Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv4/ipmr.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* IP multicast routing support for mrouted 3.6/3.8
4
*
5
* (c) 1995 Alan Cox, <[email protected]>
6
* Linux Consultancy and Custom Driver Development
7
*
8
* Fixes:
9
* Michael Chastain : Incorrect size of copying.
10
* Alan Cox : Added the cache manager code
11
* Alan Cox : Fixed the clone/copy bug and device race.
12
* Mike McLagan : Routing by source
13
* Malcolm Beattie : Buffer handling fixes.
14
* Alexey Kuznetsov : Double buffer free and other fixes.
15
* SVR Anand : Fixed several multicast bugs and problems.
16
* Alexey Kuznetsov : Status, optimisations and more.
17
* Brad Parker : Better behaviour on mrouted upcall
18
* overflow.
19
* Carlos Picoto : PIMv1 Support
20
* Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21
* Relax this requirement to work with older peers.
22
*/
23
24
#include <linux/uaccess.h>
25
#include <linux/types.h>
26
#include <linux/cache.h>
27
#include <linux/capability.h>
28
#include <linux/errno.h>
29
#include <linux/mm.h>
30
#include <linux/kernel.h>
31
#include <linux/fcntl.h>
32
#include <linux/stat.h>
33
#include <linux/socket.h>
34
#include <linux/in.h>
35
#include <linux/inet.h>
36
#include <linux/netdevice.h>
37
#include <linux/inetdevice.h>
38
#include <linux/igmp.h>
39
#include <linux/proc_fs.h>
40
#include <linux/seq_file.h>
41
#include <linux/mroute.h>
42
#include <linux/init.h>
43
#include <linux/if_ether.h>
44
#include <linux/slab.h>
45
#include <net/net_namespace.h>
46
#include <net/ip.h>
47
#include <net/protocol.h>
48
#include <linux/skbuff.h>
49
#include <net/route.h>
50
#include <net/icmp.h>
51
#include <net/udp.h>
52
#include <net/raw.h>
53
#include <linux/notifier.h>
54
#include <linux/if_arp.h>
55
#include <linux/netfilter_ipv4.h>
56
#include <linux/compat.h>
57
#include <linux/export.h>
58
#include <linux/rhashtable.h>
59
#include <net/ip_tunnels.h>
60
#include <net/checksum.h>
61
#include <net/netlink.h>
62
#include <net/fib_rules.h>
63
#include <linux/netconf.h>
64
#include <net/rtnh.h>
65
#include <net/inet_dscp.h>
66
67
#include <linux/nospec.h>
68
69
struct ipmr_rule {
70
struct fib_rule common;
71
};
72
73
struct ipmr_result {
74
struct mr_table *mrt;
75
};
76
77
/* Big lock, protecting vif table, mrt cache and mroute socket state.
78
* Note that the changes are semaphored via rtnl_lock.
79
*/
80
81
static DEFINE_SPINLOCK(mrt_lock);
82
83
static struct net_device *vif_dev_read(const struct vif_device *vif)
84
{
85
return rcu_dereference(vif->dev);
86
}
87
88
/* Multicast router control variables */
89
90
/* Special spinlock for queue of unresolved entries */
91
static DEFINE_SPINLOCK(mfc_unres_lock);
92
93
/* We return to original Alan's scheme. Hash table of resolved
94
* entries is changed only in process context and protected
95
* with weak lock mrt_lock. Queue of unresolved entries is protected
96
* with strong spinlock mfc_unres_lock.
97
*
98
* In this case data path is free of exclusive locks at all.
99
*/
100
101
static struct kmem_cache *mrt_cachep __ro_after_init;
102
103
static struct mr_table *ipmr_new_table(struct net *net, u32 id);
104
static void ipmr_free_table(struct mr_table *mrt);
105
106
static void ip_mr_forward(struct net *net, struct mr_table *mrt,
107
struct net_device *dev, struct sk_buff *skb,
108
struct mfc_cache *cache, int local);
109
static int ipmr_cache_report(const struct mr_table *mrt,
110
struct sk_buff *pkt, vifi_t vifi, int assert);
111
static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
112
int cmd);
113
static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt);
114
static void mroute_clean_tables(struct mr_table *mrt, int flags);
115
static void ipmr_expire_process(struct timer_list *t);
116
117
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
118
#define ipmr_for_each_table(mrt, net) \
119
list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
120
lockdep_rtnl_is_held() || \
121
list_empty(&net->ipv4.mr_tables))
122
123
static struct mr_table *ipmr_mr_table_iter(struct net *net,
124
struct mr_table *mrt)
125
{
126
struct mr_table *ret;
127
128
if (!mrt)
129
ret = list_entry_rcu(net->ipv4.mr_tables.next,
130
struct mr_table, list);
131
else
132
ret = list_entry_rcu(mrt->list.next,
133
struct mr_table, list);
134
135
if (&ret->list == &net->ipv4.mr_tables)
136
return NULL;
137
return ret;
138
}
139
140
static struct mr_table *__ipmr_get_table(struct net *net, u32 id)
141
{
142
struct mr_table *mrt;
143
144
ipmr_for_each_table(mrt, net) {
145
if (mrt->id == id)
146
return mrt;
147
}
148
return NULL;
149
}
150
151
static struct mr_table *ipmr_get_table(struct net *net, u32 id)
152
{
153
struct mr_table *mrt;
154
155
rcu_read_lock();
156
mrt = __ipmr_get_table(net, id);
157
rcu_read_unlock();
158
return mrt;
159
}
160
161
static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
162
struct mr_table **mrt)
163
{
164
int err;
165
struct ipmr_result res;
166
struct fib_lookup_arg arg = {
167
.result = &res,
168
.flags = FIB_LOOKUP_NOREF,
169
};
170
171
/* update flow if oif or iif point to device enslaved to l3mdev */
172
l3mdev_update_flow(net, flowi4_to_flowi(flp4));
173
174
err = fib_rules_lookup(net->ipv4.mr_rules_ops,
175
flowi4_to_flowi(flp4), 0, &arg);
176
if (err < 0)
177
return err;
178
*mrt = res.mrt;
179
return 0;
180
}
181
182
static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
183
int flags, struct fib_lookup_arg *arg)
184
{
185
struct ipmr_result *res = arg->result;
186
struct mr_table *mrt;
187
188
switch (rule->action) {
189
case FR_ACT_TO_TBL:
190
break;
191
case FR_ACT_UNREACHABLE:
192
return -ENETUNREACH;
193
case FR_ACT_PROHIBIT:
194
return -EACCES;
195
case FR_ACT_BLACKHOLE:
196
default:
197
return -EINVAL;
198
}
199
200
arg->table = fib_rule_get_table(rule, arg);
201
202
mrt = __ipmr_get_table(rule->fr_net, arg->table);
203
if (!mrt)
204
return -EAGAIN;
205
res->mrt = mrt;
206
return 0;
207
}
208
209
static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
210
{
211
return 1;
212
}
213
214
static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
215
struct fib_rule_hdr *frh, struct nlattr **tb,
216
struct netlink_ext_ack *extack)
217
{
218
return 0;
219
}
220
221
static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
222
struct nlattr **tb)
223
{
224
return 1;
225
}
226
227
static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
228
struct fib_rule_hdr *frh)
229
{
230
frh->dst_len = 0;
231
frh->src_len = 0;
232
frh->tos = 0;
233
return 0;
234
}
235
236
static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
237
.family = RTNL_FAMILY_IPMR,
238
.rule_size = sizeof(struct ipmr_rule),
239
.addr_size = sizeof(u32),
240
.action = ipmr_rule_action,
241
.match = ipmr_rule_match,
242
.configure = ipmr_rule_configure,
243
.compare = ipmr_rule_compare,
244
.fill = ipmr_rule_fill,
245
.nlgroup = RTNLGRP_IPV4_RULE,
246
.owner = THIS_MODULE,
247
};
248
249
static int __net_init ipmr_rules_init(struct net *net)
250
{
251
struct fib_rules_ops *ops;
252
struct mr_table *mrt;
253
int err;
254
255
ops = fib_rules_register(&ipmr_rules_ops_template, net);
256
if (IS_ERR(ops))
257
return PTR_ERR(ops);
258
259
INIT_LIST_HEAD(&net->ipv4.mr_tables);
260
261
mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
262
if (IS_ERR(mrt)) {
263
err = PTR_ERR(mrt);
264
goto err1;
265
}
266
267
err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT);
268
if (err < 0)
269
goto err2;
270
271
net->ipv4.mr_rules_ops = ops;
272
return 0;
273
274
err2:
275
rtnl_lock();
276
ipmr_free_table(mrt);
277
rtnl_unlock();
278
err1:
279
fib_rules_unregister(ops);
280
return err;
281
}
282
283
static void __net_exit ipmr_rules_exit(struct net *net)
284
{
285
struct mr_table *mrt, *next;
286
287
ASSERT_RTNL();
288
list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
289
list_del(&mrt->list);
290
ipmr_free_table(mrt);
291
}
292
fib_rules_unregister(net->ipv4.mr_rules_ops);
293
}
294
295
static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
296
struct netlink_ext_ack *extack)
297
{
298
return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
299
}
300
301
static unsigned int ipmr_rules_seq_read(const struct net *net)
302
{
303
return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
304
}
305
306
bool ipmr_rule_default(const struct fib_rule *rule)
307
{
308
return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
309
}
310
EXPORT_SYMBOL(ipmr_rule_default);
311
#else
312
#define ipmr_for_each_table(mrt, net) \
313
for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
314
315
static struct mr_table *ipmr_mr_table_iter(struct net *net,
316
struct mr_table *mrt)
317
{
318
if (!mrt)
319
return net->ipv4.mrt;
320
return NULL;
321
}
322
323
static struct mr_table *ipmr_get_table(struct net *net, u32 id)
324
{
325
return net->ipv4.mrt;
326
}
327
328
#define __ipmr_get_table ipmr_get_table
329
330
static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
331
struct mr_table **mrt)
332
{
333
*mrt = net->ipv4.mrt;
334
return 0;
335
}
336
337
static int __net_init ipmr_rules_init(struct net *net)
338
{
339
struct mr_table *mrt;
340
341
mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
342
if (IS_ERR(mrt))
343
return PTR_ERR(mrt);
344
net->ipv4.mrt = mrt;
345
return 0;
346
}
347
348
static void __net_exit ipmr_rules_exit(struct net *net)
349
{
350
ASSERT_RTNL();
351
ipmr_free_table(net->ipv4.mrt);
352
net->ipv4.mrt = NULL;
353
}
354
355
static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
356
struct netlink_ext_ack *extack)
357
{
358
return 0;
359
}
360
361
static unsigned int ipmr_rules_seq_read(const struct net *net)
362
{
363
return 0;
364
}
365
366
bool ipmr_rule_default(const struct fib_rule *rule)
367
{
368
return true;
369
}
370
EXPORT_SYMBOL(ipmr_rule_default);
371
#endif
372
373
static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
374
const void *ptr)
375
{
376
const struct mfc_cache_cmp_arg *cmparg = arg->key;
377
const struct mfc_cache *c = ptr;
378
379
return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
380
cmparg->mfc_origin != c->mfc_origin;
381
}
382
383
static const struct rhashtable_params ipmr_rht_params = {
384
.head_offset = offsetof(struct mr_mfc, mnode),
385
.key_offset = offsetof(struct mfc_cache, cmparg),
386
.key_len = sizeof(struct mfc_cache_cmp_arg),
387
.nelem_hint = 3,
388
.obj_cmpfn = ipmr_hash_cmp,
389
.automatic_shrinking = true,
390
};
391
392
static void ipmr_new_table_set(struct mr_table *mrt,
393
struct net *net)
394
{
395
#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
396
list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
397
#endif
398
}
399
400
static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
401
.mfc_mcastgrp = htonl(INADDR_ANY),
402
.mfc_origin = htonl(INADDR_ANY),
403
};
404
405
static struct mr_table_ops ipmr_mr_table_ops = {
406
.rht_params = &ipmr_rht_params,
407
.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
408
};
409
410
static struct mr_table *ipmr_new_table(struct net *net, u32 id)
411
{
412
struct mr_table *mrt;
413
414
/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
415
if (id != RT_TABLE_DEFAULT && id >= 1000000000)
416
return ERR_PTR(-EINVAL);
417
418
mrt = __ipmr_get_table(net, id);
419
if (mrt)
420
return mrt;
421
422
return mr_table_alloc(net, id, &ipmr_mr_table_ops,
423
ipmr_expire_process, ipmr_new_table_set);
424
}
425
426
static void ipmr_free_table(struct mr_table *mrt)
427
{
428
struct net *net = read_pnet(&mrt->net);
429
430
WARN_ON_ONCE(!mr_can_free_table(net));
431
432
