Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/core/net_namespace.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4
#include <linux/workqueue.h>
5
#include <linux/rtnetlink.h>
6
#include <linux/cache.h>
7
#include <linux/slab.h>
8
#include <linux/list.h>
9
#include <linux/delay.h>
10
#include <linux/sched.h>
11
#include <linux/idr.h>
12
#include <linux/rculist.h>
13
#include <linux/nsproxy.h>
14
#include <linux/fs.h>
15
#include <linux/proc_ns.h>
16
#include <linux/file.h>
17
#include <linux/export.h>
18
#include <linux/user_namespace.h>
19
#include <linux/net_namespace.h>
20
#include <linux/sched/task.h>
21
#include <linux/uidgid.h>
22
#include <linux/proc_fs.h>
23
24
#include <net/aligned_data.h>
25
#include <net/sock.h>
26
#include <net/netlink.h>
27
#include <net/net_namespace.h>
28
#include <net/netns/generic.h>
29
30
/*
31
* Our network namespace constructor/destructor lists
32
*/
33
34
static LIST_HEAD(pernet_list);
35
static struct list_head *first_device = &pernet_list;
36
37
LIST_HEAD(net_namespace_list);
38
EXPORT_SYMBOL_GPL(net_namespace_list);
39
40
/* Protects net_namespace_list. Nests iside rtnl_lock() */
41
DECLARE_RWSEM(net_rwsem);
42
EXPORT_SYMBOL_GPL(net_rwsem);
43
44
#ifdef CONFIG_KEYS
45
static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46
#endif
47
48
struct net init_net;
49
EXPORT_SYMBOL(init_net);
50
51
static bool init_net_initialized;
52
/*
53
* pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54
* init_net_initialized and first_device pointer.
55
* This is internal net namespace object. Please, don't use it
56
* outside.
57
*/
58
DECLARE_RWSEM(pernet_ops_rwsem);
59
60
#define MIN_PERNET_OPS_ID \
61
((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
62
63
#define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
64
65
static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
66
67
static struct net_generic *net_alloc_generic(void)
68
{
69
unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
70
unsigned int generic_size;
71
struct net_generic *ng;
72
73
generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
74
75
ng = kzalloc(generic_size, GFP_KERNEL);
76
if (ng)
77
ng->s.len = gen_ptrs;
78
79
return ng;
80
}
81
82
static int net_assign_generic(struct net *net, unsigned int id, void *data)
83
{
84
struct net_generic *ng, *old_ng;
85
86
BUG_ON(id < MIN_PERNET_OPS_ID);
87
88
old_ng = rcu_dereference_protected(net->gen,
89
lockdep_is_held(&pernet_ops_rwsem));
90
if (old_ng->s.len > id) {
91
old_ng->ptr[id] = data;
92
return 0;
93
}
94
95
ng = net_alloc_generic();
96
if (!ng)
97
return -ENOMEM;
98
99
/*
100
* Some synchronisation notes:
101
*
102
* The net_generic explores the net->gen array inside rcu
103
* read section. Besides once set the net->gen->ptr[x]
104
* pointer never changes (see rules in netns/generic.h).
105
*
106
* That said, we simply duplicate this array and schedule
107
* the old copy for kfree after a grace period.
108
*/
109
110
memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
111
(old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
112
ng->ptr[id] = data;
113
114
rcu_assign_pointer(net->gen, ng);
115
kfree_rcu(old_ng, s.rcu);
116
return 0;
117
}
118
119
static int ops_init(const struct pernet_operations *ops, struct net *net)
120
{
121
struct net_generic *ng;
122
int err = -ENOMEM;
123
void *data = NULL;
124
125
if (ops->id) {
126
data = kzalloc(ops->size, GFP_KERNEL);
127
if (!data)
128
goto out;
129
130
err = net_assign_generic(net, *ops->id, data);
131
if (err)
132
goto cleanup;
133
}
134
err = 0;
135
if (ops->init)
136
err = ops->init(net);
137
if (!err)
138
return 0;
139
140
if (ops->id) {
141
ng = rcu_dereference_protected(net->gen,
142
lockdep_is_held(&pernet_ops_rwsem));
143
ng->ptr[*ops->id] = NULL;
144
}
145
146
cleanup:
147
kfree(data);
148
149
out:
150
return err;
151
}
152
153
static void ops_pre_exit_list(const struct pernet_operations *ops,
154
struct list_head *net_exit_list)
155
{
156
struct net *net;
157
158
if (ops->pre_exit) {
159
list_for_each_entry(net, net_exit_list, exit_list)
160
ops->pre_exit(net);
161
}
162
}
163
164
static void ops_exit_rtnl_list(const struct list_head *ops_list,
165
const struct pernet_operations *ops,
166
struct list_head *net_exit_list)
167
{
168
const struct pernet_operations *saved_ops = ops;
169
LIST_HEAD(dev_kill_list);
170
struct net *net;
171
172
rtnl_lock();
173
174
list_for_each_entry(net, net_exit_list, exit_list) {
175
__rtnl_net_lock(net);
176
177
ops = saved_ops;
178
list_for_each_entry_continue_reverse(ops, ops_list, list) {
179
if (ops->exit_rtnl)
180
ops->exit_rtnl(net, &dev_kill_list);
181
}
182
183
__rtnl_net_unlock(net);
184
}
185
186
unregister_netdevice_many(&dev_kill_list);
187
188
rtnl_unlock();
189
}
190
191
static void ops_exit_list(const struct pernet_operations *ops,
192
struct list_head *net_exit_list)
193
{
194
if (ops->exit) {
195
struct net *net;
196
197
list_for_each_entry(net, net_exit_list, exit_list) {
198
ops->exit(net);
199
cond_resched();
200
}
201
}
202
203
if (ops->exit_batch)
204
ops->exit_batch(net_exit_list);
205
}
206
207
static void ops_free_list(const struct pernet_operations *ops,
208
struct list_head *net_exit_list)
209
{
210
struct net *net;
211
212
if (ops->id) {
213
list_for_each_entry(net, net_exit_list, exit_list)
214
kfree(net_generic(net, *ops->id));
215
}
216
}
217
218
static void ops_undo_list(const struct list_head *ops_list,
219
const struct pernet_operations *ops,
220
struct list_head *net_exit_list,
221
bool expedite_rcu)
222
{
223
const struct pernet_operations *saved_ops;
224
bool hold_rtnl = false;
225
226
if (!ops)
227
ops = list_entry(ops_list, typeof(*ops), list);
228
229
saved_ops = ops;
230
231
list_for_each_entry_continue_reverse(ops, ops_list, list) {
232
hold_rtnl |= !!ops->exit_rtnl;
233
ops_pre_exit_list(ops, net_exit_list);
234
}
235
236
/* Another CPU might be rcu-iterating the list, wait for it.
