Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/dsa/port.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Handling of a single switch port
4
*
5
* Copyright (c) 2017 Savoir-faire Linux Inc.
6
* Vivien Didelot <[email protected]>
7
*/
8
9
#include <linux/if_bridge.h>
10
#include <linux/netdevice.h>
11
#include <linux/notifier.h>
12
#include <linux/of_mdio.h>
13
#include <linux/of_net.h>
14
15
#include "dsa.h"
16
#include "port.h"
17
#include "switch.h"
18
#include "tag_8021q.h"
19
#include "user.h"
20
21
/**
22
* dsa_port_notify - Notify the switching fabric of changes to a port
23
* @dp: port on which change occurred
24
* @e: event, must be of type DSA_NOTIFIER_*
25
* @v: event-specific value.
26
*
27
* Notify all switches in the DSA tree that this port's switch belongs to,
28
* including this switch itself, of an event. Allows the other switches to
29
* reconfigure themselves for cross-chip operations. Can also be used to
30
* reconfigure ports without net_devices (CPU ports, DSA links) whenever
31
* a user port's state changes.
32
*/
33
static int dsa_port_notify(const struct dsa_port *dp, unsigned long e, void *v)
34
{
35
return dsa_tree_notify(dp->ds->dst, e, v);
36
}
37
38
static void dsa_port_notify_bridge_fdb_flush(const struct dsa_port *dp, u16 vid)
39
{
40
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
41
struct switchdev_notifier_fdb_info info = {
42
.vid = vid,
43
};
44
45
/* When the port becomes standalone it has already left the bridge.
46
* Don't notify the bridge in that case.
47
*/
48
if (!brport_dev)
49
return;
50
51
call_switchdev_notifiers(SWITCHDEV_FDB_FLUSH_TO_BRIDGE,
52
brport_dev, &info.info, NULL);
53
}
54
55
static void dsa_port_fast_age(const struct dsa_port *dp)
56
{
57
struct dsa_switch *ds = dp->ds;
58
59
if (!ds->ops->port_fast_age)
60
return;
61
62
ds->ops->port_fast_age(ds, dp->index);
63
64
/* flush all VLANs */
65
dsa_port_notify_bridge_fdb_flush(dp, 0);
66
}
67
68
static int dsa_port_vlan_fast_age(const struct dsa_port *dp, u16 vid)
69
{
70
struct dsa_switch *ds = dp->ds;
71
int err;
72
73
if (!ds->ops->port_vlan_fast_age)
74
return -EOPNOTSUPP;
75
76
err = ds->ops->port_vlan_fast_age(ds, dp->index, vid);
77
78
if (!err)
79
dsa_port_notify_bridge_fdb_flush(dp, vid);
80
81
return err;
82
}
83
84
static int dsa_port_msti_fast_age(const struct dsa_port *dp, u16 msti)
85
{
86
DECLARE_BITMAP(vids, VLAN_N_VID) = { 0 };
87
int err, vid;
88
89
err = br_mst_get_info(dsa_port_bridge_dev_get(dp), msti, vids);
90
if (err)
91
return err;
92
93
for_each_set_bit(vid, vids, VLAN_N_VID) {
94
err = dsa_port_vlan_fast_age(dp, vid);
95
if (err)
96
return err;
97
}
98
99
return 0;
100
}
101
102
static bool dsa_port_can_configure_learning(struct dsa_port *dp)
103
{
104
struct switchdev_brport_flags flags = {
105
.mask = BR_LEARNING,
106
};
107
struct dsa_switch *ds = dp->ds;
108
int err;
109
110
if (!ds->ops->port_bridge_flags || !ds->ops->port_pre_bridge_flags)
111
return false;
112
113
err = ds->ops->port_pre_bridge_flags(ds, dp->index, flags, NULL);
114
return !err;
115
}
116
117
bool dsa_port_supports_hwtstamp(struct dsa_port *dp)
118
{
119
struct kernel_hwtstamp_config config = {};
120
struct dsa_switch *ds = dp->ds;
121
int err;
122
123
if (!ds->ops->port_hwtstamp_get || !ds->ops->port_hwtstamp_set)
124
return false;
125
126
/* "See through" shim implementations of the "get" method. */
127
err = ds->ops->port_hwtstamp_get(ds, dp->index, &config);
128
return err != -EOPNOTSUPP;
129
}
130
131
int dsa_port_set_state(struct dsa_port *dp, u8 state, bool do_fast_age)
132
{
133
struct dsa_switch *ds = dp->ds;
134
int port = dp->index;
135
136
if (!ds->ops->port_stp_state_set)
137
return -EOPNOTSUPP;
138
139
ds->ops->port_stp_state_set(ds, port, state);
140
141
if (!dsa_port_can_configure_learning(dp) ||
142
(do_fast_age && dp->learning)) {
143
/* Fast age FDB entries or flush appropriate forwarding database
144
* for the given port, if we are moving it from Learning or
145
* Forwarding state, to Disabled or Blocking or Listening state.
146
* Ports that were standalone before the STP state change don't
147
* need to fast age the FDB, since address learning is off in
148
* standalone mode.
149
*/
150
151
if ((dp->stp_state == BR_STATE_LEARNING ||
152
dp->stp_state == BR_STATE_FORWARDING) &&
153
(state == BR_STATE_DISABLED ||
154
state == BR_STATE_BLOCKING ||
155
state == BR_STATE_LISTENING))
156
dsa_port_fast_age(dp);
157
}
158
159
dp->stp_state = state;
160
161
return 0;
162
}
163
164
static void dsa_port_set_state_now(struct dsa_port *dp, u8 state,
165
bool do_fast_age)
166
{
167
struct dsa_switch *ds = dp->ds;
168
int err;
169
170
err = dsa_port_set_state(dp, state, do_fast_age);
171
if (err && err != -EOPNOTSUPP) {
172
dev_err(ds->dev, "port %d failed to set STP state %u: %pe\n",
173
dp->index, state, ERR_PTR(err));
174
}
175
}
176
177
int dsa_port_set_mst_state(struct dsa_port *dp,
178
const struct switchdev_mst_state *state,
179
struct netlink_ext_ack *extack)
180
{
181
struct dsa_switch *ds = dp->ds;
182
u8 prev_state;
183
int err;
184
185
if (!ds->ops->port_mst_state_set)
186
return -EOPNOTSUPP;
187
188
err = br_mst_get_state(dsa_port_to_bridge_port(dp), state->msti,
189
&prev_state);
190
if (err)
191
return err;
192
193
err = ds->ops->port_mst_state_set(ds, dp->index, state);
194
if (err)
195
return err;
196
197
if (!(dp->learning &&
198
(prev_state == BR_STATE_LEARNING ||
199
prev_state == BR_STATE_FORWARDING) &&
200
(state->state == BR_STATE_DISABLED ||
201
state->state == BR_STATE_BLOCKING ||
202
state->state == BR_STATE_LISTENING)))
203
return 0;
204
205
err = dsa_port_msti_fast_age(dp, state->msti);
206
if (err)
207
NL_SET_ERR_MSG_MOD(extack,
208
"Unable to flush associated VLANs");
209
210
return 0;
211
}
212
213
int dsa_port_enable_rt(struct dsa_port *dp, struct phy_device *phy)
214
{
215
struct dsa_switch *ds = dp->ds;
216
int port = dp->index;
217
int err;
218
219
if (ds->ops->port_enable) {
220
err = ds->ops->port_enable(ds, port, phy);
221
if (err)
222
return err;
223
}
224
225
if (!dp->bridge)
226
dsa_port_set_state_now(dp, BR_STATE_FORWARDING, false);
227
228
if (dp->pl)
229
phylink_start(dp->pl);
230
231
return 0;
232
}
233
234
int dsa_port_enable(struct dsa_port *dp, struct phy_device *phy)
235
{
236
int err;
237
238
rtnl_lock();
239
err = dsa_port_enable_rt(dp, phy);
240
rtnl_unlock();
241
242
return err;
243
}
244
245
void dsa_port_disable_rt(struct dsa_port *dp)
246
{
247
struct dsa_switch *ds = dp->ds;
248
int port = dp->index;
249
250
if (dp->pl)
251
phylink_stop(dp->pl);
252
253
if (!dp->bridge)
254
dsa_port_set_state_now(dp, BR_STATE_DISABLED, false);
255
256
if (ds->ops->port_disable)
257
ds->ops->port_disable(ds, port);
258
}
259
260
void dsa_port_disable(struct dsa_port *dp)
261
{
262
rtnl_lock();
263
dsa_port_disable_rt(dp);
264
rtnl_unlock();
265
}
266
267
static void dsa_port_reset_vlan_filtering(struct dsa_port *dp,
268
struct dsa_bridge bridge)
269
{
270
struct netlink_ext_ack extack = {0};
271
bool change_vlan_filtering = false;
272
struct dsa_switch *ds = dp->ds;
273
struct dsa_port *other_dp;
274
bool vlan_filtering;
275
int err;
276
277
if (ds->needs_standalone_vlan_filtering &&
278
!br_vlan_enabled(bridge.dev)) {
279
change_vlan_filtering = true;
280
vlan_filtering = true;
281
} else if (!ds->needs_standalone_vlan_filtering &&
282
br_vlan_enabled(bridge.dev)) {
283
change_vlan_filtering = true;
284
vlan_filtering = false;
285
}
286
287
/* If the bridge was vlan_filtering, the bridge core doesn't trigger an
288
* event for changing vlan_filtering setting upon user ports leaving
289
* it. That is a good thing, because that lets us handle it and also
290
* handle the case where the switch's vlan_filtering setting is global
291
* (not per port). When that happens, the correct moment to trigger the
292
* vlan_filtering callback is only when the last port leaves the last
293
* VLAN-aware bridge.
