Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/core/net_namespace.c
49879 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4
#include <linux/workqueue.h>
5
#include <linux/rtnetlink.h>
6
#include <linux/cache.h>
7
#include <linux/slab.h>
8
#include <linux/list.h>
9
#include <linux/delay.h>
10
#include <linux/sched.h>
11
#include <linux/idr.h>
12
#include <linux/rculist.h>
13
#include <linux/nsproxy.h>
14
#include <linux/fs.h>
15
#include <linux/proc_ns.h>
16
#include <linux/file.h>
17
#include <linux/export.h>
18
#include <linux/user_namespace.h>
19
#include <linux/net_namespace.h>
20
#include <linux/sched/task.h>
21
#include <linux/uidgid.h>
22
#include <linux/proc_fs.h>
23
#include <linux/nstree.h>
24
25
#include <net/aligned_data.h>
26
#include <net/sock.h>
27
#include <net/netlink.h>
28
#include <net/net_namespace.h>
29
#include <net/netns/generic.h>
30
31
/*
32
* Our network namespace constructor/destructor lists
33
*/
34
35
static LIST_HEAD(pernet_list);
36
static struct list_head *first_device = &pernet_list;
37
38
LIST_HEAD(net_namespace_list);
39
EXPORT_SYMBOL_GPL(net_namespace_list);
40
41
/* Protects net_namespace_list. Nests iside rtnl_lock() */
42
DECLARE_RWSEM(net_rwsem);
43
EXPORT_SYMBOL_GPL(net_rwsem);
44
45
#ifdef CONFIG_KEYS
46
static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
47
#endif
48
49
struct net init_net;
50
EXPORT_SYMBOL(init_net);
51
52
static bool init_net_initialized;
53
/*
54
* pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
55
* init_net_initialized and first_device pointer.
56
* This is internal net namespace object. Please, don't use it
57
* outside.
58
*/
59
DECLARE_RWSEM(pernet_ops_rwsem);
60
61
#define MIN_PERNET_OPS_ID \
62
((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63
64
#define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
65
66
static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67
68
static struct net_generic *net_alloc_generic(void)
69
{
70
unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
71
unsigned int generic_size;
72
struct net_generic *ng;
73
74
generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
75
76
ng = kzalloc(generic_size, GFP_KERNEL);
77
if (ng)
78
ng->s.len = gen_ptrs;
79
80
return ng;
81
}
82
83
static int net_assign_generic(struct net *net, unsigned int id, void *data)
84
{
85
struct net_generic *ng, *old_ng;
86
87
BUG_ON(id < MIN_PERNET_OPS_ID);
88
89
old_ng = rcu_dereference_protected(net->gen,
90
lockdep_is_held(&pernet_ops_rwsem));
91
if (old_ng->s.len > id) {
92
old_ng->ptr[id] = data;
93
return 0;
94
}
95
96
ng = net_alloc_generic();
97
if (!ng)
98
return -ENOMEM;
99
100
/*
101
* Some synchronisation notes:
102
*
103
* The net_generic explores the net->gen array inside rcu
104
* read section. Besides once set the net->gen->ptr[x]
105
* pointer never changes (see rules in netns/generic.h).
106
*
107
* That said, we simply duplicate this array and schedule
108
* the old copy for kfree after a grace period.
109
*/
110
111
memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
112
(old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
113
ng->ptr[id] = data;
114
115
rcu_assign_pointer(net->gen, ng);
116
kfree_rcu(old_ng, s.rcu);
117
return 0;
118
}
119
120
static int ops_init(const struct pernet_operations *ops, struct net *net)
121
{
122
struct net_generic *ng;
123
int err = -ENOMEM;
124
void *data = NULL;
125
126
if (ops->id) {
127
data = kzalloc(ops->size, GFP_KERNEL);
128
if (!data)
129
goto out;
130
131
err = net_assign_generic(net, *ops->id, data);
132
if (err)
133
goto cleanup;
134
}
135
err = 0;
136
if (ops->init)
137
err = ops->init(net);
138
if (!err)
139
return 0;
140
141
if (ops->id) {
142
ng = rcu_dereference_protected(net->gen,
143
lockdep_is_held(&pernet_ops_rwsem));
144
ng->ptr[*ops->id] = NULL;
145
}
146
147
cleanup:
148
kfree(data);
149
150
out:
151
return err;
152
}
153
154
static void ops_pre_exit_list(const struct pernet_operations *ops,
155
struct list_head *net_exit_list)
156
{
157
struct net *net;
158
159
if (ops->pre_exit) {
160
list_for_each_entry(net, net_exit_list, exit_list)
161
ops->pre_exit(net);
162
}
163
}
164
165
static void ops_exit_rtnl_list(const struct list_head *ops_list,
166
const struct pernet_operations *ops,
167
struct list_head *net_exit_list)
168
{
169
const struct pernet_operations *saved_ops = ops;
170
LIST_HEAD(dev_kill_list);
171
struct net *net;
172
173
rtnl_lock();
174
175
list_for_each_entry(net, net_exit_list, exit_list) {
176
__rtnl_net_lock(net);
177
178
ops = saved_ops;
179
list_for_each_entry_continue_reverse(ops, ops_list, list) {
180
if (ops->exit_rtnl)
181
ops->exit_rtnl(net, &dev_kill_list);
182
}
183
184
__rtnl_net_unlock(net);
185
}
186
187
unregister_netdevice_many(&dev_kill_list);
188
189
rtnl_unlock();
190
}
191
192
static void ops_exit_list(const struct pernet_operations *ops,
193
struct list_head *net_exit_list)
194
{
195
if (ops->exit) {
196
struct net *net;
197
198
list_for_each_entry(net, net_exit_list, exit_list) {
199
ops->exit(net);
200
cond_resched();
201
}
202
}
203
204
if (ops->exit_batch)
205
ops->exit_batch(net_exit_list);
206
}
207
208
static void ops_free_list(const struct pernet_operations *ops,
209
struct list_head *net_exit_list)
210
{
211
struct net *net;
212
213
if (ops->id) {
214
list_for_each_entry(net, net_exit_list, exit_list)
215
kfree(net_generic(net, *ops->id));
216
}
217
}
218
219
static void ops_undo_list(const struct list_head *ops_list,
220
const struct pernet_operations *ops,
221
struct list_head *net_exit_list,
222
bool expedite_rcu)
223
{
224
const struct pernet_operations *saved_ops;
225
bool hold_rtnl = false;
226
227
if (!ops)
228
ops = list_entry(ops_list, typeof(*ops), list);
229
230
saved_ops = ops;
231
232
list_for_each_entry_continue_reverse(ops, ops_list, list) {
233
hold_rtnl |= !!ops->exit_rtnl;
234
ops_pre_exit_list(ops, net_exit_list);
235
}
236
237
/* Another CPU might be rcu-iterating the list, wait for it.