237
* This needs to be before calling the exit() notifiers, so the
238
* rcu_barrier() after ops_undo_list() isn't sufficient alone.
239
* Also the pre_exit() and exit() methods need this barrier.
240
*/
241
if (expedite_rcu)
242
synchronize_rcu_expedited();
243
else
244
synchronize_rcu();
245
246
if (hold_rtnl)
247
ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list);
248
249
ops = saved_ops;
250
list_for_each_entry_continue_reverse(ops, ops_list, list)
251
ops_exit_list(ops, net_exit_list);
252
253
ops = saved_ops;
254
list_for_each_entry_continue_reverse(ops, ops_list, list)
255
ops_free_list(ops, net_exit_list);
256
}
257
258
static void ops_undo_single(struct pernet_operations *ops,
259
struct list_head *net_exit_list)
260
{
261
LIST_HEAD(ops_list);
262
263
list_add(&ops->list, &ops_list);
264
ops_undo_list(&ops_list, NULL, net_exit_list, false);
265
list_del(&ops->list);
266
}
267
268
/* should be called with nsid_lock held */
269
static int alloc_netid(struct net *net, struct net *peer, int reqid)
270
{
271
int min = 0, max = 0;
272
273
if (reqid >= 0) {
274
min = reqid;
275
max = reqid + 1;
276
}
277
278
return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
279
}
280
281
/* This function is used by idr_for_each(). If net is equal to peer, the
282
* function returns the id so that idr_for_each() stops. Because we cannot
283
* returns the id 0 (idr_for_each() will not stop), we return the magic value
284
* NET_ID_ZERO (-1) for it.
285
*/
286
#define NET_ID_ZERO -1
287
static int net_eq_idr(int id, void *net, void *peer)
288
{
289
if (net_eq(net, peer))
290
return id ? : NET_ID_ZERO;
291
return 0;
292
}
293
294
/* Must be called from RCU-critical section or with nsid_lock held */
295
static int __peernet2id(const struct net *net, struct net *peer)
296
{
297
int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
298
299
/* Magic value for id 0. */
300
if (id == NET_ID_ZERO)
301
return 0;
302
if (id > 0)
303
return id;
304
305
return NETNSA_NSID_NOT_ASSIGNED;
306
}
307
308
static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
309
struct nlmsghdr *nlh, gfp_t gfp);
310
/* This function returns the id of a peer netns. If no id is assigned, one will
311
* be allocated and returned.
312
*/
313
int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
314
{
315
int id;
316
317
if (refcount_read(&net->ns.count) == 0)
318
return NETNSA_NSID_NOT_ASSIGNED;
319
320
spin_lock(&net->nsid_lock);
321
id = __peernet2id(net, peer);
322
if (id >= 0) {
323
spin_unlock(&net->nsid_lock);
324
return id;
325
}
326
327
/* When peer is obtained from RCU lists, we may race with
328
* its cleanup. Check whether it's alive, and this guarantees
329
* we never hash a peer back to net->netns_ids, after it has
330
* just been idr_remove()'d from there in cleanup_net().
331
*/
332
if (!maybe_get_net(peer)) {
333
spin_unlock(&net->nsid_lock);
334
return NETNSA_NSID_NOT_ASSIGNED;
335
}
336
337
id = alloc_netid(net, peer, -1);
338
spin_unlock(&net->nsid_lock);
339
340
put_net(peer);
341
if (id < 0)
342
return NETNSA_NSID_NOT_ASSIGNED;
343
344
rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
345
346
return id;
347
}
348
EXPORT_SYMBOL_GPL(peernet2id_alloc);
349
350
/* This function returns, if assigned, the id of a peer netns. */
351
int peernet2id(const struct net *net, struct net *peer)
352
{
353
int id;
354
355
rcu_read_lock();
356
id = __peernet2id(net, peer);
357
rcu_read_unlock();
358
359
return id;
360
}
361
EXPORT_SYMBOL(peernet2id);
362
363
/* This function returns true is the peer netns has an id assigned into the
364
* current netns.
365
*/
366
bool peernet_has_id(const struct net *net, struct net *peer)
367
{
368
return peernet2id(net, peer) >= 0;
369
}
370
371
struct net *get_net_ns_by_id(const struct net *net, int id)
372
{
373
struct net *peer;
374
375
if (id < 0)
376
return NULL;
377
378
rcu_read_lock();
379
peer = idr_find(&net->netns_ids, id);
380
if (peer)
381
peer = maybe_get_net(peer);
382
rcu_read_unlock();
383
384
return peer;
385
}
386
EXPORT_SYMBOL_GPL(get_net_ns_by_id);
387
388
static __net_init void preinit_net_sysctl(struct net *net)
389
{
390
net->core.sysctl_somaxconn = SOMAXCONN;
391
/* Limits per socket sk_omem_alloc usage.
392
* TCP zerocopy regular usage needs 128 KB.