294
*/
295
if (change_vlan_filtering && ds->vlan_filtering_is_global) {
296
dsa_switch_for_each_port(other_dp, ds) {
297
struct net_device *br = dsa_port_bridge_dev_get(other_dp);
298
299
if (br && br_vlan_enabled(br)) {
300
change_vlan_filtering = false;
301
break;
302
}
303
}
304
}
305
306
if (!change_vlan_filtering)
307
return;
308
309
err = dsa_port_vlan_filtering(dp, vlan_filtering, &extack);
310
if (extack._msg) {
311
dev_err(ds->dev, "port %d: %s\n", dp->index,
312
extack._msg);
313
}
314
if (err && err != -EOPNOTSUPP) {
315
dev_err(ds->dev,
316
"port %d failed to reset VLAN filtering to %d: %pe\n",
317
dp->index, vlan_filtering, ERR_PTR(err));
318
}
319
}
320
321
static int dsa_port_inherit_brport_flags(struct dsa_port *dp,
322
struct netlink_ext_ack *extack)
323
{
324
const unsigned long mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
325
BR_BCAST_FLOOD | BR_PORT_LOCKED;
326
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
327
int flag, err;
328
329
for_each_set_bit(flag, &mask, 32) {
330
struct switchdev_brport_flags flags = {0};
331
332
flags.mask = BIT(flag);
333
334
if (br_port_flag_is_set(brport_dev, BIT(flag)))
335
flags.val = BIT(flag);
336
337
err = dsa_port_bridge_flags(dp, flags, extack);
338
if (err && err != -EOPNOTSUPP)
339
return err;
340
}
341
342
return 0;
343
}
344
345
static void dsa_port_clear_brport_flags(struct dsa_port *dp)
346
{
347
const unsigned long val = BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD;
348
const unsigned long mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
349
BR_BCAST_FLOOD | BR_PORT_LOCKED;
350
int flag, err;
351
352
for_each_set_bit(flag, &mask, 32) {
353
struct switchdev_brport_flags flags = {0};
354
355
flags.mask = BIT(flag);
356
flags.val = val & BIT(flag);
357
358
err = dsa_port_bridge_flags(dp, flags, NULL);
359
if (err && err != -EOPNOTSUPP)
360
dev_err(dp->ds->dev,
361
"failed to clear bridge port flag %lu: %pe\n",
362
flags.val, ERR_PTR(err));
363
}
364
}
365
366
static int dsa_port_switchdev_sync_attrs(struct dsa_port *dp,
367
struct netlink_ext_ack *extack)
368
{
369
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
370
struct net_device *br = dsa_port_bridge_dev_get(dp);
371
int err;
372
373
err = dsa_port_inherit_brport_flags(dp, extack);
374
if (err)
375
return err;
376
377
err = dsa_port_set_state(dp, br_port_get_stp_state(brport_dev), false);
378
if (err && err != -EOPNOTSUPP)
379
return err;
380
381
err = dsa_port_vlan_filtering(dp, br_vlan_enabled(br), extack);
382
if (err && err != -EOPNOTSUPP)
383
return err;
384
385
err = dsa_port_ageing_time(dp, br_get_ageing_time(br));
386
if (err && err != -EOPNOTSUPP)
387
return err;
388
389
return 0;
390
}
391
392
static void dsa_port_switchdev_unsync_attrs(struct dsa_port *dp,
393
struct dsa_bridge bridge)
394
{
395
/* Configure the port for standalone mode (no address learning,
396
* flood everything).
397
* The bridge only emits SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS events
398
* when the user requests it through netlink or sysfs, but not
399
* automatically at port join or leave, so we need to handle resetting
400
* the brport flags ourselves. But we even prefer it that way, because
401
* otherwise, some setups might never get the notification they need,
402
* for example, when a port leaves a LAG that offloads the bridge,
403
* it becomes standalone, but as far as the bridge is concerned, no
404
* port ever left.
405
*/
406
dsa_port_clear_brport_flags(dp);
407
408
/* Port left the bridge, put in BR_STATE_DISABLED by the bridge layer,
409
* so allow it to be in BR_STATE_FORWARDING to be kept functional
410
*/
411
dsa_port_set_state_now(dp, BR_STATE_FORWARDING, true);
412
413
dsa_port_reset_vlan_filtering(dp, bridge);
414
415
/* Ageing time may be global to the switch chip, so don't change it
416
* here because we have no good reason (or value) to change it to.
417
*/
418
}
419
420
static int dsa_port_bridge_create(struct dsa_port *dp,
421
struct net_device *br,
422
struct netlink_ext_ack *extack)
423
{
424
struct dsa_switch *ds = dp->ds;
425
struct dsa_bridge *bridge;
426
427
bridge = dsa_tree_bridge_find(ds->dst, br);
428
if (bridge) {
429
refcount_inc(&bridge->refcount);
430
dp->bridge = bridge;
431
return 0;
432
}
433
434
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
435
if (!bridge)
436
return -ENOMEM;
437
438
refcount_set(&bridge->refcount, 1);
439
440
bridge->dev = br;
441
442
bridge->num = dsa_bridge_num_get(br, ds->max_num_bridges);
443
if (ds->max_num_bridges && !bridge->num) {
444
NL_SET_ERR_MSG_MOD(extack,
445
"Range of offloadable bridges exceeded");
446
kfree(bridge);
447
return -EOPNOTSUPP;
448
}
449
450
dp->bridge = bridge;
451
452
return 0;
453
}
454
455
static void dsa_port_bridge_destroy(struct dsa_port *dp,
456
const struct net_device *br)
457
{
458
struct dsa_bridge *bridge = dp->bridge;
459
460
dp->bridge = NULL;
461
462
if (!refcount_dec_and_test(&bridge->refcount))
463
return;
464
465
if (bridge->num)
466
dsa_bridge_num_put(br, bridge->num);
467
468
kfree(bridge);
469
}
470
471
static bool dsa_port_supports_mst(struct dsa_port *dp)
472
{
473
struct dsa_switch *ds = dp->ds;
474
475
return ds->ops->vlan_msti_set &&
476
ds->ops->port_mst_state_set &&
477
ds->ops->port_vlan_fast_age &&
478
dsa_port_can_configure_learning(dp);
479
}
480
481
int dsa_port_bridge_join(struct dsa_port *dp, struct net_device *br,
482
struct netlink_ext_ack *extack)
483
{
484
struct dsa_notifier_bridge_info info = {
485
.dp = dp,
486
.extack = extack,
487
};
488
struct net_device *dev = dp->user;
489
struct net_device *brport_dev;
490
int err;
491
492
if (br_mst_enabled(br) && !dsa_port_supports_mst(dp))
493
return -EOPNOTSUPP;
494
495
/* Here the interface is already bridged. Reflect the current
496
* configuration so that drivers can program their chips accordingly.
