include <linux/static_key.h>
144
#include <linux/hashtable.h>
145
#include <linux/vmalloc.h>
146
#include <linux/if_macvlan.h>
147
#include <linux/errqueue.h>
148
#include <linux/hrtimer.h>
149
#include <linux/netfilter_netdev.h>
150
#include <linux/crash_dump.h>
151
#include <linux/sctp.h>
152
#include <net/udp_tunnel.h>
153
#include <linux/net_namespace.h>
154
#include <linux/indirect_call_wrapper.h>
155
#include <net/devlink.h>
156
#include <linux/pm_runtime.h>
157
#include <linux/prandom.h>
158
#include <linux/once_lite.h>
159
#include <net/netdev_lock.h>
160
#include <net/netdev_rx_queue.h>
161
#include <net/page_pool/types.h>
162
#include <net/page_pool/helpers.h>
163
#include <net/page_pool/memory_provider.h>
164
#include <net/rps.h>
165
#include <linux/phy_link_topology.h>
166
167
#include "dev.h"
168
#include "devmem.h"
169
#include "net-sysfs.h"
170
171
static DEFINE_SPINLOCK(ptype_lock);
172
struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174
static int netif_rx_internal(struct sk_buff *skb);
175
static int call_netdevice_notifiers_extack(unsigned long val,
176
struct net_device *dev,
177
struct netlink_ext_ack *extack);
178
179
static DEFINE_MUTEX(ifalias_mutex);
180
181
/* protects napi_hash addition/deletion and napi_gen_id */
182
static DEFINE_SPINLOCK(napi_hash_lock);
183
184
static unsigned int napi_gen_id = NR_CPUS;
185
static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
187
static inline void dev_base_seq_inc(struct net *net)
188
{
189
unsigned int val = net->dev_base_seq + 1;
190
191
WRITE_ONCE(net->dev_base_seq, val ?: 1);
192
}
193
194
static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195
{
196
unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198
return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199
}
200
201
static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202
{
203
return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204
}
205
206
#ifndef CONFIG_PREEMPT_RT
207
208
static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
210
static int __init setup_backlog_napi_threads(char *arg)
211
{
212
static_branch_enable(&use_backlog_threads_key);
213
return 0;
214
}
215
early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
217
static bool use_backlog_threads(void)
218
{
219
return static_branch_unlikely(&use_backlog_threads_key);
220
}
221
222
#else
223
224
static bool use_backlog_threads(void)
225
{
226
return true;
227
}
228
229
#endif
230
231
static inline void backlog_lock_irq_save(struct softnet_data *sd,
232
unsigned long *flags)
233
{
234
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235
spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236
else
237
local_irq_save(*flags);
238
}
239
240
static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241
{
242
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243
spin_lock_irq(&sd->input_pkt_queue.lock);
244
else
245
local_irq_disable();
246
}
247
248
static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249
unsigned long *flags)
250
{
251
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252
spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253
else
254
local_irq_restore(*flags);
255
}
256
257
static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258
{
259
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260
spin_unlock_irq(&sd->input_pkt_queue.lock);
261
else
262
local_irq_enable();
263
}
264
265
static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266
const char *name)
267
{
268
struct netdev_name_node *name_node;
269
270
name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271
if (!name_node)
272
return NULL;
273
INIT_HLIST_NODE(&name_node->hlist);
274
name_node->dev = dev;
275
name_node->name = name;
276
return name_node;
277
}
278
279
static struct netdev_name_node *
280
netdev_name_node_head_alloc(struct net_device *dev)
281
{
282
struct netdev_name_node *name_node;
283
284
name_node = netdev_name_node_alloc(dev, dev->name);
285
if (!name_node)
286
return NULL;
287
INIT_LIST_HEAD(&name_node->list);
288
return name_node;
289
}
290
291
static void netdev_name_node_free(struct netdev_name_node *name_node)
292
{
293
kfree(name_node);
294
}
295
296
static void netdev_name_node_add(struct net *net,
297
struct netdev_name_node *name_node)
298
{
299
hlist_add_head_rcu(&name_node->hlist,
300
dev_name_hash(net, name_node->name));
301
}
302
303
static void netdev_name_node_del(struct netdev_name_node *name_node)
304
{
305
hlist_del_rcu(&name_node->hlist);
306
}
307
308
static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309
const char *name)
310
{
311
struct hlist_head *head = dev_name_hash(net, name);
312
struct netdev_name_node *name_node;
313
314
hlist_for_each_entry(name_node, head, hlist)
315
if (!strcmp(name_node->name, name))
316
return name_node;
317
return NULL;
318
}
319
320
static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321
const char *name)
322
{
323
struct hlist_head *head = dev_name_hash(net, name);
324
struct netdev_name_node *name_node;
325
326
hlist_for_each_entry_rcu(name_node, head, hlist)
327
if (!strcmp(name_node->name, name))
328
return name_node;
329
return NULL;
330
}
331
332
bool netdev_name_in_use(struct net *net, const char *name)
333
{
334
return netdev_name_node_lookup(net, name);
335
}
336
EXPORT_SYMBOL(netdev_name_in_use);
337
338
int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339
{
340
struct netdev_name_node *name_node;
341
struct net *net = dev_net(dev);
342
343
name_node = netdev_name_node_lookup(net, name);
344
if (name_node)
345
return -EEXIST;
346
name_node = netdev_name_node_alloc(dev, name);
347
if (!name_node)
348
return -ENOMEM;
349
netdev_name_node_add(net, name_node);
350
/* The node that holds dev->name acts as a head of per-device list. */
351
list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353
return 0;
354
}
355
356
static void netdev_name_node_alt_free(struct rcu_head *head)
357
{
358
struct netdev_name_node *name_node =
359
container_of(head, struct netdev_name_node, rcu);
360
361
kfree(name_node->name);
362
netdev_name_node_free(name_node);
363
}
364
365
static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366
{
367
netdev_name_node_del(name_node);
368
list_del(&name_node->list);
369
call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370
}
371
372
int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373
{
374
struct netdev_name_node *name_node;
375
struct net *net = dev_net(dev);
376
377
name_node = netdev_name_node_lookup(net, name);
378
if (!name_node)
379
return -ENOENT;
380
/* lookup might have found our primary name or a name belonging
381
* to another device.
382
*/
383
if (name_node == dev->name_node || name_node->dev != dev)
384
return -EINVAL;
385
386
__netdev_name_node_alt_destroy(name_node);
387
return 0;
388
}
389
390
static void netdev_name_node_alt_flush(struct net_device *dev)
391
{
392
struct netdev_name_node *name_node, *tmp;
393
394
list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395
list_del(&name_node->list);
396
netdev_name_node_alt_free(&name_node->rcu);
397
}
398
}
399
400
/* Device list insertion */
401
static void list_netdevice(struct net_device *dev)
402
{
403
struct netdev_name_node *name_node;
404
struct net *net = dev_net(dev);
405
406
ASSERT_RTNL();
407
408
list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409
netdev_name_node_add(net, dev->name_node);
410
hlist_add_head_rcu(&dev->index_hlist,
411
dev_index_hash(net, dev->ifindex));
412
413
netdev_for_each_altname(dev, name_node)
414
netdev_name_node_add(net, name_node);
415
416
/* We reserved the ifindex, this can't fail */
417
WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419
dev_base_seq_inc(net);
420
}
421
422
/* Device list removal
423
* caller must respect a RCU grace period before freeing/reusing dev
424
*/
425
static void unlist_netdevice(struct net_device *dev)
426
{
427
struct netdev_name_node *name_node;
428
struct net *net = dev_net(dev);
429
430
ASSERT_RTNL();
431
432
xa_erase(&net->dev_by_index, dev->ifindex);
433
434
netdev_for_each_altname(dev, name_node)
435
netdev_name_node_del(name_node);
436
437
/* Unlink dev from the device chain */
438
list_del_rcu(&dev->dev_list);
439
netdev_name_node_del(dev->name_node);
440
hlist_del_rcu(&dev->index_hlist);
441
442
dev_base_seq_inc(dev_net(dev));
443
}
444
445
/*
446
* Our notifier list
447
*/
448
449
static RAW_NOTIFIER_HEAD(netdev_chain);
450
451
/*
452
* Device drivers call our routines to queue packets here. We empty the
453
* queue in the local softnet handler.
454
*/
455
456
DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457
.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458
};
459
EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461
/* Page_pool has a lockless array/stack to alloc/recycle pages.
462
* PP consumers must pay attention to run APIs in the appropriate context
463
* (e.g. NAPI context).
464
*/
465
DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466
.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467
};
468
469
#ifdef CONFIG_LOCKDEP
470
/*
471
* register_netdevice() inits txq->_xmit_lock and sets lockdep class
472
* according to dev->type
473
*/
474
static const unsigned short netdev_lock_type[] = {
475
ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476
ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477
ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478
ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479
ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480
ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481
ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482
ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483
ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484
ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485
ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486
ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487
ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488
ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489
ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491
static const char *const netdev_lock_name[] = {
492
"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493
"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494
"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495
"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496
"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497
"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498
"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499
"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500
"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501
"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502
"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503
"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504
"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505
"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506
"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508
static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509
static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
511
static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512
{
513
int i;
514
515
for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516
if (netdev_lock_type[i] == dev_type)
517
return i;
518
/* the last key is used by default */
519
return ARRAY_SIZE(netdev_lock_type) - 1;
520
}
521
522
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523
unsigned short dev_type)
524
{
525
int i;
526
527
i = netdev_lock_pos(dev_type);
528
lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529
netdev_lock_name[i]);
530
}
531
532
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533
{
534
int i;
535
536
i = netdev_lock_pos(dev->type);
537
lockdep_set_class_and_name(&dev->addr_list_lock,
538
&netdev_addr_lock_key[i],
539
netdev_lock_name[i]);
540
}
541
#else
542
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543
unsigned short dev_type)
544
{
545
}
546
547
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548
{
549
}
550
#endif
551
552
/*******************************************************************************
553
*
554
* Protocol management and registration routines
555
*
556
*******************************************************************************/
557
558
559
/*
560
* Add a protocol ID to the list. Now that the input handler is
561
* smarter we can dispense with all the messy stuff that used to be
562
* here.
563
*
564
* BEWARE!!! Protocol handlers, mangling input packets,
565
* MUST BE last in hash buckets and checking protocol handlers
566
* MUST start from promiscuous ptype_all chain in net_bh.
567
* It is true now, do not change it.
568
* Explanation follows: if protocol handler, mangling packet, will
569
* be the first on list, it is not able to sense, that packet
570
* is cloned and should be copied-on-write, so that it will
571
* change it and subsequent readers will get broken packet.
572
* --ANK (980803)
573
*/
574
575
static inline struct list_head *ptype_head(const struct packet_type *pt)
576
{
577
if (pt->type == htons(ETH_P_ALL)) {
578
if (!pt->af_packet_net && !pt->dev)
579
return NULL;
580
581
return pt->dev ? &pt->dev->ptype_all :
582
&pt->af_packet_net->ptype_all;
583
}
584
585
if (pt->dev)
586
return &pt->dev->ptype_specific;
587
588
return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589
&ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590
}
591
592
/**
593
* dev_add_pack - add packet handler
594
* @pt: packet type declaration
595
*
596
* Add a protocol handler to the networking stack. The passed &packet_type
597
* is linked into kernel lists and may not be freed until it has been
598
* removed from the kernel lists.
599
*
600
* This call does not sleep therefore it can not
601
* guarantee all CPU's that are in middle of receiving packets
602
* will see the new packet type (until the next received packet).
603
*/
604
605
void dev_add_pack(struct packet_type *pt)
606
{
607
struct list_head *head = ptype_head(pt);
608
609
if (WARN_ON_ONCE(!head))
610
return;
611
612
spin_lock(&ptype_lock);
613
list_add_rcu(&pt->list, head);
614
spin_unlock(&ptype_lock);
615
}
616
EXPORT_SYMBOL(dev_add_pack);
617
618
/**
619
* __dev_remove_pack - remove packet handler
620
* @pt: packet type declaration
621
*
622
* Remove a protocol handler that was previously added to the kernel
623
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
624
* from the kernel lists and can be freed or reused once this function
625
* returns.
626
*
627
* The packet type might still be in use by receivers
628
* and must not be freed until after all the CPU's have gone
629
* through a quiescent state.
630
*/
631
void __dev_remove_pack(struct packet_type *pt)
632
{
633
struct list_head *head = ptype_head(pt);
634
struct packet_type *pt1;
635
636
if (!head)
637
return;
638
639
spin_lock(&ptype_lock);
640
641
list_for_each_entry(pt1, head, list) {
642
if (pt == pt1) {
643
list_del_rcu(&pt->list);
644
goto out;
645
}
646
}
647
648
pr_warn("dev_remove_pack: %p not found\n", pt);
649
out:
650
spin_unlock(&ptype_lock);
651
}
652
EXPORT_SYMBOL(__dev_remove_pack);
653
654
/**
655
* dev_remove_pack - remove packet handler
656
* @pt: packet type declaration
657
*
658
* Remove a protocol handler that was previously added to the kernel
659
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
660
* from the kernel lists and can be freed or reused once this function
661
* returns.
662
*
663
* This call sleeps to guarantee that no CPU is looking at the packet
664
* type after return.
665
*/
666
void dev_remove_pack(struct packet_type *pt)
667
{
668
__dev_remove_pack(pt);
669
670
synchronize_net();
671
}
672
EXPORT_SYMBOL(dev_remove_pack);
673
674
675
/*******************************************************************************
676
*
677
* Device Interface Subroutines
678
*
679
*******************************************************************************/
680
681
/**
682
* dev_get_iflink - get 'iflink' value of a interface
683
* @dev: targeted interface
684
*
685
* Indicates the ifindex the interface is linked to.
686
* Physical interfaces have the same 'ifindex' and 'iflink' values.
687
*/
688
689
int dev_get_iflink(const struct net_device *dev)
690
{
691
if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692
return dev->netdev_ops->ndo_get_iflink(dev);
693
694
return READ_ONCE(dev->ifindex);
695
}
696
EXPORT_SYMBOL(dev_get_iflink);
697
698
/**
699
* dev_fill_metadata_dst - Retrieve tunnel egress information.
700
* @dev: targeted interface
701
* @skb: The packet.
702
*
703
* For better visibility of tunnel traffic OVS needs to retrieve
704
* egress tunnel information for a packet. Following API allows
705
* user to get this info.
706
*/
707
int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708
{
709
struct ip_tunnel_info *info;
710
711
if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712
return -EINVAL;
713
714
info = skb_tunnel_info_unclone(skb);
715
if (!info)
716
return -ENOMEM;
717
if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718
return -EINVAL;
719
720
return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721
}
722
EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724
static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725
{
726
int k = stack->num_paths++;
727
728
if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729
return NULL;
730
731
return &stack->path[k];
732
}
733
734
int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735
struct net_device_path_stack *stack)
736
{
737
const struct net_device *last_dev;
738
struct net_device_path_ctx ctx = {
739
.dev = dev,
740
};
741
struct net_device_path *path;
742
int ret = 0;
743
744
memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745
stack->num_paths = 0;
746
while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747
last_dev = ctx.dev;
748
path = dev_fwd_path(stack);
749
if (!path)
750
return -1;
751
752
memset(path, 0, sizeof(struct net_device_path));
753
ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754
if (ret < 0)
755
return -1;
756
757
if (WARN_ON_ONCE(last_dev == ctx.dev))
758
return -1;
759
}
760
761
if (!ctx.dev)
762
return ret;
763
764
path = dev_fwd_path(stack);
765
if (!path)
766
return -1;
767
path->type = DEV_PATH_ETHERNET;
768
path->dev = ctx.dev;
769
770
return ret;
771
}
772
EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774
/* must be called under rcu_read_lock(), as we dont take a reference */
775
static struct napi_struct *napi_by_id(unsigned int napi_id)
776
{
777
unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778
struct napi_struct *napi;
779
780
hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781
if (napi->napi_id == napi_id)
782
return napi;
783
784
return NULL;
785
}
786
787
/* must be called under rcu_read_lock(), as we dont take a reference */
788
static struct napi_struct *
789
netdev_napi_by_id(struct net *net, unsigned int napi_id)
790
{
791
struct napi_struct *napi;
792
793
napi = napi_by_id(napi_id);
794
if (!napi)
795
return NULL;
796
797
if (WARN_ON_ONCE(!napi->dev))
798
return NULL;
799
if (!net_eq(net, dev_net(napi->dev)))
800
return NULL;
801
802
return napi;
803
}
804
805
/**
806
* netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807
* @net: the applicable net namespace
808
* @napi_id: ID of a NAPI of a target device
809
*
810
* Find a NAPI instance with @napi_id. Lock its device.
811
* The device must be in %NETREG_REGISTERED state for lookup to succeed.
812
* netdev_unlock() must be called to release it.
813
*
814
* Return: pointer to NAPI, its device with lock held, NULL if not found.
815
*/
816
struct napi_struct *
817
netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818
{
819
struct napi_struct *napi;
820
struct net_device *dev;
821
822
rcu_read_lock();
823
napi = netdev_napi_by_id(net, napi_id);
824
if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825
rcu_read_unlock();
826
return NULL;
827
}
828
829
dev = napi->dev;
830
dev_hold(dev);
831
rcu_read_unlock();
832
833
dev = __netdev_put_lock(dev, net);
834
if (!dev)
835
return NULL;
836
837
rcu_read_lock();
838
napi = netdev_napi_by_id(net, napi_id);
839
if (napi && napi->dev != dev)
840
napi = NULL;
841
rcu_read_unlock();
842
843
if (!napi)
844
netdev_unlock(dev);
845
return napi;
846
}
847
848
/**
849
* __dev_get_by_name - find a device by its name
850
* @net: the applicable net namespace
851
* @name: name to find
852
*
853
* Find an interface by name. Must be called under RTNL semaphore.
854
* If the name is found a pointer to the device is returned.
855
* If the name is not found then %NULL is returned. The
856
* reference counters are not incremented so the caller must be
857
* careful with locks.
858
*/
859
860
struct net_device *__dev_get_by_name(struct net *net, const char *name)
861
{
862
struct netdev_name_node *node_name;
863
864
node_name = netdev_name_node_lookup(net, name);
865
return node_name ? node_name->dev : NULL;
866
}
867
EXPORT_SYMBOL(__dev_get_by_name);
868
869
/**
870
* dev_get_by_name_rcu - find a device by its name
871
* @net: the applicable net namespace
872
* @name: name to find
873
*
874
* Find an interface by name.
875
* If the name is found a pointer to the device is returned.
876
* If the name is not found then %NULL is returned.
877
* The reference counters are not incremented so the caller must be
878
* careful with locks. The caller must hold RCU lock.
879
*/
880
881
struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882
{
883
struct netdev_name_node *node_name;
884
885
node_name = netdev_name_node_lookup_rcu(net, name);
886
return node_name ? node_name->dev : NULL;
887
}
888
EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890
/* Deprecated for new users, call netdev_get_by_name() instead */
891
struct net_device *dev_get_by_name(struct net *net, const char *name)
892
{
893
struct net_device *dev;
894
895
rcu_read_lock();
896
dev = dev_get_by_name_rcu(net, name);
897
dev_hold(dev);
898
rcu_read_unlock();
899
return dev;
900
}
901
EXPORT_SYMBOL(dev_get_by_name);
902
903
/**
904
* netdev_get_by_name() - find a device by its name
905
* @net: the applicable net namespace
906
* @name: name to find
907
* @tracker: tracking object for the acquired reference
908
* @gfp: allocation flags for the tracker
909
*
910
* Find an interface by name. This can be called from any
911
* context and does its own locking. The returned handle has
912
* the usage count incremented and the caller must use netdev_put() to
913
* release it when it is no longer needed. %NULL is returned if no
914
* matching device is found.
915
*/
916
struct net_device *netdev_get_by_name(struct net *net, const char *name,
917
netdevice_tracker *tracker, gfp_t gfp)
918
{
919
struct net_device *dev;
920
921
dev = dev_get_by_name(net, name);
922
if (dev)
923
netdev_tracker_alloc(dev, tracker, gfp);
924
return dev;
925
}
926
EXPORT_SYMBOL(netdev_get_by_name);
927
928
/**
929
* __dev_get_by_index - find a device by its ifindex
930
* @net: the applicable net namespace
931
* @ifindex: index of device
932
*
933
* Search for an interface by index. Returns %NULL if the device
934
* is not found or a pointer to the device. The device has not
935
* had its reference counter increased so the caller must be careful
936
* about locking. The caller must hold the RTNL semaphore.
937
*/
938
939
struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940
{
941
struct net_device *dev;
942
struct hlist_head *head = dev_index_hash(net, ifindex);
943
944
hlist_for_each_entry(dev, head, index_hlist)
945
if (dev->ifindex == ifindex)
946
return dev;
947
948
return NULL;
949
}
950
EXPORT_SYMBOL(__dev_get_by_index);
951
952
/**
953
* dev_get_by_index_rcu - find a device by its ifindex
954
* @net: the applicable net namespace
955
* @ifindex: index of device
956
*
957
* Search for an interface by index. Returns %NULL if the device
958
* is not found or a pointer to the device. The device has not
959
* had its reference counter increased so the caller must be careful
960
* about locking. The caller must hold RCU lock.
961
*/
962
963
struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964
{
965
struct net_device *dev;
966
struct hlist_head *head = dev_index_hash(net, ifindex);
967
968
hlist_for_each_entry_rcu(dev, head, index_hlist)
969
if (dev->ifindex == ifindex)
970
return dev;
971
972
return NULL;
973
}
974
EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976
/* Deprecated for new users, call netdev_get_by_index() instead */
977
struct net_device *dev_get_by_index(struct net *net, int ifindex)
978
{
979
struct net_device *dev;
980
981
rcu_read_lock();
982
dev = dev_get_by_index_rcu(net, ifindex);
983
dev_hold(dev);
984
rcu_read_unlock();
985
return dev;
986
}
987
EXPORT_SYMBOL(dev_get_by_index);
988
989
/**
990
* netdev_get_by_index() - find a device by its ifindex
991
* @net: the applicable net namespace
992
* @ifindex: index of device
993
* @tracker: tracking object for the acquired reference
994
* @gfp: allocation flags for the tracker
995
*
996
* Search for an interface by index. Returns NULL if the device
997
* is not found or a pointer to the device. The device returned has
998
* had a reference added and the pointer is safe until the user calls
999
* netdev_put() to indicate they have finished with it.
1000
*/
1001
struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002
netdevice_tracker *tracker, gfp_t gfp)
1003
{
1004
struct net_device *dev;
1005
1006
dev = dev_get_by_index(net, ifindex);
1007
if (dev)
1008
netdev_tracker_alloc(dev, tracker, gfp);
1009
return dev;
1010
}
1011
EXPORT_SYMBOL(netdev_get_by_index);
1012
1013
/**
1014
* dev_get_by_napi_id - find a device by napi_id
1015
* @napi_id: ID of the NAPI struct
1016
*
1017
* Search for an interface by NAPI ID. Returns %NULL if the device
1018
* is not found or a pointer to the device. The device has not had
1019
* its reference counter increased so the caller must be careful
1020
* about locking. The caller must hold RCU lock.
1021
*/
1022
struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023
{
1024
struct napi_struct *napi;
1025
1026
WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028
if (!napi_id_valid(napi_id))
1029
return NULL;
1030
1031
napi = napi_by_id(napi_id);
1032
1033
return napi ? napi->dev : NULL;
1034
}
1035
1036
/* Release the held reference on the net_device, and if the net_device
1037
* is still registered try to lock the instance lock. If device is being
1038
* unregistered NULL will be returned (but the reference has been released,
1039
* either way!)
1040
*
1041
* This helper is intended for locking net_device after it has been looked up
1042
* using a lockless lookup helper. Lock prevents the instance from going away.
1043
*/
1044
struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045
{
1046
netdev_lock(dev);
1047
if (dev->reg_state > NETREG_REGISTERED ||
1048
dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049
netdev_unlock(dev);
1050
dev_put(dev);
1051
return NULL;
1052
}
1053
dev_put(dev);
1054
return dev;
1055
}
1056
1057
static struct net_device *
1058
__netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059
{
1060
netdev_lock_ops_compat(dev);
1061
if (dev->reg_state > NETREG_REGISTERED ||
1062
dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063
netdev_unlock_ops_compat(dev);
1064
dev_put(dev);
1065
return NULL;
1066
}
1067
dev_put(dev);
1068
return dev;
1069
}
1070
1071
/**
1072
* netdev_get_by_index_lock() - find a device by its ifindex
1073
* @net: the applicable net namespace
1074
* @ifindex: index of device
1075
*
1076
* Search for an interface by index. If a valid device
1077
* with @ifindex is found it will be returned with netdev->lock held.
1078
* netdev_unlock() must be called to release it.
1079
*
1080
* Return: pointer to a device with lock held, NULL if not found.
1081
*/
1082
struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083
{
1084
struct net_device *dev;
1085
1086
dev = dev_get_by_index(net, ifindex);
1087
if (!dev)
1088
return NULL;
1089
1090
return __netdev_put_lock(dev, net);
1091
}
1092
1093
struct net_device *
1094
netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095
{
1096
struct net_device *dev;
1097
1098
dev = dev_get_by_index(net, ifindex);
1099
if (!dev)
1100
return NULL;
1101
1102
return __netdev_put_lock_ops_compat(dev, net);
1103
}
1104
1105
struct net_device *
1106
netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107
unsigned long *index)
1108
{
1109
if (dev)
1110
netdev_unlock(dev);
1111
1112
do {
1113
rcu_read_lock();
1114
dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115
if (!dev) {
1116
rcu_read_unlock();
1117
return NULL;
1118
}
1119
dev_hold(dev);
1120
rcu_read_unlock();
1121
1122
dev = __netdev_put_lock(dev, net);
1123
if (dev)
1124
return dev;
1125
1126
(*index)++;
1127
} while (true);
1128
}
1129
1130
struct net_device *
1131
netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132
unsigned long *index)
1133
{
1134
if (dev)
1135
netdev_unlock_ops_compat(dev);
1136
1137
do {
1138
rcu_read_lock();
1139
dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140
if (!dev) {
1141
rcu_read_unlock();
1142
return NULL;
1143
}
1144
dev_hold(dev);
1145
rcu_read_unlock();
1146
1147
dev = __netdev_put_lock_ops_compat(dev, net);
1148
if (dev)
1149
return dev;
1150
1151
(*index)++;
1152
} while (true);
1153
}
1154
1155
static DEFINE_SEQLOCK(netdev_rename_lock);
1156
1157
void netdev_copy_name(struct net_device *dev, char *name)
1158
{
1159
unsigned int seq;
1160
1161
do {
1162
seq = read_seqbegin(&netdev_rename_lock);
1163
strscpy(name, dev->name, IFNAMSIZ);
1164
} while (read_seqretry(&netdev_rename_lock, seq));
1165
}
1166
1167
/**
1168
* netdev_get_name - get a netdevice name, knowing its ifindex.
1169
* @net: network namespace
1170
* @name: a pointer to the buffer where the name will be stored.
1171
* @ifindex: the ifindex of the interface to get the name from.
1172
*/
1173
int netdev_get_name(struct net *net, char *name, int ifindex)
1174
{
1175
struct net_device *dev;
1176
int ret;
1177
1178
rcu_read_lock();
1179
1180
dev = dev_get_by_index_rcu(net, ifindex);
1181
if (!dev) {
1182
ret = -ENODEV;
1183
goto out;
1184
}
1185
1186
netdev_copy_name(dev, name);
1187
1188
ret = 0;
1189
out:
1190
rcu_read_unlock();
1191
return ret;
1192
}
1193
1194
static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195
const char *ha)
1196
{
1197
return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198
}
1199
1200
/**
1201
* dev_getbyhwaddr_rcu - find a device by its hardware address
1202
* @net: the applicable net namespace
1203
* @type: media type of device
1204
* @ha: hardware address
1205
*
1206
* Search for an interface by MAC address. Returns NULL if the device
1207
* is not found or a pointer to the device.
1208
* The caller must hold RCU.
1209
* The returned device has not had its ref count increased
1210
* and the caller must therefore be careful about locking
1211
*
1212
*/
1213
1214
struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215
const char *ha)
1216
{
1217
struct net_device *dev;
1218
1219
for_each_netdev_rcu(net, dev)
1220
if (dev_addr_cmp(dev, type, ha))
1221
return dev;
1222
1223
return NULL;
1224
}
1225
EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227
/**
1228
* dev_getbyhwaddr() - find a device by its hardware address
1229
* @net: the applicable net namespace
1230
* @type: media type of device
1231
* @ha: hardware address
1232
*
1233
* Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234
* rtnl_lock.
1235
*
1236
* Context: rtnl_lock() must be held.
1237
* Return: pointer to the net_device, or NULL if not found
1238
*/
1239
struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240
const char *ha)
1241
{
1242
struct net_device *dev;
1243
1244
ASSERT_RTNL();
1245
for_each_netdev(net, dev)
1246
if (dev_addr_cmp(dev, type, ha))
1247
return dev;
1248
1249
return NULL;
1250
}
1251
EXPORT_SYMBOL(dev_getbyhwaddr);
1252
1253
struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254
{
1255
struct net_device *dev, *ret = NULL;
1256
1257
rcu_read_lock();
1258
for_each_netdev_rcu(net, dev)
1259
if (dev->type == type) {
1260
dev_hold(dev);
1261
ret = dev;
1262
break;
1263
}
1264
rcu_read_unlock();
1265
return ret;
1266
}
1267
EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269
/**
1270
* netdev_get_by_flags_rcu - find any device with given flags
1271
* @net: the applicable net namespace
1272
* @tracker: tracking object for the acquired reference
1273
* @if_flags: IFF_* values
1274
* @mask: bitmask of bits in if_flags to check
1275
*
1276
* Search for any interface with the given flags.
1277
*
1278
* Context: rcu_read_lock() must be held.
1279
* Returns: NULL if a device is not found or a pointer to the device.
1280
*/
1281
struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282
unsigned short if_flags, unsigned short mask)
1283
{
1284
struct net_device *dev;
1285
1286
for_each_netdev_rcu(net, dev) {
1287
if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288
netdev_hold(dev, tracker, GFP_ATOMIC);
1289
return dev;
1290
}
1291
}
1292
1293
return NULL;
1294
}
1295
EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296
1297
/**
1298
* dev_valid_name - check if name is okay for network device
1299
* @name: name string
1300
*
1301
* Network device names need to be valid file names to
1302
* allow sysfs to work. We also disallow any kind of
1303
* whitespace.
1304
*/
1305
bool dev_valid_name(const char *name)
1306
{
1307
if (*name == '\0')
1308
return false;
1309
if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310
return false;
1311
if (!strcmp(name, ".") || !strcmp(name, ".."))
1312
return false;
1313
1314
while (*name) {
1315
if (*name == '/' || *name == ':' || isspace(*name))
1316
return false;
1317
name++;
1318
}
1319
return true;
1320
}
1321
EXPORT_SYMBOL(dev_valid_name);
1322
1323
/**
1324
* __dev_alloc_name - allocate a name for a device
1325
* @net: network namespace to allocate the device name in
1326
* @name: name format string
1327
* @res: result name string
1328
*
1329
* Passed a format string - eg "lt%d" it will try and find a suitable
1330
* id. It scans list of devices to build up a free map, then chooses
1331
* the first empty slot. The caller must hold the dev_base or rtnl lock
1332
* while allocating the name and adding the device in order to avoid
1333
* duplicates.
1334
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335
* Returns the number of the unit assigned or a negative errno code.
1336
*/
1337
1338
static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339
{
1340
int i = 0;
1341
const char *p;
1342
const int max_netdevices = 8*PAGE_SIZE;
1343
unsigned long *inuse;
1344
struct net_device *d;
1345
char buf[IFNAMSIZ];
1346
1347
/* Verify the string as this thing may have come from the user.
1348
* There must be one "%d" and no other "%" characters.
1349
*/
1350
p = strchr(name, '%');
1351
if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352
return -EINVAL;
1353
1354
/* Use one page as a bit array of possible slots */
1355
inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356
if (!inuse)
1357
return -ENOMEM;
1358
1359
for_each_netdev(net, d) {
1360
struct netdev_name_node *name_node;
1361
1362
netdev_for_each_altname(d, name_node) {
1363
if (!sscanf(name_node->name, name, &i))
1364
continue;
1365
if (i < 0 || i >= max_netdevices)
1366
continue;
1367
1368
/* avoid cases where sscanf is not exact inverse of printf */
1369
snprintf(buf, IFNAMSIZ, name, i);
1370
if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371
__set_bit(i, inuse);
1372
}
1373
if (!sscanf(d->name, name, &i))
1374
continue;
1375
if (i < 0 || i >= max_netdevices)
1376
continue;
1377
1378
/* avoid cases where sscanf is not exact inverse of printf */
1379
snprintf(buf, IFNAMSIZ, name, i);
1380
if (!strncmp(buf, d->name, IFNAMSIZ))
1381
__set_bit(i, inuse);
1382
}
1383
1384
i = find_first_zero_bit(inuse, max_netdevices);
1385
bitmap_free(inuse);
1386
if (i == max_netdevices)
1387
return -ENFILE;
1388
1389
/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390
strscpy(buf, name, IFNAMSIZ);
1391
snprintf(res, IFNAMSIZ, buf, i);
1392
return i;
1393
}
1394
1395
/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1396
static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397
const char *want_name, char *out_name,
1398
int dup_errno)
1399
{
1400
if (!dev_valid_name(want_name))
1401
return -EINVAL;
1402
1403
if (strchr(want_name, '%'))
1404
return __dev_alloc_name(net, want_name, out_name);
1405
1406
if (netdev_name_in_use(net, want_name))
1407
return -dup_errno;
1408
if (out_name != want_name)
1409
strscpy(out_name, want_name, IFNAMSIZ);
1410
return 0;
1411
}
1412
1413
/**
1414
* dev_alloc_name - allocate a name for a device
1415
* @dev: device
1416
* @name: name format string
1417
*
1418
* Passed a format string - eg "lt%d" it will try and find a suitable
1419
* id. It scans list of devices to build up a free map, then chooses
1420
* the first empty slot. The caller must hold the dev_base or rtnl lock
1421
* while allocating the name and adding the device in order to avoid
1422
* duplicates.
1423
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424
* Returns the number of the unit assigned or a negative errno code.
1425
*/
1426
1427
int dev_alloc_name(struct net_device *dev, const char *name)
1428
{
1429
return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430
}
1431
EXPORT_SYMBOL(dev_alloc_name);
1432
1433
static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434
const char *name)
1435
{
1436
int ret;
1437
1438
ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439
return ret < 0 ? ret : 0;
1440
}
1441
1442
int netif_change_name(struct net_device *dev, const char *newname)
1443
{
1444
struct net *net = dev_net(dev);
1445
unsigned char old_assign_type;
1446
char oldname[IFNAMSIZ];
1447
int err = 0;
1448
int ret;
1449
1450
ASSERT_RTNL_NET(net);
1451
1452
if (!strncmp(newname, dev->name, IFNAMSIZ))
1453
return 0;
1454
1455
memcpy(oldname, dev->name, IFNAMSIZ);
1456
1457
write_seqlock_bh(&netdev_rename_lock);
1458
err = dev_get_valid_name(net, dev, newname);
1459
write_sequnlock_bh(&netdev_rename_lock);
1460
1461
if (err < 0)
1462
return err;
1463
1464
if (oldname[0] && !strchr(oldname, '%'))
1465
netdev_info(dev, "renamed from %s%s\n", oldname,
1466
dev->flags & IFF_UP ? " (while UP)" : "");
1467
1468
old_assign_type = dev->name_assign_type;
1469
WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470
1471
rollback:
1472
ret = device_rename(&dev->dev, dev->name);
1473
if (ret) {
1474
write_seqlock_bh(&netdev_rename_lock);
1475
memcpy(dev->name, oldname, IFNAMSIZ);
1476
write_sequnlock_bh(&netdev_rename_lock);
1477
WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478
return ret;
1479
}
1480
1481
netdev_adjacent_rename_links(dev, oldname);
1482
1483
netdev_name_node_del(dev->name_node);
1484
1485
synchronize_net();
1486
1487
netdev_name_node_add(net, dev->name_node);
1488
1489
ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490
ret = notifier_to_errno(ret);
1491
1492
if (ret) {
1493
/* err >= 0 after dev_alloc_name() or stores the first errno */
1494
if (err >= 0) {
1495
err = ret;
1496
write_seqlock_bh(&netdev_rename_lock);
1497
memcpy(dev->name, oldname, IFNAMSIZ);
1498
write_sequnlock_bh(&netdev_rename_lock);
1499
memcpy(oldname, newname, IFNAMSIZ);
1500
WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501
old_assign_type = NET_NAME_RENAMED;
1502
goto rollback;
1503
} else {
1504
netdev_err(dev, "name change rollback failed: %d\n",
1505
ret);
1506
}
1507
}
1508
1509
return err;
1510
}
1511
1512
int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513
{
1514
struct dev_ifalias *new_alias = NULL;
1515
1516
if (len >= IFALIASZ)
1517
return -EINVAL;
1518
1519
if (len) {
1520
new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521
if (!new_alias)
1522
return -ENOMEM;
1523
1524
memcpy(new_alias->ifalias, alias, len);
1525
new_alias->ifalias[len] = 0;
1526
}
1527
1528
mutex_lock(&ifalias_mutex);
1529
new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530
mutex_is_locked(&ifalias_mutex));
1531
mutex_unlock(&ifalias_mutex);
1532
1533
if (new_alias)
1534
kfree_rcu(new_alias, rcuhead);
1535
1536
return len;
1537
}
1538
1539
/**
1540
* dev_get_alias - get ifalias of a device
1541
* @dev: device
1542
* @name: buffer to store name of ifalias
1543
* @len: size of buffer
1544
*
1545
* get ifalias for a device. Caller must make sure dev cannot go
1546
* away, e.g. rcu read lock or own a reference count to device.
1547
*/
1548
int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549
{
1550
const struct dev_ifalias *alias;
1551
int ret = 0;
1552
1553
rcu_read_lock();
1554
alias = rcu_dereference(dev->ifalias);
1555
if (alias)
1556
ret = snprintf(name, len, "%s", alias->ifalias);
1557
rcu_read_unlock();
1558
1559
return ret;
1560
}
1561
1562
/**
1563
* netdev_features_change - device changes features
1564
* @dev: device to cause notification
1565
*
1566
* Called to indicate a device has changed features.
1567
*/
1568
void netdev_features_change(struct net_device *dev)
1569
{
1570
call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571
}
1572
EXPORT_SYMBOL(netdev_features_change);
1573
1574
void netif_state_change(struct net_device *dev)
1575
{
1576
netdev_ops_assert_locked_or_invisible(dev);
1577
1578
if (dev->flags & IFF_UP) {
1579
struct netdev_notifier_change_info change_info = {
1580
.info.dev = dev,
1581
};
1582
1583
call_netdevice_notifiers_info(NETDEV_CHANGE,
1584
&change_info.info);
1585
rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586
}
1587
}
1588
1589
/**
1590
* __netdev_notify_peers - notify network peers about existence of @dev,
1591
* to be called when rtnl lock is already held.
1592
* @dev: network device
1593
*
1594
* Generate traffic such that interested network peers are aware of
1595
* @dev, such as by generating a gratuitous ARP. This may be used when
1596
* a device wants to inform the rest of the network about some sort of
1597
* reconfiguration such as a failover event or virtual machine
1598
* migration.
1599
*/
1600
void __netdev_notify_peers(struct net_device *dev)
1601
{
1602
ASSERT_RTNL();
1603
call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604
call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605
}
1606
EXPORT_SYMBOL(__netdev_notify_peers);
1607
1608
/**
1609
* netdev_notify_peers - notify network peers about existence of @dev
1610
* @dev: network device
1611
*
1612
* Generate traffic such that interested network peers are aware of
1613
* @dev, such as by generating a gratuitous ARP. This may be used when
1614
* a device wants to inform the rest of the network about some sort of
1615
* reconfiguration such as a failover event or virtual machine
1616
* migration.
1617
*/
1618
void netdev_notify_peers(struct net_device *dev)
1619
{
1620
rtnl_lock();
1621
__netdev_notify_peers(dev);
1622
rtnl_unlock();
1623
}
1624
EXPORT_SYMBOL(netdev_notify_peers);
1625
1626
static int napi_threaded_poll(void *data);
1627
1628
static int napi_kthread_create(struct napi_struct *n)
1629
{
1630
int err = 0;
1631
1632
/* Create and wake up the kthread once to put it in
1633
* TASK_INTERRUPTIBLE mode to avoid the blocked task
1634
* warning and work with loadavg.
1635
*/
1636
n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637
n->dev->name, n->napi_id);
1638
if (IS_ERR(n->thread)) {
1639
err = PTR_ERR(n->thread);
1640
pr_err("kthread_run failed with err %d\n", err);
1641
n->thread = NULL;
1642
}
1643
1644
return err;
1645
}
1646
1647
static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648
{
1649
const struct net_device_ops *ops = dev->netdev_ops;
1650
int ret;
1651
1652
ASSERT_RTNL();
1653
dev_addr_check(dev);
1654
1655
if (!netif_device_present(dev)) {
1656
/* may be detached because parent is runtime-suspended */
1657
if (dev->dev.parent)
1658
pm_runtime_resume(dev->dev.parent);
1659
if (!netif_device_present(dev))
1660
return -ENODEV;
1661
}
1662
1663
/* Block netpoll from trying to do any rx path servicing.
1664
* If we don't do this there is a chance ndo_poll_controller
1665
* or ndo_poll may be running while we open the device
1666
*/
1667
netpoll_poll_disable(dev);
1668
1669
ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670
ret = notifier_to_errno(ret);
1671
if (ret)
1672
return ret;
1673
1674
set_bit(__LINK_STATE_START, &dev->state);
1675
1676
netdev_ops_assert_locked(dev);
1677
1678
if (ops->ndo_validate_addr)
1679
ret = ops->ndo_validate_addr(dev);
1680
1681
if (!ret && ops->ndo_open)
1682
ret = ops->ndo_open(dev);
1683
1684
netpoll_poll_enable(dev);
1685
1686
if (ret)
1687
clear_bit(__LINK_STATE_START, &dev->state);
1688
else {
1689
netif_set_up(dev, true);
1690
dev_set_rx_mode(dev);
1691
dev_activate(dev);
1692
add_device_randomness(dev->dev_addr, dev->addr_len);
1693
}
1694
1695
return ret;
1696
}
1697
1698
int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699
{
1700
int ret;
1701
1702
if (dev->flags & IFF_UP)
1703
return 0;
1704
1705
ret = __dev_open(dev, extack);
1706
if (ret < 0)
1707
return ret;
1708
1709
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710
call_netdevice_notifiers(NETDEV_UP, dev);
1711
1712
return ret;
1713
}
1714
1715
static void __dev_close_many(struct list_head *head)
1716
{
1717
struct net_device *dev;
1718
1719
ASSERT_RTNL();
1720
might_sleep();
1721
1722
list_for_each_entry(dev, head, close_list) {
1723
/* Temporarily disable netpoll until the interface is down */
1724
netpoll_poll_disable(dev);
1725
1726
call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727
1728
clear_bit(__LINK_STATE_START, &dev->state);
1729
1730
/* Synchronize to scheduled poll. We cannot touch poll list, it
1731
* can be even on different cpu. So just clear netif_running().
1732
*
1733
* dev->stop() will invoke napi_disable() on all of it's
1734
* napi_struct instances on this device.
1735
*/
1736
smp_mb__after_atomic(); /* Commit netif_running(). */
1737
}
1738
1739
dev_deactivate_many(head);
1740
1741
list_for_each_entry(dev, head, close_list) {
1742
const struct net_device_ops *ops = dev->netdev_ops;
1743
1744
/*
1745
* Call the device specific close. This cannot fail.
1746
* Only if device is UP
1747
*
1748
* We allow it to be called even after a DETACH hot-plug
1749
* event.
1750
*/
1751
1752
netdev_ops_assert_locked(dev);
1753
1754
if (ops->ndo_stop)
1755
ops->ndo_stop(dev);
1756
1757
netif_set_up(dev, false);
1758
netpoll_poll_enable(dev);
1759
}
1760
}
1761
1762
static void __dev_close(struct net_device *dev)
1763
{
1764
LIST_HEAD(single);
1765
1766
list_add(&dev->close_list, &single);
1767
__dev_close_many(&single);
1768
list_del(&single);
1769
}
1770
1771
void netif_close_many(struct list_head *head, bool unlink)
1772
{
1773
struct net_device *dev, *tmp;
1774
1775
/* Remove the devices that don't need to be closed */
1776
list_for_each_entry_safe(dev, tmp, head, close_list)
1777
if (!(dev->flags & IFF_UP))
1778
list_del_init(&dev->close_list);
1779
1780
__dev_close_many(head);
1781
1782
list_for_each_entry_safe(dev, tmp, head, close_list) {
1783
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784
call_netdevice_notifiers(NETDEV_DOWN, dev);
1785
if (unlink)
1786
list_del_init(&dev->close_list);
1787
}
1788
}
1789
EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790
1791
void netif_close(struct net_device *dev)
1792
{
1793
if (dev->flags & IFF_UP) {
1794
LIST_HEAD(single);
1795
1796
list_add(&dev->close_list, &single);
1797
netif_close_many(&single, true);
1798
list_del(&single);
1799
}
1800
}
1801
EXPORT_SYMBOL(netif_close);
1802
1803
void netif_disable_lro(struct net_device *dev)
1804
{
1805
struct net_device *lower_dev;
1806
struct list_head *iter;
1807
1808
dev->wanted_features &= ~NETIF_F_LRO;
1809
netdev_update_features(dev);
1810
1811
if (unlikely(dev->features & NETIF_F_LRO))
1812
netdev_WARN(dev, "failed to disable LRO!\n");
1813
1814
netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815
netdev_lock_ops(lower_dev);
1816
netif_disable_lro(lower_dev);
1817
netdev_unlock_ops(lower_dev);
1818
}
1819
}
1820
EXPORT_IPV6_MOD(netif_disable_lro);
1821
1822
/**
1823
* dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824
* @dev: device
1825
*
1826
* Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1827
* called under RTNL. This is needed if Generic XDP is installed on
1828
* the device.