393
*/
394
net->core.sysctl_optmem_max = 128 * 1024;
395
net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
396
net->core.sysctl_tstamp_allow_data = 1;
397
}
398
399
/* init code that must occur even if setup_net() is not called. */
400
static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns)
401
{
402
refcount_set(&net->passive, 1);
403
refcount_set(&net->ns.count, 1);
404
ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt");
405
ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt");
406
407
get_random_bytes(&net->hash_mix, sizeof(u32));
408
net->dev_base_seq = 1;
409
net->user_ns = user_ns;
410
411
idr_init(&net->netns_ids);
412
spin_lock_init(&net->nsid_lock);
413
mutex_init(&net->ipv4.ra_mutex);
414
415
#ifdef CONFIG_DEBUG_NET_SMALL_RTNL
416
mutex_init(&net->rtnl_mutex);
417
lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
418
#endif
419
420
INIT_LIST_HEAD(&net->ptype_all);
421
INIT_LIST_HEAD(&net->ptype_specific);
422
preinit_net_sysctl(net);
423
}
424
425
/*
426
* setup_net runs the initializers for the network namespace object.
427
*/
428
static __net_init int setup_net(struct net *net)
429
{
430
/* Must be called with pernet_ops_rwsem held */
431
const struct pernet_operations *ops;
432
LIST_HEAD(net_exit_list);
433
int error = 0;
434
435
net->net_cookie = atomic64_inc_return(&net_aligned_data.net_cookie);
436
437
list_for_each_entry(ops, &pernet_list, list) {
438
error = ops_init(ops, net);
439
if (error < 0)
440
goto out_undo;
441
}
442
down_write(&net_rwsem);
443
list_add_tail_rcu(&net->list, &net_namespace_list);
444
up_write(&net_rwsem);
445
out:
446
return error;
447
448
out_undo:
449
/* Walk through the list backwards calling the exit functions
450
* for the pernet modules whose init functions did not fail.
451
*/
452
list_add(&net->exit_list, &net_exit_list);
453
ops_undo_list(&pernet_list, ops, &net_exit_list, false);
454
rcu_barrier();
455
goto out;
456
}
457
458
#ifdef CONFIG_NET_NS
459
static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
460
{
461
return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
462
}
463
464
static void dec_net_namespaces(struct ucounts *ucounts)
465
{
466
dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
467
}
468
469
static struct kmem_cache *net_cachep __ro_after_init;
470
static struct workqueue_struct *netns_wq;
471
472
static struct net *net_alloc(void)
473
{
474
struct net *net = NULL;
475
struct net_generic *ng;
476
477
ng = net_alloc_generic();
478
if (!ng)
479
goto out;
480
481
net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
482
if (!net)
483
goto out_free;
484
485
#ifdef CONFIG_KEYS
486
net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
487
if (!net->key_domain)
488
goto out_free_2;
489
refcount_set(&net->key_domain->usage, 1);
490
#endif
491
492
rcu_assign_pointer(net->gen, ng);
493
out:
494
return net;
495
496
#ifdef CONFIG_KEYS
497
out_free_2:
498
kmem_cache_free(net_cachep, net);
499
net = NULL;
500
#endif
501
out_free:
502
kfree(ng);
503
goto out;
504
}
505
506
static LLIST_HEAD(defer_free_list);
507
508
static void net_complete_free(void)
509
{
510
struct llist_node *kill_list;
511
struct net *net, *next;
512
513
/* Get the list of namespaces to free from last round. */
514
kill_list = llist_del_all(&defer_free_list);
515
516
llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
517
kmem_cache_free(net_cachep, net);
518
519
}
520
521
void net_passive_dec(struct net *net)
522
{
523
if (refcount_dec_and_test(&net->passive)) {
524
kfree(rcu_access_pointer(net->gen));
525
526
/* There should not be any trackers left there. */
527
ref_tracker_dir_exit(&net->notrefcnt_tracker);
528
529
/* Wait for an extra rcu_barrier() before final free. */
530
llist_add(&net->defer_free_list, &defer_free_list);
531
}
532
}
533
534
void net_drop_ns(void *p)
535
{
536
struct net *net = (struct net *)p;
537
538
if (net)
539
net_passive_dec(net);
540
}
541
542
struct net *copy_net_ns(unsigned long flags,
543
struct user_namespace *user_ns, struct net *old_net)
544
{
545
struct ucounts *ucounts;
546
struct net *net;
547
int rv;
548
549
if (!(flags & CLONE_NEWNET))
550
return get_net(old_net);
551
552
ucounts = inc_net_namespaces(user_ns);
553
if (!ucounts)
554
return ERR_PTR(-ENOSPC);
555
556
net = net_alloc();
557
if (!net) {
558
rv = -ENOMEM;
559
goto dec_ucounts;
560
}
561
562
preinit_net(net, user_ns);
563
net->ucounts = ucounts;
564
get_user_ns(user_ns);
565
566
rv = down_read_killable(&pernet_ops_rwsem);
567
if (rv < 0)
568
goto put_userns;
569
570
rv = setup_net(net);
571
572
up_read(&pernet_ops_rwsem);
573
574
if (rv < 0) {
575
put_userns:
576
#ifdef CONFIG_KEYS
577
key_remove_domain(net->key_domain);
578
#endif
579
put_user_ns(user_ns);
580
net_passive_dec(net);
581
dec_ucounts:
582
dec_net_namespaces(ucounts);
583
return ERR_PTR(rv);
584
}
585
return net;
586
}
587
588
/**
589
* net_ns_get_ownership - get sysfs ownership data for @net
590
* @net: network namespace in question (can be NULL)
591
* @uid: kernel user ID for sysfs objects
592
* @gid: kernel group ID for sysfs objects
593
*
594
* Returns the uid/gid pair of root in the user namespace associated with the
595
* given network namespace.