497
*/
498
err = dsa_port_bridge_create(dp, br, extack);
499
if (err)
500
return err;
501
502
brport_dev = dsa_port_to_bridge_port(dp);
503
504
info.bridge = *dp->bridge;
505
err = dsa_broadcast(DSA_NOTIFIER_BRIDGE_JOIN, &info);
506
if (err)
507
goto out_rollback;
508
509
/* Drivers which support bridge TX forwarding should set this */
510
dp->bridge->tx_fwd_offload = info.tx_fwd_offload;
511
512
err = switchdev_bridge_port_offload(brport_dev, dev, dp,
513
&dsa_user_switchdev_notifier,
514
&dsa_user_switchdev_blocking_notifier,
515
dp->bridge->tx_fwd_offload, extack);
516
if (err)
517
goto out_rollback_unbridge;
518
519
err = dsa_port_switchdev_sync_attrs(dp, extack);
520
if (err)
521
goto out_rollback_unoffload;
522
523
return 0;
524
525
out_rollback_unoffload:
526
switchdev_bridge_port_unoffload(brport_dev, dp,
527
&dsa_user_switchdev_notifier,
528
&dsa_user_switchdev_blocking_notifier);
529
dsa_flush_workqueue();
530
out_rollback_unbridge:
531
dsa_broadcast(DSA_NOTIFIER_BRIDGE_LEAVE, &info);
532
out_rollback:
533
dsa_port_bridge_destroy(dp, br);
534
return err;
535
}
536
537
void dsa_port_pre_bridge_leave(struct dsa_port *dp, struct net_device *br)
538
{
539
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
540
541
/* Don't try to unoffload something that is not offloaded */
542
if (!brport_dev)
543
return;
544
545
switchdev_bridge_port_unoffload(brport_dev, dp,
546
&dsa_user_switchdev_notifier,
547
&dsa_user_switchdev_blocking_notifier);
548
549
dsa_flush_workqueue();
550
}
551
552
void dsa_port_bridge_leave(struct dsa_port *dp, struct net_device *br)
553
{
554
struct dsa_notifier_bridge_info info = {
555
.dp = dp,
556
};
557
int err;
558
559
/* If the port could not be offloaded to begin with, then
560
* there is nothing to do.
561
*/
562
if (!dp->bridge)
563
return;
564
565
info.bridge = *dp->bridge;
566
567
/* Here the port is already unbridged. Reflect the current configuration
568
* so that drivers can program their chips accordingly.
569
*/
570
dsa_port_bridge_destroy(dp, br);
571
572
err = dsa_broadcast(DSA_NOTIFIER_BRIDGE_LEAVE, &info);
573
if (err)
574
dev_err(dp->ds->dev,
575
"port %d failed to notify DSA_NOTIFIER_BRIDGE_LEAVE: %pe\n",
576
dp->index, ERR_PTR(err));
577
578
dsa_port_switchdev_unsync_attrs(dp, info.bridge);
579
}
580
581
int dsa_port_lag_change(struct dsa_port *dp,
582
struct netdev_lag_lower_state_info *linfo)
583
{
584
struct dsa_notifier_lag_info info = {
585
.dp = dp,
586
};
587
bool tx_enabled;
588
589
if (!dp->lag)
590
return 0;
591
592
/* On statically configured aggregates (e.g. loadbalance
593
* without LACP) ports will always be tx_enabled, even if the
594
* link is down. Thus we require both link_up and tx_enabled
595
* in order to include it in the tx set.
596
*/
597
tx_enabled = linfo->link_up && linfo->tx_enabled;
598
599
if (tx_enabled == dp->lag_tx_enabled)
600
return 0;
601
602
dp->lag_tx_enabled = tx_enabled;
603
604
return dsa_port_notify(dp, DSA_NOTIFIER_LAG_CHANGE, &info);
605
}
606
607
static int dsa_port_lag_create(struct dsa_port *dp,
608
struct net_device *lag_dev)
609
{
610
struct dsa_switch *ds = dp->ds;
611
struct dsa_lag *lag;
612
613
lag = dsa_tree_lag_find(ds->dst, lag_dev);
614
if (lag) {
615
refcount_inc(&lag->refcount);
616
dp->lag = lag;
617
return 0;
618
}
619
620
lag = kzalloc(sizeof(*lag), GFP_KERNEL);
621
if (!lag)
622
return -ENOMEM;
623
624
refcount_set(&lag->refcount, 1);
625
mutex_init(&lag->fdb_lock);
626
INIT_LIST_HEAD(&lag->fdbs);
627
lag->dev = lag_dev;
628
dsa_lag_map(ds->dst, lag);
629
dp->lag = lag;
630
631
return 0;
632
}
633
634
static void dsa_port_lag_destroy(struct dsa_port *dp)
635
{
636
struct dsa_lag *lag = dp->lag;
637
638
dp->lag = NULL;
639
dp->lag_tx_enabled = false;
640
641
if (!refcount_dec_and_test(&lag->refcount))
642
return;
643
644
WARN_ON(!list_empty(&lag->fdbs));
645
dsa_lag_unmap(dp->ds->dst, lag);
646
kfree(lag);
647
}
648
649
int dsa_port_lag_join(struct dsa_port *dp, struct net_device *lag_dev,
650
struct netdev_lag_upper_info *uinfo,
651
struct netlink_ext_ack *extack)
652
{
653
struct dsa_notifier_lag_info info = {
654
.dp = dp,
655
.info = uinfo,
656
.extack = extack,
657
};
658
struct net_device *bridge_dev;
659
int err;
660
661
err = dsa_port_lag_create(dp, lag_dev);
662
if (err)
663
goto err_lag_create;
664
665
info.lag = *dp->lag;
666
err = dsa_port_notify(dp, DSA_NOTIFIER_LAG_JOIN, &info);
667
if (err)
668
goto err_lag_join;
669
670
bridge_dev = netdev_master_upper_dev_get(lag_dev);
671
if (!bridge_dev || !netif_is_bridge_master(bridge_dev))
672
return 0;
673
674
err = dsa_port_bridge_join(dp, bridge_dev, extack);
675
if (err)
676
goto err_bridge_join;
677
678
return 0;
679
680
err_bridge_join:
681
dsa_port_notify(dp, DSA_NOTIFIER_LAG_LEAVE, &info);
682
err_lag_join:
683
dsa_port_lag_destroy(dp);
684
err_lag_create:
685
return err;
686
}
687
688
void dsa_port_pre_lag_leave(struct dsa_port *dp, struct net_device *lag_dev)
689
{
690
struct net_device *br = dsa_port_bridge_dev_get(dp);
691
692
if (br)
693
dsa_port_pre_bridge_leave(dp, br);
694
}
695
696
void dsa_port_lag_leave(struct dsa_port *dp, struct net_device *lag_dev)
697
{
698
struct net_device *br = dsa_port_bridge_dev_get(dp);
699
struct dsa_notifier_lag_info info = {
700
.dp = dp,
701
};
702
int err;
703
704
if (!dp->lag)
705
return;
706
707
/* Port might have been part of a LAG that in turn was
708
* attached to a bridge.
709
*/
710
if (br)
711
dsa_port_bridge_leave(dp, br);
712
713
info.lag = *dp->lag;
714
715
dsa_port_lag_destroy(dp);
716
717
err = dsa_port_notify(dp, DSA_NOTIFIER_LAG_LEAVE, &info);
718
if (err)
719
dev_err(dp->ds->dev,
720
"port %d failed to notify DSA_NOTIFIER_LAG_LEAVE: %pe\n",
721
dp->index, ERR_PTR(err));
722
}
723
724
/* Must be called under rcu_read_lock() */
725
static bool dsa_port_can_apply_vlan_filtering(struct dsa_port *dp,
726
bool vlan_filtering,
727
struct netlink_ext_ack *extack)
728
{
729
struct dsa_switch *ds = dp->ds;
730
struct dsa_port *other_dp;
731
int err;
732
733
/* VLAN awareness was off, so the question is "can we turn it on".
734
* We may have had 8021q uppers, those need to go. Make sure we don't
735
* enter an inconsistent state: deny changing the VLAN awareness state
736
* as long as we have 8021q uppers.
737
*/
738
if (vlan_filtering && dsa_port_is_user(dp)) {
739
struct net_device *br = dsa_port_bridge_dev_get(dp);
740
struct net_device *upper_dev, *user = dp->user;
741
struct list_head *iter;
742
743
netdev_for_each_upper_dev_rcu(user, upper_dev, iter) {
744
struct bridge_vlan_info br_info;
745
u16 vid;
746
747
if (!is_vlan_dev(upper_dev))
748
continue;
749
750
vid = vlan_dev_vlan_id(upper_dev);
751
752
/* br_vlan_get_info() returns -EINVAL or -ENOENT if the
753
* device, respectively the VID is not found, returning
754
* 0 means success, which is a failure for us here.
755
*/
756
err = br_vlan_get_info(br, vid, &br_info);
757
if (err == 0) {
758
NL_SET_ERR_MSG_MOD(extack,
759
"Must first remove VLAN uppers having VIDs also present in bridge");
760
return false;
761
}
762
}
763
}
764
765
if (!ds->vlan_filtering_is_global)
766
return true;
767
768
/* For cases where enabling/disabling VLAN awareness is global to the
769
* switch, we need to handle the case where multiple bridges span
770
* different ports of the same switch device and one of them has a
771
* different setting than what is being requested.
