Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/fib_trie.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
*
4
* Robert Olsson <[email protected]> Uppsala Universitet
5
* & Swedish University of Agricultural Sciences.
6
*
7
* Jens Laas <[email protected]> Swedish University of
8
* Agricultural Sciences.
9
*
10
* Hans Liss <[email protected]> Uppsala Universitet
11
*
12
* This work is based on the LPC-trie which is originally described in:
13
*
14
* An experimental study of compression methods for dynamic tries
15
* Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16
* https://www.csc.kth.se/~snilsson/software/dyntrie2/
17
*
18
* IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19
* IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20
*
21
* Code from fib_hash has been reused which includes the following header:
22
*
23
* INET An implementation of the TCP/IP protocol suite for the LINUX
24
* operating system. INET is implemented using the BSD Socket
25
* interface as the means of communication with the user level.
26
*
27
* IPv4 FIB: lookup engine and maintenance routines.
28
*
29
* Authors: Alexey Kuznetsov, <[email protected]>
30
*
31
* Substantial contributions to this work comes from:
32
*
33
* David S. Miller, <[email protected]>
34
* Stephen Hemminger <[email protected]>
35
* Paul E. McKenney <[email protected]>
36
* Patrick McHardy <[email protected]>
37
*/
38
#include <linux/cache.h>
39
#include <linux/uaccess.h>
40
#include <linux/bitops.h>
41
#include <linux/types.h>
42
#include <linux/kernel.h>
43
#include <linux/mm.h>
44
#include <linux/string.h>
45
#include <linux/socket.h>
46
#include <linux/sockios.h>
47
#include <linux/errno.h>
48
#include <linux/in.h>
49
#include <linux/inet.h>
50
#include <linux/inetdevice.h>
51
#include <linux/netdevice.h>
52
#include <linux/if_arp.h>
53
#include <linux/proc_fs.h>
54
#include <linux/rcupdate.h>
55
#include <linux/rcupdate_wait.h>
56
#include <linux/skbuff.h>
57
#include <linux/netlink.h>
58
#include <linux/init.h>
59
#include <linux/list.h>
60
#include <linux/slab.h>
61
#include <linux/export.h>
62
#include <linux/vmalloc.h>
63
#include <linux/notifier.h>
64
#include <net/net_namespace.h>
65
#include <net/inet_dscp.h>
66
#include <net/ip.h>
67
#include <net/protocol.h>
68
#include <net/route.h>
69
#include <net/tcp.h>
70
#include <net/sock.h>
71
#include <net/ip_fib.h>
72
#include <net/fib_notifier.h>
73
#include <trace/events/fib.h>
74
#include "fib_lookup.h"
75
76
static int call_fib_entry_notifier(struct notifier_block *nb,
77
enum fib_event_type event_type, u32 dst,
78
int dst_len, struct fib_alias *fa,
79
struct netlink_ext_ack *extack)
80
{
81
struct fib_entry_notifier_info info = {
82
.info.extack = extack,
83
.dst = dst,
84
.dst_len = dst_len,
85
.fi = fa->fa_info,
86
.dscp = fa->fa_dscp,
87
.type = fa->fa_type,
88
.tb_id = fa->tb_id,
89
};
90
return call_fib4_notifier(nb, event_type, &info.info);
91
}
92
93
static int call_fib_entry_notifiers(struct net *net,
94
enum fib_event_type event_type, u32 dst,
95
int dst_len, struct fib_alias *fa,
96
struct netlink_ext_ack *extack)
97
{
98
struct fib_entry_notifier_info info = {
99
.info.extack = extack,
100
.dst = dst,
101
.dst_len = dst_len,
102
.fi = fa->fa_info,
103
.dscp = fa->fa_dscp,
104
.type = fa->fa_type,
105
.tb_id = fa->tb_id,
106
};
107
return call_fib4_notifiers(net, event_type, &info.info);
108
}
109
110
#define MAX_STAT_DEPTH 32
111
112
#define KEYLENGTH (8*sizeof(t_key))
113
#define KEY_MAX ((t_key)~0)
114
115
typedef unsigned int t_key;
116
117
#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
118
#define IS_TNODE(n) ((n)->bits)
119
#define IS_LEAF(n) (!(n)->bits)
120
121
struct key_vector {
122
t_key key;
123
unsigned char pos; /* 2log(KEYLENGTH) bits needed */
124
unsigned char bits; /* 2log(KEYLENGTH) bits needed */
125
unsigned char slen;
126
union {
127
/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128
struct hlist_head leaf;
129
/* This array is valid if (pos | bits) > 0 (TNODE) */
130
DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131
};
132
};
133
134
struct tnode {
135
struct rcu_head rcu;
136
t_key empty_children; /* KEYLENGTH bits needed */
137
t_key full_children; /* KEYLENGTH bits needed */
138
struct key_vector __rcu *parent;
139
struct key_vector kv[1];
140
#define tn_bits kv[0].bits
141
};
142
143
#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
144
#define LEAF_SIZE TNODE_SIZE(1)
145
146
#ifdef CONFIG_IP_FIB_TRIE_STATS
147
struct trie_use_stats {
148
unsigned int gets;
149
unsigned int backtrack;
150
unsigned int semantic_match_passed;
151
unsigned int semantic_match_miss;
152
unsigned int null_node_hit;
153
unsigned int resize_node_skipped;
154
};
155
#endif
156
157
struct trie_stat {
158
unsigned int totdepth;
159
unsigned int maxdepth;
160
unsigned int tnodes;
161
unsigned int leaves;
162
unsigned int nullpointers;
163
unsigned int prefixes;
164
unsigned int nodesizes[MAX_STAT_DEPTH];
165
};
166
167
struct trie {
168
struct key_vector kv[1];
169
#ifdef CONFIG_IP_FIB_TRIE_STATS
170
struct trie_use_stats __percpu *stats;
171
#endif
172
};
173
174
static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175
static unsigned int tnode_free_size;
176
177
/*
178
* synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179
* especially useful before resizing the root node with PREEMPT_NONE configs;
180
* the value was obtained experimentally, aiming to avoid visible slowdown.
181
*/
182
unsigned int sysctl_fib_sync_mem = 512 * 1024;
183
unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184
unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185
186
static struct kmem_cache *fn_alias_kmem __ro_after_init;
187
static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188
189
static inline struct tnode *tn_info(struct key_vector *kv)
190
{
191
return container_of(kv, struct tnode, kv[0]);
192
}
193
194
/* caller must hold RTNL */
195
#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196
#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197
198
/* caller must hold RCU read lock or RTNL */
199
#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200
#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201
202
/* wrapper for rcu_assign_pointer */
203
static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204
{
205
if (n)
206
rcu_assign_pointer(tn_info(n)->parent, tp);
207
}
208
209
#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210
211
/* This provides us with the number of children in this node, in the case of a
212
* leaf this will return 0 meaning none of the children are accessible.
213
*/
214
static inline unsigned long child_length(const struct key_vector *tn)
215
{
216
return (1ul << tn->bits) & ~(1ul);
217
}
218
219
#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220
221
static inline unsigned long get_index(t_key key, struct key_vector *kv)
222
{
223
unsigned long index = key ^ kv->key;
224
225
if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226
return 0;
227
228
return index >> kv->pos;
229
}
230
231
/* To understand this stuff, an understanding of keys and all their bits is
232
* necessary. Every node in the trie has a key associated with it, but not
233
* all of the bits in that key are significant.
234
*
235
* Consider a node 'n' and its parent 'tp'.
236
*
237
* If n is a leaf, every bit in its key is significant. Its presence is
238
* necessitated by path compression, since during a tree traversal (when
239
* searching for a leaf - unless we are doing an insertion) we will completely
240
* ignore all skipped bits we encounter. Thus we need to verify, at the end of
241
* a potentially successful search, that we have indeed been walking the
242
* correct key path.
243
*
244
* Note that we can never "miss" the correct key in the tree if present by
245
* following the wrong path. Path compression ensures that segments of the key
246
* that are the same for all keys with a given prefix are skipped, but the
247
* skipped part *is* identical for each node in the subtrie below the skipped
248
* bit! trie_insert() in this implementation takes care of that.
249
*
250
* if n is an internal node - a 'tnode' here, the various parts of its key
251
* have many different meanings.
252
*
253
* Example:
254
* _________________________________________________________________
255
* | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256
* -----------------------------------------------------------------
257
* 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
258
*
259
* _________________________________________________________________
260
* | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261
* -----------------------------------------------------------------
262
* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
263
*
264
* tp->pos = 22
265
* tp->bits = 3
266
* n->pos = 13
267
* n->bits = 4
268
*
269
* First, let's just ignore the bits that come before the parent tp, that is
270
* the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271
* point we do not use them for anything.
272
*
273
* The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274
* index into the parent's child array. That is, they will be used to find
275
* 'n' among tp's children.
276
*
277
* The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278
* for the node n.
279
*
280
* All the bits we have seen so far are significant to the node n. The rest
281
* of the bits are really not needed or indeed known in n->key.
282
*
283
* The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284
* n's child array, and will of course be different for each child.
285
*
286
* The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287
* at this point.
288
*/
289
290
static const int halve_threshold = 25;
291
static const int inflate_threshold = 50;
292
static const int halve_threshold_root = 15;
293
static const int inflate_threshold_root = 30;
294
295
static inline void alias_free_mem_rcu(struct fib_alias *fa)
296
{
297
kfree_rcu(fa, rcu);
298
}
299
300
#define TNODE_VMALLOC_MAX \
301
ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
302
303
static void __node_free_rcu(struct rcu_head *head)
304
{
305
struct tnode *n = container_of(head, struct tnode, rcu);
306
307
if (!n->tn_bits)
308
kmem_cache_free(trie_leaf_kmem, n);
309
else
310
kvfree(n);
311
}
312
313
#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
314
315
static struct tnode *tnode_alloc(int bits)
316
{
317
size_t size;
318
319
/* verify bits is within bounds */
320
if (bits > TNODE_VMALLOC_MAX)
321
return NULL;
322
323
/* determine size and verify it is non-zero and didn't overflow */
324
size = TNODE_SIZE(1ul << bits);
325
326
if (size <= PAGE_SIZE)
327
return kzalloc(size, GFP_KERNEL);
328
else
329
return vzalloc(size);
330
}
331
332
static inline void empty_child_inc(struct key_vector *n)
333
{
334
tn_info(n)->empty_children++;
335
336
if (!tn_info(n)->empty_children)
337
tn_info(n)->full_children++;
338
}
339
340
static inline void empty_child_dec(struct key_vector *n)
341
{
342
if (!tn_info(n)->empty_children)
343
tn_info(n)->full_children--;
344
345
tn_info(n)->empty_children--;
346
}
347
348
static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
349
{
350
struct key_vector *l;
351
struct tnode *kv;
352
353
kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
354
if (!kv)
355
return NULL;
356
357
/* initialize key vector */
358
l = kv->kv;
359
l->key = key;
360
l->pos = 0;
361
l->bits = 0;
362
l->slen = fa->fa_slen;
363
364
/* link leaf to fib alias */
365
INIT_HLIST_HEAD(&l->leaf);
366
hlist_add_head(&fa->fa_list, &l->leaf);
367
368
return l;
369
}
370
371
static struct key_vector *tnode_new(t_key key, int pos, int bits)
372
{
373
unsigned int shift = pos + bits;
374
struct key_vector *tn;
375
struct tnode *tnode;
376
377
/* verify bits and pos their msb bits clear and values are valid */
378
BUG_ON(!bits || (shift > KEYLENGTH));
379
380
tnode = tnode_alloc(bits);
381
if (!tnode)
382
return NULL;
383
384
pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
385
sizeof(struct key_vector *) << bits);
386
387
if (bits == KEYLENGTH)
388
tnode->full_children = 1;
389
else
390
tnode->empty_children = 1ul << bits;
391
392
tn = tnode->kv;
393
tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
394
tn->pos = pos;
395
tn->bits = bits;
396
tn->slen = pos;
397
398
return tn;
399
}
400
401
/* Check whether a tnode 'n' is "full", i.e. it is an internal node
402
* and no bits are skipped. See discussion in dyntree paper p. 6
403
*/
404
static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
405
{
406
return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
407
}
408
409
/* Add a child at position i overwriting the old value.
