Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/arp.c
49211 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* linux/net/ipv4/arp.c
3
*
4
* Copyright (C) 1994 by Florian La Roche
5
*
6
* This module implements the Address Resolution Protocol ARP (RFC 826),
7
* which is used to convert IP addresses (or in the future maybe other
8
* high-level addresses) into a low-level hardware address (like an Ethernet
9
* address).
10
*
11
* Fixes:
12
* Alan Cox : Removed the Ethernet assumptions in
13
* Florian's code
14
* Alan Cox : Fixed some small errors in the ARP
15
* logic
16
* Alan Cox : Allow >4K in /proc
17
* Alan Cox : Make ARP add its own protocol entry
18
* Ross Martin : Rewrote arp_rcv() and arp_get_info()
19
* Stephen Henson : Add AX25 support to arp_get_info()
20
* Alan Cox : Drop data when a device is downed.
21
* Alan Cox : Use init_timer().
22
* Alan Cox : Double lock fixes.
23
* Martin Seine : Move the arphdr structure
24
* to if_arp.h for compatibility.
25
* with BSD based programs.
26
* Andrew Tridgell : Added ARP netmask code and
27
* re-arranged proxy handling.
28
* Alan Cox : Changed to use notifiers.
29
* Niibe Yutaka : Reply for this device or proxies only.
30
* Alan Cox : Don't proxy across hardware types!
31
* Jonathan Naylor : Added support for NET/ROM.
32
* Mike Shaver : RFC1122 checks.
33
* Jonathan Naylor : Only lookup the hardware address for
34
* the correct hardware type.
35
* Germano Caronni : Assorted subtle races.
36
* Craig Schlenter : Don't modify permanent entry
37
* during arp_rcv.
38
* Russ Nelson : Tidied up a few bits.
39
* Alexey Kuznetsov: Major changes to caching and behaviour,
40
* eg intelligent arp probing and
41
* generation
42
* of host down events.
43
* Alan Cox : Missing unlock in device events.
44
* Eckes : ARP ioctl control errors.
45
* Alexey Kuznetsov: Arp free fix.
46
* Manuel Rodriguez: Gratuitous ARP.
47
* Jonathan Layes : Added arpd support through kerneld
48
* message queue (960314)
49
* Mike Shaver : /proc/sys/net/ipv4/arp_* support
50
* Mike McLagan : Routing by source
51
* Stuart Cheshire : Metricom and grat arp fixes
52
* *** FOR 2.1 clean this up ***
53
* Lawrence V. Stefani: (08/12/96) Added FDDI support.
54
* Alan Cox : Took the AP1000 nasty FDDI hack and
55
* folded into the mainstream FDDI code.
56
* Ack spit, Linus how did you allow that
57
* one in...
58
* Jes Sorensen : Make FDDI work again in 2.1.x and
59
* clean up the APFDDI & gen. FDDI bits.
60
* Alexey Kuznetsov: new arp state machine;
61
* now it is in net/core/neighbour.c.
62
* Krzysztof Halasa: Added Frame Relay ARP support.
63
* Arnaldo C. Melo : convert /proc/net/arp to seq_file
64
* Shmulik Hen: Split arp_send to arp_create and
65
* arp_xmit so intermediate drivers like
66
* bonding can change the skb before
67
* sending (e.g. insert 8021q tag).
68
* Harald Welte : convert to make use of jenkins hash
69
* Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
70
*/
71
72
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73
74
#include <linux/module.h>
75
#include <linux/types.h>
76
#include <linux/string.h>
77
#include <linux/kernel.h>
78
#include <linux/capability.h>
79
#include <linux/socket.h>
80
#include <linux/sockios.h>
81
#include <linux/errno.h>
82
#include <linux/in.h>
83
#include <linux/mm.h>
84
#include <linux/inet.h>
85
#include <linux/inetdevice.h>
86
#include <linux/netdevice.h>
87
#include <linux/etherdevice.h>
88
#include <linux/fddidevice.h>
89
#include <linux/if_arp.h>
90
#include <linux/skbuff.h>
91
#include <linux/proc_fs.h>
92
#include <linux/seq_file.h>
93
#include <linux/stat.h>
94
#include <linux/init.h>
95
#include <linux/net.h>
96
#include <linux/rcupdate.h>
97
#include <linux/slab.h>
98
#ifdef CONFIG_SYSCTL
99
#include <linux/sysctl.h>
100
#endif
101
102
#include <net/net_namespace.h>
103
#include <net/ip.h>
104
#include <net/icmp.h>
105
#include <net/route.h>
106
#include <net/protocol.h>
107
#include <net/tcp.h>
108
#include <net/sock.h>
109
#include <net/arp.h>
110
#include <net/ax25.h>
111
#include <net/netrom.h>
112
#include <net/dst_metadata.h>
113
#include <net/ip_tunnels.h>
114
115
#include <linux/uaccess.h>
116
117
#include <linux/netfilter_arp.h>
118
119
/*
120
* Interface to generic neighbour cache.