772
*/
773
dsa_switch_for_each_port(other_dp, ds) {
774
struct net_device *other_br = dsa_port_bridge_dev_get(other_dp);
775
776
/* If it's the same bridge, it also has same
777
* vlan_filtering setting => no need to check
778
*/
779
if (!other_br || other_br == dsa_port_bridge_dev_get(dp))
780
continue;
781
782
if (br_vlan_enabled(other_br) != vlan_filtering) {
783
NL_SET_ERR_MSG_MOD(extack,
784
"VLAN filtering is a global setting");
785
return false;
786
}
787
}
788
return true;
789
}
790
791
int dsa_port_vlan_filtering(struct dsa_port *dp, bool vlan_filtering,
792
struct netlink_ext_ack *extack)
793
{
794
bool old_vlan_filtering = dsa_port_is_vlan_filtering(dp);
795
struct dsa_switch *ds = dp->ds;
796
bool apply;
797
int err;
798
799
if (!ds->ops->port_vlan_filtering)
800
return -EOPNOTSUPP;
801
802
/* We are called from dsa_user_switchdev_blocking_event(),
803
* which is not under rcu_read_lock(), unlike
804
* dsa_user_switchdev_event().
805
*/
806
rcu_read_lock();
807
apply = dsa_port_can_apply_vlan_filtering(dp, vlan_filtering, extack);
808
rcu_read_unlock();
809
if (!apply)
810
return -EINVAL;
811
812
if (dsa_port_is_vlan_filtering(dp) == vlan_filtering)
813
return 0;
814
815
err = ds->ops->port_vlan_filtering(ds, dp->index, vlan_filtering,
816
extack);
817
if (err)
818
return err;
819
820
if (ds->vlan_filtering_is_global) {
821
struct dsa_port *other_dp;
822
823
ds->vlan_filtering = vlan_filtering;
824
825
dsa_switch_for_each_user_port(other_dp, ds) {
826
struct net_device *user = other_dp->user;
827
828
/* We might be called in the unbind path, so not
829
* all user devices might still be registered.
830
*/
831
if (!user)
832
continue;
833
834
err = dsa_user_manage_vlan_filtering(user,
835
vlan_filtering);
836
if (err)
837
goto restore;
838
}
839
} else {
840
dp->vlan_filtering = vlan_filtering;
841
842
err = dsa_user_manage_vlan_filtering(dp->user,
843
vlan_filtering);
844
if (err)
845
goto restore;
846
}
847
848
return 0;
849
850
restore:
851
ds->ops->port_vlan_filtering(ds, dp->index, old_vlan_filtering, NULL);
852
853
if (ds->vlan_filtering_is_global)
854
ds->vlan_filtering = old_vlan_filtering;
855
else
856
dp->vlan_filtering = old_vlan_filtering;
857
858
return err;
859
}
860
861
/* This enforces legacy behavior for switch drivers which assume they can't
862
* receive VLAN configuration when joining a bridge with vlan_filtering=0
863
*/
864
bool dsa_port_skip_vlan_configuration(struct dsa_port *dp)
865
{
866
struct net_device *br = dsa_port_bridge_dev_get(dp);
867
struct dsa_switch *ds = dp->ds;
868
869
if (!br)
870
return false;
871
872
return !ds->configure_vlan_while_not_filtering && !br_vlan_enabled(br);
873
}
874
875
int dsa_port_ageing_time(struct dsa_port *dp, clock_t ageing_clock)
876
{
877
unsigned long ageing_jiffies = clock_t_to_jiffies(ageing_clock);
878
unsigned int ageing_time = jiffies_to_msecs(ageing_jiffies);
879
struct dsa_notifier_ageing_time_info info;
880
int err;
881
882
info.ageing_time = ageing_time;
883
884
err = dsa_port_notify(dp, DSA_NOTIFIER_AGEING_TIME, &info);
885
if (err)
886
return err;
887
888
dp->ageing_time = ageing_time;
889
890
return 0;
891
}
892
893
int dsa_port_mst_enable(struct dsa_port *dp, bool on,
894
struct netlink_ext_ack *extack)
895
{
896
if (on && !dsa_port_supports_mst(dp)) {
897
NL_SET_ERR_MSG_MOD(extack, "Hardware does not support MST");
898
return -EINVAL;
899
}
900
901
return 0;
902
}
903
904
int dsa_port_pre_bridge_flags(const struct dsa_port *dp,
905
struct switchdev_brport_flags flags,
906
struct netlink_ext_ack *extack)
907
{
908
struct dsa_switch *ds = dp->ds;
909
910
if (!ds->ops->port_pre_bridge_flags)
911
return -EINVAL;
912
913
return ds->ops->port_pre_bridge_flags(ds, dp->index, flags, extack);
914
}
915
916
int dsa_port_bridge_flags(struct dsa_port *dp,
917
struct switchdev_brport_flags flags,
918
struct netlink_ext_ack *extack)
919
{
920
struct dsa_switch *ds = dp->ds;
921
int err;
922
923
if (!ds->ops->port_bridge_flags)
924
return -EOPNOTSUPP;
925
926
err = ds->ops->port_bridge_flags(ds, dp->index, flags, extack);
927
if (err)
928
return err;
929
930
if (flags.mask & BR_LEARNING) {
931
bool learning = flags.val & BR_LEARNING;
932
933
if (learning == dp->learning)
934
return 0;
935
936
if ((dp->learning && !learning) &&
937
(dp->stp_state == BR_STATE_LEARNING ||
938
dp->stp_state == BR_STATE_FORWARDING))
939
dsa_port_fast_age(dp);
940
941
dp->learning = learning;
942
}
943
944
return 0;
945
}
946
947
void dsa_port_set_host_flood(struct dsa_port *dp, bool uc, bool mc)
948
{
949
struct dsa_switch *ds = dp->ds;
950
951
if (ds->ops->port_set_host_flood)
952
ds->ops->port_set_host_flood(ds, dp->index, uc, mc);
953
}
954
955
int dsa_port_vlan_msti(struct dsa_port *dp,
956
const struct switchdev_vlan_msti *msti)
957
{
958
struct dsa_switch *ds = dp->ds;
959
960
if (!ds->ops->vlan_msti_set)
961
return -EOPNOTSUPP;
962
963
return ds->ops->vlan_msti_set(ds, *dp->bridge, msti);
964
}
965
966
int dsa_port_mtu_change(struct dsa_port *dp, int new_mtu)
967
{
968
struct dsa_notifier_mtu_info info = {
969
.dp = dp,
970
.mtu = new_mtu,
971
};
972
973
return dsa_port_notify(dp, DSA_NOTIFIER_MTU, &info);
974
}
975
976
int dsa_port_fdb_add(struct dsa_port *dp, const unsigned char *addr,
977
u16 vid)
978
{
979
struct dsa_notifier_fdb_info info = {
980
.dp = dp,
981
.addr = addr,
982
.vid = vid,
983
.db = {
984
.type = DSA_DB_BRIDGE,
985
.bridge = *dp->bridge,
986
},
987
};
988
989
/* Refcounting takes bridge.num as a key, and should be global for all
990
* bridges in the absence of FDB isolation, and per bridge otherwise.
991
* Force the bridge.num to zero here in the absence of FDB isolation.
992
*/
993
if (!dp->ds->fdb_isolation)
994
info.db.bridge.num = 0;
995
996
return dsa_port_notify(dp, DSA_NOTIFIER_FDB_ADD, &info);
997
}
998
999
int dsa_port_fdb_del(struct dsa_port *dp, const unsigned char *addr,
1000
u16 vid)
1001
{
1002
struct dsa_notifier_fdb_info info = {
1003
.dp = dp,
1004
.addr = addr,
1005
.vid = vid,
1006
.db = {
1007
.type = DSA_DB_BRIDGE,
1008
.bridge = *dp->bridge,
1009
},
1010
};
1011
1012
if (!dp->ds->fdb_isolation)
1013
info.db.bridge.num = 0;
1014
1015
return dsa_port_notify(dp, DSA_NOTIFIER_FDB_DEL, &info);
1016
}
1017
1018
static int dsa_port_host_fdb_add(struct dsa_port *dp,
1019
const unsigned char *addr, u16 vid,
1020
struct dsa_db db)
1021
{
1022
struct dsa_notifier_fdb_info info = {
1023
.dp = dp,
1024
.addr = addr,
1025
.vid = vid,
1026
.db = db,
1027
};
1028
1029
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_FDB_ADD, &info);
1030
}
1031
1032
int dsa_port_standalone_host_fdb_add(struct dsa_port *dp,
1033
const unsigned char *addr, u16 vid)
1034
{
1035
struct dsa_db db = {
1036
.type = DSA_DB_PORT,
1037
.dp = dp,
1038
};
1039
1040
return dsa_port_host_fdb_add(dp, addr, vid, db);
1041
}
1042
1043
int dsa_port_bridge_host_fdb_add(struct dsa_port *dp,
1044
const unsigned char *addr, u16 vid)
1045
{
1046
struct net_device *conduit = dsa_port_to_conduit(dp);
1047
struct dsa_db db = {
1048
.type = DSA_DB_BRIDGE,
1049
.bridge = *dp->bridge,
1050
};
1051
int err;
1052
1053
if (!dp->ds->fdb_isolation)
1054
db.bridge.num = 0;
1055
1056
/* Avoid a call to __dev_set_promiscuity() on the conduit, which
1057
* requires rtnl_lock(), since we can't guarantee that is held here,
1058
* and we can't take it either.