410
* Update the value of full_children and empty_children.
411
*/
412
static void put_child(struct key_vector *tn, unsigned long i,
413
struct key_vector *n)
414
{
415
struct key_vector *chi = get_child(tn, i);
416
int isfull, wasfull;
417
418
BUG_ON(i >= child_length(tn));
419
420
/* update emptyChildren, overflow into fullChildren */
421
if (!n && chi)
422
empty_child_inc(tn);
423
if (n && !chi)
424
empty_child_dec(tn);
425
426
/* update fullChildren */
427
wasfull = tnode_full(tn, chi);
428
isfull = tnode_full(tn, n);
429
430
if (wasfull && !isfull)
431
tn_info(tn)->full_children--;
432
else if (!wasfull && isfull)
433
tn_info(tn)->full_children++;
434
435
if (n && (tn->slen < n->slen))
436
tn->slen = n->slen;
437
438
rcu_assign_pointer(tn->tnode[i], n);
439
}
440
441
static void update_children(struct key_vector *tn)
442
{
443
unsigned long i;
444
445
/* update all of the child parent pointers */
446
for (i = child_length(tn); i;) {
447
struct key_vector *inode = get_child(tn, --i);
448
449
if (!inode)
450
continue;
451
452
/* Either update the children of a tnode that
453
* already belongs to us or update the child
454
* to point to ourselves.
455
*/
456
if (node_parent(inode) == tn)
457
update_children(inode);
458
else
459
node_set_parent(inode, tn);
460
}
461
}
462
463
static inline void put_child_root(struct key_vector *tp, t_key key,
464
struct key_vector *n)
465
{
466
if (IS_TRIE(tp))
467
rcu_assign_pointer(tp->tnode[0], n);
468
else
469
put_child(tp, get_index(key, tp), n);
470
}
471
472
static inline void tnode_free_init(struct key_vector *tn)
473
{
474
tn_info(tn)->rcu.next = NULL;
475
}
476
477
static inline void tnode_free_append(struct key_vector *tn,
478
struct key_vector *n)
479
{
480
tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
481
tn_info(tn)->rcu.next = &tn_info(n)->rcu;
482
}
483
484
static void tnode_free(struct key_vector *tn)
485
{
486
struct callback_head *head = &tn_info(tn)->rcu;
487
488
while (head) {
489
head = head->next;
490
tnode_free_size += TNODE_SIZE(1ul << tn->bits);
491
node_free(tn);
492
493
tn = container_of(head, struct tnode, rcu)->kv;
494
}
495
496
if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
497
tnode_free_size = 0;
498
synchronize_net();
499
}
500
}
501
502
static struct key_vector *replace(struct trie *t,
503
struct key_vector *oldtnode,
504
struct key_vector *tn)
505
{
506
struct key_vector *tp = node_parent(oldtnode);
507
unsigned long i;
508
509
/* setup the parent pointer out of and back into this node */
510
NODE_INIT_PARENT(tn, tp);
511
put_child_root(tp, tn->key, tn);
512
513
/* update all of the child parent pointers */
514
update_children(tn);
515
516
/* all pointers should be clean so we are done */
517
tnode_free(oldtnode);
518
519
/* resize children now that oldtnode is freed */
520
for (i = child_length(tn); i;) {
521
struct key_vector *inode = get_child(tn, --i);
522
523
/* resize child node */
524
if (tnode_full(tn, inode))
525
tn = resize(t, inode);
526
}
527
528
return tp;
529
}
530
531
static struct key_vector *inflate(struct trie *t,
532
struct key_vector *oldtnode)
533
{
534
struct key_vector *tn;
535
unsigned long i;
536
t_key m;
537
538
pr_debug("In inflate\n");
539
540
tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
541
if (!tn)
542
goto notnode;
543
544
/* prepare oldtnode to be freed */
545
tnode_free_init(oldtnode);
546
547
/* Assemble all of the pointers in our cluster, in this case that
548
* represents all of the pointers out of our allocated nodes that
549
* point to existing tnodes and the links between our allocated
550
* nodes.
551
*/
552
for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
553
struct key_vector *inode = get_child(oldtnode, --i);
554
struct key_vector *node0, *node1;
555
unsigned long j, k;
556
557
/* An empty child */
558
if (!inode)
559
continue;
560
561
/* A leaf or an internal node with skipped bits */
562
if (!tnode_full(oldtnode, inode)) {
563
put_child(tn, get_index(inode->key, tn), inode);
564
continue;
565
}
566
567
/* drop the node in the old tnode free list */
568
tnode_free_append(oldtnode, inode);
569
570
/* An internal node with two children */
571
if (inode->bits == 1) {
572
put_child(tn, 2 * i + 1, get_child(inode, 1));
573
put_child(tn, 2 * i, get_child(inode, 0));
574
continue;
575
}
576
577
/* We will replace this node 'inode' with two new
578
* ones, 'node0' and 'node1', each with half of the
579
* original children. The two new nodes will have
580
* a position one bit further down the key and this
581
* means that the "significant" part of their keys
582
* (see the discussion near the top of this file)
583
* will differ by one bit, which will be "0" in
584
* node0's key and "1" in node1's key. Since we are
585
* moving the key position by one step, the bit that
586
* we are moving away from - the bit at position
587
* (tn->pos) - is the one that will differ between
588
* node0 and node1. So... we synthesize that bit in the
589
* two new keys.
590
*/
591
node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
592
if (!node1)
593
goto nomem;
594
node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
595
596
tnode_free_append(tn, node1);
597
if (!node0)
598
goto nomem;
599
tnode_free_append(tn, node0);
600
601
/* populate child pointers in new nodes */
602
for (k = child_length(inode), j = k / 2; j;) {
603
put_child(node1, --j, get_child(inode, --k));
604
put_child(node0, j, get_child(inode, j));
605
put_child(node1, --j, get_child(inode, --k));
606
put_child(node0, j, get_child(inode, j));
607
}
608
609
/* link new nodes to parent */
610
NODE_INIT_PARENT(node1, tn);
611
NODE_INIT_PARENT(node0, tn);
612
613
/* link parent to nodes */
614
put_child(tn, 2 * i + 1, node1);
615
put_child(tn, 2 * i, node0);
616
}
617
618
/* setup the parent pointers into and out of this node */
619
return replace(t, oldtnode, tn);
620
nomem:
621
/* all pointers should be clean so we are done */
622
tnode_free(tn);
623
notnode:
624
return NULL;
625
}
626
627
static struct key_vector *halve(struct trie *t,
628
struct key_vector *oldtnode)
629
{
630
struct key_vector *tn;
631
unsigned long i;
632
633
pr_debug("In halve\n");
634
635
tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
636
if (!tn)
637
goto notnode;
638
639
/* prepare oldtnode to be freed */
640
tnode_free_init(oldtnode);
641
642
/* Assemble all of the pointers in our cluster, in this case that
643
* represents all of the pointers out of our allocated nodes that
644
* point to existing tnodes and the links between our allocated
645
* nodes.
646
*/
647
for (i = child_length(oldtnode); i;) {
648
struct key_vector *node1 = get_child(oldtnode, --i);
649
struct key_vector *node0 = get_child(oldtnode, --i);
650
struct key_vector *inode;
651
652
/* At least one of the children is empty */
653
if (!node1 || !node0) {
654
put_child(tn, i / 2, node1 ? : node0);
655
continue;
656
}
657
658
/* Two nonempty children */
659
inode = tnode_new(node0->key, oldtnode->pos, 1);
660
if (!inode)
661
goto nomem;
662
tnode_free_append(tn, inode);
663
664
/* initialize pointers out of node */
665
put_child(inode, 1, node1);
666
put_child(inode, 0, node0);
667
NODE_INIT_PARENT(inode, tn);
668
669
/* link parent to node */
670
put_child(tn, i / 2, inode);
671
}
672
673
/* setup the parent pointers into and out of this node */
674
return replace(t, oldtnode, tn);
675
nomem:
676
/* all pointers should be clean so we are done */
677
tnode_free(tn);
678
notnode:
679
return NULL;
680
}
681
682
static struct key_vector *collapse(struct trie *t,
683
struct key_vector *oldtnode)
684
{
685
struct key_vector *n, *tp;
686
unsigned long i;
687
688
/* scan the tnode looking for that one child that might still exist */
689
for (n = NULL, i = child_length(oldtnode); !n && i;)
690
n = get_child(oldtnode, --i);
691
692
/* compress one level */
693
tp = node_parent(oldtnode);
694
put_child_root(tp, oldtnode->key, n);
695
node_set_parent(n, tp);
696
697
/* drop dead node */
698
node_free(oldtnode);
699
700
return tp;
701
}
702
703
static unsigned char update_suffix(struct key_vector *tn)
704
{
705
unsigned char slen = tn->pos;
706
unsigned long stride, i;
707
unsigned char slen_max;
708
709
/* only vector 0 can have a suffix length greater than or equal to
710
* tn->pos + tn->bits, the second highest node will have a suffix
711
* length at most of tn->pos + tn->bits - 1
712
*/
713
slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
714
715
/* search though the list of children looking for nodes that might
716
* have a suffix greater than the one we currently have. This is
717
* why we start with a stride of 2 since a stride of 1 would
718
* represent the nodes with suffix length equal to tn->pos
719
*/
720
for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
721
struct key_vector *n = get_child(tn, i);
722
723
if (!n || (n->slen <= slen))
724
continue;
725
726
/* update stride and slen based on new value */
727
stride <<= (n->slen - slen);
728
slen = n->slen;
729
i &= ~(stride - 1);
730
731
/* stop searching if we have hit the maximum possible value */
732
if (slen >= slen_max)
733
break;
734
}
735
736
tn->slen = slen;
737
738
return slen;
739
}
740
741
/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
742
* the Helsinki University of Technology and Matti Tikkanen of Nokia
743
* Telecommunications, page 6:
744
* "A node is doubled if the ratio of non-empty children to all
745
* children in the *doubled* node is at least 'high'."
746
*
747
* 'high' in this instance is the variable 'inflate_threshold'. It
748
* is expressed as a percentage, so we multiply it with
749
* child_length() and instead of multiplying by 2 (since the
750
* child array will be doubled by inflate()) and multiplying
751
* the left-hand side by 100 (to handle the percentage thing) we
752
* multiply the left-hand side by 50.
