Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/inet_connection_sock.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* Support for INET connection oriented protocols.
8
*
9
* Authors: See the TCP sources
10
*/
11
12
#include <linux/module.h>
13
#include <linux/jhash.h>
14
15
#include <net/inet_connection_sock.h>
16
#include <net/inet_hashtables.h>
17
#include <net/inet_timewait_sock.h>
18
#include <net/ip.h>
19
#include <net/route.h>
20
#include <net/tcp_states.h>
21
#include <net/xfrm.h>
22
#include <net/tcp.h>
23
#include <net/sock_reuseport.h>
24
#include <net/addrconf.h>
25
26
#if IS_ENABLED(CONFIG_IPV6)
27
/* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28
* if IPv6 only, and any IPv4 addresses
29
* if not IPv6 only
30
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31
* IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32
* and 0.0.0.0 equals to 0.0.0.0 only
33
*/
34
static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35
const struct in6_addr *sk2_rcv_saddr6,
36
__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37
bool sk1_ipv6only, bool sk2_ipv6only,
38
bool match_sk1_wildcard,
39
bool match_sk2_wildcard)
40
{
41
int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42
int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44
/* if both are mapped, treat as IPv4 */
45
if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46
if (!sk2_ipv6only) {
47
if (sk1_rcv_saddr == sk2_rcv_saddr)
48
return true;
49
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50
(match_sk2_wildcard && !sk2_rcv_saddr);
51
}
52
return false;
53
}
54
55
if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56
return true;
57
58
if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59
!(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60
return true;
61
62
if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63
!(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64
return true;
65
66
if (sk2_rcv_saddr6 &&
67
ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68
return true;
69
70
return false;
71
}
72
#endif
73
74
/* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75
* match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76
* 0.0.0.0 only equals to 0.0.0.0
77
*/
78
static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79
bool sk2_ipv6only, bool match_sk1_wildcard,
80
bool match_sk2_wildcard)
81
{
82
if (!sk2_ipv6only) {
83
if (sk1_rcv_saddr == sk2_rcv_saddr)
84
return true;
85
return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86
(match_sk2_wildcard && !sk2_rcv_saddr);
87
}
88
return false;
89
}
90
91
bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92
bool match_wildcard)
93
{
94
#if IS_ENABLED(CONFIG_IPV6)
95
if (sk->sk_family == AF_INET6)
96
return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97
inet6_rcv_saddr(sk2),
98
sk->sk_rcv_saddr,
99
sk2->sk_rcv_saddr,
100
ipv6_only_sock(sk),
101
ipv6_only_sock(sk2),
102
match_wildcard,
103
match_wildcard);
104
#endif
105
return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106
ipv6_only_sock(sk2), match_wildcard,
107
match_wildcard);
108
}
109
EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111
bool inet_rcv_saddr_any(const struct sock *sk)
112
{
113
#if IS_ENABLED(CONFIG_IPV6)
114
if (sk->sk_family == AF_INET6)
115
return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116
#endif
117
return !sk->sk_rcv_saddr;
118
}
119
120
/**
121
* inet_sk_get_local_port_range - fetch ephemeral ports range
122
* @sk: socket
123
* @low: pointer to low port
124
* @high: pointer to high port
125
*
126
* Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127
* Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128
* Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129
*/
130
bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131
{
132
int lo, hi, sk_lo, sk_hi;
133
bool local_range = false;
134
u32 sk_range;
135
136
inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138
sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139
if (unlikely(sk_range)) {
140
sk_lo = sk_range & 0xffff;
141
sk_hi = sk_range >> 16;
142
143
if (lo <= sk_lo && sk_lo <= hi)
144
lo = sk_lo;
145
if (lo <= sk_hi && sk_hi <= hi)
146
hi = sk_hi;
147
local_range = true;
148
}
149
150
*low = lo;
151
*high = hi;
152
return local_range;
153
}
154
EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156
static bool inet_use_bhash2_on_bind(const struct sock *sk)
157
{
158
#if IS_ENABLED(CONFIG_IPV6)
159
if (sk->sk_family == AF_INET6) {
160
if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161
return false;
162
163
if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164
return true;
165
}
166
#endif
167
return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168
}
169
170
static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171
kuid_t uid, bool relax,
172
bool reuseport_cb_ok, bool reuseport_ok)
173
{
174
int bound_dev_if2;
175
176
if (sk == sk2)
177
return false;
178
179
bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181
if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182
sk->sk_bound_dev_if == bound_dev_if2) {
183
if (sk->sk_reuse && sk2->sk_reuse &&
184
sk2->sk_state != TCP_LISTEN) {
185
if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186
sk2->sk_reuseport && reuseport_cb_ok &&
187
(sk2->sk_state == TCP_TIME_WAIT ||
188
uid_eq(uid, sk_uid(sk2)))))
189
return true;
190
} else if (!reuseport_ok || !sk->sk_reuseport ||
191
!sk2->sk_reuseport || !reuseport_cb_ok ||
192
(sk2->sk_state != TCP_TIME_WAIT &&
193
!uid_eq(uid, sk_uid(sk2)))) {
194
return true;
195
}
196
}
197
return false;
198
}
199
200
static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201
kuid_t uid, bool relax,
202
bool reuseport_cb_ok, bool reuseport_ok)
203
{
204
if (ipv6_only_sock(sk2)) {
205
if (sk->sk_family == AF_INET)
206
return false;
207
208
#if IS_ENABLED(CONFIG_IPV6)
209
if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210
return false;
211
#endif
212
}
213
214
return inet_bind_conflict(sk, sk2, uid, relax,
215
reuseport_cb_ok, reuseport_ok);
216
}
217
218
static bool inet_bhash2_conflict(const struct sock *sk,
219
const struct inet_bind2_bucket *tb2,
220
kuid_t uid,
221
bool relax, bool reuseport_cb_ok,
222
bool reuseport_ok)
223
{
224
struct sock *sk2;
225
226
sk_for_each_bound(sk2, &tb2->owners) {
227
if (__inet_bhash2_conflict(sk, sk2, uid, relax,
228
reuseport_cb_ok, reuseport_ok))
229
return true;
230
}
231
232
return false;
233
}
234
235
#define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236
hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237
sk_for_each_bound((__sk), &(__tb2)->owners)
238
239
/* This should be called only when the tb and tb2 hashbuckets' locks are held */
240
static int inet_csk_bind_conflict(const struct sock *sk,
241
const struct inet_bind_bucket *tb,
242
const struct inet_bind2_bucket *tb2, /* may be null */
243
bool relax, bool reuseport_ok)
244
{
245
struct sock_reuseport *reuseport_cb;
246
kuid_t uid = sk_uid(sk);
247
bool reuseport_cb_ok;
248
struct sock *sk2;
249
250
rcu_read_lock();
251
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254
rcu_read_unlock();
255
256
/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257
* ipv4) should have been checked already. We need to do these two
258
* checks separately because their spinlocks have to be acquired/released
259
* independently of each other, to prevent possible deadlocks
260
*/
261
if (inet_use_bhash2_on_bind(sk))
262
return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263
reuseport_cb_ok, reuseport_ok);
264
265
/* Unlike other sk lookup places we do not check
266
* for sk_net here, since _all_ the socks listed
267
* in tb->owners and tb2->owners list belong
268
* to the same net - the one this bucket belongs to.
