Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/ip_output.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* INET An implementation of the TCP/IP protocol suite for the LINUX
4
* operating system. INET is implemented using the BSD Socket
5
* interface as the means of communication with the user level.
6
*
7
* The Internet Protocol (IP) output module.
8
*
9
* Authors: Ross Biro
10
* Fred N. van Kempen, <[email protected]>
11
* Donald Becker, <[email protected]>
12
* Alan Cox, <[email protected]>
13
* Richard Underwood
14
* Stefan Becker, <[email protected]>
15
* Jorge Cwik, <[email protected]>
16
* Arnt Gulbrandsen, <[email protected]>
17
* Hirokazu Takahashi, <[email protected]>
18
*
19
* See ip_input.c for original log
20
*
21
* Fixes:
22
* Alan Cox : Missing nonblock feature in ip_build_xmit.
23
* Mike Kilburn : htons() missing in ip_build_xmit.
24
* Bradford Johnson: Fix faulty handling of some frames when
25
* no route is found.
26
* Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27
* (in case if packet not accepted by
28
* output firewall rules)
29
* Mike McLagan : Routing by source
30
* Alexey Kuznetsov: use new route cache
31
* Andi Kleen: Fix broken PMTU recovery and remove
32
* some redundant tests.
33
* Vitaly E. Lavrov : Transparent proxy revived after year coma.
34
* Andi Kleen : Replace ip_reply with ip_send_reply.
35
* Andi Kleen : Split fast and slow ip_build_xmit path
36
* for decreased register pressure on x86
37
* and more readability.
38
* Marc Boucher : When call_out_firewall returns FW_QUEUE,
39
* silently drop skb instead of failing with -EPERM.
40
* Detlev Wengorz : Copy protocol for fragments.
41
* Hirokazu Takahashi: HW checksumming for outgoing UDP
42
* datagrams.
43
* Hirokazu Takahashi: sendfile() on UDP works now.
44
*/
45
46
#include <linux/uaccess.h>
47
#include <linux/module.h>
48
#include <linux/types.h>
49
#include <linux/kernel.h>
50
#include <linux/mm.h>
51
#include <linux/string.h>
52
#include <linux/errno.h>
53
#include <linux/highmem.h>
54
#include <linux/slab.h>
55
56
#include <linux/socket.h>
57
#include <linux/sockios.h>
58
#include <linux/in.h>
59
#include <linux/inet.h>
60
#include <linux/netdevice.h>
61
#include <linux/etherdevice.h>
62
#include <linux/proc_fs.h>
63
#include <linux/stat.h>
64
#include <linux/init.h>
65
66
#include <net/snmp.h>
67
#include <net/ip.h>
68
#include <net/protocol.h>
69
#include <net/route.h>
70
#include <net/xfrm.h>
71
#include <linux/skbuff.h>
72
#include <net/sock.h>
73
#include <net/arp.h>
74
#include <net/icmp.h>
75
#include <net/checksum.h>
76
#include <net/gso.h>
77
#include <net/inetpeer.h>
78
#include <net/lwtunnel.h>
79
#include <net/inet_dscp.h>
80
#include <linux/bpf-cgroup.h>
81
#include <linux/igmp.h>
82
#include <linux/netfilter_ipv4.h>
83
#include <linux/netfilter_bridge.h>
84
#include <linux/netlink.h>
85
#include <linux/tcp.h>
86
87
static int
88
ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
89
unsigned int mtu,
90
int (*output)(struct net *, struct sock *, struct sk_buff *));
91
92
/* Generate a checksum for an outgoing IP datagram. */
93
void ip_send_check(struct iphdr *iph)
94
{
95
iph->check = 0;
96
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
97
}
98
EXPORT_SYMBOL(ip_send_check);
99
100
int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
101
{
102
struct iphdr *iph = ip_hdr(skb);
103
104
IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
105
106
iph_set_totlen(iph, skb->len);
107
ip_send_check(iph);
108
109
/* if egress device is enslaved to an L3 master device pass the
110
* skb to its handler for processing
111
*/
112
skb = l3mdev_ip_out(sk, skb);
113
if (unlikely(!skb))
114
return 0;
115
116
skb->protocol = htons(ETH_P_IP);
117
118
return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
119
net, sk, skb, NULL, skb_dst_dev(skb),
120
dst_output);
121
}
122
123
int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
124
{
125
int err;
126
127
err = __ip_local_out(net, sk, skb);
128
if (likely(err == 1))
129
err = dst_output(net, sk, skb);
130
131
return err;
132
}
133
EXPORT_SYMBOL_GPL(ip_local_out);
134
135
static inline int ip_select_ttl(const struct inet_sock *inet,
136
const struct dst_entry *dst)
137
{
138
int ttl = READ_ONCE(inet->uc_ttl);
139
140
if (ttl < 0)
141
ttl = ip4_dst_hoplimit(dst);
142
return ttl;
143
}
144
145
/*
146
* Add an ip header to a skbuff and send it out.
147
*
148
*/
149
int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
150
__be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
151
u8 tos)
152
{
153
const struct inet_sock *inet = inet_sk(sk);
154
struct rtable *rt = skb_rtable(skb);
155
struct net *net = sock_net(sk);
156
struct iphdr *iph;
157
158
/* Build the IP header. */
159
skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
160
skb_reset_network_header(skb);
161
iph = ip_hdr(skb);
162
iph->version = 4;
163
iph->ihl = 5;
164
iph->tos = tos;
165
iph->ttl = ip_select_ttl(inet, &rt->dst);
166
iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
167
iph->saddr = saddr;
168
iph->protocol = sk->sk_protocol;
169
/* Do not bother generating IPID for small packets (eg SYNACK) */
170
if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
171
iph->frag_off = htons(IP_DF);
172
iph->id = 0;
173
} else {
174
iph->frag_off = 0;
175
/* TCP packets here are SYNACK with fat IPv4/TCP options.
176
* Avoid using the hashed IP ident generator.
