Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/inet_timewait_sock.c
50387 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* Generic TIME_WAIT sockets functions
8
*
9
* From code orinally in TCP
10
*/
11
12
#include <linux/kernel.h>
13
#include <linux/slab.h>
14
#include <linux/module.h>
15
#include <net/inet_hashtables.h>
16
#include <net/inet_timewait_sock.h>
17
#include <net/ip.h>
18
#include <net/tcp.h>
19
#include <net/psp.h>
20
21
/**
22
* inet_twsk_bind_unhash - unhash a timewait socket from bind hash
23
* @tw: timewait socket
24
* @hashinfo: hashinfo pointer
25
*
26
* unhash a timewait socket from bind hash, if hashed.
27
* bind hash lock must be held by caller.
28
* Returns 1 if caller should call inet_twsk_put() after lock release.
29
*/
30
void inet_twsk_bind_unhash(struct inet_timewait_sock *tw,
31
struct inet_hashinfo *hashinfo)
32
{
33
struct inet_bind2_bucket *tb2 = tw->tw_tb2;
34
struct inet_bind_bucket *tb = tw->tw_tb;
35
36
if (!tb)
37
return;
38
39
__sk_del_bind_node((struct sock *)tw);
40
tw->tw_tb = NULL;
41
tw->tw_tb2 = NULL;
42
inet_bind2_bucket_destroy(hashinfo->bind2_bucket_cachep, tb2);
43
inet_bind_bucket_destroy(tb);
44
45
__sock_put((struct sock *)tw);
46
}
47
48
/* Must be called with locally disabled BHs. */
49
static void inet_twsk_kill(struct inet_timewait_sock *tw)
50
{
51
struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
52
spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
53
struct inet_bind_hashbucket *bhead, *bhead2;
54
55
spin_lock(lock);
56
sk_nulls_del_node_init_rcu((struct sock *)tw);
57
spin_unlock(lock);
58
59
/* Disassociate with bind bucket. */
60
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num,
61
hashinfo->bhash_size)];
62
bhead2 = inet_bhashfn_portaddr(hashinfo, (struct sock *)tw,
63
twsk_net(tw), tw->tw_num);
64
65
spin_lock(&bhead->lock);
66
spin_lock(&bhead2->lock);
67
inet_twsk_bind_unhash(tw, hashinfo);
68
spin_unlock(&bhead2->lock);
69
spin_unlock(&bhead->lock);
70
71
refcount_dec(&tw->tw_dr->tw_refcount);
72
inet_twsk_put(tw);
73
}
74
75
void inet_twsk_free(struct inet_timewait_sock *tw)
76
{
77
struct module *owner = tw->tw_prot->owner;
78
79
tcp_twsk_destructor((struct sock *)tw);
80
kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw);
81
module_put(owner);
82
}
83
84
void inet_twsk_put(struct inet_timewait_sock *tw)
85
{
86
if (refcount_dec_and_test(&tw->tw_refcnt))
87
inet_twsk_free(tw);
88
}
89
EXPORT_SYMBOL_GPL(inet_twsk_put);
90
91
static void inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo)
92
{
93
__inet_twsk_schedule(tw, timeo, false);
94
}
95
96
/*
97
* Enter the time wait state.
98
* Essentially we whip up a timewait bucket, copy the relevant info into it
99
* from the SK, and mess with hash chains and list linkage.
100
*
101
* The caller must not access @tw anymore after this function returns.
102
*/
103
void inet_twsk_hashdance_schedule(struct inet_timewait_sock *tw,
104
struct sock *sk,
105
struct inet_hashinfo *hashinfo,
106
int timeo)
107
{
108
const struct inet_sock *inet = inet_sk(sk);
109
const struct inet_connection_sock *icsk = inet_csk(sk);
110
spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
111
struct inet_bind_hashbucket *bhead, *bhead2;
112
113
/* Put TW into bind hash. Original socket stays there too.
114
* Note, that any socket with inet->num != 0 MUST be bound in
115
* binding cache, even if it is closed.
116
*/
117
bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num,
118
hashinfo->bhash_size)];
119
bhead2 = inet_bhashfn_portaddr(hashinfo, sk, twsk_net(tw), inet->inet_num);
120
121
local_bh_disable();
122
spin_lock(&bhead->lock);
123
spin_lock(&bhead2->lock);
124
125
tw->tw_tb = icsk->icsk_bind_hash;
126
WARN_ON(!icsk->icsk_bind_hash);
127
128
tw->tw_tb2 = icsk->icsk_bind2_hash;
129
WARN_ON(!icsk->icsk_bind2_hash);
130
sk_add_bind_node((struct sock *)tw, &tw->tw_tb2->owners);
131
132
spin_unlock(&bhead2->lock);
133
spin_unlock(&bhead->lock);
134
135
spin_lock(lock);
136
137
/* tw_refcnt is set to 3 because we have :
138
* - one reference for bhash chain.