1829
*/
1830
static void dev_disable_gro_hw(struct net_device *dev)
1831
{
1832
dev->wanted_features &= ~NETIF_F_GRO_HW;
1833
netdev_update_features(dev);
1834
1835
if (unlikely(dev->features & NETIF_F_GRO_HW))
1836
netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837
}
1838
1839
const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840
{
1841
#define N(val) \
1842
case NETDEV_##val: \
1843
return "NETDEV_" __stringify(val);
1844
switch (cmd) {
1845
N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846
N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847
N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848
N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849
N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850
N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851
N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852
N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853
N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854
N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855
N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856
N(XDP_FEAT_CHANGE)
1857
}
1858
#undef N
1859
return "UNKNOWN_NETDEV_EVENT";
1860
}
1861
EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862
1863
static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864
struct net_device *dev)
1865
{
1866
struct netdev_notifier_info info = {
1867
.dev = dev,
1868
};
1869
1870
return nb->notifier_call(nb, val, &info);
1871
}
1872
1873
static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874
struct net_device *dev)
1875
{
1876
int err;
1877
1878
err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879
err = notifier_to_errno(err);
1880
if (err)
1881
return err;
1882
1883
if (!(dev->flags & IFF_UP))
1884
return 0;
1885
1886
call_netdevice_notifier(nb, NETDEV_UP, dev);
1887
return 0;
1888
}
1889
1890
static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891
struct net_device *dev)
1892
{
1893
if (dev->flags & IFF_UP) {
1894
call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895
dev);
1896
call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897
}
1898
call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899
}
1900
1901
static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902
struct net *net)
1903
{
1904
struct net_device *dev;
1905
int err;
1906
1907
for_each_netdev(net, dev) {
1908
netdev_lock_ops(dev);
1909
err = call_netdevice_register_notifiers(nb, dev);
1910
netdev_unlock_ops(dev);
1911
if (err)
1912
goto rollback;
1913
}
1914
return 0;
1915
1916
rollback:
1917
for_each_netdev_continue_reverse(net, dev)
1918
call_netdevice_unregister_notifiers(nb, dev);
1919
return err;
1920
}
1921
1922
static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923
struct net *net)
1924
{
1925
struct net_device *dev;
1926
1927
for_each_netdev(net, dev)
1928
call_netdevice_unregister_notifiers(nb, dev);
1929
}
1930
1931
static int dev_boot_phase = 1;
1932
1933
/**
1934
* register_netdevice_notifier - register a network notifier block
1935
* @nb: notifier
1936
*
1937
* Register a notifier to be called when network device events occur.
1938
* The notifier passed is linked into the kernel structures and must
1939
* not be reused until it has been unregistered. A negative errno code
1940
* is returned on a failure.
1941
*
1942
* When registered all registration and up events are replayed
1943
* to the new notifier to allow device to have a race free
1944
* view of the network device list.
1945
*/
1946
1947
int register_netdevice_notifier(struct notifier_block *nb)
1948
{
1949
struct net *net;
1950
int err;
1951
1952
/* Close race with setup_net() and cleanup_net() */
1953
down_write(&pernet_ops_rwsem);
1954
1955
/* When RTNL is removed, we need protection for netdev_chain. */
1956
rtnl_lock();
1957
1958
err = raw_notifier_chain_register(&netdev_chain, nb);
1959
if (err)
1960
goto unlock;
1961
if (dev_boot_phase)
1962
goto unlock;
1963
for_each_net(net) {
1964
__rtnl_net_lock(net);
1965
err = call_netdevice_register_net_notifiers(nb, net);
1966
__rtnl_net_unlock(net);
1967
if (err)
1968
goto rollback;
1969
}
1970
1971
unlock:
1972
rtnl_unlock();
1973
up_write(&pernet_ops_rwsem);
1974
return err;
1975
1976
rollback:
1977
for_each_net_continue_reverse(net) {
1978
__rtnl_net_lock(net);
1979
call_netdevice_unregister_net_notifiers(nb, net);
1980
__rtnl_net_unlock(net);
1981
}
1982
1983
raw_notifier_chain_unregister(&netdev_chain, nb);
1984
goto unlock;
1985
}
1986
EXPORT_SYMBOL(register_netdevice_notifier);
1987
1988
/**
1989
* unregister_netdevice_notifier - unregister a network notifier block
1990
* @nb: notifier
1991
*
1992
* Unregister a notifier previously registered by
1993
* register_netdevice_notifier(). The notifier is unlinked into the
1994
* kernel structures and may then be reused. A negative errno code
1995
* is returned on a failure.
1996
*
1997
* After unregistering unregister and down device events are synthesized
1998
* for all devices on the device list to the removed notifier to remove
1999
* the need for special case cleanup code.
2000
*/
2001
2002
int unregister_netdevice_notifier(struct notifier_block *nb)
2003
{
2004
struct net *net;
2005
int err;
2006
2007
/* Close race with setup_net() and cleanup_net() */
2008
down_write(&pernet_ops_rwsem);
2009
rtnl_lock();
2010
err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011
if (err)
2012
goto unlock;
2013
2014
for_each_net(net) {
2015
__rtnl_net_lock(net);
2016
call_netdevice_unregister_net_notifiers(nb, net);
2017
__rtnl_net_unlock(net);
2018
}
2019
2020
unlock:
2021
rtnl_unlock();
2022
up_write(&pernet_ops_rwsem);
2023
return err;
2024
}
2025
EXPORT_SYMBOL(unregister_netdevice_notifier);
2026
2027
static int __register_netdevice_notifier_net(struct net *net,
2028
struct notifier_block *nb,
2029
bool ignore_call_fail)
2030
{
2031
int err;
2032
2033
err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034
if (err)
2035
return err;
2036
if (dev_boot_phase)
2037
return 0;
2038
2039
err = call_netdevice_register_net_notifiers(nb, net);
2040
if (err && !ignore_call_fail)
2041
goto chain_unregister;
2042
2043
return 0;
2044
2045
chain_unregister:
2046
raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047
return err;
2048
}
2049
2050
static int __unregister_netdevice_notifier_net(struct net *net,
2051
struct notifier_block *nb)
2052
{
2053
int err;
2054
2055
err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056
if (err)
2057
return err;
2058
2059
call_netdevice_unregister_net_notifiers(nb, net);
2060
return 0;
2061
}
2062
2063
/**
2064
* register_netdevice_notifier_net - register a per-netns network notifier block
2065
* @net: network namespace
2066
* @nb: notifier
2067
*
2068
* Register a notifier to be called when network device events occur.
2069
* The notifier passed is linked into the kernel structures and must
2070
* not be reused until it has been unregistered. A negative errno code
2071
* is returned on a failure.
2072
*
2073
* When registered all registration and up events are replayed
2074
* to the new notifier to allow device to have a race free
2075
* view of the network device list.
2076
*/
2077
2078
int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079
{
2080
int err;
2081
2082
rtnl_net_lock(net);
2083
err = __register_netdevice_notifier_net(net, nb, false);
2084
rtnl_net_unlock(net);
2085
2086
return err;
2087
}
2088
EXPORT_SYMBOL(register_netdevice_notifier_net);
2089
2090
/**
2091
* unregister_netdevice_notifier_net - unregister a per-netns
2092
* network notifier block
2093
* @net: network namespace
2094
* @nb: notifier
2095
*
2096
* Unregister a notifier previously registered by
2097
* register_netdevice_notifier_net(). The notifier is unlinked from the
2098
* kernel structures and may then be reused. A negative errno code
2099
* is returned on a failure.
2100
*
2101
* After unregistering unregister and down device events are synthesized
2102
* for all devices on the device list to the removed notifier to remove
2103
* the need for special case cleanup code.
2104
*/
2105
2106
int unregister_netdevice_notifier_net(struct net *net,
2107
struct notifier_block *nb)
2108
{
2109
int err;
2110
2111
rtnl_net_lock(net);
2112
err = __unregister_netdevice_notifier_net(net, nb);
2113
rtnl_net_unlock(net);
2114
2115
return err;
2116
}
2117
EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118
2119
static void __move_netdevice_notifier_net(struct net *src_net,
2120
struct net *dst_net,
2121
struct notifier_block *nb)
2122
{
2123
__unregister_netdevice_notifier_net(src_net, nb);
2124
__register_netdevice_notifier_net(dst_net, nb, true);
2125
}
2126
2127
static void rtnl_net_dev_lock(struct net_device *dev)
2128
{
2129
bool again;
2130
2131
do {
2132
struct net *net;
2133
2134
again = false;
2135
2136
/* netns might be being dismantled. */
2137
rcu_read_lock();
2138
net = dev_net_rcu(dev);
2139
net_passive_inc(net);
2140
rcu_read_unlock();
2141
2142
rtnl_net_lock(net);
2143
2144
#ifdef CONFIG_NET_NS
2145
/* dev might have been moved to another netns. */
2146
if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147
rtnl_net_unlock(net);
2148
net_passive_dec(net);
2149
again = true;
2150
}
2151
#endif
2152
} while (again);
2153
}
2154
2155
static void rtnl_net_dev_unlock(struct net_device *dev)
2156
{
2157
struct net *net = dev_net(dev);
2158
2159
rtnl_net_unlock(net);
2160
net_passive_dec(net);
2161
}
2162
2163
int register_netdevice_notifier_dev_net(struct net_device *dev,
2164
struct notifier_block *nb,
2165
struct netdev_net_notifier *nn)
2166
{
2167
int err;
2168
2169
rtnl_net_dev_lock(dev);
2170
err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171
if (!err) {
2172
nn->nb = nb;
2173
list_add(&nn->list, &dev->net_notifier_list);
2174
}
2175
rtnl_net_dev_unlock(dev);
2176
2177
return err;
2178
}
2179
EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180
2181
int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182
struct notifier_block *nb,
2183
struct netdev_net_notifier *nn)
2184
{
2185
int err;
2186
2187
rtnl_net_dev_lock(dev);
2188
list_del(&nn->list);
2189
err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190
rtnl_net_dev_unlock(dev);
2191
2192
return err;
2193
}
2194
EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195
2196
static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197
struct net *net)
2198
{
2199
struct netdev_net_notifier *nn;
2200
2201
list_for_each_entry(nn, &dev->net_notifier_list, list)
2202
__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203
}
2204
2205
/**
2206
* call_netdevice_notifiers_info - call all network notifier blocks
2207
* @val: value passed unmodified to notifier function
2208
* @info: notifier information data
2209
*
2210
* Call all network notifier blocks. Parameters and return value
2211
* are as for raw_notifier_call_chain().
2212
*/
2213
2214
int call_netdevice_notifiers_info(unsigned long val,
2215
struct netdev_notifier_info *info)
2216
{
2217
struct net *net = dev_net(info->dev);
2218
int ret;
2219
2220
ASSERT_RTNL();
2221
2222
/* Run per-netns notifier block chain first, then run the global one.
2223
* Hopefully, one day, the global one is going to be removed after
2224
* all notifier block registrators get converted to be per-netns.
2225
*/
2226
ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227
if (ret & NOTIFY_STOP_MASK)
2228
return ret;
2229
return raw_notifier_call_chain(&netdev_chain, val, info);
2230
}
2231
2232
/**
2233
* call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234
* for and rollback on error
2235
* @val_up: value passed unmodified to notifier function
2236
* @val_down: value passed unmodified to the notifier function when
2237
* recovering from an error on @val_up
2238
* @info: notifier information data
2239
*
2240
* Call all per-netns network notifier blocks, but not notifier blocks on
2241
* the global notifier chain. Parameters and return value are as for
2242
* raw_notifier_call_chain_robust().
2243
*/
2244
2245
static int
2246
call_netdevice_notifiers_info_robust(unsigned long val_up,
2247
unsigned long val_down,
2248
struct netdev_notifier_info *info)
2249
{
2250
struct net *net = dev_net(info->dev);
2251
2252
ASSERT_RTNL();
2253
2254
return raw_notifier_call_chain_robust(&net->netdev_chain,
2255
val_up, val_down, info);
2256
}
2257
2258
static int call_netdevice_notifiers_extack(unsigned long val,
2259
struct net_device *dev,
2260
struct netlink_ext_ack *extack)
2261
{
2262
struct netdev_notifier_info info = {
2263
.dev = dev,
2264
.extack = extack,
2265
};
2266
2267
return call_netdevice_notifiers_info(val, &info);
2268
}
2269
2270
/**
2271
* call_netdevice_notifiers - call all network notifier blocks
2272
* @val: value passed unmodified to notifier function
2273
* @dev: net_device pointer passed unmodified to notifier function
2274
*
2275
* Call all network notifier blocks. Parameters and return value
2276
* are as for raw_notifier_call_chain().
2277
*/
2278
2279
int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280
{
2281
return call_netdevice_notifiers_extack(val, dev, NULL);
2282
}
2283
EXPORT_SYMBOL(call_netdevice_notifiers);
2284
2285
/**
2286
* call_netdevice_notifiers_mtu - call all network notifier blocks
2287
* @val: value passed unmodified to notifier function
2288
* @dev: net_device pointer passed unmodified to notifier function
2289
* @arg: additional u32 argument passed to the notifier function
2290
*
2291
* Call all network notifier blocks. Parameters and return value
2292
* are as for raw_notifier_call_chain().
2293
*/
2294
static int call_netdevice_notifiers_mtu(unsigned long val,
2295
struct net_device *dev, u32 arg)
2296
{
2297
struct netdev_notifier_info_ext info = {
2298
.info.dev = dev,
2299
.ext.mtu = arg,
2300
};
2301
2302
BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303
2304
return call_netdevice_notifiers_info(val, &info.info);
2305
}
2306
2307
#ifdef CONFIG_NET_INGRESS
2308
static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309
2310
void net_inc_ingress_queue(void)
2311
{
2312
static_branch_inc(&ingress_needed_key);
2313
}
2314
EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315
2316
void net_dec_ingress_queue(void)
2317
{
2318
static_branch_dec(&ingress_needed_key);
2319
}
2320
EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321
#endif
2322
2323
#ifdef CONFIG_NET_EGRESS
2324
static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325
2326
void net_inc_egress_queue(void)
2327
{
2328
static_branch_inc(&egress_needed_key);
2329
}
2330
EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331
2332
void net_dec_egress_queue(void)
2333
{
2334
static_branch_dec(&egress_needed_key);
2335
}
2336
EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337
#endif
2338
2339
#ifdef CONFIG_NET_CLS_ACT
2340
DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341
EXPORT_SYMBOL(tcf_sw_enabled_key);
2342
#endif
2343
2344
DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345
EXPORT_SYMBOL(netstamp_needed_key);
2346
#ifdef CONFIG_JUMP_LABEL
2347
static atomic_t netstamp_needed_deferred;
2348
static atomic_t netstamp_wanted;
2349
static void netstamp_clear(struct work_struct *work)
2350
{
2351
int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352
int wanted;
2353
2354
wanted = atomic_add_return(deferred, &netstamp_wanted);
2355
if (wanted > 0)
2356
static_branch_enable(&netstamp_needed_key);
2357
else
2358
static_branch_disable(&netstamp_needed_key);
2359
}
2360
static DECLARE_WORK(netstamp_work, netstamp_clear);
2361
#endif
2362
2363
void net_enable_timestamp(void)
2364
{
2365
#ifdef CONFIG_JUMP_LABEL
2366
int wanted = atomic_read(&netstamp_wanted);
2367
2368
while (wanted > 0) {
2369
if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370
return;
2371
}
2372
atomic_inc(&netstamp_needed_deferred);
2373
schedule_work(&netstamp_work);
2374
#else
2375
static_branch_inc(&netstamp_needed_key);
2376
#endif
2377
}
2378
EXPORT_SYMBOL(net_enable_timestamp);
2379
2380
void net_disable_timestamp(void)
2381
{
2382
#ifdef CONFIG_JUMP_LABEL
2383
int wanted = atomic_read(&netstamp_wanted);
2384
2385
while (wanted > 1) {
2386
if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387
return;
2388
}
2389
atomic_dec(&netstamp_needed_deferred);
2390
schedule_work(&netstamp_work);
2391
#else
2392
static_branch_dec(&netstamp_needed_key);
2393
#endif
2394
}
2395
EXPORT_SYMBOL(net_disable_timestamp);
2396
2397
static inline void net_timestamp_set(struct sk_buff *skb)
2398
{
2399
skb->tstamp = 0;
2400
skb->tstamp_type = SKB_CLOCK_REALTIME;
2401
if (static_branch_unlikely(&netstamp_needed_key))
2402
skb->tstamp = ktime_get_real();
2403
}
2404
2405
#define net_timestamp_check(COND, SKB) \
2406
if (static_branch_unlikely(&netstamp_needed_key)) { \
2407
if ((COND) && !(SKB)->tstamp) \
2408
(SKB)->tstamp = ktime_get_real(); \
2409
} \
2410
2411
bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412
{
2413
return __is_skb_forwardable(dev, skb, true);
2414
}
2415
EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416
2417
static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418
bool check_mtu)
2419
{
2420
int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421
2422
if (likely(!ret)) {
2423
skb->protocol = eth_type_trans(skb, dev);
2424
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425
}
2426
2427
return ret;
2428
}
2429
2430
int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431
{
2432
return __dev_forward_skb2(dev, skb, true);
2433
}
2434
EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435
2436
/**
2437
* dev_forward_skb - loopback an skb to another netif
2438
*
2439
* @dev: destination network device
2440
* @skb: buffer to forward
2441
*
2442
* return values:
2443
* NET_RX_SUCCESS (no congestion)
2444
* NET_RX_DROP (packet was dropped, but freed)
2445
*
2446
* dev_forward_skb can be used for injecting an skb from the
2447
* start_xmit function of one device into the receive queue
2448
* of another device.
2449
*
2450
* The receiving device may be in another namespace, so
2451
* we have to clear all information in the skb that could
2452
* impact namespace isolation.
2453
*/
2454
int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455
{
2456
return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457
}
2458
EXPORT_SYMBOL_GPL(dev_forward_skb);
2459
2460
int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461
{
2462
return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463
}
2464
2465
static inline int deliver_skb(struct sk_buff *skb,
2466
struct packet_type *pt_prev,
2467
struct net_device *orig_dev)
2468
{
2469
if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470
return -ENOMEM;
2471
refcount_inc(&skb->users);
2472
return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473
}
2474
2475
static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476
struct packet_type **pt,
2477
struct net_device *orig_dev,
2478
__be16 type,
2479
struct list_head *ptype_list)
2480
{
2481
struct packet_type *ptype, *pt_prev = *pt;
2482
2483
list_for_each_entry_rcu(ptype, ptype_list, list) {
2484
if (ptype->type != type)
2485
continue;
2486
if (pt_prev)
2487
deliver_skb(skb, pt_prev, orig_dev);
2488
pt_prev = ptype;
2489
}
2490
*pt = pt_prev;
2491
}
2492
2493
static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494
{
2495
if (!ptype->af_packet_priv || !skb->sk)
2496
return false;
2497
2498
if (ptype->id_match)
2499
return ptype->id_match(ptype, skb->sk);
2500
else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501
return true;
2502
2503
return false;
2504
}
2505
2506
/**
2507
* dev_nit_active_rcu - return true if any network interface taps are in use
2508
*
2509
* The caller must hold the RCU lock
2510
*
2511
* @dev: network device to check for the presence of taps
2512
*/
2513
bool dev_nit_active_rcu(const struct net_device *dev)
2514
{
2515
/* Callers may hold either RCU or RCU BH lock */
2516
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517
2518
return !list_empty(&dev_net(dev)->ptype_all) ||
2519
!list_empty(&dev->ptype_all);
2520
}
2521
EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522
2523
/*
2524
* Support routine. Sends outgoing frames to any network
2525
* taps currently in use.
2526
*/
2527
2528
void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529
{
2530
struct packet_type *ptype, *pt_prev = NULL;
2531
struct list_head *ptype_list;
2532
struct sk_buff *skb2 = NULL;
2533
2534
rcu_read_lock();
2535
ptype_list = &dev_net_rcu(dev)->ptype_all;
2536
again:
2537
list_for_each_entry_rcu(ptype, ptype_list, list) {
2538
if (READ_ONCE(ptype->ignore_outgoing))
2539
continue;
2540
2541
/* Never send packets back to the socket
2542
* they originated from - MvS ([email protected])
2543
*/
2544
if (skb_loop_sk(ptype, skb))
2545
continue;
2546
2547
if (pt_prev) {
2548
deliver_skb(skb2, pt_prev, skb->dev);
2549
pt_prev = ptype;
2550
continue;
2551
}
2552
2553
/* need to clone skb, done only once */
2554
skb2 = skb_clone(skb, GFP_ATOMIC);
2555
if (!skb2)
2556
goto out_unlock;
2557
2558
net_timestamp_set(skb2);
2559
2560
/* skb->nh should be correctly
2561
* set by sender, so that the second statement is
2562
* just protection against buggy protocols.
2563
*/
2564
skb_reset_mac_header(skb2);
2565
2566
if (skb_network_header(skb2) < skb2->data ||
2567
skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568
net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569
ntohs(skb2->protocol),
2570
dev->name);
2571
skb_reset_network_header(skb2);
2572
}
2573
2574
skb2->transport_header = skb2->network_header;
2575
skb2->pkt_type = PACKET_OUTGOING;
2576
pt_prev = ptype;
2577
}
2578
2579
if (ptype_list != &dev->ptype_all) {
2580
ptype_list = &dev->ptype_all;
2581
goto again;
2582
}
2583
out_unlock:
2584
if (pt_prev) {
2585
if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586
pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587
else
2588
kfree_skb(skb2);
2589
}
2590
rcu_read_unlock();
2591
}
2592
EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593
2594
/**
2595
* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596
* @dev: Network device
2597
* @txq: number of queues available
2598
*
2599
* If real_num_tx_queues is changed the tc mappings may no longer be
2600
* valid. To resolve this verify the tc mapping remains valid and if
2601
* not NULL the mapping. With no priorities mapping to this
2602
* offset/count pair it will no longer be used. In the worst case TC0
2603
* is invalid nothing can be done so disable priority mappings. If is
2604
* expected that drivers will fix this mapping if they can before
2605
* calling netif_set_real_num_tx_queues.
2606
*/
2607
static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608
{
2609
int i;
2610
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611
2612
/* If TC0 is invalidated disable TC mapping */
2613
if (tc->offset + tc->count > txq) {
2614
netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615
dev->num_tc = 0;
2616
return;
2617
}
2618
2619
/* Invalidated prio to tc mappings set to TC0 */
2620
for (i = 1; i < TC_BITMASK + 1; i++) {
2621
int q = netdev_get_prio_tc_map(dev, i);
2622
2623
tc = &dev->tc_to_txq[q];
2624
if (tc->offset + tc->count > txq) {
2625
netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626
i, q);
2627
netdev_set_prio_tc_map(dev, i, 0);
2628
}
2629
}
2630
}
2631
2632
int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633
{
2634
if (dev->num_tc) {
2635
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636
int i;
2637
2638
/* walk through the TCs and see if it falls into any of them */
2639
for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640
if ((txq - tc->offset) < tc->count)
2641
return i;
2642
}
2643
2644
/* didn't find it, just return -1 to indicate no match */
2645
return -1;
2646
}
2647
2648
return 0;
2649
}
2650
EXPORT_SYMBOL(netdev_txq_to_tc);
2651
2652
#ifdef CONFIG_XPS
2653
static struct static_key xps_needed __read_mostly;
2654
static struct static_key xps_rxqs_needed __read_mostly;
2655
static DEFINE_MUTEX(xps_map_mutex);
2656
#define xmap_dereference(P) \
2657
rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658
2659
static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660
struct xps_dev_maps *old_maps, int tci, u16 index)
2661
{
2662
struct xps_map *map = NULL;
2663
int pos;
2664
2665
map = xmap_dereference(dev_maps->attr_map[tci]);
2666
if (!map)
2667
return false;
2668
2669
for (pos = map->len; pos--;) {
2670
if (map->queues[pos] != index)
2671
continue;
2672
2673
if (map->len > 1) {
2674
map->queues[pos] = map->queues[--map->len];
2675
break;
2676
}
2677
2678
if (old_maps)
2679
RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681
kfree_rcu(map, rcu);
2682
return false;
2683
}
2684
2685
return true;
2686
}
2687
2688
static bool remove_xps_queue_cpu(struct net_device *dev,
2689
struct xps_dev_maps *dev_maps,
2690
int cpu, u16 offset, u16 count)
2691
{
2692
int num_tc = dev_maps->num_tc;
2693
bool active = false;
2694
int tci;
2695
2696
for (tci = cpu * num_tc; num_tc--; tci++) {
2697
int i, j;
2698
2699
for (i = count, j = offset; i--; j++) {
2700
if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701
break;
2702
}
2703
2704
active |= i < 0;
2705
}
2706
2707
return active;
2708
}
2709
2710
static void reset_xps_maps(struct net_device *dev,
2711
struct xps_dev_maps *dev_maps,
2712
enum xps_map_type type)
2713
{
2714
static_key_slow_dec_cpuslocked(&xps_needed);
2715
if (type == XPS_RXQS)
2716
static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717
2718
RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719
2720
kfree_rcu(dev_maps, rcu);
2721
}
2722
2723
static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724
u16 offset, u16 count)
2725
{
2726
struct xps_dev_maps *dev_maps;
2727
bool active = false;
2728
int i, j;
2729
2730
dev_maps = xmap_dereference(dev->xps_maps[type]);
2731
if (!dev_maps)
2732
return;
2733
2734
for (j = 0; j < dev_maps->nr_ids; j++)
2735
active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736
if (!active)
2737
reset_xps_maps(dev, dev_maps, type);
2738
2739
if (type == XPS_CPUS) {
2740
for (i = offset + (count - 1); count--; i--)
2741
netdev_queue_numa_node_write(
2742
netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743
}
2744
}
2745
2746
static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747
u16 count)
2748
{
2749
if (!static_key_false(&xps_needed))
2750
return;
2751
2752
cpus_read_lock();
2753
mutex_lock(&xps_map_mutex);
2754
2755
if (static_key_false(&xps_rxqs_needed))
2756
clean_xps_maps(dev, XPS_RXQS, offset, count);
2757
2758
clean_xps_maps(dev, XPS_CPUS, offset, count);
2759
2760
mutex_unlock(&xps_map_mutex);
2761
cpus_read_unlock();
2762
}
2763
2764
static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765
{
2766
netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767
}
2768
2769
static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770
u16 index, bool is_rxqs_map)
2771
{
2772
struct xps_map *new_map;
2773
int alloc_len = XPS_MIN_MAP_ALLOC;
2774
int i, pos;
2775
2776
for (pos = 0; map && pos < map->len; pos++) {
2777
if (map->queues[pos] != index)
2778
continue;
2779
return map;
2780
}
2781
2782
/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783
if (map) {
2784
if (pos < map->alloc_len)
2785
return map;
2786
2787
alloc_len = map->alloc_len * 2;
2788
}
2789
2790
/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791
* map
2792
*/
2793
if (is_rxqs_map)
2794
new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795
else
2796
new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797
cpu_to_node(attr_index));
2798
if (!new_map)
2799
return NULL;
2800
2801
for (i = 0; i < pos; i++)
2802
new_map->queues[i] = map->queues[i];
2803
new_map->alloc_len = alloc_len;
2804
new_map->len = pos;
2805
2806
return new_map;
2807
}
2808
2809
/* Copy xps maps at a given index */
2810
static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811
struct xps_dev_maps *new_dev_maps, int index,
2812
int tc, bool skip_tc)
2813
{
2814
int i, tci = index * dev_maps->num_tc;
2815
struct xps_map *map;
2816
2817
/* copy maps belonging to foreign traffic classes */
2818
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819
if (i == tc && skip_tc)
2820
continue;
2821
2822
/* fill in the new device map from the old device map */
2823
map = xmap_dereference(dev_maps->attr_map[tci]);
2824
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825
}
2826
}
2827
2828
/* Must be called under cpus_read_lock */
2829
int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830
u16 index, enum xps_map_type type)
2831
{
2832
struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833
const unsigned long *online_mask = NULL;
2834
bool active = false, copy = false;
2835
int i, j, tci, numa_node_id = -2;
2836
int maps_sz, num_tc = 1, tc = 0;
2837
struct xps_map *map, *new_map;
2838
unsigned int nr_ids;
2839
2840
WARN_ON_ONCE(index >= dev->num_tx_queues);
2841
2842
if (dev->num_tc) {
2843
/* Do not allow XPS on subordinate device directly */
2844
num_tc = dev->num_tc;
2845
if (num_tc < 0)
2846
return -EINVAL;
2847
2848
/* If queue belongs to subordinate dev use its map */
2849
dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850
2851
tc = netdev_txq_to_tc(dev, index);
2852
if (tc < 0)
2853
return -EINVAL;
2854
}
2855
2856
mutex_lock(&xps_map_mutex);
2857
2858
dev_maps = xmap_dereference(dev->xps_maps[type]);
2859
if (type == XPS_RXQS) {
2860
maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861
nr_ids = dev->num_rx_queues;
2862
} else {
2863
maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864
if (num_possible_cpus() > 1)
2865
online_mask = cpumask_bits(cpu_online_mask);
2866
nr_ids = nr_cpu_ids;
2867
}
2868
2869
if (maps_sz < L1_CACHE_BYTES)
2870
maps_sz = L1_CACHE_BYTES;
2871
2872
/* The old dev_maps could be larger or smaller than the one we're
2873
* setting up now, as dev->num_tc or nr_ids could have been updated in
2874
* between. We could try to be smart, but let's be safe instead and only
2875
* copy foreign traffic classes if the two map sizes match.
2876
*/
2877
if (dev_maps &&
2878
dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879
copy = true;
2880
2881
/* allocate memory for queue storage */
2882
for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883
j < nr_ids;) {
2884
if (!new_dev_maps) {
2885
new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886
if (!new_dev_maps) {
2887
mutex_unlock(&xps_map_mutex);
2888
return -ENOMEM;
2889
}
2890
2891
new_dev_maps->nr_ids = nr_ids;
2892
new_dev_maps->num_tc = num_tc;
2893
}
2894
2895
tci = j * num_tc + tc;
2896
map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897
2898
map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899
if (!map)
2900
goto error;
2901
2902
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903
}
2904
2905
if (!new_dev_maps)
2906
goto out_no_new_maps;
2907
2908
if (!dev_maps) {
2909
/* Increment static keys at most once per type */
2910
static_key_slow_inc_cpuslocked(&xps_needed);
2911
if (type == XPS_RXQS)
2912
static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913
}
2914
2915
for (j = 0; j < nr_ids; j++) {
2916
bool skip_tc = false;
2917
2918
tci = j * num_tc + tc;
2919
if (netif_attr_test_mask(j, mask, nr_ids) &&
2920
netif_attr_test_online(j, online_mask, nr_ids)) {
2921
/* add tx-queue to CPU/rx-queue maps */
2922
int pos = 0;
2923
2924
skip_tc = true;
2925
2926
map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927
while ((pos < map->len) && (map->queues[pos] != index))
2928
pos++;
2929
2930
if (pos == map->len)
2931
map->queues[map->len++] = index;
2932
#ifdef CONFIG_NUMA
2933
if (type == XPS_CPUS) {
2934
if (numa_node_id == -2)
2935
numa_node_id = cpu_to_node(j);
2936
else if (numa_node_id != cpu_to_node(j))
2937
numa_node_id = -1;
2938
}
2939
#endif
2940
}
2941
2942
if (copy)
2943
xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944
skip_tc);
2945
}
2946
2947
rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948
2949
/* Cleanup old maps */
2950
if (!dev_maps)
2951
goto out_no_old_maps;
2952
2953
for (j = 0; j < dev_maps->nr_ids; j++) {
2954
for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955
map = xmap_dereference(dev_maps->attr_map[tci]);
2956
if (!map)
2957
continue;
2958
2959
if (copy) {
2960
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961
if (map == new_map)
2962
continue;
2963
}
2964
2965
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966
kfree_rcu(map, rcu);
2967
}
2968
}
2969
2970
old_dev_maps = dev_maps;
2971
2972
out_no_old_maps:
2973
dev_maps = new_dev_maps;
2974
active = true;
2975
2976
out_no_new_maps:
2977
if (type == XPS_CPUS)
2978
/* update Tx queue numa node */
2979
netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980
(numa_node_id >= 0) ?
2981
numa_node_id : NUMA_NO_NODE);
2982
2983
if (!dev_maps)
2984
goto out_no_maps;
2985
2986
/* removes tx-queue from unused CPUs/rx-queues */
2987
for (j = 0; j < dev_maps->nr_ids; j++) {
2988
tci = j * dev_maps->num_tc;
2989
2990
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991
if (i == tc &&
2992
netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993
netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994
continue;
2995
2996
active |= remove_xps_queue(dev_maps,
2997
copy ? old_dev_maps : NULL,
2998
tci, index);
2999
}
3000
}
3001
3002
if (old_dev_maps)
3003
kfree_rcu(old_dev_maps, rcu);
3004
3005
/* free map if not active */
3006
if (!active)
3007
reset_xps_maps(dev, dev_maps, type);
3008
3009
out_no_maps:
3010
mutex_unlock(&xps_map_mutex);
3011
3012
return 0;
3013
error:
3014
/* remove any maps that we added */
3015
for (j = 0; j < nr_ids; j++) {
3016
for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018
map = copy ?
3019
xmap_dereference(dev_maps->attr_map[tci]) :
3020
NULL;
3021
if (new_map && new_map != map)
3022
kfree(new_map);
3023
}
3024
}
3025
3026
mutex_unlock(&xps_map_mutex);
3027
3028
kfree(new_dev_maps);
3029
return -ENOMEM;
3030
}
3031
EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032
3033
int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034
u16 index)
3035
{
3036
int ret;
3037
3038
cpus_read_lock();
3039
ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040
cpus_read_unlock();
3041
3042
return ret;
3043
}
3044
EXPORT_SYMBOL(netif_set_xps_queue);
3045
3046
#endif
3047
static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048
{
3049
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050
3051
/* Unbind any subordinate channels */
3052
while (txq-- != &dev->_tx[0]) {
3053
if (txq->sb_dev)
3054
netdev_unbind_sb_channel(dev, txq->sb_dev);
3055
}
3056
}
3057
3058
void netdev_reset_tc(struct net_device *dev)
3059
{
3060
#ifdef CONFIG_XPS
3061
netif_reset_xps_queues_gt(dev, 0);
3062
#endif
3063
netdev_unbind_all_sb_channels(dev);
3064
3065
/* Reset TC configuration of device */
3066
dev->num_tc = 0;
3067
memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068
memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069
}
3070
EXPORT_SYMBOL(netdev_reset_tc);
3071
3072
int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073
{
3074
if (tc >= dev->num_tc)
3075
return -EINVAL;
3076
3077
#ifdef CONFIG_XPS
3078
netif_reset_xps_queues(dev, offset, count);
3079
#endif
3080
dev->tc_to_txq[tc].count = count;
3081
dev->tc_to_txq[tc].offset = offset;
3082
return 0;
3083
}
3084
EXPORT_SYMBOL(netdev_set_tc_queue);
3085
3086
int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087
{
3088
if (num_tc > TC_MAX_QUEUE)
3089
return -EINVAL;
3090
3091
#ifdef CONFIG_XPS
3092
netif_reset_xps_queues_gt(dev, 0);
3093
#endif
3094
netdev_unbind_all_sb_channels(dev);
3095
3096
dev->num_tc = num_tc;
3097
return 0;
3098
}
3099
EXPORT_SYMBOL(netdev_set_num_tc);
3100
3101
void netdev_unbind_sb_channel(struct net_device *dev,
3102
struct net_device *sb_dev)
3103
{
3104
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105
3106
#ifdef CONFIG_XPS
3107
netif_reset_xps_queues_gt(sb_dev, 0);
3108
#endif
3109
memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110
memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111
3112
while (txq-- != &dev->_tx[0]) {
3113
if (txq->sb_dev == sb_dev)
3114
txq->sb_dev = NULL;
3115
}
3116
}
3117
EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118
3119
int netdev_bind_sb_channel_queue(struct net_device *dev,
3120
struct net_device *sb_dev,
3121
u8 tc, u16 count, u16 offset)
3122
{
3123
/* Make certain the sb_dev and dev are already configured */
3124
if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125
return -EINVAL;
3126
3127
/* We cannot hand out queues we don't have */
3128
if ((offset + count) > dev->real_num_tx_queues)
3129
return -EINVAL;
3130
3131
/* Record the mapping */
3132
sb_dev->tc_to_txq[tc].count = count;
3133
sb_dev->tc_to_txq[tc].offset = offset;
3134
3135
/* Provide a way for Tx queue to find the tc_to_txq map or
3136
* XPS map for itself.
3137
*/
3138
while (count--)
3139
netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140
3141
return 0;
3142
}
3143
EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144
3145
int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146
{
3147
/* Do not use a multiqueue device to represent a subordinate channel */
3148
if (netif_is_multiqueue(dev))
3149
return -ENODEV;
3150
3151
/* We allow channels 1 - 32767 to be used for subordinate channels.
3152
* Channel 0 is meant to be "native" mode and used only to represent
3153
* the main root device. We allow writing 0 to reset the device back
3154
* to normal mode after being used as a subordinate channel.
3155
*/
3156
if (channel > S16_MAX)
3157
return -EINVAL;
3158
3159
dev->num_tc = -channel;
3160
3161
return 0;
3162
}
3163
EXPORT_SYMBOL(netdev_set_sb_channel);
3164
3165
/*
3166
* Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167
* greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168
*/
3169
int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170
{
3171
bool disabling;
3172
int rc;
3173
3174
disabling = txq < dev->real_num_tx_queues;
3175
3176
if (txq < 1 || txq > dev->num_tx_queues)
3177
return -EINVAL;
3178
3179
if (dev->reg_state == NETREG_REGISTERED ||
3180
dev->reg_state == NETREG_UNREGISTERING) {
3181
netdev_ops_assert_locked(dev);
3182
3183
rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184
txq);
3185
if (rc)
3186
return rc;
3187
3188
if (dev->num_tc)
3189
netif_setup_tc(dev, txq);
3190
3191
net_shaper_set_real_num_tx_queues(dev, txq);
3192
3193
dev_qdisc_change_real_num_tx(dev, txq);
3194
3195
dev->real_num_tx_queues = txq;
3196
3197
if (disabling) {
3198
synchronize_net();
3199
qdisc_reset_all_tx_gt(dev, txq);
3200
#ifdef CONFIG_XPS
3201
netif_reset_xps_queues_gt(dev, txq);
3202
#endif
3203
}
3204
} else {
3205
dev->real_num_tx_queues = txq;
3206
}
3207
3208
return 0;
3209
}
3210
EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211
3212
/**
3213
* netif_set_real_num_rx_queues - set actual number of RX queues used
3214
* @dev: Network device
3215
* @rxq: Actual number of RX queues
3216
*
3217
* This must be called either with the rtnl_lock held or before
3218
* registration of the net device. Returns 0 on success, or a
3219
* negative error code. If called before registration, it always
3220
* succeeds.
3221
*/
3222
int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223
{
3224
int rc;
3225
3226
if (rxq < 1 || rxq > dev->num_rx_queues)
3227
return -EINVAL;
3228
3229
if (dev->reg_state == NETREG_REGISTERED) {
3230
netdev_ops_assert_locked(dev);
3231
3232
rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233
rxq);
3234
if (rc)
3235
return rc;
3236
}
3237
3238
dev->real_num_rx_queues = rxq;
3239
return 0;
3240
}
3241
EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242
3243
/**
3244
* netif_set_real_num_queues - set actual number of RX and TX queues used
3245
* @dev: Network device
3246
* @txq: Actual number of TX queues
3247
* @rxq: Actual number of RX queues
3248
*
3249
* Set the real number of both TX and RX queues.
3250
* Does nothing if the number of queues is already correct.
3251
*/
3252
int netif_set_real_num_queues(struct net_device *dev,
3253
unsigned int txq, unsigned int rxq)
3254
{
3255
unsigned int old_rxq = dev->real_num_rx_queues;
3256
int err;
3257
3258
if (txq < 1 || txq > dev->num_tx_queues ||
3259
rxq < 1 || rxq > dev->num_rx_queues)
3260
return -EINVAL;
3261
3262
/* Start from increases, so the error path only does decreases -
3263
* decreases can't fail.
3264
*/
3265
if (rxq > dev->real_num_rx_queues) {
3266
err = netif_set_real_num_rx_queues(dev, rxq);
3267
if (err)
3268
return err;
3269
}
3270
if (txq > dev->real_num_tx_queues) {
3271
err = netif_set_real_num_tx_queues(dev, txq);
3272
if (err)
3273
goto undo_rx;
3274
}
3275
if (rxq < dev->real_num_rx_queues)
3276
WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277
if (txq < dev->real_num_tx_queues)
3278
WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279
3280
return 0;
3281
undo_rx:
3282
WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283
return err;
3284
}
3285
EXPORT_SYMBOL(netif_set_real_num_queues);
3286
3287
/**
3288
* netif_set_tso_max_size() - set the max size of TSO frames supported
3289
* @dev: netdev to update
3290
* @size: max skb->len of a TSO frame
3291
*
3292
* Set the limit on the size of TSO super-frames the device can handle.
3293
* Unless explicitly set the stack will assume the value of
3294
* %GSO_LEGACY_MAX_SIZE.
3295
*/
3296
void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297
{
3298
dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299
if (size < READ_ONCE(dev->gso_max_size))
3300
netif_set_gso_max_size(dev, size);
3301
if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302
netif_set_gso_ipv4_max_size(dev, size);
3303
}
3304
EXPORT_SYMBOL(netif_set_tso_max_size);
3305
3306
/**
3307
* netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308
* @dev: netdev to update
3309
* @segs: max number of TCP segments
3310
*
3311
* Set the limit on the number of TCP segments the device can generate from
3312
* a single TSO super-frame.
3313
* Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314
*/
3315
void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316
{
3317
dev->tso_max_segs = segs;
3318
if (segs < READ_ONCE(dev->gso_max_segs))
3319
netif_set_gso_max_segs(dev, segs);
3320
}
3321
EXPORT_SYMBOL(netif_set_tso_max_segs);
3322
3323
/**
3324
* netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325
* @to: netdev to update
3326
* @from: netdev from which to copy the limits
3327
*/
3328
void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329
{
3330
netif_set_tso_max_size(to, from->tso_max_size);
3331
netif_set_tso_max_segs(to, from->tso_max_segs);
3332
}
3333
EXPORT_SYMBOL(netif_inherit_tso_max);
3334
3335
/**
3336
* netif_get_num_default_rss_queues - default number of RSS queues
3337
*
3338
* Default value is the number of physical cores if there are only 1 or 2, or
3339
* divided by 2 if there are more.
3340
*/
3341
int netif_get_num_default_rss_queues(void)
3342
{
3343
cpumask_var_t cpus;
3344
int cpu, count = 0;
3345
3346
if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347
return 1;
3348
3349
cpumask_copy(cpus, cpu_online_mask);
3350
for_each_cpu(cpu, cpus) {
3351
++count;
3352
cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353
}
3354
free_cpumask_var(cpus);
3355
3356
return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357
}
3358
EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359
3360
static void __netif_reschedule(struct Qdisc *q)
3361
{
3362
struct softnet_data *sd;
3363
unsigned long flags;
3364
3365
local_irq_save(flags);
3366
sd = this_cpu_ptr(&softnet_data);
3367
q->next_sched = NULL;
3368
*sd->output_queue_tailp = q;
3369
sd->output_queue_tailp = &q->next_sched;
3370
raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371
local_irq_restore(flags);
3372
}
3373
3374
void __netif_schedule(struct Qdisc *q)
3375
{
3376
if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377
__netif_reschedule(q);
3378
}
3379
EXPORT_SYMBOL(__netif_schedule);
3380
3381
struct dev_kfree_skb_cb {
3382
enum skb_drop_reason reason;
3383
};
3384
3385
static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386
{
3387
return (struct dev_kfree_skb_cb *)skb->cb;
3388
}
3389
3390
void netif_schedule_queue(struct netdev_queue *txq)
3391
{
3392
rcu_read_lock();
3393
if (!netif_xmit_stopped(txq)) {
3394
struct Qdisc *q = rcu_dereference(txq->qdisc);
3395
3396
__netif_schedule(q);
3397
}
3398
rcu_read_unlock();
3399
}
3400
EXPORT_SYMBOL(netif_schedule_queue);
3401
3402
void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403
{
3404
if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405
struct Qdisc *q;
3406
3407
rcu_read_lock();
3408
q = rcu_dereference(dev_queue->qdisc);
3409
__netif_schedule(q);
3410
rcu_read_unlock();
3411
}
3412
}
3413
EXPORT_SYMBOL(netif_tx_wake_queue);
3414
3415
void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416
{
3417
unsigned long flags;
3418
3419
if (unlikely(!skb))
3420
return;
3421
3422
if (likely(refcount_read(&skb->users) == 1)) {
3423
smp_rmb();
3424
refcount_set(&skb->users, 0);
3425
} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426
return;
3427
}
3428
get_kfree_skb_cb(skb)->reason = reason;
3429
local_irq_save(flags);
3430
skb->next = __this_cpu_read(softnet_data.completion_queue);
3431
__this_cpu_write(softnet_data.completion_queue, skb);
3432
raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433
local_irq_restore(flags);
3434
}
3435
EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436
3437
void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438
{
3439
if (in_hardirq() || irqs_disabled())
3440
dev_kfree_skb_irq_reason(skb, reason);
3441
else
3442
kfree_skb_reason(skb, reason);
3443
}
3444
EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445
3446
3447
/**
3448
* netif_device_detach - mark device as removed
3449
* @dev: network device
3450
*
3451
* Mark device as removed from system and therefore no longer available.
3452
*/
3453
void netif_device_detach(struct net_device *dev)
3454
{
3455
if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456
netif_running(dev)) {
3457
netif_tx_stop_all_queues(dev);
3458
}
3459
}
3460
EXPORT_SYMBOL(netif_device_detach);
3461
3462
/**
3463
* netif_device_attach - mark device as attached
3464
* @dev: network device
3465
*
3466
* Mark device as attached from system and restart if needed.
3467
*/
3468
void netif_device_attach(struct net_device *dev)
3469
{
3470
if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471
netif_running(dev)) {
3472
netif_tx_wake_all_queues(dev);
3473
netdev_watchdog_up(dev);
3474
}
3475
}
3476
EXPORT_SYMBOL(netif_device_attach);
3477
3478
/*
3479
* Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480
* to be used as a distribution range.
3481
*/
3482
static u16 skb_tx_hash(const struct net_device *dev,
3483
const struct net_device *sb_dev,
3484
struct sk_buff *skb)
3485
{
3486
u32 hash;
3487
u16 qoffset = 0;
3488
u16 qcount = dev->real_num_tx_queues;
3489
3490
if (dev->num_tc) {
3491
u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492
3493
qoffset = sb_dev->tc_to_txq[tc].offset;
3494
qcount = sb_dev->tc_to_txq[tc].count;
3495
if (unlikely(!qcount)) {
3496
net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497
sb_dev->name, qoffset, tc);
3498
qoffset = 0;
3499
qcount = dev->real_num_tx_queues;
3500
}
3501
}
3502
3503
if (skb_rx_queue_recorded(skb)) {
3504
DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505
hash = skb_get_rx_queue(skb);
3506
if (hash >= qoffset)
3507
hash -= qoffset;
3508
while (unlikely(hash >= qcount))
3509
hash -= qcount;
3510
return hash + qoffset;
3511
}
3512
3513
return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514
}
3515
3516
void skb_warn_bad_offload(const struct sk_buff *skb)
3517
{
3518
static const netdev_features_t null_features;
3519
struct net_device *dev = skb->dev;
3520
const char *name = "";
3521
3522
if (!net_ratelimit())
3523
return;
3524
3525
if (dev) {
3526
if (dev->dev.parent)
3527
name = dev_driver_string(dev->dev.parent);
3528
else
3529
name = netdev_name(dev);
3530
}
3531
skb_dump(KERN_WARNING, skb, false);
3532
WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533
name, dev ? &dev->features : &null_features,
3534
skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535
}
3536
3537
/*
3538
* Invalidate hardware checksum when packet is to be mangled, and
3539
* complete checksum manually on outgoing path.