177
*/
178
if (sk->sk_protocol == IPPROTO_TCP)
179
iph->id = (__force __be16)get_random_u16();
180
else
181
__ip_select_ident(net, iph, 1);
182
}
183
184
if (opt && opt->opt.optlen) {
185
iph->ihl += opt->opt.optlen>>2;
186
ip_options_build(skb, &opt->opt, daddr, rt);
187
}
188
189
skb->priority = READ_ONCE(sk->sk_priority);
190
if (!skb->mark)
191
skb->mark = READ_ONCE(sk->sk_mark);
192
193
/* Send it out. */
194
return ip_local_out(net, skb->sk, skb);
195
}
196
EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
197
198
static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
199
{
200
struct dst_entry *dst = skb_dst(skb);
201
struct rtable *rt = dst_rtable(dst);
202
struct net_device *dev = dst_dev(dst);
203
unsigned int hh_len = LL_RESERVED_SPACE(dev);
204
struct neighbour *neigh;
205
bool is_v6gw = false;
206
207
if (rt->rt_type == RTN_MULTICAST) {
208
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
209
} else if (rt->rt_type == RTN_BROADCAST)
210
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
211
212
/* OUTOCTETS should be counted after fragment */
213
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
214
215
if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
216
skb = skb_expand_head(skb, hh_len);
217
if (!skb)
218
return -ENOMEM;
219
}
220
221
if (lwtunnel_xmit_redirect(dst->lwtstate)) {
222
int res = lwtunnel_xmit(skb);
223
224
if (res != LWTUNNEL_XMIT_CONTINUE)
225
return res;
226
}
227
228
rcu_read_lock();
229
neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
230
if (!IS_ERR(neigh)) {
231
int res;
232
233
sock_confirm_neigh(skb, neigh);
234
/* if crossing protocols, can not use the cached header */
235
res = neigh_output(neigh, skb, is_v6gw);
236
rcu_read_unlock();
237
return res;
238
}
239
rcu_read_unlock();
240
241
net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
242
__func__);
243
kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
244
return PTR_ERR(neigh);
245
}
246
247
static int ip_finish_output_gso(struct net *net, struct sock *sk,
248
struct sk_buff *skb, unsigned int mtu)
249
{
250
struct sk_buff *segs, *nskb;
251
netdev_features_t features;
252
int ret = 0;
253
254
/* common case: seglen is <= mtu
255
*/
256
if (skb_gso_validate_network_len(skb, mtu))
257
return ip_finish_output2(net, sk, skb);
258
259
/* Slowpath - GSO segment length exceeds the egress MTU.
260
*
261
* This can happen in several cases:
262
* - Forwarding of a TCP GRO skb, when DF flag is not set.
263
* - Forwarding of an skb that arrived on a virtualization interface
264
* (virtio-net/vhost/tap) with TSO/GSO size set by other network
265
* stack.
266
* - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
267
* interface with a smaller MTU.
268
* - Arriving GRO skb (or GSO skb in a virtualized environment) that is
269
* bridged to a NETIF_F_TSO tunnel stacked over an interface with an
270
* insufficient MTU.
271
*/
272
features = netif_skb_features(skb);
273
BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
274
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
275
if (IS_ERR_OR_NULL(segs)) {
276
kfree_skb(skb);
277
return -ENOMEM;
278
}
279
280
consume_skb(skb);
281
282
skb_list_walk_safe(segs, segs, nskb) {
283
int err;
284
285
skb_mark_not_on_list(segs);
286
err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
287
288
if (err && ret == 0)
289
ret = err;
290
}
291
292
return ret;
293
}
294
295
static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
296
{
297
unsigned int mtu;
298
299
#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
300
/* Policy lookup after SNAT yielded a new policy */
301
if (skb_dst(skb)->xfrm) {
302
IPCB(skb)->flags |= IPSKB_REROUTED;
303
return dst_output(net, sk, skb);
304
}
305
#endif
306
mtu = ip_skb_dst_mtu(sk, skb);
307
if (skb_is_gso(skb))
308
return ip_finish_output_gso(net, sk, skb, mtu);
309
310
if (skb->len > mtu || IPCB(skb)->frag_max_size)
311
return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
312
313
return ip_finish_output2(net, sk, skb);
314
}
315
316
static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
317
{
318
int ret;
319
320
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
321
switch (ret) {
322
case NET_XMIT_SUCCESS:
323
return __ip_finish_output(net, sk, skb);
324
case NET_XMIT_CN:
325
return __ip_finish_output(net, sk, skb) ? : ret;
326
default:
327
kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
328
return ret;
329
}
330
}
331
332
static int ip_mc_finish_output(struct net *net, struct sock *sk,
333
struct sk_buff *skb)
334
{
335
struct rtable *new_rt;
336
bool do_cn = false;
337
int ret, err;
338
339
ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
340
switch (ret) {
341
case NET_XMIT_CN:
342
do_cn = true;
343
fallthrough;
344
case NET_XMIT_SUCCESS:
345
break;
346
default:
347
kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
348
return ret;
349
}
350
351
/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
352
* this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
353
* see ipv4_pktinfo_prepare().
354
*/
355
new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
356
if (new_rt) {
357
new_rt->rt_iif = 0;
358
skb_dst_drop(skb);
359
skb_dst_set(skb, &new_rt->dst);
360
}
361
362
err = dev_loopback_xmit(net, sk, skb);
363
return (do_cn && err) ? ret : err;
364
}
365
366
int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
367
{
368
struct rtable *rt = skb_rtable(skb);
369
struct net_device *dev = rt->dst.dev;
370
371
/*
372
* If the indicated interface is up and running, send the packet.
373
*/
374
skb->dev = dev;
375
skb->protocol = htons(ETH_P_IP);
376
377
/*
378
* Multicasts are looped back for other local users
379
*/
380
381
if (rt->rt_flags&RTCF_MULTICAST) {
382
if (sk_mc_loop(sk)
383
#ifdef CONFIG_IP_MROUTE
384
/* Small optimization: do not loopback not local frames,
385
which returned after forwarding; they will be dropped
386
by ip_mr_input in any case.
387
Note, that local frames are looped back to be delivered
388
to local recipients.
389
390
This check is duplicated in ip_mr_input at the moment.
391
*/
392
&&
393
((rt->rt_flags & RTCF_LOCAL) ||
394
!(IPCB(skb)->flags & IPSKB_FORWARDED))
395
#endif
396
) {
397
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
398
if (newskb)
399
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
400
net, sk, newskb, NULL, newskb->dev,
401
ip_mc_finish_output);
402
}
403
404
/* Multicasts with ttl 0 must not go beyond the host */
405
406
if (ip_hdr(skb)->ttl == 0) {
407
kfree_skb(skb);
408
return 0;
409
}
410
}
411
412
if (rt->rt_flags&RTCF_BROADCAST) {
413
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
414
if (newskb)
415
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416
net, sk, newskb, NULL, newskb->dev,
417
ip_mc_finish_output);
418
}
419
420
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
421
net, sk, skb, NULL, skb->dev,
422
ip_finish_output,
423
!(IPCB(skb)->flags & IPSKB_REROUTED));
424
}
425
426
int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
427
{
428
struct net_device *dev, *indev = skb->dev;
429
int ret_val;
430
431
rcu_read_lock();
432
dev = skb_dst_dev_rcu(skb);
433
skb->dev = dev;
434
skb->protocol = htons(ETH_P_IP);
435
436
ret_val = NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
437
net, sk, skb, indev, dev,
438
ip_finish_output,
439
!(IPCB(skb)->flags & IPSKB_REROUTED));
440
rcu_read_unlock();
441
return ret_val;
442
}
443
EXPORT_SYMBOL(ip_output);
444
445
/*
446
* copy saddr and daddr, possibly using 64bit load/stores
447
* Equivalent to :
448
* iph->saddr = fl4->saddr;
449
* iph->daddr = fl4->daddr;
450
*/
451
static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
452
{
453
BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
454
offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
455
456
iph->saddr = fl4->saddr;
457
iph->daddr = fl4->daddr;
458
}
459
460
/* Note: skb->sk can be different from sk, in case of tunnels */
461
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
462
__u8 tos)
463
{
464
struct inet_sock *inet = inet_sk(sk);
465
struct net *net = sock_net(sk);
466
struct ip_options_rcu *inet_opt;
467
struct flowi4 *fl4;
468
struct rtable *rt;
469
struct iphdr *iph;
470
int res;
471
472
/* Skip all of this if the packet is already routed,
473
* f.e. by something like SCTP.
