Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/ip_input.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* The Internet Protocol (IP) module.
8
*
9
* Authors: Ross Biro
10
* Fred N. van Kempen, <[email protected]>
11
* Donald Becker, <[email protected]>
12
* Alan Cox, <[email protected]>
13
* Richard Underwood
14
* Stefan Becker, <[email protected]>
15
* Jorge Cwik, <[email protected]>
16
* Arnt Gulbrandsen, <[email protected]>
17
*
18
* Fixes:
19
* Alan Cox : Commented a couple of minor bits of surplus code
20
* Alan Cox : Undefining IP_FORWARD doesn't include the code
21
* (just stops a compiler warning).
22
* Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23
* are junked rather than corrupting things.
24
* Alan Cox : Frames to bad broadcast subnets are dumped
25
* We used to process them non broadcast and
26
* boy could that cause havoc.
27
* Alan Cox : ip_forward sets the free flag on the
28
* new frame it queues. Still crap because
29
* it copies the frame but at least it
30
* doesn't eat memory too.
31
* Alan Cox : Generic queue code and memory fixes.
32
* Fred Van Kempen : IP fragment support (borrowed from NET2E)
33
* Gerhard Koerting: Forward fragmented frames correctly.
34
* Gerhard Koerting: Fixes to my fix of the above 8-).
35
* Gerhard Koerting: IP interface addressing fix.
36
* Linus Torvalds : More robustness checks
37
* Alan Cox : Even more checks: Still not as robust as it ought to be
38
* Alan Cox : Save IP header pointer for later
39
* Alan Cox : ip option setting
40
* Alan Cox : Use ip_tos/ip_ttl settings
41
* Alan Cox : Fragmentation bogosity removed
42
* (Thanks to [email protected])
43
* Dmitry Gorodchanin : Send of a raw packet crash fix.
44
* Alan Cox : Silly ip bug when an overlength
45
* fragment turns up. Now frees the
46
* queue.
47
* Linus Torvalds/ : Memory leakage on fragmentation
48
* Alan Cox : handling.
49
* Gerhard Koerting: Forwarding uses IP priority hints
50
* Teemu Rantanen : Fragment problems.
51
* Alan Cox : General cleanup, comments and reformat
52
* Alan Cox : SNMP statistics
53
* Alan Cox : BSD address rule semantics. Also see
54
* UDP as there is a nasty checksum issue
55
* if you do things the wrong way.
56
* Alan Cox : Always defrag, moved IP_FORWARD to the config.in file
57
* Alan Cox : IP options adjust sk->priority.
58
* Pedro Roque : Fix mtu/length error in ip_forward.
59
* Alan Cox : Avoid ip_chk_addr when possible.
60
* Richard Underwood : IP multicasting.
61
* Alan Cox : Cleaned up multicast handlers.
62
* Alan Cox : RAW sockets demultiplex in the BSD style.
63
* Gunther Mayer : Fix the SNMP reporting typo
64
* Alan Cox : Always in group 224.0.0.1
65
* Pauline Middelink : Fast ip_checksum update when forwarding
66
* Masquerading support.
67
* Alan Cox : Multicast loopback error for 224.0.0.1
68
* Alan Cox : IP_MULTICAST_LOOP option.
69
* Alan Cox : Use notifiers.
70
* Bjorn Ekwall : Removed ip_csum (from slhc.c too)
71
* Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!)
72
* Stefan Becker : Send out ICMP HOST REDIRECT
73
* Arnt Gulbrandsen : ip_build_xmit
74
* Alan Cox : Per socket routing cache
75
* Alan Cox : Fixed routing cache, added header cache.
76
* Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it.
77
* Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net.
78
* Alan Cox : Incoming IP option handling.
79
* Alan Cox : Set saddr on raw output frames as per BSD.
80
* Alan Cox : Stopped broadcast source route explosions.
81
* Alan Cox : Can disable source routing
82
* Takeshi Sone : Masquerading didn't work.
83
* Dave Bonn,Alan Cox : Faster IP forwarding whenever possible.
84
* Alan Cox : Memory leaks, tramples, misc debugging.
85
* Alan Cox : Fixed multicast (by popular demand 8))
86
* Alan Cox : Fixed forwarding (by even more popular demand 8))
87
* Alan Cox : Fixed SNMP statistics [I think]
88
* Gerhard Koerting : IP fragmentation forwarding fix
89
* Alan Cox : Device lock against page fault.