753
*
754
* The left-hand side may look a bit weird: child_length(tn)
755
* - tn->empty_children is of course the number of non-null children
756
* in the current node. tn->full_children is the number of "full"
757
* children, that is non-null tnodes with a skip value of 0.
758
* All of those will be doubled in the resulting inflated tnode, so
759
* we just count them one extra time here.
760
*
761
* A clearer way to write this would be:
762
*
763
* to_be_doubled = tn->full_children;
764
* not_to_be_doubled = child_length(tn) - tn->empty_children -
765
* tn->full_children;
766
*
767
* new_child_length = child_length(tn) * 2;
768
*
769
* new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
770
* new_child_length;
771
* if (new_fill_factor >= inflate_threshold)
772
*
773
* ...and so on, tho it would mess up the while () loop.
774
*
775
* anyway,
776
* 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
777
* inflate_threshold
778
*
779
* avoid a division:
780
* 100 * (not_to_be_doubled + 2*to_be_doubled) >=
781
* inflate_threshold * new_child_length
782
*
783
* expand not_to_be_doubled and to_be_doubled, and shorten:
784
* 100 * (child_length(tn) - tn->empty_children +
785
* tn->full_children) >= inflate_threshold * new_child_length
786
*
787
* expand new_child_length:
788
* 100 * (child_length(tn) - tn->empty_children +
789
* tn->full_children) >=
790
* inflate_threshold * child_length(tn) * 2
791
*
792
* shorten again:
793
* 50 * (tn->full_children + child_length(tn) -
794
* tn->empty_children) >= inflate_threshold *
795
* child_length(tn)
796
*
797
*/
798
static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
799
{
800
unsigned long used = child_length(tn);
801
unsigned long threshold = used;
802
803
/* Keep root node larger */
804
threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
805
used -= tn_info(tn)->empty_children;
806
used += tn_info(tn)->full_children;
807
808
/* if bits == KEYLENGTH then pos = 0, and will fail below */
809
810
return (used > 1) && tn->pos && ((50 * used) >= threshold);
811
}
812
813
static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
814
{
815
unsigned long used = child_length(tn);
816
unsigned long threshold = used;
817
818
/* Keep root node larger */
819
threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
820
used -= tn_info(tn)->empty_children;
821
822
/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
823
824
return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
825
}
826
827
static inline bool should_collapse(struct key_vector *tn)
828
{
829
unsigned long used = child_length(tn);
830
831
used -= tn_info(tn)->empty_children;
832
833
/* account for bits == KEYLENGTH case */
834
if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
835
used -= KEY_MAX;
836
837
/* One child or none, time to drop us from the trie */
838
return used < 2;
839
}
840
841
#define MAX_WORK 10
842
static struct key_vector *resize(struct trie *t, struct key_vector *tn)
843
{
844
#ifdef CONFIG_IP_FIB_TRIE_STATS
845
struct trie_use_stats __percpu *stats = t->stats;
846
#endif
847
struct key_vector *tp = node_parent(tn);
848
unsigned long cindex = get_index(tn->key, tp);
849
int max_work = MAX_WORK;
850
851
pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
852
tn, inflate_threshold, halve_threshold);
853
854
/* track the tnode via the pointer from the parent instead of
855
* doing it ourselves. This way we can let RCU fully do its
856
* thing without us interfering
857
*/
858
BUG_ON(tn != get_child(tp, cindex));
859
860
/* Double as long as the resulting node has a number of
861
* nonempty nodes that are above the threshold.
862
*/
863
while (should_inflate(tp, tn) && max_work) {
864
tp = inflate(t, tn);
865
if (!tp) {
866
#ifdef CONFIG_IP_FIB_TRIE_STATS
867
this_cpu_inc(stats->resize_node_skipped);
868
#endif
869
break;
870
}
871
872
max_work--;
873
tn = get_child(tp, cindex);
874
}
875
876
/* update parent in case inflate failed */
877
tp = node_parent(tn);
878
879
/* Return if at least one inflate is run */
880
if (max_work != MAX_WORK)
881
return tp;
882
883
/* Halve as long as the number of empty children in this
884
* node is above threshold.
885
*/
886
while (should_halve(tp, tn) && max_work) {
887
tp = halve(t, tn);
888
if (!tp) {
889
#ifdef CONFIG_IP_FIB_TRIE_STATS
890
this_cpu_inc(stats->resize_node_skipped);
891
#endif
892
break;
893
}
894
895
max_work--;
896
tn = get_child(tp, cindex);
897
}
898
899
/* Only one child remains */
900
if (should_collapse(tn))
901
return collapse(t, tn);
902
903
/* update parent in case halve failed */
904
return node_parent(tn);
905
}
906
907
static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
908
{
909
unsigned char node_slen = tn->slen;
910
911
while ((node_slen > tn->pos) && (node_slen > slen)) {
912
slen = update_suffix(tn);
913
if (node_slen == slen)
914
break;
915
916
tn = node_parent(tn);
917
node_slen = tn->slen;
918
}
919
}
920
921
static void node_push_suffix(struct key_vector *tn, unsigned char slen)
922
{
923
while (tn->slen < slen) {
924
tn->slen = slen;
925
tn = node_parent(tn);
926
}
927
}
928
929
/* rcu_read_lock needs to be hold by caller from readside */
930
static struct key_vector *fib_find_node(struct trie *t,
931
struct key_vector **tp, u32 key)
932
{
933
struct key_vector *pn, *n = t->kv;
934
unsigned long index = 0;
935
936
do {
937
pn = n;
938
n = get_child_rcu(n, index);
939
940
if (!n)
941
break;
942
943
index = get_cindex(key, n);
944
945
/* This bit of code is a bit tricky but it combines multiple
946
* checks into a single check. The prefix consists of the
947
* prefix plus zeros for the bits in the cindex. The index
948
* is the difference between the key and this value. From
949
* this we can actually derive several pieces of data.
950
* if (index >= (1ul << bits))
951
* we have a mismatch in skip bits and failed
952
* else
953
* we know the value is cindex
954
*
955
* This check is safe even if bits == KEYLENGTH due to the
956
* fact that we can only allocate a node with 32 bits if a
957
* long is greater than 32 bits.
958
*/
959
if (index >= (1ul << n->bits)) {
960
n = NULL;
961
break;
962
}
963
964
/* keep searching until we find a perfect match leaf or NULL */
965
} while (IS_TNODE(n));
966
967
*tp = pn;
968
969
return n;
970
}
971
972
/* Return the first fib alias matching DSCP with
973
* priority less than or equal to PRIO.
974
* If 'find_first' is set, return the first matching
975
* fib alias, regardless of DSCP and priority.
976
*/
977
static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
978
dscp_t dscp, u32 prio, u32 tb_id,
979
bool find_first)
980
{
981
struct fib_alias *fa;
982
983
if (!fah)
984
return NULL;
985
986
hlist_for_each_entry(fa, fah, fa_list) {
987
/* Avoid Sparse warning when using dscp_t in inequalities */
988
u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
989
u8 __dscp = inet_dscp_to_dsfield(dscp);
990
991
if (fa->fa_slen < slen)
992
continue;
993
if (fa->fa_slen != slen)
994
break;
995
if (fa->tb_id > tb_id)
996
continue;
997
if (fa->tb_id != tb_id)
998
break;
999
if (find_first)
1000
return fa;
1001
if (__fa_dscp > __dscp)
1002
continue;
1003
if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004
return fa;
1005
}
1006
1007
return NULL;
1008
}
1009
1010
static struct fib_alias *
1011
fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012
{
1013
u8 slen = KEYLENGTH - fri->dst_len;
1014
struct key_vector *l, *tp;
1015
struct fib_table *tb;
1016
struct fib_alias *fa;
1017
struct trie *t;
1018
1019
tb = fib_get_table(net, fri->tb_id);
1020
if (!tb)
1021
return NULL;
1022
1023
t = (struct trie *)tb->tb_data;
1024
l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025
if (!l)
1026
return NULL;
1027
1028
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029
if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030
fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031
fa->fa_type == fri->type)
1032
return fa;
1033
}
1034
1035
return NULL;
1036
}
1037
1038
void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039
{
1040
u8 fib_notify_on_flag_change;
1041
struct fib_alias *fa_match;
1042
struct sk_buff *skb;
1043
int err;
1044
1045
rcu_read_lock();
1046
1047
fa_match = fib_find_matching_alias(net, fri);
1048
if (!fa_match)
1049
goto out;
1050
1051
/* These are paired with the WRITE_ONCE() happening in this function.
1052
* The reason is that we are only protected by RCU at this point.
1053
*/
1054
if (READ_ONCE(fa_match->offload) == fri->offload &&
1055
READ_ONCE(fa_match->trap) == fri->trap &&
1056
READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057
goto out;
1058
1059
WRITE_ONCE(fa_match->offload, fri->offload);
1060
WRITE_ONCE(fa_match->trap, fri->trap);
1061
1062
fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063
1064
/* 2 means send notifications only if offload_failed was changed. */
1065
if (fib_notify_on_flag_change == 2 &&
1066
READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067
goto out;
1068
1069
WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070
1071
if (!fib_notify_on_flag_change)
1072
goto out;
1073
1074
skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075
if (!skb) {
1076
err = -ENOBUFS;
1077
goto errout;
1078
}
1079
1080
err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081
if (err < 0) {
1082
/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083
WARN_ON(err == -EMSGSIZE);
1084
kfree_skb(skb);
1085
goto errout;
1086
}
1087
1088
rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089
goto out;
1090
1091
errout:
1092
rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093
out:
1094
rcu_read_unlock();
1095
}
1096
EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097
1098
static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099
{
1100
while (!IS_TRIE(tn))
1101
tn = resize(t, tn);
1102
}
1103
1104
static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105
struct fib_alias *new, t_key key)
1106
{
1107
struct key_vector *n, *l;
1108
1109
l = leaf_new(key, new);
1110
if (!l)
1111
goto noleaf;
1112
1113
/* retrieve child from parent node */
1114
n = get_child(tp, get_index(key, tp));
1115
1116
/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117
*
1118
* Add a new tnode here
1119
* first tnode need some special handling
1120
* leaves us in position for handling as case 3
1121
*/
1122
if (n) {
1123
struct key_vector *tn;
1124
1125
tn = tnode_new(key, __fls(key ^ n->key), 1);
1126
if (!tn)
1127
goto notnode;
1128
1129
/* initialize routes out of node */
1130
NODE_INIT_PARENT(tn, tp);
1131
put_child(tn, get_index(key, tn) ^ 1, n);
1132
1133
/* start adding routes into the node */
1134
put_child_root(tp, key, tn);
1135
node_set_parent(n, tn);
1136
1137
/* parent now has a NULL spot where the leaf can go */
1138
tp = tn;
1139
}
1140
1141
/* Case 3: n is NULL, and will just insert a new leaf */
1142
node_push_suffix(tp, new->fa_slen);
1143
NODE_INIT_PARENT(l, tp);
1144
put_child_root(tp, key, l);
1145
trie_rebalance(t, tp);
1146
1147
return 0;
1148
notnode:
1149
node_free(l);
1150
noleaf:
1151
return -ENOMEM;
1152
}
1153
1154
static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155
struct key_vector *l, struct fib_alias *new,
1156
struct fib_alias *fa, t_key key)
1157
{
1158
if (!l)
1159
return fib_insert_node(t, tp, new, key);
1160
1161
if (fa) {
1162
hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163
} else {
1164
struct fib_alias *last;
1165
1166
hlist_for_each_entry(last, &l->leaf, fa_list) {
1167
if (new->fa_slen < last->fa_slen)
1168
break;
1169
if ((new->fa_slen == last->fa_slen) &&
1170
(new->tb_id > last->tb_id))
1171
break;
1172
fa = last;
1173
}
1174
1175
if (fa)
1176
hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177
else
1178
hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179
}
1180
1181
/* if we added to the tail node then we need to update slen */
1182
if (l->slen < new->fa_slen) {
1183
l->slen = new->fa_slen;
1184
node_push_suffix(tp, new->fa_slen);
1185
}
1186
1187
return 0;
1188
}
1189
1190
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1191
struct key_vector *l, struct fib_alias *old);
1192
1193
/* Caller must hold RTNL. */
1194
int fib_table_insert(struct net *net, struct fib_table *tb,
1195
struct fib_config *cfg, struct netlink_ext_ack *extack)
1196
{
1197
struct trie *t = (struct trie *)tb->tb_data;
1198
struct fib_alias *fa, *new_fa;
1199
struct key_vector *l, *tp;
1200
u16 nlflags = NLM_F_EXCL;
1201
struct fib_info *fi;
1202
u8 plen = cfg->fc_dst_len;
1203
u8 slen = KEYLENGTH - plen;
1204
dscp_t dscp;
1205
u32 key;
1206
int err;
1207
1208
key = ntohl(cfg->fc_dst);
1209
1210
pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1211
1212
fi = fib_create_info(cfg, extack);
1213
if (IS_ERR(fi)) {
1214
err = PTR_ERR(fi);
1215
goto err;
1216
}
1217
1218
dscp = cfg->fc_dscp;
1219
l = fib_find_node(t, &tp, key);
1220
fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1221
tb->tb_id, false) : NULL;
1222
1223
/* Now fa, if non-NULL, points to the first fib alias
1224
* with the same keys [prefix,dscp,priority], if such key already
1225
* exists or to the node before which we will insert new one.