474
*/
475
rcu_read_lock();
476
inet_opt = rcu_dereference(inet->inet_opt);
477
fl4 = &fl->u.ip4;
478
rt = skb_rtable(skb);
479
if (rt)
480
goto packet_routed;
481
482
/* Make sure we can route this packet. */
483
rt = dst_rtable(__sk_dst_check(sk, 0));
484
if (!rt) {
485
inet_sk_init_flowi4(inet, fl4);
486
487
/* sctp_v4_xmit() uses its own DSCP value */
488
fl4->flowi4_tos = tos & INET_DSCP_MASK;
489
490
/* If this fails, retransmit mechanism of transport layer will
491
* keep trying until route appears or the connection times
492
* itself out.
493
*/
494
rt = ip_route_output_flow(net, fl4, sk);
495
if (IS_ERR(rt))
496
goto no_route;
497
sk_setup_caps(sk, &rt->dst);
498
}
499
skb_dst_set_noref(skb, &rt->dst);
500
501
packet_routed:
502
if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
503
goto no_route;
504
505
/* OK, we know where to send it, allocate and build IP header. */
506
skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507
skb_reset_network_header(skb);
508
iph = ip_hdr(skb);
509
*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510
if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511
iph->frag_off = htons(IP_DF);
512
else
513
iph->frag_off = 0;
514
iph->ttl = ip_select_ttl(inet, &rt->dst);
515
iph->protocol = sk->sk_protocol;
516
ip_copy_addrs(iph, fl4);
517
518
/* Transport layer set skb->h.foo itself. */
519
520
if (inet_opt && inet_opt->opt.optlen) {
521
iph->ihl += inet_opt->opt.optlen >> 2;
522
ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
523
}
524
525
ip_select_ident_segs(net, skb, sk,
526
skb_shinfo(skb)->gso_segs ?: 1);
527
528
/* TODO : should we use skb->sk here instead of sk ? */
529
skb->priority = READ_ONCE(sk->sk_priority);
530
skb->mark = READ_ONCE(sk->sk_mark);
531
532
res = ip_local_out(net, sk, skb);
533
rcu_read_unlock();
534
return res;
535
536
no_route:
537
rcu_read_unlock();
538
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539
kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
540
return -EHOSTUNREACH;
541
}
542
EXPORT_SYMBOL(__ip_queue_xmit);
543
544
int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
545
{
546
return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos));
547
}
548
EXPORT_SYMBOL(ip_queue_xmit);
549
550
static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
551
{
552
to->pkt_type = from->pkt_type;
553
to->priority = from->priority;
554
to->protocol = from->protocol;
555
to->skb_iif = from->skb_iif;
556
skb_dst_drop(to);
557
skb_dst_copy(to, from);
558
to->dev = from->dev;
559
to->mark = from->mark;
560
561
skb_copy_hash(to, from);
562
563
#ifdef CONFIG_NET_SCHED
564
to->tc_index = from->tc_index;
565
#endif
566
nf_copy(to, from);
567
skb_ext_copy(to, from);
568
#if IS_ENABLED(CONFIG_IP_VS)
569
to->ipvs_property = from->ipvs_property;
570
#endif
571
skb_copy_secmark(to, from);
572
}
573
574
static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
575
unsigned int mtu,
576
int (*output)(struct net *, struct sock *, struct sk_buff *))
577
{
578
struct iphdr *iph = ip_hdr(skb);
579
580
if ((iph->frag_off & htons(IP_DF)) == 0)
581
return ip_do_fragment(net, sk, skb, output);
582
583
if (unlikely(!skb->ignore_df ||
584
(IPCB(skb)->frag_max_size &&
585
IPCB(skb)->frag_max_size > mtu))) {
586
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
587
icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
588
htonl(mtu));
589
kfree_skb(skb);
590
return -EMSGSIZE;
591
}
592
593
return ip_do_fragment(net, sk, skb, output);
594
}
595
596
void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
597
unsigned int hlen, struct ip_fraglist_iter *iter)
598
{
599
unsigned int first_len = skb_pagelen(skb);
600
601
iter->frag = skb_shinfo(skb)->frag_list;
602
skb_frag_list_init(skb);
603
604
iter->offset = 0;
605
iter->iph = iph;
606
iter->hlen = hlen;
607
608
skb->data_len = first_len - skb_headlen(skb);
609
skb->len = first_len;
610
iph->tot_len = htons(first_len);
611
iph->frag_off = htons(IP_MF);
612
ip_send_check(iph);
613
}
614
EXPORT_SYMBOL(ip_fraglist_init);
615
616
void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
617
{
618
unsigned int hlen = iter->hlen;
619
struct iphdr *iph = iter->iph;
620
struct sk_buff *frag;
621
622
frag = iter->frag;
623
frag->ip_summed = CHECKSUM_NONE;
624
skb_reset_transport_header(frag);
625
__skb_push(frag, hlen);
626
skb_reset_network_header(frag);
627
memcpy(skb_network_header(frag), iph, hlen);
628
iter->iph = ip_hdr(frag);
629
iph = iter->iph;
630
iph->tot_len = htons(frag->len);
631
ip_copy_metadata(frag, skb);
632
iter->offset += skb->len - hlen;
633
iph->frag_off = htons(iter->offset >> 3);
634
if (frag->next)
635
iph->frag_off |= htons(IP_MF);
636
/* Ready, complete checksum */
637
ip_send_check(iph);
638
}
639
EXPORT_SYMBOL(ip_fraglist_prepare);
640
641
void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
642
unsigned int ll_rs, unsigned int mtu, bool DF,
643
struct ip_frag_state *state)
644
{
645
struct iphdr *iph = ip_hdr(skb);
646
647
state->DF = DF;
648
state->hlen = hlen;
649
state->ll_rs = ll_rs;
650
state->mtu = mtu;
651
652
state->left = skb->len - hlen; /* Space per frame */
653
state->ptr = hlen; /* Where to start from */
654
655
state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
656
state->not_last_frag = iph->frag_off & htons(IP_MF);
657
}
658
EXPORT_SYMBOL(ip_frag_init);
659
660
static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
661
bool first_frag)
662
{
663
/* Copy the flags to each fragment. */
664
IPCB(to)->flags = IPCB(from)->flags;
665
666
/* ANK: dirty, but effective trick. Upgrade options only if
667
* the segment to be fragmented was THE FIRST (otherwise,
668
* options are already fixed) and make it ONCE
669
* on the initial skb, so that all the following fragments
670
* will inherit fixed options.