121
*/
122
static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123
static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124
static int arp_constructor(struct neighbour *neigh);
125
static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126
static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127
static void parp_redo(struct sk_buff *skb);
128
static int arp_is_multicast(const void *pkey);
129
130
static const struct neigh_ops arp_generic_ops = {
131
.family = AF_INET,
132
.solicit = arp_solicit,
133
.error_report = arp_error_report,
134
.output = neigh_resolve_output,
135
.connected_output = neigh_connected_output,
136
};
137
138
static const struct neigh_ops arp_hh_ops = {
139
.family = AF_INET,
140
.solicit = arp_solicit,
141
.error_report = arp_error_report,
142
.output = neigh_resolve_output,
143
.connected_output = neigh_resolve_output,
144
};
145
146
static const struct neigh_ops arp_direct_ops = {
147
.family = AF_INET,
148
.output = neigh_direct_output,
149
.connected_output = neigh_direct_output,
150
};
151
152
struct neigh_table arp_tbl = {
153
.family = AF_INET,
154
.key_len = 4,
155
.protocol = cpu_to_be16(ETH_P_IP),
156
.hash = arp_hash,
157
.key_eq = arp_key_eq,
158
.constructor = arp_constructor,
159
.proxy_redo = parp_redo,
160
.is_multicast = arp_is_multicast,
161
.id = "arp_cache",
162
.parms = {
163
.tbl = &arp_tbl,
164
.reachable_time = 30 * HZ,
165
.data = {
166
[NEIGH_VAR_MCAST_PROBES] = 3,
167
[NEIGH_VAR_UCAST_PROBES] = 3,
168
[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169
[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170
[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171
[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
172
[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
173
[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_DEFAULT,
174
[NEIGH_VAR_PROXY_QLEN] = 64,
175
[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
176
[NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
177
[NEIGH_VAR_LOCKTIME] = 1 * HZ,
178
},
179
},
180
.gc_interval = 30 * HZ,
181
.gc_thresh1 = 128,
182
.gc_thresh2 = 512,
183
.gc_thresh3 = 1024,
184
};
185
EXPORT_SYMBOL(arp_tbl);
186
187
int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
188
{
189
switch (dev->type) {
190
case ARPHRD_ETHER:
191
case ARPHRD_FDDI:
192
case ARPHRD_IEEE802:
193
ip_eth_mc_map(addr, haddr);
194
return 0;
195
case ARPHRD_INFINIBAND:
196
ip_ib_mc_map(addr, dev->broadcast, haddr);
197
return 0;
198
case ARPHRD_IPGRE:
199
ip_ipgre_mc_map(addr, dev->broadcast, haddr);
200
return 0;
201
default:
202
if (dir) {
203
memcpy(haddr, dev->broadcast, dev->addr_len);
204
return 0;
205
}
206
}
207
return -EINVAL;
208
}
209
210
211
static u32 arp_hash(const void *pkey,
212
const struct net_device *dev,
213
__u32 *hash_rnd)
214
{
215
return arp_hashfn(pkey, dev, hash_rnd);
216
}
217
218
static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
219
{
220
return neigh_key_eq32(neigh, pkey);
221
}
222
223
static int arp_constructor(struct neighbour *neigh)
224
{
225
__be32 addr;
226
struct net_device *dev = neigh->dev;
227
struct in_device *in_dev;
228
struct neigh_parms *parms;
229
u32 inaddr_any = INADDR_ANY;
230
231
if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
232
memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
233
234
addr = *(__be32 *)neigh->primary_key;
235
rcu_read_lock();
236
in_dev = __in_dev_get_rcu(dev);
237
if (!in_dev) {
238
rcu_read_unlock();
239
return -EINVAL;
240
}
241
242
neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
243
244
parms = in_dev->arp_parms;
245
__neigh_parms_put(neigh->parms);
246
neigh->parms = neigh_parms_clone(parms);
247
rcu_read_unlock();
248
249
if (!dev->header_ops) {
250
neigh->nud_state = NUD_NOARP;
251
neigh->ops = &arp_direct_ops;
252
neigh->output = neigh_direct_output;
253
} else {
254
/* Good devices (checked by reading texts, but only Ethernet is
255
tested)
256
257
ARPHRD_ETHER: (ethernet, apfddi)
258
ARPHRD_FDDI: (fddi)
259
ARPHRD_IEEE802: (tr)
260
ARPHRD_METRICOM: (strip)
261
ARPHRD_ARCNET:
262
etc. etc. etc.
263
264
ARPHRD_IPDDP will also work, if author repairs it.
265
I did not it, because this driver does not work even
266
in old paradigm.
267
*/
268
269
if (neigh->type == RTN_MULTICAST) {
270
neigh->nud_state = NUD_NOARP;
271
arp_mc_map(addr, neigh->ha, dev, 1);
272
} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
273
neigh->nud_state = NUD_NOARP;
274
memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
275
} else if (neigh->type == RTN_BROADCAST ||
276
(dev->flags & IFF_POINTOPOINT)) {
277
neigh->nud_state = NUD_NOARP;
278
memcpy(neigh->ha, dev->broadcast, dev->addr_len);
279
}
280
281
if (dev->header_ops->cache)
282
neigh->ops = &arp_hh_ops;
283
else
284
neigh->ops = &arp_generic_ops;
285
286
if (neigh->nud_state & NUD_VALID)
287
neigh->output = neigh->ops->connected_output;
288
else
289
neigh->output = neigh->ops->output;
290
}
291
return 0;
292
}
293
294
static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
295
{
296
dst_link_failure(skb);
297
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
298
}
299
300
/* Create and send an arp packet. */
301
static void arp_send_dst(int type, int ptype, __be32 dest_ip,
302
struct net_device *dev, __be32 src_ip,
303
const unsigned char *dest_hw,
304
const unsigned char *src_hw,
305
const unsigned char *target_hw,
306
struct dst_entry *dst)
307
{
308
struct sk_buff *skb;
309
310
/* arp on this interface. */
311
if (dev->flags & IFF_NOARP)
312
return;
313
314
skb = arp_create(type, ptype, dest_ip, dev, src_ip,
315
dest_hw, src_hw, target_hw);
316
if (!skb)
317
return;
318
319
skb_dst_set(skb, dst_clone(dst));
320
arp_xmit(skb);
321
}
322
323
void arp_send(int type, int ptype, __be32 dest_ip,
324
struct net_device *dev, __be32 src_ip,
325
const unsigned char *dest_hw, const unsigned char *src_hw,
326
const unsigned char *target_hw)
327
{
328
arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
329
target_hw, NULL);