1226
*
1227
* If fa is NULL, we will need to allocate a new one and
1228
* insert to the tail of the section matching the suffix length
1229
* of the new alias.
1230
*/
1231
1232
if (fa && fa->fa_dscp == dscp &&
1233
fa->fa_info->fib_priority == fi->fib_priority) {
1234
struct fib_alias *fa_first, *fa_match;
1235
1236
err = -EEXIST;
1237
if (cfg->fc_nlflags & NLM_F_EXCL)
1238
goto out;
1239
1240
nlflags &= ~NLM_F_EXCL;
1241
1242
/* We have 2 goals:
1243
* 1. Find exact match for type, scope, fib_info to avoid
1244
* duplicate routes
1245
* 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1246
*/
1247
fa_match = NULL;
1248
fa_first = fa;
1249
hlist_for_each_entry_from(fa, fa_list) {
1250
if ((fa->fa_slen != slen) ||
1251
(fa->tb_id != tb->tb_id) ||
1252
(fa->fa_dscp != dscp))
1253
break;
1254
if (fa->fa_info->fib_priority != fi->fib_priority)
1255
break;
1256
if (fa->fa_type == cfg->fc_type &&
1257
fa->fa_info == fi) {
1258
fa_match = fa;
1259
break;
1260
}
1261
}
1262
1263
if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264
struct fib_info *fi_drop;
1265
u8 state;
1266
1267
nlflags |= NLM_F_REPLACE;
1268
fa = fa_first;
1269
if (fa_match) {
1270
if (fa == fa_match)
1271
err = 0;
1272
goto out;
1273
}
1274
err = -ENOBUFS;
1275
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1276
if (!new_fa)
1277
goto out;
1278
1279
fi_drop = fa->fa_info;
1280
new_fa->fa_dscp = fa->fa_dscp;
1281
new_fa->fa_info = fi;
1282
new_fa->fa_type = cfg->fc_type;
1283
state = fa->fa_state;
1284
new_fa->fa_state = state & ~FA_S_ACCESSED;
1285
new_fa->fa_slen = fa->fa_slen;
1286
new_fa->tb_id = tb->tb_id;
1287
new_fa->fa_default = -1;
1288
new_fa->offload = 0;
1289
new_fa->trap = 0;
1290
new_fa->offload_failed = 0;
1291
1292
hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1293
1294
if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1295
tb->tb_id, true) == new_fa) {
1296
enum fib_event_type fib_event;
1297
1298
fib_event = FIB_EVENT_ENTRY_REPLACE;
1299
err = call_fib_entry_notifiers(net, fib_event,
1300
key, plen,
1301
new_fa, extack);
1302
if (err) {
1303
hlist_replace_rcu(&new_fa->fa_list,
1304
&fa->fa_list);
1305
goto out_free_new_fa;
1306
}
1307
}
1308
1309
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1310
tb->tb_id, &cfg->fc_nlinfo, nlflags);
1311
1312
alias_free_mem_rcu(fa);
1313
1314
fib_release_info(fi_drop);
1315
if (state & FA_S_ACCESSED)
1316
rt_cache_flush(cfg->fc_nlinfo.nl_net);
1317
1318
goto succeeded;
1319
}
1320
/* Error if we find a perfect match which
1321
* uses the same scope, type, and nexthop
1322
* information.
1323
*/
1324
if (fa_match)
1325
goto out;
1326
1327
if (cfg->fc_nlflags & NLM_F_APPEND)
1328
nlflags |= NLM_F_APPEND;
1329
else
1330
fa = fa_first;
1331
}
1332
err = -ENOENT;
1333
if (!(cfg->fc_nlflags & NLM_F_CREATE))
1334
goto out;
1335
1336
nlflags |= NLM_F_CREATE;
1337
err = -ENOBUFS;
1338
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1339
if (!new_fa)
1340
goto out;
1341
1342
new_fa->fa_info = fi;
1343
new_fa->fa_dscp = dscp;
1344
new_fa->fa_type = cfg->fc_type;
1345
new_fa->fa_state = 0;
1346
new_fa->fa_slen = slen;
1347
new_fa->tb_id = tb->tb_id;
1348
new_fa->fa_default = -1;
1349
new_fa->offload = 0;
1350
new_fa->trap = 0;
1351
new_fa->offload_failed = 0;
1352
1353
/* Insert new entry to the list. */
1354
err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1355
if (err)
1356
goto out_free_new_fa;
1357
1358
/* The alias was already inserted, so the node must exist. */
1359
l = l ? l : fib_find_node(t, &tp, key);
1360
if (WARN_ON_ONCE(!l)) {
1361
err = -ENOENT;
1362
goto out_free_new_fa;
1363
}
1364
1365
if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1366
new_fa) {
1367
enum fib_event_type fib_event;
1368
1369
fib_event = FIB_EVENT_ENTRY_REPLACE;
1370
err = call_fib_entry_notifiers(net, fib_event, key, plen,
1371
new_fa, extack);
1372
if (err)
1373
goto out_remove_new_fa;
1374
}
1375
1376
if (!plen)
1377
tb->tb_num_default++;
1378
1379
rt_cache_flush(cfg->fc_nlinfo.nl_net);
1380
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1381
&cfg->fc_nlinfo, nlflags);
1382
succeeded:
1383
return 0;
1384
1385
out_remove_new_fa:
1386
fib_remove_alias(t, tp, l, new_fa);
1387
out_free_new_fa:
1388
kmem_cache_free(fn_alias_kmem, new_fa);
1389
out:
1390
fib_release_info(fi);
1391
err:
1392
return err;
1393
}
1394
1395
static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1396
{
1397
t_key prefix = n->key;
1398
1399
return (key ^ prefix) & (prefix | -prefix);
1400
}
1401
1402
bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1403
const struct flowi4 *flp)
1404
{
1405
if (nhc->nhc_flags & RTNH_F_DEAD)
1406
return false;
1407
1408
if (ip_ignore_linkdown(nhc->nhc_dev) &&
1409
nhc->nhc_flags & RTNH_F_LINKDOWN &&
1410
!(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1411
return false;
1412
1413
if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1414
return false;
1415
1416
return true;
1417
}
1418
1419
/* should be called with rcu_read_lock */
1420
int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1421
struct fib_result *res, int fib_flags)
1422
{
1423
struct trie *t = (struct trie *) tb->tb_data;
1424
#ifdef CONFIG_IP_FIB_TRIE_STATS
1425
struct trie_use_stats __percpu *stats = t->stats;
1426
#endif
1427
const t_key key = ntohl(flp->daddr);
1428
struct key_vector *n, *pn;
1429
struct fib_alias *fa;
1430
unsigned long index;
1431
t_key cindex;
1432
1433
pn = t->kv;
1434
cindex = 0;
1435
1436
n = get_child_rcu(pn, cindex);
1437
if (!n) {
1438
trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1439
return -EAGAIN;
1440
}
1441
1442
#ifdef CONFIG_IP_FIB_TRIE_STATS
1443
this_cpu_inc(stats->gets);
1444
#endif
1445
1446
/* Step 1: Travel to the longest prefix match in the trie */
1447
for (;;) {
1448
index = get_cindex(key, n);
1449
1450
/* This bit of code is a bit tricky but it combines multiple
1451
* checks into a single check. The prefix consists of the
1452
* prefix plus zeros for the "bits" in the prefix. The index
1453
* is the difference between the key and this value. From
1454
* this we can actually derive several pieces of data.
1455
* if (index >= (1ul << bits))
1456
* we have a mismatch in skip bits and failed
1457
* else
1458
* we know the value is cindex
1459
*
1460
* This check is safe even if bits == KEYLENGTH due to the
1461
* fact that we can only allocate a node with 32 bits if a
1462
* long is greater than 32 bits.
1463
*/
1464
if (index >= (1ul << n->bits))
1465
break;
1466
1467
/* we have found a leaf. Prefixes have already been compared */
1468
if (IS_LEAF(n))
1469
goto found;
1470
1471
/* only record pn and cindex if we are going to be chopping
1472
* bits later. Otherwise we are just wasting cycles.
1473
*/
1474
if (n->slen > n->pos) {
1475
pn = n;
1476
cindex = index;
1477
}
1478
1479
n = get_child_rcu(n, index);
1480
if (unlikely(!n))
1481
goto backtrace;
1482
}
1483
1484
/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1485
for (;;) {
1486
/* record the pointer where our next node pointer is stored */
1487
struct key_vector __rcu **cptr = n->tnode;
1488
1489
/* This test verifies that none of the bits that differ
1490
* between the key and the prefix exist in the region of
1491
* the lsb and higher in the prefix.
1492
*/
1493
if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1494
goto backtrace;
1495
1496
/* exit out and process leaf */
1497
if (unlikely(IS_LEAF(n)))
1498
break;
1499
1500
/* Don't bother recording parent info. Since we are in
1501
* prefix match mode we will have to come back to wherever
1502
* we started this traversal anyway
1503
*/
1504
1505
while ((n = rcu_dereference(*cptr)) == NULL) {
1506
backtrace:
1507
#ifdef CONFIG_IP_FIB_TRIE_STATS
1508
if (!n)
1509
this_cpu_inc(stats->null_node_hit);
1510
#endif
1511
/* If we are at cindex 0 there are no more bits for
1512
* us to strip at this level so we must ascend back
1513
* up one level to see if there are any more bits to
1514
* be stripped there.
