Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/inet_timewait_sock.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* Generic TIME_WAIT sockets functions
8
*
9
* From code orinally in TCP
10
*/
11
12
#include <linux/kernel.h>
13
#include <linux/slab.h>
14
#include <linux/module.h>
15
#include <net/inet_hashtables.h>
16
#include <net/inet_timewait_sock.h>
17
#include <net/ip.h>
18
19
20
/**
21
* inet_twsk_bind_unhash - unhash a timewait socket from bind hash
22
* @tw: timewait socket
23
* @hashinfo: hashinfo pointer
24
*
25
* unhash a timewait socket from bind hash, if hashed.
26
* bind hash lock must be held by caller.
27
* Returns 1 if caller should call inet_twsk_put() after lock release.
28
*/
29
void inet_twsk_bind_unhash(struct inet_timewait_sock *tw,
30
struct inet_hashinfo *hashinfo)
31
{
32
struct inet_bind2_bucket *tb2 = tw->tw_tb2;
33
struct inet_bind_bucket *tb = tw->tw_tb;
34
35
if (!tb)
36
return;
37
38
__sk_del_bind_node((struct sock *)tw);
39
tw->tw_tb = NULL;
40
tw->tw_tb2 = NULL;
41
inet_bind2_bucket_destroy(hashinfo->bind2_bucket_cachep, tb2);
42
inet_bind_bucket_destroy(tb);
43
44
__sock_put((struct sock *)tw);
45
}
46
47
/* Must be called with locally disabled BHs. */
48
static void inet_twsk_kill(struct inet_timewait_sock *tw)
49
{
50
struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
51
spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
52
struct inet_bind_hashbucket *bhead, *bhead2;
53
54
spin_lock(lock);
55
sk_nulls_del_node_init_rcu((struct sock *)tw);
56
spin_unlock(lock);
57
58
/* Disassociate with bind bucket. */
59
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num,
60
hashinfo->bhash_size)];
61
bhead2 = inet_bhashfn_portaddr(hashinfo, (struct sock *)tw,
62
twsk_net(tw), tw->tw_num);
63
64
spin_lock(&bhead->lock);
65
spin_lock(&bhead2->lock);
66
inet_twsk_bind_unhash(tw, hashinfo);
67
spin_unlock(&bhead2->lock);
68
spin_unlock(&bhead->lock);
69
70
refcount_dec(&tw->tw_dr->tw_refcount);
71
inet_twsk_put(tw);
72
}
73
74
void inet_twsk_free(struct inet_timewait_sock *tw)
75
{
76
struct module *owner = tw->tw_prot->owner;
77
twsk_destructor((struct sock *)tw);
78
kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw);
79
module_put(owner);
80
}
81
82
void inet_twsk_put(struct inet_timewait_sock *tw)
83
{
84
if (refcount_dec_and_test(&tw->tw_refcnt))
85
inet_twsk_free(tw);
86
}
87
EXPORT_SYMBOL_GPL(inet_twsk_put);
88
89
static void inet_twsk_add_node_rcu(struct inet_timewait_sock *tw,
90
struct hlist_nulls_head *list)
91
{
92
hlist_nulls_add_head_rcu(&tw->tw_node, list);
93
}
94
95
static void inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo)
96
{
97
__inet_twsk_schedule(tw, timeo, false);
98
}
99
100
/*
101
* Enter the time wait state.
102
* Essentially we whip up a timewait bucket, copy the relevant info into it
103
* from the SK, and mess with hash chains and list linkage.
104
*
105
* The caller must not access @tw anymore after this function returns.
106
*/
107
void inet_twsk_hashdance_schedule(struct inet_timewait_sock *tw,
108
struct sock *sk,
109
struct inet_hashinfo *hashinfo,
110
int timeo)
111
{
112
const struct inet_sock *inet = inet_sk(sk);
113
const struct inet_connection_sock *icsk = inet_csk(sk);
114
struct inet_ehash_bucket *ehead = inet_ehash_bucket(hashinfo, sk->sk_hash);
115
spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
116
struct inet_bind_hashbucket *bhead, *bhead2;
117
118
/* Step 1: Put TW into bind hash. Original socket stays there too.
119
Note, that any socket with inet->num != 0 MUST be bound in
120
binding cache, even if it is closed.