238
* This needs to be before calling the exit() notifiers, so the
239
* rcu_barrier() after ops_undo_list() isn't sufficient alone.
240
* Also the pre_exit() and exit() methods need this barrier.
241
*/
242
if (expedite_rcu)
243
synchronize_rcu_expedited();
244
else
245
synchronize_rcu();
246
247
if (hold_rtnl)
248
ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list);
249
250
ops = saved_ops;
251
list_for_each_entry_continue_reverse(ops, ops_list, list)
252
ops_exit_list(ops, net_exit_list);
253
254
ops = saved_ops;
255
list_for_each_entry_continue_reverse(ops, ops_list, list)
256
ops_free_list(ops, net_exit_list);
257
}
258
259
static void ops_undo_single(struct pernet_operations *ops,
260
struct list_head *net_exit_list)
261
{
262
LIST_HEAD(ops_list);
263
264
list_add(&ops->list, &ops_list);
265
ops_undo_list(&ops_list, NULL, net_exit_list, false);
266
list_del(&ops->list);
267
}
268
269
/* should be called with nsid_lock held */
270
static int alloc_netid(struct net *net, struct net *peer, int reqid)
271
{
272
int min = 0, max = 0;
273
274
if (reqid >= 0) {
275
min = reqid;
276
max = reqid + 1;
277
}
278
279
return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
280
}
281
282
/* This function is used by idr_for_each(). If net is equal to peer, the
283
* function returns the id so that idr_for_each() stops. Because we cannot
284
* returns the id 0 (idr_for_each() will not stop), we return the magic value
285
* NET_ID_ZERO (-1) for it.
286
*/
287
#define NET_ID_ZERO -1
288
static int net_eq_idr(int id, void *net, void *peer)
289
{
290
if (net_eq(net, peer))
291
return id ? : NET_ID_ZERO;
292
return 0;
293
}
294
295
/* Must be called from RCU-critical section or with nsid_lock held */
296
static int __peernet2id(const struct net *net, struct net *peer)
297
{
298
int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
299
300
/* Magic value for id 0. */
301
if (id == NET_ID_ZERO)
302
return 0;
303
if (id > 0)
304
return id;
305
306
return NETNSA_NSID_NOT_ASSIGNED;
307
}
308
309
static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
310
struct nlmsghdr *nlh, gfp_t gfp);
311
/* This function returns the id of a peer netns. If no id is assigned, one will
312
* be allocated and returned.
313
*/
314
int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
315
{
316
int id;
317
318
if (!check_net(net))
319
return NETNSA_NSID_NOT_ASSIGNED;
320
321
spin_lock(&net->nsid_lock);
322
id = __peernet2id(net, peer);
323
if (id >= 0) {
324
spin_unlock(&net->nsid_lock);
325
return id;
326
}
327
328
/* When peer is obtained from RCU lists, we may race with
329
* its cleanup. Check whether it's alive, and this guarantees
330
* we never hash a peer back to net->netns_ids, after it has
331
* just been idr_remove()'d from there in cleanup_net().
332
*/
333
if (!maybe_get_net(peer)) {
334
spin_unlock(&net->nsid_lock);
335
return NETNSA_NSID_NOT_ASSIGNED;
336
}
337
338
id = alloc_netid(net, peer, -1);
339
spin_unlock(&net->nsid_lock);
340
341
put_net(peer);
342
if (id < 0)
343
return NETNSA_NSID_NOT_ASSIGNED;
344
345
rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
346
347
return id;
348
}
349
EXPORT_SYMBOL_GPL(peernet2id_alloc);
350
351
/* This function returns, if assigned, the id of a peer netns. */
352
int peernet2id(const struct net *net, struct net *peer)
353
{
354
int id;
355
356
rcu_read_lock();
357
id = __peernet2id(net, peer);
358
rcu_read_unlock();
359
360
return id;
361
}
362
EXPORT_SYMBOL(peernet2id);
363
364
/* This function returns true is the peer netns has an id assigned into the
365
* current netns.
366
*/
367
bool peernet_has_id(const struct net *net, struct net *peer)
368
{
369
return peernet2id(net, peer) >= 0;
370
}
371
372
struct net *get_net_ns_by_id(const struct net *net, int id)
373
{
374
struct net *peer;
375
376
if (id < 0)
377
return NULL;
378
379
rcu_read_lock();
380
peer = idr_find(&net->netns_ids, id);
381
if (peer)
382
peer = maybe_get_net(peer);
383
rcu_read_unlock();
384
385
return peer;
386
}
387
EXPORT_SYMBOL_GPL(get_net_ns_by_id);
388
389
static __net_init void preinit_net_sysctl(struct net *net)
390
{
391
net->core.sysctl_somaxconn = SOMAXCONN;
392
/* Limits per socket sk_omem_alloc usage.
393
* TCP zerocopy regular usage needs 128 KB.