1515
*/
1516
while (!cindex) {
1517
t_key pkey = pn->key;
1518
1519
/* If we don't have a parent then there is
1520
* nothing for us to do as we do not have any
1521
* further nodes to parse.
1522
*/
1523
if (IS_TRIE(pn)) {
1524
trace_fib_table_lookup(tb->tb_id, flp,
1525
NULL, -EAGAIN);
1526
return -EAGAIN;
1527
}
1528
#ifdef CONFIG_IP_FIB_TRIE_STATS
1529
this_cpu_inc(stats->backtrack);
1530
#endif
1531
/* Get Child's index */
1532
pn = node_parent_rcu(pn);
1533
cindex = get_index(pkey, pn);
1534
}
1535
1536
/* strip the least significant bit from the cindex */
1537
cindex &= cindex - 1;
1538
1539
/* grab pointer for next child node */
1540
cptr = &pn->tnode[cindex];
1541
}
1542
}
1543
1544
found:
1545
/* this line carries forward the xor from earlier in the function */
1546
index = key ^ n->key;
1547
1548
/* Step 3: Process the leaf, if that fails fall back to backtracing */
1549
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1550
struct fib_info *fi = fa->fa_info;
1551
struct fib_nh_common *nhc;
1552
int nhsel, err;
1553
1554
if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1555
if (index >= (1ul << fa->fa_slen))
1556
continue;
1557
}
1558
if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1559
continue;
1560
/* Paired with WRITE_ONCE() in fib_release_info() */
1561
if (READ_ONCE(fi->fib_dead))
1562
continue;
1563
if (fa->fa_info->fib_scope < flp->flowi4_scope)
1564
continue;
1565
fib_alias_accessed(fa);
1566
err = fib_props[fa->fa_type].error;
1567
if (unlikely(err < 0)) {
1568
out_reject:
1569
#ifdef CONFIG_IP_FIB_TRIE_STATS
1570
this_cpu_inc(stats->semantic_match_passed);
1571
#endif
1572
trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1573
return err;
1574
}
1575
if (fi->fib_flags & RTNH_F_DEAD)
1576
continue;
1577
1578
if (unlikely(fi->nh)) {
1579
if (nexthop_is_blackhole(fi->nh)) {
1580
err = fib_props[RTN_BLACKHOLE].error;
1581
goto out_reject;
1582
}
1583
1584
nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1585
&nhsel);
1586
if (nhc)
1587
goto set_result;
1588
goto miss;
1589
}
1590
1591
for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1592
nhc = fib_info_nhc(fi, nhsel);
1593
1594
if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1595
continue;
1596
set_result:
1597
if (!(fib_flags & FIB_LOOKUP_NOREF))
1598
refcount_inc(&fi->fib_clntref);
1599
1600
res->prefix = htonl(n->key);
1601
res->prefixlen = KEYLENGTH - fa->fa_slen;
1602
res->nh_sel = nhsel;
1603
res->nhc = nhc;
1604
res->type = fa->fa_type;
1605
res->scope = fi->fib_scope;
1606
res->dscp = fa->fa_dscp;
1607
res->fi = fi;
1608
res->table = tb;
1609
res->fa_head = &n->leaf;
1610
#ifdef CONFIG_IP_FIB_TRIE_STATS
1611
this_cpu_inc(stats->semantic_match_passed);
1612
#endif
1613
trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1614
1615
return err;
1616
}
1617
}
1618
miss:
1619
#ifdef CONFIG_IP_FIB_TRIE_STATS
1620
this_cpu_inc(stats->semantic_match_miss);
1621
#endif
1622
goto backtrace;
1623
}
1624
EXPORT_SYMBOL_GPL(fib_table_lookup);
1625
1626
static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1627
struct key_vector *l, struct fib_alias *old)
1628
{
1629
/* record the location of the previous list_info entry */
1630
struct hlist_node **pprev = old->fa_list.pprev;
1631
struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1632
1633
/* remove the fib_alias from the list */
1634
hlist_del_rcu(&old->fa_list);
1635
1636
/* if we emptied the list this leaf will be freed and we can sort
1637
* out parent suffix lengths as a part of trie_rebalance
1638
*/
1639
if (hlist_empty(&l->leaf)) {
1640
if (tp->slen == l->slen)
1641
node_pull_suffix(tp, tp->pos);
1642
put_child_root(tp, l->key, NULL);
1643
node_free(l);
1644
trie_rebalance(t, tp);
1645
return;
1646
}
1647
1648
/* only access fa if it is pointing at the last valid hlist_node */
1649
if (*pprev)
1650
return;
1651
1652
/* update the trie with the latest suffix length */
1653
l->slen = fa->fa_slen;
1654
node_pull_suffix(tp, fa->fa_slen);
1655
}
1656
1657
static void fib_notify_alias_delete(struct net *net, u32 key,
1658
struct hlist_head *fah,
1659
struct fib_alias *fa_to_delete,
1660
struct netlink_ext_ack *extack)
1661
{
1662
struct fib_alias *fa_next, *fa_to_notify;
1663
u32 tb_id = fa_to_delete->tb_id;
1664
u8 slen = fa_to_delete->fa_slen;
1665
enum fib_event_type fib_event;
1666
1667
/* Do not notify if we do not care about the route. */
1668
if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1669
return;
1670
1671
/* Determine if the route should be replaced by the next route in the
1672
* list.
1673
*/
1674
fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1675
struct fib_alias, fa_list);
1676
if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1677
fib_event = FIB_EVENT_ENTRY_REPLACE;
1678
fa_to_notify = fa_next;
1679
} else {
1680
fib_event = FIB_EVENT_ENTRY_DEL;
1681
fa_to_notify = fa_to_delete;
1682
}
1683
call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1684
fa_to_notify, extack);
1685
}
1686
1687
/* Caller must hold RTNL. */
1688
int fib_table_delete(struct net *net, struct fib_table *tb,
1689
struct fib_config *cfg, struct netlink_ext_ack *extack)
1690
{
1691
struct trie *t = (struct trie *) tb->tb_data;
1692
struct fib_alias *fa, *fa_to_delete;
1693
struct key_vector *l, *tp;
1694
u8 plen = cfg->fc_dst_len;
1695
u8 slen = KEYLENGTH - plen;
1696
dscp_t dscp;
1697
u32 key;
1698
1699
key = ntohl(cfg->fc_dst);
1700
1701
l = fib_find_node(t, &tp, key);
1702
if (!l)
1703
return -ESRCH;
1704
1705
dscp = cfg->fc_dscp;
1706
fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1707
if (!fa)
1708
return -ESRCH;
1709
1710
pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1711
inet_dscp_to_dsfield(dscp), t);
1712
1713
fa_to_delete = NULL;
1714
hlist_for_each_entry_from(fa, fa_list) {
1715
struct fib_info *fi = fa->fa_info;
1716
1717
if ((fa->fa_slen != slen) ||
1718
(fa->tb_id != tb->tb_id) ||
1719
(fa->fa_dscp != dscp))
1720
break;
1721
1722
if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1723
(cfg->fc_scope == RT_SCOPE_NOWHERE ||
1724
fa->fa_info->fib_scope == cfg->fc_scope) &&
1725
(!cfg->fc_prefsrc ||
1726
fi->fib_prefsrc == cfg->fc_prefsrc) &&
1727
(!cfg->fc_protocol ||
1728
fi->fib_protocol == cfg->fc_protocol) &&
1729
fib_nh_match(net, cfg, fi, extack) == 0 &&
1730
fib_metrics_match(cfg, fi)) {
1731
fa_to_delete = fa;
1732
break;
1733
}
1734
}
1735
1736
if (!fa_to_delete)
1737
return -ESRCH;
1738
1739
fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1740
rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1741
&cfg->fc_nlinfo, 0);
1742
1743
if (!plen)
1744
tb->tb_num_default--;
1745
1746
fib_remove_alias(t, tp, l, fa_to_delete);
1747
1748
if (fa_to_delete->fa_state & FA_S_ACCESSED)
1749
rt_cache_flush(cfg->fc_nlinfo.nl_net);
1750
1751
fib_release_info(fa_to_delete->fa_info);
1752
alias_free_mem_rcu(fa_to_delete);
1753
return 0;
1754
}
1755
1756
/* Scan for the next leaf starting at the provided key value */
1757
static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1758
{
1759
struct key_vector *pn, *n = *tn;
1760
unsigned long cindex;
1761
1762
/* this loop is meant to try and find the key in the trie */
1763
do {
1764
/* record parent and next child index */
1765
pn = n;
1766
cindex = (key > pn->key) ? get_index(key, pn) : 0;
1767
1768
if (cindex >> pn->bits)
1769
break;
1770
1771
/* descend into the next child */
1772
n = get_child_rcu(pn, cindex++);
1773
if (!n)
1774
break;
1775
1776
/* guarantee forward progress on the keys */
1777
if (IS_LEAF(n) && (n->key >= key))
1778
goto found;
1779
} while (IS_TNODE(n));
1780
1781
/* this loop will search for the next leaf with a greater key */
1782
while (!IS_TRIE(pn)) {
1783
/* if we exhausted the parent node we will need to climb */
1784
if (cindex >= (1ul << pn->bits)) {
1785
t_key pkey = pn->key;
1786
1787
pn = node_parent_rcu(pn);
1788
cindex = get_index(pkey, pn) + 1;
1789
continue;
1790
}
1791
1792
/* grab the next available node */
1793
n = get_child_rcu(pn, cindex++);
1794
if (!n)
1795
continue;
1796
1797
/* no need to compare keys since we bumped the index */
1798
if (IS_LEAF(n))
1799
goto found;
1800
1801
/* Rescan start scanning in new node */
1802
pn = n;
1803
cindex = 0;
1804
}
1805
1806
*tn = pn;
1807
return NULL; /* Root of trie */
1808
found:
1809
/* if we are at the limit for keys just return NULL for the tnode */
1810
*tn = pn;
1811
return n;
1812
}
1813
1814
static void fib_trie_free(struct fib_table *tb)
1815
{
1816
struct trie *t = (struct trie *)tb->tb_data;
1817
struct key_vector *pn = t->kv;
1818
unsigned long cindex = 1;
1819
struct hlist_node *tmp;
1820
struct fib_alias *fa;
1821
1822
/* walk trie in reverse order and free everything */
1823
for (;;) {
1824
struct key_vector *n;
1825
1826
if (!(cindex--)) {
1827
t_key pkey = pn->key;
1828
1829
if (IS_TRIE(pn))
1830
break;
1831
1832
n = pn;
1833
pn = node_parent(pn);
1834
1835
/* drop emptied tnode */
1836
put_child_root(pn, n->key, NULL);
1837
node_free(n);
1838
1839
cindex = get_index(pkey, pn);
1840
1841
continue;
1842
}
1843
1844
/* grab the next available node */
1845
n = get_child(pn, cindex);
1846
if (!n)
1847
continue;
1848
1849
if (IS_TNODE(n)) {
1850
/* record pn and cindex for leaf walking */
1851
pn = n;
1852
cindex = 1ul << n->bits;
1853
1854
continue;
1855
}
1856
1857
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1858
hlist_del_rcu(&fa->fa_list);
1859
alias_free_mem_rcu(fa);
1860
}
1861
1862
put_child_root(pn, n->key, NULL);
1863
node_free(n);
1864
}
1865
1866
#ifdef CONFIG_IP_FIB_TRIE_STATS
1867
free_percpu(t->stats);
1868
#endif
1869
kfree(tb);
1870
}
1871
1872
struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1873
{
1874
struct trie *ot = (struct trie *)oldtb->tb_data;
1875
struct key_vector *l, *tp = ot->kv;
1876
struct fib_table *local_tb;
1877
struct fib_alias *fa;
1878
struct trie *lt;
1879
t_key key = 0;
1880
1881
if (oldtb->tb_data == oldtb->__data)
1882
return oldtb;
1883
1884
local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1885
if (!local_tb)
1886
return NULL;
1887
1888
lt = (struct trie *)local_tb->tb_data;
1889
1890
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1891
struct key_vector *local_l = NULL, *local_tp;
1892
1893
hlist_for_each_entry(fa, &l->leaf, fa_list) {
1894
struct fib_alias *new_fa;
1895
1896
if (local_tb->tb_id != fa->tb_id)
1897
continue;
1898
1899
