Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/dsa/dsa.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* DSA topology and switch handling
4
*
5
* Copyright (c) 2008-2009 Marvell Semiconductor
6
* Copyright (c) 2013 Florian Fainelli <[email protected]>
7
* Copyright (c) 2016 Andrew Lunn <[email protected]>
8
*/
9
10
#include <linux/device.h>
11
#include <linux/err.h>
12
#include <linux/list.h>
13
#include <linux/module.h>
14
#include <linux/netdevice.h>
15
#include <linux/slab.h>
16
#include <linux/rtnetlink.h>
17
#include <linux/of.h>
18
#include <linux/of_net.h>
19
#include <net/dsa_stubs.h>
20
#include <net/sch_generic.h>
21
22
#include "conduit.h"
23
#include "devlink.h"
24
#include "dsa.h"
25
#include "netlink.h"
26
#include "port.h"
27
#include "switch.h"
28
#include "tag.h"
29
#include "user.h"
30
31
#define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
32
33
static DEFINE_MUTEX(dsa2_mutex);
34
LIST_HEAD(dsa_tree_list);
35
36
static struct workqueue_struct *dsa_owq;
37
38
/* Track the bridges with forwarding offload enabled */
39
static unsigned long dsa_fwd_offloading_bridges;
40
41
bool dsa_schedule_work(struct work_struct *work)
42
{
43
return queue_work(dsa_owq, work);
44
}
45
46
void dsa_flush_workqueue(void)
47
{
48
flush_workqueue(dsa_owq);
49
}
50
EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51
52
/**
53
* dsa_lag_map() - Map LAG structure to a linear LAG array
54
* @dst: Tree in which to record the mapping.
55
* @lag: LAG structure that is to be mapped to the tree's array.
56
*
57
* dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58
* two spaces. The size of the mapping space is determined by the
59
* driver by setting ds->num_lag_ids. It is perfectly legal to leave
60
* it unset if it is not needed, in which case these functions become
61
* no-ops.
62
*/
63
void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64
{
65
unsigned int id;
66
67
for (id = 1; id <= dst->lags_len; id++) {
68
if (!dsa_lag_by_id(dst, id)) {
69
dst->lags[id - 1] = lag;
70
lag->id = id;
71
return;
72
}
73
}
74
75
/* No IDs left, which is OK. Some drivers do not need it. The
76
* ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77
* returns an error for this device when joining the LAG. The
78
* driver can then return -EOPNOTSUPP back to DSA, which will
79
* fall back to a software LAG.
80
*/
81
}
82
83
/**
84
* dsa_lag_unmap() - Remove a LAG ID mapping
85
* @dst: Tree in which the mapping is recorded.
86
* @lag: LAG structure that was mapped.
87
*
88
* As there may be multiple users of the mapping, it is only removed
89
* if there are no other references to it.
90
*/
91
void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92
{
93
unsigned int id;
94
95
dsa_lags_foreach_id(id, dst) {
96
if (dsa_lag_by_id(dst, id) == lag) {
97
dst->lags[id - 1] = NULL;
98
lag->id = 0;
99
break;
100
}
101
}
102
}
103
104
struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105
const struct net_device *lag_dev)
106
{
107
struct dsa_port *dp;
108
109
list_for_each_entry(dp, &dst->ports, list)
110
if (dsa_port_lag_dev_get(dp) == lag_dev)
111
return dp->lag;
112
113
return NULL;
114
}
115
116
struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117
const struct net_device *br)
118
{
119
struct dsa_port *dp;
120
121
list_for_each_entry(dp, &dst->ports, list)
122
if (dsa_port_bridge_dev_get(dp) == br)
123
return dp->bridge;
124
125
return NULL;
126
}
127
128
static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129
{
130
struct dsa_switch_tree *dst;
131
132
list_for_each_entry(dst, &dsa_tree_list, list) {
133
struct dsa_bridge *bridge;
134
135
bridge = dsa_tree_bridge_find(dst, bridge_dev);
136
if (bridge)
137
return bridge->num;
138
}
139
140
return 0;
141
}
142
143
unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144
{
145
unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146
147
/* Switches without FDB isolation support don't get unique
148
* bridge numbering
149
*/
150
if (!max)
151
return 0;
152
153
if (!bridge_num) {
154
/* First port that requests FDB isolation or TX forwarding
155
* offload for this bridge
156
*/
157
bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158
DSA_MAX_NUM_OFFLOADING_BRIDGES,
159
1);
160
if (bridge_num >= max)
161
return 0;
162
163
set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164
}
165
166
return bridge_num;
167
}
168
169
void dsa_bridge_num_put(const struct net_device *bridge_dev,
170
unsigned int bridge_num)
171
{
172
/* Since we refcount bridges, we know that when we call this function
173
* it is no longer in use, so we can just go ahead and remove it from
174
* the bit mask.