3540
*/
3541
int skb_checksum_help(struct sk_buff *skb)
3542
{
3543
__wsum csum;
3544
int ret = 0, offset;
3545
3546
if (skb->ip_summed == CHECKSUM_COMPLETE)
3547
goto out_set_summed;
3548
3549
if (unlikely(skb_is_gso(skb))) {
3550
skb_warn_bad_offload(skb);
3551
return -EINVAL;
3552
}
3553
3554
if (!skb_frags_readable(skb)) {
3555
return -EFAULT;
3556
}
3557
3558
/* Before computing a checksum, we should make sure no frag could
3559
* be modified by an external entity : checksum could be wrong.
3560
*/
3561
if (skb_has_shared_frag(skb)) {
3562
ret = __skb_linearize(skb);
3563
if (ret)
3564
goto out;
3565
}
3566
3567
offset = skb_checksum_start_offset(skb);
3568
ret = -EINVAL;
3569
if (unlikely(offset >= skb_headlen(skb))) {
3570
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571
WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572
offset, skb_headlen(skb));
3573
goto out;
3574
}
3575
csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576
3577
offset += skb->csum_offset;
3578
if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580
WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581
offset + sizeof(__sum16), skb_headlen(skb));
3582
goto out;
3583
}
3584
ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585
if (ret)
3586
goto out;
3587
3588
*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589
out_set_summed:
3590
skb->ip_summed = CHECKSUM_NONE;
3591
out:
3592
return ret;
3593
}
3594
EXPORT_SYMBOL(skb_checksum_help);
3595
3596
#ifdef CONFIG_NET_CRC32C
3597
int skb_crc32c_csum_help(struct sk_buff *skb)
3598
{
3599
u32 crc;
3600
int ret = 0, offset, start;
3601
3602
if (skb->ip_summed != CHECKSUM_PARTIAL)
3603
goto out;
3604
3605
if (unlikely(skb_is_gso(skb)))
3606
goto out;
3607
3608
/* Before computing a checksum, we should make sure no frag could
3609
* be modified by an external entity : checksum could be wrong.
3610
*/
3611
if (unlikely(skb_has_shared_frag(skb))) {
3612
ret = __skb_linearize(skb);
3613
if (ret)
3614
goto out;
3615
}
3616
start = skb_checksum_start_offset(skb);
3617
offset = start + offsetof(struct sctphdr, checksum);
3618
if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619
ret = -EINVAL;
3620
goto out;
3621
}
3622
3623
ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624
if (ret)
3625
goto out;
3626
3627
crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628
*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629
skb_reset_csum_not_inet(skb);
3630
out:
3631
return ret;
3632
}
3633
EXPORT_SYMBOL(skb_crc32c_csum_help);
3634
#endif /* CONFIG_NET_CRC32C */
3635
3636
__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637
{
3638
__be16 type = skb->protocol;
3639
3640
/* Tunnel gso handlers can set protocol to ethernet. */
3641
if (type == htons(ETH_P_TEB)) {
3642
struct ethhdr *eth;
3643
3644
if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645
return 0;
3646
3647
eth = (struct ethhdr *)skb->data;
3648
type = eth->h_proto;
3649
}
3650
3651
return vlan_get_protocol_and_depth(skb, type, depth);
3652
}
3653
3654
3655
/* Take action when hardware reception checksum errors are detected. */
3656
#ifdef CONFIG_BUG
3657
static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658
{
3659
netdev_err(dev, "hw csum failure\n");
3660
skb_dump(KERN_ERR, skb, true);
3661
dump_stack();
3662
}
3663
3664
void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665
{
3666
DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667
}
3668
EXPORT_SYMBOL(netdev_rx_csum_fault);
3669
#endif
3670
3671
/* XXX: check that highmem exists at all on the given machine. */
3672
static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673
{
3674
#ifdef CONFIG_HIGHMEM
3675
int i;
3676
3677
if (!(dev->features & NETIF_F_HIGHDMA)) {
3678
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680
struct page *page = skb_frag_page(frag);
3681
3682
if (page && PageHighMem(page))
3683
return 1;
3684
}
3685
}
3686
#endif
3687
return 0;
3688
}
3689
3690
/* If MPLS offload request, verify we are testing hardware MPLS features
3691
* instead of standard features for the netdev.
3692
*/
3693
#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3694
static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695
netdev_features_t features,
3696
__be16 type)
3697
{
3698
if (eth_p_mpls(type))
3699
features &= skb->dev->mpls_features;
3700
3701
return features;
3702
}
3703
#else
3704
static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705
netdev_features_t features,
3706
__be16 type)
3707
{
3708
return features;
3709
}
3710
#endif
3711
3712
static netdev_features_t harmonize_features(struct sk_buff *skb,
3713
netdev_features_t features)
3714
{
3715
__be16 type;
3716
3717
type = skb_network_protocol(skb, NULL);
3718
features = net_mpls_features(skb, features, type);
3719
3720
if (skb->ip_summed != CHECKSUM_NONE &&
3721
!can_checksum_protocol(features, type)) {
3722
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723
}
3724
if (illegal_highdma(skb->dev, skb))
3725
features &= ~NETIF_F_SG;
3726
3727
return features;
3728
}
3729
3730
netdev_features_t passthru_features_check(struct sk_buff *skb,
3731
struct net_device *dev,
3732
netdev_features_t features)
3733
{
3734
return features;
3735
}
3736
EXPORT_SYMBOL(passthru_features_check);
3737
3738
static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739
struct net_device *dev,
3740
netdev_features_t features)
3741
{
3742
return vlan_features_check(skb, features);
3743
}
3744
3745
static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746
struct net_device *dev,
3747
netdev_features_t features)
3748
{
3749
u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750
3751
if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752
return features & ~NETIF_F_GSO_MASK;
3753
3754
if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755
return features & ~NETIF_F_GSO_MASK;
3756
3757
if (!skb_shinfo(skb)->gso_type) {
3758
skb_warn_bad_offload(skb);
3759
return features & ~NETIF_F_GSO_MASK;
3760
}
3761
3762
/* Support for GSO partial features requires software
3763
* intervention before we can actually process the packets
3764
* so we need to strip support for any partial features now
3765
* and we can pull them back in after we have partially
3766
* segmented the frame.
3767
*/
3768
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769
features &= ~dev->gso_partial_features;
3770
3771
/* Make sure to clear the IPv4 ID mangling feature if the
3772
* IPv4 header has the potential to be fragmented.
3773
*/
3774
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775
struct iphdr *iph = skb->encapsulation ?
3776
inner_ip_hdr(skb) : ip_hdr(skb);
3777
3778
if (!(iph->frag_off & htons(IP_DF)))
3779
features &= ~NETIF_F_TSO_MANGLEID;
3780
}
3781
3782
/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3783
* so neither does TSO that depends on it.
3784
*/
3785
if (features & NETIF_F_IPV6_CSUM &&
3786
(skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3787
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3788
vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3789
skb_transport_header_was_set(skb) &&
3790
skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791
!ipv6_has_hopopt_jumbo(skb))
3792
features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3793
3794
return features;
3795
}
3796
3797
netdev_features_t netif_skb_features(struct sk_buff *skb)
3798
{
3799
struct net_device *dev = skb->dev;
3800
netdev_features_t features = dev->features;
3801
3802
if (skb_is_gso(skb))
3803
features = gso_features_check(skb, dev, features);
3804
3805
/* If encapsulation offload request, verify we are testing
3806
* hardware encapsulation features instead of standard
3807
* features for the netdev
3808
*/
3809
if (skb->encapsulation)
3810
features &= dev->hw_enc_features;
3811
3812
if (skb_vlan_tagged(skb))
3813
features = netdev_intersect_features(features,
3814
dev->vlan_features |
3815
NETIF_F_HW_VLAN_CTAG_TX |
3816
NETIF_F_HW_VLAN_STAG_TX);
3817
3818
if (dev->netdev_ops->ndo_features_check)
3819
features &= dev->netdev_ops->ndo_features_check(skb, dev,
3820
features);
3821
else
3822
features &= dflt_features_check(skb, dev, features);
3823
3824
return harmonize_features(skb, features);
3825
}
3826
EXPORT_SYMBOL(netif_skb_features);
3827
3828
static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3829
struct netdev_queue *txq, bool more)
3830
{
3831
unsigned int len;
3832
int rc;
3833
3834
if (dev_nit_active_rcu(dev))
3835
dev_queue_xmit_nit(skb, dev);
3836
3837
len = skb->len;
3838
trace_net_dev_start_xmit(skb, dev);
3839
rc = netdev_start_xmit(skb, dev, txq, more);
3840
trace_net_dev_xmit(skb, rc, dev, len);
3841
3842
return rc;
3843
}
3844
3845
struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3846
struct netdev_queue *txq, int *ret)
3847
{
3848
struct sk_buff *skb = first;
3849
int rc = NETDEV_TX_OK;
3850
3851
while (skb) {
3852
struct sk_buff *next = skb->next;
3853
3854
skb_mark_not_on_list(skb);
3855
rc = xmit_one(skb, dev, txq, next != NULL);
3856
if (unlikely(!dev_xmit_complete(rc))) {
3857
skb->next = next;
3858
goto out;
3859
}
3860
3861
skb = next;
3862
if (netif_tx_queue_stopped(txq) && skb) {
3863
rc = NETDEV_TX_BUSY;
3864
break;
3865
}
3866
}
3867
3868
out:
3869
*ret = rc;
3870
return skb;
3871
}
3872
3873
static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3874
netdev_features_t features)
3875
{
3876
if (skb_vlan_tag_present(skb) &&
3877
!vlan_hw_offload_capable(features, skb->vlan_proto))
3878
skb = __vlan_hwaccel_push_inside(skb);
3879
return skb;
3880
}
3881
3882
int skb_csum_hwoffload_help(struct sk_buff *skb,
3883
const netdev_features_t features)
3884
{
3885
if (unlikely(skb_csum_is_sctp(skb)))
3886
return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3887
skb_crc32c_csum_help(skb);
3888
3889
if (features & NETIF_F_HW_CSUM)
3890
return 0;
3891
3892
if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3893
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3894
skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3895
!ipv6_has_hopopt_jumbo(skb))
3896
goto sw_checksum;
3897
3898
switch (skb->csum_offset) {
3899
case offsetof(struct tcphdr, check):
3900
case offsetof(struct udphdr, check):
3901
return 0;
3902
}
3903
}
3904
3905
sw_checksum:
3906
return skb_checksum_help(skb);
3907
}
3908
EXPORT_SYMBOL(skb_csum_hwoffload_help);
3909
3910
static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3911
struct net_device *dev)
3912
{
3913
struct skb_shared_info *shinfo;
3914
struct net_iov *niov;
3915
3916
if (likely(skb_frags_readable(skb)))
3917
goto out;
3918
3919
if (!dev->netmem_tx)
3920
goto out_free;
3921
3922
shinfo = skb_shinfo(skb);
3923
3924
if (shinfo->nr_frags > 0) {
3925
niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3926
if (net_is_devmem_iov(niov) &&
3927
net_devmem_iov_binding(niov)->dev != dev)
3928
goto out_free;
3929
}
3930
3931
out:
3932
return skb;
3933
3934
out_free:
3935
kfree_skb(skb);
3936
return NULL;
3937
}
3938
3939
static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3940
{
3941
netdev_features_t features;
3942
3943
skb = validate_xmit_unreadable_skb(skb, dev);
3944
if (unlikely(!skb))
3945
goto out_null;
3946
3947
features = netif_skb_features(skb);
3948
skb = validate_xmit_vlan(skb, features);
3949
if (unlikely(!skb))
3950
goto out_null;
3951
3952
skb = sk_validate_xmit_skb(skb, dev);
3953
if (unlikely(!skb))
3954
goto out_null;
3955
3956
if (netif_needs_gso(skb, features)) {
3957
struct sk_buff *segs;
3958
3959
segs = skb_gso_segment(skb, features);
3960
if (IS_ERR(segs)) {
3961
goto out_kfree_skb;
3962
} else if (segs) {
3963
consume_skb(skb);
3964
skb = segs;
3965
}
3966
} else {
3967
if (skb_needs_linearize(skb, features) &&
3968
__skb_linearize(skb))
3969
goto out_kfree_skb;
3970
3971
/* If packet is not checksummed and device does not
3972
* support checksumming for this protocol, complete
3973
* checksumming here.
3974
*/
3975
if (skb->ip_summed == CHECKSUM_PARTIAL) {
3976
if (skb->encapsulation)
3977
skb_set_inner_transport_header(skb,
3978
skb_checksum_start_offset(skb));
3979
else
3980
skb_set_transport_header(skb,
3981
skb_checksum_start_offset(skb));
3982
if (skb_csum_hwoffload_help(skb, features))
3983
goto out_kfree_skb;
3984
}
3985
}
3986
3987
skb = validate_xmit_xfrm(skb, features, again);
3988
3989
return skb;
3990
3991
out_kfree_skb:
3992
kfree_skb(skb);
3993
out_null:
3994
dev_core_stats_tx_dropped_inc(dev);
3995
return NULL;
3996
}
3997
3998
struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3999
{
4000
struct sk_buff *next, *head = NULL, *tail;
4001
4002
for (; skb != NULL; skb = next) {
4003
next = skb->next;
4004
skb_mark_not_on_list(skb);
4005
4006
/* in case skb won't be segmented, point to itself */
4007
skb->prev = skb;
4008
4009
skb = validate_xmit_skb(skb, dev, again);
4010
if (!skb)
4011
continue;
4012
4013
if (!head)
4014
head = skb;
4015
else
4016
tail->next = skb;
4017
/* If skb was segmented, skb->prev points to
4018
* the last segment. If not, it still contains skb.
4019
*/
4020
tail = skb->prev;
4021
}
4022
return head;
4023
}
4024
EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4025
4026
static void qdisc_pkt_len_init(struct sk_buff *skb)
4027
{
4028
const struct skb_shared_info *shinfo = skb_shinfo(skb);
4029
4030
qdisc_skb_cb(skb)->pkt_len = skb->len;
4031
4032
/* To get more precise estimation of bytes sent on wire,
4033
* we add to pkt_len the headers size of all segments
4034
*/
4035
if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4036
u16 gso_segs = shinfo->gso_segs;
4037
unsigned int hdr_len;
4038
4039
/* mac layer + network layer */
4040
if (!skb->encapsulation)
4041
hdr_len = skb_transport_offset(skb);
4042
else
4043
hdr_len = skb_inner_transport_offset(skb);
4044
4045
/* + transport layer */
4046
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4047
const struct tcphdr *th;
4048
struct tcphdr _tcphdr;
4049
4050
th = skb_header_pointer(skb, hdr_len,
4051
sizeof(_tcphdr), &_tcphdr);
4052
if (likely(th))
4053
hdr_len += __tcp_hdrlen(th);
4054
} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4055
struct udphdr _udphdr;
4056
4057
if (skb_header_pointer(skb, hdr_len,
4058
sizeof(_udphdr), &_udphdr))
4059
hdr_len += sizeof(struct udphdr);
4060
}
4061
4062
if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4063
int payload = skb->len - hdr_len;
4064
4065
/* Malicious packet. */
4066
if (payload <= 0)
4067
return;
4068
gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4069
}
4070
qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4071
}
4072
}
4073
4074
static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4075
struct sk_buff **to_free,
4076
struct netdev_queue *txq)
4077
{
4078
int rc;
4079
4080
rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4081
if (rc == NET_XMIT_SUCCESS)
4082
trace_qdisc_enqueue(q, txq, skb);
4083
return rc;
4084
}
4085
4086
static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4087
struct net_device *dev,
4088
struct netdev_queue *txq)
4089
{
4090
spinlock_t *root_lock = qdisc_lock(q);
4091
struct sk_buff *to_free = NULL;
4092
bool contended;
4093
int rc;
4094
4095
qdisc_calculate_pkt_len(skb, q);
4096
4097
tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4098
4099
if (q->flags & TCQ_F_NOLOCK) {
4100
if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4101
qdisc_run_begin(q)) {
4102
/* Retest nolock_qdisc_is_empty() within the protection
4103
* of q->seqlock to protect from racing with requeuing.
4104
*/
4105
if (unlikely(!nolock_qdisc_is_empty(q))) {
4106
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4107
__qdisc_run(q);
4108
qdisc_run_end(q);
4109
4110
goto no_lock_out;
4111
}
4112
4113
qdisc_bstats_cpu_update(q, skb);
4114
if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4115
!nolock_qdisc_is_empty(q))
4116
__qdisc_run(q);
4117
4118
qdisc_run_end(q);
4119
return NET_XMIT_SUCCESS;
4120
}
4121
4122
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4123
qdisc_run(q);
4124
4125
no_lock_out:
4126
if (unlikely(to_free))
4127
kfree_skb_list_reason(to_free,
4128
tcf_get_drop_reason(to_free));
4129
return rc;
4130
}
4131
4132
if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4133
kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4134
return NET_XMIT_DROP;
4135
}
4136
/*
4137
* Heuristic to force contended enqueues to serialize on a
4138
* separate lock before trying to get qdisc main lock.
4139
* This permits qdisc->running owner to get the lock more
4140
* often and dequeue packets faster.
4141
* On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4142
* and then other tasks will only enqueue packets. The packets will be
4143
* sent after the qdisc owner is scheduled again. To prevent this
4144
* scenario the task always serialize on the lock.
4145
*/
4146
contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4147
if (unlikely(contended))
4148
spin_lock(&q->busylock);
4149
4150
spin_lock(root_lock);
4151
if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4152
__qdisc_drop(skb, &to_free);
4153
rc = NET_XMIT_DROP;
4154
} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4155
qdisc_run_begin(q)) {
4156
/*
4157
* This is a work-conserving queue; there are no old skbs
4158
* waiting to be sent out; and the qdisc is not running -
4159
* xmit the skb directly.
4160
*/
4161
4162
qdisc_bstats_update(q, skb);
4163
4164
if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4165
if (unlikely(contended)) {
4166
spin_unlock(&q->busylock);
4167
contended = false;
4168
}
4169
__qdisc_run(q);
4170
}
4171
4172
qdisc_run_end(q);
4173
rc = NET_XMIT_SUCCESS;
4174
} else {
4175
WRITE_ONCE(q->owner, smp_processor_id());
4176
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4177
WRITE_ONCE(q->owner, -1);
4178
if (qdisc_run_begin(q)) {
4179
if (unlikely(contended)) {
4180
spin_unlock(&q->busylock);
4181
contended = false;
4182
}
4183
__qdisc_run(q);
4184
qdisc_run_end(q);
4185
}
4186
}
4187
spin_unlock(root_lock);
4188
if (unlikely(to_free))
4189
kfree_skb_list_reason(to_free,
4190
tcf_get_drop_reason(to_free));
4191
if (unlikely(contended))
4192
spin_unlock(&q->busylock);
4193
return rc;
4194
}
4195
4196
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4197
static void skb_update_prio(struct sk_buff *skb)
4198
{
4199
const struct netprio_map *map;
4200
const struct sock *sk;
4201
unsigned int prioidx;
4202
4203
if (skb->priority)
4204
return;
4205
map = rcu_dereference_bh(skb->dev->priomap);
4206
if (!map)
4207
return;
4208
sk = skb_to_full_sk(skb);
4209
if (!sk)
4210
return;
4211
4212
prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4213
4214
if (prioidx < map->priomap_len)
4215
skb->priority = map->priomap[prioidx];
4216
}
4217
#else
4218
#define skb_update_prio(skb)
4219
#endif
4220
4221
/**
4222
* dev_loopback_xmit - loop back @skb
4223
* @net: network namespace this loopback is happening in
4224
* @sk: sk needed to be a netfilter okfn
4225
* @skb: buffer to transmit
4226
*/
4227
int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4228
{
4229
skb_reset_mac_header(skb);
4230
__skb_pull(skb, skb_network_offset(skb));
4231
skb->pkt_type = PACKET_LOOPBACK;
4232
if (skb->ip_summed == CHECKSUM_NONE)
4233
skb->ip_summed = CHECKSUM_UNNECESSARY;
4234
DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4235
skb_dst_force(skb);
4236
netif_rx(skb);
4237
return 0;
4238
}
4239
EXPORT_SYMBOL(dev_loopback_xmit);
4240
4241
#ifdef CONFIG_NET_EGRESS
4242
static struct netdev_queue *
4243
netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4244
{
4245
int qm = skb_get_queue_mapping(skb);
4246
4247
return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4248
}
4249
4250
#ifndef CONFIG_PREEMPT_RT
4251
static bool netdev_xmit_txqueue_skipped(void)
4252
{
4253
return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4254
}
4255
4256
void netdev_xmit_skip_txqueue(bool skip)
4257
{
4258
__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4259
}
4260
EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261
4262
#else
4263
static bool netdev_xmit_txqueue_skipped(void)
4264
{
4265
return current->net_xmit.skip_txqueue;
4266
}
4267
4268
void netdev_xmit_skip_txqueue(bool skip)
4269
{
4270
current->net_xmit.skip_txqueue = skip;
4271
}
4272
EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4273
#endif
4274
#endif /* CONFIG_NET_EGRESS */
4275
4276
#ifdef CONFIG_NET_XGRESS
4277
static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4278
enum skb_drop_reason *drop_reason)
4279
{
4280
int ret = TC_ACT_UNSPEC;
4281
#ifdef CONFIG_NET_CLS_ACT
4282
struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4283
struct tcf_result res;
4284
4285
if (!miniq)
4286
return ret;
4287
4288
/* Global bypass */
4289
if (!static_branch_likely(&tcf_sw_enabled_key))
4290
return ret;
4291
4292
/* Block-wise bypass */
4293
if (tcf_block_bypass_sw(miniq->block))
4294
return ret;
4295
4296
tc_skb_cb(skb)->mru = 0;
4297
tc_skb_cb(skb)->post_ct = false;
4298
tcf_set_drop_reason(skb, *drop_reason);
4299
4300
mini_qdisc_bstats_cpu_update(miniq, skb);
4301
ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4302
/* Only tcf related quirks below. */
4303
switch (ret) {
4304
case TC_ACT_SHOT:
4305
*drop_reason = tcf_get_drop_reason(skb);
4306
mini_qdisc_qstats_cpu_drop(miniq);
4307
break;
4308
case TC_ACT_OK:
4309
case TC_ACT_RECLASSIFY:
4310
skb->tc_index = TC_H_MIN(res.classid);
4311
break;
4312
}
4313
#endif /* CONFIG_NET_CLS_ACT */
4314
return ret;
4315
}
4316
4317
static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4318
4319
void tcx_inc(void)
4320
{
4321
static_branch_inc(&tcx_needed_key);
4322
}
4323
4324
void tcx_dec(void)
4325
{
4326
static_branch_dec(&tcx_needed_key);
4327
}
4328
4329
static __always_inline enum tcx_action_base
4330
tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4331
const bool needs_mac)
4332
{
4333
const struct bpf_mprog_fp *fp;
4334
const struct bpf_prog *prog;
4335
int ret = TCX_NEXT;
4336
4337
if (needs_mac)
4338
__skb_push(skb, skb->mac_len);
4339
bpf_mprog_foreach_prog(entry, fp, prog) {
4340
bpf_compute_data_pointers(skb);
4341
ret = bpf_prog_run(prog, skb);
4342
if (ret != TCX_NEXT)
4343
break;
4344
}
4345
if (needs_mac)
4346
__skb_pull(skb, skb->mac_len);
4347
return tcx_action_code(skb, ret);
4348
}
4349
4350
static __always_inline struct sk_buff *
4351
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4352
struct net_device *orig_dev, bool *another)
4353
{
4354
struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4355
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4356
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4357
int sch_ret;
4358
4359
if (!entry)
4360
return skb;
4361
4362
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4363
if (*pt_prev) {
4364
*ret = deliver_skb(skb, *pt_prev, orig_dev);
4365
*pt_prev = NULL;
4366
}
4367
4368
qdisc_skb_cb(skb)->pkt_len = skb->len;
4369
tcx_set_ingress(skb, true);
4370
4371
if (static_branch_unlikely(&tcx_needed_key)) {
4372
sch_ret = tcx_run(entry, skb, true);
4373
if (sch_ret != TC_ACT_UNSPEC)
4374
goto ingress_verdict;
4375
}
4376
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4377
ingress_verdict:
4378
switch (sch_ret) {
4379
case TC_ACT_REDIRECT:
4380
/* skb_mac_header check was done by BPF, so we can safely
4381
* push the L2 header back before redirecting to another
4382
* netdev.
4383
*/
4384
__skb_push(skb, skb->mac_len);
4385
if (skb_do_redirect(skb) == -EAGAIN) {
4386
__skb_pull(skb, skb->mac_len);
4387
*another = true;
4388
break;
4389
}
4390
*ret = NET_RX_SUCCESS;
4391
bpf_net_ctx_clear(bpf_net_ctx);
4392
return NULL;
4393
case TC_ACT_SHOT:
4394
kfree_skb_reason(skb, drop_reason);
4395
*ret = NET_RX_DROP;
4396
bpf_net_ctx_clear(bpf_net_ctx);
4397
return NULL;
4398
/* used by tc_run */
4399
case TC_ACT_STOLEN:
4400
case TC_ACT_QUEUED:
4401
case TC_ACT_TRAP:
4402
consume_skb(skb);
4403
fallthrough;
4404
case TC_ACT_CONSUMED:
4405
*ret = NET_RX_SUCCESS;
4406
bpf_net_ctx_clear(bpf_net_ctx);
4407
return NULL;
4408
}
4409
bpf_net_ctx_clear(bpf_net_ctx);
4410
4411
return skb;
4412
}
4413
4414
static __always_inline struct sk_buff *
4415
sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4416
{
4417
struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4418
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4419
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4420
int sch_ret;
4421
4422
if (!entry)
4423
return skb;
4424
4425
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4426
4427
/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4428
* already set by the caller.
4429
*/
4430
if (static_branch_unlikely(&tcx_needed_key)) {
4431
sch_ret = tcx_run(entry, skb, false);
4432
if (sch_ret != TC_ACT_UNSPEC)
4433
goto egress_verdict;
4434
}
4435
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4436
egress_verdict:
4437
switch (sch_ret) {
4438
case TC_ACT_REDIRECT:
4439
/* No need to push/pop skb's mac_header here on egress! */
4440
skb_do_redirect(skb);
4441
*ret = NET_XMIT_SUCCESS;
4442
bpf_net_ctx_clear(bpf_net_ctx);
4443
return NULL;
4444
case TC_ACT_SHOT:
4445
kfree_skb_reason(skb, drop_reason);
4446
*ret = NET_XMIT_DROP;
4447
bpf_net_ctx_clear(bpf_net_ctx);
4448
return NULL;
4449
/* used by tc_run */
4450
case TC_ACT_STOLEN:
4451
case TC_ACT_QUEUED:
4452
case TC_ACT_TRAP:
4453
consume_skb(skb);
4454
fallthrough;
4455
case TC_ACT_CONSUMED:
4456
*ret = NET_XMIT_SUCCESS;
4457
bpf_net_ctx_clear(bpf_net_ctx);
4458
return NULL;
4459
}
4460
bpf_net_ctx_clear(bpf_net_ctx);
4461
4462
return skb;
4463
}
4464
#else
4465
static __always_inline struct sk_buff *
4466
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4467
struct net_device *orig_dev, bool *another)
4468
{
4469
return skb;
4470
}
4471
4472
static __always_inline struct sk_buff *
4473
sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4474
{
4475
return skb;
4476
}
4477
#endif /* CONFIG_NET_XGRESS */
4478
4479
#ifdef CONFIG_XPS
4480
static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4481
struct xps_dev_maps *dev_maps, unsigned int tci)
4482
{
4483
int tc = netdev_get_prio_tc_map(dev, skb->priority);
4484
struct xps_map *map;
4485
int queue_index = -1;
4486
4487
if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4488
return queue_index;
4489
4490
tci *= dev_maps->num_tc;
4491
tci += tc;
4492
4493
map = rcu_dereference(dev_maps->attr_map[tci]);
4494
if (map) {
4495
if (map->len == 1)
4496
queue_index = map->queues[0];
4497
else
4498
queue_index = map->queues[reciprocal_scale(
4499
skb_get_hash(skb), map->len)];
4500
if (unlikely(queue_index >= dev->real_num_tx_queues))
4501
queue_index = -1;
4502
}
4503
return queue_index;
4504
}
4505
#endif
4506
4507
static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4508
struct sk_buff *skb)
4509
{
4510
#ifdef CONFIG_XPS
4511
struct xps_dev_maps *dev_maps;
4512
struct sock *sk = skb->sk;
4513
int queue_index = -1;
4514
4515
if (!static_key_false(&xps_needed))
4516
return -1;
4517
4518
rcu_read_lock();
4519
if (!static_key_false(&xps_rxqs_needed))
4520
goto get_cpus_map;
4521
4522
dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4523
if (dev_maps) {
4524
int tci = sk_rx_queue_get(sk);
4525
4526
if (tci >= 0)
4527
queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4528
tci);
4529
}
4530
4531
get_cpus_map:
4532
if (queue_index < 0) {
4533
dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4534
if (dev_maps) {
4535
unsigned int tci = skb->sender_cpu - 1;
4536
4537
queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4538
tci);
4539
}
4540
}
4541
rcu_read_unlock();
4542
4543
return queue_index;
4544
#else
4545
return -1;
4546
#endif
4547
}
4548
4549
u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4550
struct net_device *sb_dev)
4551
{
4552
return 0;
4553
}
4554
EXPORT_SYMBOL(dev_pick_tx_zero);
4555
4556
u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4557
struct net_device *sb_dev)
4558
{
4559
struct sock *sk = skb->sk;
4560
int queue_index = sk_tx_queue_get(sk);
4561
4562
sb_dev = sb_dev ? : dev;
4563
4564
if (queue_index < 0 || skb->ooo_okay ||
4565
queue_index >= dev->real_num_tx_queues) {
4566
int new_index = get_xps_queue(dev, sb_dev, skb);
4567
4568
if (new_index < 0)
4569
new_index = skb_tx_hash(dev, sb_dev, skb);
4570
4571
if (queue_index != new_index && sk &&
4572
sk_fullsock(sk) &&
4573
rcu_access_pointer(sk->sk_dst_cache))
4574
sk_tx_queue_set(sk, new_index);
4575
4576
queue_index = new_index;
4577
}
4578
4579
return queue_index;
4580
}
4581
EXPORT_SYMBOL(netdev_pick_tx);
4582
4583
struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4584
struct sk_buff *skb,
4585
struct net_device *sb_dev)
4586
{
4587
int queue_index = 0;
4588
4589
#ifdef CONFIG_XPS
4590
u32 sender_cpu = skb->sender_cpu - 1;
4591
4592
if (sender_cpu >= (u32)NR_CPUS)
4593
skb->sender_cpu = raw_smp_processor_id() + 1;
4594
#endif
4595
4596
if (dev->real_num_tx_queues != 1) {
4597
const struct net_device_ops *ops = dev->netdev_ops;
4598
4599
if (ops->ndo_select_queue)
4600
queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4601
else
4602
queue_index = netdev_pick_tx(dev, skb, sb_dev);
4603
4604
queue_index = netdev_cap_txqueue(dev, queue_index);
4605
}
4606
4607
skb_set_queue_mapping(skb, queue_index);
4608
return netdev_get_tx_queue(dev, queue_index);
4609
}
4610
4611
/**
4612
* __dev_queue_xmit() - transmit a buffer
4613
* @skb: buffer to transmit
4614
* @sb_dev: suboordinate device used for L2 forwarding offload
4615
*
4616
* Queue a buffer for transmission to a network device. The caller must
4617
* have set the device and priority and built the buffer before calling
4618
* this function. The function can be called from an interrupt.
4619
*
4620
* When calling this method, interrupts MUST be enabled. This is because
4621
* the BH enable code must have IRQs enabled so that it will not deadlock.
4622
*
4623
* Regardless of the return value, the skb is consumed, so it is currently
4624
* difficult to retry a send to this method. (You can bump the ref count
4625
* before sending to hold a reference for retry if you are careful.)
4626
*
4627
* Return:
4628
* * 0 - buffer successfully transmitted
4629
* * positive qdisc return code - NET_XMIT_DROP etc.
4630
* * negative errno - other errors
4631
*/
4632
int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4633
{
4634
struct net_device *dev = skb->dev;
4635
struct netdev_queue *txq = NULL;
4636
struct Qdisc *q;
4637
int rc = -ENOMEM;
4638
bool again = false;
4639
4640
skb_reset_mac_header(skb);
4641
skb_assert_len(skb);
4642
4643
if (unlikely(skb_shinfo(skb)->tx_flags &
4644
(SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4645
__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4646
4647
/* Disable soft irqs for various locks below. Also
4648
* stops preemption for RCU.
4649
*/
4650
rcu_read_lock_bh();
4651
4652
skb_update_prio(skb);
4653
4654
qdisc_pkt_len_init(skb);
4655
tcx_set_ingress(skb, false);
4656
#ifdef CONFIG_NET_EGRESS
4657
if (static_branch_unlikely(&egress_needed_key)) {
4658
if (nf_hook_egress_active()) {
4659
skb = nf_hook_egress(skb, &rc, dev);
4660
if (!skb)
4661
goto out;
4662
}
4663
4664
netdev_xmit_skip_txqueue(false);
4665
4666
nf_skip_egress(skb, true);
4667
skb = sch_handle_egress(skb, &rc, dev);
4668
if (!skb)
4669
goto out;
4670
nf_skip_egress(skb, false);
4671
4672
if (netdev_xmit_txqueue_skipped())
4673
txq = netdev_tx_queue_mapping(dev, skb);
4674
}
4675
#endif
4676
/* If device/qdisc don't need skb->dst, release it right now while
4677
* its hot in this cpu cache.
4678
*/
4679
if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4680
skb_dst_drop(skb);
4681
else
4682
skb_dst_force(skb);
4683
4684
if (!txq)
4685
txq = netdev_core_pick_tx(dev, skb, sb_dev);
4686
4687
q = rcu_dereference_bh(txq->qdisc);
4688
4689
trace_net_dev_queue(skb);
4690
if (q->enqueue) {
4691
rc = __dev_xmit_skb(skb, q, dev, txq);
4692
goto out;
4693
}
4694
4695
/* The device has no queue. Common case for software devices:
4696
* loopback, all the sorts of tunnels...
4697
4698
* Really, it is unlikely that netif_tx_lock protection is necessary
4699
* here. (f.e. loopback and IP tunnels are clean ignoring statistics
4700
* counters.)
4701
* However, it is possible, that they rely on protection
4702
* made by us here.
4703
4704
* Check this and shot the lock. It is not prone from deadlocks.
4705
*Either shot noqueue qdisc, it is even simpler 8)
4706
*/
4707
if (dev->flags & IFF_UP) {
4708
int cpu = smp_processor_id(); /* ok because BHs are off */
4709
4710
/* Other cpus might concurrently change txq->xmit_lock_owner
4711
* to -1 or to their cpu id, but not to our id.
4712
*/
4713
if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4714
if (dev_xmit_recursion())
4715
goto recursion_alert;
4716
4717
skb = validate_xmit_skb(skb, dev, &again);
4718
if (!skb)
4719
goto out;
4720
4721
HARD_TX_LOCK(dev, txq, cpu);
4722
4723
if (!netif_xmit_stopped(txq)) {
4724
dev_xmit_recursion_inc();
4725
skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4726
dev_xmit_recursion_dec();
4727
if (dev_xmit_complete(rc)) {
4728
HARD_TX_UNLOCK(dev, txq);
4729
goto out;
4730
}
4731
}
4732
HARD_TX_UNLOCK(dev, txq);
4733
net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4734
dev->name);
4735
} else {
4736
/* Recursion is detected! It is possible,
4737
* unfortunately
4738
*/
4739
recursion_alert:
4740
net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4741
dev->name);
4742
}
4743
}
4744
4745
rc = -ENETDOWN;
4746
rcu_read_unlock_bh();
4747
4748
dev_core_stats_tx_dropped_inc(dev);
4749
kfree_skb_list(skb);
4750
return rc;
4751
out:
4752
rcu_read_unlock_bh();
4753
return rc;
4754
}
4755
EXPORT_SYMBOL(__dev_queue_xmit);
4756
4757
int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4758
{
4759
struct net_device *dev = skb->dev;
4760
struct sk_buff *orig_skb = skb;
4761
struct netdev_queue *txq;
4762
int ret = NETDEV_TX_BUSY;
4763
bool again = false;
4764
4765
if (unlikely(!netif_running(dev) ||
4766
!netif_carrier_ok(dev)))
4767
goto drop;
4768
4769
skb = validate_xmit_skb_list(skb, dev, &again);
4770
if (skb != orig_skb)
4771
goto drop;
4772
4773
skb_set_queue_mapping(skb, queue_id);
4774
txq = skb_get_tx_queue(dev, skb);
4775
4776
local_bh_disable();
4777
4778
dev_xmit_recursion_inc();
4779
HARD_TX_LOCK(dev, txq, smp_processor_id());
4780
if (!netif_xmit_frozen_or_drv_stopped(txq))
4781
ret = netdev_start_xmit(skb, dev, txq, false);
4782
HARD_TX_UNLOCK(dev, txq);
4783
dev_xmit_recursion_dec();
4784
4785
local_bh_enable();
4786
return ret;
4787
drop:
4788
dev_core_stats_tx_dropped_inc(dev);
4789
kfree_skb_list(skb);
4790
return NET_XMIT_DROP;
4791
}
4792
EXPORT_SYMBOL(__dev_direct_xmit);
4793
4794
/*************************************************************************
4795
* Receiver routines
4796
*************************************************************************/
4797
static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4798
4799
int weight_p __read_mostly = 64; /* old backlog weight */
4800
int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4801
int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4802
4803
/* Called with irq disabled */
4804
static inline void ____napi_schedule(struct softnet_data *sd,
4805
struct napi_struct *napi)
4806
{
4807
struct task_struct *thread;
4808
4809
lockdep_assert_irqs_disabled();
4810
4811
if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4812
/* Paired with smp_mb__before_atomic() in
4813
* napi_enable()/netif_set_threaded().
4814
* Use READ_ONCE() to guarantee a complete
4815
* read on napi->thread. Only call
4816
* wake_up_process() when it's not NULL.
4817
*/
4818
thread = READ_ONCE(napi->thread);
4819
if (thread) {
4820
if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4821
goto use_local_napi;
4822
4823
set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4824
wake_up_process(thread);
4825
return;
4826
}
4827
}
4828
4829
use_local_napi:
4830
DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4831
list_add_tail(&napi->poll_list, &sd->poll_list);
4832
WRITE_ONCE(napi->list_owner, smp_processor_id());
4833
/* If not called from net_rx_action()
4834
* we have to raise NET_RX_SOFTIRQ.
4835
*/
4836
if (!sd->in_net_rx_action)
4837
raise_softirq_irqoff(NET_RX_SOFTIRQ);
4838
}
4839
4840
#ifdef CONFIG_RPS
4841
4842
struct static_key_false rps_needed __read_mostly;
4843
EXPORT_SYMBOL(rps_needed);
4844
struct static_key_false rfs_needed __read_mostly;
4845
EXPORT_SYMBOL(rfs_needed);
4846
4847
static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4848
{
4849
return hash_32(hash, flow_table->log);
4850
}
4851
4852
static struct rps_dev_flow *
4853
set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4854
struct rps_dev_flow *rflow, u16 next_cpu)
4855
{
4856
if (next_cpu < nr_cpu_ids) {
4857
u32 head;
4858
#ifdef CONFIG_RFS_ACCEL
4859
struct netdev_rx_queue *rxqueue;
4860
struct rps_dev_flow_table *flow_table;
4861
struct rps_dev_flow *old_rflow;
4862
u16 rxq_index;
4863
u32 flow_id;
4864
int rc;
4865
4866
/* Should we steer this flow to a different hardware queue? */
4867
if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4868
!(dev->features & NETIF_F_NTUPLE))
4869
goto out;
4870
rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4871
if (rxq_index == skb_get_rx_queue(skb))
4872
goto out;
4873
4874
rxqueue = dev->_rx + rxq_index;
4875
flow_table = rcu_dereference(rxqueue->rps_flow_table);
4876
if (!flow_table)
4877
goto out;
4878
flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4879
rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4880
rxq_index, flow_id);
4881
if (rc < 0)
4882
goto out;
4883
old_rflow = rflow;
4884
rflow = &flow_table->flows[flow_id];
4885
WRITE_ONCE(rflow->filter, rc);
4886
if (old_rflow->filter == rc)
4887
WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4888
out:
4889
#endif
4890
head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4891
rps_input_queue_tail_save(&rflow->last_qtail, head);
4892
}
4893
4894
WRITE_ONCE(rflow->cpu, next_cpu);
4895
return rflow;
4896
}
4897
4898
/*
4899
* get_rps_cpu is called from netif_receive_skb and returns the target
4900
* CPU from the RPS map of the receiving queue for a given skb.
4901
* rcu_read_lock must be held on entry.
4902
*/
4903
static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4904
struct rps_dev_flow **rflowp)
4905
{
4906
const struct rps_sock_flow_table *sock_flow_table;
4907
struct netdev_rx_queue *rxqueue = dev->_rx;
4908
struct rps_dev_flow_table *flow_table;
4909
struct rps_map *map;
4910
int cpu = -1;
4911
u32 tcpu;
4912
u32 hash;
4913
4914
if (skb_rx_queue_recorded(skb)) {
4915
u16 index = skb_get_rx_queue(skb);
4916
4917
if (unlikely(index >= dev->real_num_rx_queues)) {
4918
WARN_ONCE(dev->real_num_rx_queues > 1,
4919
"%s received packet on queue %u, but number "
4920
"of RX queues is %u\n",
4921
dev->name, index, dev->real_num_rx_queues);
4922
goto done;
4923
}
4924
rxqueue += index;
4925
}
4926
4927
/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4928
4929
flow_table = rcu_dereference(rxqueue->rps_flow_table);
4930
map = rcu_dereference(rxqueue->rps_map);
4931
if (!flow_table && !map)
4932
goto done;
4933
4934
skb_reset_network_header(skb);
4935
hash = skb_get_hash(skb);
4936
if (!hash)
4937
goto done;
4938
4939
sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4940
if (flow_table && sock_flow_table) {
4941
struct rps_dev_flow *rflow;
4942
u32 next_cpu;
4943
u32 ident;
4944
4945
/* First check into global flow table if there is a match.
4946
* This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4947
*/
4948
ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4949
if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4950
goto try_rps;
4951
4952
next_cpu = ident & net_hotdata.rps_cpu_mask;
4953
4954
/* OK, now we know there is a match,
4955
* we can look at the local (per receive queue) flow table
4956
*/
4957
rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4958
tcpu = rflow->cpu;
4959
4960
/*
4961
* If the desired CPU (where last recvmsg was done) is
4962
* different from current CPU (one in the rx-queue flow
4963
* table entry), switch if one of the following holds:
4964
* - Current CPU is unset (>= nr_cpu_ids).
4965
* - Current CPU is offline.
4966
* - The current CPU's queue tail has advanced beyond the
4967
* last packet that was enqueued using this table entry.
4968
* This guarantees that all previous packets for the flow
4969
* have been dequeued, thus preserving in order delivery.
4970
*/
4971
if (unlikely(tcpu != next_cpu) &&
4972
(tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4973
((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4974
rflow->last_qtail)) >= 0)) {
4975
tcpu = next_cpu;
4976
rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4977
}
4978
4979
if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4980
*rflowp = rflow;
4981
cpu = tcpu;
4982
goto done;
4983
}
4984
}
4985
4986
try_rps:
4987
4988
if (map) {
4989
tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4990
if (cpu_online(tcpu)) {
4991
cpu = tcpu;
4992
goto done;
4993
}
4994
}
4995
4996
done:
4997
return cpu;
4998
}
4999
5000
#ifdef CONFIG_RFS_ACCEL
5001
5002
/**
5003
* rps_may_expire_flow - check whether an RFS hardware filter may be removed
5004
* @dev: Device on which the filter was set
5005
* @rxq_index: RX queue index
5006
* @flow_id: Flow ID passed to ndo_rx_flow_steer()
5007
* @filter_id: Filter ID returned by ndo_rx_flow_steer()
5008
*
5009
* Drivers that implement ndo_rx_flow_steer() should periodically call
5010
* this function for each installed filter and remove the filters for
5011
* which it returns %true.
5012
*/
5013
bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5014
u32 flow_id, u16 filter_id)
5015
{
5016
struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5017
struct rps_dev_flow_table *flow_table;
5018
struct rps_dev_flow *rflow;
5019
bool expire = true;
5020
unsigned int cpu;
5021
5022
rcu_read_lock();
5023
flow_table = rcu_dereference(rxqueue->rps_flow_table);
5024
if (flow_table && flow_id < (1UL << flow_table->log)) {
5025
rflow = &flow_table->flows[flow_id];
5026
cpu = READ_ONCE(rflow->cpu);
5027
if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5028
((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5029
READ_ONCE(rflow->last_qtail)) <
5030
(int)(10 << flow_table->log)))
5031
expire = false;
5032
}
5033
rcu_read_unlock();
5034
return expire;
5035
}
5036
EXPORT_SYMBOL(rps_may_expire_flow);
5037
5038
#endif /* CONFIG_RFS_ACCEL */
5039
5040
/* Called from hardirq (IPI) context */
5041
static void rps_trigger_softirq(void *data)
5042
{
5043
struct softnet_data *sd = data;
5044
5045
____napi_schedule(sd, &sd->backlog);
5046
/* Pairs with READ_ONCE() in softnet_seq_show() */
5047
WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5048
}
5049
5050
#endif /* CONFIG_RPS */
5051
5052
/* Called from hardirq (IPI) context */
5053
static void trigger_rx_softirq(void *data)
5054
{
5055
struct softnet_data *sd = data;
5056
5057
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5058
smp_store_release(&sd->defer_ipi_scheduled, 0);
5059
}
5060
5061
/*
5062
* After we queued a packet into sd->input_pkt_queue,
5063
* we need to make sure this queue is serviced soon.
5064
*
5065
* - If this is another cpu queue, link it to our rps_ipi_list,
5066
* and make sure we will process rps_ipi_list from net_rx_action().
5067
*
5068
* - If this is our own queue, NAPI schedule our backlog.
5069
* Note that this also raises NET_RX_SOFTIRQ.
5070
*/
5071
static void napi_schedule_rps(struct softnet_data *sd)
5072
{
5073
struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5074
5075
#ifdef CONFIG_RPS
5076
if (sd != mysd) {
5077
if (use_backlog_threads()) {
5078
__napi_schedule_irqoff(&sd->backlog);
5079
return;
5080
}
5081
5082
sd->rps_ipi_next = mysd->rps_ipi_list;
5083
mysd->rps_ipi_list = sd;
5084
5085
/* If not called from net_rx_action() or napi_threaded_poll()
5086
* we have to raise NET_RX_SOFTIRQ.
