Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/ipv6/ip6_fib.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Linux INET6 implementation
4
* Forwarding Information Database
5
*
6
* Authors:
7
* Pedro Roque <[email protected]>
8
*
9
* Changes:
10
* Yuji SEKIYA @USAGI: Support default route on router node;
11
* remove ip6_null_entry from the top of
12
* routing table.
13
* Ville Nuorvala: Fixed routing subtrees.
14
*/
15
16
#define pr_fmt(fmt) "IPv6: " fmt
17
18
#include <linux/bpf.h>
19
#include <linux/errno.h>
20
#include <linux/types.h>
21
#include <linux/net.h>
22
#include <linux/route.h>
23
#include <linux/netdevice.h>
24
#include <linux/in6.h>
25
#include <linux/init.h>
26
#include <linux/list.h>
27
#include <linux/slab.h>
28
29
#include <net/ip.h>
30
#include <net/ipv6.h>
31
#include <net/ndisc.h>
32
#include <net/addrconf.h>
33
#include <net/lwtunnel.h>
34
#include <net/fib_notifier.h>
35
36
#include <net/ip_fib.h>
37
#include <net/ip6_fib.h>
38
#include <net/ip6_route.h>
39
40
static struct kmem_cache *fib6_node_kmem __read_mostly;
41
42
struct fib6_cleaner {
43
struct fib6_walker w;
44
struct net *net;
45
int (*func)(struct fib6_info *, void *arg);
46
int sernum;
47
void *arg;
48
bool skip_notify;
49
};
50
51
#ifdef CONFIG_IPV6_SUBTREES
52
#define FWS_INIT FWS_S
53
#else
54
#define FWS_INIT FWS_L
55
#endif
56
57
static struct fib6_info *fib6_find_prefix(struct net *net,
58
struct fib6_table *table,
59
struct fib6_node *fn);
60
static struct fib6_node *fib6_repair_tree(struct net *net,
61
struct fib6_table *table,
62
struct fib6_node *fn);
63
static int fib6_walk(struct net *net, struct fib6_walker *w);
64
static int fib6_walk_continue(struct fib6_walker *w);
65
66
/*
67
* A routing update causes an increase of the serial number on the
68
* affected subtree. This allows for cached routes to be asynchronously
69
* tested when modifications are made to the destination cache as a
70
* result of redirects, path MTU changes, etc.
71
*/
72
73
static void fib6_gc_timer_cb(struct timer_list *t);
74
75
#define FOR_WALKERS(net, w) \
76
list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78
static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79
{
80
write_lock_bh(&net->ipv6.fib6_walker_lock);
81
list_add(&w->lh, &net->ipv6.fib6_walkers);
82
write_unlock_bh(&net->ipv6.fib6_walker_lock);
83
}
84
85
static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86
{
87
write_lock_bh(&net->ipv6.fib6_walker_lock);
88
list_del(&w->lh);
89
write_unlock_bh(&net->ipv6.fib6_walker_lock);
90
}
91
92
static int fib6_new_sernum(struct net *net)
93
{
94
int new, old = atomic_read(&net->ipv6.fib6_sernum);
95
96
do {
97
new = old < INT_MAX ? old + 1 : 1;
98
} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99
100
return new;
101
}
102
103
enum {
104
FIB6_NO_SERNUM_CHANGE = 0,
105
};
106
107
void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108
{
109
struct fib6_node *fn;
110
111
fn = rcu_dereference_protected(f6i->fib6_node,
112
lockdep_is_held(&f6i->fib6_table->tb6_lock));
113
if (fn)
114
WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115
}
116
117
/*
118
* Auxiliary address test functions for the radix tree.
119
*
120
* These assume a 32bit processor (although it will work on
121
* 64bit processors)
122
*/
123
124
/*
125
* test bit
126
*/
127
#if defined(__LITTLE_ENDIAN)
128
# define BITOP_BE32_SWIZZLE (0x1F & ~7)
129
#else
130
# define BITOP_BE32_SWIZZLE 0
131
#endif
132
133
static __be32 addr_bit_set(const void *token, int fn_bit)
134
{
135
const __be32 *addr = token;
136
/*
137
* Here,
138
* 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139
* is optimized version of
140
* htonl(1 << ((~fn_bit)&0x1F))
141
* See include/asm-generic/bitops/le.h.
142
*/
143
return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144
addr[fn_bit >> 5];
145
}
146
147
struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148
{
149
struct fib6_info *f6i;
150
size_t sz = sizeof(*f6i);
151
152
if (with_fib6_nh)
153
sz += sizeof(struct fib6_nh);
154
155
f6i = kzalloc(sz, gfp_flags);
156
if (!f6i)
157
return NULL;
158
159
/* fib6_siblings is a union with nh_list, so this initializes both */
160
INIT_LIST_HEAD(&f6i->fib6_siblings);
161
refcount_set(&f6i->fib6_ref, 1);
162
163
INIT_HLIST_NODE(&f6i->gc_link);
164
165
return f6i;
166
}
167
168
void fib6_info_destroy_rcu(struct rcu_head *head)
169
{
170
struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171
172
WARN_ON(f6i->fib6_node);
173
174
if (f6i->nh)
175
nexthop_put(f6i->nh);
176
else
177
fib6_nh_release(f6i->fib6_nh);
178
179
ip_fib_metrics_put(f6i->fib6_metrics);
180
kfree(f6i);
181
}
182
EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183
184
static struct fib6_node *node_alloc(struct net *net)
185
{
186
struct fib6_node *fn;
187
188
fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189
if (fn)
190
net->ipv6.rt6_stats->fib_nodes++;
191
192
return fn;
193
}
194
195
static void node_free_immediate(struct net *net, struct fib6_node *fn)
196
{
197
kmem_cache_free(fib6_node_kmem, fn);
198
net->ipv6.rt6_stats->fib_nodes--;
199
}
200
201
static void node_free(struct net *net, struct fib6_node *fn)
202
{
203
kfree_rcu(fn, rcu);
204
net->ipv6.rt6_stats->fib_nodes--;
205
}
206
207
static void fib6_free_table(struct fib6_table *table)
208
{
209
inetpeer_invalidate_tree(&table->tb6_peers);
210
kfree(table);
211
}
212
213
static void fib6_link_table(struct net *net, struct fib6_table *tb)
214
{
215
unsigned int h;
216
217
/*
218
* Initialize table lock at a single place to give lockdep a key,
219
* tables aren't visible prior to being linked to the list.
220
*/
221
spin_lock_init(&tb->tb6_lock);
222
h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
223
224
/*
225
* No protection necessary, this is the only list mutatation
226
* operation, tables never disappear once they exist.
