Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/inet_connection_sock.c
49639 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* Support for INET connection oriented protocols.
8
*
9
* Authors: See the TCP sources
10
*/
11
12
#include <linux/module.h>
13
#include <linux/jhash.h>
14
15
#include <net/inet_connection_sock.h>
16
#include <net/inet_hashtables.h>
17
#include <net/inet_timewait_sock.h>
18
#include <net/ip.h>
19
#include <net/route.h>
20
#include <net/tcp_states.h>
21
#include <net/xfrm.h>
22
#include <net/tcp.h>
23
#include <net/sock_reuseport.h>
24
#include <net/addrconf.h>
25
26
#if IS_ENABLED(CONFIG_IPV6)
27
/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28
* if IPv6 only, and any IPv4 addresses
29
* if not IPv6 only
30
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31
* IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32
* and 0.0.0.0 equals to 0.0.0.0 only
33
*/
34
static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35
const struct in6_addr *sk2_rcv_saddr6,
36
__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37
bool sk1_ipv6only, bool sk2_ipv6only,
38
bool match_sk1_wildcard,
39
bool match_sk2_wildcard)
40
{
41
int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44
/* if both are mapped, treat as IPv4 */
45
if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46
if (!sk2_ipv6only) {
47
if (sk1_rcv_saddr == sk2_rcv_saddr)
48
return true;
49
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50
(match_sk2_wildcard && !sk2_rcv_saddr);
51
}
52
return false;
53
}
54
55
if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56
return true;
57
58
if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60
return true;
61
62
if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63
!(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64
return true;
65
66
if (sk2_rcv_saddr6 &&
67
ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68
return true;
69
70
return false;
71
}
72
#endif
73
74
/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76
* 0.0.0.0 only equals to 0.0.0.0
77
*/
78
static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79
bool sk2_ipv6only, bool match_sk1_wildcard,
80
bool match_sk2_wildcard)
81
{
82
if (!sk2_ipv6only) {
83
if (sk1_rcv_saddr == sk2_rcv_saddr)
84
return true;
85
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86
(match_sk2_wildcard && !sk2_rcv_saddr);
87
}
88
return false;
89
}
90
91
bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92
bool match_wildcard)
93
{
94
#if IS_ENABLED(CONFIG_IPV6)
95
if (sk->sk_family == AF_INET6)
96
return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97
inet6_rcv_saddr(sk2),
98
sk->sk_rcv_saddr,
99
sk2->sk_rcv_saddr,
100
ipv6_only_sock(sk),
101
ipv6_only_sock(sk2),
102
match_wildcard,
103
match_wildcard);
104
#endif
105
return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106
ipv6_only_sock(sk2), match_wildcard,
107
match_wildcard);
108
}
109
EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111
bool inet_rcv_saddr_any(const struct sock *sk)
112
{
113
#if IS_ENABLED(CONFIG_IPV6)
114
if (sk->sk_family == AF_INET6)
115
return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116
#endif
117
return !sk->sk_rcv_saddr;
118
}
119
120
/**
121
* inet_sk_get_local_port_range - fetch ephemeral ports range
122
* @sk: socket
123
* @low: pointer to low port
124
* @high: pointer to high port
125
*
126
* Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127
* Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128
* Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129
*/
130
bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131
{
132
int lo, hi, sk_lo, sk_hi;
133
bool local_range = false;
134
u32 sk_range;
135
136
inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138
sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139
if (unlikely(sk_range)) {
140
sk_lo = sk_range & 0xffff;
141
sk_hi = sk_range >> 16;
142
143
if (lo <= sk_lo && sk_lo <= hi)
144
lo = sk_lo;
145
if (lo <= sk_hi && sk_hi <= hi)
146
hi = sk_hi;
147
local_range = true;
148
}
149
150
*low = lo;
151
*high = hi;
152
return local_range;
153
}
154
EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156
static bool inet_use_bhash2_on_bind(const struct sock *sk)
157
{
158
#if IS_ENABLED(CONFIG_IPV6)
159
if (sk->sk_family == AF_INET6) {
160
if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161
return false;
162
163
if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164
return true;
165
}
166
#endif
167
return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168
}
169
170
static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171
kuid_t uid, bool relax,
172
bool reuseport_cb_ok, bool reuseport_ok)
173
{
174
int bound_dev_if2;
175
176
if (sk == sk2)
177
return false;
178
179
bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181
if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182
sk->sk_bound_dev_if == bound_dev_if2) {
183
if (sk->sk_reuse && sk2->sk_reuse &&
184
sk2->sk_state != TCP_LISTEN) {
185
if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186
sk2->sk_reuseport && reuseport_cb_ok &&
187
(sk2->sk_state == TCP_TIME_WAIT ||
188
uid_eq(uid, sk_uid(sk2)))))
189
return true;
190
} else if (!reuseport_ok || !sk->sk_reuseport ||
191
!sk2->sk_reuseport || !reuseport_cb_ok ||
192
(sk2->sk_state != TCP_TIME_WAIT &&
193
!uid_eq(uid, sk_uid(sk2)))) {
194
return true;
195
}
196
}
197
return false;
198
}
199
200
static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201
kuid_t uid, bool relax,
202
bool reuseport_cb_ok, bool reuseport_ok)
203
{
204
if (ipv6_only_sock(sk2)) {
205
if (sk->sk_family == AF_INET)
206
return false;
207
208
#if IS_ENABLED(CONFIG_IPV6)
209
if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210
return false;
211
#endif
212
}
213
214
return inet_bind_conflict(sk, sk2, uid, relax,
215
reuseport_cb_ok, reuseport_ok);
216
}
217
218
static bool inet_bhash2_conflict(const struct sock *sk,
219
const struct inet_bind2_bucket *tb2,
220
kuid_t uid,
221
bool relax, bool reuseport_cb_ok,
222
bool reuseport_ok)
223
{
224
struct sock *sk2;
225
226
sk_for_each_bound(sk2, &tb2->owners) {
227
if (__inet_bhash2_conflict(sk, sk2, uid, relax,
228
reuseport_cb_ok, reuseport_ok))
229
return true;
230
}
231
232
return false;
233
}
234
235
#define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236
hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237
sk_for_each_bound((__sk), &(__tb2)->owners)
238
239
/* This should be called only when the tb and tb2 hashbuckets' locks are held */
240
static int inet_csk_bind_conflict(const struct sock *sk,
241
const struct inet_bind_bucket *tb,
242
const struct inet_bind2_bucket *tb2, /* may be null */
243
bool relax, bool reuseport_ok)
244
{
245
struct sock_reuseport *reuseport_cb;
246
kuid_t uid = sk_uid(sk);
247
bool reuseport_cb_ok;
248
struct sock *sk2;
249
250
rcu_read_lock();
251
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254
rcu_read_unlock();
255
256
/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257
* ipv4) should have been checked already. We need to do these two
258
* checks separately because their spinlocks have to be acquired/released
259
* independently of each other, to prevent possible deadlocks
260
*/
261
if (inet_use_bhash2_on_bind(sk))
262
return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263
reuseport_cb_ok, reuseport_ok);
264
265
/* Unlike other sk lookup places we do not check
266
* for sk_net here, since _all_ the socks listed
267
* in tb->owners and tb2->owners list belong
268
* to the same net - the one this bucket belongs to.