5087
*/
5088
if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5089
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5090
return;
5091
}
5092
#endif /* CONFIG_RPS */
5093
__napi_schedule_irqoff(&mysd->backlog);
5094
}
5095
5096
void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5097
{
5098
unsigned long flags;
5099
5100
if (use_backlog_threads()) {
5101
backlog_lock_irq_save(sd, &flags);
5102
5103
if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5104
__napi_schedule_irqoff(&sd->backlog);
5105
5106
backlog_unlock_irq_restore(sd, &flags);
5107
5108
} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5109
smp_call_function_single_async(cpu, &sd->defer_csd);
5110
}
5111
}
5112
5113
#ifdef CONFIG_NET_FLOW_LIMIT
5114
int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5115
#endif
5116
5117
static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5118
{
5119
#ifdef CONFIG_NET_FLOW_LIMIT
5120
struct sd_flow_limit *fl;
5121
struct softnet_data *sd;
5122
unsigned int old_flow, new_flow;
5123
5124
if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5125
return false;
5126
5127
sd = this_cpu_ptr(&softnet_data);
5128
5129
rcu_read_lock();
5130
fl = rcu_dereference(sd->flow_limit);
5131
if (fl) {
5132
new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5133
old_flow = fl->history[fl->history_head];
5134
fl->history[fl->history_head] = new_flow;
5135
5136
fl->history_head++;
5137
fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5138
5139
if (likely(fl->buckets[old_flow]))
5140
fl->buckets[old_flow]--;
5141
5142
if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5143
/* Pairs with READ_ONCE() in softnet_seq_show() */
5144
WRITE_ONCE(fl->count, fl->count + 1);
5145
rcu_read_unlock();
5146
return true;
5147
}
5148
}
5149
rcu_read_unlock();
5150
#endif
5151
return false;
5152
}
5153
5154
/*
5155
* enqueue_to_backlog is called to queue an skb to a per CPU backlog
5156
* queue (may be a remote CPU queue).
5157
*/
5158
static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5159
unsigned int *qtail)
5160
{
5161
enum skb_drop_reason reason;
5162
struct softnet_data *sd;
5163
unsigned long flags;
5164
unsigned int qlen;
5165
int max_backlog;
5166
u32 tail;
5167
5168
reason = SKB_DROP_REASON_DEV_READY;
5169
if (!netif_running(skb->dev))
5170
goto bad_dev;
5171
5172
reason = SKB_DROP_REASON_CPU_BACKLOG;
5173
sd = &per_cpu(softnet_data, cpu);
5174
5175
qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5176
max_backlog = READ_ONCE(net_hotdata.max_backlog);
5177
if (unlikely(qlen > max_backlog))
5178
goto cpu_backlog_drop;
5179
backlog_lock_irq_save(sd, &flags);
5180
qlen = skb_queue_len(&sd->input_pkt_queue);
5181
if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5182
if (!qlen) {
5183
/* Schedule NAPI for backlog device. We can use
5184
* non atomic operation as we own the queue lock.
5185
*/
5186
if (!__test_and_set_bit(NAPI_STATE_SCHED,
5187
&sd->backlog.state))
5188
napi_schedule_rps(sd);
5189
}
5190
__skb_queue_tail(&sd->input_pkt_queue, skb);
5191
tail = rps_input_queue_tail_incr(sd);
5192
backlog_unlock_irq_restore(sd, &flags);
5193
5194
/* save the tail outside of the critical section */
5195
rps_input_queue_tail_save(qtail, tail);
5196
return NET_RX_SUCCESS;
5197
}
5198
5199
backlog_unlock_irq_restore(sd, &flags);
5200
5201
cpu_backlog_drop:
5202
atomic_inc(&sd->dropped);
5203
bad_dev:
5204
dev_core_stats_rx_dropped_inc(skb->dev);
5205
kfree_skb_reason(skb, reason);
5206
return NET_RX_DROP;
5207
}
5208
5209
static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5210
{
5211
struct net_device *dev = skb->dev;
5212
struct netdev_rx_queue *rxqueue;
5213
5214
rxqueue = dev->_rx;
5215
5216
if (skb_rx_queue_recorded(skb)) {
5217
u16 index = skb_get_rx_queue(skb);
5218
5219
if (unlikely(index >= dev->real_num_rx_queues)) {
5220
WARN_ONCE(dev->real_num_rx_queues > 1,
5221
"%s received packet on queue %u, but number "
5222
"of RX queues is %u\n",
5223
dev->name, index, dev->real_num_rx_queues);
5224
5225
return rxqueue; /* Return first rxqueue */
5226
}
5227
rxqueue += index;
5228
}
5229
return rxqueue;
5230
}
5231
5232
u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5233
const struct bpf_prog *xdp_prog)
5234
{
5235
void *orig_data, *orig_data_end, *hard_start;
5236
struct netdev_rx_queue *rxqueue;
5237
bool orig_bcast, orig_host;
5238
u32 mac_len, frame_sz;
5239
__be16 orig_eth_type;
5240
struct ethhdr *eth;
5241
u32 metalen, act;
5242
int off;
5243
5244
/* The XDP program wants to see the packet starting at the MAC
5245
* header.
5246
*/
5247
mac_len = skb->data - skb_mac_header(skb);
5248
hard_start = skb->data - skb_headroom(skb);
5249
5250
/* SKB "head" area always have tailroom for skb_shared_info */
5251
frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5252
frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5253
5254
rxqueue = netif_get_rxqueue(skb);
5255
xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5256
xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5257
skb_headlen(skb) + mac_len, true);
5258
if (skb_is_nonlinear(skb)) {
5259
skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5260
xdp_buff_set_frags_flag(xdp);
5261
} else {
5262
xdp_buff_clear_frags_flag(xdp);
5263
}
5264
5265
orig_data_end = xdp->data_end;
5266
orig_data = xdp->data;
5267
eth = (struct ethhdr *)xdp->data;
5268
orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5269
orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5270
orig_eth_type = eth->h_proto;
5271
5272
act = bpf_prog_run_xdp(xdp_prog, xdp);
5273
5274
/* check if bpf_xdp_adjust_head was used */
5275
off = xdp->data - orig_data;
5276
if (off) {
5277
if (off > 0)
5278
__skb_pull(skb, off);
5279
else if (off < 0)
5280
__skb_push(skb, -off);
5281
5282
skb->mac_header += off;
5283
skb_reset_network_header(skb);
5284
}
5285
5286
/* check if bpf_xdp_adjust_tail was used */
5287
off = xdp->data_end - orig_data_end;
5288
if (off != 0) {
5289
skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5290
skb->len += off; /* positive on grow, negative on shrink */
5291
}
5292
5293
/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5294
* (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5295
*/
5296
if (xdp_buff_has_frags(xdp))
5297
skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5298
else
5299
skb->data_len = 0;
5300
5301
/* check if XDP changed eth hdr such SKB needs update */
5302
eth = (struct ethhdr *)xdp->data;
5303
if ((orig_eth_type != eth->h_proto) ||
5304
(orig_host != ether_addr_equal_64bits(eth->h_dest,
5305
skb->dev->dev_addr)) ||
5306
(orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5307
__skb_push(skb, ETH_HLEN);
5308
skb->pkt_type = PACKET_HOST;
5309
skb->protocol = eth_type_trans(skb, skb->dev);
5310
}
5311
5312
/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5313
* before calling us again on redirect path. We do not call do_redirect
5314
* as we leave that up to the caller.
5315
*
5316
* Caller is responsible for managing lifetime of skb (i.e. calling
5317
* kfree_skb in response to actions it cannot handle/XDP_DROP).
5318
*/
5319
switch (act) {
5320
case XDP_REDIRECT:
5321
case XDP_TX:
5322
__skb_push(skb, mac_len);
5323
break;
5324
case XDP_PASS:
5325
metalen = xdp->data - xdp->data_meta;
5326
if (metalen)
5327
skb_metadata_set(skb, metalen);
5328
break;
5329
}
5330
5331
return act;
5332
}
5333
5334
static int
5335
netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5336
{
5337
struct sk_buff *skb = *pskb;
5338
int err, hroom, troom;
5339
5340
local_lock_nested_bh(&system_page_pool.bh_lock);
5341
err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5342
local_unlock_nested_bh(&system_page_pool.bh_lock);
5343
if (!err)
5344
return 0;
5345
5346
/* In case we have to go down the path and also linearize,
5347
* then lets do the pskb_expand_head() work just once here.
5348
*/
5349
hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5350
troom = skb->tail + skb->data_len - skb->end;
5351
err = pskb_expand_head(skb,
5352
hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5353
troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5354
if (err)
5355
return err;
5356
5357
return skb_linearize(skb);
5358
}
5359
5360
static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5361
struct xdp_buff *xdp,
5362
const struct bpf_prog *xdp_prog)
5363
{
5364
struct sk_buff *skb = *pskb;
5365
u32 mac_len, act = XDP_DROP;
5366
5367
/* Reinjected packets coming from act_mirred or similar should
5368
* not get XDP generic processing.
5369
*/
5370
if (skb_is_redirected(skb))
5371
return XDP_PASS;
5372
5373
/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5374
* bytes. This is the guarantee that also native XDP provides,
5375
* thus we need to do it here as well.
5376
*/
5377
mac_len = skb->data - skb_mac_header(skb);
5378
__skb_push(skb, mac_len);
5379
5380
if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5381
skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5382
if (netif_skb_check_for_xdp(pskb, xdp_prog))
5383
goto do_drop;
5384
}
5385
5386
__skb_pull(*pskb, mac_len);
5387
5388
act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5389
switch (act) {
5390
case XDP_REDIRECT:
5391
case XDP_TX:
5392
case XDP_PASS:
5393
break;
5394
default:
5395
bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5396
fallthrough;
5397
case XDP_ABORTED:
5398
trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5399
fallthrough;
5400
case XDP_DROP:
5401
do_drop:
5402
kfree_skb(*pskb);
5403
break;
5404
}
5405
5406
return act;
5407
}
5408
5409
/* When doing generic XDP we have to bypass the qdisc layer and the
5410
* network taps in order to match in-driver-XDP behavior. This also means
5411
* that XDP packets are able to starve other packets going through a qdisc,
5412
* and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5413
* queues, so they do not have this starvation issue.
5414
*/
5415
void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5416
{
5417
struct net_device *dev = skb->dev;
5418
struct netdev_queue *txq;
5419
bool free_skb = true;
5420
int cpu, rc;
5421
5422
txq = netdev_core_pick_tx(dev, skb, NULL);
5423
cpu = smp_processor_id();
5424
HARD_TX_LOCK(dev, txq, cpu);
5425
if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5426
rc = netdev_start_xmit(skb, dev, txq, 0);
5427
if (dev_xmit_complete(rc))
5428
free_skb = false;
5429
}
5430
HARD_TX_UNLOCK(dev, txq);
5431
if (free_skb) {
5432
trace_xdp_exception(dev, xdp_prog, XDP_TX);
5433
dev_core_stats_tx_dropped_inc(dev);
5434
kfree_skb(skb);
5435
}
5436
}
5437
5438
static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5439
5440
int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5441
{
5442
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5443
5444
if (xdp_prog) {
5445
struct xdp_buff xdp;
5446
u32 act;
5447
int err;
5448
5449
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5450
act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5451
if (act != XDP_PASS) {
5452
switch (act) {
5453
case XDP_REDIRECT:
5454
err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5455
&xdp, xdp_prog);
5456
if (err)
5457
goto out_redir;
5458
break;
5459
case XDP_TX:
5460
generic_xdp_tx(*pskb, xdp_prog);
5461
break;
5462
}
5463
bpf_net_ctx_clear(bpf_net_ctx);
5464
return XDP_DROP;
5465
}
5466
bpf_net_ctx_clear(bpf_net_ctx);
5467
}
5468
return XDP_PASS;
5469
out_redir:
5470
bpf_net_ctx_clear(bpf_net_ctx);
5471
kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5472
return XDP_DROP;
5473
}
5474
EXPORT_SYMBOL_GPL(do_xdp_generic);
5475
5476
static int netif_rx_internal(struct sk_buff *skb)
5477
{
5478
int ret;
5479
5480
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5481
5482
trace_netif_rx(skb);
5483
5484
#ifdef CONFIG_RPS
5485
if (static_branch_unlikely(&rps_needed)) {
5486
struct rps_dev_flow voidflow, *rflow = &voidflow;
5487
int cpu;
5488
5489
rcu_read_lock();
5490
5491
cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492
if (cpu < 0)
5493
cpu = smp_processor_id();
5494
5495
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5496
5497
rcu_read_unlock();
5498
} else
5499
#endif
5500
{
5501
unsigned int qtail;
5502
5503
ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5504
}
5505
return ret;
5506
}
5507
5508
/**
5509
* __netif_rx - Slightly optimized version of netif_rx
5510
* @skb: buffer to post
5511
*
5512
* This behaves as netif_rx except that it does not disable bottom halves.
5513
* As a result this function may only be invoked from the interrupt context
5514
* (either hard or soft interrupt).
5515
*/
5516
int __netif_rx(struct sk_buff *skb)
5517
{
5518
int ret;
5519
5520
lockdep_assert_once(hardirq_count() | softirq_count());
5521
5522
trace_netif_rx_entry(skb);
5523
ret = netif_rx_internal(skb);
5524
trace_netif_rx_exit(ret);
5525
return ret;
5526
}
5527
EXPORT_SYMBOL(__netif_rx);
5528
5529
/**
5530
* netif_rx - post buffer to the network code
5531
* @skb: buffer to post
5532
*
5533
* This function receives a packet from a device driver and queues it for
5534
* the upper (protocol) levels to process via the backlog NAPI device. It
5535
* always succeeds. The buffer may be dropped during processing for
5536
* congestion control or by the protocol layers.
5537
* The network buffer is passed via the backlog NAPI device. Modern NIC
5538
* driver should use NAPI and GRO.
5539
* This function can used from interrupt and from process context. The
5540
* caller from process context must not disable interrupts before invoking
5541
* this function.
5542
*
5543
* return values:
5544
* NET_RX_SUCCESS (no congestion)
5545
* NET_RX_DROP (packet was dropped)
5546
*
5547
*/
5548
int netif_rx(struct sk_buff *skb)
5549
{
5550
bool need_bh_off = !(hardirq_count() | softirq_count());
5551
int ret;
5552
5553
if (need_bh_off)
5554
local_bh_disable();
5555
trace_netif_rx_entry(skb);
5556
ret = netif_rx_internal(skb);
5557
trace_netif_rx_exit(ret);
5558
if (need_bh_off)
5559
local_bh_enable();
5560
return ret;
5561
}
5562
EXPORT_SYMBOL(netif_rx);
5563
5564
static __latent_entropy void net_tx_action(void)
5565
{
5566
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5567
5568
if (sd->completion_queue) {
5569
struct sk_buff *clist;
5570
5571
local_irq_disable();
5572
clist = sd->completion_queue;
5573
sd->completion_queue = NULL;
5574
local_irq_enable();
5575
5576
while (clist) {
5577
struct sk_buff *skb = clist;
5578
5579
clist = clist->next;
5580
5581
WARN_ON(refcount_read(&skb->users));
5582
if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5583
trace_consume_skb(skb, net_tx_action);
5584
else
5585
trace_kfree_skb(skb, net_tx_action,
5586
get_kfree_skb_cb(skb)->reason, NULL);
5587
5588
if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5589
__kfree_skb(skb);
5590
else
5591
__napi_kfree_skb(skb,
5592
get_kfree_skb_cb(skb)->reason);
5593
}
5594
}
5595
5596
if (sd->output_queue) {
5597
struct Qdisc *head;
5598
5599
local_irq_disable();
5600
head = sd->output_queue;
5601
sd->output_queue = NULL;
5602
sd->output_queue_tailp = &sd->output_queue;
5603
local_irq_enable();
5604
5605
rcu_read_lock();
5606
5607
while (head) {
5608
struct Qdisc *q = head;
5609
spinlock_t *root_lock = NULL;
5610
5611
head = head->next_sched;
5612
5613
/* We need to make sure head->next_sched is read
5614
* before clearing __QDISC_STATE_SCHED
5615
*/
5616
smp_mb__before_atomic();
5617
5618
if (!(q->flags & TCQ_F_NOLOCK)) {
5619
root_lock = qdisc_lock(q);
5620
spin_lock(root_lock);
5621
} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5622
&q->state))) {
5623
/* There is a synchronize_net() between
5624
* STATE_DEACTIVATED flag being set and
5625
* qdisc_reset()/some_qdisc_is_busy() in
5626
* dev_deactivate(), so we can safely bail out
5627
* early here to avoid data race between
5628
* qdisc_deactivate() and some_qdisc_is_busy()
5629
* for lockless qdisc.
5630
*/
5631
clear_bit(__QDISC_STATE_SCHED, &q->state);
5632
continue;
5633
}
5634
5635
clear_bit(__QDISC_STATE_SCHED, &q->state);
5636
qdisc_run(q);
5637
if (root_lock)
5638
spin_unlock(root_lock);
5639
}
5640
5641
rcu_read_unlock();
5642
}
5643
5644
xfrm_dev_backlog(sd);
5645
}
5646
5647
#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5648
/* This hook is defined here for ATM LANE */
5649
int (*br_fdb_test_addr_hook)(struct net_device *dev,
5650
unsigned char *addr) __read_mostly;
5651
EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5652
#endif
5653
5654
/**
5655
* netdev_is_rx_handler_busy - check if receive handler is registered
5656
* @dev: device to check
5657
*
5658
* Check if a receive handler is already registered for a given device.
5659
* Return true if there one.
5660
*
5661
* The caller must hold the rtnl_mutex.
5662
*/
5663
bool netdev_is_rx_handler_busy(struct net_device *dev)
5664
{
5665
ASSERT_RTNL();
5666
return dev && rtnl_dereference(dev->rx_handler);
5667
}
5668
EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5669
5670
/**
5671
* netdev_rx_handler_register - register receive handler
5672
* @dev: device to register a handler for
5673
* @rx_handler: receive handler to register
5674
* @rx_handler_data: data pointer that is used by rx handler
5675
*
5676
* Register a receive handler for a device. This handler will then be
5677
* called from __netif_receive_skb. A negative errno code is returned
5678
* on a failure.
5679
*
5680
* The caller must hold the rtnl_mutex.
5681
*
5682
* For a general description of rx_handler, see enum rx_handler_result.
5683
*/
5684
int netdev_rx_handler_register(struct net_device *dev,
5685
rx_handler_func_t *rx_handler,
5686
void *rx_handler_data)
5687
{
5688
if (netdev_is_rx_handler_busy(dev))
5689
return -EBUSY;
5690
5691
if (dev->priv_flags & IFF_NO_RX_HANDLER)
5692
return -EINVAL;
5693
5694
/* Note: rx_handler_data must be set before rx_handler */
5695
rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5696
rcu_assign_pointer(dev->rx_handler, rx_handler);
5697
5698
return 0;
5699
}
5700
EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5701
5702
/**
5703
* netdev_rx_handler_unregister - unregister receive handler
5704
* @dev: device to unregister a handler from
5705
*
5706
* Unregister a receive handler from a device.
5707
*
5708
* The caller must hold the rtnl_mutex.
5709
*/
5710
void netdev_rx_handler_unregister(struct net_device *dev)
5711
{
5712
5713
ASSERT_RTNL();
5714
RCU_INIT_POINTER(dev->rx_handler, NULL);
5715
/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5716
* section has a guarantee to see a non NULL rx_handler_data
5717
* as well.
5718
*/
5719
synchronize_net();
5720
RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5721
}
5722
EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5723
5724
/*
5725
* Limit the use of PFMEMALLOC reserves to those protocols that implement
5726
* the special handling of PFMEMALLOC skbs.
5727
*/
5728
static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5729
{
5730
switch (skb->protocol) {
5731
case htons(ETH_P_ARP):
5732
case htons(ETH_P_IP):
5733
case htons(ETH_P_IPV6):
5734
case htons(ETH_P_8021Q):
5735
case htons(ETH_P_8021AD):
5736
return true;
5737
default:
5738
return false;
5739
}
5740
}
5741
5742
static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5743
int *ret, struct net_device *orig_dev)
5744
{
5745
if (nf_hook_ingress_active(skb)) {
5746
int ingress_retval;
5747
5748
if (*pt_prev) {
5749
*ret = deliver_skb(skb, *pt_prev, orig_dev);
5750
*pt_prev = NULL;
5751
}
5752
5753
rcu_read_lock();
5754
ingress_retval = nf_hook_ingress(skb);
5755
rcu_read_unlock();
5756
return ingress_retval;
5757
}
5758
return 0;
5759
}
5760
5761
static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5762
struct packet_type **ppt_prev)
5763
{
5764
enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5765
struct packet_type *ptype, *pt_prev;
5766
rx_handler_func_t *rx_handler;
5767
struct sk_buff *skb = *pskb;
5768
struct net_device *orig_dev;
5769
bool deliver_exact = false;
5770
int ret = NET_RX_DROP;
5771
__be16 type;
5772
5773
net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5774
5775
trace_netif_receive_skb(skb);
5776
5777
orig_dev = skb->dev;
5778
5779
skb_reset_network_header(skb);
5780
#if !defined(CONFIG_DEBUG_NET)
5781
/* We plan to no longer reset the transport header here.
5782
* Give some time to fuzzers and dev build to catch bugs
5783
* in network stacks.
5784
*/
5785
if (!skb_transport_header_was_set(skb))
5786
skb_reset_transport_header(skb);
5787
#endif
5788
skb_reset_mac_len(skb);
5789
5790
pt_prev = NULL;
5791
5792
another_round:
5793
skb->skb_iif = skb->dev->ifindex;
5794
5795
__this_cpu_inc(softnet_data.processed);
5796
5797
if (static_branch_unlikely(&generic_xdp_needed_key)) {
5798
int ret2;
5799
5800
migrate_disable();
5801
ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5802
&skb);
5803
migrate_enable();
5804
5805
if (ret2 != XDP_PASS) {
5806
ret = NET_RX_DROP;
5807
goto out;
5808
}
5809
}
5810
5811
if (eth_type_vlan(skb->protocol)) {
5812
skb = skb_vlan_untag(skb);
5813
if (unlikely(!skb))
5814
goto out;
5815
}
5816
5817
if (skb_skip_tc_classify(skb))
5818
goto skip_classify;
5819
5820
if (pfmemalloc)
5821
goto skip_taps;
5822
5823
list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5824
list) {
5825
if (pt_prev)
5826
ret = deliver_skb(skb, pt_prev, orig_dev);
5827
pt_prev = ptype;
5828
}
5829
5830
list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5831
if (pt_prev)
5832
ret = deliver_skb(skb, pt_prev, orig_dev);
5833
pt_prev = ptype;
5834
}
5835
5836
skip_taps:
5837
#ifdef CONFIG_NET_INGRESS
5838
if (static_branch_unlikely(&ingress_needed_key)) {
5839
bool another = false;
5840
5841
nf_skip_egress(skb, true);
5842
skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5843
&another);
5844
if (another)
5845
goto another_round;
5846
if (!skb)
5847
goto out;
5848
5849
nf_skip_egress(skb, false);
5850
if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5851
goto out;
5852
}
5853
#endif
5854
skb_reset_redirect(skb);
5855
skip_classify:
5856
if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5857
drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5858
goto drop;
5859
}
5860
5861
if (skb_vlan_tag_present(skb)) {
5862
if (pt_prev) {
5863
ret = deliver_skb(skb, pt_prev, orig_dev);
5864
pt_prev = NULL;
5865
}
5866
if (vlan_do_receive(&skb))
5867
goto another_round;
5868
else if (unlikely(!skb))
5869
goto out;
5870
}
5871
5872
rx_handler = rcu_dereference(skb->dev->rx_handler);
5873
if (rx_handler) {
5874
if (pt_prev) {
5875
ret = deliver_skb(skb, pt_prev, orig_dev);
5876
pt_prev = NULL;
5877
}
5878
switch (rx_handler(&skb)) {
5879
case RX_HANDLER_CONSUMED:
5880
ret = NET_RX_SUCCESS;
5881
goto out;
5882
case RX_HANDLER_ANOTHER:
5883
goto another_round;
5884
case RX_HANDLER_EXACT:
5885
deliver_exact = true;
5886
break;
5887
case RX_HANDLER_PASS:
5888
break;
5889
default:
5890
BUG();
5891
}
5892
}
5893
5894
if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5895
check_vlan_id:
5896
if (skb_vlan_tag_get_id(skb)) {
5897
/* Vlan id is non 0 and vlan_do_receive() above couldn't
5898
* find vlan device.
5899
*/
5900
skb->pkt_type = PACKET_OTHERHOST;
5901
} else if (eth_type_vlan(skb->protocol)) {
5902
/* Outer header is 802.1P with vlan 0, inner header is
5903
* 802.1Q or 802.1AD and vlan_do_receive() above could
5904
* not find vlan dev for vlan id 0.
5905
*/
5906
__vlan_hwaccel_clear_tag(skb);
5907
skb = skb_vlan_untag(skb);
5908
if (unlikely(!skb))
5909
goto out;
5910
if (vlan_do_receive(&skb))
5911
/* After stripping off 802.1P header with vlan 0
5912
* vlan dev is found for inner header.
5913
*/
5914
goto another_round;
5915
else if (unlikely(!skb))
5916
goto out;
5917
else
5918
/* We have stripped outer 802.1P vlan 0 header.
5919
* But could not find vlan dev.
5920
* check again for vlan id to set OTHERHOST.
5921
*/
5922
goto check_vlan_id;
5923
}
5924
/* Note: we might in the future use prio bits
5925
* and set skb->priority like in vlan_do_receive()
5926
* For the time being, just ignore Priority Code Point
5927
*/
5928
__vlan_hwaccel_clear_tag(skb);
5929
}
5930
5931
type = skb->protocol;
5932
5933
/* deliver only exact match when indicated */
5934
if (likely(!deliver_exact)) {
5935
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5936
&ptype_base[ntohs(type) &
5937
PTYPE_HASH_MASK]);
5938
5939
/* orig_dev and skb->dev could belong to different netns;
5940
* Even in such case we need to traverse only the list
5941
* coming from skb->dev, as the ptype owner (packet socket)
5942
* will use dev_net(skb->dev) to do namespace filtering.
5943
*/
5944
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5945
&dev_net_rcu(skb->dev)->ptype_specific);
5946
}
5947
5948
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5949
&orig_dev->ptype_specific);
5950
5951
if (unlikely(skb->dev != orig_dev)) {
5952
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5953
&skb->dev->ptype_specific);
5954
}
5955
5956
if (pt_prev) {
5957
*ppt_prev = pt_prev;
5958
} else {
5959
drop:
5960
if (!deliver_exact)
5961
dev_core_stats_rx_dropped_inc(skb->dev);
5962
else
5963
dev_core_stats_rx_nohandler_inc(skb->dev);
5964
5965
kfree_skb_reason(skb, drop_reason);
5966
/* Jamal, now you will not able to escape explaining
5967
* me how you were going to use this. :-)
5968
*/
5969
ret = NET_RX_DROP;
5970
}
5971
5972
out:
5973
/* The invariant here is that if *ppt_prev is not NULL
5974
* then skb should also be non-NULL.
5975
*
5976
* Apparently *ppt_prev assignment above holds this invariant due to
5977
* skb dereferencing near it.
5978
*/
5979
*pskb = skb;
5980
return ret;
5981
}
5982
5983
static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5984
{
5985
struct net_device *orig_dev = skb->dev;
5986
struct packet_type *pt_prev = NULL;
5987
int ret;
5988
5989
ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5990
if (pt_prev)
5991
ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5992
skb->dev, pt_prev, orig_dev);
5993
return ret;
5994
}
5995
5996
/**
5997
* netif_receive_skb_core - special purpose version of netif_receive_skb
5998
* @skb: buffer to process
5999
*
6000
* More direct receive version of netif_receive_skb(). It should
6001
* only be used by callers that have a need to skip RPS and Generic XDP.
6002
* Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6003
*
6004
* This function may only be called from softirq context and interrupts
6005
* should be enabled.
6006
*
6007
* Return values (usually ignored):
6008
* NET_RX_SUCCESS: no congestion
6009
* NET_RX_DROP: packet was dropped
6010
*/
6011
int netif_receive_skb_core(struct sk_buff *skb)
6012
{
6013
int ret;
6014
6015
rcu_read_lock();
6016
ret = __netif_receive_skb_one_core(skb, false);
6017
rcu_read_unlock();
6018
6019
return ret;
6020
}
6021
EXPORT_SYMBOL(netif_receive_skb_core);
6022
6023
static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6024
struct packet_type *pt_prev,
6025
struct net_device *orig_dev)
6026
{
6027
struct sk_buff *skb, *next;
6028
6029
if (!pt_prev)
6030
return;
6031
if (list_empty(head))
6032
return;
6033
if (pt_prev->list_func != NULL)
6034
INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6035
ip_list_rcv, head, pt_prev, orig_dev);
6036
else
6037
list_for_each_entry_safe(skb, next, head, list) {
6038
skb_list_del_init(skb);
6039
pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6040
}
6041
}
6042
6043
static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6044
{
6045
/* Fast-path assumptions:
6046
* - There is no RX handler.
6047
* - Only one packet_type matches.
6048
* If either of these fails, we will end up doing some per-packet
6049
* processing in-line, then handling the 'last ptype' for the whole
6050
* sublist. This can't cause out-of-order delivery to any single ptype,
6051
* because the 'last ptype' must be constant across the sublist, and all
6052
* other ptypes are handled per-packet.
6053
*/
6054
/* Current (common) ptype of sublist */
6055
struct packet_type *pt_curr = NULL;
6056
/* Current (common) orig_dev of sublist */
6057
struct net_device *od_curr = NULL;
6058
struct sk_buff *skb, *next;
6059
LIST_HEAD(sublist);
6060
6061
list_for_each_entry_safe(skb, next, head, list) {
6062
struct net_device *orig_dev = skb->dev;
6063
struct packet_type *pt_prev = NULL;
6064
6065
skb_list_del_init(skb);
6066
__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6067
if (!pt_prev)
6068
continue;
6069
if (pt_curr != pt_prev || od_curr != orig_dev) {
6070
/* dispatch old sublist */
6071
__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6072
/* start new sublist */
6073
INIT_LIST_HEAD(&sublist);
6074
pt_curr = pt_prev;
6075
od_curr = orig_dev;
6076
}
6077
list_add_tail(&skb->list, &sublist);
6078
}
6079
6080
/* dispatch final sublist */
6081
__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6082
}
6083
6084
static int __netif_receive_skb(struct sk_buff *skb)
6085
{
6086
int ret;
6087
6088
if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6089
unsigned int noreclaim_flag;
6090
6091
/*
6092
* PFMEMALLOC skbs are special, they should
6093
* - be delivered to SOCK_MEMALLOC sockets only
6094
* - stay away from userspace
6095
* - have bounded memory usage
6096
*
6097
* Use PF_MEMALLOC as this saves us from propagating the allocation
6098
* context down to all allocation sites.
6099
*/
6100
noreclaim_flag = memalloc_noreclaim_save();
6101
ret = __netif_receive_skb_one_core(skb, true);
6102
memalloc_noreclaim_restore(noreclaim_flag);
6103
} else
6104
ret = __netif_receive_skb_one_core(skb, false);
6105
6106
return ret;
6107
}
6108
6109
static void __netif_receive_skb_list(struct list_head *head)
6110
{
6111
unsigned long noreclaim_flag = 0;
6112
struct sk_buff *skb, *next;
6113
bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6114
6115
list_for_each_entry_safe(skb, next, head, list) {
6116
if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6117
struct list_head sublist;
6118
6119
/* Handle the previous sublist */
6120
list_cut_before(&sublist, head, &skb->list);
6121
if (!list_empty(&sublist))
6122
__netif_receive_skb_list_core(&sublist, pfmemalloc);
6123
pfmemalloc = !pfmemalloc;
6124
/* See comments in __netif_receive_skb */
6125
if (pfmemalloc)
6126
noreclaim_flag = memalloc_noreclaim_save();
6127
else
6128
memalloc_noreclaim_restore(noreclaim_flag);
6129
}
6130
}
6131
/* Handle the remaining sublist */
6132
if (!list_empty(head))
6133
__netif_receive_skb_list_core(head, pfmemalloc);
6134
/* Restore pflags */
6135
if (pfmemalloc)
6136
memalloc_noreclaim_restore(noreclaim_flag);
6137
}
6138
6139
static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6140
{
6141
struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6142
struct bpf_prog *new = xdp->prog;
6143
int ret = 0;
6144
6145
switch (xdp->command) {
6146
case XDP_SETUP_PROG:
6147
rcu_assign_pointer(dev->xdp_prog, new);
6148
if (old)
6149
bpf_prog_put(old);
6150
6151
if (old && !new) {
6152
static_branch_dec(&generic_xdp_needed_key);
6153
} else if (new && !old) {
6154
static_branch_inc(&generic_xdp_needed_key);
6155
netif_disable_lro(dev);
6156
dev_disable_gro_hw(dev);
6157
}
6158
break;
6159
6160
default:
6161
ret = -EINVAL;
6162
break;
6163
}
6164
6165
return ret;
6166
}
6167
6168
static int netif_receive_skb_internal(struct sk_buff *skb)
6169
{
6170
int ret;
6171
6172
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6173
6174
if (skb_defer_rx_timestamp(skb))
6175
return NET_RX_SUCCESS;
6176
6177
rcu_read_lock();
6178
#ifdef CONFIG_RPS
6179
if (static_branch_unlikely(&rps_needed)) {
6180
struct rps_dev_flow voidflow, *rflow = &voidflow;
6181
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6182
6183
if (cpu >= 0) {
6184
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6185
rcu_read_unlock();
6186
return ret;
6187
}
6188
}
6189
#endif
6190
ret = __netif_receive_skb(skb);
6191
rcu_read_unlock();
6192
return ret;
6193
}
6194
6195
void netif_receive_skb_list_internal(struct list_head *head)
6196
{
6197
struct sk_buff *skb, *next;
6198
LIST_HEAD(sublist);
6199
6200
list_for_each_entry_safe(skb, next, head, list) {
6201
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6202
skb);
6203
skb_list_del_init(skb);
6204
if (!skb_defer_rx_timestamp(skb))
6205
list_add_tail(&skb->list, &sublist);
6206
}
6207
list_splice_init(&sublist, head);
6208
6209
rcu_read_lock();
6210
#ifdef CONFIG_RPS
6211
if (static_branch_unlikely(&rps_needed)) {
6212
list_for_each_entry_safe(skb, next, head, list) {
6213
struct rps_dev_flow voidflow, *rflow = &voidflow;
6214
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6215
6216
if (cpu >= 0) {
6217
/* Will be handled, remove from list */
6218
skb_list_del_init(skb);
6219
enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6220
}
6221
}
6222
}
6223
#endif
6224
__netif_receive_skb_list(head);
6225
rcu_read_unlock();
6226
}
6227
6228
/**
6229
* netif_receive_skb - process receive buffer from network
6230
* @skb: buffer to process
6231
*
6232
* netif_receive_skb() is the main receive data processing function.
6233
* It always succeeds. The buffer may be dropped during processing
6234
* for congestion control or by the protocol layers.
6235
*
6236
* This function may only be called from softirq context and interrupts
6237
* should be enabled.
6238
*
6239
* Return values (usually ignored):
6240
* NET_RX_SUCCESS: no congestion
6241
* NET_RX_DROP: packet was dropped
6242
*/
6243
int netif_receive_skb(struct sk_buff *skb)
6244
{
6245
int ret;
6246
6247
trace_netif_receive_skb_entry(skb);
6248
6249
ret = netif_receive_skb_internal(skb);
6250
trace_netif_receive_skb_exit(ret);
6251
6252
return ret;
6253
}
6254
EXPORT_SYMBOL(netif_receive_skb);
6255
6256
/**
6257
* netif_receive_skb_list - process many receive buffers from network
6258
* @head: list of skbs to process.
6259
*
6260
* Since return value of netif_receive_skb() is normally ignored, and
6261
* wouldn't be meaningful for a list, this function returns void.
6262
*
6263
* This function may only be called from softirq context and interrupts
6264
* should be enabled.
6265
*/
6266
void netif_receive_skb_list(struct list_head *head)
6267
{
6268
struct sk_buff *skb;
6269
6270
if (list_empty(head))
6271
return;
6272
if (trace_netif_receive_skb_list_entry_enabled()) {
6273
list_for_each_entry(skb, head, list)
6274
trace_netif_receive_skb_list_entry(skb);
6275
}
6276
netif_receive_skb_list_internal(head);
6277
trace_netif_receive_skb_list_exit(0);
6278
}
6279
EXPORT_SYMBOL(netif_receive_skb_list);
6280
6281
/* Network device is going away, flush any packets still pending */
6282
static void flush_backlog(struct work_struct *work)
6283
{
6284
struct sk_buff *skb, *tmp;
6285
struct sk_buff_head list;
6286
struct softnet_data *sd;
6287
6288
__skb_queue_head_init(&list);
6289
local_bh_disable();
6290
sd = this_cpu_ptr(&softnet_data);
6291
6292
backlog_lock_irq_disable(sd);
6293
skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6294
if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6295
__skb_unlink(skb, &sd->input_pkt_queue);
6296
__skb_queue_tail(&list, skb);
6297
rps_input_queue_head_incr(sd);
6298
}
6299
}
6300
backlog_unlock_irq_enable(sd);
6301
6302
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6303
skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6304
if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6305
__skb_unlink(skb, &sd->process_queue);
6306
__skb_queue_tail(&list, skb);
6307
rps_input_queue_head_incr(sd);
6308
}
6309
}
6310
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6311
local_bh_enable();
6312
6313
__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6314
}
6315
6316
static bool flush_required(int cpu)
6317
{
6318
#if IS_ENABLED(CONFIG_RPS)
6319
struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6320
bool do_flush;
6321
6322
backlog_lock_irq_disable(sd);
6323
6324
/* as insertion into process_queue happens with the rps lock held,
6325
* process_queue access may race only with dequeue
6326
*/
6327
do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6328
!skb_queue_empty_lockless(&sd->process_queue);
6329
backlog_unlock_irq_enable(sd);
6330
6331
return do_flush;
6332
#endif
6333
/* without RPS we can't safely check input_pkt_queue: during a
6334
* concurrent remote skb_queue_splice() we can detect as empty both
6335
* input_pkt_queue and process_queue even if the latter could end-up
6336
* containing a lot of packets.
6337
*/
6338
return true;
6339
}
6340
6341
struct flush_backlogs {
6342
cpumask_t flush_cpus;
6343
struct work_struct w[];
6344
};
6345
6346
static struct flush_backlogs *flush_backlogs_alloc(void)
6347
{
6348
return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6349
GFP_KERNEL);
6350
}
6351
6352
static struct flush_backlogs *flush_backlogs_fallback;
6353
static DEFINE_MUTEX(flush_backlogs_mutex);
6354
6355
static void flush_all_backlogs(void)
6356
{
6357
struct flush_backlogs *ptr = flush_backlogs_alloc();
6358
unsigned int cpu;
6359
6360
if (!ptr) {
6361
mutex_lock(&flush_backlogs_mutex);
6362
ptr = flush_backlogs_fallback;
6363
}
6364
cpumask_clear(&ptr->flush_cpus);
6365
6366
cpus_read_lock();
6367
6368
for_each_online_cpu(cpu) {
6369
if (flush_required(cpu)) {
6370
INIT_WORK(&ptr->w[cpu], flush_backlog);
6371
queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6372
__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6373
}
6374
}
6375
6376
/* we can have in flight packet[s] on the cpus we are not flushing,
6377
* synchronize_net() in unregister_netdevice_many() will take care of
6378
* them.
6379
*/
6380
for_each_cpu(cpu, &ptr->flush_cpus)
6381
flush_work(&ptr->w[cpu]);
6382
6383
cpus_read_unlock();
6384
6385
if (ptr != flush_backlogs_fallback)
6386
kfree(ptr);
6387
else
6388
mutex_unlock(&flush_backlogs_mutex);
6389
}
6390
6391
static void net_rps_send_ipi(struct softnet_data *remsd)
6392
{
6393
#ifdef CONFIG_RPS
6394
while (remsd) {
6395
struct softnet_data *next = remsd->rps_ipi_next;
6396
6397
if (cpu_online(remsd->cpu))
6398
smp_call_function_single_async(remsd->cpu, &remsd->csd);
6399
remsd = next;
6400
}
6401
#endif
6402
}
6403
6404
/*
6405
* net_rps_action_and_irq_enable sends any pending IPI's for rps.
6406
* Note: called with local irq disabled, but exits with local irq enabled.
6407
*/
6408
static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6409
{
6410
#ifdef CONFIG_RPS
6411
struct softnet_data *remsd = sd->rps_ipi_list;
6412
6413
if (!use_backlog_threads() && remsd) {
6414
sd->rps_ipi_list = NULL;
6415
6416
local_irq_enable();
6417
6418
/* Send pending IPI's to kick RPS processing on remote cpus. */
6419
net_rps_send_ipi(remsd);
6420
} else
6421
#endif
6422
local_irq_enable();
6423
}
6424
6425
static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6426
{
6427
#ifdef CONFIG_RPS
6428
return !use_backlog_threads() && sd->rps_ipi_list;
6429
#else
6430
return false;
6431
#endif
6432
}
6433
6434
static int process_backlog(struct napi_struct *napi, int quota)
6435
{
6436
struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6437
bool again = true;
6438
int work = 0;
6439
6440
/* Check if we have pending ipi, its better to send them now,
6441
* not waiting net_rx_action() end.
6442
*/
6443
if (sd_has_rps_ipi_waiting(sd)) {
6444
local_irq_disable();
6445
net_rps_action_and_irq_enable(sd);
6446
}
6447
6448
napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6449
while (again) {
6450
struct sk_buff *skb;
6451
6452
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6453
while ((skb = __skb_dequeue(&sd->process_queue))) {
6454
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6455
rcu_read_lock();
6456
__netif_receive_skb(skb);
6457
rcu_read_unlock();
6458
if (++work >= quota) {
6459
rps_input_queue_head_add(sd, work);
6460
return work;
6461
}
6462
6463
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6464
}
6465
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6466
6467
backlog_lock_irq_disable(sd);
6468
if (skb_queue_empty(&sd->input_pkt_queue)) {
6469
/*
6470
* Inline a custom version of __napi_complete().
6471
* only current cpu owns and manipulates this napi,
6472
* and NAPI_STATE_SCHED is the only possible flag set
6473
* on backlog.
6474
* We can use a plain write instead of clear_bit(),
6475
* and we dont need an smp_mb() memory barrier.
6476
*/
6477
napi->state &= NAPIF_STATE_THREADED;
6478
again = false;
6479
} else {
6480
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6481
skb_queue_splice_tail_init(&sd->input_pkt_queue,
6482
&sd->process_queue);
6483
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6484
}
6485
backlog_unlock_irq_enable(sd);
6486
}
6487
6488
if (work)
6489
rps_input_queue_head_add(sd, work);
6490
return work;
6491
}
6492
6493
/**
6494
* __napi_schedule - schedule for receive
6495
* @n: entry to schedule
6496
*
6497
* The entry's receive function will be scheduled to run.
6498
* Consider using __napi_schedule_irqoff() if hard irqs are masked.
6499
*/
6500
void __napi_schedule(struct napi_struct *n)
6501
{
6502
unsigned long flags;
6503
6504
local_irq_save(flags);
6505
____napi_schedule(this_cpu_ptr(&softnet_data), n);
6506
local_irq_restore(flags);
6507
}
6508
EXPORT_SYMBOL(__napi_schedule);
6509
6510
/**
6511
* napi_schedule_prep - check if napi can be scheduled
6512
* @n: napi context
6513
*
6514
* Test if NAPI routine is already running, and if not mark
6515
* it as running. This is used as a condition variable to
6516
* insure only one NAPI poll instance runs. We also make
6517
* sure there is no pending NAPI disable.
6518
*/
6519
bool napi_schedule_prep(struct napi_struct *n)
6520
{
6521
unsigned long new, val = READ_ONCE(n->state);
6522
6523
do {
6524
if (unlikely(val & NAPIF_STATE_DISABLE))
6525
return false;
6526
new = val | NAPIF_STATE_SCHED;
6527
6528
/* Sets STATE_MISSED bit if STATE_SCHED was already set
6529
* This was suggested by Alexander Duyck, as compiler
6530
* emits better code than :
6531
* if (val & NAPIF_STATE_SCHED)
6532
* new |= NAPIF_STATE_MISSED;
6533
*/
6534
new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6535
NAPIF_STATE_MISSED;
6536
} while (!try_cmpxchg(&n->state, &val, new));
6537
6538
return !(val & NAPIF_STATE_SCHED);
6539
}
6540
EXPORT_SYMBOL(napi_schedule_prep);
6541
6542
/**
6543
* __napi_schedule_irqoff - schedule for receive
6544
* @n: entry to schedule
6545
*
6546
* Variant of __napi_schedule() assuming hard irqs are masked.
6547
*
6548
* On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6549
* because the interrupt disabled assumption might not be true
6550
* due to force-threaded interrupts and spinlock substitution.
6551
*/
6552
void __napi_schedule_irqoff(struct napi_struct *n)
6553
{
6554
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6555
____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556
else
6557
__napi_schedule(n);
6558
}
6559
EXPORT_SYMBOL(__napi_schedule_irqoff);
6560
6561
bool napi_complete_done(struct napi_struct *n, int work_done)
6562
{
6563
unsigned long flags, val, new, timeout = 0;
6564
bool ret = true;
6565
6566
/*
6567
* 1) Don't let napi dequeue from the cpu poll list
6568
* just in case its running on a different cpu.
6569
* 2) If we are busy polling, do nothing here, we have
6570
* the guarantee we will be called later.
6571
*/
6572
if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6573
NAPIF_STATE_IN_BUSY_POLL)))
6574
return false;
6575
6576
if (work_done) {
6577
if (n->gro.bitmask)
6578
timeout = napi_get_gro_flush_timeout(n);
6579
n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6580
}
6581
if (n->defer_hard_irqs_count > 0) {
6582
n->defer_hard_irqs_count--;
6583
timeout = napi_get_gro_flush_timeout(n);
6584
if (timeout)
6585
ret = false;
6586
}
6587
6588
/*
6589
* When the NAPI instance uses a timeout and keeps postponing
6590
* it, we need to bound somehow the time packets are kept in
6591
* the GRO layer.
6592
*/
6593
gro_flush_normal(&n->gro, !!timeout);
6594
6595
if (unlikely(!list_empty(&n->poll_list))) {
6596
/* If n->poll_list is not empty, we need to mask irqs */
6597
local_irq_save(flags);
6598
list_del_init(&n->poll_list);
6599
local_irq_restore(flags);
6600
}
6601
WRITE_ONCE(n->list_owner, -1);
6602
6603
val = READ_ONCE(n->state);
6604
do {
6605
WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6606
6607
new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6608
NAPIF_STATE_SCHED_THREADED |
6609
NAPIF_STATE_PREFER_BUSY_POLL);
6610
6611
/* If STATE_MISSED was set, leave STATE_SCHED set,
6612
* because we will call napi->poll() one more time.
6613
* This C code was suggested by Alexander Duyck to help gcc.