227
*/
228
hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
229
}
230
231
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
232
233
static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
234
{
235
struct fib6_table *table;
236
237
table = kzalloc(sizeof(*table), GFP_ATOMIC);
238
if (table) {
239
table->tb6_id = id;
240
rcu_assign_pointer(table->tb6_root.leaf,
241
net->ipv6.fib6_null_entry);
242
table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
243
inet_peer_base_init(&table->tb6_peers);
244
INIT_HLIST_HEAD(&table->tb6_gc_hlist);
245
}
246
247
return table;
248
}
249
250
struct fib6_table *fib6_new_table(struct net *net, u32 id)
251
{
252
struct fib6_table *tb, *new_tb;
253
254
if (id == 0)
255
id = RT6_TABLE_MAIN;
256
257
tb = fib6_get_table(net, id);
258
if (tb)
259
return tb;
260
261
new_tb = fib6_alloc_table(net, id);
262
if (!new_tb)
263
return NULL;
264
265
spin_lock_bh(&net->ipv6.fib_table_hash_lock);
266
267
tb = fib6_get_table(net, id);
268
if (unlikely(tb)) {
269
spin_unlock_bh(&net->ipv6.fib_table_hash_lock);
270
kfree(new_tb);
271
return tb;
272
}
273
274
fib6_link_table(net, new_tb);
275
276
spin_unlock_bh(&net->ipv6.fib_table_hash_lock);
277
278
return new_tb;
279
}
280
EXPORT_SYMBOL_GPL(fib6_new_table);
281
282
struct fib6_table *fib6_get_table(struct net *net, u32 id)
283
{
284
struct hlist_head *head;
285
struct fib6_table *tb;
286
287
if (!id)
288
id = RT6_TABLE_MAIN;
289
290
head = &net->ipv6.fib_table_hash[id & (FIB6_TABLE_HASHSZ - 1)];
291
292
/* See comment in fib6_link_table(). RCU is not required,
293
* but rcu_dereference_raw() is used to avoid data-race.
294
*/
295
hlist_for_each_entry_rcu(tb, head, tb6_hlist, true)
296
if (tb->tb6_id == id)
297
return tb;
298
299
return NULL;
300
}
301
EXPORT_SYMBOL_GPL(fib6_get_table);
302
303
static void __net_init fib6_tables_init(struct net *net)
304
{
305
fib6_link_table(net, net->ipv6.fib6_main_tbl);
306
fib6_link_table(net, net->ipv6.fib6_local_tbl);
307
}
308
#else
309
310
struct fib6_table *fib6_new_table(struct net *net, u32 id)
311
{
312
return fib6_get_table(net, id);
313
}
314
315
struct fib6_table *fib6_get_table(struct net *net, u32 id)
316
{
317
return net->ipv6.fib6_main_tbl;
318
}
319
320
struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
321
const struct sk_buff *skb,
322
int flags, pol_lookup_t lookup)
323
{
324
struct rt6_info *rt;
325
326
rt = pol_lookup_func(lookup,
327
net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
328
if (rt->dst.error == -EAGAIN) {
329
ip6_rt_put_flags(rt, flags);
330
rt = net->ipv6.ip6_null_entry;
331
if (!(flags & RT6_LOOKUP_F_DST_NOREF))
332
dst_hold(&rt->dst);
333
}
334
335
return &rt->dst;
336
}
337
338
/* called with rcu lock held; no reference taken on fib6_info */
339
int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
340
struct fib6_result *res, int flags)
341
{
342
return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
343
res, flags);
344
}
345
346
static void __net_init fib6_tables_init(struct net *net)
347
{
348
fib6_link_table(net, net->ipv6.fib6_main_tbl);
349
}
350
351
#endif
352
353
unsigned int fib6_tables_seq_read(const struct net *net)
354
{
355
unsigned int h, fib_seq = 0;
356
357
rcu_read_lock();
358
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
359
const struct hlist_head *head = &net->ipv6.fib_table_hash[h];
360
const struct fib6_table *tb;
361
362
hlist_for_each_entry_rcu(tb, head, tb6_hlist)
363
fib_seq += READ_ONCE(tb->fib_seq);
364
}
365
rcu_read_unlock();
366
367
return fib_seq;
368
}
369
370
static int call_fib6_entry_notifier(struct notifier_block *nb,
371
enum fib_event_type event_type,
372
struct fib6_info *rt,
373
struct netlink_ext_ack *extack)
374
{
375
struct fib6_entry_notifier_info info = {
376
.info.extack = extack,
377
.rt = rt,
378
};
379
380
return call_fib6_notifier(nb, event_type, &info.info);
381
}
382
383
static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
384
enum fib_event_type event_type,
385
struct fib6_info *rt,
386
unsigned int nsiblings,
387
struct netlink_ext_ack *extack)
388
{
389
struct fib6_entry_notifier_info info = {
390
.info.extack = extack,
391
.rt = rt,
392
.nsiblings = nsiblings,
393
};
394
395
return call_fib6_notifier(nb, event_type, &info.info);
396
}
397
398
int call_fib6_entry_notifiers(struct net *net,
399
enum fib_event_type event_type,
400
struct fib6_info *rt,
401
struct netlink_ext_ack *extack)
402
{
403
struct fib6_entry_notifier_info info = {
404
.info.extack = extack,
405
.rt = rt,
406
};
407
408
WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
409
return call_fib6_notifiers(net, event_type, &info.info);
410
}
411
412
int call_fib6_multipath_entry_notifiers(struct net *net,
413
enum fib_event_type event_type,
414
struct fib6_info *rt,
415
unsigned int nsiblings,
416
struct netlink_ext_ack *extack)
417
{
418
struct fib6_entry_notifier_info info = {
419
.info.extack = extack,
420
.rt = rt,
421
.nsiblings = nsiblings,
422
};
423
424
WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
425
return call_fib6_notifiers(net, event_type, &info.info);
426
}
427
428
int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
429
{
430
struct fib6_entry_notifier_info info = {
431
.rt = rt,
432
.nsiblings = rt->fib6_nsiblings,
433
};
434
435
WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
436
return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
437
}
438
439
struct fib6_dump_arg {
440
struct net *net;
441
struct notifier_block *nb;
442
struct netlink_ext_ack *extack;
443
};
444
445
static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
446
{
447
enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
448
unsigned int nsiblings;
449
int err;
450
451
if (!rt || rt == arg->net->ipv6.fib6_null_entry)
452
return 0;
453
454
nsiblings = READ_ONCE(rt->fib6_nsiblings);
455
if (nsiblings)
456
err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
457
rt,
458
nsiblings,
459
arg->extack);
460
else
461
err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
462
arg->extack);
463
464
return err;
465
}
466
467
static int fib6_node_dump(struct fib6_walker *w)
468
{
469
int err;
470
471
err = fib6_rt_dump(w->leaf, w->args);
472
w->leaf = NULL;
473
return err;
474
}
475
476
static int fib6_table_dump(struct net *net, struct fib6_table *tb,
477
struct fib6_walker *w)
478
{
479
int err;
480
481
w->root = &tb->tb6_root;
482
spin_lock_bh(&tb->tb6_lock);
483
err = fib6_walk(net, w);
484
spin_unlock_bh(&tb->tb6_lock);
485
return err;
486
}
487
488
/* Called with rcu_read_lock() */
489
int fib6_tables_dump(struct net *net, struct notifier_block *nb,
490
struct netlink_ext_ack *extack)
491
{
492
struct fib6_dump_arg arg;
493
struct fib6_walker *w;
494
unsigned int h;
495
int err = 0;
496
497
w = kzalloc(sizeof(*w), GFP_ATOMIC);
498
if (!w)
499
return -ENOMEM;
500
501
w->func = fib6_node_dump;
502
arg.net = net;
503
arg.nb = nb;
504
arg.extack = extack;
505
w->args = &arg;
506
507
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
508
struct hlist_head *head = &net->ipv6.fib_table_hash[h];
509
struct fib6_table *tb;
510
511
hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
512
err = fib6_table_dump(net, tb, w);
513
if (err)
514
goto out;
515
}
516
}
517
518
out:
519
kfree(w);
520
521
/* The tree traversal function should never return a positive value. */
522
return err > 0 ? -EINVAL : err;
523
}
524
525
static int fib6_dump_node(struct fib6_walker *w)
526
{
527
int res;
528
struct fib6_info *rt;
529
530
for_each_fib6_walker_rt(w) {
531
res = rt6_dump_route(rt, w->args, w->skip_in_node);
532
if (res >= 0) {
533
/* Frame is full, suspend walking */
534
w->leaf = rt;
535
536
/* We'll restart from this node, so if some routes were
537
* already dumped, skip them next time.