269
*/
270
sk_for_each_bound_bhash(sk2, tb2, tb) {
271
if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272
continue;
273
274
if (inet_rcv_saddr_equal(sk, sk2, true))
275
return true;
276
}
277
278
return false;
279
}
280
281
/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282
* INADDR_ANY (if ipv4) socket.
283
*
284
* Caller must hold bhash hashbucket lock with local bh disabled, to protect
285
* against concurrent binds on the port for addr any
286
*/
287
static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288
bool relax, bool reuseport_ok)
289
{
290
const struct net *net = sock_net(sk);
291
struct sock_reuseport *reuseport_cb;
292
struct inet_bind_hashbucket *head2;
293
struct inet_bind2_bucket *tb2;
294
kuid_t uid = sk_uid(sk);
295
bool conflict = false;
296
bool reuseport_cb_ok;
297
298
rcu_read_lock();
299
reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300
/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301
reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302
rcu_read_unlock();
303
304
head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306
spin_lock(&head2->lock);
307
308
inet_bind_bucket_for_each(tb2, &head2->chain) {
309
if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310
continue;
311
312
if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313
continue;
314
315
conflict = true;
316
break;
317
}
318
319
spin_unlock(&head2->lock);
320
321
return conflict;
322
}
323
324
/*
325
* Find an open port number for the socket. Returns with the
326
* inet_bind_hashbucket locks held if successful.
327
*/
328
static struct inet_bind_hashbucket *
329
inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330
struct inet_bind2_bucket **tb2_ret,
331
struct inet_bind_hashbucket **head2_ret, int *port_ret)
332
{
333
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334
int i, low, high, attempt_half, port, l3mdev;
335
struct inet_bind_hashbucket *head, *head2;
336
struct net *net = sock_net(sk);
337
struct inet_bind2_bucket *tb2;
338
struct inet_bind_bucket *tb;
339
u32 remaining, offset;
340
bool relax = false;
341
342
l3mdev = inet_sk_bound_l3mdev(sk);
343
ports_exhausted:
344
attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345
other_half_scan:
346
inet_sk_get_local_port_range(sk, &low, &high);
347
high++; /* [32768, 60999] -> [32768, 61000[ */
348
if (high - low < 4)
349
attempt_half = 0;
350
if (attempt_half) {
351
int half = low + (((high - low) >> 2) << 1);
352
353
if (attempt_half == 1)
354
high = half;
355
else
356
low = half;
357
}
358
remaining = high - low;
359
if (likely(remaining > 1))
360
remaining &= ~1U;
361
362
offset = get_random_u32_below(remaining);
363
/* __inet_hash_connect() favors ports having @low parity
364
* We do the opposite to not pollute connect() users.
365
*/
366
offset |= 1U;
367
368
other_parity_scan:
369
port = low + offset;
370
for (i = 0; i < remaining; i += 2, port += 2) {
371
if (unlikely(port >= high))
372
port -= remaining;
373
if (inet_is_local_reserved_port(net, port))
374
continue;
375
head = &hinfo->bhash[inet_bhashfn(net, port,
376
hinfo->bhash_size)];
377
spin_lock_bh(&head->lock);
378
if (inet_use_bhash2_on_bind(sk)) {
379
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380
goto next_port;
381
}
382
383
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384
spin_lock(&head2->lock);
385
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386
inet_bind_bucket_for_each(tb, &head->chain)
387
if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388
if (!inet_csk_bind_conflict(sk, tb, tb2,
389
relax, false))
390
goto success;
391
spin_unlock(&head2->lock);
392
goto next_port;
393
}
394
tb = NULL;
395
goto success;
396
next_port:
397
spin_unlock_bh(&head->lock);
398
cond_resched();
399
}
400
401
offset--;
402
if (!(offset & 1))
403
goto other_parity_scan;
404
405
if (attempt_half == 1) {
406
/* OK we now try the upper half of the range */
407
attempt_half = 2;
408
goto other_half_scan;
409
}
410
411
if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412
/* We still have a chance to connect to different destinations */
413
relax = true;
414
goto ports_exhausted;
415
}
416
return NULL;
417
success:
418
*port_ret = port;
419
*tb_ret = tb;
420
*tb2_ret = tb2;
421
*head2_ret = head2;
422
return head;
423
}
424
425
static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426
struct sock *sk)
427
{
428
if (tb->fastreuseport <= 0)
429
return 0;
430
if (!sk->sk_reuseport)
431
return 0;
432
if (rcu_access_pointer(sk->sk_reuseport_cb))
433
return 0;
434
if (!uid_eq(tb->fastuid, sk_uid(sk)))
435
return 0;
436
/* We only need to check the rcv_saddr if this tb was once marked
437
* without fastreuseport and then was reset, as we can only know that
438
* the fast_*rcv_saddr doesn't have any conflicts with the socks on the
439
* owners list.