671
*/
672
if (first_frag)
673
ip_options_fragment(from);
674
}
675
676
struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
677
{
678
unsigned int len = state->left;
679
struct sk_buff *skb2;
680
struct iphdr *iph;
681
682
/* IF: it doesn't fit, use 'mtu' - the data space left */
683
if (len > state->mtu)
684
len = state->mtu;
685
/* IF: we are not sending up to and including the packet end
686
then align the next start on an eight byte boundary */
687
if (len < state->left) {
688
len &= ~7;
689
}
690
691
/* Allocate buffer */
692
skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
693
if (!skb2)
694
return ERR_PTR(-ENOMEM);
695
696
/*
697
* Set up data on packet
698
*/
699
700
ip_copy_metadata(skb2, skb);
701
skb_reserve(skb2, state->ll_rs);
702
skb_put(skb2, len + state->hlen);
703
skb_reset_network_header(skb2);
704
skb2->transport_header = skb2->network_header + state->hlen;
705
706
/*
707
* Charge the memory for the fragment to any owner
708
* it might possess
709
*/
710
711
if (skb->sk)
712
skb_set_owner_w(skb2, skb->sk);
713
714
/*
715
* Copy the packet header into the new buffer.
716
*/
717
718
skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
719
720
/*
721
* Copy a block of the IP datagram.
722
*/
723
if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
724
BUG();
725
state->left -= len;
726
727
/*
728
* Fill in the new header fields.
729
*/
730
iph = ip_hdr(skb2);
731
iph->frag_off = htons((state->offset >> 3));
732
if (state->DF)
733
iph->frag_off |= htons(IP_DF);
734
735
/*
736
* Added AC : If we are fragmenting a fragment that's not the
737
* last fragment then keep MF on each bit
738
*/
739
if (state->left > 0 || state->not_last_frag)
740
iph->frag_off |= htons(IP_MF);
741
state->ptr += len;
742
state->offset += len;
743
744
iph->tot_len = htons(len + state->hlen);
745
746
ip_send_check(iph);
747
748
return skb2;
749
}
750
EXPORT_SYMBOL(ip_frag_next);
751
752
/*
753
* This IP datagram is too large to be sent in one piece. Break it up into
754
* smaller pieces (each of size equal to IP header plus
755
* a block of the data of the original IP data part) that will yet fit in a
756
* single device frame, and queue such a frame for sending.
757
*/
758
759
int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
760
int (*output)(struct net *, struct sock *, struct sk_buff *))
761
{
762
struct iphdr *iph;
763
struct sk_buff *skb2;
764
u8 tstamp_type = skb->tstamp_type;
765
struct rtable *rt = skb_rtable(skb);
766
unsigned int mtu, hlen, ll_rs;
767
struct ip_fraglist_iter iter;
768
ktime_t tstamp = skb->tstamp;
769
struct ip_frag_state state;
770
int err = 0;
771
772
/* for offloaded checksums cleanup checksum before fragmentation */
773
if (skb->ip_summed == CHECKSUM_PARTIAL &&
774
(err = skb_checksum_help(skb)))
775
goto fail;
776
777
/*
778
* Point into the IP datagram header.
779
*/
780
781
iph = ip_hdr(skb);
782
783
mtu = ip_skb_dst_mtu(sk, skb);
784
if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
785
mtu = IPCB(skb)->frag_max_size;
786
787
/*
788
* Setup starting values.
789
*/
790
791
hlen = iph->ihl * 4;
792
mtu = mtu - hlen; /* Size of data space */
793
IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
794
ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
795
796
/* When frag_list is given, use it. First, check its validity:
797
* some transformers could create wrong frag_list or break existing
798
* one, it is not prohibited. In this case fall back to copying.
799
*
800
* LATER: this step can be merged to real generation of fragments,
801
* we can switch to copy when see the first bad fragment.
802
*/
803
if (skb_has_frag_list(skb)) {
804
struct sk_buff *frag, *frag2;
805
unsigned int first_len = skb_pagelen(skb);
806
807
if (first_len - hlen > mtu ||
808
((first_len - hlen) & 7) ||
809
ip_is_fragment(iph) ||
810
skb_cloned(skb) ||
811
skb_headroom(skb) < ll_rs)
812
goto slow_path;
813
814
skb_walk_frags(skb, frag) {
815
/* Correct geometry. */
816
if (frag->len > mtu ||
817
((frag->len & 7) && frag->next) ||
818
skb_headroom(frag) < hlen + ll_rs)
819
goto slow_path_clean;
820
821
/* Partially cloned skb? */
822
if (skb_shared(frag))
823
goto slow_path_clean;
824
825
BUG_ON(frag->sk);
826
if (skb->sk) {
827
frag->sk = skb->sk;
828
frag->destructor = sock_wfree;
829
}
830
skb->truesize -= frag->truesize;
831
}
832
833
/* Everything is OK. Generate! */
834
ip_fraglist_init(skb, iph, hlen, &iter);
835
836
for (;;) {
837
/* Prepare header of the next frame,
838
* before previous one went down. */
839
if (iter.frag) {
840
bool first_frag = (iter.offset == 0);
841
842
IPCB(iter.frag)->flags = IPCB(skb)->flags;
843
ip_fraglist_prepare(skb, &iter);
844
if (first_frag && IPCB(skb)->opt.optlen) {
845
/* ipcb->opt is not populated for frags
846
* coming from __ip_make_skb(),
847
* ip_options_fragment() needs optlen
848
*/
849
IPCB(iter.frag)->opt.optlen =
850
IPCB(skb)->opt.optlen;
851
ip_options_fragment(iter.frag);
852
ip_send_check(iter.iph);
853
}
854
}
855
856
skb_set_delivery_time(skb, tstamp, tstamp_type);
857
err = output(net, sk, skb);
858
859
if (!err)
860
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
861
if (err || !iter.frag)
862
break;
863
864
skb = ip_fraglist_next(&iter);
865
}
866
867
if (err == 0) {
868
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
869
return 0;
870
}
871
872
kfree_skb_list(iter.frag);
873
874
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
875
return err;
876
877
slow_path_clean:
878
skb_walk_frags(skb, frag2) {
879
if (frag2 == frag)
880
break;
881
frag2->sk = NULL;
882
frag2->destructor = NULL;
883
skb->truesize += frag2->truesize;
884
}
885
}
886
887
slow_path:
888
/*
889
* Fragment the datagram.