330
}
331
EXPORT_SYMBOL(arp_send);
332
333
static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334
{
335
__be32 saddr = 0;
336
u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
337
struct net_device *dev = neigh->dev;
338
__be32 target = *(__be32 *)neigh->primary_key;
339
int probes = atomic_read(&neigh->probes);
340
struct in_device *in_dev;
341
struct dst_entry *dst = NULL;
342
343
rcu_read_lock();
344
in_dev = __in_dev_get_rcu(dev);
345
if (!in_dev) {
346
rcu_read_unlock();
347
return;
348
}
349
switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
350
default:
351
case 0: /* By default announce any local IP */
352
if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
353
ip_hdr(skb)->saddr) == RTN_LOCAL)
354
saddr = ip_hdr(skb)->saddr;
355
break;
356
case 1: /* Restrict announcements of saddr in same subnet */
357
if (!skb)
358
break;
359
saddr = ip_hdr(skb)->saddr;
360
if (inet_addr_type_dev_table(dev_net(dev), dev,
361
saddr) == RTN_LOCAL) {
362
/* saddr should be known to target */
363
if (inet_addr_onlink(in_dev, target, saddr))
364
break;
365
}
366
saddr = 0;
367
break;
368
case 2: /* Avoid secondary IPs, get a primary/preferred one */
369
break;
370
}
371
rcu_read_unlock();
372
373
if (!saddr)
374
saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
375
376
probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
377
if (probes < 0) {
378
if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
379
pr_debug("trying to ucast probe in NUD_INVALID\n");
380
neigh_ha_snapshot(dst_ha, neigh, dev);
381
dst_hw = dst_ha;
382
} else {
383
probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
384
if (probes < 0) {
385
neigh_app_ns(neigh);
386
return;
387
}
388
}
389
390
if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
391
dst = skb_dst(skb);
392
arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
393
dst_hw, dev->dev_addr, NULL, dst);
394
}
395
396
static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
397
{
398
struct net *net = dev_net(in_dev->dev);
399
int scope;
400
401
switch (IN_DEV_ARP_IGNORE(in_dev)) {
402
case 0: /* Reply, the tip is already validated */
403
return 0;
404
case 1: /* Reply only if tip is configured on the incoming interface */
405
sip = 0;
406
scope = RT_SCOPE_HOST;
407
break;
408
case 2: /*
409
* Reply only if tip is configured on the incoming interface
410
* and is in same subnet as sip
411
*/
412
scope = RT_SCOPE_HOST;
413
break;
414
case 3: /* Do not reply for scope host addresses */
415
sip = 0;
416
scope = RT_SCOPE_LINK;
417
in_dev = NULL;
418
break;
419
case 4: /* Reserved */
420
case 5:
421
case 6:
422
case 7:
423
return 0;
424
case 8: /* Do not reply */
425
return 1;
426
default:
427
return 0;
428
}
429
return !inet_confirm_addr(net, in_dev, sip, tip, scope);
430
}
431
432
static int arp_accept(struct in_device *in_dev, __be32 sip)
433
{
434
struct net *net = dev_net(in_dev->dev);
435
int scope = RT_SCOPE_LINK;
436
437
switch (IN_DEV_ARP_ACCEPT(in_dev)) {
438
case 0: /* Don't create new entries from garp */
439
return 0;
440
case 1: /* Create new entries from garp */
441
return 1;
442
case 2: /* Create a neighbor in the arp table only if sip
443
* is in the same subnet as an address configured
444
* on the interface that received the garp message
445
*/
446
return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
447
default:
448
return 0;
449
}
450
}
451
452
static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
453
{
454
struct rtable *rt;
455
int flag = 0;
456
/*unsigned long now; */
457
struct net *net = dev_net(dev);
458
459
rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev),
460
RT_SCOPE_UNIVERSE);
461
if (IS_ERR(rt))
462
return 1;
463
if (rt->dst.dev != dev) {
464
__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
465
flag = 1;
466
}
467
ip_rt_put(rt);
468
return flag;
469
}
470
471
/*
472
* Check if we can use proxy ARP for this path
473
*/
474
static inline int arp_fwd_proxy(struct in_device *in_dev,
475
struct net_device *dev, struct rtable *rt)
476
{
477
struct in_device *out_dev;
478
int imi, omi = -1;
479
480
if (rt->dst.dev == dev)
481
return 0;
482
483
if (!IN_DEV_PROXY_ARP(in_dev))
484
return 0;
485
imi = IN_DEV_MEDIUM_ID(in_dev);
486
if (imi == 0)
487
return 1;
488
if (imi == -1)
489
return 0;
490
491
/* place to check for proxy_arp for routes */
492
493
out_dev = __in_dev_get_rcu(rt->dst.dev);
494
if (out_dev)
495
omi = IN_DEV_MEDIUM_ID(out_dev);
496
497
return omi != imi && omi != -1;
498
}
499
500
/*
501
* Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
502
*
503
* RFC3069 supports proxy arp replies back to the same interface. This
504
* is done to support (ethernet) switch features, like RFC 3069, where
505
* the individual ports are not allowed to communicate with each
506
* other, BUT they are allowed to talk to the upstream router. As
507
* described in RFC 3069, it is possible to allow these hosts to
508
* communicate through the upstream router, by proxy_arp'ing.
509
*
510
* RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
511
*
512
* This technology is known by different names:
513
* In RFC 3069 it is called VLAN Aggregation.
514
* Cisco and Allied Telesyn call it Private VLAN.
515
* Hewlett-Packard call it Source-Port filtering or port-isolation.
516
* Ericsson call it MAC-Forced Forwarding (RFC Draft).
517
*
518
*/
519
static inline int arp_fwd_pvlan(struct in_device *in_dev,
520
struct net_device *dev, struct rtable *rt,
521
__be32 sip, __be32 tip)
522
{
523
/* Private VLAN is only concerned about the same ethernet segment */
524
if (rt->dst.dev != dev)
525
return 0;
526
527
/* Don't reply on self probes (often done by windowz boxes)*/
528
if (sip == tip)
529
return 0;
530
531
if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
532
return 1;
533
else
534
return 0;
535
}
536
537
/*
538
* Interface to link layer: send routine and receive handler.
539
*/
540
541
/*
542
* Create an arp packet. If dest_hw is not set, we create a broadcast
543
* message.