596
*/
597
void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
598
{
599
if (net) {
600
kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
601
kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
602
603
if (uid_valid(ns_root_uid))
604
*uid = ns_root_uid;
605
606
if (gid_valid(ns_root_gid))
607
*gid = ns_root_gid;
608
} else {
609
*uid = GLOBAL_ROOT_UID;
610
*gid = GLOBAL_ROOT_GID;
611
}
612
}
613
EXPORT_SYMBOL_GPL(net_ns_get_ownership);
614
615
static void unhash_nsid(struct net *net, struct net *last)
616
{
617
struct net *tmp;
618
/* This function is only called from cleanup_net() work,
619
* and this work is the only process, that may delete
620
* a net from net_namespace_list. So, when the below
621
* is executing, the list may only grow. Thus, we do not
622
* use for_each_net_rcu() or net_rwsem.
623
*/
624
for_each_net(tmp) {
625
int id;
626
627
spin_lock(&tmp->nsid_lock);
628
id = __peernet2id(tmp, net);
629
if (id >= 0)
630
idr_remove(&tmp->netns_ids, id);
631
spin_unlock(&tmp->nsid_lock);
632
if (id >= 0)
633
rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
634
GFP_KERNEL);
635
if (tmp == last)
636
break;
637
}
638
spin_lock(&net->nsid_lock);
639
idr_destroy(&net->netns_ids);
640
spin_unlock(&net->nsid_lock);
641
}
642
643
static LLIST_HEAD(cleanup_list);
644
645
struct task_struct *cleanup_net_task;
646
647
static void cleanup_net(struct work_struct *work)
648
{
649
struct llist_node *net_kill_list;
650
struct net *net, *tmp, *last;
651
LIST_HEAD(net_exit_list);
652
653
WRITE_ONCE(cleanup_net_task, current);
654
655
/* Atomically snapshot the list of namespaces to cleanup */
656
net_kill_list = llist_del_all(&cleanup_list);
657
658
down_read(&pernet_ops_rwsem);
659
660
/* Don't let anyone else find us. */
661
down_write(&net_rwsem);
662
llist_for_each_entry(net, net_kill_list, cleanup_list)
663
list_del_rcu(&net->list);
664
/* Cache last net. After we unlock rtnl, no one new net
665
* added to net_namespace_list can assign nsid pointer
666
* to a net from net_kill_list (see peernet2id_alloc()).
667
* So, we skip them in unhash_nsid().
668
*
669
* Note, that unhash_nsid() does not delete nsid links
670
* between net_kill_list's nets, as they've already
671
* deleted from net_namespace_list. But, this would be
672
* useless anyway, as netns_ids are destroyed there.
673
*/
674
last = list_last_entry(&net_namespace_list, struct net, list);
675
up_write(&net_rwsem);
676
677
llist_for_each_entry(net, net_kill_list, cleanup_list) {
678
unhash_nsid(net, last);
679
list_add_tail(&net->exit_list, &net_exit_list);
680
}
681
682
ops_undo_list(&pernet_list, NULL, &net_exit_list, true);
683
684
up_read(&pernet_ops_rwsem);
685
686
/* Ensure there are no outstanding rcu callbacks using this
687
* network namespace.
688
*/
689
rcu_barrier();
690
691
net_complete_free();
692
693
/* Finally it is safe to free my network namespace structure */
694
list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
695
list_del_init(&net->exit_list);
696
dec_net_namespaces(net->ucounts);
697
#ifdef CONFIG_KEYS
698
key_remove_domain(net->key_domain);
699
#endif
700
put_user_ns(net->user_ns);
701
net_passive_dec(net);
702
}
703
WRITE_ONCE(cleanup_net_task, NULL);
704
}
705
706
/**
707
* net_ns_barrier - wait until concurrent net_cleanup_work is done
708
*
709
* cleanup_net runs from work queue and will first remove namespaces
710
* from the global list, then run net exit functions.
711
*
712
* Call this in module exit path to make sure that all netns
713
* ->exit ops have been invoked before the function is removed.
714
*/
715
void net_ns_barrier(void)
716
{
717
down_write(&pernet_ops_rwsem);
718
up_write(&pernet_ops_rwsem);
719
}
720
EXPORT_SYMBOL(net_ns_barrier);
721
722
static DECLARE_WORK(net_cleanup_work, cleanup_net);
723
724
void __put_net(struct net *net)
725
{
726
ref_tracker_dir_exit(&net->refcnt_tracker);
727
/* Cleanup the network namespace in process context */
728
if (llist_add(&net->cleanup_list, &cleanup_list))
729
queue_work(netns_wq, &net_cleanup_work);
730
}
731
EXPORT_SYMBOL_GPL(__put_net);
732
733
/**
734
* get_net_ns - increment the refcount of the network namespace
735
* @ns: common namespace (net)
736
*
737
* Returns the net's common namespace or ERR_PTR() if ref is zero.