timer_shutdown_sync(&mrt->ipmr_expire_timer);
433
mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
434
MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
435
rhltable_destroy(&mrt->mfc_hash);
436
kfree(mrt);
437
}
438
439
/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
440
441
/* Initialize ipmr pimreg/tunnel in_device */
442
static bool ipmr_init_vif_indev(const struct net_device *dev)
443
{
444
struct in_device *in_dev;
445
446
ASSERT_RTNL();
447
448
in_dev = __in_dev_get_rtnl(dev);
449
if (!in_dev)
450
return false;
451
ipv4_devconf_setall(in_dev);
452
neigh_parms_data_state_setall(in_dev->arp_parms);
453
IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
454
455
return true;
456
}
457
458
static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
459
{
460
struct net_device *tunnel_dev, *new_dev;
461
struct ip_tunnel_parm_kern p = { };
462
int err;
463
464
tunnel_dev = __dev_get_by_name(net, "tunl0");
465
if (!tunnel_dev)
466
goto out;
467
468
p.iph.daddr = v->vifc_rmt_addr.s_addr;
469
p.iph.saddr = v->vifc_lcl_addr.s_addr;
470
p.iph.version = 4;
471
p.iph.ihl = 5;
472
p.iph.protocol = IPPROTO_IPIP;
473
sprintf(p.name, "dvmrp%d", v->vifc_vifi);
474
475
if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
476
goto out;
477
err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
478
SIOCADDTUNNEL);
479
if (err)
480
goto out;
481
482
new_dev = __dev_get_by_name(net, p.name);
483
if (!new_dev)
484
goto out;
485
486
new_dev->flags |= IFF_MULTICAST;
487
if (!ipmr_init_vif_indev(new_dev))
488
goto out_unregister;
489
if (dev_open(new_dev, NULL))
490
goto out_unregister;
491
dev_hold(new_dev);
492
err = dev_set_allmulti(new_dev, 1);
493
if (err) {
494
dev_close(new_dev);
495
tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
496
SIOCDELTUNNEL);
497
dev_put(new_dev);
498
new_dev = ERR_PTR(err);
499
}
500
return new_dev;
501
502
out_unregister:
503
unregister_netdevice(new_dev);
504
out:
505
return ERR_PTR(-ENOBUFS);
506
}
507
508
#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
509
static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
510
{
511
struct net *net = dev_net(dev);
512
struct mr_table *mrt;
513
struct flowi4 fl4 = {
514
.flowi4_oif = dev->ifindex,
515
.flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
516
.flowi4_mark = skb->mark,
517
};
518
int err;
519
520
err = ipmr_fib_lookup(net, &fl4, &mrt);
521
if (err < 0) {
522
kfree_skb(skb);
523
return err;
524
}
525
526
DEV_STATS_ADD(dev, tx_bytes, skb->len);
527
DEV_STATS_INC(dev, tx_packets);
528
rcu_read_lock();
529
530
/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
531
ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num),
532
IGMPMSG_WHOLEPKT);
533
534
rcu_read_unlock();
535
kfree_skb(skb);
536
return NETDEV_TX_OK;
537
}
538
539
static int reg_vif_get_iflink(const struct net_device *dev)
540
{
541
return 0;
542
}
543
544
static const struct net_device_ops reg_vif_netdev_ops = {
545
.ndo_start_xmit = reg_vif_xmit,
546
.ndo_get_iflink = reg_vif_get_iflink,
547
};
548
549
static void reg_vif_setup(struct net_device *dev)
550
{
551
dev->type = ARPHRD_PIMREG;
552
dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
553
dev->flags = IFF_NOARP;
554
dev->netdev_ops = &reg_vif_netdev_ops;
555
dev->needs_free_netdev = true;
556
dev->netns_immutable = true;
557
}
558
559
static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
560
{
561
struct net_device *dev;
562
char name[IFNAMSIZ];
563
564
if (mrt->id == RT_TABLE_DEFAULT)
565
sprintf(name, "pimreg");
566
else
567
sprintf(name, "pimreg%u", mrt->id);
568
569
dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
570
571
if (!dev)
572
return NULL;
573
574
dev_net_set(dev, net);
575
576
if (register_netdevice(dev)) {
577
free_netdev(dev);
578
return NULL;
579
}
580
581
if (!ipmr_init_vif_indev(dev))
582
goto failure;
583
if (dev_open(dev, NULL))
584
goto failure;
585
586
dev_hold(dev);
587
588
return dev;
589
590
failure:
591
unregister_netdevice(dev);
592
return NULL;
593
}
594
595
/* called with rcu_read_lock() */
596
static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
597
unsigned int pimlen)
598
{
599
struct net_device *reg_dev = NULL;
600
struct iphdr *encap;
601
int vif_num;
602
603
encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
604
/* Check that:
605
* a. packet is really sent to a multicast group
606
* b. packet is not a NULL-REGISTER
607
* c. packet is not truncated
608
*/
609
if (!ipv4_is_multicast(encap->daddr) ||
610
encap->tot_len == 0 ||
611
ntohs(encap->tot_len) + pimlen > skb->len)
612
return 1;
613
614
/* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */
615
vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
616
if (vif_num >= 0)
617
reg_dev = vif_dev_read(&mrt->vif_table[vif_num]);
618
if (!reg_dev)
619
return 1;
620
621
skb->mac_header = skb->network_header;
622
skb_pull(skb, (u8 *)encap - skb->data);
623
skb_reset_network_header(skb);
624
skb->protocol = htons(ETH_P_IP);
625
skb->ip_summed = CHECKSUM_NONE;
626
627
skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
628
629
netif_rx(skb);
630
631
return NET_RX_SUCCESS;
632
}
633
#else
634
static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
635
{
636
return NULL;
637
}
638
#endif
639
640
static int call_ipmr_vif_entry_notifiers(struct net *net,
641
enum fib_event_type event_type,
642
struct vif_device *vif,
643
struct net_device *vif_dev,
644
vifi_t vif_index, u32 tb_id)
645
{
646
return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
647
vif, vif_dev, vif_index, tb_id,
648
&net->ipv4.ipmr_seq);
649
}
650
651
static int call_ipmr_mfc_entry_notifiers(struct net *net,
652
enum fib_event_type event_type,
653
struct mfc_cache *mfc, u32 tb_id)
654
{
655
return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
656
&mfc->_c, tb_id, &net->ipv4.ipmr_seq);
657
}
658
659
/**
660
* vif_delete - Delete a VIF entry
661
* @mrt: Table to delete from
662
* @vifi: VIF identifier to delete
663
* @notify: Set to 1, if the caller is a notifier_call
664
* @head: if unregistering the VIF, place it on this queue
665
*/
666
static int vif_delete(struct mr_table *mrt, int vifi, int notify,
667
struct list_head *head)
668
{
669
struct net *net = read_pnet(&mrt->net);
670
struct vif_device *v;
671
struct net_device *dev;
672
struct in_device *in_dev;
673
674
if (vifi < 0 || vifi >= mrt->maxvif)
675
return -EADDRNOTAVAIL;
676
677
v = &mrt->vif_table[vifi];
678
679
dev = rtnl_dereference(v->dev);
680
if (!dev)
681
return -EADDRNOTAVAIL;
682
683
spin_lock(&mrt_lock);
684
call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev,
685
vifi, mrt->id);
686
RCU_INIT_POINTER(v->dev, NULL);
687
688
if (vifi == mrt->mroute_reg_vif_num) {
689
/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
690
WRITE_ONCE(mrt->mroute_reg_vif_num, -1);
691
}
692
if (vifi + 1 == mrt->maxvif) {
693
int tmp;
694
695
for (tmp = vifi - 1; tmp >= 0; tmp--) {
696
if (VIF_EXISTS(mrt, tmp))
697
break;
698
}
699
WRITE_ONCE(mrt->maxvif, tmp + 1);
700
}
701
702
spin_unlock(&mrt_lock);
703
704
dev_set_allmulti(dev, -1);
705
706
in_dev = __in_dev_get_rtnl(dev);
707
if (in_dev) {
708
IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
709
inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
710
NETCONFA_MC_FORWARDING,
711
dev->ifindex, &in_dev->cnf);
712
ip_rt_multicast_event(in_dev);
713
}
714
715
if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
716
unregister_netdevice_queue(dev, head);
717
718
netdev_put(dev, &v->dev_tracker);
719
return 0;
720
}
721
722
static void ipmr_cache_free_rcu(struct rcu_head *head)
723
{
724
struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
725
726
kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
727
}
728
729
static void ipmr_cache_free(struct mfc_cache *c)
730
{
731
call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
732
}
733
734
/* Destroy an unresolved cache entry, killing queued skbs
735
* and reporting error to netlink readers.
736
*/
737
static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
738
{
739
struct net *net = read_pnet(&mrt->net);
740
struct sk_buff *skb;
741
struct nlmsgerr *e;
742
743
atomic_dec(&mrt->cache_resolve_queue_len);
744
745
while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
746
if (ip_hdr(skb)->version == 0) {
747
struct nlmsghdr *nlh = skb_pull(skb,
748
sizeof(struct iphdr));
749
nlh->nlmsg_type = NLMSG_ERROR;
750
nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
751
skb_trim(skb, nlh->nlmsg_len);
752
e = nlmsg_data(nlh);
753
e->error = -ETIMEDOUT;
754
memset(&e->msg, 0, sizeof(e->msg));
755
756
rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
757
} else {
758
kfree_skb(skb);
759
}
760
}
761
762
ipmr_cache_free(c);
763
}
764
765
/* Timer process for the unresolved queue. */
766
static void ipmr_expire_process(struct timer_list *t)
767
{
768
struct mr_table *mrt = timer_container_of(mrt, t, ipmr_expire_timer);
769
struct mr_mfc *c, *next;
770
unsigned long expires;
771
unsigned long now;
772
773
if (!spin_trylock(&mfc_unres_lock)) {
774
mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
775
return;
776
}
777
778
if (list_empty(&mrt->mfc_unres_queue))
779
goto out;
780
781
now = jiffies;
782
expires = 10*HZ;
783
784
list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
785
if (time_after(c->mfc_un.unres.expires, now)) {
786
unsigned long interval = c->mfc_un.unres.expires - now;
787
if (interval < expires)
788
expires = interval;
789
continue;
790
}
791
792
list_del(&c->list);
793
mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
794
ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
795
}
796
797
if (!list_empty(&mrt->mfc_unres_queue))
798
mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
799
800
out:
801
spin_unlock(&mfc_unres_lock);
802
}
803
804
/* Fill oifs list. It is called under locked mrt_lock. */
805
static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
806
unsigned char *ttls)
807
{
808
int vifi;
809
810
cache->mfc_un.res.minvif = MAXVIFS;
811
cache->mfc_un.res.maxvif = 0;
812
memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
813
814
for (vifi = 0; vifi < mrt->maxvif; vifi++) {
815
if (VIF_EXISTS(mrt, vifi) &&
816
ttls[vifi] && ttls[vifi] < 255) {
817
cache->mfc_un.res.ttls[vifi] = ttls[vifi];
818
if (cache->mfc_un.res.minvif > vifi)
819
cache->mfc_un.res.minvif = vifi;
820
if (cache->mfc_un.res.maxvif <= vifi)
821
cache->mfc_un.res.maxvif = vifi + 1;
822
}
823
}
824
WRITE_ONCE(cache->mfc_un.res.lastuse, jiffies);
825
}
826
827
static int vif_add(struct net *net, struct mr_table *mrt,
828
struct vifctl *vifc, int mrtsock)
829
{
830
struct netdev_phys_item_id ppid = { };
831
int vifi = vifc->vifc_vifi;
832
struct vif_device *v = &mrt->vif_table[vifi];
833
struct net_device *dev;
834
struct in_device *in_dev;
835
int err;
836
837
/* Is vif busy ? */
838
if (VIF_EXISTS(mrt, vifi))
839
return -EADDRINUSE;
840
841
switch (vifc->vifc_flags) {
842
case VIFF_REGISTER:
843
if (!ipmr_pimsm_enabled())
844
return -EINVAL;
845
/* Special Purpose VIF in PIM
846
* All the packets will be sent to the daemon
847
*/
848
if (mrt->mroute_reg_vif_num >= 0)
849
return -EADDRINUSE;
850
dev = ipmr_reg_vif(net, mrt);
851
if (!dev)
852
return -ENOBUFS;
853
err = dev_set_allmulti(dev, 1);
854
if (err) {
855
unregister_netdevice(dev);
856
dev_put(dev);
857
return err;
858
}
859
break;
860
case VIFF_TUNNEL:
861
dev = ipmr_new_tunnel(net, vifc);
862
if (IS_ERR(dev))
863
return PTR_ERR(dev);
864
break;
865
case VIFF_USE_IFINDEX:
866
case 0:
867
if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
868
dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