1059
*/
1060
if (conduit->priv_flags & IFF_UNICAST_FLT) {
1061
err = dev_uc_add(conduit, addr);
1062
if (err)
1063
return err;
1064
}
1065
1066
return dsa_port_host_fdb_add(dp, addr, vid, db);
1067
}
1068
1069
static int dsa_port_host_fdb_del(struct dsa_port *dp,
1070
const unsigned char *addr, u16 vid,
1071
struct dsa_db db)
1072
{
1073
struct dsa_notifier_fdb_info info = {
1074
.dp = dp,
1075
.addr = addr,
1076
.vid = vid,
1077
.db = db,
1078
};
1079
1080
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_FDB_DEL, &info);
1081
}
1082
1083
int dsa_port_standalone_host_fdb_del(struct dsa_port *dp,
1084
const unsigned char *addr, u16 vid)
1085
{
1086
struct dsa_db db = {
1087
.type = DSA_DB_PORT,
1088
.dp = dp,
1089
};
1090
1091
return dsa_port_host_fdb_del(dp, addr, vid, db);
1092
}
1093
1094
int dsa_port_bridge_host_fdb_del(struct dsa_port *dp,
1095
const unsigned char *addr, u16 vid)
1096
{
1097
struct net_device *conduit = dsa_port_to_conduit(dp);
1098
struct dsa_db db = {
1099
.type = DSA_DB_BRIDGE,
1100
.bridge = *dp->bridge,
1101
};
1102
int err;
1103
1104
if (!dp->ds->fdb_isolation)
1105
db.bridge.num = 0;
1106
1107
if (conduit->priv_flags & IFF_UNICAST_FLT) {
1108
err = dev_uc_del(conduit, addr);
1109
if (err)
1110
return err;
1111
}
1112
1113
return dsa_port_host_fdb_del(dp, addr, vid, db);
1114
}
1115
1116
int dsa_port_lag_fdb_add(struct dsa_port *dp, const unsigned char *addr,
1117
u16 vid)
1118
{
1119
struct dsa_notifier_lag_fdb_info info = {
1120
.lag = dp->lag,
1121
.addr = addr,
1122
.vid = vid,
1123
.db = {
1124
.type = DSA_DB_BRIDGE,
1125
.bridge = *dp->bridge,
1126
},
1127
};
1128
1129
if (!dp->ds->fdb_isolation)
1130
info.db.bridge.num = 0;
1131
1132
return dsa_port_notify(dp, DSA_NOTIFIER_LAG_FDB_ADD, &info);
1133
}
1134
1135
int dsa_port_lag_fdb_del(struct dsa_port *dp, const unsigned char *addr,
1136
u16 vid)
1137
{
1138
struct dsa_notifier_lag_fdb_info info = {
1139
.lag = dp->lag,
1140
.addr = addr,
1141
.vid = vid,
1142
.db = {
1143
.type = DSA_DB_BRIDGE,
1144
.bridge = *dp->bridge,
1145
},
1146
};
1147
1148
if (!dp->ds->fdb_isolation)
1149
info.db.bridge.num = 0;
1150
1151
return dsa_port_notify(dp, DSA_NOTIFIER_LAG_FDB_DEL, &info);
1152
}
1153
1154
int dsa_port_fdb_dump(struct dsa_port *dp, dsa_fdb_dump_cb_t *cb, void *data)
1155
{
1156
struct dsa_switch *ds = dp->ds;
1157
int port = dp->index;
1158
1159
if (!ds->ops->port_fdb_dump)
1160
return -EOPNOTSUPP;
1161
1162
return ds->ops->port_fdb_dump(ds, port, cb, data);
1163
}
1164
1165
int dsa_port_mdb_add(const struct dsa_port *dp,
1166
const struct switchdev_obj_port_mdb *mdb)
1167
{
1168
struct dsa_notifier_mdb_info info = {
1169
.dp = dp,
1170
.mdb = mdb,
1171
.db = {
1172
.type = DSA_DB_BRIDGE,
1173
.bridge = *dp->bridge,
1174
},
1175
};
1176
1177
if (!dp->ds->fdb_isolation)
1178
info.db.bridge.num = 0;
1179
1180
return dsa_port_notify(dp, DSA_NOTIFIER_MDB_ADD, &info);
1181
}
1182
1183
int dsa_port_mdb_del(const struct dsa_port *dp,
1184
const struct switchdev_obj_port_mdb *mdb)
1185
{
1186
struct dsa_notifier_mdb_info info = {
1187
.dp = dp,
1188
.mdb = mdb,
1189
.db = {
1190
.type = DSA_DB_BRIDGE,
1191
.bridge = *dp->bridge,
1192
},
1193
};
1194
1195
if (!dp->ds->fdb_isolation)
1196
info.db.bridge.num = 0;
1197
1198
return dsa_port_notify(dp, DSA_NOTIFIER_MDB_DEL, &info);
1199
}
1200
1201
static int dsa_port_host_mdb_add(const struct dsa_port *dp,
1202
const struct switchdev_obj_port_mdb *mdb,
1203
struct dsa_db db)
1204
{
1205
struct dsa_notifier_mdb_info info = {
1206
.dp = dp,
1207
.mdb = mdb,
1208
.db = db,
1209
};
1210
1211
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_MDB_ADD, &info);
1212
}
1213
1214
int dsa_port_standalone_host_mdb_add(const struct dsa_port *dp,
1215
const struct switchdev_obj_port_mdb *mdb)
1216
{
1217
struct dsa_db db = {
1218
.type = DSA_DB_PORT,
1219
.dp = dp,
1220
};
1221
1222
return dsa_port_host_mdb_add(dp, mdb, db);
1223
}
1224
1225
int dsa_port_bridge_host_mdb_add(const struct dsa_port *dp,
1226
const struct switchdev_obj_port_mdb *mdb)
1227
{
1228
struct net_device *conduit = dsa_port_to_conduit(dp);
1229
struct dsa_db db = {
1230
.type = DSA_DB_BRIDGE,
1231
.bridge = *dp->bridge,
1232
};
1233
int err;
1234
1235
if (!dp->ds->fdb_isolation)
1236
db.bridge.num = 0;
1237
1238
err = dev_mc_add(conduit, mdb->addr);
1239
if (err)
1240
return err;
1241
1242
return dsa_port_host_mdb_add(dp, mdb, db);
1243
}
1244
1245
static int dsa_port_host_mdb_del(const struct dsa_port *dp,
1246
const struct switchdev_obj_port_mdb *mdb,
1247
struct dsa_db db)
1248
{
1249
struct dsa_notifier_mdb_info info = {
1250
.dp = dp,
1251
.mdb = mdb,
1252
.db = db,
1253
};
1254
1255
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_MDB_DEL, &info);
1256
}
1257
1258
int dsa_port_standalone_host_mdb_del(const struct dsa_port *dp,
1259
const struct switchdev_obj_port_mdb *mdb)
1260
{
1261
struct dsa_db db = {
1262
.type = DSA_DB_PORT,
1263
.dp = dp,
1264
};
1265
1266
return dsa_port_host_mdb_del(dp, mdb, db);
1267
}
1268
1269
int dsa_port_bridge_host_mdb_del(const struct dsa_port *dp,
1270
const struct switchdev_obj_port_mdb *mdb)
1271
{
1272
struct net_device *conduit = dsa_port_to_conduit(dp);
1273
struct dsa_db db = {
1274
.type = DSA_DB_BRIDGE,
1275
.bridge = *dp->bridge,
1276
};
1277
int err;
1278
1279
if (!dp->ds->fdb_isolation)
1280
db.bridge.num = 0;
1281
1282
err = dev_mc_del(conduit, mdb->addr);
1283
if (err)
1284
return err;
1285
1286
return dsa_port_host_mdb_del(dp, mdb, db);
1287
}
1288
1289
int dsa_port_vlan_add(struct dsa_port *dp,
1290
const struct switchdev_obj_port_vlan *vlan,
1291
struct netlink_ext_ack *extack)
1292
{
1293
struct dsa_notifier_vlan_info info = {
1294
.dp = dp,
1295
.vlan = vlan,
1296
.extack = extack,
1297
};