121
*/
122
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num,
123
hashinfo->bhash_size)];
124
bhead2 = inet_bhashfn_portaddr(hashinfo, sk, twsk_net(tw), inet->inet_num);
125
126
local_bh_disable();
127
spin_lock(&bhead->lock);
128
spin_lock(&bhead2->lock);
129
130
tw->tw_tb = icsk->icsk_bind_hash;
131
WARN_ON(!icsk->icsk_bind_hash);
132
133
tw->tw_tb2 = icsk->icsk_bind2_hash;
134
WARN_ON(!icsk->icsk_bind2_hash);
135
sk_add_bind_node((struct sock *)tw, &tw->tw_tb2->owners);
136
137
spin_unlock(&bhead2->lock);
138
spin_unlock(&bhead->lock);
139
140
spin_lock(lock);
141
142
/* Step 2: Hash TW into tcp ehash chain */
143
inet_twsk_add_node_rcu(tw, &ehead->chain);
144
145
/* Step 3: Remove SK from hash chain */
146
if (__sk_nulls_del_node_init_rcu(sk))
147
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
148
149
150
/* Ensure above writes are committed into memory before updating the
151
* refcount.
152
* Provides ordering vs later refcount_inc().
153
*/
154
smp_wmb();
155
/* tw_refcnt is set to 3 because we have :
156
* - one reference for bhash chain.
157
* - one reference for ehash chain.
158
* - one reference for timer.
159
* Also note that after this point, we lost our implicit reference
160
* so we are not allowed to use tw anymore.
161
*/
162
refcount_set(&tw->tw_refcnt, 3);
163
164
inet_twsk_schedule(tw, timeo);
165
166
spin_unlock(lock);
167
local_bh_enable();
168
}
169
170
static void tw_timer_handler(struct timer_list *t)
171
{
172
struct inet_timewait_sock *tw = timer_container_of(tw, t, tw_timer);
173
174
inet_twsk_kill(tw);
175
}
176
177
struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk,
178
struct inet_timewait_death_row *dr,
179
const int state)
180
{
181
struct inet_timewait_sock *tw;
182
183
if (refcount_read(&dr->tw_refcount) - 1 >=
184
READ_ONCE(dr->sysctl_max_tw_buckets))
185
return NULL;
186
187
tw = kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab,
188
GFP_ATOMIC);
189
if (tw) {
190
const struct inet_sock *inet = inet_sk(sk);
191
192
tw->tw_dr = dr;
193
/* Give us an identity. */
194
tw->tw_daddr = inet->inet_daddr;
195
tw->tw_rcv_saddr = inet->inet_rcv_saddr;
196
tw->tw_bound_dev_if = sk->sk_bound_dev_if;
197
tw->tw_tos = inet->tos;
198
tw->tw_num = inet->inet_num;
199
tw->tw_state = TCP_TIME_WAIT;
200
tw->tw_substate = state;
201
tw->tw_sport = inet->inet_sport;
202
tw->tw_dport = inet->inet_dport;
203
tw->tw_family = sk->sk_family;
204
tw->tw_reuse = sk->sk_reuse;
205
tw->tw_reuseport = sk->sk_reuseport;
206
tw->tw_hash = sk->sk_hash;
207
tw->tw_ipv6only = 0;
208
tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
209
tw->tw_prot = sk->sk_prot_creator;
210
atomic64_set(&tw->tw_cookie, atomic64_read(&sk->sk_cookie));
211
twsk_net_set(tw, sock_net(sk));
212
timer_setup(&tw->tw_timer, tw_timer_handler, 0);
213
/*
214
* Because we use RCU lookups, we should not set tw_refcnt
215
* to a non null value before everything is setup for this
216
* timewait socket.
217
*/
218
refcount_set(&tw->tw_refcnt, 0);
219
220
__module_get(tw->tw_prot->owner);
221
}
222
223
return tw;
224
}
225
226
/* These are always called from BH context. See callers in
227
* tcp_input.c to verify this.
228
*/
229
230
/* This is for handling early-kills of TIME_WAIT sockets.
231
* Warning : consume reference.
232
* Caller should not access tw anymore.
233
*/
234
void inet_twsk_deschedule_put(struct inet_timewait_sock *tw)
235
{
236
struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
237
spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
238
239
/* inet_twsk_purge() walks over all sockets, including tw ones,
240
* and removes them via inet_twsk_deschedule_put() after a
241
* refcount_inc_not_zero().
242
*
243
* inet_twsk_hashdance_schedule() must (re)init the refcount before
244
* arming the timer, i.e. inet_twsk_purge can obtain a reference to
245
* a twsk that did not yet schedule the timer.
246
*
247
* The ehash lock synchronizes these two:
248
* After acquiring the lock, the timer is always scheduled (else
249
* timer_shutdown returns false), because hashdance_schedule releases
250
* the ehash lock only after completing the timer initialization.