869
if (dev && !__in_dev_get_rtnl(dev)) {
870
dev_put(dev);
871
return -EADDRNOTAVAIL;
872
}
873
} else {
874
dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
875
}
876
if (!dev)
877
return -EADDRNOTAVAIL;
878
err = dev_set_allmulti(dev, 1);
879
if (err) {
880
dev_put(dev);
881
return err;
882
}
883
break;
884
default:
885
return -EINVAL;
886
}
887
888
in_dev = __in_dev_get_rtnl(dev);
889
if (!in_dev) {
890
dev_put(dev);
891
return -EADDRNOTAVAIL;
892
}
893
IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
894
inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
895
dev->ifindex, &in_dev->cnf);
896
ip_rt_multicast_event(in_dev);
897
898
/* Fill in the VIF structures */
899
vif_device_init(v, dev, vifc->vifc_rate_limit,
900
vifc->vifc_threshold,
901
vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
902
(VIFF_TUNNEL | VIFF_REGISTER));
903
904
err = netif_get_port_parent_id(dev, &ppid, true);
905
if (err == 0) {
906
memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
907
v->dev_parent_id.id_len = ppid.id_len;
908
} else {
909
v->dev_parent_id.id_len = 0;
910
}
911
912
v->local = vifc->vifc_lcl_addr.s_addr;
913
v->remote = vifc->vifc_rmt_addr.s_addr;
914
915
/* And finish update writing critical data */
916
spin_lock(&mrt_lock);
917
rcu_assign_pointer(v->dev, dev);
918
netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
919
if (v->flags & VIFF_REGISTER) {
920
/* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */
921
WRITE_ONCE(mrt->mroute_reg_vif_num, vifi);
922
}
923
if (vifi+1 > mrt->maxvif)
924
WRITE_ONCE(mrt->maxvif, vifi + 1);
925
spin_unlock(&mrt_lock);
926
call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev,
927
vifi, mrt->id);
928
return 0;
929
}
930
931
/* called with rcu_read_lock() */
932
static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
933
__be32 origin,
934
__be32 mcastgrp)
935
{
936
struct mfc_cache_cmp_arg arg = {
937
.mfc_mcastgrp = mcastgrp,
938
.mfc_origin = origin
939
};
940
941
return mr_mfc_find(mrt, &arg);
942
}
943
944
/* Look for a (*,G) entry */
945
static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
946
__be32 mcastgrp, int vifi)
947
{
948
struct mfc_cache_cmp_arg arg = {
949
.mfc_mcastgrp = mcastgrp,
950
.mfc_origin = htonl(INADDR_ANY)
951
};
952
953
if (mcastgrp == htonl(INADDR_ANY))
954
return mr_mfc_find_any_parent(mrt, vifi);
955
return mr_mfc_find_any(mrt, vifi, &arg);
956
}
957
958
/* Look for a (S,G,iif) entry if parent != -1 */
959
static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
960
__be32 origin, __be32 mcastgrp,
961
int parent)
962
{
963
struct mfc_cache_cmp_arg arg = {
964
.mfc_mcastgrp = mcastgrp,
965
.mfc_origin = origin,
966
};
967
968
return mr_mfc_find_parent(mrt, &arg, parent);
969
}
970
971
/* Allocate a multicast cache entry */
972
static struct mfc_cache *ipmr_cache_alloc(void)
973
{
974
struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
975
976
if (c) {
977
c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
978
c->_c.mfc_un.res.minvif = MAXVIFS;
979
c->_c.free = ipmr_cache_free_rcu;
980
refcount_set(&c->_c.mfc_un.res.refcount, 1);
981
}
982
return c;
983
}
984
985
static struct mfc_cache *ipmr_cache_alloc_unres(void)
986
{
987
struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
988
989
if (c) {
990
skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
991
c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
992
}
993
return c;
994
}
995
996
/* A cache entry has gone into a resolved state from queued */
997
static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
998
struct mfc_cache *uc, struct mfc_cache *c)
999
{
1000
struct sk_buff *skb;
1001
struct nlmsgerr *e;
1002
1003
/* Play the pending entries through our router */
1004
while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1005
if (ip_hdr(skb)->version == 0) {
1006
struct nlmsghdr *nlh = skb_pull(skb,
1007
sizeof(struct iphdr));
1008
1009
if (mr_fill_mroute(mrt, skb, &c->_c,
1010
nlmsg_data(nlh)) > 0) {
1011
nlh->nlmsg_len = skb_tail_pointer(skb) -
1012
(u8 *)nlh;
1013
} else {
1014
nlh->nlmsg_type = NLMSG_ERROR;
1015
nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1016
skb_trim(skb, nlh->nlmsg_len);
1017
e = nlmsg_data(nlh);
1018
e->error = -EMSGSIZE;
1019
memset(&e->msg, 0, sizeof(e->msg));
1020
}
1021
1022
rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1023
} else {
1024
rcu_read_lock();
1025
ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1026
rcu_read_unlock();
1027
}
1028
}
1029
}
1030
1031
/* Bounce a cache query up to mrouted and netlink.
1032
*
1033
* Called under rcu_read_lock().
1034
*/
1035
static int ipmr_cache_report(const struct mr_table *mrt,
1036
struct sk_buff *pkt, vifi_t vifi, int assert)
1037
{
1038
const int ihl = ip_hdrlen(pkt);
1039
struct sock *mroute_sk;
1040
struct igmphdr *igmp;
1041
struct igmpmsg *msg;
1042
struct sk_buff *skb;
1043
int ret;
1044
1045
mroute_sk = rcu_dereference(mrt->mroute_sk);
1046
if (!mroute_sk)
1047
return -EINVAL;
1048
1049
if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1050
skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1051
else
1052
skb = alloc_skb(128, GFP_ATOMIC);
1053
1054
if (!skb)
1055
return -ENOBUFS;
1056
1057
if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1058
/* Ugly, but we have no choice with this interface.
1059
* Duplicate old header, fix ihl, length etc.
1060
* And all this only to mangle msg->im_msgtype and
1061
* to set msg->im_mbz to "mbz" :-)
1062
*/
1063
skb_push(skb, sizeof(struct iphdr));
1064
skb_reset_network_header(skb);
1065
skb_reset_transport_header(skb);
1066
msg = (struct igmpmsg *)skb_network_header(skb);
1067
memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1068
msg->im_msgtype = assert;
1069
msg->im_mbz = 0;
1070
if (assert == IGMPMSG_WRVIFWHOLE) {
1071
msg->im_vif = vifi;
1072
msg->im_vif_hi = vifi >> 8;
1073
} else {
1074
/* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */
1075
int vif_num = READ_ONCE(mrt->mroute_reg_vif_num);
1076
1077
msg->im_vif = vif_num;
1078
msg->im_vif_hi = vif_num >> 8;
1079
}
1080
ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1081
ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1082
sizeof(struct iphdr));
1083
} else {
1084
/* Copy the IP header */
1085
skb_set_network_header(skb, skb->len);
1086
skb_put(skb, ihl);
1087
skb_copy_to_linear_data(skb, pkt->data, ihl);
1088
/* Flag to the kernel this is a route add */
1089
ip_hdr(skb)->protocol = 0;
1090
msg = (struct igmpmsg *)skb_network_header(skb);
1091
msg->im_vif = vifi;
1092
msg->im_vif_hi = vifi >> 8;
1093
ipv4_pktinfo_prepare(mroute_sk, pkt, false);
1094
memcpy(skb->cb, pkt->cb, sizeof(skb->cb));
1095
/* Add our header */
1096
igmp = skb_put(skb, sizeof(struct igmphdr));
1097
igmp->type = assert;
1098
msg->im_msgtype = assert;
1099
igmp->code = 0;
1100
ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1101
skb->transport_header = skb->network_header;
1102
}
1103
1104
igmpmsg_netlink_event(mrt, skb);
1105
1106
/* Deliver to mrouted */
1107
ret = sock_queue_rcv_skb(mroute_sk, skb);
1108
1109
if (ret < 0) {
1110
net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1111
kfree_skb(skb);
1112
}
1113
1114
return ret;
1115
}
1116
1117
/* Queue a packet for resolution. It gets locked cache entry! */
1118
/* Called under rcu_read_lock() */
1119
static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1120
struct sk_buff *skb, struct net_device *dev)
1121
{
1122
const struct iphdr *iph = ip_hdr(skb);
1123
struct mfc_cache *c;
1124
bool found = false;
1125
int err;
1126
1127
spin_lock_bh(&mfc_unres_lock);
1128
list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1129
if (c->mfc_mcastgrp == iph->daddr &&
1130
c->mfc_origin == iph->saddr) {
1131
found = true;
1132
break;
1133
}
1134
}
1135
1136
if (!found) {
1137
/* Create a new entry if allowable */
1138
c = ipmr_cache_alloc_unres();
1139
if (!c) {
1140
spin_unlock_bh(&mfc_unres_lock);
1141
1142
kfree_skb(skb);
1143
return -ENOBUFS;
1144
}
1145
1146
/* Fill in the new cache entry */
1147
c->_c.mfc_parent = -1;
1148
c->mfc_origin = iph->saddr;
1149
c->mfc_mcastgrp = iph->daddr;
1150
1151
/* Reflect first query at mrouted. */
1152
err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1153
1154
if (err < 0) {
1155
/* If the report failed throw the cache entry
1156
out - Brad Parker
1157
*/
1158
spin_unlock_bh(&mfc_unres_lock);
1159
1160
ipmr_cache_free(c);
1161
kfree_skb(skb);
1162
return err;
1163
}
1164
1165
atomic_inc(&mrt->cache_resolve_queue_len);
1166
list_add(&c->_c.list, &mrt->mfc_unres_queue);
1167
mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1168
1169
if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1170
mod_timer(&mrt->ipmr_expire_timer,
1171
c->_c.mfc_un.unres.expires);
1172
}
1173
1174
/* See if we can append the packet */
1175
if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1176
kfree_skb(skb);
1177
err = -ENOBUFS;
1178
} else {
1179
if (dev) {
1180
skb->dev = dev;
1181
skb->skb_iif = dev->ifindex;
1182
}
1183
skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1184
err = 0;
1185
}
1186
1187
spin_unlock_bh(&mfc_unres_lock);
1188
return err;
1189
}
1190
1191
/* MFC cache manipulation by user space mroute daemon */
1192
1193
static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1194
{
1195
struct net *net = read_pnet(&mrt->net);
1196
struct mfc_cache *c;
1197
1198
/* The entries are added/deleted only under RTNL */
1199
rcu_read_lock();
1200
c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1201
mfc->mfcc_mcastgrp.s_addr, parent);
1202
rcu_read_unlock();
1203
if (!c)
1204
return -ENOENT;
1205
rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1206
list_del_rcu(&c->_c.list);
1207
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1208
mroute_netlink_event(mrt, c, RTM_DELROUTE);
1209
mr_cache_put(&c->_c);
1210
1211
return 0;
1212
}
1213
1214
static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1215
struct mfcctl *mfc, int mrtsock, int parent)
1216
{
1217
struct mfc_cache *uc, *c;
1218
struct mr_mfc *_uc;
1219
bool found;
1220
int ret;
1221
1222
if (mfc->mfcc_parent >= MAXVIFS)
1223
return -ENFILE;
1224
1225
/* The entries are added/deleted only under RTNL */
1226
rcu_read_lock();
1227
c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1228
mfc->mfcc_mcastgrp.s_addr, parent);
1229
rcu_read_unlock();
1230
if (c) {
1231
spin_lock(&mrt_lock);
1232
c->_c.mfc_parent = mfc->mfcc_parent;
1233
ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1234
if (!mrtsock)
1235
c->_c.mfc_flags |= MFC_STATIC;
1236
spin_unlock(&mrt_lock);
1237
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1238
mrt->id);
1239
mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1240
return 0;
1241
}
1242
1243
if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1244
!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1245
return -EINVAL;
1246
1247
c = ipmr_cache_alloc();
1248
if (!c)
1249
return -ENOMEM;
1250
1251
c->mfc_origin = mfc->mfcc_origin.s_addr;
1252
c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1253
c->_c.mfc_parent = mfc->mfcc_parent;
1254
ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1255
if (!mrtsock)
1256
c->_c.mfc_flags |= MFC_STATIC;
1257
1258
ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1259
ipmr_rht_params);
1260
if (ret) {
1261
pr_err("ipmr: rhtable insert error %d\n", ret);
1262
ipmr_cache_free(c);
1263
return ret;
1264
}
1265
list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1266
/* Check to see if we resolved a queued list. If so we
1267
* need to send on the frames and tidy up.