175
*/
176
clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177
}
178
179
struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180
{
181
struct dsa_switch_tree *dst;
182
struct dsa_port *dp;
183
184
list_for_each_entry(dst, &dsa_tree_list, list) {
185
if (dst->index != tree_index)
186
continue;
187
188
list_for_each_entry(dp, &dst->ports, list) {
189
if (dp->ds->index != sw_index)
190
continue;
191
192
return dp->ds;
193
}
194
}
195
196
return NULL;
197
}
198
EXPORT_SYMBOL_GPL(dsa_switch_find);
199
200
static struct dsa_switch_tree *dsa_tree_find(int index)
201
{
202
struct dsa_switch_tree *dst;
203
204
list_for_each_entry(dst, &dsa_tree_list, list)
205
if (dst->index == index)
206
return dst;
207
208
return NULL;
209
}
210
211
static struct dsa_switch_tree *dsa_tree_alloc(int index)
212
{
213
struct dsa_switch_tree *dst;
214
215
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216
if (!dst)
217
return NULL;
218
219
dst->index = index;
220
221
INIT_LIST_HEAD(&dst->rtable);
222
223
INIT_LIST_HEAD(&dst->ports);
224
225
INIT_LIST_HEAD(&dst->list);
226
list_add_tail(&dst->list, &dsa_tree_list);
227
228
kref_init(&dst->refcount);
229
230
return dst;
231
}
232
233
static void dsa_tree_free(struct dsa_switch_tree *dst)
234
{
235
if (dst->tag_ops)
236
dsa_tag_driver_put(dst->tag_ops);
237
list_del(&dst->list);
238
kfree(dst);
239
}
240
241
static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242
{
243
if (dst)
244
kref_get(&dst->refcount);
245
246
return dst;
247
}
248
249
static struct dsa_switch_tree *dsa_tree_touch(int index)
250
{
251
struct dsa_switch_tree *dst;
252
253
dst = dsa_tree_find(index);
254
if (dst)
255
return dsa_tree_get(dst);
256
else
257
return dsa_tree_alloc(index);
258
}
259
260
static void dsa_tree_release(struct kref *ref)
261
{
262
struct dsa_switch_tree *dst;
263
264
dst = container_of(ref, struct dsa_switch_tree, refcount);
265
266
dsa_tree_free(dst);
267
}
268
269
static void dsa_tree_put(struct dsa_switch_tree *dst)
270
{
271
if (dst)
272
kref_put(&dst->refcount, dsa_tree_release);
273
}
274
275
static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276
struct device_node *dn)
277
{
278
struct dsa_port *dp;
279
280
list_for_each_entry(dp, &dst->ports, list)
281
if (dp->dn == dn)
282
return dp;
283
284
return NULL;
285
}
286
287
static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288
struct dsa_port *link_dp)
289
{
290
struct dsa_switch *ds = dp->ds;
291
struct dsa_switch_tree *dst;
292
struct dsa_link *dl;
293
294
dst = ds->dst;
295
296
list_for_each_entry(dl, &dst->rtable, list)
297
if (dl->dp == dp && dl->link_dp == link_dp)
298
return dl;
299
300
dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301
if (!dl)
302
return NULL;
303
304
dl->dp = dp;
305
dl->link_dp = link_dp;
306
307
INIT_LIST_HEAD(&dl->list);
308
list_add_tail(&dl->list, &dst->rtable);
309
310
return dl;
311
}
312
313
static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314
{
315
struct dsa_switch *ds = dp->ds;
316
struct dsa_switch_tree *dst = ds->dst;
317
struct device_node *dn = dp->dn;
318
struct of_phandle_iterator it;
319
struct dsa_port *link_dp;
320
struct dsa_link *dl;
321
int err;
322
323
of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324
link_dp = dsa_tree_find_port_by_node(dst, it.node);
325
if (!link_dp) {
326
of_node_put(it.node);
327
return false;
328
}
329
330
dl = dsa_link_touch(dp, link_dp);
331
if (!dl) {
332
of_node_put(it.node);
333
return false;
334
}
335
}
336
337
return true;
338
}
339
340
static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341
{
342
bool complete = true;
343
struct dsa_port *dp;
344
345
list_for_each_entry(dp, &dst->ports, list) {
346
if (dsa_port_is_dsa(dp)) {
347
complete = dsa_port_setup_routing_table(dp);
348
if (!complete)
349
break;
350
}
351
}
352
353
return complete;
354
}
355
356
static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357
{
358
struct dsa_port *dp;
359
360
list_for_each_entry(dp, &dst->ports, list)
361
if (dsa_port_is_cpu(dp))
362
return dp;
363
364
return NULL;
365
}
366
367
struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
368
{
369
struct device_node *ethernet;
370
struct net_device *conduit;
371
struct dsa_port *cpu_dp;
372
373
cpu_dp = dsa_tree_find_first_cpu(dst);
374
ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375
conduit = of_find_net_device_by_node(ethernet);
376
of_node_put(ethernet);
377
378
return conduit;
379
}
380
381
/* Assign the default CPU port (the first one in the tree) to all ports of the
382
* fabric which don't already have one as part of their own switch.
383
*/
384
static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385
{
386
struct dsa_port *cpu_dp, *dp;
387
388
cpu_dp = dsa_tree_find_first_cpu(dst);
389
if (!cpu_dp) {
390
pr_err("DSA: tree %d has no CPU port\n", dst->index);
391
return -EINVAL;
392
}
393
394
list_for_each_entry(dp, &dst->ports, list) {
395
if (dp->cpu_dp)
396
continue;
397
398
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399
dp->cpu_dp = cpu_dp;
400
}
401
402
return 0;
403
}
404
405
static struct dsa_port *
406
dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
407
{
408
struct dsa_port *cpu_dp;
409
410
if (!ds->ops->preferred_default_local_cpu_port)
411
return NULL;
412
413
cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
414
if (!cpu_dp)
415
return NULL;
416
417
if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
418
return NULL;
419
420
return cpu_dp;
421
}
422
423
/* Perform initial assignment of CPU ports to user ports and DSA links in the
424
* fabric, giving preference to CPU ports local to each switch. Default to
425
* using the first CPU port in the switch tree if the port does not have a CPU
426
* port local to this switch.