6614
*/
6615
new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6616
NAPIF_STATE_SCHED;
6617
} while (!try_cmpxchg(&n->state, &val, new));
6618
6619
if (unlikely(val & NAPIF_STATE_MISSED)) {
6620
__napi_schedule(n);
6621
return false;
6622
}
6623
6624
if (timeout)
6625
hrtimer_start(&n->timer, ns_to_ktime(timeout),
6626
HRTIMER_MODE_REL_PINNED);
6627
return ret;
6628
}
6629
EXPORT_SYMBOL(napi_complete_done);
6630
6631
static void skb_defer_free_flush(struct softnet_data *sd)
6632
{
6633
struct sk_buff *skb, *next;
6634
6635
/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6636
if (!READ_ONCE(sd->defer_list))
6637
return;
6638
6639
spin_lock(&sd->defer_lock);
6640
skb = sd->defer_list;
6641
sd->defer_list = NULL;
6642
sd->defer_count = 0;
6643
spin_unlock(&sd->defer_lock);
6644
6645
while (skb != NULL) {
6646
next = skb->next;
6647
napi_consume_skb(skb, 1);
6648
skb = next;
6649
}
6650
}
6651
6652
#if defined(CONFIG_NET_RX_BUSY_POLL)
6653
6654
static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6655
{
6656
if (!skip_schedule) {
6657
gro_normal_list(&napi->gro);
6658
__napi_schedule(napi);
6659
return;
6660
}
6661
6662
/* Flush too old packets. If HZ < 1000, flush all packets */
6663
gro_flush_normal(&napi->gro, HZ >= 1000);
6664
6665
clear_bit(NAPI_STATE_SCHED, &napi->state);
6666
}
6667
6668
enum {
6669
NAPI_F_PREFER_BUSY_POLL = 1,
6670
NAPI_F_END_ON_RESCHED = 2,
6671
};
6672
6673
static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6674
unsigned flags, u16 budget)
6675
{
6676
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6677
bool skip_schedule = false;
6678
unsigned long timeout;
6679
int rc;
6680
6681
/* Busy polling means there is a high chance device driver hard irq
6682
* could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6683
* set in napi_schedule_prep().
6684
* Since we are about to call napi->poll() once more, we can safely
6685
* clear NAPI_STATE_MISSED.
6686
*
6687
* Note: x86 could use a single "lock and ..." instruction
6688
* to perform these two clear_bit()
6689
*/
6690
clear_bit(NAPI_STATE_MISSED, &napi->state);
6691
clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6692
6693
local_bh_disable();
6694
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6695
6696
if (flags & NAPI_F_PREFER_BUSY_POLL) {
6697
napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6698
timeout = napi_get_gro_flush_timeout(napi);
6699
if (napi->defer_hard_irqs_count && timeout) {
6700
hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6701
skip_schedule = true;
6702
}
6703
}
6704
6705
/* All we really want here is to re-enable device interrupts.
6706
* Ideally, a new ndo_busy_poll_stop() could avoid another round.
6707
*/
6708
rc = napi->poll(napi, budget);
6709
/* We can't gro_normal_list() here, because napi->poll() might have
6710
* rearmed the napi (napi_complete_done()) in which case it could
6711
* already be running on another CPU.
6712
*/
6713
trace_napi_poll(napi, rc, budget);
6714
netpoll_poll_unlock(have_poll_lock);
6715
if (rc == budget)
6716
__busy_poll_stop(napi, skip_schedule);
6717
bpf_net_ctx_clear(bpf_net_ctx);
6718
local_bh_enable();
6719
}
6720
6721
static void __napi_busy_loop(unsigned int napi_id,
6722
bool (*loop_end)(void *, unsigned long),
6723
void *loop_end_arg, unsigned flags, u16 budget)
6724
{
6725
unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6726
int (*napi_poll)(struct napi_struct *napi, int budget);
6727
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6728
void *have_poll_lock = NULL;
6729
struct napi_struct *napi;
6730
6731
WARN_ON_ONCE(!rcu_read_lock_held());
6732
6733
restart:
6734
napi_poll = NULL;
6735
6736
napi = napi_by_id(napi_id);
6737
if (!napi)
6738
return;
6739
6740
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6741
preempt_disable();
6742
for (;;) {
6743
int work = 0;
6744
6745
local_bh_disable();
6746
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6747
if (!napi_poll) {
6748
unsigned long val = READ_ONCE(napi->state);
6749
6750
/* If multiple threads are competing for this napi,
6751
* we avoid dirtying napi->state as much as we can.
6752
*/
6753
if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6754
NAPIF_STATE_IN_BUSY_POLL)) {
6755
if (flags & NAPI_F_PREFER_BUSY_POLL)
6756
set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6757
goto count;
6758
}
6759
if (cmpxchg(&napi->state, val,
6760
val | NAPIF_STATE_IN_BUSY_POLL |
6761
NAPIF_STATE_SCHED) != val) {
6762
if (flags & NAPI_F_PREFER_BUSY_POLL)
6763
set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6764
goto count;
6765
}
6766
have_poll_lock = netpoll_poll_lock(napi);
6767
napi_poll = napi->poll;
6768
}
6769
work = napi_poll(napi, budget);
6770
trace_napi_poll(napi, work, budget);
6771
gro_normal_list(&napi->gro);
6772
count:
6773
if (work > 0)
6774
__NET_ADD_STATS(dev_net(napi->dev),
6775
LINUX_MIB_BUSYPOLLRXPACKETS, work);
6776
skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6777
bpf_net_ctx_clear(bpf_net_ctx);
6778
local_bh_enable();
6779
6780
if (!loop_end || loop_end(loop_end_arg, start_time))
6781
break;
6782
6783
if (unlikely(need_resched())) {
6784
if (flags & NAPI_F_END_ON_RESCHED)
6785
break;
6786
if (napi_poll)
6787
busy_poll_stop(napi, have_poll_lock, flags, budget);
6788
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6789
preempt_enable();
6790
rcu_read_unlock();
6791
cond_resched();
6792
rcu_read_lock();
6793
if (loop_end(loop_end_arg, start_time))
6794
return;
6795
goto restart;
6796
}
6797
cpu_relax();
6798
}
6799
if (napi_poll)
6800
busy_poll_stop(napi, have_poll_lock, flags, budget);
6801
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6802
preempt_enable();
6803
}
6804
6805
void napi_busy_loop_rcu(unsigned int napi_id,
6806
bool (*loop_end)(void *, unsigned long),
6807
void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6808
{
6809
unsigned flags = NAPI_F_END_ON_RESCHED;
6810
6811
if (prefer_busy_poll)
6812
flags |= NAPI_F_PREFER_BUSY_POLL;
6813
6814
__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6815
}
6816
6817
void napi_busy_loop(unsigned int napi_id,
6818
bool (*loop_end)(void *, unsigned long),
6819
void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6820
{
6821
unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6822
6823
rcu_read_lock();
6824
__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6825
rcu_read_unlock();
6826
}
6827
EXPORT_SYMBOL(napi_busy_loop);
6828
6829
void napi_suspend_irqs(unsigned int napi_id)
6830
{
6831
struct napi_struct *napi;
6832
6833
rcu_read_lock();
6834
napi = napi_by_id(napi_id);
6835
if (napi) {
6836
unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6837
6838
if (timeout)
6839
hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6840
HRTIMER_MODE_REL_PINNED);
6841
}
6842
rcu_read_unlock();
6843
}
6844
6845
void napi_resume_irqs(unsigned int napi_id)
6846
{
6847
struct napi_struct *napi;
6848
6849
rcu_read_lock();
6850
napi = napi_by_id(napi_id);
6851
if (napi) {
6852
/* If irq_suspend_timeout is set to 0 between the call to
6853
* napi_suspend_irqs and now, the original value still
6854
* determines the safety timeout as intended and napi_watchdog
6855
* will resume irq processing.
6856
*/
6857
if (napi_get_irq_suspend_timeout(napi)) {
6858
local_bh_disable();
6859
napi_schedule(napi);
6860
local_bh_enable();
6861
}
6862
}
6863
rcu_read_unlock();
6864
}
6865
6866
#endif /* CONFIG_NET_RX_BUSY_POLL */
6867
6868
static void __napi_hash_add_with_id(struct napi_struct *napi,
6869
unsigned int napi_id)
6870
{
6871
napi->gro.cached_napi_id = napi_id;
6872
6873
WRITE_ONCE(napi->napi_id, napi_id);
6874
hlist_add_head_rcu(&napi->napi_hash_node,
6875
&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6876
}
6877
6878
static void napi_hash_add_with_id(struct napi_struct *napi,
6879
unsigned int napi_id)
6880
{
6881
unsigned long flags;
6882
6883
spin_lock_irqsave(&napi_hash_lock, flags);
6884
WARN_ON_ONCE(napi_by_id(napi_id));
6885
__napi_hash_add_with_id(napi, napi_id);
6886
spin_unlock_irqrestore(&napi_hash_lock, flags);
6887
}
6888
6889
static void napi_hash_add(struct napi_struct *napi)
6890
{
6891
unsigned long flags;
6892
6893
if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6894
return;
6895
6896
spin_lock_irqsave(&napi_hash_lock, flags);
6897
6898
/* 0..NR_CPUS range is reserved for sender_cpu use */
6899
do {
6900
if (unlikely(!napi_id_valid(++napi_gen_id)))
6901
napi_gen_id = MIN_NAPI_ID;
6902
} while (napi_by_id(napi_gen_id));
6903
6904
__napi_hash_add_with_id(napi, napi_gen_id);
6905
6906
spin_unlock_irqrestore(&napi_hash_lock, flags);
6907
}
6908
6909
/* Warning : caller is responsible to make sure rcu grace period
6910
* is respected before freeing memory containing @napi
6911
*/
6912
static void napi_hash_del(struct napi_struct *napi)
6913
{
6914
unsigned long flags;
6915
6916
spin_lock_irqsave(&napi_hash_lock, flags);
6917
6918
hlist_del_init_rcu(&napi->napi_hash_node);
6919
6920
spin_unlock_irqrestore(&napi_hash_lock, flags);
6921
}
6922
6923
static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6924
{
6925
struct napi_struct *napi;
6926
6927
napi = container_of(timer, struct napi_struct, timer);
6928
6929
/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6930
* NAPI_STATE_MISSED, since we do not react to a device IRQ.
6931
*/
6932
if (!napi_disable_pending(napi) &&
6933
!test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6934
clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6935
__napi_schedule_irqoff(napi);
6936
}
6937
6938
return HRTIMER_NORESTART;
6939
}
6940
6941
static void napi_stop_kthread(struct napi_struct *napi)
6942
{
6943
unsigned long val, new;
6944
6945
/* Wait until the napi STATE_THREADED is unset. */
6946
while (true) {
6947
val = READ_ONCE(napi->state);
6948
6949
/* If napi kthread own this napi or the napi is idle,
6950
* STATE_THREADED can be unset here.
6951
*/
6952
if ((val & NAPIF_STATE_SCHED_THREADED) ||
6953
!(val & NAPIF_STATE_SCHED)) {
6954
new = val & (~NAPIF_STATE_THREADED);
6955
} else {
6956
msleep(20);
6957
continue;
6958
}
6959
6960
if (try_cmpxchg(&napi->state, &val, new))
6961
break;
6962
}
6963
6964
/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
6965
* the kthread.
6966
*/
6967
while (true) {
6968
if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
6969
break;
6970
6971
msleep(20);
6972
}
6973
6974
kthread_stop(napi->thread);
6975
napi->thread = NULL;
6976
}
6977
6978
int napi_set_threaded(struct napi_struct *napi,
6979
enum netdev_napi_threaded threaded)
6980
{
6981
if (threaded) {
6982
if (!napi->thread) {
6983
int err = napi_kthread_create(napi);
6984
6985
if (err)
6986
return err;
6987
}
6988
}
6989
6990
if (napi->config)
6991
napi->config->threaded = threaded;
6992
6993
/* Setting/unsetting threaded mode on a napi might not immediately
6994
* take effect, if the current napi instance is actively being
6995
* polled. In this case, the switch between threaded mode and
6996
* softirq mode will happen in the next round of napi_schedule().
6997
* This should not cause hiccups/stalls to the live traffic.
6998
*/
6999
if (!threaded && napi->thread) {
7000
napi_stop_kthread(napi);
7001
} else {
7002
/* Make sure kthread is created before THREADED bit is set. */
7003
smp_mb__before_atomic();
7004
assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7005
}
7006
7007
return 0;
7008
}
7009
7010
int netif_set_threaded(struct net_device *dev,
7011
enum netdev_napi_threaded threaded)
7012
{
7013
struct napi_struct *napi;
7014
int i, err = 0;
7015
7016
netdev_assert_locked_or_invisible(dev);
7017
7018
if (threaded) {
7019
list_for_each_entry(napi, &dev->napi_list, dev_list) {
7020
if (!napi->thread) {
7021
err = napi_kthread_create(napi);
7022
if (err) {
7023
threaded = NETDEV_NAPI_THREADED_DISABLED;
7024
break;
7025
}
7026
}
7027
}
7028
}
7029
7030
WRITE_ONCE(dev->threaded, threaded);
7031
7032
/* The error should not occur as the kthreads are already created. */
7033
list_for_each_entry(napi, &dev->napi_list, dev_list)
7034
WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7035
7036
/* Override the config for all NAPIs even if currently not listed */
7037
for (i = 0; i < dev->num_napi_configs; i++)
7038
dev->napi_config[i].threaded = threaded;
7039
7040
return err;
7041
}
7042
7043
/**
7044
* netif_threaded_enable() - enable threaded NAPIs
7045
* @dev: net_device instance
7046
*
7047
* Enable threaded mode for the NAPI instances of the device. This may be useful
7048
* for devices where multiple NAPI instances get scheduled by a single
7049
* interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7050
* than the core where IRQ is mapped.
7051
*
7052
* This function should be called before @dev is registered.
7053
*/
7054
void netif_threaded_enable(struct net_device *dev)
7055
{
7056
WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7057
}
7058
EXPORT_SYMBOL(netif_threaded_enable);
7059
7060
/**
7061
* netif_queue_set_napi - Associate queue with the napi
7062
* @dev: device to which NAPI and queue belong
7063
* @queue_index: Index of queue
7064
* @type: queue type as RX or TX
7065
* @napi: NAPI context, pass NULL to clear previously set NAPI
7066
*
7067
* Set queue with its corresponding napi context. This should be done after
7068
* registering the NAPI handler for the queue-vector and the queues have been
7069
* mapped to the corresponding interrupt vector.
7070
*/
7071
void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7072
enum netdev_queue_type type, struct napi_struct *napi)
7073
{
7074
struct netdev_rx_queue *rxq;
7075
struct netdev_queue *txq;
7076
7077
if (WARN_ON_ONCE(napi && !napi->dev))
7078
return;
7079
netdev_ops_assert_locked_or_invisible(dev);
7080
7081
switch (type) {
7082
case NETDEV_QUEUE_TYPE_RX:
7083
rxq = __netif_get_rx_queue(dev, queue_index);
7084
rxq->napi = napi;
7085
return;
7086
case NETDEV_QUEUE_TYPE_TX:
7087
txq = netdev_get_tx_queue(dev, queue_index);
7088
txq->napi = napi;
7089
return;
7090
default:
7091
return;
7092
}
7093
}
7094
EXPORT_SYMBOL(netif_queue_set_napi);
7095
7096
static void
7097
netif_napi_irq_notify(struct irq_affinity_notify *notify,
7098
const cpumask_t *mask)
7099
{
7100
struct napi_struct *napi =
7101
container_of(notify, struct napi_struct, notify);
7102
#ifdef CONFIG_RFS_ACCEL
7103
struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7104
int err;
7105
#endif
7106
7107
if (napi->config && napi->dev->irq_affinity_auto)
7108
cpumask_copy(&napi->config->affinity_mask, mask);
7109
7110
#ifdef CONFIG_RFS_ACCEL
7111
if (napi->dev->rx_cpu_rmap_auto) {
7112
err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7113
if (err)
7114
netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7115
err);
7116
}
7117
#endif
7118
}
7119
7120
#ifdef CONFIG_RFS_ACCEL
7121
static void netif_napi_affinity_release(struct kref *ref)
7122
{
7123
struct napi_struct *napi =
7124
container_of(ref, struct napi_struct, notify.kref);
7125
struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7126
7127
netdev_assert_locked(napi->dev);
7128
WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7129
&napi->state));
7130
7131
if (!napi->dev->rx_cpu_rmap_auto)
7132
return;
7133
rmap->obj[napi->napi_rmap_idx] = NULL;
7134
napi->napi_rmap_idx = -1;
7135
cpu_rmap_put(rmap);
7136
}
7137
7138
int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7139
{
7140
if (dev->rx_cpu_rmap_auto)
7141
return 0;
7142
7143
dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7144
if (!dev->rx_cpu_rmap)
7145
return -ENOMEM;
7146
7147
dev->rx_cpu_rmap_auto = true;
7148
return 0;
7149
}
7150
EXPORT_SYMBOL(netif_enable_cpu_rmap);
7151
7152
static void netif_del_cpu_rmap(struct net_device *dev)
7153
{
7154
struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7155
7156
if (!dev->rx_cpu_rmap_auto)
7157
return;
7158
7159
/* Free the rmap */
7160
cpu_rmap_put(rmap);
7161
dev->rx_cpu_rmap = NULL;
7162
dev->rx_cpu_rmap_auto = false;
7163
}
7164
7165
#else
7166
static void netif_napi_affinity_release(struct kref *ref)
7167
{
7168
}
7169
7170
int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7171
{
7172
return 0;
7173
}
7174
EXPORT_SYMBOL(netif_enable_cpu_rmap);
7175
7176
static void netif_del_cpu_rmap(struct net_device *dev)
7177
{
7178
}
7179
#endif
7180
7181
void netif_set_affinity_auto(struct net_device *dev)
7182
{
7183
unsigned int i, maxqs, numa;
7184
7185
maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7186
numa = dev_to_node(&dev->dev);
7187
7188
for (i = 0; i < maxqs; i++)
7189
cpumask_set_cpu(cpumask_local_spread(i, numa),
7190
&dev->napi_config[i].affinity_mask);
7191
7192
dev->irq_affinity_auto = true;
7193
}
7194
EXPORT_SYMBOL(netif_set_affinity_auto);
7195
7196
void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7197
{
7198
int rc;
7199
7200
netdev_assert_locked_or_invisible(napi->dev);
7201
7202
if (napi->irq == irq)
7203
return;
7204
7205
/* Remove existing resources */
7206
if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7207
irq_set_affinity_notifier(napi->irq, NULL);
7208
7209
napi->irq = irq;
7210
if (irq < 0 ||
7211
(!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7212
return;
7213
7214
/* Abort for buggy drivers */
7215
if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7216
return;
7217
7218
#ifdef CONFIG_RFS_ACCEL
7219
if (napi->dev->rx_cpu_rmap_auto) {
7220
rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7221
if (rc < 0)
7222
return;
7223
7224
cpu_rmap_get(napi->dev->rx_cpu_rmap);
7225
napi->napi_rmap_idx = rc;
7226
}
7227
#endif
7228
7229
/* Use core IRQ notifier */
7230
napi->notify.notify = netif_napi_irq_notify;
7231
napi->notify.release = netif_napi_affinity_release;
7232
rc = irq_set_affinity_notifier(irq, &napi->notify);
7233
if (rc) {
7234
netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7235
rc);
7236
goto put_rmap;
7237
}
7238
7239
set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7240
return;
7241
7242
put_rmap:
7243
#ifdef CONFIG_RFS_ACCEL
7244
if (napi->dev->rx_cpu_rmap_auto) {
7245
napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7246
cpu_rmap_put(napi->dev->rx_cpu_rmap);
7247
napi->napi_rmap_idx = -1;
7248
}
7249
#endif
7250
napi->notify.notify = NULL;
7251
napi->notify.release = NULL;
7252
}
7253
EXPORT_SYMBOL(netif_napi_set_irq_locked);
7254
7255
static void napi_restore_config(struct napi_struct *n)
7256
{
7257
n->defer_hard_irqs = n->config->defer_hard_irqs;
7258
n->gro_flush_timeout = n->config->gro_flush_timeout;
7259
n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7260
7261
if (n->dev->irq_affinity_auto &&
7262
test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7263
irq_set_affinity(n->irq, &n->config->affinity_mask);
7264
7265
/* a NAPI ID might be stored in the config, if so use it. if not, use
7266
* napi_hash_add to generate one for us.
7267
*/
7268
if (n->config->napi_id) {
7269
napi_hash_add_with_id(n, n->config->napi_id);
7270
} else {
7271
napi_hash_add(n);
7272
n->config->napi_id = n->napi_id;
7273
}
7274
7275
WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7276
}
7277
7278
static void napi_save_config(struct napi_struct *n)
7279
{
7280
n->config->defer_hard_irqs = n->defer_hard_irqs;
7281
n->config->gro_flush_timeout = n->gro_flush_timeout;
7282
n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7283
napi_hash_del(n);
7284
}
7285
7286
/* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7287
* inherit an existing ID try to insert it at the right position.
7288
*/
7289
static void
7290
netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7291
{
7292
unsigned int new_id, pos_id;
7293
struct list_head *higher;
7294
struct napi_struct *pos;
7295
7296
new_id = UINT_MAX;
7297
if (napi->config && napi->config->napi_id)
7298
new_id = napi->config->napi_id;
7299
7300
higher = &dev->napi_list;
7301
list_for_each_entry(pos, &dev->napi_list, dev_list) {
7302
if (napi_id_valid(pos->napi_id))
7303
pos_id = pos->napi_id;
7304
else if (pos->config)
7305
pos_id = pos->config->napi_id;
7306
else
7307
pos_id = UINT_MAX;
7308
7309
if (pos_id <= new_id)
7310
break;
7311
higher = &pos->dev_list;
7312
}
7313
list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7314
}
7315
7316
/* Double check that napi_get_frags() allocates skbs with
7317
* skb->head being backed by slab, not a page fragment.
7318
* This is to make sure bug fixed in 3226b158e67c
7319
* ("net: avoid 32 x truesize under-estimation for tiny skbs")
7320
* does not accidentally come back.
7321
*/
7322
static void napi_get_frags_check(struct napi_struct *napi)
7323
{
7324
struct sk_buff *skb;
7325
7326
local_bh_disable();
7327
skb = napi_get_frags(napi);
7328
WARN_ON_ONCE(skb && skb->head_frag);
7329
napi_free_frags(napi);
7330
local_bh_enable();
7331
}
7332
7333
void netif_napi_add_weight_locked(struct net_device *dev,
7334
struct napi_struct *napi,
7335
int (*poll)(struct napi_struct *, int),
7336
int weight)
7337
{
7338
netdev_assert_locked(dev);
7339
if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7340
return;
7341
7342
INIT_LIST_HEAD(&napi->poll_list);
7343
INIT_HLIST_NODE(&napi->napi_hash_node);
7344
hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7345
gro_init(&napi->gro);
7346
napi->skb = NULL;
7347
napi->poll = poll;
7348
if (weight > NAPI_POLL_WEIGHT)
7349
netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7350
weight);
7351
napi->weight = weight;
7352
napi->dev = dev;
7353
#ifdef CONFIG_NETPOLL
7354
napi->poll_owner = -1;
7355
#endif
7356
napi->list_owner = -1;
7357
set_bit(NAPI_STATE_SCHED, &napi->state);
7358
set_bit(NAPI_STATE_NPSVC, &napi->state);
7359
netif_napi_dev_list_add(dev, napi);
7360
7361
/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7362
* configuration will be loaded in napi_enable
7363
*/
7364
napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7365
napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7366
7367
napi_get_frags_check(napi);
7368
/* Create kthread for this napi if dev->threaded is set.
7369
* Clear dev->threaded if kthread creation failed so that
7370
* threaded mode will not be enabled in napi_enable().
7371
*/
7372
if (napi_get_threaded_config(dev, napi))
7373
if (napi_kthread_create(napi))
7374
dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7375
netif_napi_set_irq_locked(napi, -1);
7376
}
7377
EXPORT_SYMBOL(netif_napi_add_weight_locked);
7378
7379
void napi_disable_locked(struct napi_struct *n)
7380
{
7381
unsigned long val, new;
7382
7383
might_sleep();
7384
netdev_assert_locked(n->dev);
7385
7386
set_bit(NAPI_STATE_DISABLE, &n->state);
7387
7388
val = READ_ONCE(n->state);
7389
do {
7390
while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7391
usleep_range(20, 200);
7392
val = READ_ONCE(n->state);
7393
}
7394
7395
new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7396
new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7397
} while (!try_cmpxchg(&n->state, &val, new));
7398
7399
hrtimer_cancel(&n->timer);
7400
7401
if (n->config)
7402
napi_save_config(n);
7403
else
7404
napi_hash_del(n);
7405
7406
clear_bit(NAPI_STATE_DISABLE, &n->state);
7407
}
7408
EXPORT_SYMBOL(napi_disable_locked);
7409
7410
/**
7411
* napi_disable() - prevent NAPI from scheduling
7412
* @n: NAPI context
7413
*
7414
* Stop NAPI from being scheduled on this context.
7415
* Waits till any outstanding processing completes.
7416
* Takes netdev_lock() for associated net_device.
7417
*/
7418
void napi_disable(struct napi_struct *n)
7419
{
7420
netdev_lock(n->dev);
7421
napi_disable_locked(n);
7422
netdev_unlock(n->dev);
7423
}
7424
EXPORT_SYMBOL(napi_disable);
7425
7426
void napi_enable_locked(struct napi_struct *n)
7427
{
7428
unsigned long new, val = READ_ONCE(n->state);
7429
7430
if (n->config)
7431
napi_restore_config(n);
7432
else
7433
napi_hash_add(n);
7434
7435
do {
7436
BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7437
7438
new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7439
if (n->dev->threaded && n->thread)
7440
new |= NAPIF_STATE_THREADED;
7441
} while (!try_cmpxchg(&n->state, &val, new));
7442
}
7443
EXPORT_SYMBOL(napi_enable_locked);
7444
7445
/**
7446
* napi_enable() - enable NAPI scheduling
7447
* @n: NAPI context
7448
*
7449
* Enable scheduling of a NAPI instance.
7450
* Must be paired with napi_disable().
7451
* Takes netdev_lock() for associated net_device.
7452
*/
7453
void napi_enable(struct napi_struct *n)
7454
{
7455
netdev_lock(n->dev);
7456
napi_enable_locked(n);
7457
netdev_unlock(n->dev);
7458
}
7459
EXPORT_SYMBOL(napi_enable);
7460
7461
/* Must be called in process context */
7462
void __netif_napi_del_locked(struct napi_struct *napi)
7463
{
7464
netdev_assert_locked(napi->dev);
7465
7466
if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7467
return;
7468
7469
/* Make sure NAPI is disabled (or was never enabled). */
7470
WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7471
7472
if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7473
irq_set_affinity_notifier(napi->irq, NULL);
7474
7475
if (napi->config) {
7476
napi->index = -1;
7477
napi->config = NULL;
7478
}
7479
7480
list_del_rcu(&napi->dev_list);
7481
napi_free_frags(napi);
7482
7483
gro_cleanup(&napi->gro);
7484
7485
if (napi->thread) {
7486
kthread_stop(napi->thread);
7487
napi->thread = NULL;
7488
}
7489
}
7490
EXPORT_SYMBOL(__netif_napi_del_locked);
7491
7492
static int __napi_poll(struct napi_struct *n, bool *repoll)
7493
{
7494
int work, weight;
7495
7496
weight = n->weight;
7497
7498
/* This NAPI_STATE_SCHED test is for avoiding a race
7499
* with netpoll's poll_napi(). Only the entity which
7500
* obtains the lock and sees NAPI_STATE_SCHED set will
7501
* actually make the ->poll() call. Therefore we avoid
7502
* accidentally calling ->poll() when NAPI is not scheduled.
7503
*/
7504
work = 0;
7505
if (napi_is_scheduled(n)) {
7506
work = n->poll(n, weight);
7507
trace_napi_poll(n, work, weight);
7508
7509
xdp_do_check_flushed(n);
7510
}
7511
7512
if (unlikely(work > weight))
7513
netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7514
n->poll, work, weight);
7515
7516
if (likely(work < weight))
7517
return work;
7518
7519
/* Drivers must not modify the NAPI state if they
7520
* consume the entire weight. In such cases this code
7521
* still "owns" the NAPI instance and therefore can
7522
* move the instance around on the list at-will.
7523
*/
7524
if (unlikely(napi_disable_pending(n))) {
7525
napi_complete(n);
7526
return work;
7527
}
7528
7529
/* The NAPI context has more processing work, but busy-polling
7530
* is preferred. Exit early.
7531
*/
7532
if (napi_prefer_busy_poll(n)) {
7533
if (napi_complete_done(n, work)) {
7534
/* If timeout is not set, we need to make sure
7535
* that the NAPI is re-scheduled.
7536
*/
7537
napi_schedule(n);
7538
}
7539
return work;
7540
}
7541
7542
/* Flush too old packets. If HZ < 1000, flush all packets */
7543
gro_flush_normal(&n->gro, HZ >= 1000);
7544
7545
/* Some drivers may have called napi_schedule
7546
* prior to exhausting their budget.
7547
*/
7548
if (unlikely(!list_empty(&n->poll_list))) {
7549
pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7550
n->dev ? n->dev->name : "backlog");
7551
return work;
7552
}
7553
7554
*repoll = true;
7555
7556
return work;
7557
}
7558
7559
static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7560
{
7561
bool do_repoll = false;
7562
void *have;
7563
int work;
7564
7565
list_del_init(&n->poll_list);
7566
7567
have = netpoll_poll_lock(n);
7568
7569
work = __napi_poll(n, &do_repoll);
7570
7571
if (do_repoll) {
7572
#if defined(CONFIG_DEBUG_NET)
7573
if (unlikely(!napi_is_scheduled(n)))
7574
pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7575
n->dev->name, n->poll);
7576
#endif
7577
list_add_tail(&n->poll_list, repoll);
7578
}
7579
netpoll_poll_unlock(have);
7580
7581
return work;
7582
}
7583
7584
static int napi_thread_wait(struct napi_struct *napi)
7585
{
7586
set_current_state(TASK_INTERRUPTIBLE);
7587
7588
while (!kthread_should_stop()) {
7589
/* Testing SCHED_THREADED bit here to make sure the current
7590
* kthread owns this napi and could poll on this napi.
7591
* Testing SCHED bit is not enough because SCHED bit might be
7592
* set by some other busy poll thread or by napi_disable().
7593
*/
7594
if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7595
WARN_ON(!list_empty(&napi->poll_list));
7596
__set_current_state(TASK_RUNNING);
7597
return 0;
7598
}
7599
7600
schedule();
7601
set_current_state(TASK_INTERRUPTIBLE);
7602
}
7603
__set_current_state(TASK_RUNNING);
7604
7605
return -1;
7606
}
7607
7608
static void napi_threaded_poll_loop(struct napi_struct *napi)
7609
{
7610
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7611
struct softnet_data *sd;
7612
unsigned long last_qs = jiffies;
7613
7614
for (;;) {
7615
bool repoll = false;
7616
void *have;
7617
7618
local_bh_disable();
7619
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7620
7621
sd = this_cpu_ptr(&softnet_data);
7622
sd->in_napi_threaded_poll = true;
7623
7624
have = netpoll_poll_lock(napi);
7625
__napi_poll(napi, &repoll);
7626
netpoll_poll_unlock(have);
7627
7628
sd->in_napi_threaded_poll = false;
7629
barrier();
7630
7631
if (sd_has_rps_ipi_waiting(sd)) {
7632
local_irq_disable();
7633
net_rps_action_and_irq_enable(sd);
7634
}
7635
skb_defer_free_flush(sd);
7636
bpf_net_ctx_clear(bpf_net_ctx);
7637
local_bh_enable();
7638
7639
if (!repoll)
7640
break;
7641
7642
rcu_softirq_qs_periodic(last_qs);
7643
cond_resched();
7644
}
7645
}
7646
7647
static int napi_threaded_poll(void *data)
7648
{
7649
struct napi_struct *napi = data;
7650
7651
while (!napi_thread_wait(napi))
7652
napi_threaded_poll_loop(napi);
7653
7654
return 0;
7655
}
7656
7657
static __latent_entropy void net_rx_action(void)
7658
{
7659
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7660
unsigned long time_limit = jiffies +
7661
usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7662
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7663
int budget = READ_ONCE(net_hotdata.netdev_budget);
7664
LIST_HEAD(list);
7665
LIST_HEAD(repoll);
7666
7667
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7668
start:
7669
sd->in_net_rx_action = true;
7670
local_irq_disable();
7671
list_splice_init(&sd->poll_list, &list);
7672
local_irq_enable();
7673
7674
for (;;) {
7675
struct napi_struct *n;
7676
7677
skb_defer_free_flush(sd);
7678
7679
if (list_empty(&list)) {
7680
if (list_empty(&repoll)) {
7681
sd->in_net_rx_action = false;
7682
barrier();
7683
/* We need to check if ____napi_schedule()
7684
* had refilled poll_list while
7685
* sd->in_net_rx_action was true.
7686
*/
7687
if (!list_empty(&sd->poll_list))
7688
goto start;
7689
if (!sd_has_rps_ipi_waiting(sd))
7690
goto end;
7691
}
7692
break;
7693
}
7694
7695
n = list_first_entry(&list, struct napi_struct, poll_list);
7696
budget -= napi_poll(n, &repoll);
7697
7698
/* If softirq window is exhausted then punt.
7699
* Allow this to run for 2 jiffies since which will allow
7700
* an average latency of 1.5/HZ.
7701
*/
7702
if (unlikely(budget <= 0 ||
7703
time_after_eq(jiffies, time_limit))) {
7704
/* Pairs with READ_ONCE() in softnet_seq_show() */
7705
WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7706
break;
7707
}
7708
}
7709
7710
local_irq_disable();
7711
7712
list_splice_tail_init(&sd->poll_list, &list);
7713
list_splice_tail(&repoll, &list);
7714
list_splice(&list, &sd->poll_list);
7715
if (!list_empty(&sd->poll_list))
7716
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7717
else
7718
sd->in_net_rx_action = false;
7719
7720
net_rps_action_and_irq_enable(sd);
7721
end:
7722
bpf_net_ctx_clear(bpf_net_ctx);
7723
}
7724
7725
struct netdev_adjacent {
7726
struct net_device *dev;
7727
netdevice_tracker dev_tracker;
7728
7729
/* upper master flag, there can only be one master device per list */
7730
bool master;
7731
7732
/* lookup ignore flag */
7733
bool ignore;
7734
7735
/* counter for the number of times this device was added to us */
7736
u16 ref_nr;
7737
7738
/* private field for the users */
7739
void *private;
7740
7741
struct list_head list;
7742
struct rcu_head rcu;
7743
};
7744
7745
static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7746
struct list_head *adj_list)
7747
{
7748
struct netdev_adjacent *adj;
7749
7750
list_for_each_entry(adj, adj_list, list) {
7751
if (adj->dev == adj_dev)
7752
return adj;
7753
}
7754
return NULL;
7755
}
7756
7757
static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7758
struct netdev_nested_priv *priv)
7759
{
7760
struct net_device *dev = (struct net_device *)priv->data;
7761
7762
return upper_dev == dev;
7763
}
7764
7765
/**
7766
* netdev_has_upper_dev - Check if device is linked to an upper device
7767
* @dev: device
7768
* @upper_dev: upper device to check
7769
*
7770
* Find out if a device is linked to specified upper device and return true
7771
* in case it is. Note that this checks only immediate upper device,
7772
* not through a complete stack of devices. The caller must hold the RTNL lock.
7773
*/
7774
bool netdev_has_upper_dev(struct net_device *dev,
7775
struct net_device *upper_dev)
7776
{
7777
struct netdev_nested_priv priv = {
7778
.data = (void *)upper_dev,
7779
};
7780
7781
ASSERT_RTNL();
7782
7783
return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7784
&priv);
7785
}
7786
EXPORT_SYMBOL(netdev_has_upper_dev);
7787
7788
/**
7789
* netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7790
* @dev: device
7791
* @upper_dev: upper device to check
7792
*
7793
* Find out if a device is linked to specified upper device and return true
7794
* in case it is. Note that this checks the entire upper device chain.
7795
* The caller must hold rcu lock.
7796
*/
7797
7798
bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7799
struct net_device *upper_dev)
7800
{
7801
struct netdev_nested_priv priv = {
7802
.data = (void *)upper_dev,
7803
};
7804
7805
return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7806
&priv);
7807
}
7808
EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7809
7810
/**
7811
* netdev_has_any_upper_dev - Check if device is linked to some device
7812
* @dev: device
7813
*
7814
* Find out if a device is linked to an upper device and return true in case
7815
* it is. The caller must hold the RTNL lock.
7816
*/
7817
bool netdev_has_any_upper_dev(struct net_device *dev)
7818
{
7819
ASSERT_RTNL();
7820
7821
return !list_empty(&dev->adj_list.upper);
7822
}
7823
EXPORT_SYMBOL(netdev_has_any_upper_dev);
7824
7825
/**
7826
* netdev_master_upper_dev_get - Get master upper device
7827
* @dev: device
7828
*
7829
* Find a master upper device and return pointer to it or NULL in case
7830
* it's not there. The caller must hold the RTNL lock.
7831
*/
7832
struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7833
{
7834
struct netdev_adjacent *upper;
7835
7836
ASSERT_RTNL();
7837
7838
if (list_empty(&dev->adj_list.upper))
7839
return NULL;
7840
7841
upper = list_first_entry(&dev->adj_list.upper,
7842
struct netdev_adjacent, list);
7843
if (likely(upper->master))
7844
return upper->dev;
7845
return NULL;
7846
}
7847
EXPORT_SYMBOL(netdev_master_upper_dev_get);
7848
7849
static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7850
{
7851
struct netdev_adjacent *upper;
7852
7853
ASSERT_RTNL();
7854
7855
if (list_empty(&dev->adj_list.upper))
7856
return NULL;
7857
7858
upper = list_first_entry(&dev->adj_list.upper,
7859
struct netdev_adjacent, list);
7860
if (likely(upper->master) && !upper->ignore)
7861
return upper->dev;
7862
return NULL;
7863
}
7864
7865
/**
7866
* netdev_has_any_lower_dev - Check if device is linked to some device
7867
* @dev: device
7868
*
7869
* Find out if a device is linked to a lower device and return true in case
7870
* it is. The caller must hold the RTNL lock.
7871
*/
7872
static bool netdev_has_any_lower_dev(struct net_device *dev)
7873
{
7874
ASSERT_RTNL();
7875
7876
return !list_empty(&dev->adj_list.lower);
7877
}
7878
7879
void *netdev_adjacent_get_private(struct list_head *adj_list)
7880
{
7881
struct netdev_adjacent *adj;
7882
7883
adj = list_entry(adj_list, struct netdev_adjacent, list);
7884
7885
return adj->private;
7886
}
7887
EXPORT_SYMBOL(netdev_adjacent_get_private);
7888
7889
/**
7890
* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7891
* @dev: device
7892
* @iter: list_head ** of the current position
7893
*
7894
* Gets the next device from the dev's upper list, starting from iter
7895
* position. The caller must hold RCU read lock.
7896
*/
7897
struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7898
struct list_head **iter)
7899
{
7900
struct netdev_adjacent *upper;
7901
7902
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7903
7904
upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7905
7906
if (&upper->list == &dev->adj_list.upper)
7907
return NULL;
7908
7909
*iter = &upper->list;
7910
7911
return upper->dev;
7912
}
7913
EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7914
7915
static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7916
struct list_head **iter,
7917
bool *ignore)
7918
{
7919
struct netdev_adjacent *upper;
7920
7921
upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7922
7923
if (&upper->list == &dev->adj_list.upper)
7924
return NULL;
7925
7926
*iter = &upper->list;
7927
*ignore = upper->ignore;
7928
7929
return upper->dev;
7930
}
7931
7932
static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7933
struct list_head **iter)
7934
{
7935
struct netdev_adjacent *upper;
7936
7937
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7938
7939
upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7940
7941
if (&upper->list == &dev->adj_list.upper)
7942
return NULL;
7943
7944
*iter = &upper->list;
7945
7946
return upper->dev;
7947
}
7948
7949
static int __netdev_walk_all_upper_dev(struct net_device *dev,
7950
int (*fn)(struct net_device *dev,
7951
struct netdev_nested_priv *priv),
7952
struct netdev_nested_priv *priv)
7953
{
7954
struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7955
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7956
int ret, cur = 0;
7957
bool ignore;
7958
7959
now = dev;
7960
iter = &dev->adj_list.upper;
7961
7962
while (1) {
7963
if (now != dev) {
7964
ret = fn(now, priv);
7965
if (ret)
7966
return ret;
7967
}
7968
7969
next = NULL;
7970
while (1) {
7971
udev = __netdev_next_upper_dev(now, &iter, &ignore);
7972
if (!udev)
7973
break;
7974
if (ignore)
7975
continue;
7976
7977
next = udev;
7978
niter = &udev->adj_list.upper;
7979
dev_stack[cur] = now;
7980
iter_stack[cur++] = iter;
7981
break;
7982
}
7983
7984
if (!next) {
7985
if (!cur)
7986
return 0;
7987
next = dev_stack[--cur];
7988
niter = iter_stack[cur];
7989
}
7990
7991
now = next;
7992
iter = niter;
7993
}
7994
7995
return 0;
7996
}
7997
7998
int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7999
int (*fn)(struct net_device *dev,
8000
struct netdev_nested_priv *priv),
8001
struct netdev_nested_priv *priv)
8002
{
8003
struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8004
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8005
int ret, cur = 0;
8006
8007
now = dev;
8008
iter = &dev->adj_list.upper;
8009
8010
while (1) {
8011
if (now != dev) {
8012
ret = fn(now, priv);
8013
if (ret)
8014
return ret;
8015
}
8016
8017
next = NULL;
8018
while (1) {
8019
udev = netdev_next_upper_dev_rcu(now, &iter);
8020
if (!udev)
8021
break;
8022
8023
next = udev;
8024
niter = &udev->adj_list.upper;
8025
dev_stack[cur] = now;
8026
iter_stack[cur++] = iter;
8027
break;
8028
}
8029
8030
if (!next) {
8031
if (!cur)
8032
return 0;
8033
next = dev_stack[--cur];
8034
niter = iter_stack[cur];
8035
}
8036
8037
now = next;
8038
iter = niter;
8039
}
8040
8041
return 0;
8042
}
8043
EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8044
8045
static bool __netdev_has_upper_dev(struct net_device *dev,
8046
struct net_device *upper_dev)
8047
{
8048
struct netdev_nested_priv priv = {
8049
.flags = 0,
8050
.data = (void *)upper_dev,
8051
};
8052
8053
ASSERT_RTNL();
8054
8055
return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8056
&priv);
8057
}
8058
8059
/**
8060
* netdev_lower_get_next_private - Get the next ->private from the
8061
* lower neighbour list
8062
* @dev: device
8063
* @iter: list_head ** of the current position
8064
*
8065
* Gets the next netdev_adjacent->private from the dev's lower neighbour
8066
* list, starting from iter position. The caller must hold either hold the
8067
* RTNL lock or its own locking that guarantees that the neighbour lower
8068
* list will remain unchanged.
8069
*/
8070
void *netdev_lower_get_next_private(struct net_device *dev,
8071
struct list_head **iter)
8072
{
8073
struct netdev_adjacent *lower;
8074
8075
lower = list_entry(*iter, struct netdev_adjacent, list);
8076
8077
if (&lower->list == &dev->adj_list.lower)
8078
return NULL;
8079
8080
*iter = lower->list.next;
8081
8082
return lower->private;
8083
}
8084
EXPORT_SYMBOL(netdev_lower_get_next_private);
8085
8086
/**
8087
* netdev_lower_get_next_private_rcu - Get the next ->private from the
8088
* lower neighbour list, RCU
8089
* variant
8090
* @dev: device
8091
* @iter: list_head ** of the current position
8092
*
8093
* Gets the next netdev_adjacent->private from the dev's lower neighbour
8094
* list, starting from iter position. The caller must hold RCU read lock.
8095
*/
8096
void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8097
struct list_head **iter)
8098
{
8099
struct netdev_adjacent *lower;
8100
8101
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8102
8103
lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8104
8105
if (&lower->list == &dev->adj_list.lower)
8106
return NULL;
8107
8108
*iter = &lower->list;
8109
8110
return lower->private;
8111
}
8112
EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8113
8114
/**
8115
* netdev_lower_get_next - Get the next device from the lower neighbour
8116
* list
8117
* @dev: device
8118
* @iter: list_head ** of the current position
8119
*
8120
* Gets the next netdev_adjacent from the dev's lower neighbour
8121
* list, starting from iter position. The caller must hold RTNL lock or
8122
* its own locking that guarantees that the neighbour lower
8123
* list will remain unchanged.