1268
*/
1269
found = false;
1270
spin_lock_bh(&mfc_unres_lock);
1271
list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1272
uc = (struct mfc_cache *)_uc;
1273
if (uc->mfc_origin == c->mfc_origin &&
1274
uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1275
list_del(&_uc->list);
1276
atomic_dec(&mrt->cache_resolve_queue_len);
1277
found = true;
1278
break;
1279
}
1280
}
1281
if (list_empty(&mrt->mfc_unres_queue))
1282
timer_delete(&mrt->ipmr_expire_timer);
1283
spin_unlock_bh(&mfc_unres_lock);
1284
1285
if (found) {
1286
ipmr_cache_resolve(net, mrt, uc, c);
1287
ipmr_cache_free(uc);
1288
}
1289
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1290
mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1291
return 0;
1292
}
1293
1294
/* Close the multicast socket, and clear the vif tables etc */
1295
static void mroute_clean_tables(struct mr_table *mrt, int flags)
1296
{
1297
struct net *net = read_pnet(&mrt->net);
1298
struct mr_mfc *c, *tmp;
1299
struct mfc_cache *cache;
1300
LIST_HEAD(list);
1301
int i;
1302
1303
/* Shut down all active vif entries */
1304
if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1305
for (i = 0; i < mrt->maxvif; i++) {
1306
if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1307
!(flags & MRT_FLUSH_VIFS_STATIC)) ||
1308
(!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1309
continue;
1310
vif_delete(mrt, i, 0, &list);
1311
}
1312
unregister_netdevice_many(&list);
1313
}
1314
1315
/* Wipe the cache */
1316
if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1317
list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1318
if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1319
(!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1320
continue;
1321
rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1322
list_del_rcu(&c->list);
1323
cache = (struct mfc_cache *)c;
1324
call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1325
mrt->id);
1326
mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1327
mr_cache_put(c);
1328
}
1329
}
1330
1331
if (flags & MRT_FLUSH_MFC) {
1332
if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1333
spin_lock_bh(&mfc_unres_lock);
1334
list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1335
list_del(&c->list);
1336
cache = (struct mfc_cache *)c;
1337
mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1338
ipmr_destroy_unres(mrt, cache);
1339
}
1340
spin_unlock_bh(&mfc_unres_lock);
1341
}
1342
}
1343
}
1344
1345
/* called from ip_ra_control(), before an RCU grace period,
1346
* we don't need to call synchronize_rcu() here
1347
*/
1348
static void mrtsock_destruct(struct sock *sk)
1349
{
1350
struct net *net = sock_net(sk);
1351
struct mr_table *mrt;
1352
1353
rtnl_lock();
1354
ipmr_for_each_table(mrt, net) {
1355
if (sk == rtnl_dereference(mrt->mroute_sk)) {
1356
IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1357
inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1358
NETCONFA_MC_FORWARDING,
1359
NETCONFA_IFINDEX_ALL,
1360
net->ipv4.devconf_all);
1361
RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1362
mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1363
}
1364
}
1365
rtnl_unlock();
1366
}
1367
1368
/* Socket options and virtual interface manipulation. The whole
1369
* virtual interface system is a complete heap, but unfortunately
1370
* that's how BSD mrouted happens to think. Maybe one day with a proper
1371
* MOSPF/PIM router set up we can clean this up.
1372
*/
1373
1374
int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1375
unsigned int optlen)
1376
{
1377
struct net *net = sock_net(sk);
1378
int val, ret = 0, parent = 0;
1379
struct mr_table *mrt;
1380
struct vifctl vif;
1381
struct mfcctl mfc;
1382
bool do_wrvifwhole;
1383
u32 uval;
1384
1385
/* There's one exception to the lock - MRT_DONE which needs to unlock */
1386
rtnl_lock();
1387
if (sk->sk_type != SOCK_RAW ||
1388
inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1389
ret = -EOPNOTSUPP;
1390
goto out_unlock;
1391
}
1392
1393
mrt = __ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1394
if (!mrt) {
1395
ret = -ENOENT;
1396
goto out_unlock;
1397
}
1398
if (optname != MRT_INIT) {
1399
if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1400
!ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1401
ret = -EACCES;
1402
goto out_unlock;
1403
}
1404
}
1405
1406
switch (optname) {
1407
case MRT_INIT:
1408
if (optlen != sizeof(int)) {
1409
ret = -EINVAL;
1410
break;
1411
}
1412
if (rtnl_dereference(mrt->mroute_sk)) {
1413
ret = -EADDRINUSE;
1414
break;
1415
}
1416
1417
ret = ip_ra_control(sk, 1, mrtsock_destruct);
1418
if (ret == 0) {
1419
rcu_assign_pointer(mrt->mroute_sk, sk);
1420
IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1421
inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1422
NETCONFA_MC_FORWARDING,
1423
NETCONFA_IFINDEX_ALL,
1424
net->ipv4.devconf_all);
1425
}
1426
break;
1427
case MRT_DONE:
1428
if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1429
ret = -EACCES;
1430
} else {
1431
/* We need to unlock here because mrtsock_destruct takes
1432
* care of rtnl itself and we can't change that due to
1433
* the IP_ROUTER_ALERT setsockopt which runs without it.
1434
*/
1435
rtnl_unlock();
1436
ret = ip_ra_control(sk, 0, NULL);
1437
goto out;
1438
}
1439
break;
1440
case MRT_ADD_VIF:
1441
case MRT_DEL_VIF:
1442
if (optlen != sizeof(vif)) {
1443
ret = -EINVAL;
1444
break;
1445
}
1446
if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1447
ret = -EFAULT;
1448
break;
1449
}
1450
if (vif.vifc_vifi >= MAXVIFS) {
1451
ret = -ENFILE;
1452
break;
1453
}
1454
if (optname == MRT_ADD_VIF) {
1455
ret = vif_add(net, mrt, &vif,
1456
sk == rtnl_dereference(mrt->mroute_sk));
1457
} else {
1458
ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1459
}
1460
break;
1461
/* Manipulate the forwarding caches. These live
1462
* in a sort of kernel/user symbiosis.
1463
*/
1464
case MRT_ADD_MFC:
1465
case MRT_DEL_MFC:
1466
parent = -1;
1467
fallthrough;
1468
case MRT_ADD_MFC_PROXY:
1469
case MRT_DEL_MFC_PROXY:
1470
if (optlen != sizeof(mfc)) {
1471
ret = -EINVAL;
1472
break;
1473
}
1474
if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1475
ret = -EFAULT;
1476
break;
1477
}
1478
if (parent == 0)
1479
parent = mfc.mfcc_parent;
1480
if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1481
ret = ipmr_mfc_delete(mrt, &mfc, parent);
1482
else
1483
ret = ipmr_mfc_add(net, mrt, &mfc,
1484
sk == rtnl_dereference(mrt->mroute_sk),
1485
parent);
1486
break;
1487
case MRT_FLUSH:
1488
if (optlen != sizeof(val)) {
1489
ret = -EINVAL;
1490
break;
1491
}
1492
if (copy_from_sockptr(&val, optval, sizeof(val))) {
1493
ret = -EFAULT;
1494
break;
1495
}
1496
mroute_clean_tables(mrt, val);
1497
break;
1498
/* Control PIM assert. */
1499
case MRT_ASSERT:
1500
if (optlen != sizeof(val)) {
1501
ret = -EINVAL;
1502
break;
1503
}
1504
if (copy_from_sockptr(&val, optval, sizeof(val))) {
1505
ret = -EFAULT;
1506
break;
1507
}
1508
mrt->mroute_do_assert = val;
1509
break;
1510
case MRT_PIM:
1511
if (!ipmr_pimsm_enabled()) {
1512
ret = -ENOPROTOOPT;
1513
break;
1514
}
1515
if (optlen != sizeof(val)) {
1516
ret = -EINVAL;
1517
break;
1518
}
1519
if (copy_from_sockptr(&val, optval, sizeof(val))) {
1520
ret = -EFAULT;
1521
break;
1522
}
1523
1524
do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1525
val = !!val;
1526
if (val != mrt->mroute_do_pim) {
1527
mrt->mroute_do_pim = val;
1528
mrt->mroute_do_assert = val;
1529
mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1530
}
1531
break;
1532
case MRT_TABLE:
1533
if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1534
ret = -ENOPROTOOPT;
1535
break;
1536
}
1537
if (optlen != sizeof(uval)) {
1538
ret = -EINVAL;
1539
break;
1540
}
1541
if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1542
ret = -EFAULT;
1543
break;
1544
}
1545
1546
if (sk == rtnl_dereference(mrt->mroute_sk)) {
1547
ret = -EBUSY;
1548
} else {
1549
mrt = ipmr_new_table(net, uval);
1550
if (IS_ERR(mrt))
1551
ret = PTR_ERR(mrt);
1552
else
1553
raw_sk(sk)->ipmr_table = uval;
1554
}
1555
break;
1556
/* Spurious command, or MRT_VERSION which you cannot set. */
1557
default:
1558
ret = -ENOPROTOOPT;
1559
}
1560
out_unlock:
1561
rtnl_unlock();
1562
out:
1563
return ret;
1564
}
1565
1566
/* Execute if this ioctl is a special mroute ioctl */
1567
int ipmr_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1568
{
1569
switch (cmd) {
1570
/* These userspace buffers will be consumed by ipmr_ioctl() */
1571
case SIOCGETVIFCNT: {
1572
struct sioc_vif_req buffer;
1573
1574
return sock_ioctl_inout(sk, cmd, arg, &buffer,
1575
sizeof(buffer));
1576
}
1577
case SIOCGETSGCNT: {
1578
struct sioc_sg_req buffer;
1579
1580
return sock_ioctl_inout(sk, cmd, arg, &buffer,
1581
sizeof(buffer));
1582
}
1583
}
1584
/* return code > 0 means that the ioctl was not executed */
1585
return 1;
1586
}
1587
1588
/* Getsock opt support for the multicast routing system. */
1589
int ip_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval,
1590
sockptr_t optlen)
1591
{
1592
int olr;
1593
int val;
1594
struct net *net = sock_net(sk);
1595
struct mr_table *mrt;
1596
1597
if (sk->sk_type != SOCK_RAW ||
1598
inet_sk(sk)->inet_num != IPPROTO_IGMP)
1599
return -EOPNOTSUPP;
1600
1601
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1602
if (!mrt)
1603
return -ENOENT;
1604
1605
switch (optname) {
1606
case MRT_VERSION:
1607
val = 0x0305;
1608
break;
1609
case MRT_PIM:
1610
if (!ipmr_pimsm_enabled())
1611
return -ENOPROTOOPT;
1612
val = mrt->mroute_do_pim;
1613
break;
1614
case MRT_ASSERT:
1615
val = mrt->mroute_do_assert;
1616
break;
1617
default:
1618
return -ENOPROTOOPT;
1619
}
1620
1621
if (copy_from_sockptr(&olr, optlen, sizeof(int)))
1622
return -EFAULT;
1623
if (olr < 0)
1624
return -EINVAL;
1625
1626
olr = min_t(unsigned int, olr, sizeof(int));
1627
1628
if (copy_to_sockptr(optlen, &olr, sizeof(int)))
1629
return -EFAULT;
1630
if (copy_to_sockptr(optval, &val, olr))
1631
return -EFAULT;
1632
return 0;
1633
}
1634
1635
/* The IP multicast ioctl support routines. */
1636
int ipmr_ioctl(struct sock *sk, int cmd, void *arg)
1637
{
1638
struct vif_device *vif;
1639
struct mfc_cache *c;
1640
struct net *net = sock_net(sk);
1641
struct sioc_vif_req *vr;
1642
struct sioc_sg_req *sr;
1643
struct mr_table *mrt;
1644
1645
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1646
if (!mrt)
1647
return -ENOENT;
1648
1649
switch (cmd) {
1650
case SIOCGETVIFCNT:
1651
vr = (struct sioc_vif_req *)arg;
1652
if (vr->vifi >= mrt->maxvif)
1653
return -EINVAL;
1654
vr->vifi = array_index_nospec(vr->vifi, mrt->maxvif);
1655
rcu_read_lock();
1656
vif = &mrt->vif_table[vr->vifi];
1657
if (VIF_EXISTS(mrt, vr->vifi)) {
1658
vr->icount = READ_ONCE(vif->pkt_in);
1659
vr->ocount = READ_ONCE(vif->pkt_out);
1660
vr->ibytes = READ_ONCE(vif->bytes_in);
1661
vr->obytes = READ_ONCE(vif->bytes_out);
1662
rcu_read_unlock();
1663
1664
return 0;
1665
}
1666
rcu_read_unlock();
1667
return -EADDRNOTAVAIL;
1668
case SIOCGETSGCNT:
1669
sr = (struct sioc_sg_req *)arg;
1670
1671
rcu_read_lock();
1672
c = ipmr_cache_find(mrt, sr->src.s_addr, sr->grp.s_addr);