90
* Alan Cox : IP_HDRINCL facility.
91
* Werner Almesberger : Zero fragment bug
92
* Alan Cox : RAW IP frame length bug
93
* Alan Cox : Outgoing firewall on build_xmit
94
* A.N.Kuznetsov : IP_OPTIONS support throughout the kernel
95
* Alan Cox : Multicast routing hooks
96
* Jos Vos : Do accounting *before* call_in_firewall
97
* Willy Konynenberg : Transparent proxying support
98
*
99
* To Fix:
100
* IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101
* and could be made very efficient with the addition of some virtual memory hacks to permit
102
* the allocation of a buffer that can then be 'grown' by twiddling page tables.
103
* Output fragmentation wants updating along with the buffer management to use a single
104
* interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105
* output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106
* fragmentation anyway.
107
*/
108
109
#define pr_fmt(fmt) "IPv4: " fmt
110
111
#include <linux/module.h>
112
#include <linux/types.h>
113
#include <linux/kernel.h>
114
#include <linux/string.h>
115
#include <linux/errno.h>
116
#include <linux/slab.h>
117
118
#include <linux/net.h>
119
#include <linux/socket.h>
120
#include <linux/sockios.h>
121
#include <linux/in.h>
122
#include <linux/inet.h>
123
#include <linux/inetdevice.h>
124
#include <linux/netdevice.h>
125
#include <linux/etherdevice.h>
126
#include <linux/indirect_call_wrapper.h>
127
128
#include <net/snmp.h>
129
#include <net/ip.h>
130
#include <net/protocol.h>
131
#include <net/route.h>
132
#include <linux/skbuff.h>
133
#include <net/sock.h>
134
#include <net/arp.h>
135
#include <net/icmp.h>
136
#include <net/raw.h>
137
#include <net/checksum.h>
138
#include <net/inet_ecn.h>
139
#include <linux/netfilter_ipv4.h>
140
#include <net/xfrm.h>
141
#include <linux/mroute.h>
142
#include <linux/netlink.h>
143
#include <net/dst_metadata.h>
144
145
/*
146
* Process Router Attention IP option (RFC 2113)
147
*/
148
bool ip_call_ra_chain(struct sk_buff *skb)
149
{
150
struct ip_ra_chain *ra;
151
u8 protocol = ip_hdr(skb)->protocol;
152
struct sock *last = NULL;
153
struct net_device *dev = skb->dev;
154
struct net *net = dev_net(dev);
155
156
for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157
struct sock *sk = ra->sk;
158
159
/* If socket is bound to an interface, only report
160
* the packet if it came from that interface.
161
*/
162
if (sk && inet_sk(sk)->inet_num == protocol &&
163
(!sk->sk_bound_dev_if ||
164
sk->sk_bound_dev_if == dev->ifindex)) {
165
if (ip_is_fragment(ip_hdr(skb))) {
166
if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167
return true;
168
}
169
if (last) {
170
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171
if (skb2)
172
raw_rcv(last, skb2);
173
}
174
last = sk;
175
}
176
}
177
178
if (last) {
179
raw_rcv(last, skb);
180
return true;
181
}
182
return false;
183
}
184
185
INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186
INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187
void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188
{
189
const struct net_protocol *ipprot;
190
int raw, ret;
191
192
resubmit:
193
raw = raw_local_deliver(skb, protocol);
194
195
ipprot = rcu_dereference(inet_protos[protocol]);
196
if (ipprot) {
197
if (!ipprot->no_policy) {
198
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199
kfree_skb_reason(skb,
200
SKB_DROP_REASON_XFRM_POLICY);
201
return;
202
}
203
nf_reset_ct(skb);
204
}
205
ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206
skb);
207
if (ret < 0) {
208
protocol = -ret;
209
goto resubmit;
210
}
211
__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212
} else {
213
if (!raw) {
214
if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215
__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216
icmp_send(skb, ICMP_DEST_UNREACH,
217
ICMP_PROT_UNREACH, 0);
218
}
219
kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220
} else {
221
__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222
consume_skb(skb);
223
}
224
}
225
}
226
227
static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228
{
229
if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) {
230
__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
231
kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
232
return 0;
233
}
234
235
skb_clear_delivery_time(skb);
236
__skb_pull(skb, skb_network_header_len(skb));
237
238
rcu_read_lock();
239
ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
240
rcu_read_unlock();
241
242
return 0;
243
}
244
245
/*
246
* Deliver IP Packets to the higher protocol layers.