538
*/
539
w->skip_in_node += res;
540
541
return 1;
542
}
543
w->skip_in_node = 0;
544
545
/* Multipath routes are dumped in one route with the
546
* RTA_MULTIPATH attribute. Jump 'rt' to point to the
547
* last sibling of this route (no need to dump the
548
* sibling routes again)
549
*/
550
if (rt->fib6_nsiblings)
551
rt = list_last_entry(&rt->fib6_siblings,
552
struct fib6_info,
553
fib6_siblings);
554
}
555
w->leaf = NULL;
556
return 0;
557
}
558
559
static void fib6_dump_end(struct netlink_callback *cb)
560
{
561
struct net *net = sock_net(cb->skb->sk);
562
struct fib6_walker *w = (void *)cb->args[2];
563
564
if (w) {
565
if (cb->args[4]) {
566
cb->args[4] = 0;
567
fib6_walker_unlink(net, w);
568
}
569
cb->args[2] = 0;
570
kfree(w);
571
}
572
cb->done = (void *)cb->args[3];
573
cb->args[1] = 3;
574
}
575
576
static int fib6_dump_done(struct netlink_callback *cb)
577
{
578
fib6_dump_end(cb);
579
return cb->done ? cb->done(cb) : 0;
580
}
581
582
static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
583
struct netlink_callback *cb)
584
{
585
struct net *net = sock_net(skb->sk);
586
struct fib6_walker *w;
587
int res;
588
589
w = (void *)cb->args[2];
590
w->root = &table->tb6_root;
591
592
if (cb->args[4] == 0) {
593
w->count = 0;
594
w->skip = 0;
595
w->skip_in_node = 0;
596
597
spin_lock_bh(&table->tb6_lock);
598
res = fib6_walk(net, w);
599
spin_unlock_bh(&table->tb6_lock);
600
if (res > 0) {
601
cb->args[4] = 1;
602
cb->args[5] = READ_ONCE(w->root->fn_sernum);
603
}
604
} else {
605
int sernum = READ_ONCE(w->root->fn_sernum);
606
if (cb->args[5] != sernum) {
607
/* Begin at the root if the tree changed */
608
cb->args[5] = sernum;
609
w->state = FWS_INIT;
610
w->node = w->root;
611
w->skip = w->count;
612
w->skip_in_node = 0;
613
} else
614
w->skip = 0;
615
616
spin_lock_bh(&table->tb6_lock);
617
res = fib6_walk_continue(w);
618
spin_unlock_bh(&table->tb6_lock);
619
if (res <= 0) {
620
fib6_walker_unlink(net, w);
621
cb->args[4] = 0;
622
}
623
}
624
625
return res;
626
}
627
628
static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
629
{
630
struct rt6_rtnl_dump_arg arg = {
631
.filter.dump_exceptions = true,
632
.filter.dump_routes = true,
633
.filter.rtnl_held = false,
634
};
635
const struct nlmsghdr *nlh = cb->nlh;
636
struct net *net = sock_net(skb->sk);
637
unsigned int e = 0, s_e;
638
struct hlist_head *head;
639
struct fib6_walker *w;
640
struct fib6_table *tb;
641
unsigned int h, s_h;
642
int err = 0;
643
644
rcu_read_lock();
645
if (cb->strict_check) {
646
err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
647
if (err < 0)
648
goto unlock;
649
} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
650
struct rtmsg *rtm = nlmsg_data(nlh);
651
652
if (rtm->rtm_flags & RTM_F_PREFIX)
653
arg.filter.flags = RTM_F_PREFIX;
654
}
655
656
w = (void *)cb->args[2];
657
if (!w) {
658
/* New dump:
659
*
660
* 1. allocate and initialize walker.
661
*/
662
w = kzalloc(sizeof(*w), GFP_ATOMIC);
663
if (!w) {
664
err = -ENOMEM;
665
goto unlock;
666
}
667
w->func = fib6_dump_node;
668
cb->args[2] = (long)w;
669
670
/* 2. hook callback destructor.
671
*/
672
cb->args[3] = (long)cb->done;
673
cb->done = fib6_dump_done;
674
675
}
676
677
arg.skb = skb;
678
arg.cb = cb;
679
arg.net = net;
680
w->args = &arg;
681
682
if (arg.filter.table_id) {
683
tb = fib6_get_table(net, arg.filter.table_id);
684
if (!tb) {
685
if (rtnl_msg_family(cb->nlh) != PF_INET6)
686
goto unlock;
687
688
NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
689
err = -ENOENT;
690
goto unlock;
691
}
692
693
if (!cb->args[0]) {
694
err = fib6_dump_table(tb, skb, cb);
695
if (!err)
696
cb->args[0] = 1;
697
}
698
goto unlock;
699
}
700
701
s_h = cb->args[0];
702
s_e = cb->args[1];
703
704
for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
705
e = 0;
706
head = &net->ipv6.fib_table_hash[h];
707
hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
708
if (e < s_e)
709
goto next;
710
err = fib6_dump_table(tb, skb, cb);
711
if (err != 0)
712
goto out;
713
next:
714
e++;
715
}
716
}
717
out:
718
cb->args[1] = e;
719
cb->args[0] = h;
720
721
unlock:
722
rcu_read_unlock();
723
if (err <= 0)
724
fib6_dump_end(cb);
725
return err;
726
}
727
728
void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
729
{
730
if (!f6i)
731
return;
732
733
if (f6i->fib6_metrics == &dst_default_metrics) {
734
struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
735
736
if (!p)
737
return;
738
739
refcount_set(&p->refcnt, 1);
740
f6i->fib6_metrics = p;
741
}
742
743
f6i->fib6_metrics->metrics[metric - 1] = val;
744
}
745
746
/*
747
* Routing Table
748
*
749
* return the appropriate node for a routing tree "add" operation
750
* by either creating and inserting or by returning an existing
751
* node.