427
*/
428
static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
429
{
430
struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
431
432
list_for_each_entry(cpu_dp, &dst->ports, list) {
433
if (!dsa_port_is_cpu(cpu_dp))
434
continue;
435
436
preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
437
if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
438
continue;
439
440
/* Prefer a local CPU port */
441
dsa_switch_for_each_port(dp, cpu_dp->ds) {
442
/* Prefer the first local CPU port found */
443
if (dp->cpu_dp)
444
continue;
445
446
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
447
dp->cpu_dp = cpu_dp;
448
}
449
}
450
451
return dsa_tree_setup_default_cpu(dst);
452
}
453
454
static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
455
{
456
struct dsa_port *dp;
457
458
list_for_each_entry(dp, &dst->ports, list)
459
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
460
dp->cpu_dp = NULL;
461
}
462
463
static int dsa_port_setup(struct dsa_port *dp)
464
{
465
bool dsa_port_link_registered = false;
466
struct dsa_switch *ds = dp->ds;
467
bool dsa_port_enabled = false;
468
int err = 0;
469
470
if (dp->setup)
471
return 0;
472
473
err = dsa_port_devlink_setup(dp);
474
if (err)
475
return err;
476
477
switch (dp->type) {
478
case DSA_PORT_TYPE_UNUSED:
479
dsa_port_disable(dp);
480
break;
481
case DSA_PORT_TYPE_CPU:
482
if (dp->dn) {
483
err = dsa_shared_port_link_register_of(dp);
484
if (err)
485
break;
486
dsa_port_link_registered = true;
487
} else {
488
dev_warn(ds->dev,
489
"skipping link registration for CPU port %d\n",
490
dp->index);
491
}
492
493
err = dsa_port_enable(dp, NULL);
494
if (err)
495
break;
496
dsa_port_enabled = true;
497
498
break;
499
case DSA_PORT_TYPE_DSA:
500
if (dp->dn) {
501
err = dsa_shared_port_link_register_of(dp);
502
if (err)
503
break;
504
dsa_port_link_registered = true;
505
} else {
506
dev_warn(ds->dev,
507
"skipping link registration for DSA port %d\n",
508
dp->index);
509
}
510
511
err = dsa_port_enable(dp, NULL);
512
if (err)
513
break;
514
dsa_port_enabled = true;
515
516
break;
517
case DSA_PORT_TYPE_USER:
518
of_get_mac_address(dp->dn, dp->mac);
519
err = dsa_user_create(dp);
520
break;
521
}
522
523
if (err && dsa_port_enabled)
524
dsa_port_disable(dp);
525
if (err && dsa_port_link_registered)
526
dsa_shared_port_link_unregister_of(dp);
527
if (err) {
528
dsa_port_devlink_teardown(dp);
529
return err;
530
}
531
532
dp->setup = true;
533
534
return 0;
535
}
536
537
static void dsa_port_teardown(struct dsa_port *dp)
538
{
539
if (!dp->setup)
540
return;
541
542
switch (dp->type) {
543
case DSA_PORT_TYPE_UNUSED:
544
break;
545
case DSA_PORT_TYPE_CPU:
546
dsa_port_disable(dp);
547
if (dp->dn)
548
dsa_shared_port_link_unregister_of(dp);
549
break;
550
case DSA_PORT_TYPE_DSA:
551
dsa_port_disable(dp);
552
if (dp->dn)
553
dsa_shared_port_link_unregister_of(dp);
554
break;
555
case DSA_PORT_TYPE_USER:
556
if (dp->user) {
557
dsa_user_destroy(dp->user);
558
dp->user = NULL;
559
}
560
break;
561
}
562
563
dsa_port_devlink_teardown(dp);
564
565
dp->setup = false;
566
}
567
568
static int dsa_port_setup_as_unused(struct dsa_port *dp)
569
{
570
dp->type = DSA_PORT_TYPE_UNUSED;
571
return dsa_port_setup(dp);
572
}
573
574
static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
575
{
576
const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
577
struct dsa_switch_tree *dst = ds->dst;
578
int err;
579
580
if (tag_ops->proto == dst->default_proto)
581
goto connect;
582
583
rtnl_lock();
584
err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
585
rtnl_unlock();
586
if (err) {
587
dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
588
tag_ops->name, ERR_PTR(err));
589
return err;
590
}
591
592
connect:
593
if (tag_ops->connect) {
594
err = tag_ops->connect(ds);
595
if (err)
596
return err;
597
}
598
599
if (ds->ops->connect_tag_protocol) {
600
err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
601
if (err) {
602
dev_err(ds->dev,
603
"Unable to connect to tag protocol \"%s\": %pe\n",
604
tag_ops->name, ERR_PTR(err));
605
goto disconnect;
606
}
607
}
608
609
return 0;
610
611
disconnect:
612
if (tag_ops->disconnect)
613
tag_ops->disconnect(ds);
614
615
return err;
616
}
617
618
static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
619
{
620
const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
621
622
if (tag_ops->disconnect)
623
tag_ops->disconnect(ds);
624
}
625
626
static int dsa_switch_setup(struct dsa_switch *ds)
627
{
628
int err;
629
630
if (ds->setup)
631
return 0;
632
633
/* Initialize ds->phys_mii_mask before registering the user MDIO bus
634
* driver and before ops->setup() has run, since the switch drivers and
635
* the user MDIO bus driver rely on these values for probing PHY
636
* devices or not
637
*/
638
ds->phys_mii_mask |= dsa_user_ports(ds);
639
640
err = dsa_switch_devlink_alloc(ds);
641
if (err)
642
return err;
643
644
err = dsa_switch_register_notifier(ds);
645
if (err)
646
goto devlink_free;
647
648
ds->configure_vlan_while_not_filtering = true;
649
650
err = ds->ops->setup(ds);
651
if (err < 0)
652
goto unregister_notifier;
653
654
err = dsa_switch_setup_tag_protocol(ds);
655
if (err)
656
goto teardown;
657
658
if (!ds->user_mii_bus && ds->ops->phy_read) {
659
ds->user_mii_bus = mdiobus_alloc();
660
if (!ds->user_mii_bus) {
661
err = -ENOMEM;
662
goto teardown;
663
}
664
665
dsa_user_mii_bus_init(ds);
666
667
err = mdiobus_register(ds->user_mii_bus);
668
if (err < 0)
669
goto free_user_mii_bus;
670
}
671
672
dsa_switch_devlink_register(ds);
673
674
ds->setup = true;
675
return 0;
676
677
free_user_mii_bus:
678
if (ds->user_mii_bus && ds->ops->phy_read)
679
mdiobus_free(ds->user_mii_bus);
680
teardown:
681
if (ds->ops->teardown)
682
ds->ops->teardown(ds);
683
unregister_notifier:
684
dsa_switch_unregister_notifier(ds);
685
devlink_free:
686
dsa_switch_devlink_free(ds);
687
return err;
688
}
689
690
static void dsa_switch_teardown(struct dsa_switch *ds)
691
{
692
if (!ds->setup)
693
return;
694
695
dsa_switch_devlink_unregister(ds);
696
697
if (ds->user_mii_bus && ds->ops->phy_read) {
698
mdiobus_unregister(ds->user_mii_bus);
699
mdiobus_free(ds->user_mii_bus);
700
ds->user_mii_bus = NULL;
701
}
702
703
dsa_switch_teardown_tag_protocol(ds);
704
705
if (ds->ops->teardown)
706
ds->ops->teardown(ds);
707
708
dsa_switch_unregister_notifier(ds);
709
710
dsa_switch_devlink_free(ds);
711
712
ds->setup = false;
713
}
714
715
/* First tear down the non-shared, then the shared ports. This ensures that
716
* all work items scheduled by our switchdev handlers for user ports have
717
* completed before we destroy the refcounting kept on the shared ports.