1673
if (c) {
1674
sr->pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1675
sr->bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1676
sr->wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1677
rcu_read_unlock();
1678
return 0;
1679
}
1680
rcu_read_unlock();
1681
return -EADDRNOTAVAIL;
1682
default:
1683
return -ENOIOCTLCMD;
1684
}
1685
}
1686
1687
#ifdef CONFIG_COMPAT
1688
struct compat_sioc_sg_req {
1689
struct in_addr src;
1690
struct in_addr grp;
1691
compat_ulong_t pktcnt;
1692
compat_ulong_t bytecnt;
1693
compat_ulong_t wrong_if;
1694
};
1695
1696
struct compat_sioc_vif_req {
1697
vifi_t vifi; /* Which iface */
1698
compat_ulong_t icount;
1699
compat_ulong_t ocount;
1700
compat_ulong_t ibytes;
1701
compat_ulong_t obytes;
1702
};
1703
1704
int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1705
{
1706
struct compat_sioc_sg_req sr;
1707
struct compat_sioc_vif_req vr;
1708
struct vif_device *vif;
1709
struct mfc_cache *c;
1710
struct net *net = sock_net(sk);
1711
struct mr_table *mrt;
1712
1713
mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1714
if (!mrt)
1715
return -ENOENT;
1716
1717
switch (cmd) {
1718
case SIOCGETVIFCNT:
1719
if (copy_from_user(&vr, arg, sizeof(vr)))
1720
return -EFAULT;
1721
if (vr.vifi >= mrt->maxvif)
1722
return -EINVAL;
1723
vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1724
rcu_read_lock();
1725
vif = &mrt->vif_table[vr.vifi];
1726
if (VIF_EXISTS(mrt, vr.vifi)) {
1727
vr.icount = READ_ONCE(vif->pkt_in);
1728
vr.ocount = READ_ONCE(vif->pkt_out);
1729
vr.ibytes = READ_ONCE(vif->bytes_in);
1730
vr.obytes = READ_ONCE(vif->bytes_out);
1731
rcu_read_unlock();
1732
1733
if (copy_to_user(arg, &vr, sizeof(vr)))
1734
return -EFAULT;
1735
return 0;
1736
}
1737
rcu_read_unlock();
1738
return -EADDRNOTAVAIL;
1739
case SIOCGETSGCNT:
1740
if (copy_from_user(&sr, arg, sizeof(sr)))
1741
return -EFAULT;
1742
1743
rcu_read_lock();
1744
c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1745
if (c) {
1746
sr.pktcnt = atomic_long_read(&c->_c.mfc_un.res.pkt);
1747
sr.bytecnt = atomic_long_read(&c->_c.mfc_un.res.bytes);
1748
sr.wrong_if = atomic_long_read(&c->_c.mfc_un.res.wrong_if);
1749
rcu_read_unlock();
1750
1751
if (copy_to_user(arg, &sr, sizeof(sr)))
1752
return -EFAULT;
1753
return 0;
1754
}
1755
rcu_read_unlock();
1756
return -EADDRNOTAVAIL;
1757
default:
1758
return -ENOIOCTLCMD;
1759
}
1760
}
1761
#endif
1762
1763
static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1764
{
1765
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1766
struct net *net = dev_net(dev);
1767
struct mr_table *mrt;
1768
struct vif_device *v;
1769
int ct;
1770
1771
if (event != NETDEV_UNREGISTER)
1772
return NOTIFY_DONE;
1773
1774
ipmr_for_each_table(mrt, net) {
1775
v = &mrt->vif_table[0];
1776
for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1777
if (rcu_access_pointer(v->dev) == dev)
1778
vif_delete(mrt, ct, 1, NULL);
1779
}
1780
}
1781
return NOTIFY_DONE;
1782
}
1783
1784
static struct notifier_block ip_mr_notifier = {
1785
.notifier_call = ipmr_device_event,
1786
};
1787
1788
/* Encapsulate a packet by attaching a valid IPIP header to it.
1789
* This avoids tunnel drivers and other mess and gives us the speed so
1790
* important for multicast video.
1791
*/
1792
static void ip_encap(struct net *net, struct sk_buff *skb,
1793
__be32 saddr, __be32 daddr)
1794
{
1795
struct iphdr *iph;
1796
const struct iphdr *old_iph = ip_hdr(skb);
1797
1798
skb_push(skb, sizeof(struct iphdr));
1799
skb->transport_header = skb->network_header;
1800
skb_reset_network_header(skb);
1801
iph = ip_hdr(skb);
1802
1803
iph->version = 4;
1804
iph->tos = old_iph->tos;
1805
iph->ttl = old_iph->ttl;
1806
iph->frag_off = 0;
1807
iph->daddr = daddr;
1808
iph->saddr = saddr;
1809
iph->protocol = IPPROTO_IPIP;
1810
iph->ihl = 5;
1811
iph->tot_len = htons(skb->len);
1812
ip_select_ident(net, skb, NULL);
1813
ip_send_check(iph);
1814
1815
memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1816
nf_reset_ct(skb);
1817
}
1818
1819
static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1820
struct sk_buff *skb)
1821
{
1822
struct ip_options *opt = &(IPCB(skb)->opt);
1823
1824
IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1825
1826
if (unlikely(opt->optlen))
1827
ip_forward_options(skb);
1828
1829
return dst_output(net, sk, skb);
1830
}
1831
1832
#ifdef CONFIG_NET_SWITCHDEV
1833
static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1834
int in_vifi, int out_vifi)
1835
{
1836
struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1837
struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1838
1839
if (!skb->offload_l3_fwd_mark)
1840
return false;
1841
if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1842
return false;
1843
return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1844
&in_vif->dev_parent_id);
1845
}
1846
#else
1847
static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1848
int in_vifi, int out_vifi)
1849
{
1850
return false;
1851
}
1852
#endif
1853
1854
/* Processing handlers for ipmr_forward, under rcu_read_lock() */
1855
1856
static int ipmr_prepare_xmit(struct net *net, struct mr_table *mrt,
1857
struct sk_buff *skb, int vifi)
1858
{
1859
const struct iphdr *iph = ip_hdr(skb);
1860
struct vif_device *vif = &mrt->vif_table[vifi];
1861
struct net_device *vif_dev;
1862
struct rtable *rt;
1863
struct flowi4 fl4;
1864
int encap = 0;
1865
1866
vif_dev = vif_dev_read(vif);
1867
if (!vif_dev)
1868
return -1;
1869
1870
if (vif->flags & VIFF_REGISTER) {
1871
WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1872
WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1873
DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1874
DEV_STATS_INC(vif_dev, tx_packets);
1875
ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1876
return -1;
1877
}
1878
1879
if (vif->flags & VIFF_TUNNEL) {
1880
rt = ip_route_output_ports(net, &fl4, NULL,
1881
vif->remote, vif->local,
1882
0, 0,
1883
IPPROTO_IPIP,
1884
iph->tos & INET_DSCP_MASK, vif->link);
1885
if (IS_ERR(rt))
1886
return -1;
1887
encap = sizeof(struct iphdr);
1888
} else {
1889
rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1890
0, 0,
1891
IPPROTO_IPIP,
1892
iph->tos & INET_DSCP_MASK, vif->link);
1893
if (IS_ERR(rt))
1894
return -1;
1895
}
1896
1897
if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1898
/* Do not fragment multicasts. Alas, IPv4 does not
1899
* allow to send ICMP, so that packets will disappear
1900
* to blackhole.
1901
*/
1902
IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1903
ip_rt_put(rt);
1904
return -1;
1905
}
1906
1907
encap += LL_RESERVED_SPACE(rt->dst.dev) + rt->dst.header_len;
1908
1909
if (skb_cow(skb, encap)) {
1910
ip_rt_put(rt);
1911
return -1;
1912
}
1913
1914
WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1);
1915
WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len);
1916
1917
skb_dst_drop(skb);
1918
skb_dst_set(skb, &rt->dst);
1919
ip_decrease_ttl(ip_hdr(skb));
1920
1921
/* FIXME: forward and output firewalls used to be called here.
1922
* What do we do with netfilter? -- RR
1923
*/
1924
if (vif->flags & VIFF_TUNNEL) {
1925
ip_encap(net, skb, vif->local, vif->remote);
1926
/* FIXME: extra output firewall step used to be here. --RR */
1927
DEV_STATS_INC(vif_dev, tx_packets);
1928
DEV_STATS_ADD(vif_dev, tx_bytes, skb->len);
1929
}
1930
1931
return 0;
1932
}
1933
1934
static void ipmr_queue_fwd_xmit(struct net *net, struct mr_table *mrt,
1935
int in_vifi, struct sk_buff *skb, int vifi)
1936
{
1937
struct rtable *rt;
1938
1939
if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1940
goto out_free;
1941
1942
if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1943
goto out_free;
1944
1945
rt = skb_rtable(skb);
1946
1947
IPCB(skb)->flags |= IPSKB_FORWARDED;
1948
1949
/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1950
* not only before forwarding, but after forwarding on all output
1951
* interfaces. It is clear, if mrouter runs a multicasting
1952
* program, it should receive packets not depending to what interface
1953
* program is joined.
1954
* If we will not make it, the program will have to join on all
1955
* interfaces. On the other hand, multihoming host (or router, but
1956
* not mrouter) cannot join to more than one interface - it will
1957
* result in receiving multiple packets.
1958
*/
1959
NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1960
net, NULL, skb, skb->dev, rt->dst.dev,
1961
ipmr_forward_finish);
1962
return;
1963
1964
out_free:
1965
kfree_skb(skb);
1966
}
1967
1968
static void ipmr_queue_output_xmit(struct net *net, struct mr_table *mrt,
1969
struct sk_buff *skb, int vifi)
1970
{
1971
if (ipmr_prepare_xmit(net, mrt, skb, vifi))
1972
goto out_free;
1973
1974
ip_mc_output(net, NULL, skb);
1975
return;
1976
1977
out_free:
1978
kfree_skb(skb);
1979
}
1980
1981
/* Called with mrt_lock or rcu_read_lock() */
1982
static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev)
1983
{
1984
int ct;
1985
/* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */
1986
for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) {
1987
if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev)
1988
break;
1989
}
1990
return ct;
1991
}
1992
1993
/* "local" means that we should preserve one skb (for local delivery) */
1994
/* Called uner rcu_read_lock() */
1995
static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1996
struct net_device *dev, struct sk_buff *skb,
1997
struct mfc_cache *c, int local)
1998
{
1999
int true_vifi = ipmr_find_vif(mrt, dev);
2000
int psend = -1;
2001
int vif, ct;
2002
2003
vif = c->_c.mfc_parent;
2004
atomic_long_inc(&c->_c.mfc_un.res.pkt);
2005
atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2006
WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2007
2008
if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
2009
struct mfc_cache *cache_proxy;
2010
2011
/* For an (*,G) entry, we only check that the incoming
2012
* interface is part of the static tree.
2013
*/
2014
cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2015
if (cache_proxy &&
2016
cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
2017
goto forward;
2018
}
2019
2020
/* Wrong interface: drop packet and (maybe) send PIM assert. */
2021
if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) {
2022
if (rt_is_output_route(skb_rtable(skb))) {
2023
/* It is our own packet, looped back.
2024
* Very complicated situation...
2025
*
2026
* The best workaround until routing daemons will be
2027
* fixed is not to redistribute packet, if it was
2028
* send through wrong interface. It means, that
2029
* multicast applications WILL NOT work for
2030
* (S,G), which have default multicast route pointing
2031
* to wrong oif. In any case, it is not a good
2032
* idea to use multicasting applications on router.
2033
*/
2034
goto dont_forward;
2035
}
2036
2037
atomic_long_inc(&c->_c.mfc_un.res.wrong_if);
2038
2039
if (true_vifi >= 0 && mrt->mroute_do_assert &&
2040
/* pimsm uses asserts, when switching from RPT to SPT,
2041
* so that we cannot check that packet arrived on an oif.