440
*/
441
if (tb->fastreuseport == FASTREUSEPORT_ANY)
442
return 1;
443
#if IS_ENABLED(CONFIG_IPV6)
444
if (tb->fast_sk_family == AF_INET6)
445
return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
446
inet6_rcv_saddr(sk),
447
tb->fast_rcv_saddr,
448
sk->sk_rcv_saddr,
449
tb->fast_ipv6_only,
450
ipv6_only_sock(sk), true, false);
451
#endif
452
return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
453
ipv6_only_sock(sk), true, false);
454
}
455
456
void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
457
struct sock *sk)
458
{
459
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
460
461
if (hlist_empty(&tb->bhash2)) {
462
tb->fastreuse = reuse;
463
if (sk->sk_reuseport) {
464
tb->fastreuseport = FASTREUSEPORT_ANY;
465
tb->fastuid = sk_uid(sk);
466
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
467
tb->fast_ipv6_only = ipv6_only_sock(sk);
468
tb->fast_sk_family = sk->sk_family;
469
#if IS_ENABLED(CONFIG_IPV6)
470
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
471
#endif
472
} else {
473
tb->fastreuseport = 0;
474
}
475
} else {
476
if (!reuse)
477
tb->fastreuse = 0;
478
if (sk->sk_reuseport) {
479
/* We didn't match or we don't have fastreuseport set on
480
* the tb, but we have sk_reuseport set on this socket
481
* and we know that there are no bind conflicts with
482
* this socket in this tb, so reset our tb's reuseport
483
* settings so that any subsequent sockets that match
484
* our current socket will be put on the fast path.
485
*
486
* If we reset we need to set FASTREUSEPORT_STRICT so we
487
* do extra checking for all subsequent sk_reuseport
488
* socks.
489
*/
490
if (!sk_reuseport_match(tb, sk)) {
491
tb->fastreuseport = FASTREUSEPORT_STRICT;
492
tb->fastuid = sk_uid(sk);
493
tb->fast_rcv_saddr = sk->sk_rcv_saddr;
494
tb->fast_ipv6_only = ipv6_only_sock(sk);
495
tb->fast_sk_family = sk->sk_family;
496
#if IS_ENABLED(CONFIG_IPV6)
497
tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
498
#endif
499
}
500
} else {
501
tb->fastreuseport = 0;
502
}
503
}
504
}
505
506
/* Obtain a reference to a local port for the given sock,
507
* if snum is zero it means select any available local port.
508
* We try to allocate an odd port (and leave even ports for connect())
509
*/
510
int inet_csk_get_port(struct sock *sk, unsigned short snum)
511
{
512
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
513
bool found_port = false, check_bind_conflict = true;
514
bool bhash_created = false, bhash2_created = false;
515
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
516
int ret = -EADDRINUSE, port = snum, l3mdev;
517
struct inet_bind_hashbucket *head, *head2;
518
struct inet_bind2_bucket *tb2 = NULL;
519
struct inet_bind_bucket *tb = NULL;
520
bool head2_lock_acquired = false;
521
struct net *net = sock_net(sk);
522
523
l3mdev = inet_sk_bound_l3mdev(sk);
524
525
if (!port) {
526
head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
527
if (!head)
528
return ret;
529
530
head2_lock_acquired = true;
531
532
if (tb && tb2)
533
goto success;
534
found_port = true;
535
} else {
536
head = &hinfo->bhash[inet_bhashfn(net, port,
537
hinfo->bhash_size)];
538
spin_lock_bh(&head->lock);
539
inet_bind_bucket_for_each(tb, &head->chain)
540
if (inet_bind_bucket_match(tb, net, port, l3mdev))
541
break;
542
}
543
544
if (!tb) {
545
tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
546
head, port, l3mdev);
547
if (!tb)
548
goto fail_unlock;
549
bhash_created = true;
550
}
551
552
if (!found_port) {
553
if (!hlist_empty(&tb->bhash2)) {
554
if (sk->sk_reuse == SK_FORCE_REUSE ||
555
(tb->fastreuse > 0 && reuse) ||
556
sk_reuseport_match(tb, sk))
557
check_bind_conflict = false;
558
}
559
560
if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
561
if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
562
goto fail_unlock;
563
}
564
565
head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
566
spin_lock(&head2->lock);
567
head2_lock_acquired = true;
568
tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
569
}
570
571
if (!tb2) {
572
tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
573
net, head2, tb, sk);
574
if (!tb2)
575
goto fail_unlock;
576
bhash2_created = true;
577
}
578
579
if (!found_port && check_bind_conflict) {
580
if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
581
goto fail_unlock;
582
}
583
584
success:
585
inet_csk_update_fastreuse(tb, sk);
586
587
if (!inet_csk(sk)->icsk_bind_hash)
588
inet_bind_hash(sk, tb, tb2, port);
589
WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
590
WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
591
ret = 0;
592
593
fail_unlock:
594
if (ret) {
595
if (bhash2_created)
596
inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
597
if (bhash_created)
598
inet_bind_bucket_destroy(tb);
599
}
600
if (head2_lock_acquired)
601
spin_unlock(&head2->lock);
602
spin_unlock_bh(&head->lock);
603
return ret;
604
}
605
EXPORT_SYMBOL_GPL(inet_csk_get_port);
606
607
/*
608
* Wait for an incoming connection, avoid race conditions. This must be called
609
* with the socket locked.
610
*/
611
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
612
{
613
struct inet_connection_sock *icsk = inet_csk(sk);
614
DEFINE_WAIT(wait);
615
int err;
616
617
/*
618
* True wake-one mechanism for incoming connections: only
619
* one process gets woken up, not the 'whole herd'.
620
* Since we do not 'race & poll' for established sockets
621
* anymore, the common case will execute the loop only once.