718
*/
719
static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
720
{
721
struct dsa_port *dp;
722
723
list_for_each_entry(dp, &dst->ports, list)
724
if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
725
dsa_port_teardown(dp);
726
727
dsa_flush_workqueue();
728
729
list_for_each_entry(dp, &dst->ports, list)
730
if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
731
dsa_port_teardown(dp);
732
}
733
734
static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
735
{
736
struct dsa_port *dp;
737
738
list_for_each_entry(dp, &dst->ports, list)
739
dsa_switch_teardown(dp->ds);
740
}
741
742
/* Bring shared ports up first, then non-shared ports */
743
static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
744
{
745
struct dsa_port *dp;
746
int err = 0;
747
748
list_for_each_entry(dp, &dst->ports, list) {
749
if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
750
err = dsa_port_setup(dp);
751
if (err)
752
goto teardown;
753
}
754
}
755
756
list_for_each_entry(dp, &dst->ports, list) {
757
if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
758
err = dsa_port_setup(dp);
759
if (err) {
760
err = dsa_port_setup_as_unused(dp);
761
if (err)
762
goto teardown;
763
}
764
}
765
}
766
767
return 0;
768
769
teardown:
770
dsa_tree_teardown_ports(dst);
771
772
return err;
773
}
774
775
static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
776
{
777
struct dsa_port *dp;
778
int err = 0;
779
780
list_for_each_entry(dp, &dst->ports, list) {
781
err = dsa_switch_setup(dp->ds);
782
if (err) {
783
dsa_tree_teardown_switches(dst);
784
break;
785
}
786
}
787
788
return err;
789
}
790
791
static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
792
{
793
struct dsa_port *cpu_dp;
794
int err = 0;
795
796
rtnl_lock();
797
798
dsa_tree_for_each_cpu_port(cpu_dp, dst) {
799
struct net_device *conduit = cpu_dp->conduit;
800
bool admin_up = (conduit->flags & IFF_UP) &&
801
!qdisc_tx_is_noop(conduit);
802
803
err = dsa_conduit_setup(conduit, cpu_dp);
804
if (err)
805
break;
806
807
/* Replay conduit state event */
808
dsa_tree_conduit_admin_state_change(dst, conduit, admin_up);
809
dsa_tree_conduit_oper_state_change(dst, conduit,
810
netif_oper_up(conduit));
811
}
812
813
rtnl_unlock();
814
815
return err;
816
}
817
818
static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
819
{
820
struct dsa_port *cpu_dp;
821
822
rtnl_lock();
823
824
dsa_tree_for_each_cpu_port(cpu_dp, dst) {
825
struct net_device *conduit = cpu_dp->conduit;
826
827
/* Synthesizing an "admin down" state is sufficient for
828
* the switches to get a notification if the conduit is
829
* currently up and running.
830
*/
831
dsa_tree_conduit_admin_state_change(dst, conduit, false);
832
833
dsa_conduit_teardown(conduit);
834
}
835
836
rtnl_unlock();
837
}
838
839
static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
840
{
841
unsigned int len = 0;
842
struct dsa_port *dp;
843
844
list_for_each_entry(dp, &dst->ports, list) {
845
if (dp->ds->num_lag_ids > len)
846
len = dp->ds->num_lag_ids;
847
}
848
849
if (!len)
850
return 0;
851
852
dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
853
if (!dst->lags)
854
return -ENOMEM;
855
856
dst->lags_len = len;
857
return 0;
858
}
859
860
static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
861
{
862
kfree(dst->lags);
863
}
864
865
static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst)
866
{
867
struct dsa_link *dl, *next;
868
869
list_for_each_entry_safe(dl, next, &dst->rtable, list) {
870
list_del(&dl->list);
871
kfree(dl);
872
}
873
}
874
875
static int dsa_tree_setup(struct dsa_switch_tree *dst)
876
{
877
bool complete;
878
int err;
879
880
if (dst->setup) {
881
pr_err("DSA: tree %d already setup! Disjoint trees?\n",
882
dst->index);
883
return -EEXIST;
884
}
885
886
complete = dsa_tree_setup_routing_table(dst);
887
if (!complete)
888
return 0;
889
890
err = dsa_tree_setup_cpu_ports(dst);
891
if (err)
892
goto teardown_rtable;
893
894
err = dsa_tree_setup_switches(dst);
895
if (err)
896
goto teardown_cpu_ports;
897
898
err = dsa_tree_setup_ports(dst);
899
if (err)
900
goto teardown_switches;
901
902
err = dsa_tree_setup_conduit(dst);
903
if (err)
904
goto teardown_ports;
905
906
err = dsa_tree_setup_lags(dst);
907
if (err)
908
goto teardown_conduit;
909
910
dst->setup = true;
911
912
pr_info("DSA: tree %d setup\n", dst->index);
913
914
return 0;
915
916
teardown_conduit:
917
dsa_tree_teardown_conduit(dst);
918
teardown_ports:
919
dsa_tree_teardown_ports(dst);
920
teardown_switches:
921
dsa_tree_teardown_switches(dst);
922
teardown_cpu_ports:
923
dsa_tree_teardown_cpu_ports(dst);
924
teardown_rtable:
925
dsa_tree_teardown_routing_table(dst);
926
927
return err;
928
}
929
930
static void dsa_tree_teardown(struct dsa_switch_tree *dst)
931
{
932
if (!dst->setup)
933
return;
934
935
dsa_tree_teardown_lags(dst);
936
937
dsa_tree_teardown_conduit(dst);
938
939
dsa_tree_teardown_ports(dst);
940
941
dsa_tree_teardown_switches(dst);
942
943
dsa_tree_teardown_cpu_ports(dst);
944
945
dsa_tree_teardown_routing_table(dst);
946
947
pr_info("DSA: tree %d torn down\n", dst->index);
948
949
dst->setup = false;
950
}
951
952
static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
953
const struct dsa_device_ops *tag_ops)
954
{
955
const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
956
struct dsa_notifier_tag_proto_info info;
957
int err;
958
959
dst->tag_ops = tag_ops;
960
961
/* Notify the switches from this tree about the connection
962
* to the new tagger
963
*/
964
info.tag_ops = tag_ops;
965
err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
966
if (err && err != -EOPNOTSUPP)
967
goto out_disconnect;
968
969
/* Notify the old tagger about the disconnection from this tree */
970
info.tag_ops = old_tag_ops;
971
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
972
973
return 0;
974
975
out_disconnect:
976
info.tag_ops = tag_ops;
977
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
978
dst->tag_ops = old_tag_ops;
979
980
return err;
981
}
982
983
/* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
984
* is that all DSA switches within a tree share the same tagger, otherwise
985
* they would have formed disjoint trees (different "dsa,member" values).