269
*/
270
sk_for_each_bound_bhash(sk2, tb2, tb) {
271
if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272
continue;
273
274
if (inet_rcv_saddr_equal(sk, sk2, true))
275
return true;
276
}
277
278
return false;
279
}
280
281
/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282
* INADDR_ANY (if ipv4) socket.
283
*
284
* Caller must hold bhash hashbucket lock with local bh disabled, to protect
285
* against concurrent binds on the port for addr any
286
*/
287
static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288
bool relax, bool reuseport_ok)
289
{
290
const struct net *net = sock_net(sk);
291
struct sock_reuseport *reuseport_cb;
292
struct inet_bind_hashbucket *head2;
293
struct inet_bind2_bucket *tb2;
294
kuid_t uid = sk_uid(sk);
295
bool conflict = false;
296
bool reuseport_cb_ok;
297
298
rcu_read_lock();
299
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302
rcu_read_unlock();
303
304
head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306
spin_lock(&head2->lock);
307
308
inet_bind_bucket_for_each(tb2, &head2->chain) {
309
if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310
continue;
311
312
if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313
continue;
314
315
conflict = true;
316
break;
317
}
318
319
spin_unlock(&head2->lock);
320
321
return conflict;
322
}
323
324
/*
325
* Find an open port number for the socket. Returns with the
326
* inet_bind_hashbucket locks held if successful.
327
*/
328
static struct inet_bind_hashbucket *
329
inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330
struct inet_bind2_bucket **tb2_ret,
331
struct inet_bind_hashbucket **head2_ret, int *port_ret)
332
{
333
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334
int i, low, high, attempt_half, port, l3mdev;
335
struct inet_bind_hashbucket *head, *head2;
336
struct net *net = sock_net(sk);
337
struct inet_bind2_bucket *tb2;
338
struct inet_bind_bucket *tb;
339
u32 remaining, offset;
340
bool relax = false;
341
342
l3mdev = inet_sk_bound_l3mdev(sk);
343
ports_exhausted:
344
attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345
other_half_scan:
346
inet_sk_get_local_port_range(sk, &low, &high);
347
high++; /* [32768, 60999] -> [32768, 61000[ */
348
if (high - low < 4)
349
attempt_half = 0;
350
if (attempt_half) {
351
int half = low + (((high - low) >> 2) << 1);
352
353
if (attempt_half == 1)
354
high = half;
355
else
356
low = half;
357
}
358
remaining = high - low;
359
if (likely(remaining > 1))
360
remaining &= ~1U;
361
362
offset = get_random_u32_below(remaining);
363
/* __inet_hash_connect() favors ports having @low parity
364
* We do the opposite to not pollute connect() users.
365
*/
366
offset |= 1U;
367
368
other_parity_scan:
369
port = low + offset;
370
for (i = 0; i < remaining; i += 2, port += 2) {
371
if (unlikely(port >= high))
372
port -= remaining;
373
if (inet_is_local_reserved_port(net, port))
374
continue;
375
head = &hinfo->bhash[inet_bhashfn(net, port,
376
hinfo->bhash_size)];
377
spin_lock_bh(&head->lock);
378
if (inet_use_bhash2_on_bind(sk)) {
379
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380
goto next_port;
381
}
382
383
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384
spin_lock(&head2->lock);
385
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386
inet_bind_bucket_for_each(tb, &head->chain)
387
if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388
if (!inet_csk_bind_conflict(sk, tb, tb2,
389
relax, false))
390
goto success;
391
spin_unlock(&head2->lock);
392
goto next_port;
393
}
394
tb = NULL;
395
goto success;
396
next_port:
397
spin_unlock_bh(&head->lock);
398
cond_resched();
399
}
400
401
offset--;
402
if (!(offset & 1))
403
goto other_parity_scan;
404
405
if (attempt_half == 1) {
406
/* OK we now try the upper half of the range */
407
attempt_half = 2;
408
goto other_half_scan;
409
}
410
411
if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412
/* We still have a chance to connect to different destinations */
413
relax = true;
414
goto ports_exhausted;
415
}
416
return NULL;
417
success:
418
*port_ret = port;
419
*tb_ret = tb;
420
*tb2_ret = tb2;
421
*head2_ret = head2;
422
return head;
423
}
424
425
static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426
const struct sock *sk)
427
{
428
if (tb->fastreuseport <= 0)
429
return 0;
430
if (!sk->sk_reuseport)
431
return 0;
432
if (rcu_access_pointer(sk->sk_reuseport_cb))
433
return 0;
434
if (!uid_eq(tb->fastuid, sk_uid(sk)))
435
return 0;
436
/* We only need to check the rcv_saddr if this tb was once marked
437
* without fastreuseport and then was reset, as we can only know that
438
* the fast_*rcv_saddr doesn't have any conflicts with the socks on the
439
* owners list.