/* clone fa for new local table */
1900
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1901
if (!new_fa)
1902
goto out;
1903
1904
memcpy(new_fa, fa, sizeof(*fa));
1905
1906
/* insert clone into table */
1907
if (!local_l)
1908
local_l = fib_find_node(lt, &local_tp, l->key);
1909
1910
if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1911
NULL, l->key)) {
1912
kmem_cache_free(fn_alias_kmem, new_fa);
1913
goto out;
1914
}
1915
}
1916
1917
/* stop loop if key wrapped back to 0 */
1918
key = l->key + 1;
1919
if (key < l->key)
1920
break;
1921
}
1922
1923
return local_tb;
1924
out:
1925
fib_trie_free(local_tb);
1926
1927
return NULL;
1928
}
1929
1930
/* Caller must hold RTNL */
1931
void fib_table_flush_external(struct fib_table *tb)
1932
{
1933
struct trie *t = (struct trie *)tb->tb_data;
1934
struct key_vector *pn = t->kv;
1935
unsigned long cindex = 1;
1936
struct hlist_node *tmp;
1937
struct fib_alias *fa;
1938
1939
/* walk trie in reverse order */
1940
for (;;) {
1941
unsigned char slen = 0;
1942
struct key_vector *n;
1943
1944
if (!(cindex--)) {
1945
t_key pkey = pn->key;
1946
1947
/* cannot resize the trie vector */
1948
if (IS_TRIE(pn))
1949
break;
1950
1951
/* update the suffix to address pulled leaves */
1952
if (pn->slen > pn->pos)
1953
update_suffix(pn);
1954
1955
/* resize completed node */
1956
pn = resize(t, pn);
1957
cindex = get_index(pkey, pn);
1958
1959
continue;
1960
}
1961
1962
/* grab the next available node */
1963
n = get_child(pn, cindex);
1964
if (!n)
1965
continue;
1966
1967
if (IS_TNODE(n)) {
1968
/* record pn and cindex for leaf walking */
1969
pn = n;
1970
cindex = 1ul << n->bits;
1971
1972
continue;
1973
}
1974
1975
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1976
/* if alias was cloned to local then we just
1977
* need to remove the local copy from main
1978
*/
1979
if (tb->tb_id != fa->tb_id) {
1980
hlist_del_rcu(&fa->fa_list);
1981
alias_free_mem_rcu(fa);
1982
continue;
1983
}
1984
1985
/* record local slen */
1986
slen = fa->fa_slen;
1987
}
1988
1989
/* update leaf slen */
1990
n->slen = slen;
1991
1992
if (hlist_empty(&n->leaf)) {
1993
put_child_root(pn, n->key, NULL);
1994
node_free(n);
1995
}
1996
}
1997
}
1998
1999
/* Caller must hold RTNL. */
2000
int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2001
{
2002
struct trie *t = (struct trie *)tb->tb_data;
2003
struct nl_info info = { .nl_net = net };
2004
struct key_vector *pn = t->kv;
2005
unsigned long cindex = 1;
2006
struct hlist_node *tmp;
2007
struct fib_alias *fa;
2008
int found = 0;
2009
2010
/* walk trie in reverse order */
2011
for (;;) {
2012
unsigned char slen = 0;
2013
struct key_vector *n;
2014
2015
if (!(cindex--)) {
2016
t_key pkey = pn->key;
2017
2018
/* cannot resize the trie vector */
2019
if (IS_TRIE(pn))
2020
break;
2021
2022
/* update the suffix to address pulled leaves */
2023
if (pn->slen > pn->pos)
2024
update_suffix(pn);
2025
2026
/* resize completed node */
2027
pn = resize(t, pn);
2028
cindex = get_index(pkey, pn);
2029
2030
continue;
2031
}
2032
2033
/* grab the next available node */
2034
n = get_child(pn, cindex);
2035
if (!n)
2036
continue;
2037
2038
if (IS_TNODE(n)) {
2039
/* record pn and cindex for leaf walking */
2040
pn = n;
2041
cindex = 1ul << n->bits;
2042
2043
continue;
2044
}
2045
2046
hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2047
struct fib_info *fi = fa->fa_info;
2048
2049
if (!fi || tb->tb_id != fa->tb_id ||
2050
(!(fi->fib_flags & RTNH_F_DEAD) &&
2051
!fib_props[fa->fa_type].error)) {
2052
slen = fa->fa_slen;
2053
continue;
2054
}
2055
2056
/* Do not flush error routes if network namespace is
2057
* not being dismantled
2058
*/
2059
if (!flush_all && fib_props[fa->fa_type].error) {
2060
slen = fa->fa_slen;
2061
continue;
2062
}
2063
2064
fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2065
NULL);
2066
if (fi->pfsrc_removed)
2067
rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2068
KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2069
hlist_del_rcu(&fa->fa_list);
2070
fib_release_info(fa->fa_info);
2071
alias_free_mem_rcu(fa);
2072
found++;
2073
}
2074
2075
/* update leaf slen */
2076
n->slen = slen;
2077
2078
if (hlist_empty(&n->leaf)) {
2079
put_child_root(pn, n->key, NULL);
2080
node_free(n);
2081
}
2082
}
2083
2084
pr_debug("trie_flush found=%d\n", found);
2085
return found;
2086
}
2087
2088
/* derived from fib_trie_free */
2089
static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2090
struct nl_info *info)
2091
{
2092
struct trie *t = (struct trie *)tb->tb_data;
2093
struct key_vector *pn = t->kv;
2094
unsigned long cindex = 1;
2095
struct fib_alias *fa;
2096
2097
for (;;) {
2098
struct key_vector *n;
2099
2100
if (!(cindex--)) {
2101
t_key pkey = pn->key;
2102
2103
if (IS_TRIE(pn))
2104
break;
2105
2106
pn = node_parent(pn);
2107
cindex = get_index(pkey, pn);
2108
continue;
2109
}
2110
2111
/* grab the next available node */
2112
n = get_child(pn, cindex);
2113
if (!n)
2114
continue;
2115
2116
if (IS_TNODE(n)) {
2117
/* record pn and cindex for leaf walking */
2118
pn = n;
2119
cindex = 1ul << n->bits;
2120
2121
continue;
2122
}
2123
2124
hlist_for_each_entry(fa, &n->leaf, fa_list) {
2125
struct fib_info *fi = fa->fa_info;
2126
2127
if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2128
continue;
2129
2130
rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2131
KEYLENGTH - fa->fa_slen, tb->tb_id,
2132
info, NLM_F_REPLACE);
2133
}
2134
}
2135
}
2136
2137
void fib_info_notify_update(struct net *net, struct nl_info *info)
2138
{
2139
unsigned int h;
2140
2141
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2142
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2143
struct fib_table *tb;
2144
2145
hlist_for_each_entry_rcu(tb, head, tb_hlist,
2146
lockdep_rtnl_is_held())
2147
__fib_info_notify_update(net, tb, info);
2148
}
2149
}
2150
2151
static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2152
struct notifier_block *nb,
2153
struct netlink_ext_ack *extack)
2154
{
2155
struct fib_alias *fa;
2156
int last_slen = -1;
2157
int err;
2158
2159
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2160
struct fib_info *fi = fa->fa_info;
2161
2162
if (!fi)
2163
continue;
2164
2165
/* local and main table can share the same trie,
2166
* so don't notify twice for the same entry.
2167
*/
2168
if (tb->tb_id != fa->tb_id)
2169
continue;
2170
2171
if (fa->fa_slen == last_slen)
2172
continue;
2173
2174
last_slen = fa->fa_slen;
2175
err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2176
l->key, KEYLENGTH - fa->fa_slen,
2177
fa, extack);
2178
if (err)
2179
return err;
2180
}
2181
return 0;
2182
}
2183
2184
static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2185
struct netlink_ext_ack *extack)
2186
{
2187
struct trie *t = (struct trie *)tb->tb_data;
2188
struct key_vector *l, *tp = t->kv;
2189
t_key key = 0;
2190
int err;
2191
2192
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2193
err = fib_leaf_notify(l, tb, nb, extack);
2194
if (err)
2195
return err;
2196
2197
key = l->key + 1;
2198
/* stop in case of wrap around */
2199
if (key < l->key)
2200
break;
2201
}
2202
return 0;
2203
}
2204
2205
int fib_notify(struct net *net, struct notifier_block *nb,
2206
struct netlink_ext_ack *extack)
2207
{
2208
unsigned int h;
2209
int err;
2210
2211
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2212
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2213
struct fib_table *tb;
2214
2215
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2216
err = fib_table_notify(tb, nb, extack);
2217
if (err)
2218
return err;
2219
}
2220
}
2221
return 0;
2222
}
2223
2224
static void __trie_free_rcu(struct rcu_head *head)
2225
{
2226
struct fib_table *tb = container_of(head, struct fib_table, rcu);
2227
#ifdef CONFIG_IP_FIB_TRIE_STATS
2228
struct trie *t = (struct trie *)tb->tb_data;
2229
2230
if (tb->tb_data == tb->__data)
2231
free_percpu(t->stats);
2232
#endif /* CONFIG_IP_FIB_TRIE_STATS */
2233
kfree(tb);
2234
}
2235
2236
void fib_free_table(struct fib_table *tb)
2237
{
2238
call_rcu(&tb->rcu, __trie_free_rcu);
2239
}
2240
2241
static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2242
struct sk_buff *skb, struct netlink_callback *cb,
2243
struct fib_dump_filter *filter)
2244
{
2245
unsigned int flags = NLM_F_MULTI;
2246
__be32 xkey = htonl(l->key);
2247
int i, s_i, i_fa, s_fa, err;
2248
struct fib_alias *fa;
2249
2250
if (filter->filter_set ||
2251
!filter->dump_exceptions || !filter->dump_routes)
2252
flags |= NLM_F_DUMP_FILTERED;
2253
2254
s_i = cb->args[4];
2255
s_fa = cb->args[5];
2256
i = 0;
2257
2258
/* rcu_read_lock is hold by caller */
2259
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2260
struct fib_info *fi = fa->fa_info;
2261
2262
if (i < s_i)
2263
goto next;
2264
2265
i_fa = 0;
2266
2267
if (tb->tb_id != fa->tb_id)
2268
goto next;
2269
2270
if (filter->filter_set) {
2271
if (filter->rt_type && fa->fa_type != filter->rt_type)
2272
goto next;
2273
2274
if ((filter->protocol &&
2275
fi->fib_protocol != filter->protocol))
2276
goto next;
2277
2278
if (filter->dev &&
2279
!fib_info_nh_uses_dev(fi, filter->dev))
2280
goto next;
2281
}
2282
2283
if (filter->dump_routes) {
2284
if (!s_fa) {
2285
struct fib_rt_info fri;
2286
2287
fri.fi = fi;
2288
fri.tb_id = tb->tb_id;
2289
fri.dst = xkey;
2290
fri.dst_len = KEYLENGTH - fa->fa_slen;
2291
fri.dscp = fa->fa_dscp;
2292
fri.type = fa->fa_type;
2293
fri.offload = READ_ONCE(fa->offload);
2294
fri.trap = READ_ONCE(fa->trap);
2295
fri.offload_failed = READ_ONCE(fa->offload_failed);
2296
err = fib_dump_info(skb,
2297
NETLINK_CB(cb->skb).portid,
2298
cb->nlh->nlmsg_seq,
2299
RTM_NEWROUTE, &fri, flags);
2300
if (err < 0)
2301
goto stop;
2302
}
2303
2304
i_fa++;
2305
}
2306
2307
if (filter->dump_exceptions) {
2308
err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2309
&i_fa, s_fa, flags);
2310
if (err < 0)
2311
goto stop;
2312
}
2313
2314
next:
2315
i++;
2316
}
2317
2318
cb->args[4] = i;
2319
return skb->len;
2320
2321
stop:
2322
cb->args[4] = i;
2323
cb->args[5] = i_fa;
2324
return err;
2325
}
2326
2327
/* rcu_read_lock needs to be hold by caller from readside */
2328
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2329
struct netlink_callback *cb, struct fib_dump_filter *filter)
2330
{
2331
struct trie *t = (struct trie *)tb->tb_data;
2332
struct key_vector *l, *tp = t->kv;
2333
/* Dump starting at last key.