986
*/
987
int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
988
const struct dsa_device_ops *tag_ops,
989
const struct dsa_device_ops *old_tag_ops)
990
{
991
struct dsa_notifier_tag_proto_info info;
992
struct dsa_port *dp;
993
int err = -EBUSY;
994
995
if (!rtnl_trylock())
996
return restart_syscall();
997
998
/* At the moment we don't allow changing the tag protocol under
999
* traffic. The rtnl_mutex also happens to serialize concurrent
1000
* attempts to change the tagging protocol. If we ever lift the IFF_UP
1001
* restriction, there needs to be another mutex which serializes this.
1002
*/
1003
dsa_tree_for_each_user_port(dp, dst) {
1004
if (dsa_port_to_conduit(dp)->flags & IFF_UP)
1005
goto out_unlock;
1006
1007
if (dp->user->flags & IFF_UP)
1008
goto out_unlock;
1009
}
1010
1011
/* Notify the tag protocol change */
1012
info.tag_ops = tag_ops;
1013
err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1014
if (err)
1015
goto out_unwind_tagger;
1016
1017
err = dsa_tree_bind_tag_proto(dst, tag_ops);
1018
if (err)
1019
goto out_unwind_tagger;
1020
1021
rtnl_unlock();
1022
1023
return 0;
1024
1025
out_unwind_tagger:
1026
info.tag_ops = old_tag_ops;
1027
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1028
out_unlock:
1029
rtnl_unlock();
1030
return err;
1031
}
1032
1033
static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1034
struct net_device *conduit)
1035
{
1036
struct dsa_notifier_conduit_state_info info;
1037
struct dsa_port *cpu_dp = conduit->dsa_ptr;
1038
1039
info.conduit = conduit;
1040
info.operational = dsa_port_conduit_is_operational(cpu_dp);
1041
1042
dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info);
1043
}
1044
1045
void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1046
struct net_device *conduit,
1047
bool up)
1048
{
1049
struct dsa_port *cpu_dp = conduit->dsa_ptr;
1050
bool notify = false;
1051
1052
/* Don't keep track of admin state on LAG DSA conduits,
1053
* but rather just of physical DSA conduits
1054
*/
1055
if (netif_is_lag_master(conduit))
1056
return;
1057
1058
if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1059
(up && cpu_dp->conduit_oper_up))
1060
notify = true;
1061
1062
cpu_dp->conduit_admin_up = up;
1063
1064
if (notify)
1065
dsa_tree_conduit_state_change(dst, conduit);
1066
}
1067
1068
void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1069
struct net_device *conduit,
1070
bool up)
1071
{
1072
struct dsa_port *cpu_dp = conduit->dsa_ptr;
1073
bool notify = false;
1074
1075
/* Don't keep track of oper state on LAG DSA conduits,
1076
* but rather just of physical DSA conduits
1077
*/
1078
if (netif_is_lag_master(conduit))
1079
return;
1080
1081
if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1082
(cpu_dp->conduit_admin_up && up))
1083
notify = true;
1084
1085
cpu_dp->conduit_oper_up = up;
1086
1087
if (notify)
1088
dsa_tree_conduit_state_change(dst, conduit);
1089
}
1090
1091
static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1092
{
1093
struct dsa_switch_tree *dst = ds->dst;
1094
struct dsa_port *dp;
1095
1096
dsa_switch_for_each_port(dp, ds)
1097
if (dp->index == index)
1098
return dp;
1099
1100
dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1101
if (!dp)
1102
return NULL;
1103
1104
dp->ds = ds;
1105
dp->index = index;
1106
1107
mutex_init(&dp->addr_lists_lock);
1108
mutex_init(&dp->vlans_lock);
1109
INIT_LIST_HEAD(&dp->fdbs);
1110
INIT_LIST_HEAD(&dp->mdbs);
1111
INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1112
INIT_LIST_HEAD(&dp->list);
1113
list_add_tail(&dp->list, &dst->ports);
1114
1115
return dp;
1116
}
1117
1118
static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1119
{
1120
dp->type = DSA_PORT_TYPE_USER;
1121
dp->name = name;
1122
1123
return 0;
1124
}
1125
1126
static int dsa_port_parse_dsa(struct dsa_port *dp)
1127
{
1128
dp->type = DSA_PORT_TYPE_DSA;
1129
1130
return 0;
1131
}
1132
1133
static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1134
struct net_device *conduit)
1135
{
1136
enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1137
struct dsa_switch *mds, *ds = dp->ds;
1138
unsigned int mdp_upstream;
1139
struct dsa_port *mdp;
1140
1141
/* It is possible to stack DSA switches onto one another when that
1142
* happens the switch driver may want to know if its tagging protocol
1143
* is going to work in such a configuration.
1144
*/
1145
if (dsa_user_dev_check(conduit)) {
1146
mdp = dsa_user_to_port(conduit);
1147
mds = mdp->ds;
1148
mdp_upstream = dsa_upstream_port(mds, mdp->index);
1149
tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1150
DSA_TAG_PROTO_NONE);
1151
}
1152
1153
/* If the conduit device is not itself a DSA user in a disjoint DSA
1154
* tree, then return immediately.
1155
*/
1156
return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1157
}
1158
1159
static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1160
const char *user_protocol)
1161
{
1162
const struct dsa_device_ops *tag_ops = NULL;
1163
struct dsa_switch *ds = dp->ds;
1164
struct dsa_switch_tree *dst = ds->dst;
1165
enum dsa_tag_protocol default_proto;
1166
1167
/* Find out which protocol the switch would prefer. */
1168
default_proto = dsa_get_tag_protocol(dp, conduit);
1169
if (dst->default_proto) {
1170
if (dst->default_proto != default_proto) {
1171
dev_err(ds->dev,
1172
"A DSA switch tree can have only one tagging protocol\n");
1173
return -EINVAL;
1174
}
1175
} else {
1176
dst->default_proto = default_proto;
1177
}
1178
1179
/* See if the user wants to override that preference. */
1180
if (user_protocol) {
1181
if (!ds->ops->change_tag_protocol) {
1182
dev_err(ds->dev, "Tag protocol cannot be modified\n");
1183
return -EINVAL;
1184
}
1185
1186
tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1187
if (IS_ERR(tag_ops)) {
1188
dev_warn(ds->dev,
1189
"Failed to find a tagging driver for protocol %s, using default\n",
1190
user_protocol);
1191
tag_ops = NULL;
1192
}
1193
}
1194
1195
if (!tag_ops)
1196
tag_ops = dsa_tag_driver_get_by_id(default_proto);
1197
1198
if (IS_ERR(tag_ops)) {
1199
if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1200
return -EPROBE_DEFER;
1201
1202
dev_warn(ds->dev, "No tagger for this switch\n");
1203
return PTR_ERR(tag_ops);
1204
}
1205
1206
if (dst->tag_ops) {
1207
if (dst->tag_ops != tag_ops) {
1208
dev_err(ds->dev,
1209
"A DSA switch tree can have only one tagging protocol\n");
1210
1211
dsa_tag_driver_put(tag_ops);
1212
return -EINVAL;
1213
}
1214
1215
/* In the case of multiple CPU ports per switch, the tagging
1216
* protocol is still reference-counted only per switch tree.