440
*/
441
if (tb->fastreuseport == FASTREUSEPORT_ANY)
442
return 1;
443
#if IS_ENABLED(CONFIG_IPV6)
444
if (tb->fast_sk_family == AF_INET6)
445
return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
446
inet6_rcv_saddr(sk),
447
tb->fast_rcv_saddr,
448
sk->sk_rcv_saddr,
449
tb->fast_ipv6_only,
450
ipv6_only_sock(sk), true, false);
451
#endif
452
return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
453
ipv6_only_sock(sk), true, false);
454
}
455
456
void inet_csk_update_fastreuse(const struct sock *sk,
457
struct inet_bind_bucket *tb,
458
struct inet_bind2_bucket *tb2)
459
{
460
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
461
462
if (hlist_empty(&tb->bhash2)) {
463
tb->fastreuse = reuse;
464
if (sk->sk_reuseport) {
465
tb->fastreuseport = FASTREUSEPORT_ANY;
466
tb->fastuid = sk_uid(sk);
467
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
468
tb->fast_ipv6_only = ipv6_only_sock(sk);
469
tb->fast_sk_family = sk->sk_family;
470
#if IS_ENABLED(CONFIG_IPV6)
471
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
472
#endif
473
} else {
474
tb->fastreuseport = 0;
475
}
476
} else {
477
if (!reuse)
478
tb->fastreuse = 0;
479
if (sk->sk_reuseport) {
480
/* We didn't match or we don't have fastreuseport set on
481
* the tb, but we have sk_reuseport set on this socket
482
* and we know that there are no bind conflicts with
483
* this socket in this tb, so reset our tb's reuseport
484
* settings so that any subsequent sockets that match
485
* our current socket will be put on the fast path.
486
*
487
* If we reset we need to set FASTREUSEPORT_STRICT so we
488
* do extra checking for all subsequent sk_reuseport
489
* socks.
490
*/
491
if (!sk_reuseport_match(tb, sk)) {
492
tb->fastreuseport = FASTREUSEPORT_STRICT;
493
tb->fastuid = sk_uid(sk);
494
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
495
tb->fast_ipv6_only = ipv6_only_sock(sk);
496
tb->fast_sk_family = sk->sk_family;
497
#if IS_ENABLED(CONFIG_IPV6)
498
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
499
#endif
500
}
501
} else {
502
tb->fastreuseport = 0;
503
}
504
}
505
506
tb2->fastreuse = tb->fastreuse;
507
tb2->fastreuseport = tb->fastreuseport;
508
}
509
510
/* Obtain a reference to a local port for the given sock,
511
* if snum is zero it means select any available local port.
512
* We try to allocate an odd port (and leave even ports for connect())
513
*/
514
int inet_csk_get_port(struct sock *sk, unsigned short snum)
515
{
516
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
517
bool found_port = false, check_bind_conflict = true;
518
bool bhash_created = false, bhash2_created = false;
519
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
520
int ret = -EADDRINUSE, port = snum, l3mdev;
521
struct inet_bind_hashbucket *head, *head2;
522
struct inet_bind2_bucket *tb2 = NULL;
523
struct inet_bind_bucket *tb = NULL;
524
bool head2_lock_acquired = false;
525
struct net *net = sock_net(sk);
526
527
l3mdev = inet_sk_bound_l3mdev(sk);
528
529
if (!port) {
530
head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
531
if (!head)
532
return ret;
533
534
head2_lock_acquired = true;
535
536
if (tb && tb2)
537
goto success;
538
found_port = true;
539
} else {
540
head = &hinfo->bhash[inet_bhashfn(net, port,
541
hinfo->bhash_size)];
542
spin_lock_bh(&head->lock);
543
inet_bind_bucket_for_each(tb, &head->chain)
544
if (inet_bind_bucket_match(tb, net, port, l3mdev))
545
break;
546
}
547
548
if (!tb) {
549
tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
550
head, port, l3mdev);
551
if (!tb)
552
goto fail_unlock;
553
bhash_created = true;
554
}
555
556
if (!found_port) {
557
if (!hlist_empty(&tb->bhash2)) {
558
if (sk->sk_reuse == SK_FORCE_REUSE ||
559
(tb->fastreuse > 0 && reuse) ||
560
sk_reuseport_match(tb, sk))
561
check_bind_conflict = false;
562
}
563
564
if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
565
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
566
goto fail_unlock;
567
}
568
569
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
570
spin_lock(&head2->lock);
571
head2_lock_acquired = true;
572
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
573
}
574
575
if (!tb2) {
576
tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
577
net, head2, tb, sk);
578
if (!tb2)
579
goto fail_unlock;
580
bhash2_created = true;
581
}
582
583
if (!found_port && check_bind_conflict) {
584
if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
585
goto fail_unlock;
586
}
587
588
success:
589
inet_csk_update_fastreuse(sk, tb, tb2);
590
591
if (!inet_csk(sk)->icsk_bind_hash)
592
inet_bind_hash(sk, tb, tb2, port);
593
WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
594
WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
595
ret = 0;
596
597
fail_unlock:
598
if (ret) {
599
if (bhash2_created)
600
inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
601
if (bhash_created)
602
inet_bind_bucket_destroy(tb);
603
}
604
if (head2_lock_acquired)
605
spin_unlock(&head2->lock);
606
spin_unlock_bh(&head->lock);
607
return ret;
608
}
609
EXPORT_SYMBOL_GPL(inet_csk_get_port);
610
611
/*
612
* Wait for an incoming connection, avoid race conditions. This must be called
613
* with the socket locked.
614
*/
615
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
616
{
617
struct inet_connection_sock *icsk = inet_csk(sk);
618
DEFINE_WAIT(wait);
619
int err;
620
621
/*
622
* True wake-one mechanism for incoming connections: only
623
* one process gets woken up, not the 'whole herd'.