1298
1299
return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_ADD, &info);
1300
}
1301
1302
int dsa_port_vlan_del(struct dsa_port *dp,
1303
const struct switchdev_obj_port_vlan *vlan)
1304
{
1305
struct dsa_notifier_vlan_info info = {
1306
.dp = dp,
1307
.vlan = vlan,
1308
};
1309
1310
return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_DEL, &info);
1311
}
1312
1313
int dsa_port_host_vlan_add(struct dsa_port *dp,
1314
const struct switchdev_obj_port_vlan *vlan,
1315
struct netlink_ext_ack *extack)
1316
{
1317
struct net_device *conduit = dsa_port_to_conduit(dp);
1318
struct dsa_notifier_vlan_info info = {
1319
.dp = dp,
1320
.vlan = vlan,
1321
.extack = extack,
1322
};
1323
int err;
1324
1325
err = dsa_port_notify(dp, DSA_NOTIFIER_HOST_VLAN_ADD, &info);
1326
if (err && err != -EOPNOTSUPP)
1327
return err;
1328
1329
vlan_vid_add(conduit, htons(ETH_P_8021Q), vlan->vid);
1330
1331
return err;
1332
}
1333
1334
int dsa_port_host_vlan_del(struct dsa_port *dp,
1335
const struct switchdev_obj_port_vlan *vlan)
1336
{
1337
struct net_device *conduit = dsa_port_to_conduit(dp);
1338
struct dsa_notifier_vlan_info info = {
1339
.dp = dp,
1340
.vlan = vlan,
1341
};
1342
int err;
1343
1344
err = dsa_port_notify(dp, DSA_NOTIFIER_HOST_VLAN_DEL, &info);
1345
if (err && err != -EOPNOTSUPP)
1346
return err;
1347
1348
vlan_vid_del(conduit, htons(ETH_P_8021Q), vlan->vid);
1349
1350
return err;
1351
}
1352
1353
int dsa_port_mrp_add(const struct dsa_port *dp,
1354
const struct switchdev_obj_mrp *mrp)
1355
{
1356
struct dsa_switch *ds = dp->ds;
1357
1358
if (!ds->ops->port_mrp_add)
1359
return -EOPNOTSUPP;
1360
1361
return ds->ops->port_mrp_add(ds, dp->index, mrp);
1362
}
1363
1364
int dsa_port_mrp_del(const struct dsa_port *dp,
1365
const struct switchdev_obj_mrp *mrp)
1366
{
1367
struct dsa_switch *ds = dp->ds;
1368
1369
if (!ds->ops->port_mrp_del)
1370
return -EOPNOTSUPP;
1371
1372
return ds->ops->port_mrp_del(ds, dp->index, mrp);
1373
}
1374
1375
int dsa_port_mrp_add_ring_role(const struct dsa_port *dp,
1376
const struct switchdev_obj_ring_role_mrp *mrp)
1377
{
1378
struct dsa_switch *ds = dp->ds;
1379
1380
if (!ds->ops->port_mrp_add_ring_role)
1381
return -EOPNOTSUPP;
1382
1383
return ds->ops->port_mrp_add_ring_role(ds, dp->index, mrp);
1384
}
1385
1386
int dsa_port_mrp_del_ring_role(const struct dsa_port *dp,
1387
const struct switchdev_obj_ring_role_mrp *mrp)
1388
{
1389
struct dsa_switch *ds = dp->ds;
1390
1391
if (!ds->ops->port_mrp_del_ring_role)
1392
return -EOPNOTSUPP;
1393
1394
return ds->ops->port_mrp_del_ring_role(ds, dp->index, mrp);
1395
}
1396
1397
static int dsa_port_assign_conduit(struct dsa_port *dp,
1398
struct net_device *conduit,
1399
struct netlink_ext_ack *extack,
1400
bool fail_on_err)
1401
{
1402
struct dsa_switch *ds = dp->ds;
1403
int port = dp->index, err;
1404
1405
err = ds->ops->port_change_conduit(ds, port, conduit, extack);
1406
if (err && !fail_on_err)
1407
dev_err(ds->dev, "port %d failed to assign conduit %s: %pe\n",
1408
port, conduit->name, ERR_PTR(err));
1409
1410
if (err && fail_on_err)
1411
return err;
1412
1413
dp->cpu_dp = conduit->dsa_ptr;
1414
dp->cpu_port_in_lag = netif_is_lag_master(conduit);
1415
1416
return 0;
1417
}
1418
1419
/* Change the dp->cpu_dp affinity for a user port. Note that both cross-chip
1420
* notifiers and drivers have implicit assumptions about user-to-CPU-port
1421
* mappings, so we unfortunately cannot delay the deletion of the objects
1422
* (switchdev, standalone addresses, standalone VLANs) on the old CPU port
1423
* until the new CPU port has been set up. So we need to completely tear down
1424
* the old CPU port before changing it, and restore it on errors during the
1425
* bringup of the new one.
1426
*/
1427
int dsa_port_change_conduit(struct dsa_port *dp, struct net_device *conduit,
1428
struct netlink_ext_ack *extack)
1429
{
1430
struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
1431
struct net_device *old_conduit = dsa_port_to_conduit(dp);
1432
struct net_device *dev = dp->user;
1433
struct dsa_switch *ds = dp->ds;
1434
bool vlan_filtering;
1435
int err, tmp;
1436
1437
/* Bridges may hold host FDB, MDB and VLAN objects. These need to be
1438
* migrated, so dynamically unoffload and later reoffload the bridge
1439
* port.
1440
*/
1441
if (bridge_dev) {
1442
dsa_port_pre_bridge_leave(dp, bridge_dev);
1443
dsa_port_bridge_leave(dp, bridge_dev);
1444
}
1445
1446
/* The port might still be VLAN filtering even if it's no longer
1447
* under a bridge, either due to ds->vlan_filtering_is_global or
1448
* ds->needs_standalone_vlan_filtering. In turn this means VLANs
1449
* on the CPU port.
1450
*/
1451
vlan_filtering = dsa_port_is_vlan_filtering(dp);
1452
if (vlan_filtering) {
1453
err = dsa_user_manage_vlan_filtering(dev, false);
1454
if (err) {
1455
NL_SET_ERR_MSG_MOD(extack,
1456
"Failed to remove standalone VLANs");
1457
goto rewind_old_bridge;
1458
}
1459
}
1460
1461
/* Standalone addresses, and addresses of upper interfaces like
1462
* VLAN, LAG, HSR need to be migrated.
1463
*/
1464
dsa_user_unsync_ha(dev);
1465
1466
/* If live-changing, we also need to uninstall the user device address
1467
* from the port FDB and the conduit interface.
1468
*/
1469
if (dev->flags & IFF_UP)
1470
dsa_user_host_uc_uninstall(dev);
1471
1472
err = dsa_port_assign_conduit(dp, conduit, extack, true);
1473
if (err)
1474
goto rewind_old_addrs;
1475
1476
/* If the port doesn't have its own MAC address and relies on the DSA
1477
* conduit's one, inherit it again from the new DSA conduit.
1478
*/
1479
if (is_zero_ether_addr(dp->mac))
1480
eth_hw_addr_inherit(dev, conduit);
1481
1482
/* If live-changing, we need to install the user device address to the
1483
* port FDB and the conduit interface.