1217
*/
1218
dsa_tag_driver_put(tag_ops);
1219
} else {
1220
dst->tag_ops = tag_ops;
1221
}
1222
1223
dp->conduit = conduit;
1224
dp->type = DSA_PORT_TYPE_CPU;
1225
dsa_port_set_tag_protocol(dp, dst->tag_ops);
1226
dp->dst = dst;
1227
1228
/* At this point, the tree may be configured to use a different
1229
* tagger than the one chosen by the switch driver during
1230
* .setup, in the case when a user selects a custom protocol
1231
* through the DT.
1232
*
1233
* This is resolved by syncing the driver with the tree in
1234
* dsa_switch_setup_tag_protocol once .setup has run and the
1235
* driver is ready to accept calls to .change_tag_protocol. If
1236
* the driver does not support the custom protocol at that
1237
* point, the tree is wholly rejected, thereby ensuring that the
1238
* tree and driver are always in agreement on the protocol to
1239
* use.
1240
*/
1241
return 0;
1242
}
1243
1244
static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1245
{
1246
struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1247
const char *name = of_get_property(dn, "label", NULL);
1248
bool link = of_property_read_bool(dn, "link");
1249
1250
dp->dn = dn;
1251
1252
if (ethernet) {
1253
struct net_device *conduit;
1254
const char *user_protocol;
1255
1256
conduit = of_find_net_device_by_node(ethernet);
1257
of_node_put(ethernet);
1258
if (!conduit)
1259
return -EPROBE_DEFER;
1260
1261
user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1262
return dsa_port_parse_cpu(dp, conduit, user_protocol);
1263
}
1264
1265
if (link)
1266
return dsa_port_parse_dsa(dp);
1267
1268
return dsa_port_parse_user(dp, name);
1269
}
1270
1271
static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1272
struct device_node *dn)
1273
{
1274
struct device_node *ports, *port;
1275
struct dsa_port *dp;
1276
int err = 0;
1277
u32 reg;
1278
1279
ports = of_get_child_by_name(dn, "ports");
1280
if (!ports) {
1281
/* The second possibility is "ethernet-ports" */
1282
ports = of_get_child_by_name(dn, "ethernet-ports");
1283
if (!ports) {
1284
dev_err(ds->dev, "no ports child node found\n");
1285
return -EINVAL;
1286
}
1287
}
1288
1289
for_each_available_child_of_node(ports, port) {
1290
err = of_property_read_u32(port, "reg", &reg);
1291
if (err) {
1292
of_node_put(port);
1293
goto out_put_node;
1294
}
1295
1296
if (reg >= ds->num_ports) {
1297
dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1298
port, reg, ds->num_ports);
1299
of_node_put(port);
1300
err = -EINVAL;
1301
goto out_put_node;
1302
}
1303
1304
dp = dsa_to_port(ds, reg);
1305
1306
err = dsa_port_parse_of(dp, port);
1307
if (err) {
1308
of_node_put(port);
1309
goto out_put_node;
1310
}
1311
}
1312
1313
out_put_node:
1314
of_node_put(ports);
1315
return err;
1316
}
1317
1318
static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1319
struct device_node *dn)
1320
{
1321
u32 m[2] = { 0, 0 };
1322
int sz;
1323
1324
/* Don't error out if this optional property isn't found */
1325
sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1326
if (sz < 0 && sz != -EINVAL)
1327
return sz;
1328
1329
ds->index = m[1];
1330
1331
ds->dst = dsa_tree_touch(m[0]);
1332
if (!ds->dst)
1333
return -ENOMEM;
1334
1335
if (dsa_switch_find(ds->dst->index, ds->index)) {
1336
dev_err(ds->dev,
1337
"A DSA switch with index %d already exists in tree %d\n",
1338
ds->index, ds->dst->index);
1339
return -EEXIST;
1340
}
1341
1342
if (ds->dst->last_switch < ds->index)
1343
ds->dst->last_switch = ds->index;
1344
1345
return 0;
1346
}
1347
1348
static int dsa_switch_touch_ports(struct dsa_switch *ds)
1349
{
1350
struct dsa_port *dp;
1351
int port;
1352
1353
for (port = 0; port < ds->num_ports; port++) {
1354
dp = dsa_port_touch(ds, port);
1355
if (!dp)
1356
return -ENOMEM;
1357
}
1358
1359
return 0;
1360
}
1361
1362
static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1363
{
1364
int err;
1365
1366
err = dsa_switch_parse_member_of(ds, dn);
1367
if (err)
1368
return err;
1369
1370
err = dsa_switch_touch_ports(ds);
1371
if (err)
1372
return err;
1373
1374
return dsa_switch_parse_ports_of(ds, dn);
1375
}
1376
1377
static int dev_is_class(struct device *dev, const void *class)
1378
{
1379
if (dev->class != NULL && !strcmp(dev->class->name, class))
1380
return 1;
1381
1382
return 0;
1383
}
1384
1385
static struct device *dev_find_class(struct device *parent, char *class)
1386
{
1387
if (dev_is_class(parent, class)) {
1388
get_device(parent);
1389
return parent;
1390
}
1391
1392
return device_find_child(parent, class, dev_is_class);
1393
}
1394
1395
static struct net_device *dsa_dev_to_net_device(struct device *dev)
1396
{
1397
struct device *d;
1398
1399
d = dev_find_class(dev, "net");
1400
if (d != NULL) {
1401
struct net_device *nd;
1402
1403
nd = to_net_dev(d);
1404
dev_hold(nd);
1405
put_device(d);
1406
1407
return nd;
1408
}
1409
1410
return NULL;
1411
}
1412
1413
static int dsa_port_parse(struct dsa_port *dp, const char *name,
1414
struct device *dev)
1415
{
1416
if (!strcmp(name, "cpu")) {
1417
struct net_device *conduit;
1418
1419
conduit = dsa_dev_to_net_device(dev);
1420
if (!conduit)
1421
return -EPROBE_DEFER;
1422
1423
dev_put(conduit);
1424
1425
return dsa_port_parse_cpu(dp, conduit, NULL);
1426
}
1427
1428
if (!strcmp(name, "dsa"))
1429
return dsa_port_parse_dsa(dp);
1430
1431
return dsa_port_parse_user(dp, name);
1432
}
1433
1434
static int dsa_switch_parse_ports(struct dsa_switch *ds,
1435
struct dsa_chip_data *cd)
1436
{
1437
bool valid_name_found = false;
1438
struct dsa_port *dp;
1439
struct device *dev;
1440
const char *name;
1441
unsigned int i;
1442
int err;
1443
1444
for (i = 0; i < DSA_MAX_PORTS; i++) {
1445
name = cd->port_names[i];
1446
dev = cd->netdev[i];
1447
dp = dsa_to_port(ds, i);
1448
1449
if (!name)
1450
continue;
1451
1452
err = dsa_port_parse(dp, name, dev);
1453
if (err)
1454
return err;
1455
1456
valid_name_found = true;
1457
}
1458
1459
if (!valid_name_found && i == DSA_MAX_PORTS)
1460
return -EINVAL;
1461
1462
return 0;
1463
}
1464
1465
static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1466
{
1467
int err;
1468
1469
ds->cd = cd;
1470
1471
/* We don't support interconnected switches nor multiple trees via
1472
* platform data, so this is the unique switch of the tree.