624
* Since we do not 'race & poll' for established sockets
625
* anymore, the common case will execute the loop only once.
626
*
627
* Subtle issue: "add_wait_queue_exclusive()" will be added
628
* after any current non-exclusive waiters, and we know that
629
* it will always _stay_ after any new non-exclusive waiters
630
* because all non-exclusive waiters are added at the
631
* beginning of the wait-queue. As such, it's ok to "drop"
632
* our exclusiveness temporarily when we get woken up without
633
* having to remove and re-insert us on the wait queue.
634
*/
635
for (;;) {
636
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
637
TASK_INTERRUPTIBLE);
638
release_sock(sk);
639
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
640
timeo = schedule_timeout(timeo);
641
sched_annotate_sleep();
642
lock_sock(sk);
643
err = 0;
644
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
645
break;
646
err = -EINVAL;
647
if (sk->sk_state != TCP_LISTEN)
648
break;
649
err = sock_intr_errno(timeo);
650
if (signal_pending(current))
651
break;
652
err = -EAGAIN;
653
if (!timeo)
654
break;
655
}
656
finish_wait(sk_sleep(sk), &wait);
657
return err;
658
}
659
660
/*
661
* This will accept the next outstanding connection.
662
*/
663
struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
664
{
665
struct inet_connection_sock *icsk = inet_csk(sk);
666
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
667
struct request_sock *req;
668
struct sock *newsk;
669
int error;
670
671
lock_sock(sk);
672
673
/* We need to make sure that this socket is listening,
674
* and that it has something pending.
675
*/
676
error = -EINVAL;
677
if (sk->sk_state != TCP_LISTEN)
678
goto out_err;
679
680
/* Find already established connection */
681
if (reqsk_queue_empty(queue)) {
682
long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
683
684
/* If this is a non blocking socket don't sleep */
685
error = -EAGAIN;
686
if (!timeo)
687
goto out_err;
688
689
error = inet_csk_wait_for_connect(sk, timeo);
690
if (error)
691
goto out_err;
692
}
693
req = reqsk_queue_remove(queue, sk);
694
arg->is_empty = reqsk_queue_empty(queue);
695
newsk = req->sk;
696
697
if (sk->sk_protocol == IPPROTO_TCP &&
698
tcp_rsk(req)->tfo_listener) {
699
spin_lock_bh(&queue->fastopenq.lock);
700
if (tcp_rsk(req)->tfo_listener) {
701
/* We are still waiting for the final ACK from 3WHS
702
* so can't free req now. Instead, we set req->sk to
703
* NULL to signify that the child socket is taken
704
* so reqsk_fastopen_remove() will free the req
705
* when 3WHS finishes (or is aborted).
706
*/
707
req->sk = NULL;
708
req = NULL;
709
}
710
spin_unlock_bh(&queue->fastopenq.lock);
711
}
712
713
release_sock(sk);
714
715
if (req)
716
reqsk_put(req);
717
718
inet_init_csk_locks(newsk);
719
return newsk;
720
721
out_err:
722
release_sock(sk);
723
arg->err = error;
724
return NULL;
725
}
726
EXPORT_SYMBOL(inet_csk_accept);
727
728
/*
729
* Using different timers for retransmit, delayed acks and probes
730
* We may wish use just one timer maintaining a list of expire jiffies
731
* to optimize.
732
*/
733
void inet_csk_init_xmit_timers(struct sock *sk,
734
void (*retransmit_handler)(struct timer_list *t),
735
void (*delack_handler)(struct timer_list *t),
736
void (*keepalive_handler)(struct timer_list *t))
737
{
738
struct inet_connection_sock *icsk = inet_csk(sk);
739
740
timer_setup(&sk->tcp_retransmit_timer, retransmit_handler, 0);
741
timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
742
timer_setup(&icsk->icsk_keepalive_timer, keepalive_handler, 0);
743
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
744
}
745
746
void inet_csk_clear_xmit_timers(struct sock *sk)
747
{
748
struct inet_connection_sock *icsk = inet_csk(sk);
749
750
smp_store_release(&icsk->icsk_pending, 0);
751
smp_store_release(&icsk->icsk_ack.pending, 0);
752
753
sk_stop_timer(sk, &sk->tcp_retransmit_timer);
754
sk_stop_timer(sk, &icsk->icsk_delack_timer);
755
sk_stop_timer(sk, &icsk->icsk_keepalive_timer);
756
}
757
758
void inet_csk_clear_xmit_timers_sync(struct sock *sk)
759
{
760
struct inet_connection_sock *icsk = inet_csk(sk);
761
762
/* ongoing timer handlers need to acquire socket lock. */
763
sock_not_owned_by_me(sk);
764
765
smp_store_release(&icsk->icsk_pending, 0);
766
smp_store_release(&icsk->icsk_ack.pending, 0);
767
768
sk_stop_timer_sync(sk, &sk->tcp_retransmit_timer);
769
sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
770
sk_stop_timer_sync(sk, &icsk->icsk_keepalive_timer);
771
}
772
773
struct dst_entry *inet_csk_route_req(const struct sock *sk,
774
struct flowi4 *fl4,
775
const struct request_sock *req)
776
{
777
const struct inet_request_sock *ireq = inet_rsk(req);
778
struct net *net = read_pnet(&ireq->ireq_net);
779
struct ip_options_rcu *opt;
780
struct rtable *rt;
781
782
rcu_read_lock();
783
opt = rcu_dereference(ireq->ireq_opt);
784
785
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
786
ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
787
sk->sk_protocol, inet_sk_flowi_flags(sk),
788
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
789