890
*/
891
892
ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
893
&state);
894
895
/*
896
* Keep copying data until we run out.
897
*/
898
899
while (state.left > 0) {
900
bool first_frag = (state.offset == 0);
901
902
skb2 = ip_frag_next(skb, &state);
903
if (IS_ERR(skb2)) {
904
err = PTR_ERR(skb2);
905
goto fail;
906
}
907
ip_frag_ipcb(skb, skb2, first_frag);
908
909
/*
910
* Put this fragment into the sending queue.
911
*/
912
skb_set_delivery_time(skb2, tstamp, tstamp_type);
913
err = output(net, sk, skb2);
914
if (err)
915
goto fail;
916
917
IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
918
}
919
consume_skb(skb);
920
IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
921
return err;
922
923
fail:
924
kfree_skb(skb);
925
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
926
return err;
927
}
928
EXPORT_SYMBOL(ip_do_fragment);
929
930
int
931
ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
932
{
933
struct msghdr *msg = from;
934
935
if (skb->ip_summed == CHECKSUM_PARTIAL) {
936
if (!copy_from_iter_full(to, len, &msg->msg_iter))
937
return -EFAULT;
938
} else {
939
__wsum csum = 0;
940
if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
941
return -EFAULT;
942
skb->csum = csum_block_add(skb->csum, csum, odd);
943
}
944
return 0;
945
}
946
EXPORT_SYMBOL(ip_generic_getfrag);
947
948
static int __ip_append_data(struct sock *sk,
949
struct flowi4 *fl4,
950
struct sk_buff_head *queue,
951
struct inet_cork *cork,
952
struct page_frag *pfrag,
953
int getfrag(void *from, char *to, int offset,
954
int len, int odd, struct sk_buff *skb),
955
void *from, int length, int transhdrlen,
956
unsigned int flags)
957
{
958
struct inet_sock *inet = inet_sk(sk);
959
struct ubuf_info *uarg = NULL;
960
struct sk_buff *skb;
961
struct ip_options *opt = cork->opt;
962
int hh_len;
963
int exthdrlen;
964
int mtu;
965
int copy;
966
int err;
967
int offset = 0;
968
bool zc = false;
969
unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
970
int csummode = CHECKSUM_NONE;
971
struct rtable *rt = dst_rtable(cork->dst);
972
bool paged, hold_tskey = false, extra_uref = false;
973
unsigned int wmem_alloc_delta = 0;
974
u32 tskey = 0;
975
976
skb = skb_peek_tail(queue);
977
978
exthdrlen = !skb ? rt->dst.header_len : 0;
979
mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
980
paged = !!cork->gso_size;
981
982
hh_len = LL_RESERVED_SPACE(rt->dst.dev);
983
984
fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
985
maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
986
maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
987
988
if (cork->length + length > maxnonfragsize - fragheaderlen) {
989
ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
990
mtu - (opt ? opt->optlen : 0));
991
return -EMSGSIZE;
992
}
993
994
/*
995
* transhdrlen > 0 means that this is the first fragment and we wish
996
* it won't be fragmented in the future.
997
*/
998
if (transhdrlen &&
999
length + fragheaderlen <= mtu &&
1000
rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1001
(!(flags & MSG_MORE) || cork->gso_size) &&
1002
(!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1003
csummode = CHECKSUM_PARTIAL;
1004
1005
if ((flags & MSG_ZEROCOPY) && length) {
1006
struct msghdr *msg = from;
1007
1008
if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1009
if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1010
return -EINVAL;
1011
1012
/* Leave uarg NULL if can't zerocopy, callers should
1013
* be able to handle it.
1014
*/
1015
if ((rt->dst.dev->features & NETIF_F_SG) &&
1016
csummode == CHECKSUM_PARTIAL) {
1017
paged = true;
1018
zc = true;
1019
uarg = msg->msg_ubuf;
1020
}
1021
} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1022
uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb),
1023
false);
1024
if (!uarg)
1025
return -ENOBUFS;
1026
extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1027
if (rt->dst.dev->features & NETIF_F_SG &&
1028
csummode == CHECKSUM_PARTIAL) {
1029
paged = true;
1030
zc = true;
1031
} else {
1032
uarg_to_msgzc(uarg)->zerocopy = 0;
1033
skb_zcopy_set(skb, uarg, &extra_uref);
1034
}
1035
}
1036
} else if ((flags & MSG_SPLICE_PAGES) && length) {
1037
if (inet_test_bit(HDRINCL, sk))
1038
return -EPERM;
1039
if (rt->dst.dev->features & NETIF_F_SG &&
1040
getfrag == ip_generic_getfrag)
1041
/* We need an empty buffer to attach stuff to */
1042
paged = true;
1043
else
1044
flags &= ~MSG_SPLICE_PAGES;
1045
}
1046
1047
cork->length += length;
1048
1049
if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
1050
READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
1051
if (cork->flags & IPCORK_TS_OPT_ID) {
1052
tskey = cork->ts_opt_id;
1053
} else {
1054
tskey = atomic_inc_return(&sk->sk_tskey) - 1;
1055
hold_tskey = true;
1056
}
1057
}
1058
1059
/* So, what's going on in the loop below?
1060
*
1061
* We use calculated fragment length to generate chained skb,
1062
* each of segments is IP fragment ready for sending to network after
1063
* adding appropriate IP header.
1064
*/
1065
1066
if (!skb)
1067
goto alloc_new_skb;
1068
1069
while (length > 0) {
1070
/* Check if the remaining data fits into current packet. */
1071
copy = mtu - skb->len;
1072
if (copy < length)
1073
copy = maxfraglen - skb->len;
1074
if (copy <= 0) {
1075
char *data;
1076
unsigned int datalen;
1077
unsigned int fraglen;
1078
unsigned int fraggap;
1079
unsigned int alloclen, alloc_extra;
1080
unsigned int pagedlen;
1081
struct sk_buff *skb_prev;
1082
alloc_new_skb:
1083
skb_prev = skb;
1084
if (skb_prev)
1085
fraggap = skb_prev->len - maxfraglen;
1086
else
1087
fraggap = 0;
1088
1089
/*
1090
* If remaining data exceeds the mtu,
1091
* we know we need more fragment(s).