752
*/
753
754
static struct fib6_node *fib6_add_1(struct net *net,
755
struct fib6_table *table,
756
struct fib6_node *root,
757
struct in6_addr *addr, int plen,
758
int offset, int allow_create,
759
int replace_required,
760
struct netlink_ext_ack *extack)
761
{
762
struct fib6_node *fn, *in, *ln;
763
struct fib6_node *pn = NULL;
764
struct rt6key *key;
765
int bit;
766
__be32 dir = 0;
767
768
/* insert node in tree */
769
770
fn = root;
771
772
do {
773
struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
774
lockdep_is_held(&table->tb6_lock));
775
key = (struct rt6key *)((u8 *)leaf + offset);
776
777
/*
778
* Prefix match
779
*/
780
if (plen < fn->fn_bit ||
781
!ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
782
if (!allow_create) {
783
if (replace_required) {
784
NL_SET_ERR_MSG(extack,
785
"Can not replace route - no match found");
786
pr_warn("Can't replace route, no match found\n");
787
return ERR_PTR(-ENOENT);
788
}
789
pr_warn("NLM_F_CREATE should be set when creating new route\n");
790
}
791
goto insert_above;
792
}
793
794
/*
795
* Exact match ?
796
*/
797
798
if (plen == fn->fn_bit) {
799
/* clean up an intermediate node */
800
if (!(fn->fn_flags & RTN_RTINFO)) {
801
RCU_INIT_POINTER(fn->leaf, NULL);
802
fib6_info_release(leaf);
803
/* remove null_entry in the root node */
804
} else if (fn->fn_flags & RTN_TL_ROOT &&
805
rcu_access_pointer(fn->leaf) ==
806
net->ipv6.fib6_null_entry) {
807
RCU_INIT_POINTER(fn->leaf, NULL);
808
}
809
810
return fn;
811
}
812
813
/*
814
* We have more bits to go
815
*/
816
817
/* Try to walk down on tree. */
818
dir = addr_bit_set(addr, fn->fn_bit);
819
pn = fn;
820
fn = dir ?
821
rcu_dereference_protected(fn->right,
822
lockdep_is_held(&table->tb6_lock)) :
823
rcu_dereference_protected(fn->left,
824
lockdep_is_held(&table->tb6_lock));
825
} while (fn);
826
827
if (!allow_create) {
828
/* We should not create new node because
829
* NLM_F_REPLACE was specified without NLM_F_CREATE
830
* I assume it is safe to require NLM_F_CREATE when
831
* REPLACE flag is used! Later we may want to remove the
832
* check for replace_required, because according
833
* to netlink specification, NLM_F_CREATE
834
* MUST be specified if new route is created.
835
* That would keep IPv6 consistent with IPv4
836
*/
837
if (replace_required) {
838
NL_SET_ERR_MSG(extack,
839
"Can not replace route - no match found");
840
pr_warn("Can't replace route, no match found\n");
841
return ERR_PTR(-ENOENT);
842
}
843
pr_warn("NLM_F_CREATE should be set when creating new route\n");
844
}
845
/*
846
* We walked to the bottom of tree.
847
* Create new leaf node without children.
848
*/
849
850
ln = node_alloc(net);
851
852
if (!ln)
853
return ERR_PTR(-ENOMEM);
854
ln->fn_bit = plen;
855
RCU_INIT_POINTER(ln->parent, pn);
856
857
if (dir)
858
rcu_assign_pointer(pn->right, ln);
859
else
860
rcu_assign_pointer(pn->left, ln);
861
862
return ln;
863
864
865
insert_above:
866
/*
867
* split since we don't have a common prefix anymore or
868
* we have a less significant route.
869
* we've to insert an intermediate node on the list
870
* this new node will point to the one we need to create
871
* and the current
872
*/
873
874
pn = rcu_dereference_protected(fn->parent,
875
lockdep_is_held(&table->tb6_lock));
876
877
/* find 1st bit in difference between the 2 addrs.
878
879
See comment in __ipv6_addr_diff: bit may be an invalid value,
880
but if it is >= plen, the value is ignored in any case.
881
*/
882
883
bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
884
885
/*
886
* (intermediate)[in]
887
* / \
888
* (new leaf node)[ln] (old node)[fn]
889
*/
890
if (plen > bit) {
891
in = node_alloc(net);
892
ln = node_alloc(net);
893
894
if (!in || !ln) {
895
if (in)
896
node_free_immediate(net, in);
897
if (ln)
898
node_free_immediate(net, ln);
899
return ERR_PTR(-ENOMEM);
900
}
901
902
/*
903
* new intermediate node.