ireq->ir_loc_addr, ireq->ir_rmt_port,
790
htons(ireq->ir_num), sk_uid(sk));
791
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
792
rt = ip_route_output_flow(net, fl4, sk);
793
if (IS_ERR(rt))
794
goto no_route;
795
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
796
goto route_err;
797
rcu_read_unlock();
798
return &rt->dst;
799
800
route_err:
801
ip_rt_put(rt);
802
no_route:
803
rcu_read_unlock();
804
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
805
return NULL;
806
}
807
808
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
809
struct sock *newsk,
810
const struct request_sock *req)
811
{
812
const struct inet_request_sock *ireq = inet_rsk(req);
813
struct net *net = read_pnet(&ireq->ireq_net);
814
struct inet_sock *newinet = inet_sk(newsk);
815
struct ip_options_rcu *opt;
816
struct flowi4 *fl4;
817
struct rtable *rt;
818
819
opt = rcu_dereference(ireq->ireq_opt);
820
fl4 = &newinet->cork.fl.u.ip4;
821
822
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
823
ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
824
sk->sk_protocol, inet_sk_flowi_flags(sk),
825
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
826
ireq->ir_loc_addr, ireq->ir_rmt_port,
827
htons(ireq->ir_num), sk_uid(sk));
828
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
829
rt = ip_route_output_flow(net, fl4, sk);
830
if (IS_ERR(rt))
831
goto no_route;
832
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
833
goto route_err;
834
return &rt->dst;
835
836
route_err:
837
ip_rt_put(rt);
838
no_route:
839
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
840
return NULL;
841
}
842
EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
843
844
/* Decide when to expire the request and when to resend SYN-ACK */
845
static void syn_ack_recalc(struct request_sock *req,
846
const int max_syn_ack_retries,
847
const u8 rskq_defer_accept,
848
int *expire, int *resend)
849
{
850
if (!rskq_defer_accept) {
851
*expire = req->num_timeout >= max_syn_ack_retries;
852
*resend = 1;
853
return;
854
}
855
*expire = req->num_timeout >= max_syn_ack_retries &&
856
(!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
857
/* Do not resend while waiting for data after ACK,
858
* start to resend on end of deferring period to give
859
* last chance for data or ACK to create established socket.
860
*/
861
*resend = !inet_rsk(req)->acked ||
862
req->num_timeout >= rskq_defer_accept - 1;
863
}
864
865
static struct request_sock *
866
reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
867
bool attach_listener)
868
{
869
struct request_sock *req;
870
871
req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
872
if (!req)
873
return NULL;
874
req->rsk_listener = NULL;
875
if (attach_listener) {
876
if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
877
kmem_cache_free(ops->slab, req);
878
return NULL;
879
}
880
req->rsk_listener = sk_listener;
881
}
882
req->rsk_ops = ops;
883
req_to_sk(req)->sk_prot = sk_listener->sk_prot;
884
sk_node_init(&req_to_sk(req)->sk_node);
885
sk_tx_queue_clear(req_to_sk(req));
886
req->saved_syn = NULL;
887
req->syncookie = 0;
888
req->num_timeout = 0;
889
req->num_retrans = 0;
890
req->sk = NULL;
891
refcount_set(&req->rsk_refcnt, 0);
892
893
return req;
894
}
895
#define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
896
897
struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
898
struct sock *sk_listener,
899
bool attach_listener)
900
{
901
struct request_sock *req = reqsk_alloc(ops, sk_listener,
902
attach_listener);
903
904
if (req) {
905
struct inet_request_sock *ireq = inet_rsk(req);
906
907
ireq->ireq_opt = NULL;
908
#if IS_ENABLED(CONFIG_IPV6)
909
ireq->pktopts = NULL;
910
#endif
911
atomic64_set(&ireq->ir_cookie, 0);
912
ireq->ireq_state = TCP_NEW_SYN_RECV;
913
write_pnet(&ireq->ireq_net, sock_net(sk_listener));
914
ireq->ireq_family = sk_listener->sk_family;
915
}
916
917
return req;
918
}
919
EXPORT_SYMBOL(inet_reqsk_alloc);
920
921
static struct request_sock *inet_reqsk_clone(struct request_sock *req,
922
struct sock *sk)
923
{
924
struct sock *req_sk, *nreq_sk;
925
struct request_sock *nreq;
926
927
nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
928
if (!nreq) {
929
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
930
931
/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
932
sock_put(sk);
933
return NULL;
934
}
935
936
req_sk = req_to_sk(req);
937
nreq_sk = req_to_sk(nreq);
938
939
memcpy(nreq_sk, req_sk,
940
offsetof(struct sock, sk_dontcopy_begin));
941
unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
942
req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
943
/* alloc is larger than struct, see above */);
944
945
sk_node_init(&nreq_sk->sk_node);
946
nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
947
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
948
nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
949
#endif
950
nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
951
952
nreq->rsk_listener = sk;
953
954
/* We need not acquire fastopenq->lock
955
* because the child socket is locked in inet_csk_listen_stop().