394
*/
395
net->core.sysctl_optmem_max = 128 * 1024;
396
net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
397
net->core.sysctl_tstamp_allow_data = 1;
398
net->core.sysctl_txq_reselection = msecs_to_jiffies(1000);
399
}
400
401
/* init code that must occur even if setup_net() is not called. */
402
static __net_init int preinit_net(struct net *net, struct user_namespace *user_ns)
403
{
404
int ret;
405
406
ret = ns_common_init(net);
407
if (ret)
408
return ret;
409
410
refcount_set(&net->passive, 1);
411
ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt");
412
ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt");
413
414
get_random_bytes(&net->hash_mix, sizeof(u32));
415
net->dev_base_seq = 1;
416
net->user_ns = user_ns;
417
418
idr_init(&net->netns_ids);
419
spin_lock_init(&net->nsid_lock);
420
mutex_init(&net->ipv4.ra_mutex);
421
422
#ifdef CONFIG_DEBUG_NET_SMALL_RTNL
423
mutex_init(&net->rtnl_mutex);
424
lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
425
#endif
426
427
INIT_LIST_HEAD(&net->ptype_all);
428
INIT_LIST_HEAD(&net->ptype_specific);
429
preinit_net_sysctl(net);
430
return 0;
431
}
432
433
/*
434
* setup_net runs the initializers for the network namespace object.
435
*/
436
static __net_init int setup_net(struct net *net)
437
{
438
/* Must be called with pernet_ops_rwsem held */
439
const struct pernet_operations *ops;
440
LIST_HEAD(net_exit_list);
441
int error = 0;
442
443
net->net_cookie = ns_tree_gen_id(net);
444
445
list_for_each_entry(ops, &pernet_list, list) {
446
error = ops_init(ops, net);
447
if (error < 0)
448
goto out_undo;
449
}
450
down_write(&net_rwsem);
451
list_add_tail_rcu(&net->list, &net_namespace_list);
452
up_write(&net_rwsem);
453
ns_tree_add_raw(net);
454
out:
455
return error;
456
457
out_undo:
458
/* Walk through the list backwards calling the exit functions
459
* for the pernet modules whose init functions did not fail.
460
*/
461
list_add(&net->exit_list, &net_exit_list);
462
ops_undo_list(&pernet_list, ops, &net_exit_list, false);
463
rcu_barrier();
464
goto out;
465
}
466
467
#ifdef CONFIG_NET_NS
468
static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
469
{
470
return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
471
}
472
473
static void dec_net_namespaces(struct ucounts *ucounts)
474
{
475
dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
476
}
477
478
static struct kmem_cache *net_cachep __ro_after_init;
479
static struct workqueue_struct *netns_wq;
480
481
static struct net *net_alloc(void)
482
{
483
struct net *net = NULL;
484
struct net_generic *ng;
485
486
ng = net_alloc_generic();
487
if (!ng)
488
goto out;
489
490
net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
491
if (!net)
492
goto out_free;
493
494
#ifdef CONFIG_KEYS
495
net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
496
if (!net->key_domain)
497
goto out_free_2;
498
refcount_set(&net->key_domain->usage, 1);
499
#endif
500
501
rcu_assign_pointer(net->gen, ng);
502
out:
503
return net;
504
505
#ifdef CONFIG_KEYS
506
out_free_2:
507
kmem_cache_free(net_cachep, net);
508
net = NULL;
509
#endif
510
out_free:
511
kfree(ng);
512
goto out;
513
}
514
515
static LLIST_HEAD(defer_free_list);
516
517
static void net_complete_free(void)
518
{
519
struct llist_node *kill_list;
520
struct net *net, *next;
521
522
/* Get the list of namespaces to free from last round. */
523
kill_list = llist_del_all(&defer_free_list);
524
525
llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
526
kmem_cache_free(net_cachep, net);
527
528
}
529
530
void net_passive_dec(struct net *net)
531
{
532
if (refcount_dec_and_test(&net->passive)) {
533
kfree(rcu_access_pointer(net->gen));
534
535
/* There should not be any trackers left there. */
536
ref_tracker_dir_exit(&net->notrefcnt_tracker);
537
538
/* Wait for an extra rcu_barrier() before final free. */
539
llist_add(&net->defer_free_list, &defer_free_list);
540
}
541
}
542
543
void net_drop_ns(void *p)
544
{
545
struct net *net = (struct net *)p;
546
547
if (net)
548
net_passive_dec(net);
549
}
550
551
struct net *copy_net_ns(u64 flags,
552
struct user_namespace *user_ns, struct net *old_net)
553
{
554
struct ucounts *ucounts;
555
struct net *net;
556
int rv;
557
558
if (!(flags & CLONE_NEWNET))
559
return get_net(old_net);
560
561
ucounts = inc_net_namespaces(user_ns);
562
if (!ucounts)
563
return ERR_PTR(-ENOSPC);
564
565
net = net_alloc();
566
if (!net) {
567
rv = -ENOMEM;
568
goto dec_ucounts;
569
}
570
571
rv = preinit_net(net, user_ns);
572
if (rv < 0)
573
goto dec_ucounts;
574
net->ucounts = ucounts;
575
get_user_ns(user_ns);
576
577
rv = down_read_killable(&pernet_ops_rwsem);
578
if (rv < 0)
579
goto put_userns;
580
581
rv = setup_net(net);
582
583
up_read(&pernet_ops_rwsem);
584
585
if (rv < 0) {
586
put_userns:
587
ns_common_free(net);
588
#ifdef CONFIG_KEYS
589
key_remove_domain(net->key_domain);
590
#endif
591
put_user_ns(user_ns);
592
net_passive_dec(net);
593
dec_ucounts:
594
dec_net_namespaces(ucounts);
595
return ERR_PTR(rv);
596
}
597
return net;
598
}
599
600
/**
601
* net_ns_get_ownership - get sysfs ownership data for @net
602
* @net: network namespace in question (can be NULL)
603
* @uid: kernel user ID for sysfs objects
604
* @gid: kernel group ID for sysfs objects
605
*
606
* Returns the uid/gid pair of root in the user namespace associated with the
607
* given network namespace.