904
* RTN_RTINFO will
905
* be off since that an address that chooses one of
906
* the branches would not match less specific routes
907
* in the other branch
908
*/
909
910
in->fn_bit = bit;
911
912
RCU_INIT_POINTER(in->parent, pn);
913
in->leaf = fn->leaf;
914
fib6_info_hold(rcu_dereference_protected(in->leaf,
915
lockdep_is_held(&table->tb6_lock)));
916
917
/* update parent pointer */
918
if (dir)
919
rcu_assign_pointer(pn->right, in);
920
else
921
rcu_assign_pointer(pn->left, in);
922
923
ln->fn_bit = plen;
924
925
RCU_INIT_POINTER(ln->parent, in);
926
rcu_assign_pointer(fn->parent, in);
927
928
if (addr_bit_set(addr, bit)) {
929
rcu_assign_pointer(in->right, ln);
930
rcu_assign_pointer(in->left, fn);
931
} else {
932
rcu_assign_pointer(in->left, ln);
933
rcu_assign_pointer(in->right, fn);
934
}
935
} else { /* plen <= bit */
936
937
/*
938
* (new leaf node)[ln]
939
* / \
940
* (old node)[fn] NULL
941
*/
942
943
ln = node_alloc(net);
944
945
if (!ln)
946
return ERR_PTR(-ENOMEM);
947
948
ln->fn_bit = plen;
949
950
RCU_INIT_POINTER(ln->parent, pn);
951
952
if (addr_bit_set(&key->addr, plen))
953
RCU_INIT_POINTER(ln->right, fn);
954
else
955
RCU_INIT_POINTER(ln->left, fn);
956
957
rcu_assign_pointer(fn->parent, ln);
958
959
if (dir)
960
rcu_assign_pointer(pn->right, ln);
961
else
962
rcu_assign_pointer(pn->left, ln);
963
}
964
return ln;
965
}
966
967
static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
968
const struct fib6_info *match)
969
{
970
int cpu;
971
972
if (!fib6_nh->rt6i_pcpu)
973
return;
974
975
rcu_read_lock();
976
/* release the reference to this fib entry from
977
* all of its cached pcpu routes
978
*/
979
for_each_possible_cpu(cpu) {
980
struct rt6_info **ppcpu_rt;
981
struct rt6_info *pcpu_rt;
982
983
ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
984
985
/* Paired with xchg() in rt6_get_pcpu_route() */
986
pcpu_rt = READ_ONCE(*ppcpu_rt);
987
988
/* only dropping the 'from' reference if the cached route
989
* is using 'match'. The cached pcpu_rt->from only changes
990
* from a fib6_info to NULL (ip6_dst_destroy); it can never
991
* change from one fib6_info reference to another
992
*/
993
if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
994
struct fib6_info *from;
995
996
from = unrcu_pointer(xchg(&pcpu_rt->from, NULL));
997
fib6_info_release(from);
998
}
999
}
1000
rcu_read_unlock();
1001
}
1002
1003
static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
1004
{
1005
struct fib6_info *arg = _arg;
1006
1007
__fib6_drop_pcpu_from(nh, arg);
1008
return 0;
1009
}
1010
1011
static void fib6_drop_pcpu_from(struct fib6_info *f6i)
1012
{
1013
/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1014
* while we are cleaning them here.
1015
*/
1016
f6i->fib6_destroying = 1;
1017
mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1018
1019
if (f6i->nh) {
1020
rcu_read_lock();
1021
nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, f6i);
1022
rcu_read_unlock();
1023
} else {
1024
struct fib6_nh *fib6_nh;
1025
1026
fib6_nh = f6i->fib6_nh;
1027
__fib6_drop_pcpu_from(fib6_nh, f6i);
1028
}
1029
}
1030
1031
static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1032
struct net *net)
1033
{
1034
struct fib6_table *table = rt->fib6_table;
1035
1036
/* Flush all cached dst in exception table */
1037
rt6_flush_exceptions(rt);
1038
fib6_drop_pcpu_from(rt);
1039
1040
if (rt->nh) {
1041
spin_lock(&rt->nh->lock);
1042
1043
if (!list_empty(&rt->nh_list))
1044
list_del_init(&rt->nh_list);
1045
1046
spin_unlock(&rt->nh->lock);
1047
}
1048
1049
if (refcount_read(&rt->fib6_ref) != 1) {
1050
/* This route is used as dummy address holder in some split
1051
* nodes. It is not leaked, but it still holds other resources,
1052
* which must be released in time. So, scan ascendant nodes
1053
* and replace dummy references to this route with references
1054
* to still alive ones.
1055
*/
1056
while (fn) {
1057
struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1058
lockdep_is_held(&table->tb6_lock));
1059
struct fib6_info *new_leaf;
1060
if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1061
new_leaf = fib6_find_prefix(net, table, fn);
1062
fib6_info_hold(new_leaf);
1063
1064
rcu_assign_pointer(fn->leaf, new_leaf);
1065
fib6_info_release(rt);
1066
}
1067
fn = rcu_dereference_protected(fn->parent,
1068
lockdep_is_held(&table->tb6_lock));
1069
}
1070
}
1071
1072
fib6_clean_expires(rt);
1073
fib6_remove_gc_list(rt);
1074
}
1075
1076
/*
1077
* Insert routing information in a node.
1078
*/
1079
1080
static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1081
struct nl_info *info, struct netlink_ext_ack *extack,
1082
struct list_head *purge_list)
1083
{
1084
struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1085
lockdep_is_held(&rt->fib6_table->tb6_lock));
1086
struct fib6_info *iter = NULL;
1087
struct fib6_info __rcu **ins;
1088
struct fib6_info __rcu **fallback_ins = NULL;
1089
int replace = (info->nlh &&
1090
(info->nlh->nlmsg_flags & NLM_F_REPLACE));
1091
int add = (!info->nlh ||
1092
(info->nlh->nlmsg_flags & NLM_F_CREATE));
1093
int found = 0;
1094
bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1095
bool notify_sibling_rt = false;
1096
u16 nlflags = NLM_F_EXCL;
1097
int err;
1098
1099
if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1100
nlflags |= NLM_F_APPEND;
1101
1102
ins = &fn->leaf;
1103
1104
for (iter = leaf; iter;
1105
iter = rcu_dereference_protected(iter->fib6_next,
1106
lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1107
/*
1108
* Search for duplicates
1109
*/
1110
1111
if (iter->fib6_metric == rt->fib6_metric) {
1112
/*
1113
* Same priority level
1114
*/
1115
if (info->nlh &&
1116
(info->nlh->nlmsg_flags & NLM_F_EXCL))
1117
return -EEXIST;
1118
1119
nlflags &= ~NLM_F_EXCL;
1120
if (replace) {
1121
if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1122
found++;
1123
break;
1124
}
1125
fallback_ins = fallback_ins ?: ins;
1126
goto next_iter;
1127
}
1128
1129
if (rt6_duplicate_nexthop(iter, rt)) {
1130
if (rt->fib6_nsiblings)
1131
WRITE_ONCE(rt->fib6_nsiblings, 0);
1132
if (!(iter->fib6_flags & RTF_EXPIRES))
1133
return -EEXIST;
1134
if (!(rt->fib6_flags & RTF_EXPIRES)) {
1135
fib6_clean_expires(iter);
1136
fib6_remove_gc_list(iter);
1137
} else {
1138
fib6_set_expires(iter, rt->expires);
1139
fib6_add_gc_list(iter);
1140
}
1141
1142
if (rt->fib6_pmtu)
1143
fib6_metric_set(iter, RTAX_MTU,
1144
rt->fib6_pmtu);
1145
return -EEXIST;
1146
}
1147
/* If we have the same destination and the same metric,
1148
* but not the same gateway, then the route we try to
1149
* add is sibling to this route, increment our counter
1150
* of siblings, and later we will add our route to the
1151
* list.
1152
* Only static routes (which don't have flag
1153
* RTF_EXPIRES) are used for ECMPv6.
1154
*
1155
* To avoid long list, we only had siblings if the
1156
* route have a gateway.