2334
* Note: 0.0.0.0/0 (ie default) is first key.
2335
*/
2336
int count = cb->args[2];
2337
t_key key = cb->args[3];
2338
2339
/* First time here, count and key are both always 0. Count > 0
2340
* and key == 0 means the dump has wrapped around and we are done.
2341
*/
2342
if (count && !key)
2343
return 0;
2344
2345
while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2346
int err;
2347
2348
err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2349
if (err < 0) {
2350
cb->args[3] = key;
2351
cb->args[2] = count;
2352
return err;
2353
}
2354
2355
++count;
2356
key = l->key + 1;
2357
2358
memset(&cb->args[4], 0,
2359
sizeof(cb->args) - 4*sizeof(cb->args[0]));
2360
2361
/* stop loop if key wrapped back to 0 */
2362
if (key < l->key)
2363
break;
2364
}
2365
2366
cb->args[3] = key;
2367
cb->args[2] = count;
2368
2369
return 0;
2370
}
2371
2372
void __init fib_trie_init(void)
2373
{
2374
fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2375
sizeof(struct fib_alias),
2376
0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2377
2378
trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2379
LEAF_SIZE,
2380
0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2381
}
2382
2383
struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2384
{
2385
struct fib_table *tb;
2386
struct trie *t;
2387
size_t sz = sizeof(*tb);
2388
2389
if (!alias)
2390
sz += sizeof(struct trie);
2391
2392
tb = kzalloc(sz, GFP_KERNEL);
2393
if (!tb)
2394
return NULL;
2395
2396
tb->tb_id = id;
2397
tb->tb_num_default = 0;
2398
tb->tb_data = (alias ? alias->__data : tb->__data);
2399
2400
if (alias)
2401
return tb;
2402
2403
t = (struct trie *) tb->tb_data;
2404
t->kv[0].pos = KEYLENGTH;
2405
t->kv[0].slen = KEYLENGTH;
2406
#ifdef CONFIG_IP_FIB_TRIE_STATS
2407
t->stats = alloc_percpu(struct trie_use_stats);
2408
if (!t->stats) {
2409
kfree(tb);
2410
tb = NULL;
2411
}
2412
#endif
2413
2414
return tb;
2415
}
2416
2417
#ifdef CONFIG_PROC_FS
2418
/* Depth first Trie walk iterator */
2419
struct fib_trie_iter {
2420
struct seq_net_private p;
2421
struct fib_table *tb;
2422
struct key_vector *tnode;
2423
unsigned int index;
2424
unsigned int depth;
2425
};
2426
2427
static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2428
{
2429
unsigned long cindex = iter->index;
2430
struct key_vector *pn = iter->tnode;
2431
t_key pkey;
2432
2433
pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2434
iter->tnode, iter->index, iter->depth);
2435
2436
while (!IS_TRIE(pn)) {
2437
while (cindex < child_length(pn)) {
2438
struct key_vector *n = get_child_rcu(pn, cindex++);
2439
2440
if (!n)
2441
continue;
2442
2443
if (IS_LEAF(n)) {
2444
iter->tnode = pn;
2445
iter->index = cindex;
2446
} else {
2447
/* push down one level */
2448
iter->tnode = n;
2449
iter->index = 0;
2450
++iter->depth;
2451
}
2452
2453
return n;
2454
}
2455
2456
/* Current node exhausted, pop back up */
2457
pkey = pn->key;
2458
pn = node_parent_rcu(pn);
2459
cindex = get_index(pkey, pn) + 1;
2460
--iter->depth;
2461
}
2462
2463
/* record root node so further searches know we are done */
2464
iter->tnode = pn;
2465
iter->index = 0;
2466
2467
return NULL;
2468
}
2469
2470
static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2471
struct trie *t)
2472
{
2473
struct key_vector *n, *pn;
2474
2475
if (!t)
2476
return NULL;
2477
2478
pn = t->kv;
2479
n = rcu_dereference(pn->tnode[0]);
2480
if (!n)
2481
return NULL;
2482
2483
if (IS_TNODE(n)) {
2484
iter->tnode = n;
2485
iter->index = 0;
2486
iter->depth = 1;
2487
} else {
2488
iter->tnode = pn;
2489
iter->index = 0;
2490
iter->depth = 0;
2491
}
2492
2493
return n;
2494
}
2495
2496
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2497
{
2498
struct key_vector *n;
2499
struct fib_trie_iter iter;
2500
2501
memset(s, 0, sizeof(*s));
2502
2503
rcu_read_lock();
2504
for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2505
if (IS_LEAF(n)) {
2506
struct fib_alias *fa;
2507
2508
s->leaves++;
2509
s->totdepth += iter.depth;
2510
if (iter.depth > s->maxdepth)
2511
s->maxdepth = iter.depth;
2512
2513
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2514
++s->prefixes;
2515
} else {
2516
s->tnodes++;
2517
if (n->bits < MAX_STAT_DEPTH)
2518
s->nodesizes[n->bits]++;
2519
s->nullpointers += tn_info(n)->empty_children;
2520
}
2521
}
2522
rcu_read_unlock();
2523
}
2524
2525
/*
2526
* This outputs /proc/net/fib_triestats
2527
*/
2528
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2529
{
2530
unsigned int i, max, pointers, bytes, avdepth;
2531
2532
if (stat->leaves)
2533
avdepth = stat->totdepth*100 / stat->leaves;
2534
else
2535
avdepth = 0;
2536
2537
seq_printf(seq, "\tAver depth: %u.%02d\n",
2538
avdepth / 100, avdepth % 100);
2539
seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2540
2541
seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2542
bytes = LEAF_SIZE * stat->leaves;
2543
2544
seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2545
bytes += sizeof(struct fib_alias) * stat->prefixes;
2546
2547
seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2548
bytes += TNODE_SIZE(0) * stat->tnodes;
2549
2550
max = MAX_STAT_DEPTH;
2551
while (max > 0 && stat->nodesizes[max-1] == 0)
2552
max--;
2553
2554
pointers = 0;
2555
for (i = 1; i < max; i++)
2556
if (stat->nodesizes[i] != 0) {
2557
seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2558
pointers += (1<<i) * stat->nodesizes[i];
2559
}
2560
seq_putc(seq, '\n');
2561
seq_printf(seq, "\tPointers: %u\n", pointers);
2562
2563
bytes += sizeof(struct key_vector *) * pointers;
2564
seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2565
seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2566
}
2567
2568
#ifdef CONFIG_IP_FIB_TRIE_STATS
2569
static void trie_show_usage(struct seq_file *seq,
2570
const struct trie_use_stats __percpu *stats)
2571
{
2572
struct trie_use_stats s = { 0 };
2573
int cpu;
2574
2575
/* loop through all of the CPUs and gather up the stats */
2576
for_each_possible_cpu(cpu) {
2577
const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2578
2579
s.gets += pcpu->gets;
2580
s.backtrack += pcpu->backtrack;
2581
s.semantic_match_passed += pcpu->semantic_match_passed;
2582
s.semantic_match_miss += pcpu->semantic_match_miss;
2583
s.null_node_hit += pcpu->null_node_hit;
2584
s.resize_node_skipped += pcpu->resize_node_skipped;
2585
}
2586
2587
seq_printf(seq, "\nCounters:\n---------\n");
2588
seq_printf(seq, "gets = %u\n", s.gets);
2589
seq_printf(seq, "backtracks = %u\n", s.backtrack);
2590
seq_printf(seq, "semantic match passed = %u\n",
2591
s.semantic_match_passed);
2592
seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2593
seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2594
seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2595
}
2596
#endif /* CONFIG_IP_FIB_TRIE_STATS */
2597
2598
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2599
{
2600
if (tb->tb_id == RT_TABLE_LOCAL)
2601
seq_puts(seq, "Local:\n");
2602
else if (tb->tb_id == RT_TABLE_MAIN)
2603
seq_puts(seq, "Main:\n");
2604
else
2605
seq_printf(seq, "Id %d:\n", tb->tb_id);
2606
}
2607
2608
2609
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2610
{
2611
struct net *net = seq->private;
2612
unsigned int h;
2613
2614
seq_printf(seq,
2615
"Basic info: size of leaf:"
2616
" %zd bytes, size of tnode: %zd bytes.\n",
2617
LEAF_SIZE, TNODE_SIZE(0));
2618
2619
rcu_read_lock();
2620
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2621
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2622
struct fib_table *tb;
2623
2624
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2625
struct trie *t = (struct trie *) tb->tb_data;
2626
struct trie_stat stat;
2627
2628
if (!t)
2629
continue;
2630
2631
fib_table_print(seq, tb);
2632
2633
trie_collect_stats(t, &stat);
2634
trie_show_stats(seq, &stat);
2635
#ifdef CONFIG_IP_FIB_TRIE_STATS
2636
trie_show_usage(seq, t->stats);
2637
#endif
2638
}
2639
cond_resched_rcu();
2640
}
2641
rcu_read_unlock();
2642
2643
return 0;
2644
}
2645
2646
static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2647
{
2648
struct fib_trie_iter *iter = seq->private;
2649
struct net *net = seq_file_net(seq);
2650
loff_t idx = 0;
2651
unsigned int h;
2652
2653
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2654
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2655
struct fib_table *tb;
2656
2657
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2658
struct key_vector *n;
2659
2660
for (n = fib_trie_get_first(iter,
2661
(struct trie *) tb->tb_data);
2662
n; n = fib_trie_get_next(iter))
2663
if (pos == idx++) {
2664
iter->tb = tb;
2665
return n;
2666
}
2667
}
2668
}
2669
2670
return NULL;
2671
}
2672
2673
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2674
__acquires(RCU)
2675
{
2676
rcu_read_lock();
2677
return fib_trie_get_idx(seq, *pos);
2678
}
2679
2680
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2681
{
2682
struct fib_trie_iter *iter = seq->private;
2683
struct net *net = seq_file_net(seq);
2684
struct fib_table *tb = iter->tb;