544
*/
545
struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
546
struct net_device *dev, __be32 src_ip,
547
const unsigned char *dest_hw,
548
const unsigned char *src_hw,
549
const unsigned char *target_hw)
550
{
551
struct sk_buff *skb;
552
struct arphdr *arp;
553
unsigned char *arp_ptr;
554
int hlen = LL_RESERVED_SPACE(dev);
555
int tlen = dev->needed_tailroom;
556
557
/*
558
* Allocate a buffer
559
*/
560
561
skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
562
if (!skb)
563
return NULL;
564
565
skb_reserve(skb, hlen);
566
skb_reset_network_header(skb);
567
skb_put(skb, arp_hdr_len(dev));
568
skb->dev = dev;
569
skb->protocol = htons(ETH_P_ARP);
570
if (!src_hw)
571
src_hw = dev->dev_addr;
572
if (!dest_hw)
573
dest_hw = dev->broadcast;
574
575
/* Fill the device header for the ARP frame.
576
* Note: skb->head can be changed.
577
*/
578
if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
579
goto out;
580
581
arp = arp_hdr(skb);
582
/*
583
* Fill out the arp protocol part.
584
*
585
* The arp hardware type should match the device type, except for FDDI,
586
* which (according to RFC 1390) should always equal 1 (Ethernet).
587
*/
588
/*
589
* Exceptions everywhere. AX.25 uses the AX.25 PID value not the
590
* DIX code for the protocol. Make these device structure fields.
591
*/
592
switch (dev->type) {
593
default:
594
arp->ar_hrd = htons(dev->type);
595
arp->ar_pro = htons(ETH_P_IP);
596
break;
597
598
#if IS_ENABLED(CONFIG_AX25)
599
case ARPHRD_AX25:
600
arp->ar_hrd = htons(ARPHRD_AX25);
601
arp->ar_pro = htons(AX25_P_IP);
602
break;
603
604
#if IS_ENABLED(CONFIG_NETROM)
605
case ARPHRD_NETROM:
606
arp->ar_hrd = htons(ARPHRD_NETROM);
607
arp->ar_pro = htons(AX25_P_IP);
608
break;
609
#endif
610
#endif
611
612
#if IS_ENABLED(CONFIG_FDDI)
613
case ARPHRD_FDDI:
614
arp->ar_hrd = htons(ARPHRD_ETHER);
615
arp->ar_pro = htons(ETH_P_IP);
616
break;
617
#endif
618
}
619
620
arp->ar_hln = dev->addr_len;
621
arp->ar_pln = 4;
622
arp->ar_op = htons(type);
623
624
arp_ptr = (unsigned char *)(arp + 1);
625
626
memcpy(arp_ptr, src_hw, dev->addr_len);
627
arp_ptr += dev->addr_len;
628
memcpy(arp_ptr, &src_ip, 4);
629
arp_ptr += 4;
630
631
switch (dev->type) {
632
#if IS_ENABLED(CONFIG_FIREWIRE_NET)
633
case ARPHRD_IEEE1394:
634
break;
635
#endif
636
default:
637
if (target_hw)
638
memcpy(arp_ptr, target_hw, dev->addr_len);
639
else
640
memset(arp_ptr, 0, dev->addr_len);
641
arp_ptr += dev->addr_len;
642
}
643
memcpy(arp_ptr, &dest_ip, 4);
644
645
return skb;
646
647
out:
648
kfree_skb(skb);
649
return NULL;
650
}
651
EXPORT_SYMBOL(arp_create);
652
653
static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
654
{
655
return dev_queue_xmit(skb);
656
}
657
658
/*
659
* Send an arp packet.
660
*/
661
void arp_xmit(struct sk_buff *skb)
662
{
663
rcu_read_lock();
664
/* Send it off, maybe filter it using firewalling first. */
665
NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
666
dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev,
667
arp_xmit_finish);
668
rcu_read_unlock();
669
}
670
EXPORT_SYMBOL(arp_xmit);
671
672
static bool arp_is_garp(struct net *net, struct net_device *dev,
673
int *addr_type, __be16 ar_op,
674
__be32 sip, __be32 tip,
675
unsigned char *sha, unsigned char *tha)
676
{
677
bool is_garp = tip == sip;
678
679
/* Gratuitous ARP _replies_ also require target hwaddr to be
680
* the same as source.
681
*/
682
if (is_garp && ar_op == htons(ARPOP_REPLY))
683
is_garp =
684
/* IPv4 over IEEE 1394 doesn't provide target
685
* hardware address field in its ARP payload.
686
*/
687
tha &&
688
!memcmp(tha, sha, dev->addr_len);
689
690
if (is_garp) {
691
*addr_type = inet_addr_type_dev_table(net, dev, sip);
692
if (*addr_type != RTN_UNICAST)
693
is_garp = false;
694
}
695
return is_garp;
696
}
697
698
/*
699
* Process an arp request.
700
*/
701
702
static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
703
{
704
struct net_device *dev = skb->dev;
705
struct in_device *in_dev = __in_dev_get_rcu(dev);
706
struct arphdr *arp;
707
unsigned char *arp_ptr;
708
struct rtable *rt;
709
unsigned char *sha;
710
unsigned char *tha = NULL;
711
__be32 sip, tip;
712
u16 dev_type = dev->type;
713
int addr_type;
714
struct neighbour *n;
715
struct dst_entry *reply_dst = NULL;
716
bool is_garp = false;
717
718
/* arp_rcv below verifies the ARP header and verifies the device
719
* is ARP'able.