1157
*/
1158
if (rt_can_ecmp &&
1159
rt6_qualify_for_ecmp(iter))
1160
WRITE_ONCE(rt->fib6_nsiblings,
1161
rt->fib6_nsiblings + 1);
1162
}
1163
1164
if (iter->fib6_metric > rt->fib6_metric)
1165
break;
1166
1167
next_iter:
1168
ins = &iter->fib6_next;
1169
}
1170
1171
if (fallback_ins && !found) {
1172
/* No matching route with same ecmp-able-ness found, replace
1173
* first matching route
1174
*/
1175
ins = fallback_ins;
1176
iter = rcu_dereference_protected(*ins,
1177
lockdep_is_held(&rt->fib6_table->tb6_lock));
1178
found++;
1179
}
1180
1181
/* Reset round-robin state, if necessary */
1182
if (ins == &fn->leaf)
1183
fn->rr_ptr = NULL;
1184
1185
/* Link this route to others same route. */
1186
if (rt->fib6_nsiblings) {
1187
unsigned int fib6_nsiblings;
1188
struct fib6_info *sibling, *temp_sibling;
1189
1190
/* Find the first route that have the same metric */
1191
sibling = leaf;
1192
notify_sibling_rt = true;
1193
while (sibling) {
1194
if (sibling->fib6_metric == rt->fib6_metric &&
1195
rt6_qualify_for_ecmp(sibling)) {
1196
list_add_tail_rcu(&rt->fib6_siblings,
1197
&sibling->fib6_siblings);
1198
break;
1199
}
1200
sibling = rcu_dereference_protected(sibling->fib6_next,
1201
lockdep_is_held(&rt->fib6_table->tb6_lock));
1202
notify_sibling_rt = false;
1203
}
1204
/* For each sibling in the list, increment the counter of
1205
* siblings. BUG() if counters does not match, list of siblings
1206
* is broken!
1207
*/
1208
fib6_nsiblings = 0;
1209
list_for_each_entry_safe(sibling, temp_sibling,
1210
&rt->fib6_siblings, fib6_siblings) {
1211
WRITE_ONCE(sibling->fib6_nsiblings,
1212
sibling->fib6_nsiblings + 1);
1213
BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1214
fib6_nsiblings++;
1215
}
1216
BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1217
rcu_read_lock();
1218
rt6_multipath_rebalance(temp_sibling);
1219
rcu_read_unlock();
1220
}
1221
1222
/*
1223
* insert node
1224
*/
1225
if (!replace) {
1226
if (!add)
1227
pr_warn("NLM_F_CREATE should be set when creating new route\n");
1228
1229
add:
1230
nlflags |= NLM_F_CREATE;
1231
1232
/* The route should only be notified if it is the first
1233
* route in the node or if it is added as a sibling
1234
* route to the first route in the node.
1235
*/
1236
if (!info->skip_notify_kernel &&
1237
(notify_sibling_rt || ins == &fn->leaf)) {
1238
enum fib_event_type fib_event;
1239
1240
if (notify_sibling_rt)
1241
fib_event = FIB_EVENT_ENTRY_APPEND;
1242
else
1243
fib_event = FIB_EVENT_ENTRY_REPLACE;
1244
err = call_fib6_entry_notifiers(info->nl_net,
1245
fib_event, rt,
1246
extack);
1247
if (err) {
1248
struct fib6_info *sibling, *next_sibling;
1249
1250
/* If the route has siblings, then it first
1251
* needs to be unlinked from them.
1252
*/
1253
if (!rt->fib6_nsiblings)
1254
return err;
1255
1256
list_for_each_entry_safe(sibling, next_sibling,
1257
&rt->fib6_siblings,
1258
fib6_siblings)
1259
WRITE_ONCE(sibling->fib6_nsiblings,
1260
sibling->fib6_nsiblings - 1);
1261
WRITE_ONCE(rt->fib6_nsiblings, 0);
1262
list_del_rcu(&rt->fib6_siblings);
1263
rcu_read_lock();
1264
rt6_multipath_rebalance(next_sibling);
1265
rcu_read_unlock();
1266
return err;
1267
}
1268
}
1269
1270
rcu_assign_pointer(rt->fib6_next, iter);
1271
fib6_info_hold(rt);
1272
rcu_assign_pointer(rt->fib6_node, fn);
1273
rcu_assign_pointer(*ins, rt);
1274
if (!info->skip_notify)
1275
inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1276
info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1277
1278
if (!(fn->fn_flags & RTN_RTINFO)) {
1279
info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1280
fn->fn_flags |= RTN_RTINFO;
1281
}
1282
1283
} else {
1284
int nsiblings;
1285
1286
if (!found) {
1287
if (add)
1288
goto add;
1289
pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1290
return -ENOENT;
1291
}
1292
1293
if (!info->skip_notify_kernel && ins == &fn->leaf) {
1294
err = call_fib6_entry_notifiers(info->nl_net,
1295
FIB_EVENT_ENTRY_REPLACE,
1296
rt, extack);
1297
if (err)
1298
return err;
1299
}
1300
1301
fib6_info_hold(rt);
1302
rcu_assign_pointer(rt->fib6_node, fn);
1303
rt->fib6_next = iter->fib6_next;
1304
rcu_assign_pointer(*ins, rt);
1305
if (!info->skip_notify)
1306
inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1307
if (!(fn->fn_flags & RTN_RTINFO)) {
1308
info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1309
fn->fn_flags |= RTN_RTINFO;
1310
}
1311
nsiblings = iter->fib6_nsiblings;
1312
iter->fib6_node = NULL;
1313
list_add(&iter->purge_link, purge_list);
1314
if (rcu_access_pointer(fn->rr_ptr) == iter)
1315
fn->rr_ptr = NULL;
1316
1317
if (nsiblings) {
1318
/* Replacing an ECMP route, remove all siblings */
1319
ins = &rt->fib6_next;
1320
iter = rcu_dereference_protected(*ins,
1321
lockdep_is_held(&rt->fib6_table->tb6_lock));
1322
while (iter) {
1323
if (iter->fib6_metric > rt->fib6_metric)
1324
break;
1325
if (rt6_qualify_for_ecmp(iter)) {
1326
*ins = iter->fib6_next;
1327
iter->fib6_node = NULL;
1328
list_add(&iter->purge_link, purge_list);
1329
if (rcu_access_pointer(fn->rr_ptr) == iter)
1330
fn->rr_ptr = NULL;
1331
nsiblings--;
1332
info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1333
} else {
1334
ins = &iter->fib6_next;
1335
}
1336
iter = rcu_dereference_protected(*ins,
1337
lockdep_is_held(&rt->fib6_table->tb6_lock));
1338
}
1339
WARN_ON(nsiblings != 0);
1340
}
1341
}
1342
1343
return 0;
1344
}
1345
1346
static int fib6_add_rt2node_nh(struct fib6_node *fn, struct fib6_info *rt,
1347
struct nl_info *info, struct netlink_ext_ack *extack,
1348
struct list_head *purge_list)
1349
{
1350
int err;
1351
1352
spin_lock(&rt->nh->lock);
1353
1354
if (rt->nh->dead) {
1355
NL_SET_ERR_MSG(extack, "Nexthop has been deleted");
1356
err = -EINVAL;
1357
} else {
1358
err = fib6_add_rt2node(fn, rt, info, extack, purge_list);
1359
if (!err)
1360
list_add(&rt->nh_list, &rt->nh->f6i_list);
1361
}
1362
1363
spin_unlock(&rt->nh->lock);
1364
1365
return err;
1366
}
1367
1368
static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1369
{
1370
if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1371
(rt->fib6_flags & RTF_EXPIRES))
1372
mod_timer(&net->ipv6.ip6_fib_timer,
1373
jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1374
}
1375
1376
void fib6_force_start_gc(struct net *net)
1377
{
1378
if (!timer_pending(&net->ipv6.ip6_fib_timer))
1379
mod_timer(&net->ipv6.ip6_fib_timer,
1380
jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1381
}
1382
1383
static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1384
int sernum)
1385
{
1386
struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1387
lockdep_is_held(&rt->fib6_table->tb6_lock));
1388
1389
/* paired with smp_rmb() in fib6_get_cookie_safe() */
1390
smp_wmb();
1391
while (fn) {
1392
WRITE_ONCE(fn->fn_sernum, sernum);
1393
fn = rcu_dereference_protected(fn->parent,
1394
lockdep_is_held(&rt->fib6_table->tb6_lock));
1395
}
1396
}
1397
1398
void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1399
{
1400
__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1401
}
1402
1403
/* allow ipv4 to update sernum via ipv6_stub */
1404
void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1405
{
1406
spin_lock_bh(&f6i->fib6_table->tb6_lock);
1407
fib6_update_sernum_upto_root(net, f6i);
1408
spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1409
}
1410
1411
/*
1412
* Add routing information to the routing tree.