247
*/
248
int ip_local_deliver(struct sk_buff *skb)
249
{
250
/*
251
* Reassemble IP fragments.
252
*/
253
struct net *net = dev_net(skb->dev);
254
255
if (ip_is_fragment(ip_hdr(skb))) {
256
if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
257
return 0;
258
}
259
260
return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
261
net, NULL, skb, skb->dev, NULL,
262
ip_local_deliver_finish);
263
}
264
EXPORT_SYMBOL(ip_local_deliver);
265
266
static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
267
{
268
struct ip_options *opt;
269
const struct iphdr *iph;
270
271
/* It looks as overkill, because not all
272
IP options require packet mangling.
273
But it is the easiest for now, especially taking
274
into account that combination of IP options
275
and running sniffer is extremely rare condition.
276
--ANK (980813)
277
*/
278
if (skb_cow(skb, skb_headroom(skb))) {
279
__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
280
goto drop;
281
}
282
283
iph = ip_hdr(skb);
284
opt = &(IPCB(skb)->opt);
285
opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
286
287
if (ip_options_compile(dev_net(dev), opt, skb)) {
288
__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
289
goto drop;
290
}
291
292
if (unlikely(opt->srr)) {
293
struct in_device *in_dev = __in_dev_get_rcu(dev);
294
295
if (in_dev) {
296
if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
297
if (IN_DEV_LOG_MARTIANS(in_dev))
298
net_info_ratelimited("source route option %pI4 -> %pI4\n",
299
&iph->saddr,
300
&iph->daddr);
301
goto drop;
302
}
303
}
304
305
if (ip_options_rcv_srr(skb, dev))
306
goto drop;
307
}
308
309
return false;
310
drop:
311
return true;
312
}
313
314
static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
315
const struct sk_buff *hint)
316
{
317
return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
318
ip_hdr(hint)->tos == iph->tos;
319
}
320
321
int tcp_v4_early_demux(struct sk_buff *skb);
322
int udp_v4_early_demux(struct sk_buff *skb);
323
static int ip_rcv_finish_core(struct net *net,
324
struct sk_buff *skb, struct net_device *dev,
325
const struct sk_buff *hint)
326
{
327
const struct iphdr *iph = ip_hdr(skb);
328
struct rtable *rt;
329
int drop_reason;
330
331
if (ip_can_use_hint(skb, iph, hint)) {
332
drop_reason = ip_route_use_hint(skb, iph->daddr, iph->saddr,
333
ip4h_dscp(iph), dev, hint);
334
if (unlikely(drop_reason))
335
goto drop_error;
336
}
337
338
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
339
if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
340
!skb_dst(skb) &&
341
!skb->sk &&
342
!ip_is_fragment(iph)) {
343
switch (iph->protocol) {
344
case IPPROTO_TCP:
345
if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
346
tcp_v4_early_demux(skb);
347
348
/* must reload iph, skb->head might have changed */
349
iph = ip_hdr(skb);
350
}
351
break;
352
case IPPROTO_UDP:
353
if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
354
drop_reason = udp_v4_early_demux(skb);
355
if (unlikely(drop_reason))
356
goto drop_error;
357
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
358
359
/* must reload iph, skb->head might have changed */
360
iph = ip_hdr(skb);
361
}
362
break;
363
}
364
}
365
366
/*
367
* Initialise the virtual path cache for the packet. It describes
368
* how the packet travels inside Linux networking.