738
*/
739
struct ns_common *get_net_ns(struct ns_common *ns)
740
{
741
struct net *net;
742
743
net = maybe_get_net(container_of(ns, struct net, ns));
744
if (net)
745
return &net->ns;
746
return ERR_PTR(-EINVAL);
747
}
748
EXPORT_SYMBOL_GPL(get_net_ns);
749
750
struct net *get_net_ns_by_fd(int fd)
751
{
752
CLASS(fd, f)(fd);
753
754
if (fd_empty(f))
755
return ERR_PTR(-EBADF);
756
757
if (proc_ns_file(fd_file(f))) {
758
struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
759
if (ns->ops == &netns_operations)
760
return get_net(container_of(ns, struct net, ns));
761
}
762
763
return ERR_PTR(-EINVAL);
764
}
765
EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
766
#endif
767
768
struct net *get_net_ns_by_pid(pid_t pid)
769
{
770
struct task_struct *tsk;
771
struct net *net;
772
773
/* Lookup the network namespace */
774
net = ERR_PTR(-ESRCH);
775
rcu_read_lock();
776
tsk = find_task_by_vpid(pid);
777
if (tsk) {
778
struct nsproxy *nsproxy;
779
task_lock(tsk);
780
nsproxy = tsk->nsproxy;
781
if (nsproxy)
782
net = get_net(nsproxy->net_ns);
783
task_unlock(tsk);
784
}
785
rcu_read_unlock();
786
return net;
787
}
788
EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
789
790
#ifdef CONFIG_NET_NS_REFCNT_TRACKER
791
static void net_ns_net_debugfs(struct net *net)
792
{
793
ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt",
794
net->net_cookie, net->ns.inum);
795
ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt",
796
net->net_cookie, net->ns.inum);
797
}
798
799
static int __init init_net_debugfs(void)
800
{
801
ref_tracker_dir_debugfs(&init_net.refcnt_tracker);
802
ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker);
803
net_ns_net_debugfs(&init_net);
804
return 0;
805
}
806
late_initcall(init_net_debugfs);
807
#else
808
static void net_ns_net_debugfs(struct net *net)
809
{
810
}
811
#endif
812
813
static __net_init int net_ns_net_init(struct net *net)
814
{
815
#ifdef CONFIG_NET_NS
816
net->ns.ops = &netns_operations;
817
#endif
818
net->ns.inum = PROC_NET_INIT_INO;
819
if (net != &init_net) {
820
int ret = ns_alloc_inum(&net->ns);
821
if (ret)
822
return ret;
823
}
824
net_ns_net_debugfs(net);
825
return 0;
826
}
827
828
static __net_exit void net_ns_net_exit(struct net *net)
829
{
830
/*
831
* Initial network namespace doesn't exit so we don't need any
832
* special checks here.
833
*/
834
ns_free_inum(&net->ns);
835
}
836
837
static struct pernet_operations __net_initdata net_ns_ops = {
838
.init = net_ns_net_init,
839
.exit = net_ns_net_exit,
840
};
841
842
static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
843
[NETNSA_NONE] = { .type = NLA_UNSPEC },
844
[NETNSA_NSID] = { .type = NLA_S32 },
845
[NETNSA_PID] = { .type = NLA_U32 },
846
[NETNSA_FD] = { .type = NLA_U32 },
847
[NETNSA_TARGET_NSID] = { .type = NLA_S32 },
848
};
849
850
static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
851
struct netlink_ext_ack *extack)
852
{
853
struct net *net = sock_net(skb->sk);
854
struct nlattr *tb[NETNSA_MAX + 1];
855
struct nlattr *nla;
856
struct net *peer;
857
int nsid, err;
858
859
err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
860
NETNSA_MAX, rtnl_net_policy, extack);
861
if (err < 0)
862
return err;
863
if (!tb[NETNSA_NSID]) {
864
NL_SET_ERR_MSG(extack, "nsid is missing");
865
return -EINVAL;
866
}
867
nsid = nla_get_s32(tb[NETNSA_NSID]);
868
869
if (tb[NETNSA_PID]) {
870
peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
871
nla = tb[NETNSA_PID];
872
} else if (tb[NETNSA_FD]) {
873
peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
874
nla = tb[NETNSA_FD];
875
} else {
876
NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
877
return -EINVAL;
878
}
879
if (IS_ERR(peer)) {
880
NL_SET_BAD_ATTR(extack, nla);
881
NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
882
return PTR_ERR(peer);
883
}
884
885
spin_lock(&net->nsid_lock);
886
if (__peernet2id(net, peer) >= 0) {
887
spin_unlock(&net->nsid_lock);
888
err = -EEXIST;
889
NL_SET_BAD_ATTR(extack, nla);
890
NL_SET_ERR_MSG(extack,
891
"Peer netns already has a nsid assigned");
892
goto out;
893
}
894
895
err = alloc_netid(net, peer, nsid);
896
spin_unlock(&net->nsid_lock);
897
if (err >= 0) {
898
rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
899
nlh, GFP_KERNEL);
900
err = 0;
901
} else if (err == -ENOSPC && nsid >= 0) {
902
err = -EEXIST;
903
NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
904
NL_SET_ERR_MSG(extack, "The specified nsid is already used");
905
}
906
out:
907
put_net(peer);
908
return err;
909
}
910
911
static int rtnl_net_get_size(void)
912
{
913
return NLMSG_ALIGN(sizeof(struct rtgenmsg))
914
+ nla_total_size(sizeof(s32)) /* NETNSA_NSID */
915
+ nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
916
;
917
}
918
919
struct net_fill_args {
920
u32 portid;
921
u32 seq;
922
int flags;
923
int cmd;
924
int nsid;
925
bool add_ref;
926
int ref_nsid;
927
};
928
929
static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
930
{
931
struct nlmsghdr *nlh;
932
struct rtgenmsg *rth;
933
934
nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
935
args->flags);
936
if (!nlh)
937
return -EMSGSIZE;
938
939
rth = nlmsg_data(nlh);
940
rth->rtgen_family = AF_UNSPEC;
941
942
if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
943
goto nla_put_failure;
944
945
if (args->add_ref &&
946
nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
947
goto nla_put_failure;
948
949
nlmsg_end(skb, nlh);
950
return 0;
951
952
nla_put_failure:
953
nlmsg_cancel(skb, nlh);
954
return -EMSGSIZE;
955
}
956
957
static int rtnl_net_valid_getid_req(struct sk_buff *skb,
958
const struct nlmsghdr *nlh,
959
struct nlattr **tb,
960
struct netlink_ext_ack *extack)
961
{
962
int i, err;
963
964
if (!netlink_strict_get_check(skb))
965