8124
*/
8125
void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8126
{
8127
struct netdev_adjacent *lower;
8128
8129
lower = list_entry(*iter, struct netdev_adjacent, list);
8130
8131
if (&lower->list == &dev->adj_list.lower)
8132
return NULL;
8133
8134
*iter = lower->list.next;
8135
8136
return lower->dev;
8137
}
8138
EXPORT_SYMBOL(netdev_lower_get_next);
8139
8140
static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8141
struct list_head **iter)
8142
{
8143
struct netdev_adjacent *lower;
8144
8145
lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8146
8147
if (&lower->list == &dev->adj_list.lower)
8148
return NULL;
8149
8150
*iter = &lower->list;
8151
8152
return lower->dev;
8153
}
8154
8155
static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8156
struct list_head **iter,
8157
bool *ignore)
8158
{
8159
struct netdev_adjacent *lower;
8160
8161
lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8162
8163
if (&lower->list == &dev->adj_list.lower)
8164
return NULL;
8165
8166
*iter = &lower->list;
8167
*ignore = lower->ignore;
8168
8169
return lower->dev;
8170
}
8171
8172
int netdev_walk_all_lower_dev(struct net_device *dev,
8173
int (*fn)(struct net_device *dev,
8174
struct netdev_nested_priv *priv),
8175
struct netdev_nested_priv *priv)
8176
{
8177
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8178
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8179
int ret, cur = 0;
8180
8181
now = dev;
8182
iter = &dev->adj_list.lower;
8183
8184
while (1) {
8185
if (now != dev) {
8186
ret = fn(now, priv);
8187
if (ret)
8188
return ret;
8189
}
8190
8191
next = NULL;
8192
while (1) {
8193
ldev = netdev_next_lower_dev(now, &iter);
8194
if (!ldev)
8195
break;
8196
8197
next = ldev;
8198
niter = &ldev->adj_list.lower;
8199
dev_stack[cur] = now;
8200
iter_stack[cur++] = iter;
8201
break;
8202
}
8203
8204
if (!next) {
8205
if (!cur)
8206
return 0;
8207
next = dev_stack[--cur];
8208
niter = iter_stack[cur];
8209
}
8210
8211
now = next;
8212
iter = niter;
8213
}
8214
8215
return 0;
8216
}
8217
EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8218
8219
static int __netdev_walk_all_lower_dev(struct net_device *dev,
8220
int (*fn)(struct net_device *dev,
8221
struct netdev_nested_priv *priv),
8222
struct netdev_nested_priv *priv)
8223
{
8224
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8225
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8226
int ret, cur = 0;
8227
bool ignore;
8228
8229
now = dev;
8230
iter = &dev->adj_list.lower;
8231
8232
while (1) {
8233
if (now != dev) {
8234
ret = fn(now, priv);
8235
if (ret)
8236
return ret;
8237
}
8238
8239
next = NULL;
8240
while (1) {
8241
ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8242
if (!ldev)
8243
break;
8244
if (ignore)
8245
continue;
8246
8247
next = ldev;
8248
niter = &ldev->adj_list.lower;
8249
dev_stack[cur] = now;
8250
iter_stack[cur++] = iter;
8251
break;
8252
}
8253
8254
if (!next) {
8255
if (!cur)
8256
return 0;
8257
next = dev_stack[--cur];
8258
niter = iter_stack[cur];
8259
}
8260
8261
now = next;
8262
iter = niter;
8263
}
8264
8265
return 0;
8266
}
8267
8268
struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8269
struct list_head **iter)
8270
{
8271
struct netdev_adjacent *lower;
8272
8273
lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8274
if (&lower->list == &dev->adj_list.lower)
8275
return NULL;
8276
8277
*iter = &lower->list;
8278
8279
return lower->dev;
8280
}
8281
EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8282
8283
static u8 __netdev_upper_depth(struct net_device *dev)
8284
{
8285
struct net_device *udev;
8286
struct list_head *iter;
8287
u8 max_depth = 0;
8288
bool ignore;
8289
8290
for (iter = &dev->adj_list.upper,
8291
udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8292
udev;
8293
udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8294
if (ignore)
8295
continue;
8296
if (max_depth < udev->upper_level)
8297
max_depth = udev->upper_level;
8298
}
8299
8300
return max_depth;
8301
}
8302
8303
static u8 __netdev_lower_depth(struct net_device *dev)
8304
{
8305
struct net_device *ldev;
8306
struct list_head *iter;
8307
u8 max_depth = 0;
8308
bool ignore;
8309
8310
for (iter = &dev->adj_list.lower,
8311
ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8312
ldev;
8313
ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8314
if (ignore)
8315
continue;
8316
if (max_depth < ldev->lower_level)
8317
max_depth = ldev->lower_level;
8318
}
8319
8320
return max_depth;
8321
}
8322
8323
static int __netdev_update_upper_level(struct net_device *dev,
8324
struct netdev_nested_priv *__unused)
8325
{
8326
dev->upper_level = __netdev_upper_depth(dev) + 1;
8327
return 0;
8328
}
8329
8330
#ifdef CONFIG_LOCKDEP
8331
static LIST_HEAD(net_unlink_list);
8332
8333
static void net_unlink_todo(struct net_device *dev)
8334
{
8335
if (list_empty(&dev->unlink_list))
8336
list_add_tail(&dev->unlink_list, &net_unlink_list);
8337
}
8338
#endif
8339
8340
static int __netdev_update_lower_level(struct net_device *dev,
8341
struct netdev_nested_priv *priv)
8342
{
8343
dev->lower_level = __netdev_lower_depth(dev) + 1;
8344
8345
#ifdef CONFIG_LOCKDEP
8346
if (!priv)
8347
return 0;
8348
8349
if (priv->flags & NESTED_SYNC_IMM)
8350
dev->nested_level = dev->lower_level - 1;
8351
if (priv->flags & NESTED_SYNC_TODO)
8352
net_unlink_todo(dev);
8353
#endif
8354
return 0;
8355
}
8356
8357
int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8358
int (*fn)(struct net_device *dev,
8359
struct netdev_nested_priv *priv),
8360
struct netdev_nested_priv *priv)
8361
{
8362
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8363
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8364
int ret, cur = 0;
8365
8366
now = dev;
8367
iter = &dev->adj_list.lower;
8368
8369
while (1) {
8370
if (now != dev) {
8371
ret = fn(now, priv);
8372
if (ret)
8373
return ret;
8374
}
8375
8376
next = NULL;
8377
while (1) {
8378
ldev = netdev_next_lower_dev_rcu(now, &iter);
8379
if (!ldev)
8380
break;
8381
8382
next = ldev;
8383
niter = &ldev->adj_list.lower;
8384
dev_stack[cur] = now;
8385
iter_stack[cur++] = iter;
8386
break;
8387
}
8388
8389
if (!next) {
8390
if (!cur)
8391
return 0;
8392
next = dev_stack[--cur];
8393
niter = iter_stack[cur];
8394
}
8395
8396
now = next;
8397
iter = niter;
8398
}
8399
8400
return 0;
8401
}
8402
EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8403
8404
/**
8405
* netdev_lower_get_first_private_rcu - Get the first ->private from the
8406
* lower neighbour list, RCU
8407
* variant
8408
* @dev: device
8409
*
8410
* Gets the first netdev_adjacent->private from the dev's lower neighbour
8411
* list. The caller must hold RCU read lock.
8412
*/
8413
void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8414
{
8415
struct netdev_adjacent *lower;
8416
8417
lower = list_first_or_null_rcu(&dev->adj_list.lower,
8418
struct netdev_adjacent, list);
8419
if (lower)
8420
return lower->private;
8421
return NULL;
8422
}
8423
EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8424
8425
/**
8426
* netdev_master_upper_dev_get_rcu - Get master upper device
8427
* @dev: device
8428
*
8429
* Find a master upper device and return pointer to it or NULL in case
8430
* it's not there. The caller must hold the RCU read lock.
8431
*/
8432
struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8433
{
8434
struct netdev_adjacent *upper;
8435
8436
upper = list_first_or_null_rcu(&dev->adj_list.upper,
8437
struct netdev_adjacent, list);
8438
if (upper && likely(upper->master))
8439
return upper->dev;
8440
return NULL;
8441
}
8442
EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8443
8444
static int netdev_adjacent_sysfs_add(struct net_device *dev,
8445
struct net_device *adj_dev,
8446
struct list_head *dev_list)
8447
{
8448
char linkname[IFNAMSIZ+7];
8449
8450
sprintf(linkname, dev_list == &dev->adj_list.upper ?
8451
"upper_%s" : "lower_%s", adj_dev->name);
8452
return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8453
linkname);
8454
}
8455
static void netdev_adjacent_sysfs_del(struct net_device *dev,
8456
char *name,
8457
struct list_head *dev_list)
8458
{
8459
char linkname[IFNAMSIZ+7];
8460
8461
sprintf(linkname, dev_list == &dev->adj_list.upper ?
8462
"upper_%s" : "lower_%s", name);
8463
sysfs_remove_link(&(dev->dev.kobj), linkname);
8464
}
8465
8466
static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8467
struct net_device *adj_dev,
8468
struct list_head *dev_list)
8469
{
8470
return (dev_list == &dev->adj_list.upper ||
8471
dev_list == &dev->adj_list.lower) &&
8472
net_eq(dev_net(dev), dev_net(adj_dev));
8473
}
8474
8475
static int __netdev_adjacent_dev_insert(struct net_device *dev,
8476
struct net_device *adj_dev,
8477
struct list_head *dev_list,
8478
void *private, bool master)
8479
{
8480
struct netdev_adjacent *adj;
8481
int ret;
8482
8483
adj = __netdev_find_adj(adj_dev, dev_list);
8484
8485
if (adj) {
8486
adj->ref_nr += 1;
8487
pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8488
dev->name, adj_dev->name, adj->ref_nr);
8489
8490
return 0;
8491
}
8492
8493
adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8494
if (!adj)
8495
return -ENOMEM;
8496
8497
adj->dev = adj_dev;
8498
adj->master = master;
8499
adj->ref_nr = 1;
8500
adj->private = private;
8501
adj->ignore = false;
8502
netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8503
8504
pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8505
dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8506
8507
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8508
ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8509
if (ret)
8510
goto free_adj;
8511
}
8512
8513
/* Ensure that master link is always the first item in list. */
8514
if (master) {
8515
ret = sysfs_create_link(&(dev->dev.kobj),
8516
&(adj_dev->dev.kobj), "master");
8517
if (ret)
8518
goto remove_symlinks;
8519
8520
list_add_rcu(&adj->list, dev_list);
8521
} else {
8522
list_add_tail_rcu(&adj->list, dev_list);
8523
}
8524
8525
return 0;
8526
8527
remove_symlinks:
8528
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8529
netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8530
free_adj:
8531
netdev_put(adj_dev, &adj->dev_tracker);
8532
kfree(adj);
8533
8534
return ret;
8535
}
8536
8537
static void __netdev_adjacent_dev_remove(struct net_device *dev,
8538
struct net_device *adj_dev,
8539
u16 ref_nr,
8540
struct list_head *dev_list)
8541
{
8542
struct netdev_adjacent *adj;
8543
8544
pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8545
dev->name, adj_dev->name, ref_nr);
8546
8547
adj = __netdev_find_adj(adj_dev, dev_list);
8548
8549
if (!adj) {
8550
pr_err("Adjacency does not exist for device %s from %s\n",
8551
dev->name, adj_dev->name);
8552
WARN_ON(1);
8553
return;
8554
}
8555
8556
if (adj->ref_nr > ref_nr) {
8557
pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8558
dev->name, adj_dev->name, ref_nr,
8559
adj->ref_nr - ref_nr);
8560
adj->ref_nr -= ref_nr;
8561
return;
8562
}
8563
8564
if (adj->master)
8565
sysfs_remove_link(&(dev->dev.kobj), "master");
8566
8567
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8568
netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8569
8570
list_del_rcu(&adj->list);
8571
pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8572
adj_dev->name, dev->name, adj_dev->name);
8573
netdev_put(adj_dev, &adj->dev_tracker);
8574
kfree_rcu(adj, rcu);
8575
}
8576
8577
static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8578
struct net_device *upper_dev,
8579
struct list_head *up_list,
8580
struct list_head *down_list,
8581
void *private, bool master)
8582
{
8583
int ret;
8584
8585
ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8586
private, master);
8587
if (ret)
8588
return ret;
8589
8590
ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8591
private, false);
8592
if (ret) {
8593
__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8594
return ret;
8595
}
8596
8597
return 0;
8598
}
8599
8600
static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8601
struct net_device *upper_dev,
8602
u16 ref_nr,
8603
struct list_head *up_list,
8604
struct list_head *down_list)
8605
{
8606
__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8607
__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8608
}
8609
8610
static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8611
struct net_device *upper_dev,
8612
void *private, bool master)
8613
{
8614
return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8615
&dev->adj_list.upper,
8616
&upper_dev->adj_list.lower,
8617
private, master);
8618
}
8619
8620
static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8621
struct net_device *upper_dev)
8622
{
8623
__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8624
&dev->adj_list.upper,
8625
&upper_dev->adj_list.lower);
8626
}
8627
8628
static int __netdev_upper_dev_link(struct net_device *dev,
8629
struct net_device *upper_dev, bool master,
8630
void *upper_priv, void *upper_info,
8631
struct netdev_nested_priv *priv,
8632
struct netlink_ext_ack *extack)
8633
{
8634
struct netdev_notifier_changeupper_info changeupper_info = {
8635
.info = {
8636
.dev = dev,
8637
.extack = extack,
8638
},
8639
.upper_dev = upper_dev,
8640
.master = master,
8641
.linking = true,
8642
.upper_info = upper_info,
8643
};
8644
struct net_device *master_dev;
8645
int ret = 0;
8646
8647
ASSERT_RTNL();
8648
8649
if (dev == upper_dev)
8650
return -EBUSY;
8651
8652
/* To prevent loops, check if dev is not upper device to upper_dev. */
8653
if (__netdev_has_upper_dev(upper_dev, dev))
8654
return -EBUSY;
8655
8656
if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8657
return -EMLINK;
8658
8659
if (!master) {
8660
if (__netdev_has_upper_dev(dev, upper_dev))
8661
return -EEXIST;
8662
} else {
8663
master_dev = __netdev_master_upper_dev_get(dev);
8664
if (master_dev)
8665
return master_dev == upper_dev ? -EEXIST : -EBUSY;
8666
}
8667
8668
ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8669
&changeupper_info.info);
8670
ret = notifier_to_errno(ret);
8671
if (ret)
8672
return ret;
8673
8674
ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8675
master);
8676
if (ret)
8677
return ret;
8678
8679
ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8680
&changeupper_info.info);
8681
ret = notifier_to_errno(ret);
8682
if (ret)
8683
goto rollback;
8684
8685
__netdev_update_upper_level(dev, NULL);
8686
__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8687
8688
__netdev_update_lower_level(upper_dev, priv);
8689
__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8690
priv);
8691
8692
return 0;
8693
8694
rollback:
8695
__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8696
8697
return ret;
8698
}
8699
8700
/**
8701
* netdev_upper_dev_link - Add a link to the upper device
8702
* @dev: device
8703
* @upper_dev: new upper device
8704
* @extack: netlink extended ack
8705
*
8706
* Adds a link to device which is upper to this one. The caller must hold
8707
* the RTNL lock. On a failure a negative errno code is returned.
8708
* On success the reference counts are adjusted and the function
8709
* returns zero.
8710
*/
8711
int netdev_upper_dev_link(struct net_device *dev,
8712
struct net_device *upper_dev,
8713
struct netlink_ext_ack *extack)
8714
{
8715
struct netdev_nested_priv priv = {
8716
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8717
.data = NULL,
8718
};
8719
8720
return __netdev_upper_dev_link(dev, upper_dev, false,
8721
NULL, NULL, &priv, extack);
8722
}
8723
EXPORT_SYMBOL(netdev_upper_dev_link);
8724
8725
/**
8726
* netdev_master_upper_dev_link - Add a master link to the upper device
8727
* @dev: device
8728
* @upper_dev: new upper device
8729
* @upper_priv: upper device private
8730
* @upper_info: upper info to be passed down via notifier
8731
* @extack: netlink extended ack
8732
*
8733
* Adds a link to device which is upper to this one. In this case, only
8734
* one master upper device can be linked, although other non-master devices
8735
* might be linked as well. The caller must hold the RTNL lock.
8736
* On a failure a negative errno code is returned. On success the reference
8737
* counts are adjusted and the function returns zero.
8738
*/
8739
int netdev_master_upper_dev_link(struct net_device *dev,
8740
struct net_device *upper_dev,
8741
void *upper_priv, void *upper_info,
8742
struct netlink_ext_ack *extack)
8743
{
8744
struct netdev_nested_priv priv = {
8745
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8746
.data = NULL,
8747
};
8748
8749
return __netdev_upper_dev_link(dev, upper_dev, true,
8750
upper_priv, upper_info, &priv, extack);
8751
}
8752
EXPORT_SYMBOL(netdev_master_upper_dev_link);
8753
8754
static void __netdev_upper_dev_unlink(struct net_device *dev,
8755
struct net_device *upper_dev,
8756
struct netdev_nested_priv *priv)
8757
{
8758
struct netdev_notifier_changeupper_info changeupper_info = {
8759
.info = {
8760
.dev = dev,
8761
},
8762
.upper_dev = upper_dev,
8763
.linking = false,
8764
};
8765
8766
ASSERT_RTNL();
8767
8768
changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8769
8770
call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8771
&changeupper_info.info);
8772
8773
__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8774
8775
call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8776
&changeupper_info.info);
8777
8778
__netdev_update_upper_level(dev, NULL);
8779
__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8780
8781
__netdev_update_lower_level(upper_dev, priv);
8782
__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8783
priv);
8784
}
8785
8786
/**
8787
* netdev_upper_dev_unlink - Removes a link to upper device
8788
* @dev: device
8789
* @upper_dev: new upper device
8790
*
8791
* Removes a link to device which is upper to this one. The caller must hold
8792
* the RTNL lock.
8793
*/
8794
void netdev_upper_dev_unlink(struct net_device *dev,
8795
struct net_device *upper_dev)
8796
{
8797
struct netdev_nested_priv priv = {
8798
.flags = NESTED_SYNC_TODO,
8799
.data = NULL,
8800
};
8801
8802
__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8803
}
8804
EXPORT_SYMBOL(netdev_upper_dev_unlink);
8805
8806
static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8807
struct net_device *lower_dev,
8808
bool val)
8809
{
8810
struct netdev_adjacent *adj;
8811
8812
adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8813
if (adj)
8814
adj->ignore = val;
8815
8816
adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8817
if (adj)
8818
adj->ignore = val;
8819
}
8820
8821
static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8822
struct net_device *lower_dev)
8823
{
8824
__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8825
}
8826
8827
static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8828
struct net_device *lower_dev)
8829
{
8830
__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8831
}
8832
8833
int netdev_adjacent_change_prepare(struct net_device *old_dev,
8834
struct net_device *new_dev,
8835
struct net_device *dev,
8836
struct netlink_ext_ack *extack)
8837
{
8838
struct netdev_nested_priv priv = {
8839
.flags = 0,
8840
.data = NULL,
8841
};
8842
int err;
8843
8844
if (!new_dev)
8845
return 0;
8846
8847
if (old_dev && new_dev != old_dev)
8848
netdev_adjacent_dev_disable(dev, old_dev);
8849
err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8850
extack);
8851
if (err) {
8852
if (old_dev && new_dev != old_dev)
8853
netdev_adjacent_dev_enable(dev, old_dev);
8854
return err;
8855
}
8856
8857
return 0;
8858
}
8859
EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8860
8861
void netdev_adjacent_change_commit(struct net_device *old_dev,
8862
struct net_device *new_dev,
8863
struct net_device *dev)
8864
{
8865
struct netdev_nested_priv priv = {
8866
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8867
.data = NULL,
8868
};
8869
8870
if (!new_dev || !old_dev)
8871
return;
8872
8873
if (new_dev == old_dev)
8874
return;
8875
8876
netdev_adjacent_dev_enable(dev, old_dev);
8877
__netdev_upper_dev_unlink(old_dev, dev, &priv);
8878
}
8879
EXPORT_SYMBOL(netdev_adjacent_change_commit);
8880
8881
void netdev_adjacent_change_abort(struct net_device *old_dev,
8882
struct net_device *new_dev,
8883
struct net_device *dev)
8884
{
8885
struct netdev_nested_priv priv = {
8886
.flags = 0,
8887
.data = NULL,
8888
};
8889
8890
if (!new_dev)
8891
return;
8892
8893
if (old_dev && new_dev != old_dev)
8894
netdev_adjacent_dev_enable(dev, old_dev);
8895
8896
__netdev_upper_dev_unlink(new_dev, dev, &priv);
8897
}
8898
EXPORT_SYMBOL(netdev_adjacent_change_abort);
8899
8900
/**
8901
* netdev_bonding_info_change - Dispatch event about slave change
8902
* @dev: device
8903
* @bonding_info: info to dispatch
8904
*
8905
* Send NETDEV_BONDING_INFO to netdev notifiers with info.
8906
* The caller must hold the RTNL lock.
8907
*/
8908
void netdev_bonding_info_change(struct net_device *dev,
8909
struct netdev_bonding_info *bonding_info)
8910
{
8911
struct netdev_notifier_bonding_info info = {
8912
.info.dev = dev,
8913
};
8914
8915
memcpy(&info.bonding_info, bonding_info,
8916
sizeof(struct netdev_bonding_info));
8917
call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8918
&info.info);
8919
}
8920
EXPORT_SYMBOL(netdev_bonding_info_change);
8921
8922
static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8923
struct netlink_ext_ack *extack)
8924
{
8925
struct netdev_notifier_offload_xstats_info info = {
8926
.info.dev = dev,
8927
.info.extack = extack,
8928
.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8929
};
8930
int err;
8931
int rc;
8932
8933
dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8934
GFP_KERNEL);
8935
if (!dev->offload_xstats_l3)
8936
return -ENOMEM;
8937
8938
rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8939
NETDEV_OFFLOAD_XSTATS_DISABLE,
8940
&info.info);
8941
err = notifier_to_errno(rc);
8942
if (err)
8943
goto free_stats;
8944
8945
return 0;
8946
8947
free_stats:
8948
kfree(dev->offload_xstats_l3);
8949
dev->offload_xstats_l3 = NULL;
8950
return err;
8951
}
8952
8953
int netdev_offload_xstats_enable(struct net_device *dev,
8954
enum netdev_offload_xstats_type type,
8955
struct netlink_ext_ack *extack)
8956
{
8957
ASSERT_RTNL();
8958
8959
if (netdev_offload_xstats_enabled(dev, type))
8960
return -EALREADY;
8961
8962
switch (type) {
8963
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8964
return netdev_offload_xstats_enable_l3(dev, extack);
8965
}
8966
8967
WARN_ON(1);
8968
return -EINVAL;
8969
}
8970
EXPORT_SYMBOL(netdev_offload_xstats_enable);
8971
8972
static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8973
{
8974
struct netdev_notifier_offload_xstats_info info = {
8975
.info.dev = dev,
8976
.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8977
};
8978
8979
call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8980
&info.info);
8981
kfree(dev->offload_xstats_l3);
8982
dev->offload_xstats_l3 = NULL;
8983
}
8984
8985
int netdev_offload_xstats_disable(struct net_device *dev,
8986
enum netdev_offload_xstats_type type)
8987
{
8988
ASSERT_RTNL();
8989
8990
if (!netdev_offload_xstats_enabled(dev, type))
8991
return -EALREADY;
8992
8993
switch (type) {
8994
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8995
netdev_offload_xstats_disable_l3(dev);
8996
return 0;
8997
}
8998
8999
WARN_ON(1);
9000
return -EINVAL;
9001
}
9002
EXPORT_SYMBOL(netdev_offload_xstats_disable);
9003
9004
static void netdev_offload_xstats_disable_all(struct net_device *dev)
9005
{
9006
netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9007
}
9008
9009
static struct rtnl_hw_stats64 *
9010
netdev_offload_xstats_get_ptr(const struct net_device *dev,
9011
enum netdev_offload_xstats_type type)
9012
{
9013
switch (type) {
9014
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9015
return dev->offload_xstats_l3;
9016
}
9017
9018
WARN_ON(1);
9019
return NULL;
9020
}
9021
9022
bool netdev_offload_xstats_enabled(const struct net_device *dev,
9023
enum netdev_offload_xstats_type type)
9024
{
9025
ASSERT_RTNL();
9026
9027
return netdev_offload_xstats_get_ptr(dev, type);
9028
}
9029
EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9030
9031
struct netdev_notifier_offload_xstats_ru {
9032
bool used;
9033
};
9034
9035
struct netdev_notifier_offload_xstats_rd {
9036
struct rtnl_hw_stats64 stats;
9037
bool used;
9038
};
9039
9040
static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9041
const struct rtnl_hw_stats64 *src)
9042
{
9043
dest->rx_packets += src->rx_packets;
9044
dest->tx_packets += src->tx_packets;
9045
dest->rx_bytes += src->rx_bytes;
9046
dest->tx_bytes += src->tx_bytes;
9047
dest->rx_errors += src->rx_errors;
9048
dest->tx_errors += src->tx_errors;
9049
dest->rx_dropped += src->rx_dropped;
9050
dest->tx_dropped += src->tx_dropped;
9051
dest->multicast += src->multicast;
9052
}
9053
9054
static int netdev_offload_xstats_get_used(struct net_device *dev,
9055
enum netdev_offload_xstats_type type,
9056
bool *p_used,
9057
struct netlink_ext_ack *extack)
9058
{
9059
struct netdev_notifier_offload_xstats_ru report_used = {};
9060
struct netdev_notifier_offload_xstats_info info = {
9061
.info.dev = dev,
9062
.info.extack = extack,
9063
.type = type,
9064
.report_used = &report_used,
9065
};
9066
int rc;
9067
9068
WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9069
rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9070
&info.info);
9071
*p_used = report_used.used;
9072
return notifier_to_errno(rc);
9073
}
9074
9075
static int netdev_offload_xstats_get_stats(struct net_device *dev,
9076
enum netdev_offload_xstats_type type,
9077
struct rtnl_hw_stats64 *p_stats,
9078
bool *p_used,
9079
struct netlink_ext_ack *extack)
9080
{
9081
struct netdev_notifier_offload_xstats_rd report_delta = {};
9082
struct netdev_notifier_offload_xstats_info info = {
9083
.info.dev = dev,
9084
.info.extack = extack,
9085
.type = type,
9086
.report_delta = &report_delta,
9087
};
9088
struct rtnl_hw_stats64 *stats;
9089
int rc;
9090
9091
stats = netdev_offload_xstats_get_ptr(dev, type);
9092
if (WARN_ON(!stats))
9093
return -EINVAL;
9094
9095
rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9096
&info.info);
9097
9098
/* Cache whatever we got, even if there was an error, otherwise the
9099
* successful stats retrievals would get lost.
9100
*/
9101
netdev_hw_stats64_add(stats, &report_delta.stats);
9102
9103
if (p_stats)
9104
*p_stats = *stats;
9105
*p_used = report_delta.used;
9106
9107
return notifier_to_errno(rc);
9108
}
9109
9110
int netdev_offload_xstats_get(struct net_device *dev,
9111
enum netdev_offload_xstats_type type,
9112
struct rtnl_hw_stats64 *p_stats, bool *p_used,
9113
struct netlink_ext_ack *extack)
9114
{
9115
ASSERT_RTNL();
9116
9117
if (p_stats)
9118
return netdev_offload_xstats_get_stats(dev, type, p_stats,
9119
p_used, extack);
9120
else
9121
return netdev_offload_xstats_get_used(dev, type, p_used,
9122
extack);
9123
}
9124
EXPORT_SYMBOL(netdev_offload_xstats_get);
9125
9126
void
9127
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9128
const struct rtnl_hw_stats64 *stats)
9129
{
9130
report_delta->used = true;
9131
netdev_hw_stats64_add(&report_delta->stats, stats);
9132
}
9133
EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9134
9135
void
9136
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9137
{
9138
report_used->used = true;
9139
}
9140
EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9141
9142
void netdev_offload_xstats_push_delta(struct net_device *dev,
9143
enum netdev_offload_xstats_type type,
9144
const struct rtnl_hw_stats64 *p_stats)
9145
{
9146
struct rtnl_hw_stats64 *stats;
9147
9148
ASSERT_RTNL();
9149
9150
stats = netdev_offload_xstats_get_ptr(dev, type);
9151
if (WARN_ON(!stats))
9152
return;
9153
9154
netdev_hw_stats64_add(stats, p_stats);
9155
}
9156
EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9157
9158
/**
9159
* netdev_get_xmit_slave - Get the xmit slave of master device
9160
* @dev: device
9161
* @skb: The packet
9162
* @all_slaves: assume all the slaves are active
9163
*
9164
* The reference counters are not incremented so the caller must be
9165
* careful with locks. The caller must hold RCU lock.
9166
* %NULL is returned if no slave is found.
9167
*/
9168
9169
struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9170
struct sk_buff *skb,
9171
bool all_slaves)
9172
{
9173
const struct net_device_ops *ops = dev->netdev_ops;
9174
9175
if (!ops->ndo_get_xmit_slave)
9176
return NULL;
9177
return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9178
}
9179
EXPORT_SYMBOL(netdev_get_xmit_slave);
9180
9181
static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9182
struct sock *sk)
9183
{
9184
const struct net_device_ops *ops = dev->netdev_ops;
9185
9186
if (!ops->ndo_sk_get_lower_dev)
9187
return NULL;
9188
return ops->ndo_sk_get_lower_dev(dev, sk);
9189
}
9190
9191
/**
9192
* netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9193
* @dev: device
9194
* @sk: the socket
9195
*
9196
* %NULL is returned if no lower device is found.
9197
*/
9198
9199
struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9200
struct sock *sk)
9201
{
9202
struct net_device *lower;
9203
9204
lower = netdev_sk_get_lower_dev(dev, sk);
9205
while (lower) {
9206
dev = lower;
9207
lower = netdev_sk_get_lower_dev(dev, sk);
9208
}
9209
9210
return dev;
9211
}
9212
EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9213
9214
static void netdev_adjacent_add_links(struct net_device *dev)
9215
{
9216
struct netdev_adjacent *iter;
9217
9218
struct net *net = dev_net(dev);
9219
9220
list_for_each_entry(iter, &dev->adj_list.upper, list) {
9221
if (!net_eq(net, dev_net(iter->dev)))
9222
continue;
9223
netdev_adjacent_sysfs_add(iter->dev, dev,
9224
&iter->dev->adj_list.lower);
9225
netdev_adjacent_sysfs_add(dev, iter->dev,
9226
&dev->adj_list.upper);
9227
}
9228
9229
list_for_each_entry(iter, &dev->adj_list.lower, list) {
9230
if (!net_eq(net, dev_net(iter->dev)))
9231
continue;
9232
netdev_adjacent_sysfs_add(iter->dev, dev,
9233
&iter->dev->adj_list.upper);
9234
netdev_adjacent_sysfs_add(dev, iter->dev,
9235
&dev->adj_list.lower);
9236
}
9237
}
9238
9239
static void netdev_adjacent_del_links(struct net_device *dev)
9240
{
9241
struct netdev_adjacent *iter;
9242
9243
struct net *net = dev_net(dev);
9244
9245
list_for_each_entry(iter, &dev->adj_list.upper, list) {
9246
if (!net_eq(net, dev_net(iter->dev)))
9247
continue;
9248
netdev_adjacent_sysfs_del(iter->dev, dev->name,
9249
&iter->dev->adj_list.lower);
9250
netdev_adjacent_sysfs_del(dev, iter->dev->name,
9251
&dev->adj_list.upper);
9252
}
9253
9254
list_for_each_entry(iter, &dev->adj_list.lower, list) {
9255
if (!net_eq(net, dev_net(iter->dev)))
9256
continue;
9257
netdev_adjacent_sysfs_del(iter->dev, dev->name,
9258
&iter->dev->adj_list.upper);
9259
netdev_adjacent_sysfs_del(dev, iter->dev->name,
9260
&dev->adj_list.lower);
9261
}
9262
}
9263
9264
void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9265
{
9266
struct netdev_adjacent *iter;
9267
9268
struct net *net = dev_net(dev);
9269
9270
list_for_each_entry(iter, &dev->adj_list.upper, list) {
9271
if (!net_eq(net, dev_net(iter->dev)))
9272
continue;
9273
netdev_adjacent_sysfs_del(iter->dev, oldname,
9274
&iter->dev->adj_list.lower);
9275
netdev_adjacent_sysfs_add(iter->dev, dev,
9276
&iter->dev->adj_list.lower);
9277
}
9278
9279
list_for_each_entry(iter, &dev->adj_list.lower, list) {
9280
if (!net_eq(net, dev_net(iter->dev)))
9281
continue;
9282
netdev_adjacent_sysfs_del(iter->dev, oldname,
9283
&iter->dev->adj_list.upper);
9284
netdev_adjacent_sysfs_add(iter->dev, dev,
9285
&iter->dev->adj_list.upper);
9286
}
9287
}
9288
9289
void *netdev_lower_dev_get_private(struct net_device *dev,
9290
struct net_device *lower_dev)
9291
{
9292
struct netdev_adjacent *lower;
9293
9294
if (!lower_dev)
9295
return NULL;
9296
lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9297
if (!lower)
9298
return NULL;
9299
9300
return lower->private;
9301
}
9302
EXPORT_SYMBOL(netdev_lower_dev_get_private);
9303
9304
9305
/**
9306
* netdev_lower_state_changed - Dispatch event about lower device state change
9307
* @lower_dev: device
9308
* @lower_state_info: state to dispatch
9309
*
9310
* Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9311
* The caller must hold the RTNL lock.
9312
*/
9313
void netdev_lower_state_changed(struct net_device *lower_dev,
9314
void *lower_state_info)
9315
{
9316
struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9317
.info.dev = lower_dev,
9318
};
9319
9320
ASSERT_RTNL();
9321
changelowerstate_info.lower_state_info = lower_state_info;
9322
call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9323
&changelowerstate_info.info);
9324
}
9325
EXPORT_SYMBOL(netdev_lower_state_changed);
9326
9327
static void dev_change_rx_flags(struct net_device *dev, int flags)
9328
{
9329
const struct net_device_ops *ops = dev->netdev_ops;
9330
9331
if (ops->ndo_change_rx_flags)
9332
ops->ndo_change_rx_flags(dev, flags);
9333
}
9334
9335
static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9336
{
9337
unsigned int old_flags = dev->flags;
9338
unsigned int promiscuity, flags;
9339
kuid_t uid;
9340
kgid_t gid;
9341
9342
ASSERT_RTNL();
9343
9344
promiscuity = dev->promiscuity + inc;
9345
if (promiscuity == 0) {
9346
/*
9347
* Avoid overflow.
9348
* If inc causes overflow, untouch promisc and return error.
9349
*/
9350
if (unlikely(inc > 0)) {
9351
netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9352
return -EOVERFLOW;
9353
}
9354
flags = old_flags & ~IFF_PROMISC;
9355
} else {
9356
flags = old_flags | IFF_PROMISC;
9357
}
9358
WRITE_ONCE(dev->promiscuity, promiscuity);
9359
if (flags != old_flags) {
9360
WRITE_ONCE(dev->flags, flags);
9361
netdev_info(dev, "%s promiscuous mode\n",
9362
dev->flags & IFF_PROMISC ? "entered" : "left");
9363
if (audit_enabled) {
9364
current_uid_gid(&uid, &gid);
9365
audit_log(audit_context(), GFP_ATOMIC,
9366
AUDIT_ANOM_PROMISCUOUS,
9367
"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9368
dev->name, (dev->flags & IFF_PROMISC),
9369
(old_flags & IFF_PROMISC),
9370
from_kuid(&init_user_ns, audit_get_loginuid(current)),
9371
from_kuid(&init_user_ns, uid),
9372
from_kgid(&init_user_ns, gid),
9373
audit_get_sessionid(current));
9374
}
9375
9376
dev_change_rx_flags(dev, IFF_PROMISC);
9377
}
9378
if (notify) {
9379
/* The ops lock is only required to ensure consistent locking
9380
* for `NETDEV_CHANGE` notifiers. This function is sometimes
9381
* called without the lock, even for devices that are ops
9382
* locked, such as in `dev_uc_sync_multiple` when using
9383
* bonding or teaming.
9384
*/
9385
netdev_ops_assert_locked(dev);
9386
__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9387
}
9388
return 0;
9389
}
9390
9391
int netif_set_promiscuity(struct net_device *dev, int inc)
9392
{
9393
unsigned int old_flags = dev->flags;
9394
int err;
9395
9396
err = __dev_set_promiscuity(dev, inc, true);
9397
if (err < 0)
9398
return err;
9399
if (dev->flags != old_flags)
9400
dev_set_rx_mode(dev);
9401
return err;
9402
}
9403
9404
int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9405
{
9406
unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9407
unsigned int allmulti, flags;
9408
9409
ASSERT_RTNL();
9410
9411
allmulti = dev->allmulti + inc;
9412
if (allmulti == 0) {
9413
/*
9414
* Avoid overflow.
9415
* If inc causes overflow, untouch allmulti and return error.
9416
*/
9417
if (unlikely(inc > 0)) {
9418
netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9419
return -EOVERFLOW;
9420
}
9421
flags = old_flags & ~IFF_ALLMULTI;
9422
} else {
9423
flags = old_flags | IFF_ALLMULTI;
9424
}
9425
WRITE_ONCE(dev->allmulti, allmulti);
9426
if (flags != old_flags) {
9427
WRITE_ONCE(dev->flags, flags);
9428
netdev_info(dev, "%s allmulticast mode\n",
9429
dev->flags & IFF_ALLMULTI ? "entered" : "left");
9430
dev_change_rx_flags(dev, IFF_ALLMULTI);
9431
dev_set_rx_mode(dev);
9432
if (notify)
9433
__dev_notify_flags(dev, old_flags,
9434
dev->gflags ^ old_gflags, 0, NULL);
9435
}
9436
return 0;
9437
}
9438
9439
/*
9440
* Upload unicast and multicast address lists to device and
9441
* configure RX filtering. When the device doesn't support unicast
9442
* filtering it is put in promiscuous mode while unicast addresses
9443
* are present.
9444
*/
9445
void __dev_set_rx_mode(struct net_device *dev)
9446
{
9447
const struct net_device_ops *ops = dev->netdev_ops;
9448
9449
/* dev_open will call this function so the list will stay sane. */
9450
if (!(dev->flags&IFF_UP))
9451
return;
9452
9453
if (!netif_device_present(dev))
9454
return;
9455
9456
if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9457
/* Unicast addresses changes may only happen under the rtnl,
9458
* therefore calling __dev_set_promiscuity here is safe.
9459
*/
9460
if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9461
__dev_set_promiscuity(dev, 1, false);
9462
dev->uc_promisc = true;
9463
} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9464
__dev_set_promiscuity(dev, -1, false);
9465
dev->uc_promisc = false;
9466
}
9467
}
9468
9469
if (ops->ndo_set_rx_mode)
9470
ops->ndo_set_rx_mode(dev);
9471
}
9472
9473
void dev_set_rx_mode(struct net_device *dev)
9474
{
9475
netif_addr_lock_bh(dev);
9476
__dev_set_rx_mode(dev);
9477
netif_addr_unlock_bh(dev);
9478
}
9479
9480
/**
9481
* netif_get_flags() - get flags reported to userspace
9482
* @dev: device
9483
*
9484
* Get the combination of flag bits exported through APIs to userspace.
9485
*/
9486
unsigned int netif_get_flags(const struct net_device *dev)
9487
{
9488
unsigned int flags;
9489
9490
flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9491
IFF_ALLMULTI |
9492
IFF_RUNNING |
9493
IFF_LOWER_UP |
9494
IFF_DORMANT)) |
9495
(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9496
IFF_ALLMULTI));
9497
9498
if (netif_running(dev)) {
9499
if (netif_oper_up(dev))
9500
flags |= IFF_RUNNING;
9501
if (netif_carrier_ok(dev))
9502
flags |= IFF_LOWER_UP;
9503
if (netif_dormant(dev))
9504
flags |= IFF_DORMANT;
9505
}
9506
9507
return flags;
9508
}
9509
EXPORT_SYMBOL(netif_get_flags);
9510
9511
int __dev_change_flags(struct net_device *dev, unsigned int flags,
9512
struct netlink_ext_ack *extack)
9513
{
9514
unsigned int old_flags = dev->flags;
9515
int ret;
9516
9517
ASSERT_RTNL();
9518
9519
/*
9520
* Set the flags on our device.
9521
*/
9522
9523
dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9524
IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9525
IFF_AUTOMEDIA)) |
9526
(dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9527
IFF_ALLMULTI));
9528
9529
/*
9530
* Load in the correct multicast list now the flags have changed.
9531
*/
9532
9533
if ((old_flags ^ flags) & IFF_MULTICAST)
9534
dev_change_rx_flags(dev, IFF_MULTICAST);
9535
9536
dev_set_rx_mode(dev);
9537
9538
/*
9539
* Have we downed the interface. We handle IFF_UP ourselves
9540
* according to user attempts to set it, rather than blindly
9541
* setting it.
9542
*/
9543
9544
ret = 0;
9545
if ((old_flags ^ flags) & IFF_UP) {
9546
if (old_flags & IFF_UP)
9547
__dev_close(dev);
9548
else
9549
ret = __dev_open(dev, extack);
9550
}
9551
9552
if ((flags ^ dev->gflags) & IFF_PROMISC) {
9553
int inc = (flags & IFF_PROMISC) ? 1 : -1;
9554
old_flags = dev->flags;
9555
9556
dev->gflags ^= IFF_PROMISC;
9557
9558
if (__dev_set_promiscuity(dev, inc, false) >= 0)
9559
if (dev->flags != old_flags)
9560
dev_set_rx_mode(dev);
9561
}
9562
9563
/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9564
* is important. Some (broken) drivers set IFF_PROMISC, when
9565
* IFF_ALLMULTI is requested not asking us and not reporting.
9566
*/
9567
if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9568
int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9569
9570
dev->gflags ^= IFF_ALLMULTI;
9571
netif_set_allmulti(dev, inc, false);
9572
}
9573
9574
return ret;
9575
}
9576
9577
void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9578
unsigned int gchanges, u32 portid,
9579
const struct nlmsghdr *nlh)
9580
{
9581
unsigned int changes = dev->flags ^ old_flags;
9582
9583
if (gchanges)
9584
rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9585
9586
if (changes & IFF_UP) {
9587
if (dev->flags & IFF_UP)
9588
call_netdevice_notifiers(NETDEV_UP, dev);
9589
else
9590
call_netdevice_notifiers(NETDEV_DOWN, dev);
9591
}
9592
9593
if (dev->flags & IFF_UP &&
9594
(changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9595
struct netdev_notifier_change_info change_info = {
9596
.info = {
9597
.dev = dev,
9598
},
9599
.flags_changed = changes,
9600
};
9601
9602
call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9603
}
9604
}
9605
9606
int netif_change_flags(struct net_device *dev, unsigned int flags,
9607
struct netlink_ext_ack *extack)
9608
{
9609
int ret;
9610
unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9611
9612
ret = __dev_change_flags(dev, flags, extack);
9613
if (ret < 0)
9614
return ret;
9615
9616
changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9617
__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9618
return ret;
9619
}
9620
9621
int __netif_set_mtu(struct net_device *dev, int new_mtu)
9622
{
9623
const struct net_device_ops *ops = dev->netdev_ops;
9624
9625
if (ops->ndo_change_mtu)
9626
return ops->ndo_change_mtu(dev, new_mtu);
9627
9628
/* Pairs with all the lockless reads of dev->mtu in the stack */
9629
WRITE_ONCE(dev->mtu, new_mtu);
9630
return 0;
9631
}
9632
EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9633
9634
int dev_validate_mtu(struct net_device *dev, int new_mtu,
9635
struct netlink_ext_ack *extack)
9636
{
9637
/* MTU must be positive, and in range */
9638
if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9639
NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9640
return -EINVAL;
9641
}
9642
9643
if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9644
NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9645
return -EINVAL;
9646
}
9647
return 0;
9648
}
9649
9650
/**
9651
* netif_set_mtu_ext() - Change maximum transfer unit
9652
* @dev: device
9653
* @new_mtu: new transfer unit
9654
* @extack: netlink extended ack
9655
*
9656
* Change the maximum transfer size of the network device.
9657
*
9658
* Return: 0 on success, -errno on failure.
9659
*/
9660
int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9661
struct netlink_ext_ack *extack)
9662
{
9663
int err, orig_mtu;
9664
9665
netdev_ops_assert_locked(dev);
9666
9667
if (new_mtu == dev->mtu)
9668
return 0;
9669
9670
err = dev_validate_mtu(dev, new_mtu, extack);
9671
if (err)
9672
return err;
9673
9674
if (!netif_device_present(dev))
9675
return -ENODEV;
9676
9677
err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9678
err = notifier_to_errno(err);
9679
if (err)
9680
return err;
9681
9682
orig_mtu = dev->mtu;
9683
err = __netif_set_mtu(dev, new_mtu);
9684
9685
if (!err) {
9686
err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9687
orig_mtu);
9688
err = notifier_to_errno(err);
9689
if (err) {
9690
/* setting mtu back and notifying everyone again,
9691
* so that they have a chance to revert changes.
9692
*/
9693
__netif_set_mtu(dev, orig_mtu);
9694
call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9695
new_mtu);
9696
}
9697
}
9698
return err;
9699
}
9700
9701
int netif_set_mtu(struct net_device *dev, int new_mtu)
9702
{
9703
struct netlink_ext_ack extack;
9704
int err;
9705
9706
memset(&extack, 0, sizeof(extack));
9707
err = netif_set_mtu_ext(dev, new_mtu, &extack);
9708
if (err && extack._msg)
9709
net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9710
return err;
9711
}
9712
EXPORT_SYMBOL(netif_set_mtu);
9713
9714
int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9715
{
9716
unsigned int orig_len = dev->tx_queue_len;
9717
int res;
9718
9719
if (new_len != (unsigned int)new_len)
9720
return -ERANGE;
9721
9722
if (new_len != orig_len) {
9723
WRITE_ONCE(dev->tx_queue_len, new_len);
9724
res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9725
res = notifier_to_errno(res);
9726
if (res)
9727
goto err_rollback;
9728
res = dev_qdisc_change_tx_queue_len(dev);
9729
if (res)
9730
goto err_rollback;
9731
}
9732
9733
return 0;
9734
9735
err_rollback:
9736
netdev_err(dev, "refused to change device tx_queue_len\n");
9737
WRITE_ONCE(dev->tx_queue_len, orig_len);
9738
return res;
9739
}
9740
9741
void netif_set_group(struct net_device *dev, int new_group)
9742
{
9743
dev->group = new_group;
9744
}
9745
9746
/**
9747
* netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9748
* @dev: device
9749
* @addr: new address
9750
* @extack: netlink extended ack
9751
*
9752
* Return: 0 on success, -errno on failure.
9753
*/
9754
int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9755
struct netlink_ext_ack *extack)
9756
{
9757
struct netdev_notifier_pre_changeaddr_info info = {
9758
.info.dev = dev,
9759
.info.extack = extack,
9760
.dev_addr = addr,
9761
};
9762
int rc;
9763
9764
rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9765
return notifier_to_errno(rc);
9766
}
9767
EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9768
9769
int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9770
struct netlink_ext_ack *extack)
9771
{
9772
const struct net_device_ops *ops = dev->netdev_ops;
9773
int err;
9774
9775
if (!ops->ndo_set_mac_address)
9776
return -EOPNOTSUPP;
9777
if (ss->ss_family != dev->type)
9778
return -EINVAL;
9779
if (!netif_device_present(dev))
9780
return -ENODEV;
9781
err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9782
if (err)
9783
return err;
9784
if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9785
err = ops->ndo_set_mac_address(dev, ss);
9786
if (err)
9787
return err;
9788
}
9789
dev->addr_assign_type = NET_ADDR_SET;
9790
call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9791
add_device_randomness(dev->dev_addr, dev->addr_len);
9792
return 0;
9793
}
9794
9795
DECLARE_RWSEM(dev_addr_sem);
9796
9797
/* "sa" is a true struct sockaddr with limited "sa_data" member. */
9798
int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9799
{
9800
size_t size = sizeof(sa->sa_data_min);
9801
struct net_device *dev;
9802
int ret = 0;
9803
9804
down_read(&dev_addr_sem);
9805
rcu_read_lock();
9806
9807
dev = dev_get_by_name_rcu(net, dev_name);
9808
if (!dev) {
9809
ret = -ENODEV;
9810
goto unlock;
9811
}
9812
if (!dev->addr_len)
9813
memset(sa->sa_data, 0, size);
9814
else
9815
memcpy(sa->sa_data, dev->dev_addr,
9816
min_t(size_t, size, dev->addr_len));
9817
sa->sa_family = dev->type;
9818
9819
unlock:
9820
rcu_read_unlock();
9821
up_read(&dev_addr_sem);
9822
return ret;
9823
}
9824
EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9825
9826
int netif_change_carrier(struct net_device *dev, bool new_carrier)
9827
{
9828
const struct net_device_ops *ops = dev->netdev_ops;
9829
9830
if (!ops->ndo_change_carrier)
9831
return -EOPNOTSUPP;
9832
if (!netif_device_present(dev))
9833
return -ENODEV;
9834
return ops->ndo_change_carrier(dev, new_carrier);
9835
}
9836
9837
/**
9838
* dev_get_phys_port_id - Get device physical port ID
9839
* @dev: device
9840
* @ppid: port ID
9841
*
9842
* Get device physical port ID
9843
*/
9844
int dev_get_phys_port_id(struct net_device *dev,
9845
struct netdev_phys_item_id *ppid)
9846
{
9847
const struct net_device_ops *ops = dev->netdev_ops;
9848
9849
if (!ops->ndo_get_phys_port_id)
9850
return -EOPNOTSUPP;
9851
return ops->ndo_get_phys_port_id(dev, ppid);
9852
}
9853
9854
/**
9855
* dev_get_phys_port_name - Get device physical port name
9856
* @dev: device
9857
* @name: port name
9858
* @len: limit of bytes to copy to name
9859
*
9860
* Get device physical port name
9861
*/
9862
int dev_get_phys_port_name(struct net_device *dev,
9863
char *name, size_t len)
9864
{
9865
const struct net_device_ops *ops = dev->netdev_ops;
9866
int err;
9867
9868
if (ops->ndo_get_phys_port_name) {
9869
err = ops->ndo_get_phys_port_name(dev, name, len);
9870
if (err != -EOPNOTSUPP)
9871
return err;
9872
}
9873
return devlink_compat_phys_port_name_get(dev, name, len);
9874
}
9875
9876
/**
9877
* netif_get_port_parent_id() - Get the device's port parent identifier
9878
* @dev: network device
9879
* @ppid: pointer to a storage for the port's parent identifier
9880
* @recurse: allow/disallow recursion to lower devices
9881
*
9882
* Get the devices's port parent identifier.