1092
*/
1093
datalen = length + fraggap;
1094
if (datalen > mtu - fragheaderlen)
1095
datalen = maxfraglen - fragheaderlen;
1096
fraglen = datalen + fragheaderlen;
1097
pagedlen = 0;
1098
1099
alloc_extra = hh_len + 15;
1100
alloc_extra += exthdrlen;
1101
1102
/* The last fragment gets additional space at tail.
1103
* Note, with MSG_MORE we overallocate on fragments,
1104
* because we have no idea what fragment will be
1105
* the last.
1106
*/
1107
if (datalen == length + fraggap)
1108
alloc_extra += rt->dst.trailer_len;
1109
1110
if ((flags & MSG_MORE) &&
1111
!(rt->dst.dev->features&NETIF_F_SG))
1112
alloclen = mtu;
1113
else if (!paged &&
1114
(fraglen + alloc_extra < SKB_MAX_ALLOC ||
1115
!(rt->dst.dev->features & NETIF_F_SG)))
1116
alloclen = fraglen;
1117
else {
1118
alloclen = fragheaderlen + transhdrlen;
1119
pagedlen = datalen - transhdrlen;
1120
}
1121
1122
alloclen += alloc_extra;
1123
1124
if (transhdrlen) {
1125
skb = sock_alloc_send_skb(sk, alloclen,
1126
(flags & MSG_DONTWAIT), &err);
1127
} else {
1128
skb = NULL;
1129
if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1130
2 * sk->sk_sndbuf)
1131
skb = alloc_skb(alloclen,
1132
sk->sk_allocation);
1133
if (unlikely(!skb))
1134
err = -ENOBUFS;
1135
}
1136
if (!skb)
1137
goto error;
1138
1139
/*
1140
* Fill in the control structures
1141
*/
1142
skb->ip_summed = csummode;
1143
skb->csum = 0;
1144
skb_reserve(skb, hh_len);
1145
1146
/*
1147
* Find where to start putting bytes.
1148
*/
1149
data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1150
skb_set_network_header(skb, exthdrlen);
1151
skb->transport_header = (skb->network_header +
1152
fragheaderlen);
1153
data += fragheaderlen + exthdrlen;
1154
1155
if (fraggap) {
1156
skb->csum = skb_copy_and_csum_bits(
1157
skb_prev, maxfraglen,
1158
data + transhdrlen, fraggap);
1159
skb_prev->csum = csum_sub(skb_prev->csum,
1160
skb->csum);
1161
data += fraggap;
1162
pskb_trim_unique(skb_prev, maxfraglen);
1163
}
1164
1165
copy = datalen - transhdrlen - fraggap - pagedlen;
1166
/* [!] NOTE: copy will be negative if pagedlen>0
1167
* because then the equation reduces to -fraggap.
1168
*/
1169
if (copy > 0 &&
1170
INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1171
from, data + transhdrlen, offset,
1172
copy, fraggap, skb) < 0) {
1173
err = -EFAULT;
1174
kfree_skb(skb);
1175
goto error;
1176
} else if (flags & MSG_SPLICE_PAGES) {
1177
copy = 0;
1178
}
1179
1180
offset += copy;
1181
length -= copy + transhdrlen;
1182
transhdrlen = 0;
1183
exthdrlen = 0;
1184
csummode = CHECKSUM_NONE;
1185
1186
/* only the initial fragment is time stamped */
1187
skb_shinfo(skb)->tx_flags = cork->tx_flags;
1188
cork->tx_flags = 0;
1189
skb_shinfo(skb)->tskey = tskey;
1190
tskey = 0;
1191
skb_zcopy_set(skb, uarg, &extra_uref);
1192
1193
if ((flags & MSG_CONFIRM) && !skb_prev)
1194
skb_set_dst_pending_confirm(skb, 1);
1195
1196
/*
1197
* Put the packet on the pending queue.
1198
*/
1199
if (!skb->destructor) {
1200
skb->destructor = sock_wfree;
1201
skb->sk = sk;
1202
wmem_alloc_delta += skb->truesize;
1203
}
1204
__skb_queue_tail(queue, skb);
1205
continue;
1206
}
1207
1208
if (copy > length)
1209
copy = length;
1210
1211
if (!(rt->dst.dev->features&NETIF_F_SG) &&
1212
skb_tailroom(skb) >= copy) {
1213
unsigned int off;
1214
1215
off = skb->len;
1216
if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1217
from, skb_put(skb, copy),
1218
offset, copy, off, skb) < 0) {
1219
__skb_trim(skb, off);
1220
err = -EFAULT;
1221
goto error;
1222
}
1223
} else if (flags & MSG_SPLICE_PAGES) {
1224
struct msghdr *msg = from;
1225
1226
err = -EIO;
1227
if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1228
goto error;
1229
1230
err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1231
if (err < 0)
1232
goto error;
1233
copy = err;
1234
wmem_alloc_delta += copy;
1235
} else if (!zc) {
1236
int i = skb_shinfo(skb)->nr_frags;
1237
1238
err = -ENOMEM;
1239
if (!sk_page_frag_refill(sk, pfrag))
1240
goto error;
1241
1242
skb_zcopy_downgrade_managed(skb);
1243
if (!skb_can_coalesce(skb, i, pfrag->page,
1244
pfrag->offset)) {
1245
err = -EMSGSIZE;
1246
if (i == MAX_SKB_FRAGS)
1247
goto error;
1248
1249
__skb_fill_page_desc(skb, i, pfrag->page,
1250
pfrag->offset, 0);
1251
skb_shinfo(skb)->nr_frags = ++i;
1252
get_page(pfrag->page);
1253
}
1254
copy = min_t(int, copy, pfrag->size - pfrag->offset);
1255
if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1256
from,
1257
page_address(pfrag->page) + pfrag->offset,
1258
offset, copy, skb->len, skb) < 0)
1259
goto error_efault;
1260
1261
pfrag->offset += copy;
1262
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1263
skb_len_add(skb, copy);
1264
wmem_alloc_delta += copy;
1265
} else {
1266
err = skb_zerocopy_iter_dgram(skb, from, copy);
1267
if (err < 0)
1268
goto error;
1269
}
1270
offset += copy;
1271
length -= copy;
1272
}
1273
1274
if (wmem_alloc_delta)
1275
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1276
return 0;
1277
1278
error_efault:
1279
err = -EFAULT;
1280
error:
1281
net_zcopy_put_abort(uarg, extra_uref);
1282
cork->length -= length;
1283
IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1284
refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1285
if (hold_tskey)
1286
atomic_dec(&sk->sk_tskey);
1287
return err;
1288
}
1289
1290
static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1291
struct ipcm_cookie *ipc, struct rtable **rtp)
1292
{
1293
struct ip_options_rcu *opt;
1294
struct rtable *rt;
1295
1296
rt = *rtp;
1297
if (unlikely(!rt))
1298
return -EFAULT;
1299
1300
cork->fragsize = ip_sk_use_pmtu(sk) ?