369
*/
370
if (!skb_valid_dst(skb)) {
371
drop_reason = ip_route_input_noref(skb, iph->daddr, iph->saddr,
372
ip4h_dscp(iph), dev);
373
if (unlikely(drop_reason))
374
goto drop_error;
375
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
376
} else {
377
struct in_device *in_dev = __in_dev_get_rcu(dev);
378
379
if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
380
IPCB(skb)->flags |= IPSKB_NOPOLICY;
381
}
382
383
#ifdef CONFIG_IP_ROUTE_CLASSID
384
if (unlikely(skb_dst(skb)->tclassid)) {
385
struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
386
u32 idx = skb_dst(skb)->tclassid;
387
st[idx&0xFF].o_packets++;
388
st[idx&0xFF].o_bytes += skb->len;
389
st[(idx>>16)&0xFF].i_packets++;
390
st[(idx>>16)&0xFF].i_bytes += skb->len;
391
}
392
#endif
393
394
if (iph->ihl > 5 && ip_rcv_options(skb, dev))
395
goto drop;
396
397
rt = skb_rtable(skb);
398
if (rt->rt_type == RTN_MULTICAST) {
399
__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
400
} else if (rt->rt_type == RTN_BROADCAST) {
401
__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
402
} else if (skb->pkt_type == PACKET_BROADCAST ||
403
skb->pkt_type == PACKET_MULTICAST) {
404
struct in_device *in_dev = __in_dev_get_rcu(dev);
405
406
/* RFC 1122 3.3.6:
407
*
408
* When a host sends a datagram to a link-layer broadcast
409
* address, the IP destination address MUST be a legal IP
410
* broadcast or IP multicast address.
411
*
412
* A host SHOULD silently discard a datagram that is received
413
* via a link-layer broadcast (see Section 2.4) but does not
414
* specify an IP multicast or broadcast destination address.
415
*
416
* This doesn't explicitly say L2 *broadcast*, but broadcast is
417
* in a way a form of multicast and the most common use case for
418
* this is 802.11 protecting against cross-station spoofing (the
419
* so-called "hole-196" attack) so do it for both.
420
*/
421
if (in_dev &&
422
IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
423
drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
424
goto drop;
425
}
426
}
427
428
return NET_RX_SUCCESS;
429
430
drop:
431
kfree_skb_reason(skb, drop_reason);
432
return NET_RX_DROP;
433
434
drop_error:
435
if (drop_reason == SKB_DROP_REASON_IP_RPFILTER)
436
__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
437
goto drop;
438
}
439
440
static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
441
{
442
struct net_device *dev = skb->dev;
443
int ret;
444
445
/* if ingress device is enslaved to an L3 master device pass the
446
* skb to its handler for processing
447
*/
448
skb = l3mdev_ip_rcv(skb);
449
if (!skb)
450
return NET_RX_SUCCESS;
451
452
ret = ip_rcv_finish_core(net, skb, dev, NULL);
453
if (ret != NET_RX_DROP)
454
ret = dst_input(skb);
455
return ret;
456
}
457
458
/*
459
* Main IP Receive routine.
460
*/
461
static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
462
{
463
const struct iphdr *iph;
464
int drop_reason;
465
u32 len;
466
467
/* When the interface is in promisc. mode, drop all the crap
468
* that it receives, do not try to analyse it.
469
*/
470
if (skb->pkt_type == PACKET_OTHERHOST) {
471
dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
472
drop_reason = SKB_DROP_REASON_OTHERHOST;
473
goto drop;
474
}
475
476
__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
477
478
skb = skb_share_check(skb, GFP_ATOMIC);
479
if (!skb) {
480
__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
481
goto out;
482
}
483
484
drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
485
if (!pskb_may_pull(skb, sizeof(struct iphdr)))
486
goto inhdr_error;
487
488
iph = ip_hdr(skb);
489
490
/*
491
* RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
492
*
493
* Is the datagram acceptable?
494
*
495
* 1. Length at least the size of an ip header
496
* 2. Version of 4
497
* 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums]
498
* 4. Doesn't have a bogus length
499
*/
500
501
if (iph->ihl < 5 || iph->version != 4)
502
goto inhdr_error;
503
504
BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
505
BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
506
BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
507
__IP_ADD_STATS(net,
508
IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
509
max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
510
511
if (!pskb_may_pull(skb, iph->ihl*4))
512
goto inhdr_error;
513
514
iph = ip_hdr(skb);
515
516
if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
517
goto csum_error;
518
519
len = iph_totlen(skb, iph);
520
if (skb->len < len) {
521
drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
522
__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
523
goto drop;
524
} else if (len < (iph->ihl*4))
525
goto inhdr_error;
526
527
/* Our transport medium may have padded the buffer out. Now we know it
528
* is IP we can trim to the true length of the frame.
529
* Note this now means skb->len holds ntohs(iph->tot_len).