956
*/
957
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
958
rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
959
960
return nreq;
961
}
962
963
static void reqsk_queue_migrated(struct request_sock_queue *queue,
964
const struct request_sock *req)
965
{
966
if (req->num_timeout == 0)
967
atomic_inc(&queue->young);
968
atomic_inc(&queue->qlen);
969
}
970
971
static void reqsk_migrate_reset(struct request_sock *req)
972
{
973
req->saved_syn = NULL;
974
#if IS_ENABLED(CONFIG_IPV6)
975
inet_rsk(req)->ipv6_opt = NULL;
976
inet_rsk(req)->pktopts = NULL;
977
#else
978
inet_rsk(req)->ireq_opt = NULL;
979
#endif
980
}
981
982
/* return true if req was found in the ehash table */
983
static bool reqsk_queue_unlink(struct request_sock *req)
984
{
985
struct sock *sk = req_to_sk(req);
986
bool found = false;
987
988
if (sk_hashed(sk)) {
989
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
990
spinlock_t *lock;
991
992
lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
993
spin_lock(lock);
994
found = __sk_nulls_del_node_init_rcu(sk);
995
spin_unlock(lock);
996
}
997
998
return found;
999
}
1000
1001
static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1002
struct request_sock *req,
1003
bool from_timer)
1004
{
1005
bool unlinked = reqsk_queue_unlink(req);
1006
1007
if (!from_timer && timer_delete_sync(&req->rsk_timer))
1008
reqsk_put(req);
1009
1010
if (unlinked) {
1011
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1012
reqsk_put(req);
1013
}
1014
1015
return unlinked;
1016
}
1017
1018
bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1019
{
1020
return __inet_csk_reqsk_queue_drop(sk, req, false);
1021
}
1022
1023
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1024
{
1025
inet_csk_reqsk_queue_drop(sk, req);
1026
reqsk_put(req);
1027
}
1028
EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1029
1030
static void reqsk_timer_handler(struct timer_list *t)
1031
{
1032
struct request_sock *req = timer_container_of(req, t, rsk_timer);
1033
struct request_sock *nreq = NULL, *oreq = req;
1034
struct sock *sk_listener = req->rsk_listener;
1035
struct inet_connection_sock *icsk;
1036
struct request_sock_queue *queue;
1037
struct net *net;
1038
int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1039
1040
if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1041
struct sock *nsk;
1042
1043
nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1044
if (!nsk)
1045
goto drop;
1046
1047
nreq = inet_reqsk_clone(req, nsk);
1048
if (!nreq)
1049
goto drop;
1050
1051
/* The new timer for the cloned req can decrease the 2
1052
* by calling inet_csk_reqsk_queue_drop_and_put(), so
1053
* hold another count to prevent use-after-free and
1054
* call reqsk_put() just before return.
1055
*/
1056
refcount_set(&nreq->rsk_refcnt, 2 + 1);
1057
timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1058
reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1059
1060
req = nreq;
1061
sk_listener = nsk;
1062
}
1063
1064
icsk = inet_csk(sk_listener);
1065
net = sock_net(sk_listener);
1066
max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1067
READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1068
/* Normally all the openreqs are young and become mature
1069
* (i.e. converted to established socket) for first timeout.
1070
* If synack was not acknowledged for 1 second, it means
1071
* one of the following things: synack was lost, ack was lost,
1072
* rtt is high or nobody planned to ack (i.e. synflood).
1073
* When server is a bit loaded, queue is populated with old
1074
* open requests, reducing effective size of queue.
1075
* When server is well loaded, queue size reduces to zero
1076
* after several minutes of work. It is not synflood,
1077
* it is normal operation. The solution is pruning
1078
* too old entries overriding normal timeout, when
1079
* situation becomes dangerous.
1080
*
1081
* Essentially, we reserve half of room for young
1082
* embrions; and abort old ones without pity, if old
1083
* ones are about to clog our table.
1084
*/
1085
queue = &icsk->icsk_accept_queue;
1086
qlen = reqsk_queue_len(queue);
1087
if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1088
int young = reqsk_queue_len_young(queue) << 1;
1089
1090
while (max_syn_ack_retries > 2) {
1091
if (qlen < young)
1092
break;
1093
max_syn_ack_retries--;
1094
young <<= 1;
1095
}
1096
}
1097
1098
syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1099
&expire, &resend);
1100
tcp_syn_ack_timeout(req);
1101
1102
if (!expire &&
1103
(!resend ||
1104
!tcp_rtx_synack(sk_listener, req) ||
1105
inet_rsk(req)->acked)) {
1106
if (req->num_timeout++ == 0)
1107
atomic_dec(&queue->young);
1108
mod_timer(&req->rsk_timer, jiffies + tcp_reqsk_timeout(req));
1109
1110
if (!nreq)
1111
return;
1112
1113
if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1114
/* delete timer */
1115
__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1116
goto no_ownership;
1117
}
1118
1119
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1120
reqsk_migrate_reset(oreq);
1121
reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1122
reqsk_put(oreq);
1123
1124
reqsk_put(nreq);
1125
return;
1126
}
1127
1128
/* Even if we can clone the req, we may need not retransmit any more
1129
* SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1130
* CPU may win the "own_req" race so that inet_ehash_insert() fails.
1131
*/
1132
if (nreq) {
1133
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1134
no_ownership:
1135
reqsk_migrate_reset(nreq);
1136
reqsk_queue_removed(queue, nreq);
1137
__reqsk_free(nreq);
1138
}
1139
1140
drop:
1141
__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1142
reqsk_put(oreq);
1143
}
1144
1145
static bool reqsk_queue_hash_req(struct request_sock *req)
1146
{
1147
bool found_dup_sk = false;
1148
1149
if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1150
return false;
1151
1152
/* The timer needs to be setup after a successful insertion. */
1153
req->timeout = tcp_timeout_init((struct sock *)req);
1154
timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1155
mod_timer(&req->rsk_timer, jiffies + req->timeout);
1156
1157
/* before letting lookups find us, make sure all req fields
1158
* are committed to memory and refcnt initialized.