608
*/
609
void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
610
{
611
if (net) {
612
kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
613
kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
614
615
if (uid_valid(ns_root_uid))
616
*uid = ns_root_uid;
617
618
if (gid_valid(ns_root_gid))
619
*gid = ns_root_gid;
620
} else {
621
*uid = GLOBAL_ROOT_UID;
622
*gid = GLOBAL_ROOT_GID;
623
}
624
}
625
EXPORT_SYMBOL_GPL(net_ns_get_ownership);
626
627
static void unhash_nsid(struct net *net, struct net *last)
628
{
629
struct net *tmp;
630
/* This function is only called from cleanup_net() work,
631
* and this work is the only process, that may delete
632
* a net from net_namespace_list. So, when the below
633
* is executing, the list may only grow. Thus, we do not
634
* use for_each_net_rcu() or net_rwsem.
635
*/
636
for_each_net(tmp) {
637
int id;
638
639
spin_lock(&tmp->nsid_lock);
640
id = __peernet2id(tmp, net);
641
if (id >= 0)
642
idr_remove(&tmp->netns_ids, id);
643
spin_unlock(&tmp->nsid_lock);
644
if (id >= 0)
645
rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
646
GFP_KERNEL);
647
if (tmp == last)
648
break;
649
}
650
spin_lock(&net->nsid_lock);
651
idr_destroy(&net->netns_ids);
652
spin_unlock(&net->nsid_lock);
653
}
654
655
static LLIST_HEAD(cleanup_list);
656
657
struct task_struct *cleanup_net_task;
658
659
static void cleanup_net(struct work_struct *work)
660
{
661
struct llist_node *net_kill_list;
662
struct net *net, *tmp, *last;
663
LIST_HEAD(net_exit_list);
664
665
WRITE_ONCE(cleanup_net_task, current);
666
667
/* Atomically snapshot the list of namespaces to cleanup */
668
net_kill_list = llist_del_all(&cleanup_list);
669
670
down_read(&pernet_ops_rwsem);
671
672
/* Don't let anyone else find us. */
673
down_write(&net_rwsem);
674
llist_for_each_entry(net, net_kill_list, cleanup_list) {
675
ns_tree_remove(net);
676
list_del_rcu(&net->list);
677
}
678
/* Cache last net. After we unlock rtnl, no one new net
679
* added to net_namespace_list can assign nsid pointer
680
* to a net from net_kill_list (see peernet2id_alloc()).
681
* So, we skip them in unhash_nsid().
682
*
683
* Note, that unhash_nsid() does not delete nsid links
684
* between net_kill_list's nets, as they've already
685
* deleted from net_namespace_list. But, this would be
686
* useless anyway, as netns_ids are destroyed there.
687
*/
688
last = list_last_entry(&net_namespace_list, struct net, list);
689
up_write(&net_rwsem);
690
691
llist_for_each_entry(net, net_kill_list, cleanup_list) {
692
unhash_nsid(net, last);
693
list_add_tail(&net->exit_list, &net_exit_list);
694
}
695
696
ops_undo_list(&pernet_list, NULL, &net_exit_list, true);
697
698
up_read(&pernet_ops_rwsem);
699
700
/* Ensure there are no outstanding rcu callbacks using this
701
* network namespace.
702
*/
703
rcu_barrier();
704
705
net_complete_free();
706
707
/* Finally it is safe to free my network namespace structure */
708
list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
709
list_del_init(&net->exit_list);
710
ns_common_free(net);
711
dec_net_namespaces(net->ucounts);
712
#ifdef CONFIG_KEYS
713
key_remove_domain(net->key_domain);
714
#endif
715
put_user_ns(net->user_ns);
716
net_passive_dec(net);
717
}
718
WRITE_ONCE(cleanup_net_task, NULL);
719
}
720
721
/**
722
* net_ns_barrier - wait until concurrent net_cleanup_work is done
723
*
724
* cleanup_net runs from work queue and will first remove namespaces
725
* from the global list, then run net exit functions.
726
*
727
* Call this in module exit path to make sure that all netns
728
* ->exit ops have been invoked before the function is removed.
729
*/
730
void net_ns_barrier(void)
731
{
732
down_write(&pernet_ops_rwsem);
733
up_write(&pernet_ops_rwsem);
734
}
735
EXPORT_SYMBOL(net_ns_barrier);
736
737
static DECLARE_WORK(net_cleanup_work, cleanup_net);
738
739
void __put_net(struct net *net)
740
{
741
ref_tracker_dir_exit(&net->refcnt_tracker);
742
/* Cleanup the network namespace in process context */
743
if (llist_add(&net->cleanup_list, &cleanup_list))
744
queue_work(netns_wq, &net_cleanup_work);
745
}
746
EXPORT_SYMBOL_GPL(__put_net);
747
748
/**
749
* get_net_ns - increment the refcount of the network namespace
750
* @ns: common namespace (net)
751
*
752
* Returns the net's common namespace or ERR_PTR() if ref is zero.