622
*
623
* Subtle issue: "add_wait_queue_exclusive()" will be added
624
* after any current non-exclusive waiters, and we know that
625
* it will always _stay_ after any new non-exclusive waiters
626
* because all non-exclusive waiters are added at the
627
* beginning of the wait-queue. As such, it's ok to "drop"
628
* our exclusiveness temporarily when we get woken up without
629
* having to remove and re-insert us on the wait queue.
630
*/
631
for (;;) {
632
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
633
TASK_INTERRUPTIBLE);
634
release_sock(sk);
635
if (reqsk_queue_empty(&icsk->icsk_accept_queue))
636
timeo = schedule_timeout(timeo);
637
sched_annotate_sleep();
638
lock_sock(sk);
639
err = 0;
640
if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
641
break;
642
err = -EINVAL;
643
if (sk->sk_state != TCP_LISTEN)
644
break;
645
err = sock_intr_errno(timeo);
646
if (signal_pending(current))
647
break;
648
err = -EAGAIN;
649
if (!timeo)
650
break;
651
}
652
finish_wait(sk_sleep(sk), &wait);
653
return err;
654
}
655
656
/*
657
* This will accept the next outstanding connection.
658
*/
659
struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
660
{
661
struct inet_connection_sock *icsk = inet_csk(sk);
662
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
663
struct request_sock *req;
664
struct sock *newsk;
665
int error;
666
667
lock_sock(sk);
668
669
/* We need to make sure that this socket is listening,
670
* and that it has something pending.
671
*/
672
error = -EINVAL;
673
if (sk->sk_state != TCP_LISTEN)
674
goto out_err;
675
676
/* Find already established connection */
677
if (reqsk_queue_empty(queue)) {
678
long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
679
680
/* If this is a non blocking socket don't sleep */
681
error = -EAGAIN;
682
if (!timeo)
683
goto out_err;
684
685
error = inet_csk_wait_for_connect(sk, timeo);
686
if (error)
687
goto out_err;
688
}
689
req = reqsk_queue_remove(queue, sk);
690
arg->is_empty = reqsk_queue_empty(queue);
691
newsk = req->sk;
692
693
if (sk->sk_protocol == IPPROTO_TCP &&
694
tcp_rsk(req)->tfo_listener) {
695
spin_lock_bh(&queue->fastopenq.lock);
696
if (tcp_rsk(req)->tfo_listener) {
697
/* We are still waiting for the final ACK from 3WHS
698
* so can't free req now. Instead, we set req->sk to
699
* NULL to signify that the child socket is taken
700
* so reqsk_fastopen_remove() will free the req
701
* when 3WHS finishes (or is aborted).
702
*/
703
req->sk = NULL;
704
req = NULL;
705
}
706
spin_unlock_bh(&queue->fastopenq.lock);
707
}
708
709
out:
710
release_sock(sk);
711
if (newsk && mem_cgroup_sockets_enabled) {
712
gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
713
int amt = 0;
714
715
/* atomically get the memory usage, set and charge the
716
* newsk->sk_memcg.
717
*/
718
lock_sock(newsk);
719
720
mem_cgroup_sk_alloc(newsk);
721
if (newsk->sk_memcg) {
722
/* The socket has not been accepted yet, no need
723
* to look at newsk->sk_wmem_queued.
724
*/
725
amt = sk_mem_pages(newsk->sk_forward_alloc +
726
atomic_read(&newsk->sk_rmem_alloc));
727
}
728
729
if (amt)
730
mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
731
kmem_cache_charge(newsk, gfp);
732
733
release_sock(newsk);
734
}
735
if (req)
736
reqsk_put(req);
737
738
if (newsk)
739
inet_init_csk_locks(newsk);
740
741
return newsk;
742
out_err:
743
newsk = NULL;
744
req = NULL;
745
arg->err = error;
746
goto out;
747
}
748
EXPORT_SYMBOL(inet_csk_accept);
749
750
/*
751
* Using different timers for retransmit, delayed acks and probes
752
* We may wish use just one timer maintaining a list of expire jiffies
753
* to optimize.
754
*/
755
void inet_csk_init_xmit_timers(struct sock *sk,
756
void (*retransmit_handler)(struct timer_list *t),
757
void (*delack_handler)(struct timer_list *t),
758
void (*keepalive_handler)(struct timer_list *t))
759
{
760
struct inet_connection_sock *icsk = inet_csk(sk);
761
762
timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
763
timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
764
timer_setup(&sk->sk_timer, keepalive_handler, 0);
765
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
766
}
767
768
void inet_csk_clear_xmit_timers(struct sock *sk)
769
{
770
struct inet_connection_sock *icsk = inet_csk(sk);
771
772
smp_store_release(&icsk->icsk_pending, 0);
773
smp_store_release(&icsk->icsk_ack.pending, 0);
774
775
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
776
sk_stop_timer(sk, &icsk->icsk_delack_timer);
777
sk_stop_timer(sk, &sk->sk_timer);
778
}
779
780
void inet_csk_clear_xmit_timers_sync(struct sock *sk)
781
{
782
struct inet_connection_sock *icsk = inet_csk(sk);
783
784
/* ongoing timer handlers need to acquire socket lock. */
785
sock_not_owned_by_me(sk);
786
787
smp_store_release(&icsk->icsk_pending, 0);
788
smp_store_release(&icsk->icsk_ack.pending, 0);
789
790
sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
791
sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
792
sk_stop_timer_sync(sk, &sk->sk_timer);
793
}
794
795
struct dst_entry *inet_csk_route_req(const struct sock *sk,
796
struct flowi4 *fl4,
797
const struct request_sock *req)
798
{
799
const struct inet_request_sock *ireq = inet_rsk(req);
800
struct net *net = read_pnet(&ireq->ireq_net);
801
struct ip_options_rcu *opt;
802
struct rtable *rt;
803
804
rcu_read_lock();
805
opt = rcu_dereference(ireq->ireq_opt);
806
807