1484
*/
1485
if (dev->flags & IFF_UP) {
1486
err = dsa_user_host_uc_install(dev, dev->dev_addr);
1487
if (err) {
1488
NL_SET_ERR_MSG_MOD(extack,
1489
"Failed to install host UC address");
1490
goto rewind_addr_inherit;
1491
}
1492
}
1493
1494
dsa_user_sync_ha(dev);
1495
1496
if (vlan_filtering) {
1497
err = dsa_user_manage_vlan_filtering(dev, true);
1498
if (err) {
1499
NL_SET_ERR_MSG_MOD(extack,
1500
"Failed to restore standalone VLANs");
1501
goto rewind_new_addrs;
1502
}
1503
}
1504
1505
if (bridge_dev) {
1506
err = dsa_port_bridge_join(dp, bridge_dev, extack);
1507
if (err && err == -EOPNOTSUPP) {
1508
NL_SET_ERR_MSG_MOD(extack,
1509
"Failed to reoffload bridge");
1510
goto rewind_new_vlan;
1511
}
1512
}
1513
1514
return 0;
1515
1516
rewind_new_vlan:
1517
if (vlan_filtering)
1518
dsa_user_manage_vlan_filtering(dev, false);
1519
1520
rewind_new_addrs:
1521
dsa_user_unsync_ha(dev);
1522
1523
if (dev->flags & IFF_UP)
1524
dsa_user_host_uc_uninstall(dev);
1525
1526
rewind_addr_inherit:
1527
if (is_zero_ether_addr(dp->mac))
1528
eth_hw_addr_inherit(dev, old_conduit);
1529
1530
dsa_port_assign_conduit(dp, old_conduit, NULL, false);
1531
1532
/* Restore the objects on the old CPU port */
1533
rewind_old_addrs:
1534
if (dev->flags & IFF_UP) {
1535
tmp = dsa_user_host_uc_install(dev, dev->dev_addr);
1536
if (tmp) {
1537
dev_err(ds->dev,
1538
"port %d failed to restore host UC address: %pe\n",
1539
dp->index, ERR_PTR(tmp));
1540
}
1541
}
1542
1543
dsa_user_sync_ha(dev);
1544
1545
if (vlan_filtering) {
1546
tmp = dsa_user_manage_vlan_filtering(dev, true);
1547
if (tmp) {
1548
dev_err(ds->dev,
1549
"port %d failed to restore standalone VLANs: %pe\n",
1550
dp->index, ERR_PTR(tmp));
1551
}
1552
}
1553
1554
rewind_old_bridge:
1555
if (bridge_dev) {
1556
tmp = dsa_port_bridge_join(dp, bridge_dev, extack);
1557
if (tmp) {
1558
dev_err(ds->dev,
1559
"port %d failed to rejoin bridge %s: %pe\n",
1560
dp->index, bridge_dev->name, ERR_PTR(tmp));
1561
}
1562
}
1563
1564
return err;
1565
}
1566
1567
void dsa_port_set_tag_protocol(struct dsa_port *cpu_dp,
1568
const struct dsa_device_ops *tag_ops)
1569
{
1570
cpu_dp->rcv = tag_ops->rcv;
1571
cpu_dp->tag_ops = tag_ops;
1572
}
1573
1574
/* dsa_supports_eee - indicate that EEE is supported
1575
* @ds: pointer to &struct dsa_switch
1576
* @port: port index
1577
*
1578
* A default implementation for the .support_eee() DSA operations member,
1579
* which drivers can use to indicate that they support EEE on all of their
1580
* user ports.
1581
*
1582
* Returns: true
1583
*/
1584
bool dsa_supports_eee(struct dsa_switch *ds, int port)
1585
{
1586
return true;
1587
}
1588
EXPORT_SYMBOL_GPL(dsa_supports_eee);
1589
1590
static void dsa_port_phylink_mac_config(struct phylink_config *config,
1591
unsigned int mode,
1592
const struct phylink_link_state *state)
1593
{
1594
}
1595
1596
static void dsa_port_phylink_mac_link_down(struct phylink_config *config,
1597
unsigned int mode,
1598
phy_interface_t interface)
1599
{
1600
}
1601
1602
static void dsa_port_phylink_mac_link_up(struct phylink_config *config,
1603
struct phy_device *phydev,
1604
unsigned int mode,
1605
phy_interface_t interface,
1606
int speed, int duplex,
1607
bool tx_pause, bool rx_pause)
1608
{
1609
}
1610
1611
static const struct phylink_mac_ops dsa_port_phylink_mac_ops = {
1612
.mac_config = dsa_port_phylink_mac_config,
1613
.mac_link_down = dsa_port_phylink_mac_link_down,
1614
.mac_link_up = dsa_port_phylink_mac_link_up,
1615
};
1616
1617
int dsa_port_phylink_create(struct dsa_port *dp)
1618
{
1619
const struct phylink_mac_ops *mac_ops;
1620
struct dsa_switch *ds = dp->ds;
1621
phy_interface_t mode;
1622
struct phylink *pl;
1623
int err;
1624
1625
err = of_get_phy_mode(dp->dn, &mode);
1626
if (err)
1627
mode = PHY_INTERFACE_MODE_NA;
1628
1629
if (ds->ops->phylink_get_caps) {
1630
ds->ops->phylink_get_caps(ds, dp->index, &dp->pl_config);
1631
} else {
1632
/* For legacy drivers */
1633
if (mode != PHY_INTERFACE_MODE_NA) {
1634
__set_bit(mode, dp->pl_config.supported_interfaces);
1635
} else {
1636
__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1637
dp->pl_config.supported_interfaces);
1638
__set_bit(PHY_INTERFACE_MODE_GMII,
1639
dp->pl_config.supported_interfaces);
1640
}
1641
}
1642
1643
mac_ops = &dsa_port_phylink_mac_ops;
1644
if (ds->phylink_mac_ops)
1645
mac_ops = ds->phylink_mac_ops;
1646
1647
pl = phylink_create(&dp->pl_config, of_fwnode_handle(dp->dn), mode,
1648
mac_ops);
1649
if (IS_ERR(pl)) {
1650
pr_err("error creating PHYLINK: %ld\n", PTR_ERR(pl));
1651
return PTR_ERR(pl);
1652
}
1653
1654
dp->pl = pl;
1655
1656
return 0;
1657
}
1658
1659
void dsa_port_phylink_destroy(struct dsa_port *dp)
1660
{
1661
phylink_destroy(dp->pl);
1662
dp->pl = NULL;
1663
}
1664
1665
static int dsa_shared_port_phylink_register(struct dsa_port *dp)
1666
{
1667
struct dsa_switch *ds = dp->ds;
1668
struct device_node *port_dn = dp->dn;
1669
int err;
1670
1671
dp->pl_config.dev = ds->dev;
1672
dp->pl_config.type = PHYLINK_DEV;
1673
1674
err = dsa_port_phylink_create(dp);
1675
if (err)
1676
return err;
1677
1678
err = phylink_of_phy_connect(dp->pl, port_dn, 0);
1679
if (err && err != -ENODEV) {
1680
pr_err("could not attach to PHY: %d\n", err);
1681
goto err_phy_connect;
1682
}
1683
1684
return 0;
1685
1686
err_phy_connect:
1687
dsa_port_phylink_destroy(dp);
1688
return err;
1689
}
1690
1691
/* During the initial DSA driver migration to OF, port nodes were sometimes
1692
* added to device trees with no indication of how they should operate from a
1693
* link management perspective (phy-handle, fixed-link, etc). Additionally, the
1694
* phy-mode may be absent. The interpretation of these port OF nodes depends on
1695
* their type.
1696
*
1697
* User ports with no phy-handle or fixed-link are expected to connect to an
1698
* internal PHY located on the ds->user_mii_bus at an MDIO address equal to
1699
* the port number. This description is still actively supported.
1700
*
1701
* Shared (CPU and DSA) ports with no phy-handle or fixed-link are expected to
1702
* operate at the maximum speed that their phy-mode is capable of. If the
1703
* phy-mode is absent, they are expected to operate using the phy-mode
1704
* supported by the port that gives the highest link speed. It is unspecified
1705
* if the port should use flow control or not, half duplex or full duplex, or
1706
* if the phy-mode is a SERDES link, whether in-band autoneg is expected to be
1707
* enabled or not.
1708
*
1709
* In the latter case of shared ports, omitting the link management description
1710
* from the firmware node is deprecated and strongly discouraged. DSA uses
1711
* phylink, which rejects the firmware nodes of these ports for lacking
1712
* required properties.
1713
*
1714
* For switches in this table, DSA will skip enforcing validation and will
1715
* later omit registering a phylink instance for the shared ports, if they lack
1716
* a fixed-link, a phy-handle, or a managed = "in-band-status" property.
1717
* It becomes the responsibility of the driver to ensure that these ports
1718
* operate at the maximum speed (whatever this means) and will interoperate
1719
* with the DSA conduit or other cascade port, since phylink methods will not be
1720
* invoked for them.
1721
*
1722
* If you are considering expanding this table for newly introduced switches,
1723
* think again. It is OK to remove switches from this table if there aren't DT
1724
* blobs in circulation which rely on defaulting the shared ports.