1413
* <destination addr>/<source addr>
1414
* with source addr info in sub-trees
1415
* Need to own table->tb6_lock
1416
*/
1417
1418
int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1419
struct nl_info *info, struct netlink_ext_ack *extack)
1420
{
1421
struct fib6_table *table = rt->fib6_table;
1422
LIST_HEAD(purge_list);
1423
struct fib6_node *fn;
1424
#ifdef CONFIG_IPV6_SUBTREES
1425
struct fib6_node *pn = NULL;
1426
#endif
1427
int err = -ENOMEM;
1428
int allow_create = 1;
1429
int replace_required = 0;
1430
1431
if (info->nlh) {
1432
if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1433
allow_create = 0;
1434
if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1435
replace_required = 1;
1436
}
1437
if (!allow_create && !replace_required)
1438
pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1439
1440
fn = fib6_add_1(info->nl_net, table, root,
1441
&rt->fib6_dst.addr, rt->fib6_dst.plen,
1442
offsetof(struct fib6_info, fib6_dst), allow_create,
1443
replace_required, extack);
1444
if (IS_ERR(fn)) {
1445
err = PTR_ERR(fn);
1446
fn = NULL;
1447
goto out;
1448
}
1449
1450
#ifdef CONFIG_IPV6_SUBTREES
1451
pn = fn;
1452
1453
if (rt->fib6_src.plen) {
1454
struct fib6_node *sn;
1455
1456
if (!rcu_access_pointer(fn->subtree)) {
1457
struct fib6_node *sfn;
1458
1459
/*
1460
* Create subtree.
1461
*
1462
* fn[main tree]
1463
* |
1464
* sfn[subtree root]
1465
* \
1466
* sn[new leaf node]
1467
*/
1468
1469
/* Create subtree root node */
1470
sfn = node_alloc(info->nl_net);
1471
if (!sfn)
1472
goto failure;
1473
1474
fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1475
rcu_assign_pointer(sfn->leaf,
1476
info->nl_net->ipv6.fib6_null_entry);
1477
sfn->fn_flags = RTN_ROOT;
1478
1479
/* Now add the first leaf node to new subtree */
1480
1481
sn = fib6_add_1(info->nl_net, table, sfn,
1482
&rt->fib6_src.addr, rt->fib6_src.plen,
1483
offsetof(struct fib6_info, fib6_src),
1484
allow_create, replace_required, extack);
1485
1486
if (IS_ERR(sn)) {
1487
/* If it is failed, discard just allocated
1488
root, and then (in failure) stale node
1489
in main tree.
1490
*/
1491
node_free_immediate(info->nl_net, sfn);
1492
err = PTR_ERR(sn);
1493
goto failure;
1494
}
1495
1496
/* Now link new subtree to main tree */
1497
rcu_assign_pointer(sfn->parent, fn);
1498
rcu_assign_pointer(fn->subtree, sfn);
1499
} else {
1500
sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1501
&rt->fib6_src.addr, rt->fib6_src.plen,
1502
offsetof(struct fib6_info, fib6_src),
1503
allow_create, replace_required, extack);
1504
1505
if (IS_ERR(sn)) {
1506
err = PTR_ERR(sn);
1507
goto failure;
1508
}
1509
}
1510
1511
if (!rcu_access_pointer(fn->leaf)) {
1512
if (fn->fn_flags & RTN_TL_ROOT) {
1513
/* put back null_entry for root node */
1514
rcu_assign_pointer(fn->leaf,
1515
info->nl_net->ipv6.fib6_null_entry);
1516
} else {
1517
fib6_info_hold(rt);
1518
rcu_assign_pointer(fn->leaf, rt);
1519
}
1520
}
1521
fn = sn;
1522
}
1523
#endif
1524
1525
if (rt->nh)
1526
err = fib6_add_rt2node_nh(fn, rt, info, extack, &purge_list);
1527
else
1528
err = fib6_add_rt2node(fn, rt, info, extack, &purge_list);
1529
if (!err) {
1530
struct fib6_info *iter, *next;
1531
1532
list_for_each_entry_safe(iter, next, &purge_list, purge_link) {
1533
list_del(&iter->purge_link);
1534
fib6_purge_rt(iter, fn, info->nl_net);
1535
fib6_info_release(iter);
1536
}
1537
1538
__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1539
1540
if (rt->fib6_flags & RTF_EXPIRES)
1541
fib6_add_gc_list(rt);
1542
1543
fib6_start_gc(info->nl_net, rt);
1544
}
1545
1546
out:
1547
if (err) {
1548
#ifdef CONFIG_IPV6_SUBTREES
1549
/*
1550
* If fib6_add_1 has cleared the old leaf pointer in the
1551
* super-tree leaf node we have to find a new one for it.