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
808
ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
809
sk->sk_protocol, inet_sk_flowi_flags(sk),
810
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
811
ireq->ir_loc_addr, ireq->ir_rmt_port,
812
htons(ireq->ir_num), sk_uid(sk));
813
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
814
rt = ip_route_output_flow(net, fl4, sk);
815
if (IS_ERR(rt))
816
goto no_route;
817
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
818
goto route_err;
819
rcu_read_unlock();
820
return &rt->dst;
821
822
route_err:
823
ip_rt_put(rt);
824
no_route:
825
rcu_read_unlock();
826
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
827
return NULL;
828
}
829
830
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
831
struct sock *newsk,
832
const struct request_sock *req)
833
{
834
const struct inet_request_sock *ireq = inet_rsk(req);
835
struct net *net = read_pnet(&ireq->ireq_net);
836
struct inet_sock *newinet = inet_sk(newsk);
837
struct ip_options_rcu *opt;
838
struct flowi4 *fl4;
839
struct rtable *rt;
840
841
opt = rcu_dereference(ireq->ireq_opt);
842
fl4 = &newinet->cork.fl.u.ip4;
843
844
flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
845
ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
846
sk->sk_protocol, inet_sk_flowi_flags(sk),
847
(opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
848
ireq->ir_loc_addr, ireq->ir_rmt_port,
849
htons(ireq->ir_num), sk_uid(sk));
850
security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
851
rt = ip_route_output_flow(net, fl4, sk);
852
if (IS_ERR(rt))
853
goto no_route;
854
if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
855
goto route_err;
856
return &rt->dst;
857
858
route_err:
859
ip_rt_put(rt);
860
no_route:
861
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
862
return NULL;
863
}
864
EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
865
866
/* Decide when to expire the request and when to resend SYN-ACK */
867
static void syn_ack_recalc(struct request_sock *req,
868
const int max_syn_ack_retries,
869
const u8 rskq_defer_accept,
870
int *expire, int *resend)
871
{
872
if (!rskq_defer_accept) {
873
*expire = req->num_timeout >= max_syn_ack_retries;
874
*resend = 1;
875
return;
876
}
877
*expire = req->num_timeout >= max_syn_ack_retries &&
878
(!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
879
/* Do not resend while waiting for data after ACK,
880
* start to resend on end of deferring period to give
881
* last chance for data or ACK to create established socket.
882
*/
883
*resend = !inet_rsk(req)->acked ||
884
req->num_timeout >= rskq_defer_accept - 1;
885
}
886
887
static struct request_sock *
888
reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
889
bool attach_listener)
890
{
891
struct request_sock *req;
892
893
req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
894
if (!req)
895
return NULL;
896
req->rsk_listener = NULL;
897
if (attach_listener) {
898
if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
899
kmem_cache_free(ops->slab, req);
900
return NULL;
901
}
902
req->rsk_listener = sk_listener;
903
}
904
req->rsk_ops = ops;
905
req_to_sk(req)->sk_prot = sk_listener->sk_prot;
906
sk_node_init(&req_to_sk(req)->sk_node);
907
sk_tx_queue_clear(req_to_sk(req));
908
req->saved_syn = NULL;
909
req->syncookie = 0;
910
req->timeout = 0;
911
req->num_timeout = 0;
912
req->num_retrans = 0;
913
req->sk = NULL;
914
refcount_set(&req->rsk_refcnt, 0);
915
916
return req;
917
}
918
#define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
919
920
struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
921
struct sock *sk_listener,
922
bool attach_listener)
923
{
924
struct request_sock *req = reqsk_alloc(ops, sk_listener,
925
attach_listener);
926
927
if (req) {
928
struct inet_request_sock *ireq = inet_rsk(req);
929
930
ireq->ireq_opt = NULL;
931
#if IS_ENABLED(CONFIG_IPV6)
932
ireq->pktopts = NULL;
933
#endif
934
atomic64_set(&ireq->ir_cookie, 0);
935
ireq->ireq_state = TCP_NEW_SYN_RECV;
936
write_pnet(&ireq->ireq_net, sock_net(sk_listener));
937
ireq->ireq_family = sk_listener->sk_family;
938
req->timeout = TCP_TIMEOUT_INIT;
939
}
940
941
return req;
942
}
943
EXPORT_SYMBOL(inet_reqsk_alloc);
944
945
static struct request_sock *inet_reqsk_clone(struct request_sock *req,
946
struct sock *sk)
947
{
948
struct sock *req_sk, *nreq_sk;
949
struct request_sock *nreq;
950
951
nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
952
if (!nreq) {
953
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
954
955
/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
956
sock_put(sk);
957
return NULL;
958
}
959
960
req_sk = req_to_sk(req);
961
nreq_sk = req_to_sk(nreq);
962
963
memcpy(nreq_sk, req_sk,
964
offsetof(struct sock, sk_dontcopy_begin));
965
unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
966
req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
967
/* alloc is larger than struct, see above */);
968
969
sk_node_init(&nreq_sk->sk_node);
970
nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
971
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
972
nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
973
#endif
974
nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
975
976
nreq->rsk_listener = sk;
977
978
/* We need not acquire fastopenq->lock
979
* because the child socket is locked in inet_csk_listen_stop().