1725
*/
1726
static const char * const dsa_switches_apply_workarounds[] = {
1727
#if IS_ENABLED(CONFIG_NET_DSA_XRS700X)
1728
"arrow,xrs7003e",
1729
"arrow,xrs7003f",
1730
"arrow,xrs7004e",
1731
"arrow,xrs7004f",
1732
#endif
1733
#if IS_ENABLED(CONFIG_B53)
1734
"brcm,bcm5325",
1735
"brcm,bcm53115",
1736
"brcm,bcm53125",
1737
"brcm,bcm53128",
1738
"brcm,bcm5365",
1739
"brcm,bcm5389",
1740
"brcm,bcm5395",
1741
"brcm,bcm5397",
1742
"brcm,bcm5398",
1743
"brcm,bcm53010-srab",
1744
"brcm,bcm53011-srab",
1745
"brcm,bcm53012-srab",
1746
"brcm,bcm53018-srab",
1747
"brcm,bcm53019-srab",
1748
"brcm,bcm5301x-srab",
1749
"brcm,bcm11360-srab",
1750
"brcm,bcm58522-srab",
1751
"brcm,bcm58525-srab",
1752
"brcm,bcm58535-srab",
1753
"brcm,bcm58622-srab",
1754
"brcm,bcm58623-srab",
1755
"brcm,bcm58625-srab",
1756
"brcm,bcm88312-srab",
1757
"brcm,cygnus-srab",
1758
"brcm,nsp-srab",
1759
"brcm,omega-srab",
1760
"brcm,bcm3384-switch",
1761
"brcm,bcm6328-switch",
1762
"brcm,bcm6368-switch",
1763
"brcm,bcm63xx-switch",
1764
#endif
1765
#if IS_ENABLED(CONFIG_NET_DSA_BCM_SF2)
1766
"brcm,bcm7445-switch-v4.0",
1767
"brcm,bcm7278-switch-v4.0",
1768
"brcm,bcm7278-switch-v4.8",
1769
#endif
1770
#if IS_ENABLED(CONFIG_NET_DSA_LANTIQ_GSWIP)
1771
"lantiq,xrx200-gswip",
1772
"lantiq,xrx300-gswip",
1773
"lantiq,xrx330-gswip",
1774
#endif
1775
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6060)
1776
"marvell,mv88e6060",
1777
#endif
1778
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6XXX)
1779
"marvell,mv88e6085",
1780
"marvell,mv88e6190",
1781
"marvell,mv88e6250",
1782
#endif
1783
#if IS_ENABLED(CONFIG_NET_DSA_MICROCHIP_KSZ_COMMON)
1784
"microchip,ksz8765",
1785
"microchip,ksz8794",
1786
"microchip,ksz8795",
1787
"microchip,ksz8863",
1788
"microchip,ksz8873",
1789
"microchip,ksz9477",
1790
"microchip,ksz9897",
1791
"microchip,ksz9893",
1792
"microchip,ksz9563",
1793
"microchip,ksz8563",
1794
"microchip,ksz9567",
1795
#endif
1796
#if IS_ENABLED(CONFIG_NET_DSA_SMSC_LAN9303_MDIO)
1797
"smsc,lan9303-mdio",
1798
#endif
1799
#if IS_ENABLED(CONFIG_NET_DSA_SMSC_LAN9303_I2C)
1800
"smsc,lan9303-i2c",
1801
#endif
1802
NULL,
1803
};
1804
1805
static void dsa_shared_port_validate_of(struct dsa_port *dp,
1806
bool *missing_phy_mode,
1807
bool *missing_link_description)
1808
{
1809
struct device_node *dn = dp->dn, *phy_np;
1810
struct dsa_switch *ds = dp->ds;
1811
phy_interface_t mode;
1812
1813
*missing_phy_mode = false;
1814
*missing_link_description = false;
1815
1816
if (of_get_phy_mode(dn, &mode)) {
1817
*missing_phy_mode = true;
1818
dev_err(ds->dev,
1819
"OF node %pOF of %s port %d lacks the required \"phy-mode\" property\n",
1820
dn, dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index);
1821
}
1822
1823
/* Note: of_phy_is_fixed_link() also returns true for
1824
* managed = "in-band-status"
1825
*/
1826
if (of_phy_is_fixed_link(dn))
1827
return;
1828
1829
phy_np = of_parse_phandle(dn, "phy-handle", 0);
1830
if (phy_np) {
1831
of_node_put(phy_np);
1832
return;
1833
}
1834
1835
*missing_link_description = true;
1836
1837
dev_err(ds->dev,
1838
"OF node %pOF of %s port %d lacks the required \"phy-handle\", \"fixed-link\" or \"managed\" properties\n",
1839
dn, dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index);
1840
}
1841
1842
static void dsa_shared_port_link_down(struct dsa_port *dp)
1843
{
1844
struct dsa_switch *ds = dp->ds;
1845
1846
if (ds->phylink_mac_ops && ds->phylink_mac_ops->mac_link_down)
1847
ds->phylink_mac_ops->mac_link_down(&dp->pl_config, MLO_AN_FIXED,
1848
PHY_INTERFACE_MODE_NA);
1849
}
1850
1851
int dsa_shared_port_link_register_of(struct dsa_port *dp)
1852
{
1853
struct dsa_switch *ds = dp->ds;
1854
bool missing_link_description;
1855
bool missing_phy_mode;
1856
1857
dsa_shared_port_validate_of(dp, &missing_phy_mode,
1858
&missing_link_description);
1859
1860
if ((missing_phy_mode || missing_link_description) &&
1861
!of_device_compatible_match(ds->dev->of_node,
1862
dsa_switches_apply_workarounds))
1863
return -EINVAL;
1864
1865
if (missing_link_description) {
1866
dev_warn(ds->dev,
1867
"Skipping phylink registration for %s port %d\n",
1868
dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index);
1869
} else {
1870
dsa_shared_port_link_down(dp);
1871
1872
return dsa_shared_port_phylink_register(dp);
1873
}
1874
1875
return 0;
1876
}
1877
1878
void dsa_shared_port_link_unregister_of(struct dsa_port *dp)
1879
{
1880
if (dp->pl) {
1881
rtnl_lock();
1882
phylink_disconnect_phy(dp->pl);
1883
rtnl_unlock();
1884
dsa_port_phylink_destroy(dp);
1885
return;
1886
}
1887
}
1888
1889
int dsa_port_hsr_join(struct dsa_port *dp, struct net_device *hsr,
1890
struct netlink_ext_ack *extack)
1891
{
1892
struct dsa_switch *ds = dp->ds;
1893
int err;
1894
1895
if (!ds->ops->port_hsr_join)
1896
return -EOPNOTSUPP;
1897
1898
dp->hsr_dev = hsr;
1899
1900
err = ds->ops->port_hsr_join(ds, dp->index, hsr, extack);
1901
if (err)
1902
dp->hsr_dev = NULL;
1903
1904
return err;
1905
}
1906
1907
void dsa_port_hsr_leave(struct dsa_port *dp, struct net_device *hsr)
1908
{
1909
struct dsa_switch *ds = dp->ds;
1910
int err;
1911
1912
dp->hsr_dev = NULL;
1913
1914
if (ds->ops->port_hsr_leave) {
1915
err = ds->ops->port_hsr_leave(ds, dp->index, hsr);
1916
if (err)
1917
dev_err(dp->ds->dev,
1918
"port %d failed to leave HSR %s: %pe\n",
1919
dp->index, hsr->name, ERR_PTR(err));
1920
}
1921
}
1922
1923
int dsa_port_tag_8021q_vlan_add(struct dsa_port *dp, u16 vid, bool broadcast)
1924
{
1925
struct dsa_notifier_tag_8021q_vlan_info info = {
1926
.dp = dp,
1927
.vid = vid,
1928
};
1929
1930
if (broadcast)
1931
return dsa_broadcast(DSA_NOTIFIER_TAG_8021Q_VLAN_ADD, &info);
1932
1933
return dsa_port_notify(dp, DSA_NOTIFIER_TAG_8021Q_VLAN_ADD, &info);
1934
}
1935
1936
void dsa_port_tag_8021q_vlan_del(struct dsa_port *dp, u16 vid, bool broadcast)
1937
{
1938
struct dsa_notifier_tag_8021q_vlan_info info = {
1939
.dp = dp,
1940
.vid = vid,
1941
};
1942
int err;
1943
1944
if (broadcast)
1945
err = dsa_broadcast(DSA_NOTIFIER_TAG_8021Q_VLAN_DEL, &info);
1946
else
1947
err = dsa_port_notify(dp, DSA_NOTIFIER_TAG_8021Q_VLAN_DEL, &info);
1948
if (err)
1949
dev_err(dp->ds->dev,
1950
"port %d failed to notify tag_8021q VLAN %d deletion: %pe\n",
1951
dp->index, vid, ERR_PTR(err));
1952
}
1953
1954