1473
*/
1474
ds->index = 0;
1475
ds->dst = dsa_tree_touch(0);
1476
if (!ds->dst)
1477
return -ENOMEM;
1478
1479
err = dsa_switch_touch_ports(ds);
1480
if (err)
1481
return err;
1482
1483
return dsa_switch_parse_ports(ds, cd);
1484
}
1485
1486
static void dsa_switch_release_ports(struct dsa_switch *ds)
1487
{
1488
struct dsa_mac_addr *a, *tmp;
1489
struct dsa_port *dp, *next;
1490
struct dsa_vlan *v, *n;
1491
1492
dsa_switch_for_each_port_safe(dp, next, ds) {
1493
/* These are either entries that upper layers lost track of
1494
* (probably due to bugs), or installed through interfaces
1495
* where one does not necessarily have to remove them, like
1496
* ndo_dflt_fdb_add().
1497
*/
1498
list_for_each_entry_safe(a, tmp, &dp->fdbs, list) {
1499
dev_info(ds->dev,
1500
"Cleaning up unicast address %pM vid %u from port %d\n",
1501
a->addr, a->vid, dp->index);
1502
list_del(&a->list);
1503
kfree(a);
1504
}
1505
1506
list_for_each_entry_safe(a, tmp, &dp->mdbs, list) {
1507
dev_info(ds->dev,
1508
"Cleaning up multicast address %pM vid %u from port %d\n",
1509
a->addr, a->vid, dp->index);
1510
list_del(&a->list);
1511
kfree(a);
1512
}
1513
1514
/* These are entries that upper layers have lost track of,
1515
* probably due to bugs, but also due to dsa_port_do_vlan_del()
1516
* having failed and the VLAN entry still lingering on.
1517
*/
1518
list_for_each_entry_safe(v, n, &dp->vlans, list) {
1519
dev_info(ds->dev,
1520
"Cleaning up vid %u from port %d\n",
1521
v->vid, dp->index);
1522
list_del(&v->list);
1523
kfree(v);
1524
}
1525
1526
list_del(&dp->list);
1527
kfree(dp);
1528
}
1529
}
1530
1531
static int dsa_switch_probe(struct dsa_switch *ds)
1532
{
1533
struct dsa_switch_tree *dst;
1534
struct dsa_chip_data *pdata;
1535
struct device_node *np;
1536
int err;
1537
1538
if (!ds->dev)
1539
return -ENODEV;
1540
1541
pdata = ds->dev->platform_data;
1542
np = ds->dev->of_node;
1543
1544
if (!ds->num_ports)
1545
return -EINVAL;
1546
1547
if (np) {
1548
err = dsa_switch_parse_of(ds, np);
1549
if (err)
1550
dsa_switch_release_ports(ds);
1551
} else if (pdata) {
1552
err = dsa_switch_parse(ds, pdata);
1553
if (err)
1554
dsa_switch_release_ports(ds);
1555
} else {
1556
err = -ENODEV;
1557
}
1558
1559
if (err)
1560
return err;
1561
1562
dst = ds->dst;
1563
dsa_tree_get(dst);
1564
err = dsa_tree_setup(dst);
1565
if (err) {
1566
dsa_switch_release_ports(ds);
1567
dsa_tree_put(dst);
1568
}
1569
1570
return err;
1571
}
1572
1573
int dsa_register_switch(struct dsa_switch *ds)
1574
{
1575
int err;
1576
1577
mutex_lock(&dsa2_mutex);
1578
err = dsa_switch_probe(ds);
1579
dsa_tree_put(ds->dst);
1580
mutex_unlock(&dsa2_mutex);
1581
1582
return err;
1583
}
1584
EXPORT_SYMBOL_GPL(dsa_register_switch);
1585
1586
static void dsa_switch_remove(struct dsa_switch *ds)
1587
{
1588
struct dsa_switch_tree *dst = ds->dst;
1589
1590
dsa_tree_teardown(dst);
1591
dsa_switch_release_ports(ds);
1592
dsa_tree_put(dst);
1593
}
1594
1595
void dsa_unregister_switch(struct dsa_switch *ds)
1596
{
1597
mutex_lock(&dsa2_mutex);
1598
dsa_switch_remove(ds);
1599
mutex_unlock(&dsa2_mutex);
1600
}
1601
EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1602
1603
/* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1604
* blocking that operation from completion, due to the dev_hold taken inside
1605
* netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1606
* the DSA conduit, so that the system can reboot successfully.