753
*/
754
struct ns_common *get_net_ns(struct ns_common *ns)
755
{
756
struct net *net;
757
758
net = maybe_get_net(container_of(ns, struct net, ns));
759
if (net)
760
return &net->ns;
761
return ERR_PTR(-EINVAL);
762
}
763
EXPORT_SYMBOL_GPL(get_net_ns);
764
765
struct net *get_net_ns_by_fd(int fd)
766
{
767
CLASS(fd, f)(fd);
768
769
if (fd_empty(f))
770
return ERR_PTR(-EBADF);
771
772
if (proc_ns_file(fd_file(f))) {
773
struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
774
if (ns->ops == &netns_operations)
775
return get_net(container_of(ns, struct net, ns));
776
}
777
778
return ERR_PTR(-EINVAL);
779
}
780
EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
781
#endif
782
783
struct net *get_net_ns_by_pid(pid_t pid)
784
{
785
struct task_struct *tsk;
786
struct net *net;
787
788
/* Lookup the network namespace */
789
net = ERR_PTR(-ESRCH);
790
rcu_read_lock();
791
tsk = find_task_by_vpid(pid);
792
if (tsk) {
793
struct nsproxy *nsproxy;
794
task_lock(tsk);
795
nsproxy = tsk->nsproxy;
796
if (nsproxy)
797
net = get_net(nsproxy->net_ns);
798
task_unlock(tsk);
799
}
800
rcu_read_unlock();
801
return net;
802
}
803
EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
804
805
#ifdef CONFIG_NET_NS_REFCNT_TRACKER
806
static void net_ns_net_debugfs(struct net *net)
807
{
808
ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt",
809
net->net_cookie, net->ns.inum);
810
ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt",
811
net->net_cookie, net->ns.inum);
812
}
813
814
static int __init init_net_debugfs(void)
815
{
816
ref_tracker_dir_debugfs(&init_net.refcnt_tracker);
817
ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker);
818
net_ns_net_debugfs(&init_net);
819
return 0;
820
}
821
late_initcall(init_net_debugfs);
822
#else
823
static void net_ns_net_debugfs(struct net *net)
824
{
825
}
826
#endif
827
828
static __net_init int net_ns_net_init(struct net *net)
829
{
830
net_ns_net_debugfs(net);
831
return 0;
832
}
833
834
static struct pernet_operations __net_initdata net_ns_ops = {
835
.init = net_ns_net_init,
836
};
837
838
static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
839
[NETNSA_NONE] = { .type = NLA_UNSPEC },
840
[NETNSA_NSID] = { .type = NLA_S32 },
841
[NETNSA_PID] = { .type = NLA_U32 },
842
[NETNSA_FD] = { .type = NLA_U32 },
843
[NETNSA_TARGET_NSID] = { .type = NLA_S32 },
844
};
845
846
static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
847
struct netlink_ext_ack *extack)
848
{
849
struct net *net = sock_net(skb->sk);
850
struct nlattr *tb[NETNSA_MAX + 1];
851
struct nlattr *nla;
852
struct net *peer;
853
int nsid, err;
854
855
err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
856
NETNSA_MAX, rtnl_net_policy, extack);
857
if (err < 0)
858
return err;
859
if (!tb[NETNSA_NSID]) {
860
NL_SET_ERR_MSG(extack, "nsid is missing");
861
return -EINVAL;
862
}
863
nsid = nla_get_s32(tb[NETNSA_NSID]);
864
865
if (tb[NETNSA_PID]) {
866
peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
867
nla = tb[NETNSA_PID];
868
} else if (tb[NETNSA_FD]) {
869
peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
870
nla = tb[NETNSA_FD];
871
} else {
872
NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
873
return -EINVAL;
874
}
875
if (IS_ERR(peer)) {
876
NL_SET_BAD_ATTR(extack, nla);
877
NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
878
return PTR_ERR(peer);
879
}
880
881
spin_lock(&net->nsid_lock);
882
if (__peernet2id(net, peer) >= 0) {
883
spin_unlock(&net->nsid_lock);
884
err = -EEXIST;
885
NL_SET_BAD_ATTR(extack, nla);
886
NL_SET_ERR_MSG(extack,
887
"Peer netns already has a nsid assigned");
888
goto out;
889
}
890
891
err = alloc_netid(net, peer, nsid);
892
spin_unlock(&net->nsid_lock);
893
if (err >= 0) {
894
rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
895
nlh, GFP_KERNEL);
896
err = 0;
897
} else if (err == -ENOSPC && nsid >= 0) {
898
err = -EEXIST;
899
NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
900
NL_SET_ERR_MSG(extack, "The specified nsid is already used");
901
}
902
out:
903
put_net(peer);
904
return err;
905
}
906
907
static int rtnl_net_get_size(void)
908
{
909
return NLMSG_ALIGN(sizeof(struct rtgenmsg))
910
+ nla_total_size(sizeof(s32)) /* NETNSA_NSID */
911
+ nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
912
;
913
}
914
915
struct net_fill_args {
916
u32 portid;
917
u32 seq;
918
int flags;
919
int cmd;
920
int nsid;
921
bool add_ref;
922
int ref_nsid;
923
};
924
925
static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
926
{
927
struct nlmsghdr *nlh;
928
struct rtgenmsg *rth;
929
930
nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
931
args->flags);
932
if (!nlh)
933
return -EMSGSIZE;
934
935
rth = nlmsg_data(nlh);
936
rth->rtgen_family = AF_UNSPEC;
937
938
if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
939
goto nla_put_failure;
940
941
if (args->add_ref &&
942
nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
943
goto nla_put_failure;
944
945
nlmsg_end(skb, nlh);
946
return 0;
947
948
nla_put_failure:
949
nlmsg_cancel(skb, nlh);
950
return -EMSGSIZE;
951
}
952
953
static int rtnl_net_valid_getid_req(struct sk_buff *skb,
954
const struct nlmsghdr *nlh,
955
struct nlattr **tb,
956
struct netlink_ext_ack *extack)
957
{
958
int i, err;
959
960
if (!netlink_strict_get_check(skb))
961
return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
962
tb, NETNSA_MAX, rtnl_net_policy,
963
extack);
964
965
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
966
NETNSA_MAX, rtnl_net_policy,
967
extack);
968
if (err)
969
return err;
970
971
for (i = 0; i <= NETNSA_MAX; i++) {
972
if (!tb[i])
973
continue;
974
975