251
*
252
* Without grabbing the ehash lock, we get:
253
* 1) cpu x sets twsk refcount to 3
254
* 2) cpu y bumps refcount to 4
255
* 3) cpu y calls inet_twsk_deschedule_put() and shuts timer down
256
* 4) cpu x tries to start timer, but mod_timer is a noop post-shutdown
257
* -> timer refcount is never decremented.
258
*/
259
spin_lock(lock);
260
/* Makes sure hashdance_schedule() has completed */
261
spin_unlock(lock);
262
263
if (timer_shutdown_sync(&tw->tw_timer))
264
inet_twsk_kill(tw);
265
inet_twsk_put(tw);
266
}
267
EXPORT_SYMBOL(inet_twsk_deschedule_put);
268
269
void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm)
270
{
271
/* timeout := RTO * 3.5
272
*
273
* 3.5 = 1+2+0.5 to wait for two retransmits.
274
*
275
* RATIONALE: if FIN arrived and we entered TIME-WAIT state,
276
* our ACK acking that FIN can be lost. If N subsequent retransmitted
277
* FINs (or previous seqments) are lost (probability of such event
278
* is p^(N+1), where p is probability to lose single packet and
279
* time to detect the loss is about RTO*(2^N - 1) with exponential
280
* backoff). Normal timewait length is calculated so, that we
281
* waited at least for one retransmitted FIN (maximal RTO is 120sec).
282
* [ BTW Linux. following BSD, violates this requirement waiting
283
* only for 60sec, we should wait at least for 240 secs.
284
* Well, 240 consumes too much of resources 8)
285
* ]
286
* This interval is not reduced to catch old duplicate and
287
* responces to our wandering segments living for two MSLs.
288
* However, if we use PAWS to detect
289
* old duplicates, we can reduce the interval to bounds required
290
* by RTO, rather than MSL. So, if peer understands PAWS, we
291
* kill tw bucket after 3.5*RTO (it is important that this number
292
* is greater than TS tick!) and detect old duplicates with help
293
* of PAWS.
294
*/
295
296
if (!rearm) {
297
bool kill = timeo <= 4*HZ;
298
299
__NET_INC_STATS(twsk_net(tw), kill ? LINUX_MIB_TIMEWAITKILLED :
300
LINUX_MIB_TIMEWAITED);
301
BUG_ON(mod_timer(&tw->tw_timer, jiffies + timeo));
302
refcount_inc(&tw->tw_dr->tw_refcount);
303
} else {
304
mod_timer_pending(&tw->tw_timer, jiffies + timeo);
305
}
306
}
307
308
/* Remove all non full sockets (TIME_WAIT and NEW_SYN_RECV) for dead netns */
309
void inet_twsk_purge(struct inet_hashinfo *hashinfo)
310
{
311
struct inet_ehash_bucket *head = &hashinfo->ehash[0];
312
unsigned int ehash_mask = hashinfo->ehash_mask;
313
struct hlist_nulls_node *node;
314
unsigned int slot;
315
struct sock *sk;
316
317
for (slot = 0; slot <= ehash_mask; slot++, head++) {
318
if (hlist_nulls_empty(&head->chain))
319
continue;
320
321
restart_rcu:
322
cond_resched();
323
rcu_read_lock();
324
restart:
325
sk_nulls_for_each_rcu(sk, node, &head->chain) {
326
int state = inet_sk_state_load(sk);
327
328
if ((1 << state) & ~(TCPF_TIME_WAIT |
329
TCPF_NEW_SYN_RECV))
330
continue;
331
332
if (refcount_read(&sock_net(sk)->ns.count))
333
continue;
334
335
if (unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
336
continue;
337
338
if (refcount_read(&sock_net(sk)->ns.count)) {
339
sock_gen_put(sk);
340
goto restart;
341
}
342
343
rcu_read_unlock();
344
local_bh_disable();
345
if (state == TCP_TIME_WAIT) {
346
inet_twsk_deschedule_put(inet_twsk(sk));
347
} else {
348
struct request_sock *req = inet_reqsk(sk);
349
350
inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
351
req);
352
}
353
local_bh_enable();
354
goto restart_rcu;
355
}
356
/* If the nulls value we got at the end of this lookup is
357
* not the expected one, we must restart lookup.
358
* We probably met an item that was moved to another chain.
359
*/
360
if (get_nulls_value(node) != slot)
361
goto restart;
362
rcu_read_unlock();
363
}
364
}
365
366