1607
*/
1608
void dsa_switch_shutdown(struct dsa_switch *ds)
1609
{
1610
struct net_device *conduit, *user_dev;
1611
LIST_HEAD(close_list);
1612
struct dsa_port *dp;
1613
1614
mutex_lock(&dsa2_mutex);
1615
1616
if (!ds->setup)
1617
goto out;
1618
1619
rtnl_lock();
1620
1621
dsa_switch_for_each_cpu_port(dp, ds)
1622
list_add(&dp->conduit->close_list, &close_list);
1623
1624
netif_close_many(&close_list, true);
1625
1626
dsa_switch_for_each_user_port(dp, ds) {
1627
conduit = dsa_port_to_conduit(dp);
1628
user_dev = dp->user;
1629
1630
netif_device_detach(user_dev);
1631
netdev_upper_dev_unlink(conduit, user_dev);
1632
}
1633
1634
/* Disconnect from further netdevice notifiers on the conduit,
1635
* since netdev_uses_dsa() will now return false.
1636
*/
1637
dsa_switch_for_each_cpu_port(dp, ds)
1638
dp->conduit->dsa_ptr = NULL;
1639
1640
rtnl_unlock();
1641
out:
1642
mutex_unlock(&dsa2_mutex);
1643
}
1644
EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1645
1646
#ifdef CONFIG_PM_SLEEP
1647
static bool dsa_port_is_initialized(const struct dsa_port *dp)
1648
{
1649
return dp->type == DSA_PORT_TYPE_USER && dp->user;
1650
}
1651
1652
int dsa_switch_suspend(struct dsa_switch *ds)
1653
{
1654
struct dsa_port *dp;
1655
int ret = 0;
1656
1657
/* Suspend user network devices */
1658
dsa_switch_for_each_port(dp, ds) {
1659
if (!dsa_port_is_initialized(dp))
1660
continue;
1661
1662
ret = dsa_user_suspend(dp->user);
1663
if (ret)
1664
return ret;
1665
}
1666
1667
if (ds->ops->suspend)
1668
ret = ds->ops->suspend(ds);
1669
1670
return ret;
1671
}
1672
EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1673
1674
int dsa_switch_resume(struct dsa_switch *ds)
1675
{
1676
struct dsa_port *dp;
1677
int ret = 0;
1678
1679
if (ds->ops->resume)
1680
ret = ds->ops->resume(ds);
1681
1682
if (ret)
1683
return ret;
1684
1685
/* Resume user network devices */
1686
dsa_switch_for_each_port(dp, ds) {
1687
if (!dsa_port_is_initialized(dp))
1688
continue;
1689
1690
ret = dsa_user_resume(dp->user);
1691
if (ret)
1692
return ret;
1693
}
1694
1695
return 0;
1696
}
1697
EXPORT_SYMBOL_GPL(dsa_switch_resume);
1698
#endif
1699
1700
struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1701
{
1702
if (!netdev || !dsa_user_dev_check(netdev))
1703
return ERR_PTR(-ENODEV);
1704
1705
return dsa_user_to_port(netdev);
1706
}
1707
EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1708
1709
bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1710
{
1711
if (a->type != b->type)
1712
return false;
1713
1714
switch (a->type) {
1715
case DSA_DB_PORT:
1716
return a->dp == b->dp;
1717
case DSA_DB_LAG:
1718
return a->lag.dev == b->lag.dev;
1719
case DSA_DB_BRIDGE:
1720
return a->bridge.num == b->bridge.num;
1721
default:
1722
WARN_ON(1);
1723
return false;
1724
}
1725
}
1726
1727
bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1728
const unsigned char *addr, u16 vid,
1729
struct dsa_db db)
1730
{
1731
struct dsa_port *dp = dsa_to_port(ds, port);
1732
struct dsa_mac_addr *a;
1733
1734
lockdep_assert_held(&dp->addr_lists_lock);
1735
1736
list_for_each_entry(a, &dp->fdbs, list) {
1737
if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1738
continue;
1739
1740
if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1741
return true;
1742
}
1743
1744
return false;
1745
}
1746
EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1747
1748
bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1749
const struct switchdev_obj_port_mdb *mdb,
1750
struct dsa_db db)
1751
{
1752
struct dsa_port *dp = dsa_to_port(ds, port);
1753
struct dsa_mac_addr *a;
1754
1755
lockdep_assert_held(&dp->addr_lists_lock);
1756
1757
list_for_each_entry(a, &dp->mdbs, list) {
1758
if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1759
continue;
1760
1761
if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1762
return true;
1763
}
1764
1765
return false;
1766
}
1767
EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1768
1769
static const struct dsa_stubs __dsa_stubs = {
1770
.conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1771
};
1772
1773
static void dsa_register_stubs(void)
1774
{
1775
dsa_stubs = &__dsa_stubs;
1776
}
1777
1778
static void dsa_unregister_stubs(void)
1779
{
1780
dsa_stubs = NULL;
1781
}
1782
1783
static int __init dsa_init_module(void)
1784
{
1785
int rc;
1786
1787
dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1788
WQ_MEM_RECLAIM);
1789
if (!dsa_owq)
1790
return -ENOMEM;
1791
1792
rc = dsa_user_register_notifier();
1793
if (rc)
1794
goto register_notifier_fail;
1795
1796
dev_add_pack(&dsa_pack_type);
1797
1798
rc = rtnl_link_register(&dsa_link_ops);
1799
if (rc)
1800
goto netlink_register_fail;
1801
1802
dsa_register_stubs();
1803
1804
return 0;
1805
1806
netlink_register_fail:
1807
dsa_user_unregister_notifier();
1808
dev_remove_pack(&dsa_pack_type);
1809
register_notifier_fail:
1810
destroy_workqueue(dsa_owq);
1811
1812
return rc;
1813
}
1814
module_init(dsa_init_module);
1815
1816
static void __exit dsa_cleanup_module(void)
1817
{
1818
dsa_unregister_stubs();
1819
1820
rtnl_link_unregister(&dsa_link_ops);
1821
1822
dsa_user_unregister_notifier();
1823
dev_remove_pack(&dsa_pack_type);
1824
destroy_workqueue(dsa_owq);
1825
}
1826
module_exit(dsa_cleanup_module);
1827
1828
MODULE_AUTHOR("Lennert Buytenhek <[email protected]>");
1829
MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1830
MODULE_LICENSE("GPL");
1831
MODULE_ALIAS("platform:dsa");
1832
MODULE_IMPORT_NS("NETDEV_INTERNAL");
1833
1834