return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
966
tb, NETNSA_MAX, rtnl_net_policy,
967
extack);
968
969
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
970
NETNSA_MAX, rtnl_net_policy,
971
extack);
972
if (err)
973
return err;
974
975
for (i = 0; i <= NETNSA_MAX; i++) {
976
if (!tb[i])
977
continue;
978
979
switch (i) {
980
case NETNSA_PID:
981
case NETNSA_FD:
982
case NETNSA_NSID:
983
case NETNSA_TARGET_NSID:
984
break;
985
default:
986
NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
987
return -EINVAL;
988
}
989
}
990
991
return 0;
992
}
993
994
static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
995
struct netlink_ext_ack *extack)
996
{
997
struct net *net = sock_net(skb->sk);
998
struct nlattr *tb[NETNSA_MAX + 1];
999
struct net_fill_args fillargs = {
1000
.portid = NETLINK_CB(skb).portid,
1001
.seq = nlh->nlmsg_seq,
1002
.cmd = RTM_NEWNSID,
1003
};
1004
struct net *peer, *target = net;
1005
struct nlattr *nla;
1006
struct sk_buff *msg;
1007
int err;
1008
1009
err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
1010
if (err < 0)
1011
return err;
1012
if (tb[NETNSA_PID]) {
1013
peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
1014
nla = tb[NETNSA_PID];
1015
} else if (tb[NETNSA_FD]) {
1016
peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
1017
nla = tb[NETNSA_FD];
1018
} else if (tb[NETNSA_NSID]) {
1019
peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
1020
if (!peer)
1021
peer = ERR_PTR(-ENOENT);
1022
nla = tb[NETNSA_NSID];
1023
} else {
1024
NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
1025
return -EINVAL;
1026
}
1027
1028
if (IS_ERR(peer)) {
1029
NL_SET_BAD_ATTR(extack, nla);
1030
NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
1031
return PTR_ERR(peer);
1032
}
1033
1034
if (tb[NETNSA_TARGET_NSID]) {
1035
int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
1036
1037
target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
1038
if (IS_ERR(target)) {
1039
NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
1040
NL_SET_ERR_MSG(extack,
1041
"Target netns reference is invalid");
1042
err = PTR_ERR(target);
1043
goto out;
1044
}
1045
fillargs.add_ref = true;
1046
fillargs.ref_nsid = peernet2id(net, peer);
1047
}
1048
1049
msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1050
if (!msg) {
1051
err = -ENOMEM;
1052
goto out;
1053
}
1054
1055
fillargs.nsid = peernet2id(target, peer);
1056
err = rtnl_net_fill(msg, &fillargs);
1057
if (err < 0)
1058
goto err_out;
1059
1060
err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
1061
goto out;
1062
1063
err_out:
1064
nlmsg_free(msg);
1065
out:
1066
if (fillargs.add_ref)
1067
put_net(target);
1068
put_net(peer);
1069
return err;
1070
}
1071
1072
struct rtnl_net_dump_cb {
1073
struct net *tgt_net;
1074
struct net *ref_net;
1075
struct sk_buff *skb;
1076
struct net_fill_args fillargs;
1077
int idx;
1078
int s_idx;
1079
};
1080
1081
/* Runs in RCU-critical section. */
1082
static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1083
{
1084
struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1085
int ret;
1086
1087
if (net_cb->idx < net_cb->s_idx)
1088
goto cont;
1089
1090
net_cb->fillargs.nsid = id;
1091
if (net_cb->fillargs.add_ref)
1092
net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1093
ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1094
if (ret < 0)
1095
return ret;
1096
1097
cont:
1098
net_cb->idx++;
1099
return 0;
1100
}
1101
1102
static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1103
struct rtnl_net_dump_cb *net_cb,
1104
struct netlink_callback *cb)
1105
{
1106
struct netlink_ext_ack *extack = cb->extack;
1107
struct nlattr *tb[NETNSA_MAX + 1];
1108
int err, i;
1109
1110
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1111
NETNSA_MAX, rtnl_net_policy,
1112
extack);
1113
if (err < 0)
1114
return err;
1115
1116
for (i = 0; i <= NETNSA_MAX; i++) {
1117
if (!tb[i])
1118
continue;
1119
1120
if (i == NETNSA_TARGET_NSID) {
1121
struct net *net;
1122
1123
net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1124
if (IS_ERR(net)) {
1125
NL_SET_BAD_ATTR(extack, tb[i]);
1126
NL_SET_ERR_MSG(extack,
1127
"Invalid target network namespace id");
1128
return PTR_ERR(net);
1129
}
1130
net_cb->fillargs.add_ref = true;
1131
net_cb->ref_net = net_cb->tgt_net;
1132
net_cb->tgt_net = net;
1133
} else {
1134
NL_SET_BAD_ATTR(extack, tb[i]);
1135
NL_SET_ERR_MSG(extack,
1136
"Unsupported attribute in dump request");
1137
return -EINVAL;
1138
}
1139
}
1140
1141
return 0;
1142
}
1143
1144
static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1145
{
1146
struct rtnl_net_dump_cb net_cb = {
1147
.tgt_net = sock_net(skb->sk),
1148
.skb = skb,
1149
.fillargs = {
1150
.portid = NETLINK_CB(cb->skb).portid,
1151
.seq = cb->nlh->nlmsg_seq,
1152
.flags = NLM_F_MULTI,
1153
.cmd = RTM_NEWNSID,
1154
},
1155
.idx = 0,
1156
.s_idx = cb->args[0],
1157
};
1158
int err = 0;
1159
1160
if (cb->strict_check) {
1161
err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1162
if (err < 0)
1163
goto end;
1164
}
1165
1166
rcu_read_lock();
1167
idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1168
rcu_read_unlock();
1169
1170
cb->args[0] = net_cb.idx;
1171
end:
1172
if (net_cb.fillargs.add_ref)
1173
put_net(net_cb.tgt_net);
1174
return err;
1175
}
1176
1177
static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1178
struct nlmsghdr *nlh, gfp_t gfp)
1179
{
1180
struct net_fill_args fillargs = {
1181
.portid = portid,
1182
.seq = nlh ? nlh->nlmsg_seq : 0,
1183
.cmd = cmd,
1184
.nsid = id,
1185
};
1186
struct sk_buff *msg;
1187
int err = -ENOMEM;
1188
1189
msg = nlmsg_new(rtnl_net_get_size(), gfp);
1190
if (!msg)
1191
goto out;
1192
1193
err = rtnl_net_fill(msg, &fillargs);
1194
if (err < 0)
1195
goto err_out;
1196
1197
rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1198
return;
1199
1200
err_out:
1201
nlmsg_free(msg);
1202
out:
1203
rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1204
}
1205
1206
#ifdef CONFIG_NET_NS
1207
static void __init netns_ipv4_struct_check(void)
1208
{
1209
/* TX readonly hotpath cache lines */
1210
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1211
sysctl_tcp_early_retrans);
1212
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1213
sysctl_tcp_tso_win_divisor);
1214
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1215
sysctl_tcp_tso_rtt_log);
1216
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1217
sysctl_tcp_autocorking);
1218
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1219
sysctl_tcp_min_snd_mss);
1220
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1221
sysctl_tcp_notsent_lowat);
1222
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1223
sysctl_tcp_limit_output_bytes);
1224
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1225
sysctl_tcp_min_rtt_wlen);
1226
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1227
sysctl_tcp_wmem);
1228
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1229
sysctl_ip_fwd_use_pmtu);
1230
CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1231
1232
/* TXRX readonly hotpath cache lines */
1233
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1234
sysctl_tcp_moderate_rcvbuf);
1235
CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1236
1237
/* RX readonly hotpath cache line */
1238
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1239
sysctl_ip_early_demux);
1240
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1241
sysctl_tcp_early_demux);
1242
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1243
sysctl_tcp_l3mdev_accept);
1244
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1245
sysctl_tcp_reordering);
1246
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1247
sysctl_tcp_rmem);
1248
CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22);
1249
}
1250
#endif
1251
1252
static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1253
{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1254
.flags = RTNL_FLAG_DOIT_UNLOCKED},
1255
{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1256
.dumpit = rtnl_net_dumpid,
1257
.flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1258
};
1259
1260
void __init net_ns_init(void)
1261
{
1262
struct net_generic *ng;
1263
1264
#ifdef CONFIG_NET_NS
1265
netns_ipv4_struct_check();
1266
net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1267
SMP_CACHE_BYTES,
1268
SLAB_PANIC|SLAB_ACCOUNT, NULL);
1269
1270
/* Create workqueue for cleanup */
1271
netns_wq = create_singlethread_workqueue("netns");
1272
if (!netns_wq)
1273
panic("Could not create netns workq");
1274
#endif
1275
1276
ng = net_alloc_generic();
1277
if (!ng)
1278
panic("Could not allocate generic netns");
1279
1280
rcu_assign_pointer(init_net.gen, ng);
1281
1282
#ifdef CONFIG_KEYS
1283
init_net.key_domain = &init_net_key_domain;
1284
#endif
1285
preinit_net(&init_net, &init_user_ns);
1286
1287
down_write(&pernet_ops_rwsem);
1288
if (setup_net(&init_net))
1289
panic("Could not setup the initial network namespace");
1290
1291
init_net_initialized = true;
1292
up_write(&pernet_ops_rwsem);
1293
1294
if (register_pernet_subsys(&net_ns_ops))
1295
panic("Could not register network namespace subsystems");
1296
1297
rtnl_register_many(net_ns_rtnl_msg_handlers);
1298
}
1299
1300
#ifdef CONFIG_NET_NS
1301
static int __register_pernet_operations(struct list_head *list,
1302
struct pernet_operations *ops)
1303
{
1304
LIST_HEAD(net_exit_list);
1305
struct net *net;
1306
int error;
1307
1308
list_add_tail(&ops->list, list);
1309
if (ops->init || ops->id) {
1310
/* We held write locked pernet_ops_rwsem, and parallel
1311
* setup_net() and cleanup_net() are not possible.
1312
*/
1313
for_each_net(net) {
1314
error = ops_init(ops, net);
1315
if (error)
1316
goto out_undo;
1317
list_add_tail(&net->exit_list, &net_exit_list);
1318
}
1319
}
1320
return 0;
1321
1322
out_undo:
1323
/* If I have an error cleanup all namespaces I initialized */
1324
list_del(&ops->list);
1325
ops_undo_single(ops, &net_exit_list);
1326
return error;
1327
}
1328
1329
static void __unregister_pernet_operations(struct pernet_operations *ops)
1330
{
1331
LIST_HEAD(net_exit_list);
1332
struct net *net;
1333
1334
/* See comment in __register_pernet_operations() */
1335
for_each_net(net)
1336
list_add_tail(&net->exit_list, &net_exit_list);
1337
1338
list_del(&ops->list);
1339
ops_undo_single(ops, &net_exit_list);
1340
}
1341
1342
#else
1343
1344
static int __register_pernet_operations(struct list_head *list,
1345
struct pernet_operations *ops)
1346
{
1347
if (!init_net_initialized) {
1348
list_add_tail(&ops->list, list);
1349
return 0;
1350
}
1351
1352
return ops_init(ops, &init_net);
1353
}
1354
1355
static void __unregister_pernet_operations(struct pernet_operations *ops)
1356
{
1357
if (!init_net_initialized) {
1358
list_del(&ops->list);
1359
} else {
1360
LIST_HEAD(net_exit_list);
1361
1362
list_add(&init_net.exit_list, &net_exit_list);
1363
ops_undo_single(ops, &net_exit_list);
1364
}
1365
}
1366
1367
#endif /* CONFIG_NET_NS */
1368
1369
static DEFINE_IDA(net_generic_ids);
1370
1371
static int register_pernet_operations(struct list_head *list,
1372
struct pernet_operations *ops)
1373
{
1374
int error;
1375
1376
if (WARN_ON(!!ops->id ^ !!ops->size))
1377
return -EINVAL;
1378
1379
if (ops->id) {
1380
error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1381
GFP_KERNEL);
1382
if (error < 0)
1383
return error;
1384
*ops->id = error;
1385
/* This does not require READ_ONCE as writers already hold
1386
* pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1387
* net_alloc_generic.