switch (i) {
976
case NETNSA_PID:
977
case NETNSA_FD:
978
case NETNSA_NSID:
979
case NETNSA_TARGET_NSID:
980
break;
981
default:
982
NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
983
return -EINVAL;
984
}
985
}
986
987
return 0;
988
}
989
990
static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
991
struct netlink_ext_ack *extack)
992
{
993
struct net *net = sock_net(skb->sk);
994
struct nlattr *tb[NETNSA_MAX + 1];
995
struct net_fill_args fillargs = {
996
.portid = NETLINK_CB(skb).portid,
997
.seq = nlh->nlmsg_seq,
998
.cmd = RTM_NEWNSID,
999
};
1000
struct net *peer, *target = net;
1001
struct nlattr *nla;
1002
struct sk_buff *msg;
1003
int err;
1004
1005
err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
1006
if (err < 0)
1007
return err;
1008
if (tb[NETNSA_PID]) {
1009
peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
1010
nla = tb[NETNSA_PID];
1011
} else if (tb[NETNSA_FD]) {
1012
peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
1013
nla = tb[NETNSA_FD];
1014
} else if (tb[NETNSA_NSID]) {
1015
peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
1016
if (!peer)
1017
peer = ERR_PTR(-ENOENT);
1018
nla = tb[NETNSA_NSID];
1019
} else {
1020
NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
1021
return -EINVAL;
1022
}
1023
1024
if (IS_ERR(peer)) {
1025
NL_SET_BAD_ATTR(extack, nla);
1026
NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
1027
return PTR_ERR(peer);
1028
}
1029
1030
if (tb[NETNSA_TARGET_NSID]) {
1031
int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
1032
1033
target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
1034
if (IS_ERR(target)) {
1035
NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
1036
NL_SET_ERR_MSG(extack,
1037
"Target netns reference is invalid");
1038
err = PTR_ERR(target);
1039
goto out;
1040
}
1041
fillargs.add_ref = true;
1042
fillargs.ref_nsid = peernet2id(net, peer);
1043
}
1044
1045
msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1046
if (!msg) {
1047
err = -ENOMEM;
1048
goto out;
1049
}
1050
1051
fillargs.nsid = peernet2id(target, peer);
1052
err = rtnl_net_fill(msg, &fillargs);
1053
if (err < 0)
1054
goto err_out;
1055
1056
err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
1057
goto out;
1058
1059
err_out:
1060
nlmsg_free(msg);
1061
out:
1062
if (fillargs.add_ref)
1063
put_net(target);
1064
put_net(peer);
1065
return err;
1066
}
1067
1068
struct rtnl_net_dump_cb {
1069
struct net *tgt_net;
1070
struct net *ref_net;
1071
struct sk_buff *skb;
1072
struct net_fill_args fillargs;
1073
int idx;
1074
int s_idx;
1075
};
1076
1077
/* Runs in RCU-critical section. */
1078
static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1079
{
1080
struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1081
int ret;
1082
1083
if (net_cb->idx < net_cb->s_idx)
1084
goto cont;
1085
1086
net_cb->fillargs.nsid = id;
1087
if (net_cb->fillargs.add_ref)
1088
net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1089
ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1090
if (ret < 0)
1091
return ret;
1092
1093
cont:
1094
net_cb->idx++;
1095
return 0;
1096
}
1097
1098
static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1099
struct rtnl_net_dump_cb *net_cb,
1100
struct netlink_callback *cb)
1101
{
1102
struct netlink_ext_ack *extack = cb->extack;
1103
struct nlattr *tb[NETNSA_MAX + 1];
1104
int err, i;
1105
1106
err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1107
NETNSA_MAX, rtnl_net_policy,
1108
extack);
1109
if (err < 0)
1110
return err;
1111
1112
for (i = 0; i <= NETNSA_MAX; i++) {
1113
if (!tb[i])
1114
continue;
1115
1116
if (i == NETNSA_TARGET_NSID) {
1117
struct net *net;
1118
1119
net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1120
if (IS_ERR(net)) {
1121
NL_SET_BAD_ATTR(extack, tb[i]);
1122
NL_SET_ERR_MSG(extack,
1123
"Invalid target network namespace id");
1124
return PTR_ERR(net);
1125
}
1126
net_cb->fillargs.add_ref = true;
1127
net_cb->ref_net = net_cb->tgt_net;
1128
net_cb->tgt_net = net;
1129
} else {
1130
NL_SET_BAD_ATTR(extack, tb[i]);
1131
NL_SET_ERR_MSG(extack,
1132
"Unsupported attribute in dump request");
1133
return -EINVAL;
1134
}
1135
}
1136
1137
return 0;
1138
}
1139
1140
static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1141
{
1142
struct rtnl_net_dump_cb net_cb = {
1143
.tgt_net = sock_net(skb->sk),
1144
.skb = skb,
1145
.fillargs = {
1146
.portid = NETLINK_CB(cb->skb).portid,
1147
.seq = cb->nlh->nlmsg_seq,
1148
.flags = NLM_F_MULTI,
1149
.cmd = RTM_NEWNSID,
1150
},
1151
.idx = 0,
1152
.s_idx = cb->args[0],
1153
};
1154
int err = 0;
1155
1156
if (cb->strict_check) {
1157
err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1158
if (err < 0)
1159
goto end;
1160
}
1161
1162
rcu_read_lock();
1163
idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1164
rcu_read_unlock();
1165
1166
cb->args[0] = net_cb.idx;
1167
end:
1168
if (net_cb.fillargs.add_ref)
1169
put_net(net_cb.tgt_net);
1170
return err;
1171
}
1172
1173
static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1174
struct nlmsghdr *nlh, gfp_t gfp)
1175
{
1176
struct net_fill_args fillargs = {
1177
.portid = portid,
1178
.seq = nlh ? nlh->nlmsg_seq : 0,
1179
.cmd = cmd,
1180
.nsid = id,
1181
};
1182
struct sk_buff *msg;
1183
int err = -ENOMEM;
1184
1185
msg = nlmsg_new(rtnl_net_get_size(), gfp);
1186
if (!msg)
1187
goto out;
1188
1189
err = rtnl_net_fill(msg, &fillargs);
1190
if (err < 0)
1191
goto err_out;
1192
1193
rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1194
return;
1195
1196
err_out:
1197
nlmsg_free(msg);
1198
out:
1199
rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1200
}
1201
1202