720
*/
721
722
if (!in_dev)
723
goto out_free_skb;
724
725
arp = arp_hdr(skb);
726
727
switch (dev_type) {
728
default:
729
if (arp->ar_pro != htons(ETH_P_IP) ||
730
htons(dev_type) != arp->ar_hrd)
731
goto out_free_skb;
732
break;
733
case ARPHRD_ETHER:
734
case ARPHRD_FDDI:
735
case ARPHRD_IEEE802:
736
/*
737
* ETHERNET, and Fibre Channel (which are IEEE 802
738
* devices, according to RFC 2625) devices will accept ARP
739
* hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
740
* This is the case also of FDDI, where the RFC 1390 says that
741
* FDDI devices should accept ARP hardware of (1) Ethernet,
742
* however, to be more robust, we'll accept both 1 (Ethernet)
743
* or 6 (IEEE 802.2)
744
*/
745
if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
746
arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
747
arp->ar_pro != htons(ETH_P_IP))
748
goto out_free_skb;
749
break;
750
case ARPHRD_AX25:
751
if (arp->ar_pro != htons(AX25_P_IP) ||
752
arp->ar_hrd != htons(ARPHRD_AX25))
753
goto out_free_skb;
754
break;
755
case ARPHRD_NETROM:
756
if (arp->ar_pro != htons(AX25_P_IP) ||
757
arp->ar_hrd != htons(ARPHRD_NETROM))
758
goto out_free_skb;
759
break;
760
}
761
762
/* Understand only these message types */
763
764
if (arp->ar_op != htons(ARPOP_REPLY) &&
765
arp->ar_op != htons(ARPOP_REQUEST))
766
goto out_free_skb;
767
768
/*
769
* Extract fields
770
*/
771
arp_ptr = (unsigned char *)(arp + 1);
772
sha = arp_ptr;
773
arp_ptr += dev->addr_len;
774
memcpy(&sip, arp_ptr, 4);
775
arp_ptr += 4;
776
switch (dev_type) {
777
#if IS_ENABLED(CONFIG_FIREWIRE_NET)
778
case ARPHRD_IEEE1394:
779
break;
780
#endif
781
default:
782
tha = arp_ptr;
783
arp_ptr += dev->addr_len;
784
}
785
memcpy(&tip, arp_ptr, 4);
786
/*
787
* Check for bad requests for 127.x.x.x and requests for multicast
788
* addresses. If this is one such, delete it.
789
*/
790
if (ipv4_is_multicast(tip) ||
791
(!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
792
goto out_free_skb;
793
794
/*
795
* For some 802.11 wireless deployments (and possibly other networks),
796
* there will be an ARP proxy and gratuitous ARP frames are attacks
797
* and thus should not be accepted.
798
*/
799
if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
800
goto out_free_skb;
801
802
/*
803
* Special case: We must set Frame Relay source Q.922 address
804
*/
805
if (dev_type == ARPHRD_DLCI)
806
sha = dev->broadcast;
807
808
/*
809
* Process entry. The idea here is we want to send a reply if it is a
810
* request for us or if it is a request for someone else that we hold
811
* a proxy for. We want to add an entry to our cache if it is a reply
812
* to us or if it is a request for our address.
813
* (The assumption for this last is that if someone is requesting our
814
* address, they are probably intending to talk to us, so it saves time
815
* if we cache their address. Their address is also probably not in
816
* our cache, since ours is not in their cache.)
817
*
818
* Putting this another way, we only care about replies if they are to
819
* us, in which case we add them to the cache. For requests, we care
820
* about those for us and those for our proxies. We reply to both,
821
* and in the case of requests for us we add the requester to the arp
822
* cache.
823
*/
824
825
if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
826
reply_dst = (struct dst_entry *)
827
iptunnel_metadata_reply(skb_metadata_dst(skb),
828
GFP_ATOMIC);
829
830
/* Special case: IPv4 duplicate address detection packet (RFC2131) */
831
if (sip == 0) {
832
if (arp->ar_op == htons(ARPOP_REQUEST) &&
833
inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
834
!arp_ignore(in_dev, sip, tip))
835
arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
836
sha, dev->dev_addr, sha, reply_dst);
837
goto out_consume_skb;
838
}
839
840
if (arp->ar_op == htons(ARPOP_REQUEST) &&
841
ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
842
843
rt = skb_rtable(skb);
844
addr_type = rt->rt_type;
845
846
if (addr_type == RTN_LOCAL) {
847
int dont_send;
848
849
dont_send = arp_ignore(in_dev, sip, tip);
850
if (!dont_send && IN_DEV_ARPFILTER(in_dev))
851
dont_send = arp_filter(sip, tip, dev);
852
if (!dont_send) {
853
n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
854
if (n) {
855
arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
856
sip, dev, tip, sha,
857
dev->dev_addr, sha,
858
reply_dst);
859
neigh_release(n);
860
}
861
}
862
goto out_consume_skb;
863
} else if (IN_DEV_FORWARD(in_dev)) {
864
if (addr_type == RTN_UNICAST &&
865
(arp_fwd_proxy(in_dev, dev, rt) ||
866
arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
867
(rt->dst.dev != dev &&
868
pneigh_lookup(&arp_tbl, net, &tip, dev)))) {
869
n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
870
if (n)
871
neigh_release(n);
872
873
if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
874
skb->pkt_type == PACKET_HOST ||
875
NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
876
arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
877
sip, dev, tip, sha,
878
dev->dev_addr, sha,
879
reply_dst);
880
} else {
881
pneigh_enqueue(&arp_tbl,
882
in_dev->arp_parms, skb);
883
goto out_free_dst;
884
}
885
goto out_consume_skb;
886
}
887
}
888
}
889
890
/* Update our ARP tables */
891
892
n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
893
894
addr_type = -1;
895
if (n || arp_accept(in_dev, sip)) {
896
is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
897
sip, tip, sha, tha);
898
}
899
900
if (arp_accept(in_dev, sip)) {
901
/* Unsolicited ARP is not accepted by default.
902
It is possible, that this option should be enabled for some
903
devices (strip is candidate)
904
*/
905
if (!n &&
906
(is_garp ||
907
(arp->ar_op == htons(ARPOP_REPLY) &&
908
(addr_type == RTN_UNICAST ||
909
(addr_type < 0 &&
910
/* postpone calculation to as late as possible */
911
inet_addr_type_dev_table(net, dev, sip) ==
912
RTN_UNICAST)))))
913
n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
914
}
915
916
if (n) {
917
int state = NUD_REACHABLE;
918
int override;
919
920
/* If several different ARP replies follows back-to-back,
921
use the FIRST one. It is possible, if several proxy
922
agents are active. Taking the first reply prevents
923
arp trashing and chooses the fastest router.