2042
* It is bad, but otherwise we would need to move pretty
2043
* large chunk of pimd to kernel. Ough... --ANK
2044
*/
2045
(mrt->mroute_do_pim ||
2046
c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2047
time_after(jiffies,
2048
c->_c.mfc_un.res.last_assert +
2049
MFC_ASSERT_THRESH)) {
2050
c->_c.mfc_un.res.last_assert = jiffies;
2051
ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
2052
if (mrt->mroute_do_wrvifwhole)
2053
ipmr_cache_report(mrt, skb, true_vifi,
2054
IGMPMSG_WRVIFWHOLE);
2055
}
2056
goto dont_forward;
2057
}
2058
2059
forward:
2060
WRITE_ONCE(mrt->vif_table[vif].pkt_in,
2061
mrt->vif_table[vif].pkt_in + 1);
2062
WRITE_ONCE(mrt->vif_table[vif].bytes_in,
2063
mrt->vif_table[vif].bytes_in + skb->len);
2064
2065
/* Forward the frame */
2066
if (c->mfc_origin == htonl(INADDR_ANY) &&
2067
c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2068
if (true_vifi >= 0 &&
2069
true_vifi != c->_c.mfc_parent &&
2070
ip_hdr(skb)->ttl >
2071
c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2072
/* It's an (*,*) entry and the packet is not coming from
2073
* the upstream: forward the packet to the upstream
2074
* only.
2075
*/
2076
psend = c->_c.mfc_parent;
2077
goto last_forward;
2078
}
2079
goto dont_forward;
2080
}
2081
for (ct = c->_c.mfc_un.res.maxvif - 1;
2082
ct >= c->_c.mfc_un.res.minvif; ct--) {
2083
/* For (*,G) entry, don't forward to the incoming interface */
2084
if ((c->mfc_origin != htonl(INADDR_ANY) ||
2085
ct != true_vifi) &&
2086
ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2087
if (psend != -1) {
2088
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2089
2090
if (skb2)
2091
ipmr_queue_fwd_xmit(net, mrt, true_vifi,
2092
skb2, psend);
2093
}
2094
psend = ct;
2095
}
2096
}
2097
last_forward:
2098
if (psend != -1) {
2099
if (local) {
2100
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2101
2102
if (skb2)
2103
ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb2,
2104
psend);
2105
} else {
2106
ipmr_queue_fwd_xmit(net, mrt, true_vifi, skb, psend);
2107
return;
2108
}
2109
}
2110
2111
dont_forward:
2112
if (!local)
2113
kfree_skb(skb);
2114
}
2115
2116
static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2117
{
2118
struct rtable *rt = skb_rtable(skb);
2119
struct iphdr *iph = ip_hdr(skb);
2120
struct flowi4 fl4 = {
2121
.daddr = iph->daddr,
2122
.saddr = iph->saddr,
2123
.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(iph)),
2124
.flowi4_oif = (rt_is_output_route(rt) ?
2125
skb->dev->ifindex : 0),
2126
.flowi4_iif = (rt_is_output_route(rt) ?
2127
LOOPBACK_IFINDEX :
2128
skb->dev->ifindex),
2129
.flowi4_mark = skb->mark,
2130
};
2131
struct mr_table *mrt;
2132
int err;
2133
2134
err = ipmr_fib_lookup(net, &fl4, &mrt);
2135
if (err)
2136
return ERR_PTR(err);
2137
return mrt;
2138
}
2139
2140
/* Multicast packets for forwarding arrive here
2141
* Called with rcu_read_lock();
2142
*/
2143
int ip_mr_input(struct sk_buff *skb)
2144
{
2145
struct mfc_cache *cache;
2146
struct net *net = dev_net(skb->dev);
2147
int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2148
struct mr_table *mrt;
2149
struct net_device *dev;
2150
2151
/* skb->dev passed in is the loX master dev for vrfs.
2152
* As there are no vifs associated with loopback devices,
2153
* get the proper interface that does have a vif associated with it.
2154
*/
2155
dev = skb->dev;
2156
if (netif_is_l3_master(skb->dev)) {
2157
dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2158
if (!dev) {
2159
kfree_skb(skb);
2160
return -ENODEV;
2161
}
2162
}
2163
2164
/* Packet is looped back after forward, it should not be
2165
* forwarded second time, but still can be delivered locally.
2166
*/
2167
if (IPCB(skb)->flags & IPSKB_FORWARDED)
2168
goto dont_forward;
2169
2170
mrt = ipmr_rt_fib_lookup(net, skb);
2171
if (IS_ERR(mrt)) {
2172
kfree_skb(skb);
2173
return PTR_ERR(mrt);
2174
}
2175
if (!local) {
2176
if (IPCB(skb)->opt.router_alert) {
2177
if (ip_call_ra_chain(skb))
2178
return 0;
2179
} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2180
/* IGMPv1 (and broken IGMPv2 implementations sort of
2181
* Cisco IOS <= 11.2(8)) do not put router alert
2182
* option to IGMP packets destined to routable
2183
* groups. It is very bad, because it means
2184
* that we can forward NO IGMP messages.
2185
*/
2186
struct sock *mroute_sk;
2187
2188
mroute_sk = rcu_dereference(mrt->mroute_sk);
2189
if (mroute_sk) {
2190
nf_reset_ct(skb);
2191
raw_rcv(mroute_sk, skb);
2192
return 0;
2193
}
2194
}
2195
}
2196
2197
/* already under rcu_read_lock() */
2198
cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2199
if (!cache) {
2200
int vif = ipmr_find_vif(mrt, dev);
2201
2202
if (vif >= 0)
2203
cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2204
vif);
2205
}
2206
2207
/* No usable cache entry */
2208
if (!cache) {
2209
int vif;
2210
2211
if (local) {
2212
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2213
ip_local_deliver(skb);
2214
if (!skb2)
2215
return -ENOBUFS;
2216
skb = skb2;
2217
}
2218
2219
vif = ipmr_find_vif(mrt, dev);
2220
if (vif >= 0)
2221
return ipmr_cache_unresolved(mrt, vif, skb, dev);
2222
kfree_skb(skb);
2223
return -ENODEV;
2224
}
2225
2226
ip_mr_forward(net, mrt, dev, skb, cache, local);
2227
2228
if (local)
2229
return ip_local_deliver(skb);
2230
2231
return 0;
2232
2233
dont_forward:
2234
if (local)
2235
return ip_local_deliver(skb);
2236
kfree_skb(skb);
2237
return 0;
2238
}
2239
2240
static void ip_mr_output_finish(struct net *net, struct mr_table *mrt,
2241
struct net_device *dev, struct sk_buff *skb,
2242
struct mfc_cache *c)
2243
{
2244
int psend = -1;
2245
int ct;
2246
2247
atomic_long_inc(&c->_c.mfc_un.res.pkt);
2248
atomic_long_add(skb->len, &c->_c.mfc_un.res.bytes);
2249
WRITE_ONCE(c->_c.mfc_un.res.lastuse, jiffies);
2250
2251
/* Forward the frame */
2252
if (c->mfc_origin == htonl(INADDR_ANY) &&
2253
c->mfc_mcastgrp == htonl(INADDR_ANY)) {
2254
if (ip_hdr(skb)->ttl >
2255
c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2256
/* It's an (*,*) entry and the packet is not coming from
2257
* the upstream: forward the packet to the upstream
2258
* only.
2259
*/
2260
psend = c->_c.mfc_parent;
2261
goto last_xmit;
2262
}
2263
goto dont_xmit;
2264
}
2265
2266
for (ct = c->_c.mfc_un.res.maxvif - 1;
2267
ct >= c->_c.mfc_un.res.minvif; ct--) {
2268
if (ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2269
if (psend != -1) {
2270
struct sk_buff *skb2;
2271
2272
skb2 = skb_clone(skb, GFP_ATOMIC);
2273
if (skb2)
2274
ipmr_queue_output_xmit(net, mrt,
2275
skb2, psend);
2276
}
2277
psend = ct;
2278
}
2279
}
2280
2281
last_xmit:
2282
if (psend != -1) {
2283
ipmr_queue_output_xmit(net, mrt, skb, psend);
2284
return;
2285
}
2286
2287
dont_xmit:
2288
kfree_skb(skb);
2289
}
2290
2291
/* Multicast packets for forwarding arrive here
2292
* Called with rcu_read_lock();
2293
*/
2294
int ip_mr_output(struct net *net, struct sock *sk, struct sk_buff *skb)
2295
{
2296
struct rtable *rt = skb_rtable(skb);
2297
struct mfc_cache *cache;
2298
struct net_device *dev;
2299
struct mr_table *mrt;
2300
int vif;
2301
2302
guard(rcu)();
2303
2304
dev = rt->dst.dev;
2305
2306
if (IPCB(skb)->flags & IPSKB_FORWARDED)
2307
goto mc_output;
2308
if (!(IPCB(skb)->flags & IPSKB_MCROUTE))
2309
goto mc_output;
2310
2311
skb->dev = dev;
2312
2313
mrt = ipmr_rt_fib_lookup(net, skb);
2314
if (IS_ERR(mrt))
2315
goto mc_output;
2316
2317
cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2318
if (!cache) {
2319
vif = ipmr_find_vif(mrt, dev);
2320
if (vif >= 0)
2321
cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2322
vif);
2323
}
2324
2325
/* No usable cache entry */
2326
if (!cache) {
2327
vif = ipmr_find_vif(mrt, dev);
2328
if (vif >= 0)
2329
return ipmr_cache_unresolved(mrt, vif, skb, dev);
2330
goto mc_output;
2331
}
2332
2333
vif = cache->_c.mfc_parent;
2334
if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev)
2335
goto mc_output;
2336
2337
ip_mr_output_finish(net, mrt, dev, skb, cache);
2338
return 0;
2339
2340
mc_output:
2341
return ip_mc_output(net, sk, skb);
2342
}
2343
2344
#ifdef CONFIG_IP_PIMSM_V1
2345
/* Handle IGMP messages of PIMv1 */
2346
int pim_rcv_v1(struct sk_buff *skb)
2347
{
2348
struct igmphdr *pim;
2349
struct net *net = dev_net(skb->dev);
2350
struct mr_table *mrt;
2351
2352
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2353
goto drop;
2354
2355
pim = igmp_hdr(skb);
2356
2357
mrt = ipmr_rt_fib_lookup(net, skb);
2358
if (IS_ERR(mrt))
2359
goto drop;
2360
if (!mrt->mroute_do_pim ||
2361
pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2362
goto drop;
2363
2364
if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2365
drop:
2366
kfree_skb(skb);
2367
}
2368
return 0;
2369
}
2370
#endif
2371
2372
#ifdef CONFIG_IP_PIMSM_V2
2373
static int pim_rcv(struct sk_buff *skb)
2374
{
2375
struct pimreghdr *pim;
2376
struct net *net = dev_net(skb->dev);
2377
struct mr_table *mrt;
2378
2379
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2380
goto drop;
2381
2382
pim = (struct pimreghdr *)skb_transport_header(skb);
2383
if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2384
(pim->flags & PIM_NULL_REGISTER) ||
2385
(ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2386
csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2387
goto drop;
2388
2389
mrt = ipmr_rt_fib_lookup(net, skb);
2390
if (IS_ERR(mrt))
2391
goto drop;
2392
if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2393
drop:
2394
kfree_skb(skb);
2395
}
2396
return 0;
2397
}
2398
#endif
2399
2400
int ipmr_get_route(struct net *net, struct sk_buff *skb,
2401
__be32 saddr, __be32 daddr,
2402
struct rtmsg *rtm, u32 portid)
2403
{
2404
struct mfc_cache *cache;
2405
struct mr_table *mrt;
2406
int err;
2407
2408
rcu_read_lock();
2409
mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
2410
if (!mrt) {
2411
rcu_read_unlock();
2412
return -ENOENT;
2413
}
2414
2415
cache = ipmr_cache_find(mrt, saddr, daddr);
2416
if (!cache && skb->dev) {
2417
int vif = ipmr_find_vif(mrt, skb->dev);
2418
2419
if (vif >= 0)
2420
cache = ipmr_cache_find_any(mrt, daddr, vif);
2421
}
2422
if (!cache) {
2423
struct sk_buff *skb2;
2424
struct iphdr *iph;
2425
struct net_device *dev;
2426
int vif = -1;
2427
2428
dev = skb->dev;
2429
if (dev)
2430
vif = ipmr_find_vif(mrt, dev);
2431
if (vif < 0) {
2432
rcu_read_unlock();
2433
return -ENODEV;
2434
}
2435
2436
skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2437
if (!skb2) {
2438
rcu_read_unlock();
2439
return -ENOMEM;
2440
}
2441
2442
NETLINK_CB(skb2).portid = portid;
2443
skb_push(skb2, sizeof(struct iphdr));
2444
skb_reset_network_header(skb2);
2445
iph = ip_hdr(skb2);
2446
iph->ihl = sizeof(struct iphdr) >> 2;
2447
iph->saddr = saddr;
2448
iph->daddr = daddr;
2449
iph->version = 0;
2450
err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2451
rcu_read_unlock();
2452
return err;
2453
}
2454
2455
err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2456
rcu_read_unlock();
2457
return err;
2458
}
2459
2460
static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2461
u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2462
int flags)
2463
{
2464
struct nlmsghdr *nlh;
2465
struct rtmsg *rtm;
2466
int err;
2467
2468
nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2469
if (!nlh)
2470
return -EMSGSIZE;
2471
2472
rtm = nlmsg_data(nlh);
2473
rtm->rtm_family = RTNL_FAMILY_IPMR;
2474
rtm->rtm_dst_len = 32;
2475
rtm->rtm_src_len = 32;
2476
rtm->rtm_tos = 0;
2477
rtm->rtm_table = mrt->id;
2478
if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2479
goto nla_put_failure;
2480
rtm->rtm_type = RTN_MULTICAST;
2481
rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2482
if (c->_c.mfc_flags & MFC_STATIC)
2483
rtm->rtm_protocol = RTPROT_STATIC;
2484
else
2485
rtm->rtm_protocol = RTPROT_MROUTED;
2486
rtm->rtm_flags = 0;
2487
2488
if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2489
nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2490
goto nla_put_failure;
2491
err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2492
/* do not break the dump if cache is unresolved */
2493
if (err < 0 && err != -ENOENT)
2494
goto nla_put_failure;
2495
2496
nlmsg_end(skb, nlh);
2497
return 0;
2498
2499
nla_put_failure:
2500
nlmsg_cancel(skb, nlh);
2501
return -EMSGSIZE;
2502
}
2503
2504
static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2505
u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2506
int flags)
2507
{
2508
return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2509
cmd, flags);
2510
}
2511
2512
static size_t mroute_msgsize(bool unresolved, int maxvif)
2513
{
2514
size_t len =
2515
NLMSG_ALIGN(sizeof(struct rtmsg))
2516
+ nla_total_size(4) /* RTA_TABLE */
2517
+ nla_total_size(4) /* RTA_SRC */
2518
+ nla_total_size(4) /* RTA_DST */
2519
;
2520
2521
if (!unresolved)
2522
len = len
2523
+ nla_total_size(4) /* RTA_IIF */
2524
+ nla_total_size(0) /* RTA_MULTIPATH */
2525
+ maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2526
/* RTA_MFC_STATS */
2527
+ nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2528
;
2529
2530
return len;
2531
}
2532
2533
static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2534
int cmd)
2535
{
2536
struct net *net = read_pnet(&mrt->net);
2537
struct sk_buff *skb;
2538
int err = -ENOBUFS;
2539
2540
skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2541
mrt->maxvif),
2542
GFP_ATOMIC);
2543
if (!skb)
2544
goto errout;
2545
2546
err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2547
if (err < 0)
2548
goto errout;
2549
2550
rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2551
return;
2552
2553
errout:
2554
kfree_skb(skb);
2555
rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2556
}
2557
2558
static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2559
{
2560
size_t len =
2561
NLMSG_ALIGN(sizeof(struct rtgenmsg))
2562
+ nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2563
+ nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2564
+ nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2565
+ nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2566
+ nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2567
/* IPMRA_CREPORT_PKT */
2568
+ nla_total_size(payloadlen)
2569
;
2570
2571
return len;
2572
}
2573
2574
static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt)
2575
{
2576
struct net *net = read_pnet(&mrt->net);
2577
struct nlmsghdr *nlh;
2578
struct rtgenmsg *rtgenm;
2579
struct igmpmsg *msg;
2580
struct sk_buff *skb;
2581
struct nlattr *nla;
2582
int payloadlen;
2583
2584
payloadlen = pkt->len - sizeof(struct igmpmsg);
2585
msg = (struct igmpmsg *)skb_network_header(pkt);
2586
2587
skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2588
if (!skb)
2589
goto errout;
2590
2591
nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2592
sizeof(struct rtgenmsg), 0);
2593
if (!nlh)
2594
goto errout;
2595
rtgenm = nlmsg_data(nlh);
2596
rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2597
if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2598
nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2599
nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2600
msg->im_src.s_addr) ||
2601
nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2602
msg->im_dst.s_addr) ||
2603
nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2604
goto nla_put_failure;
2605
2606
nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2607
if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2608
nla_data(nla), payloadlen))
2609
goto nla_put_failure;
2610
2611
nlmsg_end(skb, nlh);
2612
2613
rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2614
return;
2615
2616
nla_put_failure:
2617
nlmsg_cancel(skb, nlh);
2618
errout:
2619
kfree_skb(skb);
2620
rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2621
}
2622
2623
static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2624
const struct nlmsghdr *nlh,
2625
struct nlattr **tb,
2626
struct netlink_ext_ack *extack)
2627
{
2628
struct rtmsg *rtm;
2629
int i, err;
2630
2631
rtm = nlmsg_payload(nlh, sizeof(*rtm));
2632
if (!rtm) {
2633
NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2634
return -EINVAL;
2635
}
2636
2637
if (!netlink_strict_get_check(skb))
2638
return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2639
rtm_ipv4_policy, extack);
2640
2641
if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2642
(rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2643
rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2644
rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2645
NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2646
return -EINVAL;
2647
}
2648
2649
err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2650
rtm_ipv4_policy, extack);
2651
if (err)
2652
return err;
2653
2654
if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2655
(tb[RTA_DST] && !rtm->rtm_dst_len)) {
2656
NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2657
return -EINVAL;
2658
}
2659
2660
for (i = 0; i <= RTA_MAX; i++) {
2661
if (!tb[i])
2662
continue;
2663
2664
switch (i) {
2665
case RTA_SRC:
2666
case RTA_DST:
2667
case RTA_TABLE:
2668
break;
2669
default:
2670
NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2671
return -EINVAL;
2672
}
2673
}
2674
2675
return 0;
2676
}
2677
2678
static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2679
struct netlink_ext_ack *extack)
2680
{
2681
struct net *net = sock_net(in_skb->sk);
2682
struct nlattr *tb[RTA_MAX + 1];
2683
struct sk_buff *skb = NULL;
2684
struct mfc_cache *cache;
2685
struct mr_table *mrt;
2686
__be32 src, grp;
2687
u32 tableid;
2688
int err;
2689
2690
err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2691
if (err < 0)
2692
goto errout;
2693
2694
src = nla_get_in_addr_default(tb[RTA_SRC], 0);
2695
grp = nla_get_in_addr_default(tb[RTA_DST], 0);
2696
tableid = nla_get_u32_default(tb[RTA_TABLE], 0);
2697
2698
mrt = __ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2699
if (!mrt) {
2700
err = -ENOENT;
2701
goto errout_free;
2702
}
2703
2704
/* entries are added/deleted only under RTNL */
2705
rcu_read_lock();
2706
cache = ipmr_cache_find(mrt, src, grp);
2707
rcu_read_unlock();
2708
if (!cache) {
2709
err = -ENOENT;
2710
goto errout_free;
2711
}
2712
2713
skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2714
if (!skb) {
2715
err = -ENOBUFS;
2716
goto errout_free;
2717
}
2718
2719
err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2720
nlh->nlmsg_seq, cache,
2721
RTM_NEWROUTE, 0);
2722
if (err < 0)
2723
goto errout_free;
2724
2725
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2726
2727
errout:
2728
return err;
2729
2730
errout_free:
2731
kfree_skb(skb);
2732
goto errout;
2733
}
2734
2735
static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2736
{
2737
struct fib_dump_filter filter = {
2738
.rtnl_held = true,
2739
};
2740
int err;
2741
2742
if (cb->strict_check) {
2743
err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2744
&filter, cb);
2745
if (err < 0)
2746
return err;
2747
}
2748
2749
if (filter.table_id) {
2750
struct mr_table *mrt;
2751
2752
mrt = __ipmr_get_table(sock_net(skb->sk), filter.table_id);
2753
if (!mrt) {
2754
if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2755
return skb->len;
2756
2757
NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2758
return -ENOENT;
2759
}
2760
err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2761
&mfc_unres_lock, &filter);
2762
return skb->len ? : err;
2763
}
2764
2765
return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2766
_ipmr_fill_mroute, &mfc_unres_lock, &filter);
2767
}
2768
2769
static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2770
[RTA_SRC] = { .type = NLA_U32 },
2771
[RTA_DST] = { .type = NLA_U32 },
2772
[RTA_IIF] = { .type = NLA_U32 },
2773
[RTA_TABLE] = { .type = NLA_U32 },
2774
[RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2775
};
2776
2777
static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2778
{
2779
switch (rtm_protocol) {
2780
case RTPROT_STATIC:
2781
case RTPROT_MROUTED:
2782
return true;
2783
}
2784
return false;
2785
}
2786
2787
static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2788
{
2789
struct rtnexthop *rtnh = nla_data(nla);
2790
int remaining = nla_len(nla), vifi = 0;
2791
2792
while (rtnh_ok(rtnh, remaining)) {
2793
mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2794
if (++vifi == MAXVIFS)
2795
break;
2796
rtnh = rtnh_next(rtnh, &remaining);
2797
}
2798
2799
return remaining > 0 ? -EINVAL : vifi;
2800
}
2801
2802
/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2803
static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2804
struct mfcctl *mfcc, int *mrtsock,
2805
struct mr_table **mrtret,
2806
struct netlink_ext_ack *extack)
2807
{
2808
struct net_device *dev = NULL;
2809
u32 tblid = RT_TABLE_DEFAULT;
2810
struct mr_table *mrt;
2811
struct nlattr *attr;
2812
struct rtmsg *rtm;
2813
int ret, rem;
2814
2815
ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2816
rtm_ipmr_policy, extack);
2817
if (ret < 0)
2818
goto out;
2819
rtm = nlmsg_data(nlh);
2820
2821
ret = -EINVAL;
2822
if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2823
rtm->rtm_type != RTN_MULTICAST ||
2824
rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2825
!ipmr_rtm_validate_proto(rtm->rtm_protocol))
2826
goto out;
2827
2828
memset(mfcc, 0, sizeof(*mfcc));
2829
mfcc->mfcc_parent = -1;
2830
ret = 0;
2831
nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2832
switch (nla_type(attr)) {
2833
case RTA_SRC:
2834
mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2835
break;
2836
case RTA_DST:
2837
mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2838
break;
2839
case RTA_IIF:
2840
dev = __dev_get_by_index(net, nla_get_u32(attr));
2841
if (!dev) {
2842
ret = -ENODEV;
2843
goto out;
2844
}
2845
break;
2846
case RTA_MULTIPATH:
2847
if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2848
ret = -EINVAL;
2849
goto out;
2850
}
2851
break;
2852
case RTA_PREFSRC:
2853
ret = 1;
2854
break;
2855
case RTA_TABLE:
2856
tblid = nla_get_u32(attr);
2857
break;
2858
}
2859
}
2860
mrt = __ipmr_get_table(net, tblid);
2861
if (!mrt) {
2862
ret = -ENOENT;
2863
goto out;
2864
}
2865
*mrtret = mrt;
2866
*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2867
if (dev)
2868
mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2869
2870
out:
2871
return ret;
2872
}
2873
2874
/* takes care of both newroute and delroute */
2875
static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2876
struct netlink_ext_ack *extack)
2877
{
2878
struct net *net = sock_net(skb->sk);
2879
int ret, mrtsock, parent;
2880
struct mr_table *tbl;
2881
struct mfcctl mfcc;
2882
2883
mrtsock = 0;
2884
tbl = NULL;
2885
ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2886
if (ret < 0)
2887
return ret;
2888
2889
parent = ret ? mfcc.mfcc_parent : -1;
2890
if (nlh->nlmsg_type == RTM_NEWROUTE)
2891
return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2892
else
2893
return ipmr_mfc_delete(tbl, &mfcc, parent);
2894
}
2895
2896
static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2897
{
2898
u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2899
2900
if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2901
nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2902
nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2903
mrt->mroute_reg_vif_num) ||
2904
nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2905
mrt->mroute_do_assert) ||
2906
nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2907
nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2908
mrt->mroute_do_wrvifwhole))
2909
return false;
2910
2911
return true;
2912
}
2913
2914
static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2915
{
2916
struct net_device *vif_dev;
2917
struct nlattr *vif_nest;
2918
struct vif_device *vif;
2919
2920
vif = &mrt->vif_table[vifid];
2921
vif_dev = rtnl_dereference(vif->dev);
2922
/* if the VIF doesn't exist just continue */
2923
if (!vif_dev)
2924
return true;
2925
2926
vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2927
if (!vif_nest)
2928
return false;
2929
2930
if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) ||
2931
nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2932
nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2933
nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2934
IPMRA_VIFA_PAD) ||
2935
nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2936
IPMRA_VIFA_PAD) ||
2937
nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2938
IPMRA_VIFA_PAD) ||
2939
nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2940
IPMRA_VIFA_PAD) ||
2941
nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2942
nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2943
nla_nest_cancel(skb, vif_nest);
2944
return false;
2945
}
2946
nla_nest_end(skb, vif_nest);
2947
2948
return true;
2949
}
2950
2951
static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2952
struct netlink_ext_ack *extack)
2953
{
2954
struct ifinfomsg *ifm;
2955
2956
ifm = nlmsg_payload(nlh, sizeof(*ifm));
2957
if (!ifm) {
2958
NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2959
return -EINVAL;
2960
}
2961
2962
if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2963
NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2964
return -EINVAL;
2965
}
2966
2967
if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2968
ifm->ifi_change || ifm->ifi_index) {
2969
NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2970
return -EINVAL;
2971
}
2972
2973
return 0;
2974
}
2975
2976
static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2977
{
2978
struct net *net = sock_net(skb->sk);
2979
struct nlmsghdr *nlh = NULL;
2980
unsigned int t = 0, s_t;
2981
unsigned int e = 0, s_e;
2982
struct mr_table *mrt;
2983
2984
if (cb->strict_check) {
2985
int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2986
2987
if (err < 0)
2988
return err;
2989
}
2990
2991
s_t = cb->args[0];
2992
s_e = cb->args[1];
2993
2994
ipmr_for_each_table(mrt, net) {
2995
struct nlattr *vifs, *af;
2996
struct ifinfomsg *hdr;
2997
u32 i;
2998
2999
if (t < s_t)
3000
goto skip_table;
3001
nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
3002
cb->nlh->nlmsg_seq, RTM_NEWLINK,
3003
sizeof(*hdr), NLM_F_MULTI);
3004
if (!nlh)
3005
break;
3006
3007
hdr = nlmsg_data(nlh);
3008
memset(hdr, 0, sizeof(*hdr));
3009
hdr->ifi_family = RTNL_FAMILY_IPMR;
3010
3011
af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
3012
if (!af) {
3013
nlmsg_cancel(skb, nlh);
3014
goto out;
3015
}
3016
3017
if (!ipmr_fill_table(mrt, skb)) {
3018
nlmsg_cancel(skb, nlh);
3019
goto out;
3020
}
3021
3022
vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
3023
if (!vifs) {
3024
nla_nest_end(skb, af);
3025
nlmsg_end(skb, nlh);
3026
goto out;
3027
}
3028
for (i = 0; i < mrt->maxvif; i++) {
3029
if (e < s_e)
3030
goto skip_entry;
3031
if (!ipmr_fill_vif(mrt, i, skb)) {
3032
nla_nest_end(skb, vifs);
3033
nla_nest_end(skb, af);
3034
nlmsg_end(skb, nlh);
3035
goto out;
3036
}
3037
skip_entry:
3038
e++;
3039
}
3040
s_e = 0;
3041
e = 0;
3042
nla_nest_end(skb, vifs);
3043
nla_nest_end(skb, af);
3044
nlmsg_end(skb, nlh);
3045
skip_table:
3046
t++;
3047
}
3048
3049
out:
3050
cb->args[1] = e;
3051
cb->args[0] = t;
3052
3053
return skb->len;
3054
}
3055
3056
#ifdef CONFIG_PROC_FS
3057
/* The /proc interfaces to multicast routing :
3058
* /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
3059
*/
3060
3061
static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
3062
__acquires(RCU)
3063
{
3064
struct mr_vif_iter *iter = seq->private;
3065
struct net *net = seq_file_net(seq);
3066
struct mr_table *mrt;
3067
3068
rcu_read_lock();
3069
mrt = __ipmr_get_table(net, RT_TABLE_DEFAULT);
3070
if (!mrt) {
3071
rcu_read_unlock();
3072
return ERR_PTR(-ENOENT);
3073
}
3074
3075
iter->mrt = mrt;
3076
3077
return mr_vif_seq_start(seq, pos);
3078
}
3079
3080
static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
3081
__releases(RCU)
3082
{
3083
rcu_read_unlock();
3084
}
3085
3086
static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
3087
{
3088
struct mr_vif_iter *iter = seq->private;
3089
struct mr_table *mrt = iter->mrt;
3090
3091
if (v == SEQ_START_TOKEN) {
3092
seq_puts(seq,
3093
"Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
3094
} else {
3095
const struct vif_device *vif = v;
3096
const struct net_device *vif_dev;
3097
const char *name;
3098
3099
vif_dev = vif_dev_read(vif);
3100
name = vif_dev ? vif_dev->name : "none";
3101
seq_printf(seq,
3102
"%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
3103
vif - mrt->vif_table,
3104
name, vif->bytes_in, vif->pkt_in,
3105
vif->bytes_out, vif->pkt_out,
3106
vif->flags, vif->local, vif->remote);
3107
}
3108
return 0;
3109
}
3110
3111
static const struct seq_operations ipmr_vif_seq_ops = {
3112
.start = ipmr_vif_seq_start,
3113
.next = mr_vif_seq_next,
3114
.stop = ipmr_vif_seq_stop,
3115
.show = ipmr_vif_seq_show,
3116
};
3117
3118
static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
3119
{
3120
struct net *net = seq_file_net(seq);
3121
struct mr_table *mrt;
3122
3123
mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
3124
if (!mrt)
3125
return ERR_PTR(-ENOENT);
3126
3127
return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
3128
}
3129
3130
static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
3131
{
3132
int n;
3133
3134
if (v == SEQ_START_TOKEN) {
3135
seq_puts(seq,
3136
"Group Origin Iif Pkts Bytes Wrong Oifs\n");
3137
} else {
3138
const struct mfc_cache *mfc = v;
3139
const struct mr_mfc_iter *it = seq->private;
3140
const struct mr_table *mrt = it->mrt;
3141
3142
seq_printf(seq, "%08X %08X %-3hd",
3143
(__force u32) mfc->mfc_mcastgrp,
3144
(__force u32) mfc->mfc_origin,
3145
mfc->_c.mfc_parent);
3146
3147
if (it->cache != &mrt->mfc_unres_queue) {
3148
seq_printf(seq, " %8lu %8lu %8lu",
3149
atomic_long_read(&mfc->_c.mfc_un.res.pkt),
3150
atomic_long_read(&mfc->_c.mfc_un.res.bytes),
3151
atomic_long_read(&mfc->_c.mfc_un.res.wrong_if));
3152
for (n = mfc->_c.mfc_un.res.minvif;
3153
n < mfc->_c.mfc_un.res.maxvif; n++) {
3154
if (VIF_EXISTS(mrt, n) &&
3155
mfc->_c.mfc_un.res.ttls[n] < 255)
3156
seq_printf(seq,
3157
" %2d:%-3d",
3158
n, mfc->_c.mfc_un.res.ttls[n]);
3159
}
3160
} else {
3161
/* unresolved mfc_caches don't contain
3162
* pkt, bytes and wrong_if values
3163
*/
3164
seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3165
}
3166
seq_putc(seq, '\n');
3167
}
3168
return 0;
3169
}
3170
3171
static const struct seq_operations ipmr_mfc_seq_ops = {
3172
.start = ipmr_mfc_seq_start,
3173
.next = mr_mfc_seq_next,
3174
.stop = mr_mfc_seq_stop,
3175
.show = ipmr_mfc_seq_show,
3176
};
3177
#endif
3178
3179
#ifdef CONFIG_IP_PIMSM_V2
3180
static const struct net_protocol pim_protocol = {
3181
.handler = pim_rcv,
3182
};
3183
#endif
3184
3185
static unsigned int ipmr_seq_read(const struct net *net)
3186
{
3187
return READ_ONCE(net->ipv4.ipmr_seq) + ipmr_rules_seq_read(net);
3188
}
3189
3190
static int ipmr_dump(struct net *net, struct notifier_block *nb,
3191
struct netlink_ext_ack *extack)
3192
{
3193
return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3194
ipmr_mr_table_iter, extack);
3195
}
3196
3197
static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3198
.family = RTNL_FAMILY_IPMR,
3199
.fib_seq_read = ipmr_seq_read,
3200
.fib_dump = ipmr_dump,
3201
.owner = THIS_MODULE,
3202
};
3203
3204
static int __net_init ipmr_notifier_init(struct net *net)
3205
{
3206
struct fib_notifier_ops *ops;
3207
3208
net->ipv4.ipmr_seq = 0;
3209
3210
ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3211
if (IS_ERR(ops))
3212
return PTR_ERR(ops);
3213
net->ipv4.ipmr_notifier_ops = ops;
3214
3215
return 0;
3216
}
3217
3218
static void __net_exit ipmr_notifier_exit(struct net *net)
3219
{
3220
fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3221
net->ipv4.ipmr_notifier_ops = NULL;
3222
}
3223
3224
/* Setup for IP multicast routing */
3225
static int __net_init ipmr_net_init(struct net *net)
3226
{
3227
int err;
3228
3229
err = ipmr_notifier_init(net);
3230
if (err)
3231
goto ipmr_notifier_fail;
3232
3233
err = ipmr_rules_init(net);
3234
if (err < 0)
3235
goto ipmr_rules_fail;
3236
3237
#ifdef CONFIG_PROC_FS
3238
err = -ENOMEM;
3239
if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3240
sizeof(struct mr_vif_iter)))
3241
goto proc_vif_fail;
3242
if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3243
sizeof(struct mr_mfc_iter)))
3244
goto proc_cache_fail;
3245
#endif
3246
return 0;
3247
3248
#ifdef CONFIG_PROC_FS
3249
proc_cache_fail:
3250
remove_proc_entry("ip_mr_vif", net->proc_net);
3251
proc_vif_fail:
3252
rtnl_lock();
3253
ipmr_rules_exit(net);
3254
rtnl_unlock();
3255
#endif
3256
ipmr_rules_fail:
3257
ipmr_notifier_exit(net);
3258
ipmr_notifier_fail:
3259
return err;
3260
}
3261
3262
static void __net_exit ipmr_net_exit(struct net *net)
3263
{
3264
#ifdef CONFIG_PROC_FS
3265
remove_proc_entry("ip_mr_cache", net->proc_net);
3266
remove_proc_entry("ip_mr_vif", net->proc_net);
3267
#endif
3268
ipmr_notifier_exit(net);
3269
}
3270
3271
static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3272
{
3273
struct net *net;
3274
3275
rtnl_lock();
3276
list_for_each_entry(net, net_list, exit_list)
3277
ipmr_rules_exit(net);
3278
rtnl_unlock();
3279
}
3280
3281
static struct pernet_operations ipmr_net_ops = {
3282
.init = ipmr_net_init,
3283
.exit = ipmr_net_exit,
3284
.exit_batch = ipmr_net_exit_batch,
3285
};
3286
3287
static const struct rtnl_msg_handler ipmr_rtnl_msg_handlers[] __initconst = {
3288
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETLINK,
3289
.dumpit = ipmr_rtm_dumplink},
3290
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_NEWROUTE,
3291
.doit = ipmr_rtm_route},
3292
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_DELROUTE,
3293
.doit = ipmr_rtm_route},
3294
{.protocol = RTNL_FAMILY_IPMR, .msgtype = RTM_GETROUTE,
3295
.doit = ipmr_rtm_getroute, .dumpit = ipmr_rtm_dumproute},
3296
};
3297
3298
int __init ip_mr_init(void)
3299
{
3300
int err;
3301
3302
mrt_cachep = KMEM_CACHE(mfc_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3303
3304
err = register_pernet_subsys(&ipmr_net_ops);
3305
if (err)
3306
goto reg_pernet_fail;
3307
3308
err = register_netdevice_notifier(&ip_mr_notifier);
3309
if (err)
3310
goto reg_notif_fail;
3311
#ifdef CONFIG_IP_PIMSM_V2
3312
if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3313
pr_err("%s: can't add PIM protocol\n", __func__);
3314
err = -EAGAIN;
3315
goto add_proto_fail;
3316
}
3317
#endif
3318
rtnl_register_many(ipmr_rtnl_msg_handlers);
3319
3320
return 0;
3321
3322
#ifdef CONFIG_IP_PIMSM_V2
3323
add_proto_fail:
3324
unregister_netdevice_notifier(&ip_mr_notifier);
3325
#endif
3326
reg_notif_fail:
3327
unregister_pernet_subsys(&ipmr_net_ops);
3328
reg_pernet_fail:
3329
kmem_cache_destroy(mrt_cachep);
3330
return err;
3331
}
3332
3333