#ifdef CONFIG_NET_NS
1203
static void __init netns_ipv4_struct_check(void)
1204
{
1205
/* TX readonly hotpath cache lines */
1206
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1207
sysctl_tcp_early_retrans);
1208
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1209
sysctl_tcp_tso_win_divisor);
1210
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1211
sysctl_tcp_tso_rtt_log);
1212
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1213
sysctl_tcp_autocorking);
1214
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1215
sysctl_tcp_min_snd_mss);
1216
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1217
sysctl_tcp_notsent_lowat);
1218
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1219
sysctl_tcp_limit_output_bytes);
1220
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1221
sysctl_tcp_min_rtt_wlen);
1222
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1223
sysctl_tcp_wmem);
1224
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1225
sysctl_ip_fwd_use_pmtu);
1226
1227
/* RX readonly hotpath cache line */
1228
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1229
sysctl_tcp_moderate_rcvbuf);
1230
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1231
sysctl_tcp_rcvbuf_low_rtt);
1232
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1233
sysctl_ip_early_demux);
1234
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1235
sysctl_tcp_early_demux);
1236
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1237
sysctl_tcp_l3mdev_accept);
1238
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1239
sysctl_tcp_reordering);
1240
CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1241
sysctl_tcp_rmem);
1242
}
1243
#endif
1244
1245
static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1246
{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1247
.flags = RTNL_FLAG_DOIT_UNLOCKED},
1248
{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1249
.dumpit = rtnl_net_dumpid,
1250
.flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1251
};
1252
1253
void __init net_ns_init(void)
1254
{
1255
struct net_generic *ng;
1256
1257
#ifdef CONFIG_NET_NS
1258
netns_ipv4_struct_check();
1259
net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1260
SMP_CACHE_BYTES,
1261
SLAB_PANIC|SLAB_ACCOUNT, NULL);
1262
1263
/* Create workqueue for cleanup */
1264
netns_wq = create_singlethread_workqueue("netns");
1265
if (!netns_wq)
1266
panic("Could not create netns workq");
1267
#endif
1268
1269
ng = net_alloc_generic();
1270
if (!ng)
1271
panic("Could not allocate generic netns");
1272
1273
rcu_assign_pointer(init_net.gen, ng);
1274
1275
#ifdef CONFIG_KEYS
1276
init_net.key_domain = &init_net_key_domain;
1277
#endif
1278
/*
1279
* This currently cannot fail as the initial network namespace
1280
* has a static inode number.
1281
*/
1282
if (preinit_net(&init_net, &init_user_ns))
1283
panic("Could not preinitialize the initial network namespace");
1284
1285
down_write(&pernet_ops_rwsem);
1286
if (setup_net(&init_net))
1287
panic("Could not setup the initial network namespace");
1288
1289
init_net_initialized = true;
1290
up_write(&pernet_ops_rwsem);
1291
1292
if (register_pernet_subsys(&net_ns_ops))
1293
panic("Could not register network namespace subsystems");
1294
1295
rtnl_register_many(net_ns_rtnl_msg_handlers);
1296
}
1297
1298
#ifdef CONFIG_NET_NS
1299
static int __register_pernet_operations(struct list_head *list,
1300
struct pernet_operations *ops)
1301
{
1302
LIST_HEAD(net_exit_list);
1303
struct net *net;
1304
int error;
1305
1306
list_add_tail(&ops->list, list);
1307
if (ops->init || ops->id) {
1308
/* We held write locked pernet_ops_rwsem, and parallel
1309
* setup_net() and cleanup_net() are not possible.
1310
*/
1311
for_each_net(net) {
1312
error = ops_init(ops, net);
1313
if (error)
1314
goto out_undo;
1315
list_add_tail(&net->exit_list, &net_exit_list);
1316
}
1317
}
1318
return 0;
1319
1320
out_undo:
1321
/* If I have an error cleanup all namespaces I initialized */
1322
list_del(&ops->list);
1323
ops_undo_single(ops, &net_exit_list);
1324
return error;
1325
}
1326
1327
static void __unregister_pernet_operations(struct pernet_operations *ops)
1328
{
1329
LIST_HEAD(net_exit_list);
1330
struct net *net;
1331
1332
/* See comment in __register_pernet_operations() */
1333
for_each_net(net)
1334
list_add_tail(&net->exit_list, &net_exit_list);
1335
1336
list_del(&ops->list);
1337
ops_undo_single(ops, &net_exit_list);
1338
}
1339
1340
#else
1341
1342
static int __register_pernet_operations(struct list_head *list,
1343
struct pernet_operations *ops)
1344
{
1345
if (!init_net_initialized) {
1346
list_add_tail(&ops->list, list);
1347
return 0;
1348
}
1349
1350
return ops_init(ops, &init_net);
1351
}
1352
1353
static void __unregister_pernet_operations(struct pernet_operations *ops)
1354
{
1355
if (!init_net_initialized) {
1356
list_del(&ops->list);
1357
} else {
1358
LIST_HEAD(net_exit_list);
1359
1360
list_add(&init_net.exit_list, &net_exit_list);
1361
ops_undo_single(ops, &net_exit_list);
1362
}
1363
}
1364
1365
#endif /* CONFIG_NET_NS */
1366
1367
static DEFINE_IDA(net_generic_ids);
1368
1369
static int register_pernet_operations(struct list_head *list,
1370
struct pernet_operations *ops)
1371
{
1372
int error;
1373
1374
if (WARN_ON(!!ops->id ^ !!ops->size))
1375
return -EINVAL;
1376
1377
if (ops->id) {
1378
error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1379
GFP_KERNEL);
1380
if (error < 0)
1381
return error;
1382
*ops->id = error;
1383
/* This does not require READ_ONCE as writers already hold
1384
* pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1385
* net_alloc_generic.