9883
*
9884
* Return: 0 on success, -errno on failure.
9885
*/
9886
int netif_get_port_parent_id(struct net_device *dev,
9887
struct netdev_phys_item_id *ppid, bool recurse)
9888
{
9889
const struct net_device_ops *ops = dev->netdev_ops;
9890
struct netdev_phys_item_id first = { };
9891
struct net_device *lower_dev;
9892
struct list_head *iter;
9893
int err;
9894
9895
if (ops->ndo_get_port_parent_id) {
9896
err = ops->ndo_get_port_parent_id(dev, ppid);
9897
if (err != -EOPNOTSUPP)
9898
return err;
9899
}
9900
9901
err = devlink_compat_switch_id_get(dev, ppid);
9902
if (!recurse || err != -EOPNOTSUPP)
9903
return err;
9904
9905
netdev_for_each_lower_dev(dev, lower_dev, iter) {
9906
err = netif_get_port_parent_id(lower_dev, ppid, true);
9907
if (err)
9908
break;
9909
if (!first.id_len)
9910
first = *ppid;
9911
else if (memcmp(&first, ppid, sizeof(*ppid)))
9912
return -EOPNOTSUPP;
9913
}
9914
9915
return err;
9916
}
9917
EXPORT_SYMBOL(netif_get_port_parent_id);
9918
9919
/**
9920
* netdev_port_same_parent_id - Indicate if two network devices have
9921
* the same port parent identifier
9922
* @a: first network device
9923
* @b: second network device
9924
*/
9925
bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9926
{
9927
struct netdev_phys_item_id a_id = { };
9928
struct netdev_phys_item_id b_id = { };
9929
9930
if (netif_get_port_parent_id(a, &a_id, true) ||
9931
netif_get_port_parent_id(b, &b_id, true))
9932
return false;
9933
9934
return netdev_phys_item_id_same(&a_id, &b_id);
9935
}
9936
EXPORT_SYMBOL(netdev_port_same_parent_id);
9937
9938
int netif_change_proto_down(struct net_device *dev, bool proto_down)
9939
{
9940
if (!dev->change_proto_down)
9941
return -EOPNOTSUPP;
9942
if (!netif_device_present(dev))
9943
return -ENODEV;
9944
if (proto_down)
9945
netif_carrier_off(dev);
9946
else
9947
netif_carrier_on(dev);
9948
WRITE_ONCE(dev->proto_down, proto_down);
9949
return 0;
9950
}
9951
9952
/**
9953
* netdev_change_proto_down_reason_locked - proto down reason
9954
*
9955
* @dev: device
9956
* @mask: proto down mask
9957
* @value: proto down value
9958
*/
9959
void netdev_change_proto_down_reason_locked(struct net_device *dev,
9960
unsigned long mask, u32 value)
9961
{
9962
u32 proto_down_reason;
9963
int b;
9964
9965
if (!mask) {
9966
proto_down_reason = value;
9967
} else {
9968
proto_down_reason = dev->proto_down_reason;
9969
for_each_set_bit(b, &mask, 32) {
9970
if (value & (1 << b))
9971
proto_down_reason |= BIT(b);
9972
else
9973
proto_down_reason &= ~BIT(b);
9974
}
9975
}
9976
WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9977
}
9978
9979
struct bpf_xdp_link {
9980
struct bpf_link link;
9981
struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9982
int flags;
9983
};
9984
9985
static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9986
{
9987
if (flags & XDP_FLAGS_HW_MODE)
9988
return XDP_MODE_HW;
9989
if (flags & XDP_FLAGS_DRV_MODE)
9990
return XDP_MODE_DRV;
9991
if (flags & XDP_FLAGS_SKB_MODE)
9992
return XDP_MODE_SKB;
9993
return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9994
}
9995
9996
static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9997
{
9998
switch (mode) {
9999
case XDP_MODE_SKB:
10000
return generic_xdp_install;
10001
case XDP_MODE_DRV:
10002
case XDP_MODE_HW:
10003
return dev->netdev_ops->ndo_bpf;
10004
default:
10005
return NULL;
10006
}
10007
}
10008
10009
static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10010
enum bpf_xdp_mode mode)
10011
{
10012
return dev->xdp_state[mode].link;
10013
}
10014
10015
static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10016
enum bpf_xdp_mode mode)
10017
{
10018
struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10019
10020
if (link)
10021
return link->link.prog;
10022
return dev->xdp_state[mode].prog;
10023
}
10024
10025
u8 dev_xdp_prog_count(struct net_device *dev)
10026
{
10027
u8 count = 0;
10028
int i;
10029
10030
for (i = 0; i < __MAX_XDP_MODE; i++)
10031
if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10032
count++;
10033
return count;
10034
}
10035
EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10036
10037
u8 dev_xdp_sb_prog_count(struct net_device *dev)
10038
{
10039
u8 count = 0;
10040
int i;
10041
10042
for (i = 0; i < __MAX_XDP_MODE; i++)
10043
if (dev->xdp_state[i].prog &&
10044
!dev->xdp_state[i].prog->aux->xdp_has_frags)
10045
count++;
10046
return count;
10047
}
10048
10049
int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10050
{
10051
if (!dev->netdev_ops->ndo_bpf)
10052
return -EOPNOTSUPP;
10053
10054
if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10055
bpf->command == XDP_SETUP_PROG &&
10056
bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10057
NL_SET_ERR_MSG(bpf->extack,
10058
"unable to propagate XDP to device using tcp-data-split");
10059
return -EBUSY;
10060
}
10061
10062
if (dev_get_min_mp_channel_count(dev)) {
10063
NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10064
return -EBUSY;
10065
}
10066
10067
return dev->netdev_ops->ndo_bpf(dev, bpf);
10068
}
10069
EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10070
10071
u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10072
{
10073
struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10074
10075
return prog ? prog->aux->id : 0;
10076
}
10077
10078
static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10079
struct bpf_xdp_link *link)
10080
{
10081
dev->xdp_state[mode].link = link;
10082
dev->xdp_state[mode].prog = NULL;
10083
}
10084
10085
static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10086
struct bpf_prog *prog)
10087
{
10088
dev->xdp_state[mode].link = NULL;
10089
dev->xdp_state[mode].prog = prog;
10090
}
10091
10092
static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10093
bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10094
u32 flags, struct bpf_prog *prog)
10095
{
10096
struct netdev_bpf xdp;
10097
int err;
10098
10099
netdev_ops_assert_locked(dev);
10100
10101
if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10102
prog && !prog->aux->xdp_has_frags) {
10103
NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10104
return -EBUSY;
10105
}
10106
10107
if (dev_get_min_mp_channel_count(dev)) {
10108
NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10109
return -EBUSY;
10110
}
10111
10112
memset(&xdp, 0, sizeof(xdp));
10113
xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10114
xdp.extack = extack;
10115
xdp.flags = flags;
10116
xdp.prog = prog;
10117
10118
/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10119
* "moved" into driver), so they don't increment it on their own, but
10120
* they do decrement refcnt when program is detached or replaced.
10121
* Given net_device also owns link/prog, we need to bump refcnt here
10122
* to prevent drivers from underflowing it.
10123
*/
10124
if (prog)
10125
bpf_prog_inc(prog);
10126
err = bpf_op(dev, &xdp);
10127
if (err) {
10128
if (prog)
10129
bpf_prog_put(prog);
10130
return err;
10131
}
10132
10133
if (mode != XDP_MODE_HW)
10134
bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10135
10136
return 0;
10137
}
10138
10139
static void dev_xdp_uninstall(struct net_device *dev)
10140
{
10141
struct bpf_xdp_link *link;
10142
struct bpf_prog *prog;
10143
enum bpf_xdp_mode mode;
10144
bpf_op_t bpf_op;
10145
10146
ASSERT_RTNL();
10147
10148
for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10149
prog = dev_xdp_prog(dev, mode);
10150
if (!prog)
10151
continue;
10152
10153
bpf_op = dev_xdp_bpf_op(dev, mode);
10154
if (!bpf_op)
10155
continue;
10156
10157
WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10158
10159
/* auto-detach link from net device */
10160
link = dev_xdp_link(dev, mode);
10161
if (link)
10162
link->dev = NULL;
10163
else
10164
bpf_prog_put(prog);
10165
10166
dev_xdp_set_link(dev, mode, NULL);
10167
}
10168
}
10169
10170
static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10171
struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10172
struct bpf_prog *old_prog, u32 flags)
10173
{
10174
unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10175
struct bpf_prog *cur_prog;
10176
struct net_device *upper;
10177
struct list_head *iter;
10178
enum bpf_xdp_mode mode;
10179
bpf_op_t bpf_op;
10180
int err;
10181
10182
ASSERT_RTNL();
10183
10184
/* either link or prog attachment, never both */
10185
if (link && (new_prog || old_prog))
10186
return -EINVAL;
10187
/* link supports only XDP mode flags */
10188
if (link && (flags & ~XDP_FLAGS_MODES)) {
10189
NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10190
return -EINVAL;
10191
}
10192
/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10193
if (num_modes > 1) {
10194
NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10195
return -EINVAL;
10196
}
10197
/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10198
if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10199
NL_SET_ERR_MSG(extack,
10200
"More than one program loaded, unset mode is ambiguous");
10201
return -EINVAL;
10202
}
10203
/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10204
if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10205
NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10206
return -EINVAL;
10207
}
10208
10209
mode = dev_xdp_mode(dev, flags);
10210
/* can't replace attached link */
10211
if (dev_xdp_link(dev, mode)) {
10212
NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10213
return -EBUSY;
10214
}
10215
10216
/* don't allow if an upper device already has a program */
10217
netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10218
if (dev_xdp_prog_count(upper) > 0) {
10219
NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10220
return -EEXIST;
10221
}
10222
}
10223
10224
cur_prog = dev_xdp_prog(dev, mode);
10225
/* can't replace attached prog with link */
10226
if (link && cur_prog) {
10227
NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10228
return -EBUSY;
10229
}
10230
if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10231
NL_SET_ERR_MSG(extack, "Active program does not match expected");
10232
return -EEXIST;
10233
}
10234
10235
/* put effective new program into new_prog */
10236
if (link)
10237
new_prog = link->link.prog;
10238
10239
if (new_prog) {
10240
bool offload = mode == XDP_MODE_HW;
10241
enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10242
? XDP_MODE_DRV : XDP_MODE_SKB;
10243
10244
if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10245
NL_SET_ERR_MSG(extack, "XDP program already attached");
10246
return -EBUSY;
10247
}
10248
if (!offload && dev_xdp_prog(dev, other_mode)) {
10249
NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10250
return -EEXIST;
10251
}
10252
if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10253
NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10254
return -EINVAL;
10255
}
10256
if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10257
NL_SET_ERR_MSG(extack, "Program bound to different device");
10258
return -EINVAL;
10259
}
10260
if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10261
NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10262
return -EINVAL;
10263
}
10264
if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10265
NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10266
return -EINVAL;
10267
}
10268
if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10269
NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10270
return -EINVAL;
10271
}
10272
}
10273
10274
/* don't call drivers if the effective program didn't change */
10275
if (new_prog != cur_prog) {
10276
bpf_op = dev_xdp_bpf_op(dev, mode);
10277
if (!bpf_op) {
10278
NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10279
return -EOPNOTSUPP;
10280
}
10281
10282
err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10283
if (err)
10284
return err;
10285
}
10286
10287
if (link)
10288
dev_xdp_set_link(dev, mode, link);
10289
else
10290
dev_xdp_set_prog(dev, mode, new_prog);
10291
if (cur_prog)
10292
bpf_prog_put(cur_prog);
10293
10294
return 0;
10295
}
10296
10297
static int dev_xdp_attach_link(struct net_device *dev,
10298
struct netlink_ext_ack *extack,
10299
struct bpf_xdp_link *link)
10300
{
10301
return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10302
}
10303
10304
static int dev_xdp_detach_link(struct net_device *dev,
10305
struct netlink_ext_ack *extack,
10306
struct bpf_xdp_link *link)
10307
{
10308
enum bpf_xdp_mode mode;
10309
bpf_op_t bpf_op;
10310
10311
ASSERT_RTNL();
10312
10313
mode = dev_xdp_mode(dev, link->flags);
10314
if (dev_xdp_link(dev, mode) != link)
10315
return -EINVAL;
10316
10317
bpf_op = dev_xdp_bpf_op(dev, mode);
10318
WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10319
dev_xdp_set_link(dev, mode, NULL);
10320
return 0;
10321
}
10322
10323
static void bpf_xdp_link_release(struct bpf_link *link)
10324
{
10325
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10326
10327
rtnl_lock();
10328
10329
/* if racing with net_device's tear down, xdp_link->dev might be
10330
* already NULL, in which case link was already auto-detached
10331
*/
10332
if (xdp_link->dev) {
10333
netdev_lock_ops(xdp_link->dev);
10334
WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10335
netdev_unlock_ops(xdp_link->dev);
10336
xdp_link->dev = NULL;
10337
}
10338
10339
rtnl_unlock();
10340
}
10341
10342
static int bpf_xdp_link_detach(struct bpf_link *link)
10343
{
10344
bpf_xdp_link_release(link);
10345
return 0;
10346
}
10347
10348
static void bpf_xdp_link_dealloc(struct bpf_link *link)
10349
{
10350
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10351
10352
kfree(xdp_link);
10353
}
10354
10355
static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10356
struct seq_file *seq)
10357
{
10358
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10359
u32 ifindex = 0;
10360
10361
rtnl_lock();
10362
if (xdp_link->dev)
10363
ifindex = xdp_link->dev->ifindex;
10364
rtnl_unlock();
10365
10366
seq_printf(seq, "ifindex:\t%u\n", ifindex);
10367
}
10368
10369
static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10370
struct bpf_link_info *info)
10371
{
10372
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10373
u32 ifindex = 0;
10374
10375
rtnl_lock();
10376
if (xdp_link->dev)
10377
ifindex = xdp_link->dev->ifindex;
10378
rtnl_unlock();
10379
10380
info->xdp.ifindex = ifindex;
10381
return 0;
10382
}
10383
10384
static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10385
struct bpf_prog *old_prog)
10386
{
10387
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10388
enum bpf_xdp_mode mode;
10389
bpf_op_t bpf_op;
10390
int err = 0;
10391
10392
rtnl_lock();
10393
10394
/* link might have been auto-released already, so fail */
10395
if (!xdp_link->dev) {
10396
err = -ENOLINK;
10397
goto out_unlock;
10398
}
10399
10400
if (old_prog && link->prog != old_prog) {
10401
err = -EPERM;
10402
goto out_unlock;
10403
}
10404
old_prog = link->prog;
10405
if (old_prog->type != new_prog->type ||
10406
old_prog->expected_attach_type != new_prog->expected_attach_type) {
10407
err = -EINVAL;
10408
goto out_unlock;
10409
}
10410
10411
if (old_prog == new_prog) {
10412
/* no-op, don't disturb drivers */
10413
bpf_prog_put(new_prog);
10414
goto out_unlock;
10415
}
10416
10417
netdev_lock_ops(xdp_link->dev);
10418
mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10419
bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10420
err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10421
xdp_link->flags, new_prog);
10422
netdev_unlock_ops(xdp_link->dev);
10423
if (err)
10424
goto out_unlock;
10425
10426
old_prog = xchg(&link->prog, new_prog);
10427
bpf_prog_put(old_prog);
10428
10429
out_unlock:
10430
rtnl_unlock();
10431
return err;
10432
}
10433
10434
static const struct bpf_link_ops bpf_xdp_link_lops = {
10435
.release = bpf_xdp_link_release,
10436
.dealloc = bpf_xdp_link_dealloc,
10437
.detach = bpf_xdp_link_detach,
10438
.show_fdinfo = bpf_xdp_link_show_fdinfo,
10439
.fill_link_info = bpf_xdp_link_fill_link_info,
10440
.update_prog = bpf_xdp_link_update,
10441
};
10442
10443
int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10444
{
10445
struct net *net = current->nsproxy->net_ns;
10446
struct bpf_link_primer link_primer;
10447
struct netlink_ext_ack extack = {};
10448
struct bpf_xdp_link *link;
10449
struct net_device *dev;
10450
int err, fd;
10451
10452
rtnl_lock();
10453
dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10454
if (!dev) {
10455
rtnl_unlock();
10456
return -EINVAL;
10457
}
10458
10459
link = kzalloc(sizeof(*link), GFP_USER);
10460
if (!link) {
10461
err = -ENOMEM;
10462
goto unlock;
10463
}
10464
10465
bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10466
attr->link_create.attach_type);
10467
link->dev = dev;
10468
link->flags = attr->link_create.flags;
10469
10470
err = bpf_link_prime(&link->link, &link_primer);
10471
if (err) {
10472
kfree(link);
10473
goto unlock;
10474
}
10475
10476
netdev_lock_ops(dev);
10477
err = dev_xdp_attach_link(dev, &extack, link);
10478
netdev_unlock_ops(dev);
10479
rtnl_unlock();
10480
10481
if (err) {
10482
link->dev = NULL;
10483
bpf_link_cleanup(&link_primer);
10484
trace_bpf_xdp_link_attach_failed(extack._msg);
10485
goto out_put_dev;
10486
}
10487
10488
fd = bpf_link_settle(&link_primer);
10489
/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10490
dev_put(dev);
10491
return fd;
10492
10493
unlock:
10494
rtnl_unlock();
10495
10496
out_put_dev:
10497
dev_put(dev);
10498
return err;
10499
}
10500
10501
/**
10502
* dev_change_xdp_fd - set or clear a bpf program for a device rx path
10503
* @dev: device
10504
* @extack: netlink extended ack
10505
* @fd: new program fd or negative value to clear
10506
* @expected_fd: old program fd that userspace expects to replace or clear
10507
* @flags: xdp-related flags
10508
*
10509
* Set or clear a bpf program for a device
10510
*/
10511
int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10512
int fd, int expected_fd, u32 flags)
10513
{
10514
enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10515
struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10516
int err;
10517
10518
ASSERT_RTNL();
10519
10520
if (fd >= 0) {
10521
new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10522
mode != XDP_MODE_SKB);
10523
if (IS_ERR(new_prog))
10524
return PTR_ERR(new_prog);
10525
}
10526
10527
if (expected_fd >= 0) {
10528
old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10529
mode != XDP_MODE_SKB);
10530
if (IS_ERR(old_prog)) {
10531
err = PTR_ERR(old_prog);
10532
old_prog = NULL;
10533
goto err_out;
10534
}
10535
}
10536
10537
err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10538
10539
err_out:
10540
if (err && new_prog)
10541
bpf_prog_put(new_prog);
10542
if (old_prog)
10543
bpf_prog_put(old_prog);
10544
return err;
10545
}
10546
10547
u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10548
{
10549
int i;
10550
10551
netdev_ops_assert_locked(dev);
10552
10553
for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10554
if (dev->_rx[i].mp_params.mp_priv)
10555
/* The channel count is the idx plus 1. */
10556
return i + 1;
10557
10558
return 0;
10559
}
10560
10561
/**
10562
* dev_index_reserve() - allocate an ifindex in a namespace
10563
* @net: the applicable net namespace
10564
* @ifindex: requested ifindex, pass %0 to get one allocated
10565
*
10566
* Allocate a ifindex for a new device. Caller must either use the ifindex
10567
* to store the device (via list_netdevice()) or call dev_index_release()
10568
* to give the index up.
10569
*
10570
* Return: a suitable unique value for a new device interface number or -errno.
10571
*/
10572
static int dev_index_reserve(struct net *net, u32 ifindex)
10573
{
10574
int err;
10575
10576
if (ifindex > INT_MAX) {
10577
DEBUG_NET_WARN_ON_ONCE(1);
10578
return -EINVAL;
10579
}
10580
10581
if (!ifindex)
10582
err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10583
xa_limit_31b, &net->ifindex, GFP_KERNEL);
10584
else
10585
err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10586
if (err < 0)
10587
return err;
10588
10589
return ifindex;
10590
}
10591
10592
static void dev_index_release(struct net *net, int ifindex)
10593
{
10594
/* Expect only unused indexes, unlist_netdevice() removes the used */
10595
WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10596
}
10597
10598
static bool from_cleanup_net(void)
10599
{
10600
#ifdef CONFIG_NET_NS
10601
return current == READ_ONCE(cleanup_net_task);
10602
#else
10603
return false;
10604
#endif
10605
}
10606
10607
/* Delayed registration/unregisteration */
10608
LIST_HEAD(net_todo_list);
10609
DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10610
atomic_t dev_unreg_count = ATOMIC_INIT(0);
10611
10612
static void net_set_todo(struct net_device *dev)
10613
{
10614
list_add_tail(&dev->todo_list, &net_todo_list);
10615
}
10616
10617
static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10618
struct net_device *upper, netdev_features_t features)
10619
{
10620
netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10621
netdev_features_t feature;
10622
int feature_bit;
10623
10624
for_each_netdev_feature(upper_disables, feature_bit) {
10625
feature = __NETIF_F_BIT(feature_bit);
10626
if (!(upper->wanted_features & feature)
10627
&& (features & feature)) {
10628
netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10629
&feature, upper->name);
10630
features &= ~feature;
10631
}
10632
}
10633
10634
return features;
10635
}
10636
10637
static void netdev_sync_lower_features(struct net_device *upper,
10638
struct net_device *lower, netdev_features_t features)
10639
{
10640
netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10641
netdev_features_t feature;
10642
int feature_bit;
10643
10644
for_each_netdev_feature(upper_disables, feature_bit) {
10645
feature = __NETIF_F_BIT(feature_bit);
10646
if (!(features & feature) && (lower->features & feature)) {
10647
netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10648
&feature, lower->name);
10649
netdev_lock_ops(lower);
10650
lower->wanted_features &= ~feature;
10651
__netdev_update_features(lower);
10652
10653
if (unlikely(lower->features & feature))
10654
netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10655
&feature, lower->name);
10656
else
10657
netdev_features_change(lower);
10658
netdev_unlock_ops(lower);
10659
}
10660
}
10661
}
10662
10663
static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10664
{
10665
netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10666
bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10667
bool hw_csum = features & NETIF_F_HW_CSUM;
10668
10669
return ip_csum || hw_csum;
10670
}
10671
10672
static netdev_features_t netdev_fix_features(struct net_device *dev,
10673
netdev_features_t features)
10674
{
10675
/* Fix illegal checksum combinations */
10676
if ((features & NETIF_F_HW_CSUM) &&
10677
(features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10678
netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10679
features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10680
}
10681
10682
/* TSO requires that SG is present as well. */
10683
if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10684
netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10685
features &= ~NETIF_F_ALL_TSO;
10686
}
10687
10688
if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10689
!(features & NETIF_F_IP_CSUM)) {
10690
netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10691
features &= ~NETIF_F_TSO;
10692
features &= ~NETIF_F_TSO_ECN;
10693
}
10694
10695
if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10696
!(features & NETIF_F_IPV6_CSUM)) {
10697
netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10698
features &= ~NETIF_F_TSO6;
10699
}
10700
10701
/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10702
if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10703
features &= ~NETIF_F_TSO_MANGLEID;
10704
10705
/* TSO ECN requires that TSO is present as well. */
10706
if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10707
features &= ~NETIF_F_TSO_ECN;
10708
10709
/* Software GSO depends on SG. */
10710
if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10711
netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10712
features &= ~NETIF_F_GSO;
10713
}
10714
10715
/* GSO partial features require GSO partial be set */
10716
if ((features & dev->gso_partial_features) &&
10717
!(features & NETIF_F_GSO_PARTIAL)) {
10718
netdev_dbg(dev,
10719
"Dropping partially supported GSO features since no GSO partial.\n");
10720
features &= ~dev->gso_partial_features;
10721
}
10722
10723
if (!(features & NETIF_F_RXCSUM)) {
10724
/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10725
* successfully merged by hardware must also have the
10726
* checksum verified by hardware. If the user does not
10727
* want to enable RXCSUM, logically, we should disable GRO_HW.
10728
*/
10729
if (features & NETIF_F_GRO_HW) {
10730
netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10731
features &= ~NETIF_F_GRO_HW;
10732
}
10733
}
10734
10735
/* LRO/HW-GRO features cannot be combined with RX-FCS */
10736
if (features & NETIF_F_RXFCS) {
10737
if (features & NETIF_F_LRO) {
10738
netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10739
features &= ~NETIF_F_LRO;
10740
}
10741
10742
if (features & NETIF_F_GRO_HW) {
10743
netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10744
features &= ~NETIF_F_GRO_HW;
10745
}
10746
}
10747
10748
if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10749
netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10750
features &= ~NETIF_F_LRO;
10751
}
10752
10753
if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10754
netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10755
features &= ~NETIF_F_HW_TLS_TX;
10756
}
10757
10758
if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10759
netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10760
features &= ~NETIF_F_HW_TLS_RX;
10761
}
10762
10763
if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10764
netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10765
features &= ~NETIF_F_GSO_UDP_L4;
10766
}
10767
10768
return features;
10769
}
10770
10771
int __netdev_update_features(struct net_device *dev)
10772
{
10773
struct net_device *upper, *lower;
10774
netdev_features_t features;
10775
struct list_head *iter;
10776
int err = -1;
10777
10778
ASSERT_RTNL();
10779
netdev_ops_assert_locked(dev);
10780
10781
features = netdev_get_wanted_features(dev);
10782
10783
if (dev->netdev_ops->ndo_fix_features)
10784
features = dev->netdev_ops->ndo_fix_features(dev, features);
10785
10786
/* driver might be less strict about feature dependencies */
10787
features = netdev_fix_features(dev, features);
10788
10789
/* some features can't be enabled if they're off on an upper device */
10790
netdev_for_each_upper_dev_rcu(dev, upper, iter)
10791
features = netdev_sync_upper_features(dev, upper, features);
10792
10793
if (dev->features == features)
10794
goto sync_lower;
10795
10796
netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10797
&dev->features, &features);
10798
10799
if (dev->netdev_ops->ndo_set_features)
10800
err = dev->netdev_ops->ndo_set_features(dev, features);
10801
else
10802
err = 0;
10803
10804
if (unlikely(err < 0)) {
10805
netdev_err(dev,
10806
"set_features() failed (%d); wanted %pNF, left %pNF\n",
10807
err, &features, &dev->features);
10808
/* return non-0 since some features might have changed and
10809
* it's better to fire a spurious notification than miss it
10810
*/
10811
return -1;
10812
}
10813
10814
sync_lower:
10815
/* some features must be disabled on lower devices when disabled
10816
* on an upper device (think: bonding master or bridge)
10817
*/
10818
netdev_for_each_lower_dev(dev, lower, iter)
10819
netdev_sync_lower_features(dev, lower, features);
10820
10821
if (!err) {
10822
netdev_features_t diff = features ^ dev->features;
10823
10824
if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10825
/* udp_tunnel_{get,drop}_rx_info both need
10826
* NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10827
* device, or they won't do anything.
10828
* Thus we need to update dev->features
10829
* *before* calling udp_tunnel_get_rx_info,
10830
* but *after* calling udp_tunnel_drop_rx_info.
10831
*/
10832
udp_tunnel_nic_lock(dev);
10833
if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10834
dev->features = features;
10835
udp_tunnel_get_rx_info(dev);
10836
} else {
10837
udp_tunnel_drop_rx_info(dev);
10838
}
10839
udp_tunnel_nic_unlock(dev);
10840
}
10841
10842
if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10843
if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10844
dev->features = features;
10845
err |= vlan_get_rx_ctag_filter_info(dev);
10846
} else {
10847
vlan_drop_rx_ctag_filter_info(dev);
10848
}
10849
}
10850
10851
if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10852
if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10853
dev->features = features;
10854
err |= vlan_get_rx_stag_filter_info(dev);
10855
} else {
10856
vlan_drop_rx_stag_filter_info(dev);
10857
}
10858
}
10859
10860
dev->features = features;
10861
}
10862
10863
return err < 0 ? 0 : 1;
10864
}
10865
10866
/**
10867
* netdev_update_features - recalculate device features
10868
* @dev: the device to check
10869
*
10870
* Recalculate dev->features set and send notifications if it
10871
* has changed. Should be called after driver or hardware dependent
10872
* conditions might have changed that influence the features.
10873
*/
10874
void netdev_update_features(struct net_device *dev)
10875
{
10876
if (__netdev_update_features(dev))
10877
netdev_features_change(dev);
10878
}
10879
EXPORT_SYMBOL(netdev_update_features);
10880
10881
/**
10882
* netdev_change_features - recalculate device features
10883
* @dev: the device to check
10884
*
10885
* Recalculate dev->features set and send notifications even
10886
* if they have not changed. Should be called instead of
10887
* netdev_update_features() if also dev->vlan_features might
10888
* have changed to allow the changes to be propagated to stacked
10889
* VLAN devices.
10890
*/
10891
void netdev_change_features(struct net_device *dev)
10892
{
10893
__netdev_update_features(dev);
10894
netdev_features_change(dev);
10895
}
10896
EXPORT_SYMBOL(netdev_change_features);
10897
10898
/**
10899
* netif_stacked_transfer_operstate - transfer operstate
10900
* @rootdev: the root or lower level device to transfer state from
10901
* @dev: the device to transfer operstate to
10902
*
10903
* Transfer operational state from root to device. This is normally
10904
* called when a stacking relationship exists between the root
10905
* device and the device(a leaf device).
10906
*/
10907
void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10908
struct net_device *dev)
10909
{
10910
if (rootdev->operstate == IF_OPER_DORMANT)
10911
netif_dormant_on(dev);
10912
else
10913
netif_dormant_off(dev);
10914
10915
if (rootdev->operstate == IF_OPER_TESTING)
10916
netif_testing_on(dev);
10917
else
10918
netif_testing_off(dev);
10919
10920
if (netif_carrier_ok(rootdev))
10921
netif_carrier_on(dev);
10922
else
10923
netif_carrier_off(dev);
10924
}
10925
EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10926
10927
static int netif_alloc_rx_queues(struct net_device *dev)
10928
{
10929
unsigned int i, count = dev->num_rx_queues;
10930
struct netdev_rx_queue *rx;
10931
size_t sz = count * sizeof(*rx);
10932
int err = 0;
10933
10934
BUG_ON(count < 1);
10935
10936
rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10937
if (!rx)
10938
return -ENOMEM;
10939
10940
dev->_rx = rx;
10941
10942
for (i = 0; i < count; i++) {
10943
rx[i].dev = dev;
10944
10945
/* XDP RX-queue setup */
10946
err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10947
if (err < 0)
10948
goto err_rxq_info;
10949
}
10950
return 0;
10951
10952
err_rxq_info:
10953
/* Rollback successful reg's and free other resources */
10954
while (i--)
10955
xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10956
kvfree(dev->_rx);
10957
dev->_rx = NULL;
10958
return err;
10959
}
10960
10961
static void netif_free_rx_queues(struct net_device *dev)
10962
{
10963
unsigned int i, count = dev->num_rx_queues;
10964
10965
/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10966
if (!dev->_rx)
10967
return;
10968
10969
for (i = 0; i < count; i++)
10970
xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10971
10972
kvfree(dev->_rx);
10973
}
10974
10975
static void netdev_init_one_queue(struct net_device *dev,
10976
struct netdev_queue *queue, void *_unused)
10977
{
10978
/* Initialize queue lock */
10979
spin_lock_init(&queue->_xmit_lock);
10980
netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10981
queue->xmit_lock_owner = -1;
10982
netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10983
queue->dev = dev;
10984
#ifdef CONFIG_BQL
10985
dql_init(&queue->dql, HZ);
10986
#endif
10987
}
10988
10989
static void netif_free_tx_queues(struct net_device *dev)
10990
{
10991
kvfree(dev->_tx);
10992
}
10993
10994
static int netif_alloc_netdev_queues(struct net_device *dev)
10995
{
10996
unsigned int count = dev->num_tx_queues;
10997
struct netdev_queue *tx;
10998
size_t sz = count * sizeof(*tx);
10999
11000
if (count < 1 || count > 0xffff)
11001
return -EINVAL;
11002
11003
tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11004
if (!tx)
11005
return -ENOMEM;
11006
11007
dev->_tx = tx;
11008
11009
netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11010
spin_lock_init(&dev->tx_global_lock);
11011
11012
return 0;
11013
}
11014
11015
void netif_tx_stop_all_queues(struct net_device *dev)
11016
{
11017
unsigned int i;
11018
11019
for (i = 0; i < dev->num_tx_queues; i++) {
11020
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11021
11022
netif_tx_stop_queue(txq);
11023
}
11024
}
11025
EXPORT_SYMBOL(netif_tx_stop_all_queues);
11026
11027
static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11028
{
11029
void __percpu *v;
11030
11031
/* Drivers implementing ndo_get_peer_dev must support tstat
11032
* accounting, so that skb_do_redirect() can bump the dev's
11033
* RX stats upon network namespace switch.
11034
*/
11035
if (dev->netdev_ops->ndo_get_peer_dev &&
11036
dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11037
return -EOPNOTSUPP;
11038
11039
switch (dev->pcpu_stat_type) {
11040
case NETDEV_PCPU_STAT_NONE:
11041
return 0;
11042
case NETDEV_PCPU_STAT_LSTATS:
11043
v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11044
break;
11045
case NETDEV_PCPU_STAT_TSTATS:
11046
v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11047
break;
11048
case NETDEV_PCPU_STAT_DSTATS:
11049
v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11050
break;
11051
default:
11052
return -EINVAL;
11053
}
11054
11055
return v ? 0 : -ENOMEM;
11056
}
11057
11058
static void netdev_do_free_pcpu_stats(struct net_device *dev)
11059
{
11060
switch (dev->pcpu_stat_type) {
11061
case NETDEV_PCPU_STAT_NONE:
11062
return;
11063
case NETDEV_PCPU_STAT_LSTATS:
11064
free_percpu(dev->lstats);
11065
break;
11066
case NETDEV_PCPU_STAT_TSTATS:
11067
free_percpu(dev->tstats);
11068
break;
11069
case NETDEV_PCPU_STAT_DSTATS:
11070
free_percpu(dev->dstats);
11071
break;
11072
}
11073
}
11074
11075
static void netdev_free_phy_link_topology(struct net_device *dev)
11076
{
11077
struct phy_link_topology *topo = dev->link_topo;
11078
11079
if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11080
xa_destroy(&topo->phys);
11081
kfree(topo);
11082
dev->link_topo = NULL;
11083
}
11084
}
11085
11086
/**
11087
* register_netdevice() - register a network device
11088
* @dev: device to register
11089
*
11090
* Take a prepared network device structure and make it externally accessible.
11091
* A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11092
* Callers must hold the rtnl lock - you may want register_netdev()
11093
* instead of this.
11094
*/
11095
int register_netdevice(struct net_device *dev)
11096
{
11097
int ret;
11098
struct net *net = dev_net(dev);
11099
11100
BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11101
NETDEV_FEATURE_COUNT);
11102
BUG_ON(dev_boot_phase);
11103
ASSERT_RTNL();
11104
11105
might_sleep();
11106
11107
/* When net_device's are persistent, this will be fatal. */
11108
BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11109
BUG_ON(!net);
11110
11111
ret = ethtool_check_ops(dev->ethtool_ops);
11112
if (ret)
11113
return ret;
11114
11115
/* rss ctx ID 0 is reserved for the default context, start from 1 */
11116
xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11117
mutex_init(&dev->ethtool->rss_lock);
11118
11119
spin_lock_init(&dev->addr_list_lock);
11120
netdev_set_addr_lockdep_class(dev);
11121
11122
ret = dev_get_valid_name(net, dev, dev->name);
11123
if (ret < 0)
11124
goto out;
11125
11126
ret = -ENOMEM;
11127
dev->name_node = netdev_name_node_head_alloc(dev);
11128
if (!dev->name_node)
11129
goto out;
11130
11131
/* Init, if this function is available */
11132
if (dev->netdev_ops->ndo_init) {
11133
ret = dev->netdev_ops->ndo_init(dev);
11134
if (ret) {
11135
if (ret > 0)
11136
ret = -EIO;
11137
goto err_free_name;
11138
}
11139
}
11140
11141
if (((dev->hw_features | dev->features) &
11142
NETIF_F_HW_VLAN_CTAG_FILTER) &&
11143
(!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11144
!dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11145
netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11146
ret = -EINVAL;
11147
goto err_uninit;
11148
}
11149
11150
ret = netdev_do_alloc_pcpu_stats(dev);
11151
if (ret)
11152
goto err_uninit;
11153
11154
ret = dev_index_reserve(net, dev->ifindex);
11155
if (ret < 0)
11156
goto err_free_pcpu;
11157
dev->ifindex = ret;
11158
11159
/* Transfer changeable features to wanted_features and enable
11160
* software offloads (GSO and GRO).
11161
*/
11162
dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11163
dev->features |= NETIF_F_SOFT_FEATURES;
11164
11165
if (dev->udp_tunnel_nic_info) {
11166
dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11167
dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11168
}
11169
11170
dev->wanted_features = dev->features & dev->hw_features;
11171
11172
if (!(dev->flags & IFF_LOOPBACK))
11173
dev->hw_features |= NETIF_F_NOCACHE_COPY;
11174
11175
/* If IPv4 TCP segmentation offload is supported we should also
11176
* allow the device to enable segmenting the frame with the option
11177
* of ignoring a static IP ID value. This doesn't enable the
11178
* feature itself but allows the user to enable it later.
11179
*/
11180
if (dev->hw_features & NETIF_F_TSO)
11181
dev->hw_features |= NETIF_F_TSO_MANGLEID;
11182
if (dev->vlan_features & NETIF_F_TSO)
11183
dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11184
if (dev->mpls_features & NETIF_F_TSO)
11185
dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11186
if (dev->hw_enc_features & NETIF_F_TSO)
11187
dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11188
11189
/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11190
*/
11191
dev->vlan_features |= NETIF_F_HIGHDMA;
11192
11193
/* Make NETIF_F_SG inheritable to tunnel devices.
11194
*/
11195
dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11196
11197
/* Make NETIF_F_SG inheritable to MPLS.
11198
*/
11199
dev->mpls_features |= NETIF_F_SG;
11200
11201
ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11202
ret = notifier_to_errno(ret);
11203
if (ret)
11204
goto err_ifindex_release;
11205
11206
ret = netdev_register_kobject(dev);
11207
11208
netdev_lock(dev);
11209
WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11210
netdev_unlock(dev);
11211
11212
if (ret)
11213
goto err_uninit_notify;
11214
11215
netdev_lock_ops(dev);
11216
__netdev_update_features(dev);
11217
netdev_unlock_ops(dev);
11218
11219
/*
11220
* Default initial state at registry is that the
11221
* device is present.
11222
*/
11223
11224
set_bit(__LINK_STATE_PRESENT, &dev->state);
11225
11226
linkwatch_init_dev(dev);
11227
11228
dev_init_scheduler(dev);
11229
11230
netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11231
list_netdevice(dev);
11232
11233
add_device_randomness(dev->dev_addr, dev->addr_len);
11234
11235
/* If the device has permanent device address, driver should
11236
* set dev_addr and also addr_assign_type should be set to
11237
* NET_ADDR_PERM (default value).
11238
*/
11239
if (dev->addr_assign_type == NET_ADDR_PERM)
11240
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11241
11242
/* Notify protocols, that a new device appeared. */
11243
netdev_lock_ops(dev);
11244
ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11245
netdev_unlock_ops(dev);
11246
ret = notifier_to_errno(ret);
11247
if (ret) {
11248
/* Expect explicit free_netdev() on failure */
11249
dev->needs_free_netdev = false;
11250
unregister_netdevice_queue(dev, NULL);
11251
goto out;
11252
}
11253
/*
11254
* Prevent userspace races by waiting until the network
11255
* device is fully setup before sending notifications.
11256
*/
11257
if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11258
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11259
11260
out:
11261
return ret;
11262
11263
err_uninit_notify:
11264
call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11265
err_ifindex_release:
11266
dev_index_release(net, dev->ifindex);
11267
err_free_pcpu:
11268
netdev_do_free_pcpu_stats(dev);
11269
err_uninit:
11270
if (dev->netdev_ops->ndo_uninit)
11271
dev->netdev_ops->ndo_uninit(dev);
11272
if (dev->priv_destructor)
11273
dev->priv_destructor(dev);
11274
err_free_name:
11275
netdev_name_node_free(dev->name_node);
11276
goto out;
11277
}
11278
EXPORT_SYMBOL(register_netdevice);
11279
11280
/* Initialize the core of a dummy net device.
11281
* The setup steps dummy netdevs need which normal netdevs get by going
11282
* through register_netdevice().
11283
*/
11284
static void init_dummy_netdev(struct net_device *dev)
11285
{
11286
/* make sure we BUG if trying to hit standard
11287
* register/unregister code path
11288
*/
11289
dev->reg_state = NETREG_DUMMY;
11290
11291
/* a dummy interface is started by default */
11292
set_bit(__LINK_STATE_PRESENT, &dev->state);
11293
set_bit(__LINK_STATE_START, &dev->state);
11294
11295
/* Note : We dont allocate pcpu_refcnt for dummy devices,
11296
* because users of this 'device' dont need to change
11297
* its refcount.
11298
*/
11299
}
11300
11301
/**
11302
* register_netdev - register a network device
11303
* @dev: device to register
11304
*
11305
* Take a completed network device structure and add it to the kernel
11306
* interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11307
* chain. 0 is returned on success. A negative errno code is returned
11308
* on a failure to set up the device, or if the name is a duplicate.
11309
*
11310
* This is a wrapper around register_netdevice that takes the rtnl semaphore
11311
* and expands the device name if you passed a format string to
11312
* alloc_netdev.
11313
*/
11314
int register_netdev(struct net_device *dev)
11315
{
11316
struct net *net = dev_net(dev);
11317
int err;
11318
11319
if (rtnl_net_lock_killable(net))
11320
return -EINTR;
11321
11322
err = register_netdevice(dev);
11323
11324
rtnl_net_unlock(net);
11325
11326
return err;
11327
}
11328
EXPORT_SYMBOL(register_netdev);
11329
11330
int netdev_refcnt_read(const struct net_device *dev)
11331
{
11332
#ifdef CONFIG_PCPU_DEV_REFCNT
11333
int i, refcnt = 0;
11334
11335
for_each_possible_cpu(i)
11336
refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11337
return refcnt;
11338
#else
11339
return refcount_read(&dev->dev_refcnt);
11340
#endif
11341
}
11342
EXPORT_SYMBOL(netdev_refcnt_read);
11343
11344
int netdev_unregister_timeout_secs __read_mostly = 10;
11345
11346
#define WAIT_REFS_MIN_MSECS 1
11347
#define WAIT_REFS_MAX_MSECS 250
11348
/**
11349
* netdev_wait_allrefs_any - wait until all references are gone.
11350
* @list: list of net_devices to wait on
11351
*
11352
* This is called when unregistering network devices.
11353
*
11354
* Any protocol or device that holds a reference should register
11355
* for netdevice notification, and cleanup and put back the
11356
* reference if they receive an UNREGISTER event.
11357
* We can get stuck here if buggy protocols don't correctly
11358
* call dev_put.
11359
*/
11360
static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11361
{
11362
unsigned long rebroadcast_time, warning_time;
11363
struct net_device *dev;
11364
int wait = 0;
11365
11366
rebroadcast_time = warning_time = jiffies;
11367
11368
list_for_each_entry(dev, list, todo_list)
11369
if (netdev_refcnt_read(dev) == 1)
11370
return dev;
11371
11372
while (true) {
11373
if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11374
rtnl_lock();
11375
11376
/* Rebroadcast unregister notification */
11377
list_for_each_entry(dev, list, todo_list)
11378
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11379
11380
__rtnl_unlock();
11381
rcu_barrier();
11382
rtnl_lock();
11383
11384
list_for_each_entry(dev, list, todo_list)
11385
if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11386
&dev->state)) {
11387
/* We must not have linkwatch events
11388
* pending on unregister. If this
11389
* happens, we simply run the queue
11390
* unscheduled, resulting in a noop
11391
* for this device.
11392
*/
11393
linkwatch_run_queue();
11394
break;
11395
}
11396
11397
__rtnl_unlock();
11398
11399
rebroadcast_time = jiffies;
11400
}
11401
11402
rcu_barrier();
11403
11404
if (!wait) {
11405
wait = WAIT_REFS_MIN_MSECS;
11406
} else {
11407
msleep(wait);
11408
wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11409
}
11410
11411
list_for_each_entry(dev, list, todo_list)
11412
if (netdev_refcnt_read(dev) == 1)
11413
return dev;
11414
11415
if (time_after(jiffies, warning_time +
11416
READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11417
list_for_each_entry(dev, list, todo_list) {
11418
pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11419
dev->name, netdev_refcnt_read(dev));
11420
ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11421
}
11422
11423
warning_time = jiffies;
11424
}
11425
}
11426
}
11427
11428
/* The sequence is:
11429
*
11430
* rtnl_lock();
11431
* ...
11432
* register_netdevice(x1);
11433
* register_netdevice(x2);
11434
* ...
11435
* unregister_netdevice(y1);
11436
* unregister_netdevice(y2);
11437
* ...
11438
* rtnl_unlock();
11439
* free_netdev(y1);
11440
* free_netdev(y2);
11441
*
11442
* We are invoked by rtnl_unlock().
11443
* This allows us to deal with problems:
11444
* 1) We can delete sysfs objects which invoke hotplug
11445
* without deadlocking with linkwatch via keventd.
11446
* 2) Since we run with the RTNL semaphore not held, we can sleep
11447
* safely in order to wait for the netdev refcnt to drop to zero.
11448
*
11449
* We must not return until all unregister events added during
11450
* the interval the lock was held have been completed.