139
* - one reference for ehash chain.
140
* - one reference for timer.
141
* Also note that after this point, we lost our implicit reference
142
* so we are not allowed to use tw anymore.
143
*/
144
refcount_set(&tw->tw_refcnt, 3);
145
146
/* Ensure tw_refcnt has been set before tw is published.
147
* smp_wmb() provides the necessary memory barrier to enforce this
148
* ordering.
149
*/
150
smp_wmb();
151
152
hlist_nulls_replace_init_rcu(&sk->sk_nulls_node, &tw->tw_node);
153
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
154
155
inet_twsk_schedule(tw, timeo);
156
157
spin_unlock(lock);
158
local_bh_enable();
159
}
160
161
static void tw_timer_handler(struct timer_list *t)
162
{
163
struct inet_timewait_sock *tw = timer_container_of(tw, t, tw_timer);
164
165
inet_twsk_kill(tw);
166
}
167
168
struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk,
169
struct inet_timewait_death_row *dr,
170
const int state)
171
{
172
struct inet_timewait_sock *tw;
173
174
if (refcount_read(&dr->tw_refcount) - 1 >=
175
READ_ONCE(dr->sysctl_max_tw_buckets))
176
return NULL;
177
178
tw = kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab,
179
GFP_ATOMIC);
180
if (tw) {
181
const struct inet_sock *inet = inet_sk(sk);
182
183
tw->tw_dr = dr;
184
/* Give us an identity. */
185
tw->tw_daddr = inet->inet_daddr;
186
tw->tw_rcv_saddr = inet->inet_rcv_saddr;
187
tw->tw_bound_dev_if = sk->sk_bound_dev_if;
188
tw->tw_tos = inet->tos;
189
tw->tw_num = inet->inet_num;
190
tw->tw_state = TCP_TIME_WAIT;
191
tw->tw_substate = state;
192
tw->tw_sport = inet->inet_sport;
193
tw->tw_dport = inet->inet_dport;
194
tw->tw_family = sk->sk_family;
195
tw->tw_reuse = sk->sk_reuse;
196
tw->tw_reuseport = sk->sk_reuseport;
197
tw->tw_hash = sk->sk_hash;
198
tw->tw_ipv6only = 0;
199
tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
200
tw->tw_connect_bind = !!(sk->sk_userlocks & SOCK_CONNECT_BIND);
201
tw->tw_prot = sk->sk_prot_creator;
202
atomic64_set(&tw->tw_cookie, atomic64_read(&sk->sk_cookie));
203
twsk_net_set(tw, sock_net(sk));
204
timer_setup(&tw->tw_timer, tw_timer_handler, 0);
205
#ifdef CONFIG_SOCK_VALIDATE_XMIT
206
tw->tw_validate_xmit_skb = NULL;
207
#endif
208
/*
209
* Because we use RCU lookups, we should not set tw_refcnt
210
* to a non null value before everything is setup for this
211
* timewait socket.
212
*/
213
refcount_set(&tw->tw_refcnt, 0);
214
215
__module_get(tw->tw_prot->owner);
216
psp_twsk_init(tw, sk);
217
}
218
219
return tw;
220
}
221
222
/* These are always called from BH context. See callers in
223
* tcp_input.c to verify this.
224
*/
225
226
/* This is for handling early-kills of TIME_WAIT sockets.
227
* Warning : consume reference.
228
* Caller should not access tw anymore.
229
*/
230
void inet_twsk_deschedule_put(struct inet_timewait_sock *tw)
231
{
232
struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo;
233
spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
234
235
/* inet_twsk_purge() walks over all sockets, including tw ones,
236
* and removes them via inet_twsk_deschedule_put() after a
237
* refcount_inc_not_zero().
238
*
239
* inet_twsk_hashdance_schedule() must (re)init the refcount before
240
* arming the timer, i.e. inet_twsk_purge can obtain a reference to
241
* a twsk that did not yet schedule the timer.
242
*
243
* The ehash lock synchronizes these two:
244
* After acquiring the lock, the timer is always scheduled (else
245
* timer_shutdown returns false), because hashdance_schedule releases
246
* the ehash lock only after completing the timer initialization.