1301
dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1302
1303
if (!inetdev_valid_mtu(cork->fragsize))
1304
return -ENETUNREACH;
1305
1306
/*
1307
* setup for corking.
1308
*/
1309
opt = ipc->opt;
1310
if (opt) {
1311
if (!cork->opt) {
1312
cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1313
sk->sk_allocation);
1314
if (unlikely(!cork->opt))
1315
return -ENOBUFS;
1316
}
1317
memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1318
cork->flags |= IPCORK_OPT;
1319
cork->addr = ipc->addr;
1320
}
1321
1322
cork->gso_size = ipc->gso_size;
1323
1324
cork->dst = &rt->dst;
1325
/* We stole this route, caller should not release it. */
1326
*rtp = NULL;
1327
1328
cork->length = 0;
1329
cork->ttl = ipc->ttl;
1330
cork->tos = ipc->tos;
1331
cork->mark = ipc->sockc.mark;
1332
cork->priority = ipc->sockc.priority;
1333
cork->transmit_time = ipc->sockc.transmit_time;
1334
cork->tx_flags = 0;
1335
sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags);
1336
if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) {
1337
cork->flags |= IPCORK_TS_OPT_ID;
1338
cork->ts_opt_id = ipc->sockc.ts_opt_id;
1339
}
1340
1341
return 0;
1342
}
1343
1344
/*
1345
* ip_append_data() can make one large IP datagram from many pieces of
1346
* data. Each piece will be held on the socket until
1347
* ip_push_pending_frames() is called. Each piece can be a page or
1348
* non-page data.
1349
*
1350
* Not only UDP, other transport protocols - e.g. raw sockets - can use
1351
* this interface potentially.
1352
*
1353
* LATER: length must be adjusted by pad at tail, when it is required.
1354
*/
1355
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1356
int getfrag(void *from, char *to, int offset, int len,
1357
int odd, struct sk_buff *skb),
1358
void *from, int length, int transhdrlen,
1359
struct ipcm_cookie *ipc, struct rtable **rtp,
1360
unsigned int flags)
1361
{
1362
struct inet_sock *inet = inet_sk(sk);
1363
int err;
1364
1365
if (flags&MSG_PROBE)
1366
return 0;
1367
1368
if (skb_queue_empty(&sk->sk_write_queue)) {
1369
err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1370
if (err)
1371
return err;
1372
} else {
1373
transhdrlen = 0;
1374
}
1375
1376
return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1377
sk_page_frag(sk), getfrag,
1378
from, length, transhdrlen, flags);
1379
}
1380
1381
static void ip_cork_release(struct inet_cork *cork)
1382
{
1383
cork->flags &= ~IPCORK_OPT;
1384
kfree(cork->opt);
1385
cork->opt = NULL;
1386
dst_release(cork->dst);
1387
cork->dst = NULL;
1388
}
1389
1390
/*
1391
* Combined all pending IP fragments on the socket as one IP datagram
1392
* and push them out.
1393
*/
1394
struct sk_buff *__ip_make_skb(struct sock *sk,
1395
struct flowi4 *fl4,
1396
struct sk_buff_head *queue,
1397
struct inet_cork *cork)
1398
{
1399
struct sk_buff *skb, *tmp_skb;
1400
struct sk_buff **tail_skb;
1401
struct inet_sock *inet = inet_sk(sk);
1402
struct net *net = sock_net(sk);
1403
struct ip_options *opt = NULL;
1404
struct rtable *rt = dst_rtable(cork->dst);
1405
struct iphdr *iph;
1406
u8 pmtudisc, ttl;
1407
__be16 df = 0;
1408
1409
skb = __skb_dequeue(queue);
1410
if (!skb)
1411
goto out;
1412
tail_skb = &(skb_shinfo(skb)->frag_list);
1413
1414
/* move skb->data to ip header from ext header */
1415
if (skb->data < skb_network_header(skb))
1416
__skb_pull(skb, skb_network_offset(skb));
1417
while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1418
__skb_pull(tmp_skb, skb_network_header_len(skb));
1419
*tail_skb = tmp_skb;
1420
tail_skb = &(tmp_skb->next);
1421
skb->len += tmp_skb->len;
1422
skb->data_len += tmp_skb->len;
1423
skb->truesize += tmp_skb->truesize;
1424
tmp_skb->destructor = NULL;
1425
tmp_skb->sk = NULL;
1426
}
1427
1428
/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1429
* to fragment the frame generated here. No matter, what transforms
1430
* how transforms change size of the packet, it will come out.
1431
*/
1432
skb->ignore_df = ip_sk_ignore_df(sk);
1433
1434
/* DF bit is set when we want to see DF on outgoing frames.
1435
* If ignore_df is set too, we still allow to fragment this frame
1436
* locally. */
1437
pmtudisc = READ_ONCE(inet->pmtudisc);
1438
if (pmtudisc == IP_PMTUDISC_DO ||
1439
pmtudisc == IP_PMTUDISC_PROBE ||
1440
(skb->len <= dst_mtu(&rt->dst) &&
1441
ip_dont_fragment(sk, &rt->dst)))
1442
df = htons(IP_DF);
1443
1444
if (cork->flags & IPCORK_OPT)
1445
opt = cork->opt;
1446
1447
if (cork->ttl != 0)
1448
ttl = cork->ttl;
1449
else if (rt->rt_type == RTN_MULTICAST)
1450
ttl = READ_ONCE(inet->mc_ttl);
1451
else
1452
ttl = ip_select_ttl(inet, &rt->dst);
1453
1454
iph = ip_hdr(skb);
1455
iph->version = 4;
1456
iph->ihl = 5;
1457
iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos);
1458
iph->frag_off = df;
1459
iph->ttl = ttl;
1460
iph->protocol = sk->sk_protocol;
1461
ip_copy_addrs(iph, fl4);
1462
ip_select_ident(net, skb, sk);
1463
1464
if (opt) {
1465
iph->ihl += opt->optlen >> 2;
1466
ip_options_build(skb, opt, cork->addr, rt);
1467
}
1468
1469
skb->priority = cork->priority;
1470
skb->mark = cork->mark;
1471
if (sk_is_tcp(sk))
1472
skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC);
1473
else
1474
skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid);
1475
/*
1476
* Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1477
* on dst refcount
1478
*/
1479
cork->dst = NULL;
1480
skb_dst_set(skb, &rt->dst);
1481
1482
if (iph->protocol == IPPROTO_ICMP) {
1483
u8 icmp_type;
1484
1485
/* For such sockets, transhdrlen is zero when do ip_append_data(),
1486
* so icmphdr does not in skb linear region and can not get icmp_type
1487
* by icmp_hdr(skb)->type.