924
*/
925
override = time_after(jiffies,
926
n->updated +
927
NEIGH_VAR(n->parms, LOCKTIME)) ||
928
is_garp;
929
930
/* Broadcast replies and request packets
931
do not assert neighbour reachability.
932
*/
933
if (arp->ar_op != htons(ARPOP_REPLY) ||
934
skb->pkt_type != PACKET_HOST)
935
state = NUD_STALE;
936
neigh_update(n, sha, state,
937
override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
938
neigh_release(n);
939
}
940
941
out_consume_skb:
942
consume_skb(skb);
943
944
out_free_dst:
945
dst_release(reply_dst);
946
return NET_RX_SUCCESS;
947
948
out_free_skb:
949
kfree_skb(skb);
950
return NET_RX_DROP;
951
}
952
953
static void parp_redo(struct sk_buff *skb)
954
{
955
arp_process(dev_net(skb->dev), NULL, skb);
956
}
957
958
static int arp_is_multicast(const void *pkey)
959
{
960
return ipv4_is_multicast(*((__be32 *)pkey));
961
}
962
963
/*
964
* Receive an arp request from the device layer.
965
*/
966
967
static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
968
struct packet_type *pt, struct net_device *orig_dev)
969
{
970
enum skb_drop_reason drop_reason;
971
const struct arphdr *arp;
972
973
/* do not tweak dropwatch on an ARP we will ignore */
974
if (dev->flags & IFF_NOARP ||
975
skb->pkt_type == PACKET_OTHERHOST ||
976
skb->pkt_type == PACKET_LOOPBACK)
977
goto consumeskb;
978
979
skb = skb_share_check(skb, GFP_ATOMIC);
980
if (!skb)
981
goto out_of_mem;
982
983
/* ARP header, plus 2 device addresses, plus 2 IP addresses. */
984
drop_reason = pskb_may_pull_reason(skb, arp_hdr_len(dev));
985
if (drop_reason != SKB_NOT_DROPPED_YET)
986
goto freeskb;
987
988
arp = arp_hdr(skb);
989
if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4) {
990
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
991
goto freeskb;
992
}
993
994
memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
995
996
return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
997
dev_net(dev), NULL, skb, dev, NULL,
998
arp_process);
999
1000
consumeskb:
1001
consume_skb(skb);
1002
return NET_RX_SUCCESS;
1003
freeskb:
1004
kfree_skb_reason(skb, drop_reason);
1005
out_of_mem:
1006
return NET_RX_DROP;
1007
}
1008
1009
/*
1010
* User level interface (ioctl)
1011
*/
1012
1013
static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r,
1014
bool getarp)
1015
{
1016
struct net_device *dev;
1017
1018
if (getarp)
1019
dev = dev_get_by_name_rcu(net, r->arp_dev);
1020
else
1021
dev = __dev_get_by_name(net, r->arp_dev);
1022
if (!dev)
1023
return ERR_PTR(-ENODEV);
1024
1025
/* Mmmm... It is wrong... ARPHRD_NETROM == 0 */
1026
if (!r->arp_ha.sa_family)
1027
r->arp_ha.sa_family = dev->type;
1028
1029
if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type)
1030
return ERR_PTR(-EINVAL);
1031
1032
return dev;
1033
}
1034
1035
static struct net_device *arp_req_dev(struct net *net, struct arpreq *r)
1036
{
1037
struct net_device *dev;
1038
struct rtable *rt;
1039
__be32 ip;
1040
1041
if (r->arp_dev[0])
1042
return arp_req_dev_by_name(net, r, false);
1043
1044
if (r->arp_flags & ATF_PUBL)
1045
return NULL;
1046
1047
ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1048
1049
rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK);
1050
if (IS_ERR(rt))
1051
return ERR_CAST(rt);
1052
1053
dev = rt->dst.dev;
1054
ip_rt_put(rt);
1055
1056
if (!dev)
1057
return ERR_PTR(-EINVAL);
1058
1059
return dev;
1060
}
1061
1062
/*
1063
* Set (create) an ARP cache entry.
1064
*/
1065
1066
static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1067
{
1068
if (!dev) {
1069
IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1070
return 0;
1071
}
1072
if (__in_dev_get_rtnl_net(dev)) {
1073
IN_DEV_CONF_SET(__in_dev_get_rtnl_net(dev), PROXY_ARP, on);
1074
return 0;
1075
}
1076
return -ENXIO;
1077
}
1078
1079
static int arp_req_set_public(struct net *net, struct arpreq *r,
1080
struct net_device *dev)
1081
{
1082
__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1083
1084
if (!dev && (r->arp_flags & ATF_COM)) {
1085
dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1086
r->arp_ha.sa_data);
1087
if (!dev)
1088
return -ENODEV;
1089
}
1090
if (mask) {
1091
__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1092
1093
return pneigh_create(&arp_tbl, net, &ip, dev, 0, 0, false);
1094
}
1095
1096
return arp_req_set_proxy(net, dev, 1);
1097
}
1098
1099
static int arp_req_set(struct net *net, struct arpreq *r)
1100
{
1101
struct neighbour *neigh;
1102
struct net_device *dev;
1103
__be32 ip;
1104
int err;
1105
1106
dev = arp_req_dev(net, r);
1107
if (IS_ERR(dev))
1108
return PTR_ERR(dev);
1109
1110
if (r->arp_flags & ATF_PUBL)
1111
return arp_req_set_public(net, r, dev);
1112
1113
switch (dev->type) {
1114
#if IS_ENABLED(CONFIG_FDDI)
1115
case ARPHRD_FDDI:
1116
/*
1117
* According to RFC 1390, FDDI devices should accept ARP
1118
* hardware types of 1 (Ethernet). However, to be more
1119
* robust, we'll accept hardware types of either 1 (Ethernet)
1120
* or 6 (IEEE 802.2).