1386
*/
1387
WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1388
}
1389
error = __register_pernet_operations(list, ops);
1390
if (error) {
1391
rcu_barrier();
1392
if (ops->id)
1393
ida_free(&net_generic_ids, *ops->id);
1394
}
1395
1396
return error;
1397
}
1398
1399
static void unregister_pernet_operations(struct pernet_operations *ops)
1400
{
1401
__unregister_pernet_operations(ops);
1402
rcu_barrier();
1403
if (ops->id)
1404
ida_free(&net_generic_ids, *ops->id);
1405
}
1406
1407
/**
1408
* register_pernet_subsys - register a network namespace subsystem
1409
* @ops: pernet operations structure for the subsystem
1410
*
1411
* Register a subsystem which has init and exit functions
1412
* that are called when network namespaces are created and
1413
* destroyed respectively.
1414
*
1415
* When registered all network namespace init functions are
1416
* called for every existing network namespace. Allowing kernel
1417
* modules to have a race free view of the set of network namespaces.
1418
*
1419
* When a new network namespace is created all of the init
1420
* methods are called in the order in which they were registered.
1421
*
1422
* When a network namespace is destroyed all of the exit methods
1423
* are called in the reverse of the order with which they were
1424
* registered.
1425
*/
1426
int register_pernet_subsys(struct pernet_operations *ops)
1427
{
1428
int error;
1429
down_write(&pernet_ops_rwsem);
1430
error = register_pernet_operations(first_device, ops);
1431
up_write(&pernet_ops_rwsem);
1432
return error;
1433
}
1434
EXPORT_SYMBOL_GPL(register_pernet_subsys);
1435
1436
/**
1437
* unregister_pernet_subsys - unregister a network namespace subsystem
1438
* @ops: pernet operations structure to manipulate
1439
*
1440
* Remove the pernet operations structure from the list to be
1441
* used when network namespaces are created or destroyed. In
1442
* addition run the exit method for all existing network
1443
* namespaces.
1444
*/
1445
void unregister_pernet_subsys(struct pernet_operations *ops)
1446
{
1447
down_write(&pernet_ops_rwsem);
1448
unregister_pernet_operations(ops);
1449
up_write(&pernet_ops_rwsem);
1450
}
1451
EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1452
1453
/**
1454
* register_pernet_device - register a network namespace device
1455
* @ops: pernet operations structure for the subsystem
1456
*
1457
* Register a device which has init and exit functions
1458
* that are called when network namespaces are created and
1459
* destroyed respectively.
1460
*
1461
* When registered all network namespace init functions are
1462
* called for every existing network namespace. Allowing kernel
1463
* modules to have a race free view of the set of network namespaces.
1464
*
1465
* When a new network namespace is created all of the init
1466
* methods are called in the order in which they were registered.
1467
*
1468
* When a network namespace is destroyed all of the exit methods
1469
* are called in the reverse of the order with which they were
1470
* registered.
1471
*/
1472
int register_pernet_device(struct pernet_operations *ops)
1473
{
1474
int error;
1475
down_write(&pernet_ops_rwsem);
1476
error = register_pernet_operations(&pernet_list, ops);
1477
if (!error && (first_device == &pernet_list))
1478
first_device = &ops->list;
1479
up_write(&pernet_ops_rwsem);
1480
return error;
1481
}
1482
EXPORT_SYMBOL_GPL(register_pernet_device);
1483
1484
/**
1485
* unregister_pernet_device - unregister a network namespace netdevice
1486
* @ops: pernet operations structure to manipulate
1487
*
1488
* Remove the pernet operations structure from the list to be
1489
* used when network namespaces are created or destroyed. In
1490
* addition run the exit method for all existing network
1491
* namespaces.
1492
*/
1493
void unregister_pernet_device(struct pernet_operations *ops)
1494
{
1495
down_write(&pernet_ops_rwsem);
1496
if (&ops->list == first_device)
1497
first_device = first_device->next;
1498
unregister_pernet_operations(ops);
1499
up_write(&pernet_ops_rwsem);
1500
}
1501
EXPORT_SYMBOL_GPL(unregister_pernet_device);
1502
1503
#ifdef CONFIG_NET_NS
1504
static struct ns_common *netns_get(struct task_struct *task)
1505
{
1506
struct net *net = NULL;
1507
struct nsproxy *nsproxy;
1508
1509
task_lock(task);
1510
nsproxy = task->nsproxy;
1511
if (nsproxy)
1512
net = get_net(nsproxy->net_ns);
1513
task_unlock(task);
1514
1515
return net ? &net->ns : NULL;
1516
}
1517
1518
static void netns_put(struct ns_common *ns)
1519
{
1520
put_net(to_net_ns(ns));
1521
}
1522
1523
static int netns_install(struct nsset *nsset, struct ns_common *ns)
1524
{
1525
struct nsproxy *nsproxy = nsset->nsproxy;
1526
struct net *net = to_net_ns(ns);
1527
1528
if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1529
!ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1530
return -EPERM;
1531
1532
put_net(nsproxy->net_ns);
1533
nsproxy->net_ns = get_net(net);
1534
return 0;
1535
}
1536
1537
static struct user_namespace *netns_owner(struct ns_common *ns)
1538
{
1539
return to_net_ns(ns)->user_ns;
1540
}
1541
1542
const struct proc_ns_operations netns_operations = {
1543
.name = "net",
1544
.get = netns_get,
1545
.put = netns_put,
1546
.install = netns_install,
1547
.owner = netns_owner,
1548
};
1549
#endif
1550
1551