2685
struct hlist_node *tb_node;
2686
unsigned int h;
2687
struct key_vector *n;
2688
2689
++*pos;
2690
/* next node in same table */
2691
n = fib_trie_get_next(iter);
2692
if (n)
2693
return n;
2694
2695
/* walk rest of this hash chain */
2696
h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2697
while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2698
tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2699
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2700
if (n)
2701
goto found;
2702
}
2703
2704
/* new hash chain */
2705
while (++h < FIB_TABLE_HASHSZ) {
2706
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2707
hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2708
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2709
if (n)
2710
goto found;
2711
}
2712
}
2713
return NULL;
2714
2715
found:
2716
iter->tb = tb;
2717
return n;
2718
}
2719
2720
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2721
__releases(RCU)
2722
{
2723
rcu_read_unlock();
2724
}
2725
2726
static void seq_indent(struct seq_file *seq, int n)
2727
{
2728
while (n-- > 0)
2729
seq_puts(seq, " ");
2730
}
2731
2732
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2733
{
2734
switch (s) {
2735
case RT_SCOPE_UNIVERSE: return "universe";
2736
case RT_SCOPE_SITE: return "site";
2737
case RT_SCOPE_LINK: return "link";
2738
case RT_SCOPE_HOST: return "host";
2739
case RT_SCOPE_NOWHERE: return "nowhere";
2740
default:
2741
snprintf(buf, len, "scope=%d", s);
2742
return buf;
2743
}
2744
}
2745
2746
static const char *const rtn_type_names[__RTN_MAX] = {
2747
[RTN_UNSPEC] = "UNSPEC",
2748
[RTN_UNICAST] = "UNICAST",
2749
[RTN_LOCAL] = "LOCAL",
2750
[RTN_BROADCAST] = "BROADCAST",
2751
[RTN_ANYCAST] = "ANYCAST",
2752
[RTN_MULTICAST] = "MULTICAST",
2753
[RTN_BLACKHOLE] = "BLACKHOLE",
2754
[RTN_UNREACHABLE] = "UNREACHABLE",
2755
[RTN_PROHIBIT] = "PROHIBIT",
2756
[RTN_THROW] = "THROW",
2757
[RTN_NAT] = "NAT",
2758
[RTN_XRESOLVE] = "XRESOLVE",
2759
};
2760
2761
static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2762
{
2763
if (t < __RTN_MAX && rtn_type_names[t])
2764
return rtn_type_names[t];
2765
snprintf(buf, len, "type %u", t);
2766
return buf;
2767
}
2768
2769
/* Pretty print the trie */
2770
static int fib_trie_seq_show(struct seq_file *seq, void *v)
2771
{
2772
const struct fib_trie_iter *iter = seq->private;
2773
struct key_vector *n = v;
2774
2775
if (IS_TRIE(node_parent_rcu(n)))
2776
fib_table_print(seq, iter->tb);
2777
2778
if (IS_TNODE(n)) {
2779
__be32 prf = htonl(n->key);
2780
2781
seq_indent(seq, iter->depth-1);
2782
seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2783
&prf, KEYLENGTH - n->pos - n->bits, n->bits,
2784
tn_info(n)->full_children,
2785
tn_info(n)->empty_children);
2786
} else {
2787
__be32 val = htonl(n->key);
2788
struct fib_alias *fa;
2789
2790
seq_indent(seq, iter->depth);
2791
seq_printf(seq, " |-- %pI4\n", &val);
2792
2793
hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2794
char buf1[32], buf2[32];
2795
2796
seq_indent(seq, iter->depth + 1);
2797
seq_printf(seq, " /%zu %s %s",
2798
KEYLENGTH - fa->fa_slen,
2799
rtn_scope(buf1, sizeof(buf1),
2800
fa->fa_info->fib_scope),
2801
rtn_type(buf2, sizeof(buf2),
2802
fa->fa_type));
2803
if (fa->fa_dscp)
2804
seq_printf(seq, " tos=%d",
2805
inet_dscp_to_dsfield(fa->fa_dscp));
2806
seq_putc(seq, '\n');
2807
}
2808
}
2809
2810
return 0;
2811
}
2812
2813
static const struct seq_operations fib_trie_seq_ops = {
2814
.start = fib_trie_seq_start,
2815
.next = fib_trie_seq_next,
2816
.stop = fib_trie_seq_stop,
2817
.show = fib_trie_seq_show,
2818
};
2819
2820
struct fib_route_iter {
2821
struct seq_net_private p;
2822
struct fib_table *main_tb;
2823
struct key_vector *tnode;
2824
loff_t pos;
2825
t_key key;
2826
};
2827
2828
static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2829
loff_t pos)
2830
{
2831
struct key_vector *l, **tp = &iter->tnode;
2832
t_key key;
2833
2834
/* use cached location of previously found key */
2835
if (iter->pos > 0 && pos >= iter->pos) {
2836
key = iter->key;
2837
} else {
2838
iter->pos = 1;
2839
key = 0;
2840
}
2841
2842
pos -= iter->pos;
2843
2844
while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2845
key = l->key + 1;
2846
iter->pos++;
2847
l = NULL;
2848
2849
/* handle unlikely case of a key wrap */
2850
if (!key)
2851
break;
2852
}
2853
2854
if (l)
2855
iter->key = l->key; /* remember it */
2856
else
2857
iter->pos = 0; /* forget it */
2858
2859
return l;
2860
}
2861
2862
static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2863
__acquires(RCU)
2864
{
2865
struct fib_route_iter *iter = seq->private;
2866
struct fib_table *tb;
2867
struct trie *t;
2868
2869
rcu_read_lock();
2870
2871
tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2872
if (!tb)
2873
return NULL;
2874
2875
iter->main_tb = tb;
2876
t = (struct trie *)tb->tb_data;
2877
iter->tnode = t->kv;
2878
2879
if (*pos != 0)
2880
return fib_route_get_idx(iter, *pos);
2881
2882
iter->pos = 0;
2883
iter->key = KEY_MAX;
2884
2885
return SEQ_START_TOKEN;
2886
}
2887
2888
static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2889
{
2890
struct fib_route_iter *iter = seq->private;
2891
struct key_vector *l = NULL;
2892
t_key key = iter->key + 1;
2893
2894
++*pos;
2895
2896
/* only allow key of 0 for start of sequence */
2897
if ((v == SEQ_START_TOKEN) || key)
2898
l = leaf_walk_rcu(&iter->tnode, key);
2899
2900
if (l) {
2901
iter->key = l->key;
2902
iter->pos++;
2903
} else {
2904
iter->pos = 0;
2905
}
2906
2907
return l;
2908
}
2909
2910
static void fib_route_seq_stop(struct seq_file *seq, void *v)
2911
__releases(RCU)
2912
{
2913
rcu_read_unlock();
2914
}
2915
2916
static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2917
{
2918
unsigned int flags = 0;
2919
2920
if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2921
flags = RTF_REJECT;
2922
if (fi) {
2923
const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2924
2925
if (nhc->nhc_gw.ipv4)
2926
flags |= RTF_GATEWAY;
2927
}
2928
if (mask == htonl(0xFFFFFFFF))
2929
flags |= RTF_HOST;
2930
flags |= RTF_UP;
2931
return flags;
2932
}
2933
2934
/*
2935
* This outputs /proc/net/route.
2936
* The format of the file is not supposed to be changed
2937
* and needs to be same as fib_hash output to avoid breaking
2938
* legacy utilities
2939
*/
2940
static int fib_route_seq_show(struct seq_file *seq, void *v)
2941
{
2942
struct fib_route_iter *iter = seq->private;
2943
struct fib_table *tb = iter->main_tb;
2944
struct fib_alias *fa;
2945
struct key_vector *l = v;
2946
__be32 prefix;
2947
2948
if (v == SEQ_START_TOKEN) {
2949
seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2950
"\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2951
"\tWindow\tIRTT");
2952
return 0;
2953
}
2954
2955
prefix = htonl(l->key);
2956
2957
hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2958
struct fib_info *fi = fa->fa_info;
2959
__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2960
unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2961
2962
if ((fa->fa_type == RTN_BROADCAST) ||
2963
(fa->fa_type == RTN_MULTICAST))
2964
continue;
2965
2966
if (fa->tb_id != tb->tb_id)
2967
continue;
2968
2969
seq_setwidth(seq, 127);
2970
2971
if (fi) {
2972
struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2973
__be32 gw = 0;
2974
2975
if (nhc->nhc_gw_family == AF_INET)
2976
gw = nhc->nhc_gw.ipv4;
2977
2978
seq_printf(seq,
2979
"%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2980
"%u\t%08X\t%d\t%u\t%u",
2981
nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2982
prefix, gw, flags, 0, 0,
2983
fi->fib_priority,
2984
mask,
2985
(fi->fib_advmss ?
2986
fi->fib_advmss + 40 : 0),
2987
fi->fib_window,
2988
fi->fib_rtt >> 3);
2989
} else {
2990
seq_printf(seq,
2991
"*\t%08X\t%08X\t%04X\t%d\t%u\t"
2992
"%u\t%08X\t%d\t%u\t%u",
2993
prefix, 0, flags, 0, 0, 0,
2994
mask, 0, 0, 0);
2995
}
2996
seq_pad(seq, '\n');
2997
}
2998
2999
return 0;
3000
}
3001
3002
static const struct seq_operations fib_route_seq_ops = {
3003
.start = fib_route_seq_start,
3004
.next = fib_route_seq_next,
3005
.stop = fib_route_seq_stop,
3006
.show = fib_route_seq_show,
3007
};
3008
3009
int __net_init fib_proc_init(struct net *net)
3010
{
3011
if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3012
sizeof(struct fib_trie_iter)))
3013
goto out1;
3014
3015
if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3016
fib_triestat_seq_show, NULL))
3017
goto out2;
3018
3019
if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3020
sizeof(struct fib_route_iter)))
3021
goto out3;
3022
3023
return 0;
3024
3025
out3:
3026
remove_proc_entry("fib_triestat", net->proc_net);
3027
out2:
3028
remove_proc_entry("fib_trie", net->proc_net);
3029
out1:
3030
return -ENOMEM;
3031
}
3032
3033
void __net_exit fib_proc_exit(struct net *net)
3034
{
3035
remove_proc_entry("fib_trie", net->proc_net);
3036
remove_proc_entry("fib_triestat", net->proc_net);
3037
remove_proc_entry("route", net->proc_net);
3038
}
3039
3040
#endif /* CONFIG_PROC_FS */
3041
3042