1121
*/
1122
if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1123
r->arp_ha.sa_family != ARPHRD_ETHER &&
1124
r->arp_ha.sa_family != ARPHRD_IEEE802)
1125
return -EINVAL;
1126
break;
1127
#endif
1128
default:
1129
if (r->arp_ha.sa_family != dev->type)
1130
return -EINVAL;
1131
break;
1132
}
1133
1134
ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1135
1136
neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1137
err = PTR_ERR(neigh);
1138
if (!IS_ERR(neigh)) {
1139
unsigned int state = NUD_STALE;
1140
1141
if (r->arp_flags & ATF_PERM) {
1142
r->arp_flags |= ATF_COM;
1143
state = NUD_PERMANENT;
1144
}
1145
1146
err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1147
r->arp_ha.sa_data : NULL, state,
1148
NEIGH_UPDATE_F_OVERRIDE |
1149
NEIGH_UPDATE_F_ADMIN, 0);
1150
neigh_release(neigh);
1151
}
1152
return err;
1153
}
1154
1155
static unsigned int arp_state_to_flags(struct neighbour *neigh)
1156
{
1157
if (neigh->nud_state&NUD_PERMANENT)
1158
return ATF_PERM | ATF_COM;
1159
else if (neigh->nud_state&NUD_VALID)
1160
return ATF_COM;
1161
else
1162
return 0;
1163
}
1164
1165
/*
1166
* Get an ARP cache entry.
1167
*/
1168
1169
static int arp_req_get(struct net *net, struct arpreq *r)
1170
{
1171
__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1172
struct neighbour *neigh;
1173
struct net_device *dev;
1174
1175
if (!r->arp_dev[0])
1176
return -ENODEV;
1177
1178
dev = arp_req_dev_by_name(net, r, true);
1179
if (IS_ERR(dev))
1180
return PTR_ERR(dev);
1181
1182
neigh = neigh_lookup(&arp_tbl, &ip, dev);
1183
if (!neigh)
1184
return -ENXIO;
1185
1186
if (READ_ONCE(neigh->nud_state) & NUD_NOARP) {
1187
neigh_release(neigh);
1188
return -ENXIO;
1189
}
1190
1191
read_lock_bh(&neigh->lock);
1192
memcpy(r->arp_ha.sa_data, neigh->ha,
1193
min(dev->addr_len, sizeof(r->arp_ha.sa_data)));
1194
r->arp_flags = arp_state_to_flags(neigh);
1195
read_unlock_bh(&neigh->lock);
1196
1197
neigh_release(neigh);
1198
1199
r->arp_ha.sa_family = dev->type;
1200
netdev_copy_name(dev, r->arp_dev);
1201
1202
return 0;
1203
}
1204
1205
int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1206
{
1207
struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1208
int err = -ENXIO;
1209
struct neigh_table *tbl = &arp_tbl;
1210
1211
if (neigh) {
1212
if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1213
neigh_release(neigh);
1214
return 0;
1215
}
1216
1217
if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1218
err = neigh_update(neigh, NULL, NUD_FAILED,
1219
NEIGH_UPDATE_F_OVERRIDE|
1220
NEIGH_UPDATE_F_ADMIN, 0);
1221
spin_lock_bh(&tbl->lock);
1222
neigh_release(neigh);
1223
neigh_remove_one(neigh);
1224
spin_unlock_bh(&tbl->lock);
1225
}
1226
1227
return err;
1228
}
1229
1230
static int arp_req_delete_public(struct net *net, struct arpreq *r,
1231
struct net_device *dev)
1232
{
1233
__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1234
1235
if (mask) {
1236
__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1237
1238
return pneigh_delete(&arp_tbl, net, &ip, dev);
1239
}
1240
1241
return arp_req_set_proxy(net, dev, 0);
1242
}
1243
1244
static int arp_req_delete(struct net *net, struct arpreq *r)
1245
{
1246
struct net_device *dev;
1247
__be32 ip;
1248
1249
dev = arp_req_dev(net, r);
1250
if (IS_ERR(dev))
1251
return PTR_ERR(dev);
1252
1253
if (r->arp_flags & ATF_PUBL)
1254
return arp_req_delete_public(net, r, dev);
1255
1256
ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1257
1258
return arp_invalidate(dev, ip, true);
1259
}
1260
1261
/*
1262
* Handle an ARP layer I/O control request.
1263
*/
1264
1265
int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1266
{
1267
struct arpreq r;
1268
__be32 *netmask;
1269
int err;
1270
1271
switch (cmd) {
1272
case SIOCDARP:
1273
case SIOCSARP:
1274
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1275
return -EPERM;
1276
fallthrough;
1277
case SIOCGARP:
1278
err = copy_from_user(&r, arg, sizeof(struct arpreq));
1279
if (err)
1280
return -EFAULT;
1281
break;
1282
default:
1283
return -EINVAL;
1284
}
1285
1286
if (r.arp_pa.sa_family != AF_INET)
1287
return -EPFNOSUPPORT;
1288
1289
if (!(r.arp_flags & ATF_PUBL) &&
1290
(r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1291
return -EINVAL;
1292
1293
netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr;
1294
if (!(r.arp_flags & ATF_NETMASK))
1295
*netmask = htonl(0xFFFFFFFFUL);
1296
else if (*netmask && *netmask != htonl(0xFFFFFFFFUL))
1297
return -EINVAL;
1298
1299
switch (cmd) {
1300
case SIOCDARP:
1301
rtnl_net_lock(net);
1302
err = arp_req_delete(net, &r);
1303
rtnl_net_unlock(net);
1304
break;
1305
case SIOCSARP:
1306
rtnl_net_lock(net);
1307
err = arp_req_set(net, &r);
1308
rtnl_net_unlock(net);
1309
break;
1310
case SIOCGARP:
1311
rcu_read_lock();
1312
err = arp_req_get(net, &r);
1313
rcu_read_unlock();
1314
1315
if (!err && copy_to_user(arg, &r, sizeof(r)))
1316
err = -EFAULT;
1317
break;
1318
}
1319
1320
return err;
1321
}
1322
1323
static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1324
void *ptr)
1325
{
1326
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1327
struct netdev_notifier_change_info *change_info;
1328
struct in_device *in_dev;
1329
bool evict_nocarrier;
1330
1331
switch (event) {
1332
case NETDEV_CHANGEADDR:
1333
neigh_changeaddr(&arp_tbl, dev);
1334
rt_cache_flush(dev_net(dev));
1335
break;
1336
case NETDEV_CHANGE:
1337
change_info = ptr;
1338
if (change_info->flags_changed & IFF_NOARP)
1339
neigh_changeaddr(&arp_tbl, dev);
1340
1341
in_dev = __in_dev_get_rtnl(dev);
1342
if (!in_dev)
1343
evict_nocarrier = true;
1344
else
1345
evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1346
1347
if (evict_nocarrier && !netif_carrier_ok(dev))
1348
neigh_carrier_down(&arp_tbl, dev);
1349
break;
1350
default:
1351
break;
1352
}
1353
1354
return NOTIFY_DONE;
1355
}
1356
1357
static struct notifier_block arp_netdev_notifier = {
1358
.notifier_call = arp_netdev_event,
1359
};
1360
1361
/* Note, that it is not on notifier chain.