247
*
248
* Without grabbing the ehash lock, we get:
249
* 1) cpu x sets twsk refcount to 3
250
* 2) cpu y bumps refcount to 4
251
* 3) cpu y calls inet_twsk_deschedule_put() and shuts timer down
252
* 4) cpu x tries to start timer, but mod_timer is a noop post-shutdown
253
* -> timer refcount is never decremented.
254
*/
255
spin_lock(lock);
256
/* Makes sure hashdance_schedule() has completed */
257
spin_unlock(lock);
258
259
if (timer_shutdown_sync(&tw->tw_timer))
260
inet_twsk_kill(tw);
261
inet_twsk_put(tw);
262
}
263
EXPORT_SYMBOL(inet_twsk_deschedule_put);
264
265
void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm)
266
{
267
/* timeout := RTO * 3.5
268
*
269
* 3.5 = 1+2+0.5 to wait for two retransmits.
270
*
271
* RATIONALE: if FIN arrived and we entered TIME-WAIT state,
272
* our ACK acking that FIN can be lost. If N subsequent retransmitted
273
* FINs (or previous seqments) are lost (probability of such event
274
* is p^(N+1), where p is probability to lose single packet and
275
* time to detect the loss is about RTO*(2^N - 1) with exponential
276
* backoff). Normal timewait length is calculated so, that we
277
* waited at least for one retransmitted FIN (maximal RTO is 120sec).
278
* [ BTW Linux. following BSD, violates this requirement waiting
279
* only for 60sec, we should wait at least for 240 secs.
280
* Well, 240 consumes too much of resources 8)
281
* ]
282
* This interval is not reduced to catch old duplicate and
283
* responces to our wandering segments living for two MSLs.
284
* However, if we use PAWS to detect
285
* old duplicates, we can reduce the interval to bounds required
286
* by RTO, rather than MSL. So, if peer understands PAWS, we
287
* kill tw bucket after 3.5*RTO (it is important that this number
288
* is greater than TS tick!) and detect old duplicates with help
289
* of PAWS.
290
*/
291
292
if (!rearm) {
293
bool kill = timeo <= 4*HZ;
294
295
__NET_INC_STATS(twsk_net(tw), kill ? LINUX_MIB_TIMEWAITKILLED :
296
LINUX_MIB_TIMEWAITED);
297
BUG_ON(mod_timer(&tw->tw_timer, jiffies + timeo));
298
refcount_inc(&tw->tw_dr->tw_refcount);
299
} else {
300
mod_timer_pending(&tw->tw_timer, jiffies + timeo);
301
}
302
}
303
304
/* Remove all non full sockets (TIME_WAIT and NEW_SYN_RECV) for dead netns */
305
void inet_twsk_purge(struct inet_hashinfo *hashinfo)
306
{
307
struct inet_ehash_bucket *head = &hashinfo->ehash[0];
308
unsigned int ehash_mask = hashinfo->ehash_mask;
309
struct hlist_nulls_node *node;
310
unsigned int slot;
311
struct sock *sk;
312
313
for (slot = 0; slot <= ehash_mask; slot++, head++) {
314
if (hlist_nulls_empty(&head->chain))
315
continue;
316
317
restart_rcu:
318
cond_resched();
319
rcu_read_lock();
320
restart:
321
sk_nulls_for_each_rcu(sk, node, &head->chain) {
322
int state = inet_sk_state_load(sk);
323
324
if ((1 << state) & ~(TCPF_TIME_WAIT |
325
TCPF_NEW_SYN_RECV))
326
continue;
327
328
if (check_net(sock_net(sk)))
329
continue;
330
331
if (unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
332
continue;
333
334
if (check_net(sock_net(sk))) {
335
sock_gen_put(sk);
336
goto restart;
337
}
338
339
rcu_read_unlock();
340
local_bh_disable();
341
if (state == TCP_TIME_WAIT) {
342
inet_twsk_deschedule_put(inet_twsk(sk));
343
} else {
344
struct request_sock *req = inet_reqsk(sk);
345
346
inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
347
req);
348
}
349
local_bh_enable();
350
goto restart_rcu;
351
}
352
/* If the nulls value we got at the end of this lookup is
353
* not the expected one, we must restart lookup.
354
* We probably met an item that was moved to another chain.
355
*/
356
if (get_nulls_value(node) != slot)
357
goto restart;
358
rcu_read_unlock();
359
}
360
}
361
362