1388
*/
1389
WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1390
}
1391
error = __register_pernet_operations(list, ops);
1392
if (error) {
1393
rcu_barrier();
1394
if (ops->id)
1395
ida_free(&net_generic_ids, *ops->id);
1396
}
1397
1398
return error;
1399
}
1400
1401
static void unregister_pernet_operations(struct pernet_operations *ops)
1402
{
1403
__unregister_pernet_operations(ops);
1404
rcu_barrier();
1405
if (ops->id)
1406
ida_free(&net_generic_ids, *ops->id);
1407
}
1408
1409
/**
1410
* register_pernet_subsys - register a network namespace subsystem
1411
* @ops: pernet operations structure for the subsystem
1412
*
1413
* Register a subsystem which has init and exit functions
1414
* that are called when network namespaces are created and
1415
* destroyed respectively.
1416
*
1417
* When registered all network namespace init functions are
1418
* called for every existing network namespace. Allowing kernel
1419
* modules to have a race free view of the set of network namespaces.
1420
*
1421
* When a new network namespace is created all of the init
1422
* methods are called in the order in which they were registered.
1423
*
1424
* When a network namespace is destroyed all of the exit methods
1425
* are called in the reverse of the order with which they were
1426
* registered.
1427
*/
1428
int register_pernet_subsys(struct pernet_operations *ops)
1429
{
1430
int error;
1431
down_write(&pernet_ops_rwsem);
1432
error = register_pernet_operations(first_device, ops);
1433
up_write(&pernet_ops_rwsem);
1434
return error;
1435
}
1436
EXPORT_SYMBOL_GPL(register_pernet_subsys);
1437
1438
/**
1439
* unregister_pernet_subsys - unregister a network namespace subsystem
1440
* @ops: pernet operations structure to manipulate
1441
*
1442
* Remove the pernet operations structure from the list to be
1443
* used when network namespaces are created or destroyed. In
1444
* addition run the exit method for all existing network
1445
* namespaces.
1446
*/
1447
void unregister_pernet_subsys(struct pernet_operations *ops)
1448
{
1449
down_write(&pernet_ops_rwsem);
1450
unregister_pernet_operations(ops);
1451
up_write(&pernet_ops_rwsem);
1452
}
1453
EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1454
1455
/**
1456
* register_pernet_device - register a network namespace device
1457
* @ops: pernet operations structure for the subsystem
1458
*
1459
* Register a device which has init and exit functions
1460
* that are called when network namespaces are created and
1461
* destroyed respectively.
1462
*
1463
* When registered all network namespace init functions are
1464
* called for every existing network namespace. Allowing kernel
1465
* modules to have a race free view of the set of network namespaces.
1466
*
1467
* When a new network namespace is created all of the init
1468
* methods are called in the order in which they were registered.
1469
*
1470
* When a network namespace is destroyed all of the exit methods
1471
* are called in the reverse of the order with which they were
1472
* registered.
1473
*/
1474
int register_pernet_device(struct pernet_operations *ops)
1475
{
1476
int error;
1477
down_write(&pernet_ops_rwsem);
1478
error = register_pernet_operations(&pernet_list, ops);
1479
if (!error && (first_device == &pernet_list))
1480
first_device = &ops->list;
1481
up_write(&pernet_ops_rwsem);
1482
return error;
1483
}
1484
EXPORT_SYMBOL_GPL(register_pernet_device);
1485
1486
/**
1487
* unregister_pernet_device - unregister a network namespace netdevice
1488
* @ops: pernet operations structure to manipulate
1489
*
1490
* Remove the pernet operations structure from the list to be
1491
* used when network namespaces are created or destroyed. In
1492
* addition run the exit method for all existing network
1493
* namespaces.
1494
*/
1495
void unregister_pernet_device(struct pernet_operations *ops)
1496
{
1497
down_write(&pernet_ops_rwsem);
1498
if (&ops->list == first_device)
1499
first_device = first_device->next;
1500
unregister_pernet_operations(ops);
1501
up_write(&pernet_ops_rwsem);
1502
}
1503
EXPORT_SYMBOL_GPL(unregister_pernet_device);
1504
1505
#ifdef CONFIG_NET_NS
1506
static struct ns_common *netns_get(struct task_struct *task)
1507
{
1508
struct net *net = NULL;
1509
struct nsproxy *nsproxy;
1510
1511
task_lock(task);
1512
nsproxy = task->nsproxy;
1513
if (nsproxy)
1514
net = get_net(nsproxy->net_ns);
1515
task_unlock(task);
1516
1517
return net ? &net->ns : NULL;
1518
}
1519
1520
static inline struct net *to_net_ns(struct ns_common *ns)
1521
{
1522
return container_of(ns, struct net, ns);
1523
}
1524
1525
static void netns_put(struct ns_common *ns)
1526
{
1527
put_net(to_net_ns(ns));
1528
}
1529
1530
static int netns_install(struct nsset *nsset, struct ns_common *ns)
1531
{
1532
struct nsproxy *nsproxy = nsset->nsproxy;
1533
struct net *net = to_net_ns(ns);
1534
1535
if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1536
!ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1537
return -EPERM;
1538
1539
put_net(nsproxy->net_ns);
1540
nsproxy->net_ns = get_net(net);
1541
return 0;
1542
}
1543
1544
static struct user_namespace *netns_owner(struct ns_common *ns)
1545
{
1546
return to_net_ns(ns)->user_ns;
1547
}
1548
1549
const struct proc_ns_operations netns_operations = {
1550
.name = "net",
1551
.type = CLONE_NEWNET,
1552
.get = netns_get,
1553
.put = netns_put,
1554
.install = netns_install,
1555
.owner = netns_owner,
1556
};
1557
#endif
1558
1559