980
*/
981
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
982
rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
983
984
return nreq;
985
}
986
987
static void reqsk_queue_migrated(struct request_sock_queue *queue,
988
const struct request_sock *req)
989
{
990
if (req->num_timeout == 0)
991
atomic_inc(&queue->young);
992
atomic_inc(&queue->qlen);
993
}
994
995
static void reqsk_migrate_reset(struct request_sock *req)
996
{
997
req->saved_syn = NULL;
998
#if IS_ENABLED(CONFIG_IPV6)
999
inet_rsk(req)->ipv6_opt = NULL;
1000
inet_rsk(req)->pktopts = NULL;
1001
#else
1002
inet_rsk(req)->ireq_opt = NULL;
1003
#endif
1004
}
1005
1006
/* return true if req was found in the ehash table */
1007
static bool reqsk_queue_unlink(struct request_sock *req)
1008
{
1009
struct sock *sk = req_to_sk(req);
1010
bool found = false;
1011
1012
if (sk_hashed(sk)) {
1013
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1014
spinlock_t *lock;
1015
1016
lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1017
spin_lock(lock);
1018
found = __sk_nulls_del_node_init_rcu(sk);
1019
spin_unlock(lock);
1020
}
1021
1022
return found;
1023
}
1024
1025
static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1026
struct request_sock *req,
1027
bool from_timer)
1028
{
1029
bool unlinked = reqsk_queue_unlink(req);
1030
1031
if (!from_timer && timer_delete_sync(&req->rsk_timer))
1032
reqsk_put(req);
1033
1034
if (unlinked) {
1035
reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1036
reqsk_put(req);
1037
}
1038
1039
return unlinked;
1040
}
1041
1042
bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1043
{
1044
return __inet_csk_reqsk_queue_drop(sk, req, false);
1045
}
1046
1047
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1048
{
1049
inet_csk_reqsk_queue_drop(sk, req);
1050
reqsk_put(req);
1051
}
1052
EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1053
1054
static void reqsk_timer_handler(struct timer_list *t)
1055
{
1056
struct request_sock *req = timer_container_of(req, t, rsk_timer);
1057
struct request_sock *nreq = NULL, *oreq = req;
1058
struct sock *sk_listener = req->rsk_listener;
1059
struct inet_connection_sock *icsk;
1060
struct request_sock_queue *queue;
1061
struct net *net;
1062
int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1063
1064
if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1065
struct sock *nsk;
1066
1067
nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1068
if (!nsk)
1069
goto drop;
1070
1071
nreq = inet_reqsk_clone(req, nsk);
1072
if (!nreq)
1073
goto drop;
1074
1075
/* The new timer for the cloned req can decrease the 2
1076
* by calling inet_csk_reqsk_queue_drop_and_put(), so
1077
* hold another count to prevent use-after-free and
1078
* call reqsk_put() just before return.
1079
*/
1080
refcount_set(&nreq->rsk_refcnt, 2 + 1);
1081
timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1082
reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1083
1084
req = nreq;
1085
sk_listener = nsk;
1086
}
1087
1088
icsk = inet_csk(sk_listener);
1089
net = sock_net(sk_listener);
1090
max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1091
READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1092
/* Normally all the openreqs are young and become mature
1093
* (i.e. converted to established socket) for first timeout.
1094
* If synack was not acknowledged for 1 second, it means
1095
* one of the following things: synack was lost, ack was lost,
1096
* rtt is high or nobody planned to ack (i.e. synflood).
1097
* When server is a bit loaded, queue is populated with old
1098
* open requests, reducing effective size of queue.
1099
* When server is well loaded, queue size reduces to zero
1100
* after several minutes of work. It is not synflood,
1101
* it is normal operation. The solution is pruning
1102
* too old entries overriding normal timeout, when
1103
* situation becomes dangerous.
1104
*
1105
* Essentially, we reserve half of room for young
1106
* embrions; and abort old ones without pity, if old
1107
* ones are about to clog our table.
1108
*/
1109
queue = &icsk->icsk_accept_queue;
1110
qlen = reqsk_queue_len(queue);
1111
if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1112
int young = reqsk_queue_len_young(queue) << 1;
1113
1114
while (max_syn_ack_retries > 2) {
1115
if (qlen < young)
1116
break;
1117
max_syn_ack_retries--;
1118
young <<= 1;
1119
}
1120
}
1121
syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1122
&expire, &resend);
1123
req->rsk_ops->syn_ack_timeout(req);
1124
if (!expire &&
1125
(!resend ||
1126
!tcp_rtx_synack(sk_listener, req) ||
1127
inet_rsk(req)->acked)) {
1128
if (req->num_timeout++ == 0)
1129
atomic_dec(&queue->young);
1130
mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1131
1132
if (!nreq)
1133
return;
1134
1135
if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1136
/* delete timer */
1137
__inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1138
goto no_ownership;
1139
}
1140
1141
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1142
reqsk_migrate_reset(oreq);
1143
reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1144
reqsk_put(oreq);
1145
1146
reqsk_put(nreq);
1147
return;
1148
}
1149
1150
/* Even if we can clone the req, we may need not retransmit any more
1151
* SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1152
* CPU may win the "own_req" race so that inet_ehash_insert() fails.
1153
*/
1154
if (nreq) {
1155
__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1156
no_ownership:
1157
reqsk_migrate_reset(nreq);
1158
reqsk_queue_removed(queue, nreq);
1159
__reqsk_free(nreq);
1160
}
1161
1162
drop:
1163
__inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1164
reqsk_put(oreq);
1165
}
1166
1167
static bool reqsk_queue_hash_req(struct request_sock *req,
1168
unsigned long timeout)
1169
{
1170
bool found_dup_sk = false;
1171
1172
if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1173
return false;
1174
1175
/* The timer needs to be setup after a successful insertion. */
1176
timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1177
mod_timer(&req->rsk_timer, jiffies + timeout);
1178
1179
/* before letting lookups find us, make sure all req fields
1180
* are committed to memory and refcnt initialized.