1488
*/
1489
if (sk->sk_type == SOCK_RAW &&
1490
!(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1491
icmp_type = fl4->fl4_icmp_type;
1492
else
1493
icmp_type = icmp_hdr(skb)->type;
1494
icmp_out_count(net, icmp_type);
1495
}
1496
1497
ip_cork_release(cork);
1498
out:
1499
return skb;
1500
}
1501
1502
int ip_send_skb(struct net *net, struct sk_buff *skb)
1503
{
1504
int err;
1505
1506
err = ip_local_out(net, skb->sk, skb);
1507
if (err) {
1508
if (err > 0)
1509
err = net_xmit_errno(err);
1510
if (err)
1511
IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1512
}
1513
1514
return err;
1515
}
1516
1517
int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1518
{
1519
struct sk_buff *skb;
1520
1521
skb = ip_finish_skb(sk, fl4);
1522
if (!skb)
1523
return 0;
1524
1525
/* Netfilter gets whole the not fragmented skb. */
1526
return ip_send_skb(sock_net(sk), skb);
1527
}
1528
1529
/*
1530
* Throw away all pending data on the socket.
1531
*/
1532
static void __ip_flush_pending_frames(struct sock *sk,
1533
struct sk_buff_head *queue,
1534
struct inet_cork *cork)
1535
{
1536
struct sk_buff *skb;
1537
1538
while ((skb = __skb_dequeue_tail(queue)) != NULL)
1539
kfree_skb(skb);
1540
1541
ip_cork_release(cork);
1542
}
1543
1544
void ip_flush_pending_frames(struct sock *sk)
1545
{
1546
__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1547
}
1548
1549
struct sk_buff *ip_make_skb(struct sock *sk,
1550
struct flowi4 *fl4,
1551
int getfrag(void *from, char *to, int offset,
1552
int len, int odd, struct sk_buff *skb),
1553
void *from, int length, int transhdrlen,
1554
struct ipcm_cookie *ipc, struct rtable **rtp,
1555
struct inet_cork *cork, unsigned int flags)
1556
{
1557
struct sk_buff_head queue;
1558
int err;
1559
1560
if (flags & MSG_PROBE)
1561
return NULL;
1562
1563
__skb_queue_head_init(&queue);
1564
1565
cork->flags = 0;
1566
cork->addr = 0;
1567
cork->opt = NULL;
1568
err = ip_setup_cork(sk, cork, ipc, rtp);
1569
if (err)
1570
return ERR_PTR(err);
1571
1572
err = __ip_append_data(sk, fl4, &queue, cork,
1573
&current->task_frag, getfrag,
1574
from, length, transhdrlen, flags);
1575
if (err) {
1576
__ip_flush_pending_frames(sk, &queue, cork);
1577
return ERR_PTR(err);
1578
}
1579
1580
return __ip_make_skb(sk, fl4, &queue, cork);
1581
}
1582
1583
/*
1584
* Fetch data from kernel space and fill in checksum if needed.
1585
*/
1586
static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1587
int len, int odd, struct sk_buff *skb)
1588
{
1589
__wsum csum;
1590
1591
csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1592
skb->csum = csum_block_add(skb->csum, csum, odd);
1593
return 0;
1594
}
1595
1596
/*
1597
* Generic function to send a packet as reply to another packet.
1598
* Used to send some TCP resets/acks so far.
1599
*/
1600
void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk,
1601
struct sk_buff *skb,
1602
const struct ip_options *sopt,
1603
__be32 daddr, __be32 saddr,
1604
const struct ip_reply_arg *arg,
1605
unsigned int len, u64 transmit_time, u32 txhash)
1606
{
1607
struct ip_options_data replyopts;
1608
struct ipcm_cookie ipc;
1609
struct flowi4 fl4;
1610
struct rtable *rt = skb_rtable(skb);
1611
struct net *net = sock_net(sk);
1612
struct sk_buff *nskb;
1613
int err;
1614
int oif;
1615
1616
if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1617
return;
1618
1619
ipcm_init(&ipc);
1620
ipc.addr = daddr;
1621
ipc.sockc.transmit_time = transmit_time;
1622
1623
if (replyopts.opt.opt.optlen) {
1624
ipc.opt = &replyopts.opt;
1625
1626
if (replyopts.opt.opt.srr)
1627
daddr = replyopts.opt.opt.faddr;
1628
}
1629
1630
oif = arg->bound_dev_if;
1631
if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1632
oif = skb->skb_iif;
1633
1634
flowi4_init_output(&fl4, oif,
1635
IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1636
arg->tos & INET_DSCP_MASK,
1637
RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1638
ip_reply_arg_flowi_flags(arg),
1639
daddr, saddr,
1640
tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1641
arg->uid);
1642
security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1643
rt = ip_route_output_flow(net, &fl4, sk);
1644
if (IS_ERR(rt))
1645
return;
1646
1647
inet_sk(sk)->tos = arg->tos;
1648
1649
sk->sk_protocol = ip_hdr(skb)->protocol;
1650
sk->sk_bound_dev_if = arg->bound_dev_if;
1651
sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1652
ipc.sockc.mark = fl4.flowi4_mark;
1653
err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1654
len, 0, &ipc, &rt, MSG_DONTWAIT);
1655
if (unlikely(err)) {
1656
ip_flush_pending_frames(sk);
1657
goto out;
1658
}
1659
1660
nskb = skb_peek(&sk->sk_write_queue);
1661
if (nskb) {
1662
if (arg->csumoffset >= 0)
1663
*((__sum16 *)skb_transport_header(nskb) +
1664
arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1665
arg->csum));
1666
nskb->ip_summed = CHECKSUM_NONE;
1667
if (orig_sk)
1668
skb_set_owner_edemux(nskb, (struct sock *)orig_sk);
1669
if (transmit_time)
1670
nskb->tstamp_type = SKB_CLOCK_MONOTONIC;
1671
if (txhash)
1672
skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1673
ip_push_pending_frames(sk, &fl4);
1674
}
1675
out:
1676
ip_rt_put(rt);
1677
}
1678
1679
void __init ip_init(void)
1680
{
1681
ip_rt_init();
1682
inet_initpeers();
1683
1684
#if defined(CONFIG_IP_MULTICAST)
1685
igmp_mc_init();
1686
#endif
1687
}
1688
1689