530
*/
531
if (pskb_trim_rcsum(skb, len)) {
532
__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
533
goto drop;
534
}
535
536
iph = ip_hdr(skb);
537
skb->transport_header = skb->network_header + iph->ihl*4;
538
539
/* Remove any debris in the socket control block */
540
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
541
IPCB(skb)->iif = skb->skb_iif;
542
543
/* Must drop socket now because of tproxy. */
544
if (!skb_sk_is_prefetched(skb))
545
skb_orphan(skb);
546
547
return skb;
548
549
csum_error:
550
drop_reason = SKB_DROP_REASON_IP_CSUM;
551
__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
552
inhdr_error:
553
if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
554
drop_reason = SKB_DROP_REASON_IP_INHDR;
555
__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
556
drop:
557
kfree_skb_reason(skb, drop_reason);
558
out:
559
return NULL;
560
}
561
562
/*
563
* IP receive entry point
564
*/
565
int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
566
struct net_device *orig_dev)
567
{
568
struct net *net = dev_net(dev);
569
570
skb = ip_rcv_core(skb, net);
571
if (skb == NULL)
572
return NET_RX_DROP;
573
574
return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
575
net, NULL, skb, dev, NULL,
576
ip_rcv_finish);
577
}
578
579
static void ip_sublist_rcv_finish(struct list_head *head)
580
{
581
struct sk_buff *skb, *next;
582
583
list_for_each_entry_safe(skb, next, head, list) {
584
skb_list_del_init(skb);
585
dst_input(skb);
586
}
587
}
588
589
static struct sk_buff *ip_extract_route_hint(const struct net *net,
590
struct sk_buff *skb, int rt_type)
591
{
592
if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
593
IPCB(skb)->flags & IPSKB_MULTIPATH)
594
return NULL;
595
596
return skb;
597
}
598
599
static void ip_list_rcv_finish(struct net *net, struct list_head *head)
600
{
601
struct sk_buff *skb, *next, *hint = NULL;
602
struct dst_entry *curr_dst = NULL;
603
LIST_HEAD(sublist);
604
605
list_for_each_entry_safe(skb, next, head, list) {
606
struct net_device *dev = skb->dev;
607
struct dst_entry *dst;
608
609
skb_list_del_init(skb);
610
/* if ingress device is enslaved to an L3 master device pass the
611
* skb to its handler for processing
612
*/
613
skb = l3mdev_ip_rcv(skb);
614
if (!skb)
615
continue;
616
if (ip_rcv_finish_core(net, skb, dev, hint) == NET_RX_DROP)
617
continue;
618
619
dst = skb_dst(skb);
620
if (curr_dst != dst) {
621
hint = ip_extract_route_hint(net, skb,
622
dst_rtable(dst)->rt_type);
623
624
/* dispatch old sublist */
625
if (!list_empty(&sublist))
626
ip_sublist_rcv_finish(&sublist);
627
/* start new sublist */
628
INIT_LIST_HEAD(&sublist);
629
curr_dst = dst;
630
}
631
list_add_tail(&skb->list, &sublist);
632
}
633
/* dispatch final sublist */
634
ip_sublist_rcv_finish(&sublist);
635
}
636
637
static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
638
struct net *net)
639
{
640
NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
641
head, dev, NULL, ip_rcv_finish);
642
ip_list_rcv_finish(net, head);
643
}
644
645
/* Receive a list of IP packets */
646
void ip_list_rcv(struct list_head *head, struct packet_type *pt,
647
struct net_device *orig_dev)
648
{
649
struct net_device *curr_dev = NULL;
650
struct net *curr_net = NULL;
651
struct sk_buff *skb, *next;
652
LIST_HEAD(sublist);
653
654
list_for_each_entry_safe(skb, next, head, list) {
655
struct net_device *dev = skb->dev;
656
struct net *net = dev_net(dev);
657
658
skb_list_del_init(skb);
659
skb = ip_rcv_core(skb, net);
660
if (skb == NULL)
661
continue;
662
663
if (curr_dev != dev || curr_net != net) {
664
/* dispatch old sublist */
665
if (!list_empty(&sublist))
666
ip_sublist_rcv(&sublist, curr_dev, curr_net);
667
/* start new sublist */
668
INIT_LIST_HEAD(&sublist);
669
curr_dev = dev;
670
curr_net = net;
671
}
672
list_add_tail(&skb->list, &sublist);
673
}
674
/* dispatch final sublist */
675
if (!list_empty(&sublist))
676
ip_sublist_rcv(&sublist, curr_dev, curr_net);
677
}
678
679