11451
*/
11452
void netdev_run_todo(void)
11453
{
11454
struct net_device *dev, *tmp;
11455
struct list_head list;
11456
int cnt;
11457
#ifdef CONFIG_LOCKDEP
11458
struct list_head unlink_list;
11459
11460
list_replace_init(&net_unlink_list, &unlink_list);
11461
11462
while (!list_empty(&unlink_list)) {
11463
dev = list_first_entry(&unlink_list, struct net_device,
11464
unlink_list);
11465
list_del_init(&dev->unlink_list);
11466
dev->nested_level = dev->lower_level - 1;
11467
}
11468
#endif
11469
11470
/* Snapshot list, allow later requests */
11471
list_replace_init(&net_todo_list, &list);
11472
11473
__rtnl_unlock();
11474
11475
/* Wait for rcu callbacks to finish before next phase */
11476
if (!list_empty(&list))
11477
rcu_barrier();
11478
11479
list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11480
if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11481
netdev_WARN(dev, "run_todo but not unregistering\n");
11482
list_del(&dev->todo_list);
11483
continue;
11484
}
11485
11486
netdev_lock(dev);
11487
WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11488
netdev_unlock(dev);
11489
linkwatch_sync_dev(dev);
11490
}
11491
11492
cnt = 0;
11493
while (!list_empty(&list)) {
11494
dev = netdev_wait_allrefs_any(&list);
11495
list_del(&dev->todo_list);
11496
11497
/* paranoia */
11498
BUG_ON(netdev_refcnt_read(dev) != 1);
11499
BUG_ON(!list_empty(&dev->ptype_all));
11500
BUG_ON(!list_empty(&dev->ptype_specific));
11501
WARN_ON(rcu_access_pointer(dev->ip_ptr));
11502
WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11503
11504
netdev_do_free_pcpu_stats(dev);
11505
if (dev->priv_destructor)
11506
dev->priv_destructor(dev);
11507
if (dev->needs_free_netdev)
11508
free_netdev(dev);
11509
11510
cnt++;
11511
11512
/* Free network device */
11513
kobject_put(&dev->dev.kobj);
11514
}
11515
if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11516
wake_up(&netdev_unregistering_wq);
11517
}
11518
11519
/* Collate per-cpu network dstats statistics
11520
*
11521
* Read per-cpu network statistics from dev->dstats and populate the related
11522
* fields in @s.
11523
*/
11524
static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11525
const struct pcpu_dstats __percpu *dstats)
11526
{
11527
int cpu;
11528
11529
for_each_possible_cpu(cpu) {
11530
u64 rx_packets, rx_bytes, rx_drops;
11531
u64 tx_packets, tx_bytes, tx_drops;
11532
const struct pcpu_dstats *stats;
11533
unsigned int start;
11534
11535
stats = per_cpu_ptr(dstats, cpu);
11536
do {
11537
start = u64_stats_fetch_begin(&stats->syncp);
11538
rx_packets = u64_stats_read(&stats->rx_packets);
11539
rx_bytes = u64_stats_read(&stats->rx_bytes);
11540
rx_drops = u64_stats_read(&stats->rx_drops);
11541
tx_packets = u64_stats_read(&stats->tx_packets);
11542
tx_bytes = u64_stats_read(&stats->tx_bytes);
11543
tx_drops = u64_stats_read(&stats->tx_drops);
11544
} while (u64_stats_fetch_retry(&stats->syncp, start));
11545
11546
s->rx_packets += rx_packets;
11547
s->rx_bytes += rx_bytes;
11548
s->rx_dropped += rx_drops;
11549
s->tx_packets += tx_packets;
11550
s->tx_bytes += tx_bytes;
11551
s->tx_dropped += tx_drops;
11552
}
11553
}
11554
11555
/* ndo_get_stats64 implementation for dtstats-based accounting.
11556
*
11557
* Populate @s from dev->stats and dev->dstats. This is used internally by the
11558
* core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11559
*/
11560
static void dev_get_dstats64(const struct net_device *dev,
11561
struct rtnl_link_stats64 *s)
11562
{
11563
netdev_stats_to_stats64(s, &dev->stats);
11564
dev_fetch_dstats(s, dev->dstats);
11565
}
11566
11567
/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11568
* all the same fields in the same order as net_device_stats, with only
11569
* the type differing, but rtnl_link_stats64 may have additional fields
11570
* at the end for newer counters.
11571
*/
11572
void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11573
const struct net_device_stats *netdev_stats)
11574
{
11575
size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11576
const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11577
u64 *dst = (u64 *)stats64;
11578
11579
BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11580
for (i = 0; i < n; i++)
11581
dst[i] = (unsigned long)atomic_long_read(&src[i]);
11582
/* zero out counters that only exist in rtnl_link_stats64 */
11583
memset((char *)stats64 + n * sizeof(u64), 0,
11584
sizeof(*stats64) - n * sizeof(u64));
11585
}
11586
EXPORT_SYMBOL(netdev_stats_to_stats64);
11587
11588
static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11589
struct net_device *dev)
11590
{
11591
struct net_device_core_stats __percpu *p;
11592
11593
p = alloc_percpu_gfp(struct net_device_core_stats,
11594
GFP_ATOMIC | __GFP_NOWARN);
11595
11596
if (p && cmpxchg(&dev->core_stats, NULL, p))
11597
free_percpu(p);
11598
11599
/* This READ_ONCE() pairs with the cmpxchg() above */
11600
return READ_ONCE(dev->core_stats);
11601
}
11602
11603
noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11604
{
11605
/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11606
struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11607
unsigned long __percpu *field;
11608
11609
if (unlikely(!p)) {
11610
p = netdev_core_stats_alloc(dev);
11611
if (!p)
11612
return;
11613
}
11614
11615
field = (unsigned long __percpu *)((void __percpu *)p + offset);
11616
this_cpu_inc(*field);
11617
}
11618
EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11619
11620
/**
11621
* dev_get_stats - get network device statistics
11622
* @dev: device to get statistics from
11623
* @storage: place to store stats
11624
*
11625
* Get network statistics from device. Return @storage.
11626
* The device driver may provide its own method by setting
11627
* dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11628
* otherwise the internal statistics structure is used.
11629
*/
11630
struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11631
struct rtnl_link_stats64 *storage)
11632
{
11633
const struct net_device_ops *ops = dev->netdev_ops;
11634
const struct net_device_core_stats __percpu *p;
11635
11636
/*
11637
* IPv{4,6} and udp tunnels share common stat helpers and use
11638
* different stat type (NETDEV_PCPU_STAT_TSTATS vs
11639
* NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11640
*/
11641
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11642
offsetof(struct pcpu_dstats, rx_bytes));
11643
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11644
offsetof(struct pcpu_dstats, rx_packets));
11645
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11646
offsetof(struct pcpu_dstats, tx_bytes));
11647
BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11648
offsetof(struct pcpu_dstats, tx_packets));
11649
11650
if (ops->ndo_get_stats64) {
11651
memset(storage, 0, sizeof(*storage));
11652
ops->ndo_get_stats64(dev, storage);
11653
} else if (ops->ndo_get_stats) {
11654
netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11655
} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11656
dev_get_tstats64(dev, storage);
11657
} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11658
dev_get_dstats64(dev, storage);
11659
} else {
11660
netdev_stats_to_stats64(storage, &dev->stats);
11661
}
11662
11663
/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11664
p = READ_ONCE(dev->core_stats);
11665
if (p) {
11666
const struct net_device_core_stats *core_stats;
11667
int i;
11668
11669
for_each_possible_cpu(i) {
11670
core_stats = per_cpu_ptr(p, i);
11671
storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11672
storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11673
storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11674
storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11675
}
11676
}
11677
return storage;
11678
}
11679
EXPORT_SYMBOL(dev_get_stats);
11680
11681
/**
11682
* dev_fetch_sw_netstats - get per-cpu network device statistics
11683
* @s: place to store stats
11684
* @netstats: per-cpu network stats to read from
11685
*
11686
* Read per-cpu network statistics and populate the related fields in @s.
11687
*/
11688
void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11689
const struct pcpu_sw_netstats __percpu *netstats)
11690
{
11691
int cpu;
11692
11693
for_each_possible_cpu(cpu) {
11694
u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11695
const struct pcpu_sw_netstats *stats;
11696
unsigned int start;
11697
11698
stats = per_cpu_ptr(netstats, cpu);
11699
do {
11700
start = u64_stats_fetch_begin(&stats->syncp);
11701
rx_packets = u64_stats_read(&stats->rx_packets);
11702
rx_bytes = u64_stats_read(&stats->rx_bytes);
11703
tx_packets = u64_stats_read(&stats->tx_packets);
11704
tx_bytes = u64_stats_read(&stats->tx_bytes);
11705
} while (u64_stats_fetch_retry(&stats->syncp, start));
11706
11707
s->rx_packets += rx_packets;
11708
s->rx_bytes += rx_bytes;
11709
s->tx_packets += tx_packets;
11710
s->tx_bytes += tx_bytes;
11711
}
11712
}
11713
EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11714
11715
/**
11716
* dev_get_tstats64 - ndo_get_stats64 implementation
11717
* @dev: device to get statistics from
11718
* @s: place to store stats
11719
*
11720
* Populate @s from dev->stats and dev->tstats. Can be used as
11721
* ndo_get_stats64() callback.
11722
*/
11723
void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11724
{
11725
netdev_stats_to_stats64(s, &dev->stats);
11726
dev_fetch_sw_netstats(s, dev->tstats);
11727
}
11728
EXPORT_SYMBOL_GPL(dev_get_tstats64);
11729
11730
struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11731
{
11732
struct netdev_queue *queue = dev_ingress_queue(dev);
11733
11734
#ifdef CONFIG_NET_CLS_ACT
11735
if (queue)
11736
return queue;
11737
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11738
if (!queue)
11739
return NULL;
11740
netdev_init_one_queue(dev, queue, NULL);
11741
RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11742
RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11743
rcu_assign_pointer(dev->ingress_queue, queue);
11744
#endif
11745
return queue;
11746
}
11747
11748
static const struct ethtool_ops default_ethtool_ops;
11749
11750
void netdev_set_default_ethtool_ops(struct net_device *dev,
11751
const struct ethtool_ops *ops)
11752
{
11753
if (dev->ethtool_ops == &default_ethtool_ops)
11754
dev->ethtool_ops = ops;
11755
}
11756
EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11757
11758
/**
11759
* netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11760
* @dev: netdev to enable the IRQ coalescing on
11761
*
11762
* Sets a conservative default for SW IRQ coalescing. Users can use
11763
* sysfs attributes to override the default values.
11764
*/
11765
void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11766
{
11767
WARN_ON(dev->reg_state == NETREG_REGISTERED);
11768
11769
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11770
netdev_set_gro_flush_timeout(dev, 20000);
11771
netdev_set_defer_hard_irqs(dev, 1);
11772
}
11773
}
11774
EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11775
11776
/**
11777
* alloc_netdev_mqs - allocate network device
11778
* @sizeof_priv: size of private data to allocate space for
11779
* @name: device name format string
11780
* @name_assign_type: origin of device name
11781
* @setup: callback to initialize device
11782
* @txqs: the number of TX subqueues to allocate
11783
* @rxqs: the number of RX subqueues to allocate
11784
*
11785
* Allocates a struct net_device with private data area for driver use
11786
* and performs basic initialization. Also allocates subqueue structs
11787
* for each queue on the device.
11788
*/
11789
struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11790
unsigned char name_assign_type,
11791
void (*setup)(struct net_device *),
11792
unsigned int txqs, unsigned int rxqs)
11793
{
11794
struct net_device *dev;
11795
size_t napi_config_sz;
11796
unsigned int maxqs;
11797
11798
BUG_ON(strlen(name) >= sizeof(dev->name));
11799
11800
if (txqs < 1) {
11801
pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11802
return NULL;
11803
}
11804
11805
if (rxqs < 1) {
11806
pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11807
return NULL;
11808
}
11809
11810
maxqs = max(txqs, rxqs);
11811
11812
dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11813
GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11814
if (!dev)
11815
return NULL;
11816
11817
dev->priv_len = sizeof_priv;
11818
11819
ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11820
#ifdef CONFIG_PCPU_DEV_REFCNT
11821
dev->pcpu_refcnt = alloc_percpu(int);
11822
if (!dev->pcpu_refcnt)
11823
goto free_dev;
11824
__dev_hold(dev);
11825
#else
11826
refcount_set(&dev->dev_refcnt, 1);
11827
#endif
11828
11829
if (dev_addr_init(dev))
11830
goto free_pcpu;
11831
11832
dev_mc_init(dev);
11833
dev_uc_init(dev);
11834
11835
dev_net_set(dev, &init_net);
11836
11837
dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11838
dev->xdp_zc_max_segs = 1;
11839
dev->gso_max_segs = GSO_MAX_SEGS;
11840
dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11841
dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11842
dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11843
dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11844
dev->tso_max_segs = TSO_MAX_SEGS;
11845
dev->upper_level = 1;
11846
dev->lower_level = 1;
11847
#ifdef CONFIG_LOCKDEP
11848
dev->nested_level = 0;
11849
INIT_LIST_HEAD(&dev->unlink_list);
11850
#endif
11851
11852
INIT_LIST_HEAD(&dev->napi_list);
11853
INIT_LIST_HEAD(&dev->unreg_list);
11854
INIT_LIST_HEAD(&dev->close_list);
11855
INIT_LIST_HEAD(&dev->link_watch_list);
11856
INIT_LIST_HEAD(&dev->adj_list.upper);
11857
INIT_LIST_HEAD(&dev->adj_list.lower);
11858
INIT_LIST_HEAD(&dev->ptype_all);
11859
INIT_LIST_HEAD(&dev->ptype_specific);
11860
INIT_LIST_HEAD(&dev->net_notifier_list);
11861
#ifdef CONFIG_NET_SCHED
11862
hash_init(dev->qdisc_hash);
11863
#endif
11864
11865
mutex_init(&dev->lock);
11866
11867
dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11868
setup(dev);
11869
11870
if (!dev->tx_queue_len) {
11871
dev->priv_flags |= IFF_NO_QUEUE;
11872
dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11873
}
11874
11875
dev->num_tx_queues = txqs;
11876
dev->real_num_tx_queues = txqs;
11877
if (netif_alloc_netdev_queues(dev))
11878
goto free_all;
11879
11880
dev->num_rx_queues = rxqs;
11881
dev->real_num_rx_queues = rxqs;
11882
if (netif_alloc_rx_queues(dev))
11883
goto free_all;
11884
dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11885
if (!dev->ethtool)
11886
goto free_all;
11887
11888
dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11889
if (!dev->cfg)
11890
goto free_all;
11891
dev->cfg_pending = dev->cfg;
11892
11893
dev->num_napi_configs = maxqs;
11894
napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11895
dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11896
if (!dev->napi_config)
11897
goto free_all;
11898
11899
strscpy(dev->name, name);
11900
dev->name_assign_type = name_assign_type;
11901
dev->group = INIT_NETDEV_GROUP;
11902
if (!dev->ethtool_ops)
11903
dev->ethtool_ops = &default_ethtool_ops;
11904
11905
nf_hook_netdev_init(dev);
11906
11907
return dev;
11908
11909
free_all:
11910
free_netdev(dev);
11911
return NULL;
11912
11913
free_pcpu:
11914
#ifdef CONFIG_PCPU_DEV_REFCNT
11915
free_percpu(dev->pcpu_refcnt);
11916
free_dev:
11917
#endif
11918
kvfree(dev);
11919
return NULL;
11920
}
11921
EXPORT_SYMBOL(alloc_netdev_mqs);
11922
11923
static void netdev_napi_exit(struct net_device *dev)
11924
{
11925
if (!list_empty(&dev->napi_list)) {
11926
struct napi_struct *p, *n;
11927
11928
netdev_lock(dev);
11929
list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11930
__netif_napi_del_locked(p);
11931
netdev_unlock(dev);
11932
11933
synchronize_net();
11934
}
11935
11936
kvfree(dev->napi_config);
11937
}
11938
11939
/**
11940
* free_netdev - free network device
11941
* @dev: device
11942
*
11943
* This function does the last stage of destroying an allocated device
11944
* interface. The reference to the device object is released. If this
11945
* is the last reference then it will be freed.Must be called in process
11946
* context.
11947
*/
11948
void free_netdev(struct net_device *dev)
11949
{
11950
might_sleep();
11951
11952
/* When called immediately after register_netdevice() failed the unwind
11953
* handling may still be dismantling the device. Handle that case by
11954
* deferring the free.
11955
*/
11956
if (dev->reg_state == NETREG_UNREGISTERING) {
11957
ASSERT_RTNL();
11958
dev->needs_free_netdev = true;
11959
return;
11960
}
11961
11962
WARN_ON(dev->cfg != dev->cfg_pending);
11963
kfree(dev->cfg);
11964
kfree(dev->ethtool);
11965
netif_free_tx_queues(dev);
11966
netif_free_rx_queues(dev);
11967
11968
kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11969
11970
/* Flush device addresses */
11971
dev_addr_flush(dev);
11972
11973
netdev_napi_exit(dev);
11974
11975
netif_del_cpu_rmap(dev);
11976
11977
ref_tracker_dir_exit(&dev->refcnt_tracker);
11978
#ifdef CONFIG_PCPU_DEV_REFCNT
11979
free_percpu(dev->pcpu_refcnt);
11980
dev->pcpu_refcnt = NULL;
11981
#endif
11982
free_percpu(dev->core_stats);
11983
dev->core_stats = NULL;
11984
free_percpu(dev->xdp_bulkq);
11985
dev->xdp_bulkq = NULL;
11986
11987
netdev_free_phy_link_topology(dev);
11988
11989
mutex_destroy(&dev->lock);
11990
11991
/* Compatibility with error handling in drivers */
11992
if (dev->reg_state == NETREG_UNINITIALIZED ||
11993
dev->reg_state == NETREG_DUMMY) {
11994
kvfree(dev);
11995
return;
11996
}
11997
11998
BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11999
WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12000
12001
/* will free via device release */
12002
put_device(&dev->dev);
12003
}
12004
EXPORT_SYMBOL(free_netdev);
12005
12006
/**
12007
* alloc_netdev_dummy - Allocate and initialize a dummy net device.
12008
* @sizeof_priv: size of private data to allocate space for
12009
*
12010
* Return: the allocated net_device on success, NULL otherwise
12011
*/
12012
struct net_device *alloc_netdev_dummy(int sizeof_priv)
12013
{
12014
return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12015
init_dummy_netdev);
12016
}
12017
EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12018
12019
/**
12020
* synchronize_net - Synchronize with packet receive processing
12021
*
12022
* Wait for packets currently being received to be done.
12023
* Does not block later packets from starting.
12024
*/
12025
void synchronize_net(void)
12026
{
12027
might_sleep();
12028
if (from_cleanup_net() || rtnl_is_locked())
12029
synchronize_rcu_expedited();
12030
else
12031
synchronize_rcu();
12032
}
12033
EXPORT_SYMBOL(synchronize_net);
12034
12035
static void netdev_rss_contexts_free(struct net_device *dev)
12036
{
12037
struct ethtool_rxfh_context *ctx;
12038
unsigned long context;
12039
12040
mutex_lock(&dev->ethtool->rss_lock);
12041
xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12042
xa_erase(&dev->ethtool->rss_ctx, context);
12043
dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12044
kfree(ctx);
12045
}
12046
xa_destroy(&dev->ethtool->rss_ctx);
12047
mutex_unlock(&dev->ethtool->rss_lock);
12048
}
12049
12050
/**
12051
* unregister_netdevice_queue - remove device from the kernel
12052
* @dev: device
12053
* @head: list
12054
*
12055
* This function shuts down a device interface and removes it
12056
* from the kernel tables.
12057
* If head not NULL, device is queued to be unregistered later.
12058
*
12059
* Callers must hold the rtnl semaphore. You may want
12060
* unregister_netdev() instead of this.
12061
*/
12062
12063
void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12064
{
12065
ASSERT_RTNL();
12066
12067
if (head) {
12068
list_move_tail(&dev->unreg_list, head);
12069
} else {
12070
LIST_HEAD(single);
12071
12072
list_add(&dev->unreg_list, &single);
12073
unregister_netdevice_many(&single);
12074
}
12075
}
12076
EXPORT_SYMBOL(unregister_netdevice_queue);
12077
12078
static void dev_memory_provider_uninstall(struct net_device *dev)
12079
{
12080
unsigned int i;
12081
12082
for (i = 0; i < dev->real_num_rx_queues; i++) {
12083
struct netdev_rx_queue *rxq = &dev->_rx[i];
12084
struct pp_memory_provider_params *p = &rxq->mp_params;
12085
12086
if (p->mp_ops && p->mp_ops->uninstall)
12087
p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12088
}
12089
}
12090
12091
void unregister_netdevice_many_notify(struct list_head *head,
12092
u32 portid, const struct nlmsghdr *nlh)
12093
{
12094
struct net_device *dev, *tmp;
12095
LIST_HEAD(close_head);
12096
int cnt = 0;
12097
12098
BUG_ON(dev_boot_phase);
12099
ASSERT_RTNL();
12100
12101
if (list_empty(head))
12102
return;
12103
12104
list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12105
/* Some devices call without registering
12106
* for initialization unwind. Remove those
12107
* devices and proceed with the remaining.
12108
*/
12109
if (dev->reg_state == NETREG_UNINITIALIZED) {
12110
pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12111
dev->name, dev);
12112
12113
WARN_ON(1);
12114
list_del(&dev->unreg_list);
12115
continue;
12116
}
12117
dev->dismantle = true;
12118
BUG_ON(dev->reg_state != NETREG_REGISTERED);
12119
}
12120
12121
/* If device is running, close it first. Start with ops locked... */
12122
list_for_each_entry(dev, head, unreg_list) {
12123
if (netdev_need_ops_lock(dev)) {
12124
list_add_tail(&dev->close_list, &close_head);
12125
netdev_lock(dev);
12126
}
12127
}
12128
netif_close_many(&close_head, true);
12129
/* ... now unlock them and go over the rest. */
12130
list_for_each_entry(dev, head, unreg_list) {
12131
if (netdev_need_ops_lock(dev))
12132
netdev_unlock(dev);
12133
else
12134
list_add_tail(&dev->close_list, &close_head);
12135
}
12136
netif_close_many(&close_head, true);
12137
12138
list_for_each_entry(dev, head, unreg_list) {
12139
/* And unlink it from device chain. */
12140
unlist_netdevice(dev);
12141
netdev_lock(dev);
12142
WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12143
netdev_unlock(dev);
12144
}
12145
flush_all_backlogs();
12146
12147
synchronize_net();
12148
12149
list_for_each_entry(dev, head, unreg_list) {
12150
struct sk_buff *skb = NULL;
12151
12152
/* Shutdown queueing discipline. */
12153
netdev_lock_ops(dev);
12154
dev_shutdown(dev);
12155
dev_tcx_uninstall(dev);
12156
dev_xdp_uninstall(dev);
12157
dev_memory_provider_uninstall(dev);
12158
netdev_unlock_ops(dev);
12159
bpf_dev_bound_netdev_unregister(dev);
12160
12161
netdev_offload_xstats_disable_all(dev);
12162
12163
/* Notify protocols, that we are about to destroy
12164
* this device. They should clean all the things.
12165
*/
12166
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12167
12168
if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12169
skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12170
GFP_KERNEL, NULL, 0,
12171
portid, nlh);
12172
12173
/*
12174
* Flush the unicast and multicast chains
12175
*/
12176
dev_uc_flush(dev);
12177
dev_mc_flush(dev);
12178
12179
netdev_name_node_alt_flush(dev);
12180
netdev_name_node_free(dev->name_node);
12181
12182
netdev_rss_contexts_free(dev);
12183
12184
call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12185
12186
if (dev->netdev_ops->ndo_uninit)
12187
dev->netdev_ops->ndo_uninit(dev);
12188
12189
mutex_destroy(&dev->ethtool->rss_lock);
12190
12191
net_shaper_flush_netdev(dev);
12192
12193
if (skb)
12194
rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12195
12196
/* Notifier chain MUST detach us all upper devices. */
12197
WARN_ON(netdev_has_any_upper_dev(dev));
12198
WARN_ON(netdev_has_any_lower_dev(dev));
12199
12200
/* Remove entries from kobject tree */
12201
netdev_unregister_kobject(dev);
12202
#ifdef CONFIG_XPS
12203
/* Remove XPS queueing entries */
12204
netif_reset_xps_queues_gt(dev, 0);
12205
#endif
12206
}
12207
12208
synchronize_net();
12209
12210
list_for_each_entry(dev, head, unreg_list) {
12211
netdev_put(dev, &dev->dev_registered_tracker);
12212
net_set_todo(dev);
12213
cnt++;
12214
}
12215
atomic_add(cnt, &dev_unreg_count);
12216
12217
list_del(head);
12218
}
12219
12220
/**
12221
* unregister_netdevice_many - unregister many devices
12222
* @head: list of devices
12223
*
12224
* Note: As most callers use a stack allocated list_head,
12225
* we force a list_del() to make sure stack won't be corrupted later.
12226
*/
12227
void unregister_netdevice_many(struct list_head *head)
12228
{
12229
unregister_netdevice_many_notify(head, 0, NULL);
12230
}
12231
EXPORT_SYMBOL(unregister_netdevice_many);
12232
12233
/**
12234
* unregister_netdev - remove device from the kernel
12235
* @dev: device
12236
*
12237
* This function shuts down a device interface and removes it
12238
* from the kernel tables.
12239
*
12240
* This is just a wrapper for unregister_netdevice that takes
12241
* the rtnl semaphore. In general you want to use this and not
12242
* unregister_netdevice.
12243
*/
12244
void unregister_netdev(struct net_device *dev)
12245
{
12246
rtnl_net_dev_lock(dev);
12247
unregister_netdevice(dev);
12248
rtnl_net_dev_unlock(dev);
12249
}
12250
EXPORT_SYMBOL(unregister_netdev);
12251
12252
int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12253
const char *pat, int new_ifindex,
12254
struct netlink_ext_ack *extack)
12255
{
12256
struct netdev_name_node *name_node;
12257
struct net *net_old = dev_net(dev);
12258
char new_name[IFNAMSIZ] = {};
12259
int err, new_nsid;
12260
12261
ASSERT_RTNL();
12262
12263
/* Don't allow namespace local devices to be moved. */
12264
err = -EINVAL;
12265
if (dev->netns_immutable) {
12266
NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12267
goto out;
12268
}
12269
12270
/* Ensure the device has been registered */
12271
if (dev->reg_state != NETREG_REGISTERED) {
12272
NL_SET_ERR_MSG(extack, "The interface isn't registered");
12273
goto out;
12274
}
12275
12276
/* Get out if there is nothing todo */
12277
err = 0;
12278
if (net_eq(net_old, net))
12279
goto out;
12280
12281
/* Pick the destination device name, and ensure
12282
* we can use it in the destination network namespace.
12283
*/
12284
err = -EEXIST;
12285
if (netdev_name_in_use(net, dev->name)) {
12286
/* We get here if we can't use the current device name */
12287
if (!pat) {
12288
NL_SET_ERR_MSG(extack,
12289
"An interface with the same name exists in the target netns");
12290
goto out;
12291
}
12292
err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12293
if (err < 0) {
12294
NL_SET_ERR_MSG_FMT(extack,
12295
"Unable to use '%s' for the new interface name in the target netns",
12296
pat);
12297
goto out;
12298
}
12299
}
12300
/* Check that none of the altnames conflicts. */
12301
err = -EEXIST;
12302
netdev_for_each_altname(dev, name_node) {
12303
if (netdev_name_in_use(net, name_node->name)) {
12304
NL_SET_ERR_MSG_FMT(extack,
12305
"An interface with the altname %s exists in the target netns",
12306
name_node->name);
12307
goto out;
12308
}
12309
}
12310
12311
/* Check that new_ifindex isn't used yet. */
12312
if (new_ifindex) {
12313
err = dev_index_reserve(net, new_ifindex);
12314
if (err < 0) {
12315
NL_SET_ERR_MSG_FMT(extack,
12316
"The ifindex %d is not available in the target netns",
12317
new_ifindex);
12318
goto out;
12319
}
12320
} else {
12321
/* If there is an ifindex conflict assign a new one */
12322
err = dev_index_reserve(net, dev->ifindex);
12323
if (err == -EBUSY)
12324
err = dev_index_reserve(net, 0);
12325
if (err < 0) {
12326
NL_SET_ERR_MSG(extack,
12327
"Unable to allocate a new ifindex in the target netns");
12328
goto out;
12329
}
12330
new_ifindex = err;
12331
}
12332
12333
/*
12334
* And now a mini version of register_netdevice unregister_netdevice.
12335
*/
12336
12337
netdev_lock_ops(dev);
12338
/* If device is running close it first. */
12339
netif_close(dev);
12340
/* And unlink it from device chain */
12341
unlist_netdevice(dev);
12342
12343
if (!netdev_need_ops_lock(dev))
12344
netdev_lock(dev);
12345
dev->moving_ns = true;
12346
netdev_unlock(dev);
12347
12348
synchronize_net();
12349
12350
/* Shutdown queueing discipline. */
12351
netdev_lock_ops(dev);
12352
dev_shutdown(dev);
12353
netdev_unlock_ops(dev);
12354
12355
/* Notify protocols, that we are about to destroy
12356
* this device. They should clean all the things.
12357
*
12358
* Note that dev->reg_state stays at NETREG_REGISTERED.
12359
* This is wanted because this way 8021q and macvlan know
12360
* the device is just moving and can keep their slaves up.
12361
*/
12362
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12363
rcu_barrier();
12364
12365
new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12366
12367
rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12368
new_ifindex);
12369
12370
/*
12371
* Flush the unicast and multicast chains
12372
*/
12373
dev_uc_flush(dev);
12374
dev_mc_flush(dev);
12375
12376
/* Send a netdev-removed uevent to the old namespace */
12377
kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12378
netdev_adjacent_del_links(dev);
12379
12380
/* Move per-net netdevice notifiers that are following the netdevice */
12381
move_netdevice_notifiers_dev_net(dev, net);
12382
12383
/* Actually switch the network namespace */
12384
netdev_lock(dev);
12385
dev_net_set(dev, net);
12386
netdev_unlock(dev);
12387
dev->ifindex = new_ifindex;
12388
12389
if (new_name[0]) {
12390
/* Rename the netdev to prepared name */
12391
write_seqlock_bh(&netdev_rename_lock);
12392
strscpy(dev->name, new_name, IFNAMSIZ);
12393
write_sequnlock_bh(&netdev_rename_lock);
12394
}
12395
12396
/* Fixup kobjects */
12397
dev_set_uevent_suppress(&dev->dev, 1);
12398
err = device_rename(&dev->dev, dev->name);
12399
dev_set_uevent_suppress(&dev->dev, 0);
12400
WARN_ON(err);
12401
12402
/* Send a netdev-add uevent to the new namespace */
12403
kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12404
netdev_adjacent_add_links(dev);
12405
12406
/* Adapt owner in case owning user namespace of target network
12407
* namespace is different from the original one.
12408
*/
12409
err = netdev_change_owner(dev, net_old, net);
12410
WARN_ON(err);
12411
12412
netdev_lock(dev);
12413
dev->moving_ns = false;
12414
if (!netdev_need_ops_lock(dev))
12415
netdev_unlock(dev);
12416
12417
/* Add the device back in the hashes */
12418
list_netdevice(dev);
12419
/* Notify protocols, that a new device appeared. */
12420
call_netdevice_notifiers(NETDEV_REGISTER, dev);
12421
netdev_unlock_ops(dev);
12422
12423
/*
12424
* Prevent userspace races by waiting until the network
12425
* device is fully setup before sending notifications.
12426
*/
12427
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12428
12429
synchronize_net();
12430
err = 0;
12431
out:
12432
return err;
12433
}
12434
12435
static int dev_cpu_dead(unsigned int oldcpu)
12436
{
12437
struct sk_buff **list_skb;
12438
struct sk_buff *skb;
12439
unsigned int cpu;
12440
struct softnet_data *sd, *oldsd, *remsd = NULL;
12441
12442
local_irq_disable();
12443
cpu = smp_processor_id();
12444
sd = &per_cpu(softnet_data, cpu);
12445
oldsd = &per_cpu(softnet_data, oldcpu);
12446
12447
/* Find end of our completion_queue. */
12448
list_skb = &sd->completion_queue;
12449
while (*list_skb)
12450
list_skb = &(*list_skb)->next;
12451
/* Append completion queue from offline CPU. */
12452
*list_skb = oldsd->completion_queue;
12453
oldsd->completion_queue = NULL;
12454
12455
/* Append output queue from offline CPU. */
12456
if (oldsd->output_queue) {
12457
*sd->output_queue_tailp = oldsd->output_queue;
12458
sd->output_queue_tailp = oldsd->output_queue_tailp;
12459
oldsd->output_queue = NULL;
12460
oldsd->output_queue_tailp = &oldsd->output_queue;
12461
}
12462
/* Append NAPI poll list from offline CPU, with one exception :
12463
* process_backlog() must be called by cpu owning percpu backlog.
12464
* We properly handle process_queue & input_pkt_queue later.
12465
*/
12466
while (!list_empty(&oldsd->poll_list)) {
12467
struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12468
struct napi_struct,
12469
poll_list);
12470
12471
list_del_init(&napi->poll_list);
12472
if (napi->poll == process_backlog)
12473
napi->state &= NAPIF_STATE_THREADED;
12474
else
12475
____napi_schedule(sd, napi);
12476
}
12477
12478
raise_softirq_irqoff(NET_TX_SOFTIRQ);
12479
local_irq_enable();
12480
12481
if (!use_backlog_threads()) {
12482
#ifdef CONFIG_RPS
12483
remsd = oldsd->rps_ipi_list;
12484
oldsd->rps_ipi_list = NULL;
12485
#endif
12486
/* send out pending IPI's on offline CPU */
12487
net_rps_send_ipi(remsd);
12488
}
12489
12490
/* Process offline CPU's input_pkt_queue */
12491
while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12492
netif_rx(skb);
12493
rps_input_queue_head_incr(oldsd);
12494
}
12495
while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12496
netif_rx(skb);
12497
rps_input_queue_head_incr(oldsd);
12498
}
12499
12500
return 0;
12501
}
12502
12503
/**
12504
* netdev_increment_features - increment feature set by one
12505
* @all: current feature set
12506
* @one: new feature set
12507
* @mask: mask feature set
12508
*
12509
* Computes a new feature set after adding a device with feature set
12510
* @one to the master device with current feature set @all. Will not
12511
* enable anything that is off in @mask. Returns the new feature set.
12512
*/
12513
netdev_features_t netdev_increment_features(netdev_features_t all,
12514
netdev_features_t one, netdev_features_t mask)
12515
{
12516
if (mask & NETIF_F_HW_CSUM)
12517
mask |= NETIF_F_CSUM_MASK;
12518
mask |= NETIF_F_VLAN_CHALLENGED;
12519
12520
all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12521
all &= one | ~NETIF_F_ALL_FOR_ALL;
12522
12523
/* If one device supports hw checksumming, set for all. */
12524
if (all & NETIF_F_HW_CSUM)
12525
all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12526
12527
return all;
12528
}
12529
EXPORT_SYMBOL(netdev_increment_features);
12530
12531
static struct hlist_head * __net_init netdev_create_hash(void)
12532
{
12533
int i;
12534
struct hlist_head *hash;
12535
12536
hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12537
if (hash != NULL)
12538
for (i = 0; i < NETDEV_HASHENTRIES; i++)
12539
INIT_HLIST_HEAD(&hash[i]);
12540
12541
return hash;
12542
}
12543
12544
/* Initialize per network namespace state */
12545
static int __net_init netdev_init(struct net *net)
12546
{
12547
BUILD_BUG_ON(GRO_HASH_BUCKETS >
12548
BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12549
12550
INIT_LIST_HEAD(&net->dev_base_head);
12551
12552
net->dev_name_head = netdev_create_hash();
12553
if (net->dev_name_head == NULL)
12554
goto err_name;
12555
12556
net->dev_index_head = netdev_create_hash();
12557
if (net->dev_index_head == NULL)
12558
goto err_idx;
12559
12560
xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12561
12562
RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12563
12564
return 0;
12565
12566
err_idx:
12567
kfree(net->dev_name_head);
12568
err_name:
12569
return -ENOMEM;
12570
}
12571
12572
/**
12573
* netdev_drivername - network driver for the device
12574
* @dev: network device
12575
*
12576
* Determine network driver for device.
12577
*/
12578
const char *netdev_drivername(const struct net_device *dev)
12579
{
12580
const struct device_driver *driver;
12581
const struct device *parent;
12582
const char *empty = "";
12583
12584
parent = dev->dev.parent;
12585
if (!parent)
12586
return empty;
12587
12588
driver = parent->driver;
12589
if (driver && driver->name)
12590
return driver->name;
12591
return empty;
12592
}
12593
12594
static void __netdev_printk(const char *level, const struct net_device *dev,
12595
struct va_format *vaf)
12596
{
12597
if (dev && dev->dev.parent) {
12598
dev_printk_emit(level[1] - '0',
12599
dev->dev.parent,
12600
"%s %s %s%s: %pV",
12601
dev_driver_string(dev->dev.parent),
12602
dev_name(dev->dev.parent),
12603
netdev_name(dev), netdev_reg_state(dev),
12604
vaf);
12605
} else if (dev) {
12606
printk("%s%s%s: %pV",
12607
level, netdev_name(dev), netdev_reg_state(dev), vaf);
12608
} else {
12609
printk("%s(NULL net_device): %pV", level, vaf);
12610
}
12611
}
12612
12613
void netdev_printk(const char *level, const struct net_device *dev,
12614
const char *format, ...)
12615
{
12616
struct va_format vaf;
12617
va_list args;
12618
12619
va_start(args, format);
12620
12621
vaf.fmt = format;
12622
vaf.va = &args;
12623
12624
__netdev_printk(level, dev, &vaf);
12625
12626
va_end(args);
12627
}
12628
EXPORT_SYMBOL(netdev_printk);
12629
12630
#define define_netdev_printk_level(func, level) \
12631
void func(const struct net_device *dev, const char *fmt, ...) \
12632
{ \
12633
struct va_format vaf; \
12634
va_list args; \
12635
\
12636
va_start(args, fmt); \
12637
\
12638
vaf.fmt = fmt; \
12639
vaf.va = &args; \
12640
\
12641
__netdev_printk(level, dev, &vaf); \
12642
\
12643
va_end(args); \
12644
} \
12645
EXPORT_SYMBOL(func);
12646
12647
define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12648
define_netdev_printk_level(netdev_alert, KERN_ALERT);
12649
define_netdev_printk_level(netdev_crit, KERN_CRIT);
12650
define_netdev_printk_level(netdev_err, KERN_ERR);
12651
define_netdev_printk_level(netdev_warn, KERN_WARNING);
12652
define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12653
define_netdev_printk_level(netdev_info, KERN_INFO);
12654
12655
static void __net_exit netdev_exit(struct net *net)
12656
{
12657
kfree(net->dev_name_head);
12658
kfree(net->dev_index_head);
12659
xa_destroy(&net->dev_by_index);
12660
if (net != &init_net)
12661
WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12662
}
12663
12664
static struct pernet_operations __net_initdata netdev_net_ops = {
12665
.init = netdev_init,
12666
.exit = netdev_exit,
12667
};
12668
12669
static void __net_exit default_device_exit_net(struct net *net)
12670
{
12671
struct netdev_name_node *name_node, *tmp;
12672
struct net_device *dev, *aux;
12673
/*
12674
* Push all migratable network devices back to the
12675
* initial network namespace
12676
*/
12677
ASSERT_RTNL();
12678
for_each_netdev_safe(net, dev, aux) {
12679
int err;
12680
char fb_name[IFNAMSIZ];
12681
12682
/* Ignore unmoveable devices (i.e. loopback) */
12683
if (dev->netns_immutable)
12684
continue;
12685
12686
/* Leave virtual devices for the generic cleanup */
12687
if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12688
continue;
12689
12690
/* Push remaining network devices to init_net */
12691
snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12692
if (netdev_name_in_use(&init_net, fb_name))
12693
snprintf(fb_name, IFNAMSIZ, "dev%%d");
12694
12695
netdev_for_each_altname_safe(dev, name_node, tmp)
12696
if (netdev_name_in_use(&init_net, name_node->name))
12697
__netdev_name_node_alt_destroy(name_node);
12698
12699
err = dev_change_net_namespace(dev, &init_net, fb_name);
12700
if (err) {
12701
pr_emerg("%s: failed to move %s to init_net: %d\n",
12702
__func__, dev->name, err);
12703
BUG();
12704
}
12705
}
12706
}
12707
12708
static void __net_exit default_device_exit_batch(struct list_head *net_list)
12709
{
12710
/* At exit all network devices most be removed from a network
12711
* namespace. Do this in the reverse order of registration.
12712
* Do this across as many network namespaces as possible to
12713
* improve batching efficiency.
12714
*/
12715
struct net_device *dev;
12716
struct net *net;
12717
LIST_HEAD(dev_kill_list);
12718
12719
rtnl_lock();
12720
list_for_each_entry(net, net_list, exit_list) {
12721
default_device_exit_net(net);
12722
cond_resched();
12723
}
12724
12725
list_for_each_entry(net, net_list, exit_list) {
12726
for_each_netdev_reverse(net, dev) {
12727
if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12728
dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12729
else
12730
unregister_netdevice_queue(dev, &dev_kill_list);
12731
}
12732
}
12733
unregister_netdevice_many(&dev_kill_list);
12734
rtnl_unlock();
12735
}
12736
12737
static struct pernet_operations __net_initdata default_device_ops = {
12738
.exit_batch = default_device_exit_batch,
12739
};
12740
12741
static void __init net_dev_struct_check(void)
12742
{
12743
/* TX read-mostly hotpath */
12744
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12745
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12746
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12747
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12748
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12749
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12750
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12751
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12752
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12753
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12754
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12755
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12756
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12757
#ifdef CONFIG_XPS
12758
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12759
#endif
12760
#ifdef CONFIG_NETFILTER_EGRESS
12761
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12762
#endif
12763
#ifdef CONFIG_NET_XGRESS
12764
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12765
#endif
12766
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12767
12768
/* TXRX read-mostly hotpath */
12769
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12770
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12771
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12772
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12773
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12774
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12775
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12776
12777
/* RX read-mostly hotpath */
12778
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12779
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12780
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12781
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12782
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12783
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12784
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12785
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12786
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12787
#ifdef CONFIG_NETPOLL
12788
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12789
#endif
12790
#ifdef CONFIG_NET_XGRESS
12791
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12792
#endif
12793
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12794
}
12795
12796
/*
12797
* Initialize the DEV module. At boot time this walks the device list and
12798
* unhooks any devices that fail to initialise (normally hardware not
12799
* present) and leaves us with a valid list of present and active devices.
12800
*
12801
*/
12802
12803
/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12804
#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12805
12806
static int net_page_pool_create(int cpuid)
12807
{
12808
#if IS_ENABLED(CONFIG_PAGE_POOL)
12809
struct page_pool_params page_pool_params = {
12810
.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12811
.flags = PP_FLAG_SYSTEM_POOL,
12812
.nid = cpu_to_mem(cpuid),
12813
};
12814
struct page_pool *pp_ptr;
12815
int err;
12816
12817
pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12818
if (IS_ERR(pp_ptr))
12819
return -ENOMEM;
12820
12821
err = xdp_reg_page_pool(pp_ptr);
12822
if (err) {
12823
page_pool_destroy(pp_ptr);
12824
return err;
12825
}
12826
12827
per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12828
#endif
12829
return 0;
12830
}
12831
12832
static int backlog_napi_should_run(unsigned int cpu)
12833
{
12834
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12835
struct napi_struct *napi = &sd->backlog;
12836
12837
return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12838
}
12839
12840
static void run_backlog_napi(unsigned int cpu)
12841
{
12842
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12843
12844
napi_threaded_poll_loop(&sd->backlog);
12845
}
12846
12847
static void backlog_napi_setup(unsigned int cpu)
12848
{
12849
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12850
struct napi_struct *napi = &sd->backlog;
12851
12852
napi->thread = this_cpu_read(backlog_napi);
12853
set_bit(NAPI_STATE_THREADED, &napi->state);
12854
}
12855
12856
static struct smp_hotplug_thread backlog_threads = {
12857
.store = &backlog_napi,
12858
.thread_should_run = backlog_napi_should_run,
12859
.thread_fn = run_backlog_napi,
12860
.thread_comm = "backlog_napi/%u",
12861
.setup = backlog_napi_setup,
12862
};
12863
12864
/*
12865
* This is called single threaded during boot, so no need
12866
* to take the rtnl semaphore.
12867
*/
12868
static int __init net_dev_init(void)
12869
{
12870
int i, rc = -ENOMEM;
12871
12872
BUG_ON(!dev_boot_phase);
12873
12874
net_dev_struct_check();
12875
12876
if (dev_proc_init())
12877
goto out;
12878
12879
if (netdev_kobject_init())
12880
goto out;
12881
12882
for (i = 0; i < PTYPE_HASH_SIZE; i++)
12883
INIT_LIST_HEAD(&ptype_base[i]);
12884
12885
if (register_pernet_subsys(&netdev_net_ops))
12886
goto out;
12887
12888
/*
12889
* Initialise the packet receive queues.
12890
*/
12891
12892
flush_backlogs_fallback = flush_backlogs_alloc();
12893
if (!flush_backlogs_fallback)
12894
goto out;
12895
12896
for_each_possible_cpu(i) {
12897
struct softnet_data *sd = &per_cpu(softnet_data, i);
12898
12899
skb_queue_head_init(&sd->input_pkt_queue);
12900
skb_queue_head_init(&sd->process_queue);
12901
#ifdef CONFIG_XFRM_OFFLOAD
12902
skb_queue_head_init(&sd->xfrm_backlog);
12903
#endif
12904
INIT_LIST_HEAD(&sd->poll_list);
12905
sd->output_queue_tailp = &sd->output_queue;
12906
#ifdef CONFIG_RPS
12907
INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12908
sd->cpu = i;
12909
#endif
12910
INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12911
spin_lock_init(&sd->defer_lock);
12912
12913
gro_init(&sd->backlog.gro);
12914
sd->backlog.poll = process_backlog;
12915
sd->backlog.weight = weight_p;
12916
INIT_LIST_HEAD(&sd->backlog.poll_list);
12917
12918
if (net_page_pool_create(i))
12919
goto out;
12920
}
12921
if (use_backlog_threads())
12922
smpboot_register_percpu_thread(&backlog_threads);
12923
12924
dev_boot_phase = 0;
12925
12926
/* The loopback device is special if any other network devices
12927
* is present in a network namespace the loopback device must
12928
* be present. Since we now dynamically allocate and free the
12929
* loopback device ensure this invariant is maintained by
12930
* keeping the loopback device as the first device on the
12931
* list of network devices. Ensuring the loopback devices
12932
* is the first device that appears and the last network device
12933
* that disappears.
12934
*/
12935
if (register_pernet_device(&loopback_net_ops))
12936
goto out;
12937
12938
if (register_pernet_device(&default_device_ops))
12939
goto out;
12940
12941
open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12942
open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12943
12944
rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12945
NULL, dev_cpu_dead);
12946
WARN_ON(rc < 0);
12947
rc = 0;
12948
12949
/* avoid static key IPIs to isolated CPUs */
12950
if (housekeeping_enabled(HK_TYPE_MISC))
12951
net_enable_timestamp();
12952
out:
12953
if (rc < 0) {
12954
for_each_possible_cpu(i) {
12955
struct page_pool *pp_ptr;
12956
12957
pp_ptr = per_cpu(system_page_pool.pool, i);
12958
if (!pp_ptr)
12959
continue;
12960
12961
xdp_unreg_page_pool(pp_ptr);
12962
page_pool_destroy(pp_ptr);
12963
per_cpu(system_page_pool.pool, i) = NULL;
12964
}
12965
}
12966
12967
return rc;
12968
}
12969
12970
subsys_initcall(net_dev_init);
12971
12972