1159
*/
1160
smp_wmb();
1161
refcount_set(&req->rsk_refcnt, 2 + 1);
1162
return true;
1163
}
1164
1165
bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req)
1166
{
1167
if (!reqsk_queue_hash_req(req))
1168
return false;
1169
1170
inet_csk_reqsk_queue_added(sk);
1171
return true;
1172
}
1173
1174
static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1175
const gfp_t priority)
1176
{
1177
struct inet_connection_sock *icsk = inet_csk(newsk);
1178
1179
if (!icsk->icsk_ulp_ops)
1180
return;
1181
1182
icsk->icsk_ulp_ops->clone(req, newsk, priority);
1183
}
1184
1185
/**
1186
* inet_csk_clone_lock - clone an inet socket, and lock its clone
1187
* @sk: the socket to clone
1188
* @req: request_sock
1189
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1190
*
1191
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1192
*/
1193
struct sock *inet_csk_clone_lock(const struct sock *sk,
1194
const struct request_sock *req,
1195
const gfp_t priority)
1196
{
1197
struct sock *newsk = sk_clone_lock(sk, priority);
1198
struct inet_connection_sock *newicsk;
1199
struct inet_request_sock *ireq;
1200
struct inet_sock *newinet;
1201
1202
if (!newsk)
1203
return NULL;
1204
1205
newicsk = inet_csk(newsk);
1206
newinet = inet_sk(newsk);
1207
ireq = inet_rsk(req);
1208
1209
newicsk->icsk_bind_hash = NULL;
1210
newicsk->icsk_bind2_hash = NULL;
1211
1212
newinet->inet_dport = ireq->ir_rmt_port;
1213
newinet->inet_num = ireq->ir_num;
1214
newinet->inet_sport = htons(ireq->ir_num);
1215
1216
newsk->sk_bound_dev_if = ireq->ir_iif;
1217
1218
newsk->sk_daddr = ireq->ir_rmt_addr;
1219
newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1220
newinet->inet_saddr = ireq->ir_loc_addr;
1221
1222
#if IS_ENABLED(CONFIG_IPV6)
1223
newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1224
newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1225
#endif
1226
1227
/* listeners have SOCK_RCU_FREE, not the children */
1228
sock_reset_flag(newsk, SOCK_RCU_FREE);
1229
1230
inet_sk(newsk)->mc_list = NULL;
1231
1232
newsk->sk_mark = inet_rsk(req)->ir_mark;
1233
atomic64_set(&newsk->sk_cookie,
1234
atomic64_read(&inet_rsk(req)->ir_cookie));
1235
1236
newicsk->icsk_retransmits = 0;
1237
newicsk->icsk_backoff = 0;
1238
newicsk->icsk_probes_out = 0;
1239
newicsk->icsk_probes_tstamp = 0;
1240
1241
/* Deinitialize accept_queue to trap illegal accesses. */
1242
memset(&newicsk->icsk_accept_queue, 0,
1243
sizeof(newicsk->icsk_accept_queue));
1244
1245
inet_sk_set_state(newsk, TCP_SYN_RECV);
1246
1247
inet_clone_ulp(req, newsk, priority);
1248
1249
security_inet_csk_clone(newsk, req);
1250
1251
return newsk;
1252
}
1253
1254
/*
1255
* At this point, there should be no process reference to this
1256
* socket, and thus no user references at all. Therefore we
1257
* can assume the socket waitqueue is inactive and nobody will
1258
* try to jump onto it.
1259
*/
1260
void inet_csk_destroy_sock(struct sock *sk)
1261
{
1262
WARN_ON(sk->sk_state != TCP_CLOSE);
1263
WARN_ON(!sock_flag(sk, SOCK_DEAD));
1264
1265
/* It cannot be in hash table! */
1266
WARN_ON(!sk_unhashed(sk));
1267
1268
/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1269
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1270
1271
sk->sk_prot->destroy(sk);
1272
1273
sk_stream_kill_queues(sk);
1274
1275
xfrm_sk_free_policy(sk);
1276
1277
tcp_orphan_count_dec();
1278
1279
sock_put(sk);
1280
}
1281
EXPORT_SYMBOL(inet_csk_destroy_sock);
1282
1283
void inet_csk_prepare_for_destroy_sock(struct sock *sk)
1284
{
1285
/* The below has to be done to allow calling inet_csk_destroy_sock */
1286
sock_set_flag(sk, SOCK_DEAD);
1287
tcp_orphan_count_inc();
1288
}
1289
1290
/* This function allows to force a closure of a socket after the call to
1291
* tcp_create_openreq_child().
1292
*/
1293
void inet_csk_prepare_forced_close(struct sock *sk)
1294
__releases(&sk->sk_lock.slock)
1295
{
1296
/* sk_clone_lock locked the socket and set refcnt to 2 */
1297
bh_unlock_sock(sk);
1298
sock_put(sk);
1299
inet_csk_prepare_for_destroy_sock(sk);
1300
inet_sk(sk)->inet_num = 0;
1301
}
1302
EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1303
1304
static int inet_ulp_can_listen(const struct sock *sk)
1305
{
1306
const struct inet_connection_sock *icsk = inet_csk(sk);
1307
1308
if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1309
return -EINVAL;
1310
1311
return 0;
1312
}
1313
1314
int inet_csk_listen_start(struct sock *sk)
1315
{
1316
struct inet_connection_sock *icsk = inet_csk(sk);
1317
struct inet_sock *inet = inet_sk(sk);
1318
int err;
1319
1320
err = inet_ulp_can_listen(sk);
1321
if (unlikely(err))
1322
return err;
1323
1324
reqsk_queue_alloc(&icsk->icsk_accept_queue);
1325
1326
sk->sk_ack_backlog = 0;
1327
inet_csk_delack_init(sk);
1328
1329
/* There is race window here: we announce ourselves listening,
1330
* but this transition is still not validated by get_port().
1331
* It is OK, because this socket enters to hash table only
1332
* after validation is complete.
1333
*/
1334
inet_sk_state_store(sk, TCP_LISTEN);
1335
err = sk->sk_prot->get_port(sk, inet->inet_num);
1336
if (!err) {
1337
inet->inet_sport = htons(inet->inet_num);
1338
1339
sk_dst_reset(sk);
1340
err = sk->sk_prot->hash(sk);
1341
1342
if (likely(!err))
1343
return 0;
1344
}
1345
1346
inet_sk_set_state(sk, TCP_CLOSE);
1347
return err;
1348
}
1349
1350
static void inet_child_forget(struct sock *sk, struct request_sock *req,
1351
struct sock *child)
1352
{
1353
sk->sk_prot->disconnect(child, O_NONBLOCK);
1354
1355
sock_orphan(child);
1356
1357
tcp_orphan_count_inc();
1358
1359
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1360
BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1361
BUG_ON(sk != req->rsk_listener);
1362
1363
/* Paranoid, to prevent race condition if
1364
* an inbound pkt destined for child is
1365
* blocked by sock lock in tcp_v4_rcv().