1181
*/
1182
smp_wmb();
1183
refcount_set(&req->rsk_refcnt, 2 + 1);
1184
return true;
1185
}
1186
1187
bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1188
unsigned long timeout)
1189
{
1190
if (!reqsk_queue_hash_req(req, timeout))
1191
return false;
1192
1193
inet_csk_reqsk_queue_added(sk);
1194
return true;
1195
}
1196
1197
static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1198
const gfp_t priority)
1199
{
1200
struct inet_connection_sock *icsk = inet_csk(newsk);
1201
1202
if (!icsk->icsk_ulp_ops)
1203
return;
1204
1205
icsk->icsk_ulp_ops->clone(req, newsk, priority);
1206
}
1207
1208
/**
1209
* inet_csk_clone_lock - clone an inet socket, and lock its clone
1210
* @sk: the socket to clone
1211
* @req: request_sock
1212
* @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1213
*
1214
* Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1215
*/
1216
struct sock *inet_csk_clone_lock(const struct sock *sk,
1217
const struct request_sock *req,
1218
const gfp_t priority)
1219
{
1220
struct sock *newsk = sk_clone_lock(sk, priority);
1221
struct inet_connection_sock *newicsk;
1222
struct inet_request_sock *ireq;
1223
struct inet_sock *newinet;
1224
1225
if (!newsk)
1226
return NULL;
1227
1228
newicsk = inet_csk(newsk);
1229
newinet = inet_sk(newsk);
1230
ireq = inet_rsk(req);
1231
1232
newicsk->icsk_bind_hash = NULL;
1233
newicsk->icsk_bind2_hash = NULL;
1234
1235
newinet->inet_dport = ireq->ir_rmt_port;
1236
newinet->inet_num = ireq->ir_num;
1237
newinet->inet_sport = htons(ireq->ir_num);
1238
1239
newsk->sk_bound_dev_if = ireq->ir_iif;
1240
1241
newsk->sk_daddr = ireq->ir_rmt_addr;
1242
newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1243
newinet->inet_saddr = ireq->ir_loc_addr;
1244
1245
#if IS_ENABLED(CONFIG_IPV6)
1246
newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1247
newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1248
#endif
1249
1250
/* listeners have SOCK_RCU_FREE, not the children */
1251
sock_reset_flag(newsk, SOCK_RCU_FREE);
1252
1253
inet_sk(newsk)->mc_list = NULL;
1254
1255
newsk->sk_mark = inet_rsk(req)->ir_mark;
1256
atomic64_set(&newsk->sk_cookie,
1257
atomic64_read(&inet_rsk(req)->ir_cookie));
1258
1259
newicsk->icsk_retransmits = 0;
1260
newicsk->icsk_backoff = 0;
1261
newicsk->icsk_probes_out = 0;
1262
newicsk->icsk_probes_tstamp = 0;
1263
1264
/* Deinitialize accept_queue to trap illegal accesses. */
1265
memset(&newicsk->icsk_accept_queue, 0,
1266
sizeof(newicsk->icsk_accept_queue));
1267
1268
inet_sk_set_state(newsk, TCP_SYN_RECV);
1269
1270
inet_clone_ulp(req, newsk, priority);
1271
1272
security_inet_csk_clone(newsk, req);
1273
1274
return newsk;
1275
}
1276
1277
/*
1278
* At this point, there should be no process reference to this
1279
* socket, and thus no user references at all. Therefore we
1280
* can assume the socket waitqueue is inactive and nobody will
1281
* try to jump onto it.
1282
*/
1283
void inet_csk_destroy_sock(struct sock *sk)
1284
{
1285
WARN_ON(sk->sk_state != TCP_CLOSE);
1286
WARN_ON(!sock_flag(sk, SOCK_DEAD));
1287
1288
/* It cannot be in hash table! */
1289
WARN_ON(!sk_unhashed(sk));
1290
1291
/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1292
WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1293
1294
sk->sk_prot->destroy(sk);
1295
1296
sk_stream_kill_queues(sk);
1297
1298
xfrm_sk_free_policy(sk);
1299
1300
this_cpu_dec(*sk->sk_prot->orphan_count);
1301
1302
sock_put(sk);
1303
}
1304
EXPORT_SYMBOL(inet_csk_destroy_sock);
1305
1306
/* This function allows to force a closure of a socket after the call to
1307
* tcp_create_openreq_child().
1308
*/
1309
void inet_csk_prepare_forced_close(struct sock *sk)
1310
__releases(&sk->sk_lock.slock)
1311
{
1312
/* sk_clone_lock locked the socket and set refcnt to 2 */
1313
bh_unlock_sock(sk);
1314
sock_put(sk);
1315
inet_csk_prepare_for_destroy_sock(sk);
1316
inet_sk(sk)->inet_num = 0;
1317
}
1318
EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1319
1320
static int inet_ulp_can_listen(const struct sock *sk)
1321
{
1322
const struct inet_connection_sock *icsk = inet_csk(sk);
1323
1324
if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1325
return -EINVAL;
1326
1327
return 0;
1328
}
1329
1330
int inet_csk_listen_start(struct sock *sk)
1331
{
1332
struct inet_connection_sock *icsk = inet_csk(sk);
1333
struct inet_sock *inet = inet_sk(sk);
1334
int err;
1335
1336
err = inet_ulp_can_listen(sk);
1337
if (unlikely(err))
1338
return err;
1339
1340
reqsk_queue_alloc(&icsk->icsk_accept_queue);
1341
1342
sk->sk_ack_backlog = 0;
1343
inet_csk_delack_init(sk);
1344
1345
/* There is race window here: we announce ourselves listening,
1346
* but this transition is still not validated by get_port().
1347
* It is OK, because this socket enters to hash table only
1348
* after validation is complete.
1349
*/
1350
inet_sk_state_store(sk, TCP_LISTEN);
1351
err = sk->sk_prot->get_port(sk, inet->inet_num);
1352
if (!err) {
1353
inet->inet_sport = htons(inet->inet_num);
1354
1355
sk_dst_reset(sk);
1356
err = sk->sk_prot->hash(sk);
1357
1358
if (likely(!err))
1359
return 0;
1360
}
1361
1362
inet_sk_set_state(sk, TCP_CLOSE);
1363
return err;
1364
}
1365
1366
static void inet_child_forget(struct sock *sk, struct request_sock *req,
1367
struct sock *child)
1368
{
1369
sk->sk_prot->disconnect(child, O_NONBLOCK);
1370
1371
sock_orphan(child);
1372
1373
this_cpu_inc(*sk->sk_prot->orphan_count);
1374
1375
if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1376
BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1377
BUG_ON(sk != req->rsk_listener);
1378
1379
/* Paranoid, to prevent race condition if
1380
* an inbound pkt destined for child is
1381
* blocked by sock lock in tcp_v4_rcv().