1362
It is necessary, that this routine was called after route cache will be
1363
flushed.
1364
*/
1365
void arp_ifdown(struct net_device *dev)
1366
{
1367
neigh_ifdown(&arp_tbl, dev);
1368
}
1369
1370
1371
/*
1372
* Called once on startup.
1373
*/
1374
1375
static struct packet_type arp_packet_type __read_mostly = {
1376
.type = cpu_to_be16(ETH_P_ARP),
1377
.func = arp_rcv,
1378
};
1379
1380
#ifdef CONFIG_PROC_FS
1381
#if IS_ENABLED(CONFIG_AX25)
1382
1383
/*
1384
* ax25 -> ASCII conversion
1385
*/
1386
static void ax2asc2(ax25_address *a, char *buf)
1387
{
1388
char c, *s;
1389
int n;
1390
1391
for (n = 0, s = buf; n < 6; n++) {
1392
c = (a->ax25_call[n] >> 1) & 0x7F;
1393
1394
if (c != ' ')
1395
*s++ = c;
1396
}
1397
1398
*s++ = '-';
1399
n = (a->ax25_call[6] >> 1) & 0x0F;
1400
if (n > 9) {
1401
*s++ = '1';
1402
n -= 10;
1403
}
1404
1405
*s++ = n + '0';
1406
*s++ = '\0';
1407
1408
if (*buf == '\0' || *buf == '-') {
1409
buf[0] = '*';
1410
buf[1] = '\0';
1411
}
1412
}
1413
#endif /* CONFIG_AX25 */
1414
1415
#define HBUFFERLEN 30
1416
1417
static void arp_format_neigh_entry(struct seq_file *seq,
1418
struct neighbour *n)
1419
{
1420
char hbuffer[HBUFFERLEN];
1421
int k, j;
1422
char tbuf[16];
1423
struct net_device *dev = n->dev;
1424
int hatype = dev->type;
1425
1426
read_lock(&n->lock);
1427
/* Convert hardware address to XX:XX:XX:XX ... form. */
1428
#if IS_ENABLED(CONFIG_AX25)
1429
if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1430
ax2asc2((ax25_address *)n->ha, hbuffer);
1431
else {
1432
#endif
1433
for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1434
hbuffer[k++] = hex_asc_hi(n->ha[j]);
1435
hbuffer[k++] = hex_asc_lo(n->ha[j]);
1436
hbuffer[k++] = ':';
1437
}
1438
if (k != 0)
1439
--k;
1440
hbuffer[k] = 0;
1441
#if IS_ENABLED(CONFIG_AX25)
1442
}
1443
#endif
1444
sprintf(tbuf, "%pI4", n->primary_key);
1445
seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n",
1446
tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1447
read_unlock(&n->lock);
1448
}
1449
1450
static void arp_format_pneigh_entry(struct seq_file *seq,
1451
struct pneigh_entry *n)
1452
{
1453
struct net_device *dev = n->dev;
1454
int hatype = dev ? dev->type : 0;
1455
char tbuf[16];
1456
1457
sprintf(tbuf, "%pI4", n->key);
1458
seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1459
tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1460
dev ? dev->name : "*");
1461
}
1462
1463
static int arp_seq_show(struct seq_file *seq, void *v)
1464
{
1465
if (v == SEQ_START_TOKEN) {
1466
seq_puts(seq, "IP address HW type Flags "
1467
"HW address Mask Device\n");
1468
} else {
1469
struct neigh_seq_state *state = seq->private;
1470
1471
if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1472
arp_format_pneigh_entry(seq, v);
1473
else
1474
arp_format_neigh_entry(seq, v);
1475
}
1476
1477
return 0;
1478
}
1479
1480
static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1481
{
1482
/* Don't want to confuse "arp -a" w/ magic entries,
1483
* so we tell the generic iterator to skip NUD_NOARP.
1484
*/
1485
return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1486
}
1487
1488
static const struct seq_operations arp_seq_ops = {
1489
.start = arp_seq_start,
1490
.next = neigh_seq_next,
1491
.stop = neigh_seq_stop,
1492
.show = arp_seq_show,
1493
};
1494
#endif /* CONFIG_PROC_FS */
1495
1496
static int __net_init arp_net_init(struct net *net)
1497
{
1498
if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1499
sizeof(struct neigh_seq_state)))
1500
return -ENOMEM;
1501
return 0;
1502
}
1503
1504
static void __net_exit arp_net_exit(struct net *net)
1505
{
1506
remove_proc_entry("arp", net->proc_net);
1507
}
1508
1509
static struct pernet_operations arp_net_ops = {
1510
.init = arp_net_init,
1511
.exit = arp_net_exit,
1512
};
1513
1514
void __init arp_init(void)
1515
{
1516
neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1517
1518
dev_add_pack(&arp_packet_type);
1519
register_pernet_subsys(&arp_net_ops);
1520
#ifdef CONFIG_SYSCTL
1521
neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1522
#endif
1523
register_netdevice_notifier(&arp_netdev_notifier);
1524
}
1525
1526