1366
* Also to satisfy an assertion in
1367
* tcp_v4_destroy_sock().
1368
*/
1369
RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1370
}
1371
inet_csk_destroy_sock(child);
1372
}
1373
1374
struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1375
struct request_sock *req,
1376
struct sock *child)
1377
{
1378
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1379
1380
spin_lock(&queue->rskq_lock);
1381
if (unlikely(sk->sk_state != TCP_LISTEN)) {
1382
inet_child_forget(sk, req, child);
1383
child = NULL;
1384
} else {
1385
req->sk = child;
1386
req->dl_next = NULL;
1387
if (queue->rskq_accept_head == NULL)
1388
WRITE_ONCE(queue->rskq_accept_head, req);
1389
else
1390
queue->rskq_accept_tail->dl_next = req;
1391
queue->rskq_accept_tail = req;
1392
sk_acceptq_added(sk);
1393
}
1394
spin_unlock(&queue->rskq_lock);
1395
return child;
1396
}
1397
EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1398
1399
struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1400
struct request_sock *req, bool own_req)
1401
{
1402
if (own_req) {
1403
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1404
reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1405
1406
if (sk != req->rsk_listener) {
1407
/* another listening sk has been selected,
1408
* migrate the req to it.
1409
*/
1410
struct request_sock *nreq;
1411
1412
/* hold a refcnt for the nreq->rsk_listener
1413
* which is assigned in inet_reqsk_clone()
1414
*/
1415
sock_hold(sk);
1416
nreq = inet_reqsk_clone(req, sk);
1417
if (!nreq) {
1418
inet_child_forget(sk, req, child);
1419
goto child_put;
1420
}
1421
1422
refcount_set(&nreq->rsk_refcnt, 1);
1423
if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1424
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1425
reqsk_migrate_reset(req);
1426
reqsk_put(req);
1427
return child;
1428
}
1429
1430
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1431
reqsk_migrate_reset(nreq);
1432
__reqsk_free(nreq);
1433
} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1434
return child;
1435
}
1436
}
1437
/* Too bad, another child took ownership of the request, undo. */
1438
child_put:
1439
bh_unlock_sock(child);
1440
sock_put(child);
1441
return NULL;
1442
}
1443
1444
/*
1445
* This routine closes sockets which have been at least partially
1446
* opened, but not yet accepted.
1447
*/
1448
void inet_csk_listen_stop(struct sock *sk)
1449
{
1450
struct inet_connection_sock *icsk = inet_csk(sk);
1451
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1452
struct request_sock *next, *req;
1453
1454
/* Following specs, it would be better either to send FIN
1455
* (and enter FIN-WAIT-1, it is normal close)
1456
* or to send active reset (abort).
1457
* Certainly, it is pretty dangerous while synflood, but it is
1458
* bad justification for our negligence 8)
1459
* To be honest, we are not able to make either
1460
* of the variants now. --ANK
1461
*/
1462
while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1463
struct sock *child = req->sk, *nsk;
1464
struct request_sock *nreq;
1465
1466
local_bh_disable();
1467
bh_lock_sock(child);
1468
WARN_ON(sock_owned_by_user(child));
1469
sock_hold(child);
1470
1471
nsk = reuseport_migrate_sock(sk, child, NULL);
1472
if (nsk) {
1473
nreq = inet_reqsk_clone(req, nsk);
1474
if (nreq) {
1475
refcount_set(&nreq->rsk_refcnt, 1);
1476
1477
if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1478
__NET_INC_STATS(sock_net(nsk),
1479
LINUX_MIB_TCPMIGRATEREQSUCCESS);
1480
reqsk_migrate_reset(req);
1481
} else {
1482
__NET_INC_STATS(sock_net(nsk),
1483
LINUX_MIB_TCPMIGRATEREQFAILURE);
1484
reqsk_migrate_reset(nreq);
1485
__reqsk_free(nreq);
1486
}
1487
1488
/* inet_csk_reqsk_queue_add() has already
1489
* called inet_child_forget() on failure case.
1490
*/
1491
goto skip_child_forget;
1492
}
1493
}
1494
1495
inet_child_forget(sk, req, child);
1496
skip_child_forget:
1497
reqsk_put(req);
1498
bh_unlock_sock(child);
1499
local_bh_enable();
1500
sock_put(child);
1501
1502
cond_resched();
1503
}
1504
if (queue->fastopenq.rskq_rst_head) {
1505
/* Free all the reqs queued in rskq_rst_head. */
1506
spin_lock_bh(&queue->fastopenq.lock);
1507
req = queue->fastopenq.rskq_rst_head;
1508
queue->fastopenq.rskq_rst_head = NULL;
1509
spin_unlock_bh(&queue->fastopenq.lock);
1510
while (req != NULL) {
1511
next = req->dl_next;
1512
reqsk_put(req);
1513
req = next;
1514
}
1515
}
1516
WARN_ON_ONCE(sk->sk_ack_backlog);
1517
}
1518
EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1519
1520
static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1521
{
1522
const struct inet_sock *inet = inet_sk(sk);
1523
struct flowi4 *fl4;
1524
struct rtable *rt;
1525
1526
rcu_read_lock();
1527
fl4 = &fl->u.ip4;
1528
inet_sk_init_flowi4(inet, fl4);
1529
rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1530
if (IS_ERR(rt))
1531
rt = NULL;
1532
if (rt)
1533
sk_setup_caps(sk, &rt->dst);
1534
rcu_read_unlock();
1535
1536
return &rt->dst;
1537
}
1538
1539
struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1540
{
1541
struct dst_entry *dst = __sk_dst_check(sk, 0);
1542
struct inet_sock *inet = inet_sk(sk);
1543
1544
if (!dst) {
1545
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1546
if (!dst)
1547
goto out;
1548
}
1549
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1550
1551
dst = __sk_dst_check(sk, 0);
1552
if (!dst)
1553
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1554
out:
1555
return dst;
1556
}
1557
1558