1382
* Also to satisfy an assertion in
1383
* tcp_v4_destroy_sock().
1384
*/
1385
RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1386
}
1387
inet_csk_destroy_sock(child);
1388
}
1389
1390
struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1391
struct request_sock *req,
1392
struct sock *child)
1393
{
1394
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1395
1396
spin_lock(&queue->rskq_lock);
1397
if (unlikely(sk->sk_state != TCP_LISTEN)) {
1398
inet_child_forget(sk, req, child);
1399
child = NULL;
1400
} else {
1401
req->sk = child;
1402
req->dl_next = NULL;
1403
if (queue->rskq_accept_head == NULL)
1404
WRITE_ONCE(queue->rskq_accept_head, req);
1405
else
1406
queue->rskq_accept_tail->dl_next = req;
1407
queue->rskq_accept_tail = req;
1408
sk_acceptq_added(sk);
1409
}
1410
spin_unlock(&queue->rskq_lock);
1411
return child;
1412
}
1413
EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1414
1415
struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1416
struct request_sock *req, bool own_req)
1417
{
1418
if (own_req) {
1419
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1420
reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1421
1422
if (sk != req->rsk_listener) {
1423
/* another listening sk has been selected,
1424
* migrate the req to it.
1425
*/
1426
struct request_sock *nreq;
1427
1428
/* hold a refcnt for the nreq->rsk_listener
1429
* which is assigned in inet_reqsk_clone()
1430
*/
1431
sock_hold(sk);
1432
nreq = inet_reqsk_clone(req, sk);
1433
if (!nreq) {
1434
inet_child_forget(sk, req, child);
1435
goto child_put;
1436
}
1437
1438
refcount_set(&nreq->rsk_refcnt, 1);
1439
if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1440
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1441
reqsk_migrate_reset(req);
1442
reqsk_put(req);
1443
return child;
1444
}
1445
1446
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1447
reqsk_migrate_reset(nreq);
1448
__reqsk_free(nreq);
1449
} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1450
return child;
1451
}
1452
}
1453
/* Too bad, another child took ownership of the request, undo. */
1454
child_put:
1455
bh_unlock_sock(child);
1456
sock_put(child);
1457
return NULL;
1458
}
1459
1460
/*
1461
* This routine closes sockets which have been at least partially
1462
* opened, but not yet accepted.
1463
*/
1464
void inet_csk_listen_stop(struct sock *sk)
1465
{
1466
struct inet_connection_sock *icsk = inet_csk(sk);
1467
struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1468
struct request_sock *next, *req;
1469
1470
/* Following specs, it would be better either to send FIN
1471
* (and enter FIN-WAIT-1, it is normal close)
1472
* or to send active reset (abort).
1473
* Certainly, it is pretty dangerous while synflood, but it is
1474
* bad justification for our negligence 8)
1475
* To be honest, we are not able to make either
1476
* of the variants now. --ANK
1477
*/
1478
while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1479
struct sock *child = req->sk, *nsk;
1480
struct request_sock *nreq;
1481
1482
local_bh_disable();
1483
bh_lock_sock(child);
1484
WARN_ON(sock_owned_by_user(child));
1485
sock_hold(child);
1486
1487
nsk = reuseport_migrate_sock(sk, child, NULL);
1488
if (nsk) {
1489
nreq = inet_reqsk_clone(req, nsk);
1490
if (nreq) {
1491
refcount_set(&nreq->rsk_refcnt, 1);
1492
1493
if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1494
__NET_INC_STATS(sock_net(nsk),
1495
LINUX_MIB_TCPMIGRATEREQSUCCESS);
1496
reqsk_migrate_reset(req);
1497
} else {
1498
__NET_INC_STATS(sock_net(nsk),
1499
LINUX_MIB_TCPMIGRATEREQFAILURE);
1500
reqsk_migrate_reset(nreq);
1501
__reqsk_free(nreq);
1502
}
1503
1504
/* inet_csk_reqsk_queue_add() has already
1505
* called inet_child_forget() on failure case.
1506
*/
1507
goto skip_child_forget;
1508
}
1509
}
1510
1511
inet_child_forget(sk, req, child);
1512
skip_child_forget:
1513
reqsk_put(req);
1514
bh_unlock_sock(child);
1515
local_bh_enable();
1516
sock_put(child);
1517
1518
cond_resched();
1519
}
1520
if (queue->fastopenq.rskq_rst_head) {
1521
/* Free all the reqs queued in rskq_rst_head. */
1522
spin_lock_bh(&queue->fastopenq.lock);
1523
req = queue->fastopenq.rskq_rst_head;
1524
queue->fastopenq.rskq_rst_head = NULL;
1525
spin_unlock_bh(&queue->fastopenq.lock);
1526
while (req != NULL) {
1527
next = req->dl_next;
1528
reqsk_put(req);
1529
req = next;
1530
}
1531
}
1532
WARN_ON_ONCE(sk->sk_ack_backlog);
1533
}
1534
EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1535
1536
static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1537
{
1538
const struct inet_sock *inet = inet_sk(sk);
1539
struct flowi4 *fl4;
1540
struct rtable *rt;
1541
1542
rcu_read_lock();
1543
fl4 = &fl->u.ip4;
1544
inet_sk_init_flowi4(inet, fl4);
1545
rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1546
if (IS_ERR(rt))
1547
rt = NULL;
1548
if (rt)
1549
sk_setup_caps(sk, &rt->dst);
1550
rcu_read_unlock();
1551
1552
return &rt->dst;
1553
}
1554
1555
struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1556
{
1557
struct dst_entry *dst = __sk_dst_check(sk, 0);
1558
struct inet_sock *inet = inet_sk(sk);
1559
1560
if (!dst) {
1561
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1562
if (!dst)
1563
goto out;
1564
}
1565
dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1566
1567
dst = __sk_dst_check(sk, 0);
1568
if (!dst)
1569
dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1570
out:
1571
return dst;
1572
}
1573
1574