1552
*/
1553
if (pn != fn) {
1554
struct fib6_info *pn_leaf =
1555
rcu_dereference_protected(pn->leaf,
1556
lockdep_is_held(&table->tb6_lock));
1557
if (pn_leaf == rt) {
1558
pn_leaf = NULL;
1559
RCU_INIT_POINTER(pn->leaf, NULL);
1560
fib6_info_release(rt);
1561
}
1562
if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1563
pn_leaf = fib6_find_prefix(info->nl_net, table,
1564
pn);
1565
if (!pn_leaf)
1566
pn_leaf =
1567
info->nl_net->ipv6.fib6_null_entry;
1568
fib6_info_hold(pn_leaf);
1569
rcu_assign_pointer(pn->leaf, pn_leaf);
1570
}
1571
}
1572
#endif
1573
goto failure;
1574
} else if (fib6_requires_src(rt)) {
1575
fib6_routes_require_src_inc(info->nl_net);
1576
}
1577
return err;
1578
1579
failure:
1580
/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1581
* 1. fn is an intermediate node and we failed to add the new
1582
* route to it in both subtree creation failure and fib6_add_rt2node()
1583
* failure case.
1584
* 2. fn is the root node in the table and we fail to add the first
1585
* default route to it.
1586
*/
1587
if (fn &&
1588
(!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1589
(fn->fn_flags & RTN_TL_ROOT &&
1590
!rcu_access_pointer(fn->leaf))))
1591
fib6_repair_tree(info->nl_net, table, fn);
1592
return err;
1593
}
1594
1595
/*
1596
* Routing tree lookup
1597
*
1598
*/
1599
1600
struct lookup_args {
1601
int offset; /* key offset on fib6_info */
1602
const struct in6_addr *addr; /* search key */
1603
};
1604
1605
static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1606
struct lookup_args *args)
1607
{
1608
struct fib6_node *fn;
1609
__be32 dir;
1610
1611
if (unlikely(args->offset == 0))
1612
return NULL;
1613
1614
/*
1615
* Descend on a tree
1616
*/
1617
1618
fn = root;
1619
1620
for (;;) {
1621
struct fib6_node *next;
1622
1623
dir = addr_bit_set(args->addr, fn->fn_bit);
1624
1625
next = dir ? rcu_dereference(fn->right) :
1626
rcu_dereference(fn->left);
1627
1628
if (next) {
1629
fn = next;
1630
continue;
1631
}
1632
break;
1633
}
1634
1635
while (fn) {
1636
struct fib6_node *subtree = FIB6_SUBTREE(fn);
1637
1638
if (subtree || fn->fn_flags & RTN_RTINFO) {
1639
struct fib6_info *leaf = rcu_dereference(fn->leaf);
1640
struct rt6key *key;
1641
1642
if (!leaf)
1643
goto backtrack;
1644
1645
key = (struct rt6key *) ((u8 *)leaf + args->offset);
1646
1647
if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1648
#ifdef CONFIG_IPV6_SUBTREES
1649
if (subtree) {
1650
struct fib6_node *sfn;
1651
sfn = fib6_node_lookup_1(subtree,
1652
args + 1);
1653
if (!sfn)
1654
goto backtrack;
1655
fn = sfn;
1656
}
1657
#endif
1658
if (fn->fn_flags & RTN_RTINFO)
1659
return fn;
1660
}
1661
}
1662
backtrack:
1663
if (fn->fn_flags & RTN_ROOT)
1664
break;
1665
1666
fn = rcu_dereference(fn->parent);
1667
}
1668
1669
return NULL;
1670
}
1671
1672
/* called with rcu_read_lock() held
1673
*/
1674
struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1675
const struct in6_addr *daddr,
1676
const struct in6_addr *saddr)
1677
{
1678
struct fib6_node *fn;
1679
struct lookup_args args[] = {
1680
{
1681
.offset = offsetof(struct fib6_info, fib6_dst),
1682
.addr = daddr,
1683
},
1684
#ifdef CONFIG_IPV6_SUBTREES
1685
{
1686
.offset = offsetof(struct fib6_info, fib6_src),
1687
.addr = saddr,
1688
},
1689
#endif
1690
{
1691
.offset = 0, /* sentinel */
1692
}
1693
};
1694
1695
fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1696
if (!fn || fn->fn_flags & RTN_TL_ROOT)
1697
fn = root;
1698
1699
return fn;
1700
}
1701
1702
/*
1703
* Get node with specified destination prefix (and source prefix,
1704
* if subtrees are used)
1705
* exact_match == true means we try to find fn with exact match of
1706
* the passed in prefix addr
1707
* exact_match == false means we try to find fn with longest prefix
1708
* match of the passed in prefix addr. This is useful for finding fn
1709
* for cached route as it will be stored in the exception table under
1710
* the node with longest prefix length.
1711
*/
1712
1713
1714
static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1715
const struct in6_addr *addr,
1716
int plen, int offset,
1717
bool exact_match)
1718
{
1719
struct fib6_node *fn, *prev = NULL;
1720
1721
for (fn = root; fn ; ) {
1722
struct fib6_info *leaf = rcu_dereference(fn->leaf);
1723
struct rt6key *key;
1724
1725
/* This node is being deleted */
1726
if (!leaf) {
1727
if (plen <= fn->fn_bit)
1728
goto out;
1729
else
1730
goto next;
1731
}
1732
1733
key = (struct rt6key *)((u8 *)leaf + offset);
1734
1735
/*
1736
* Prefix match
1737
*/
1738
if (plen < fn->fn_bit ||
1739
!ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1740
goto out;
1741
1742
if (plen == fn->fn_bit)
1743
return fn;
1744
1745
if (fn->fn_flags & RTN_RTINFO)
1746
prev = fn;
1747
1748
next:
1749
/*
1750
* We have more bits to go
1751
*/
1752
if (addr_bit_set(addr, fn->fn_bit))
1753
fn = rcu_dereference(fn->right);
1754
else
1755
fn = rcu_dereference(fn->left);
1756
}
1757
out:
1758
if (exact_match)
1759
return NULL;
1760
else
1761
return prev;
1762
}
1763
1764
struct fib6_node *fib6_locate(struct fib6_node *root,
1765
const struct in6_addr *daddr, int dst_len,
1766
const struct in6_addr *saddr, int src_len,
1767
bool exact_match)
1768
{
1769
struct fib6_node *fn;
1770
1771
fn = fib6_locate_1(root, daddr, dst_len,
1772
offsetof(struct fib6_info, fib6_dst),
1773
exact_match);
1774
1775
#ifdef CONFIG_IPV6_SUBTREES
1776
if (src_len) {
1777
WARN_ON(saddr == NULL);
1778
if (fn) {
1779
struct fib6_node *subtree = FIB6_SUBTREE(fn);
1780
1781
if (subtree) {
1782
fn = fib6_locate_1(subtree, saddr, src_len,
1783
offsetof(struct fib6_info, fib6_src),
1784
exact_match);
1785
}
1786
}
1787
}
1788
#endif
1789
1790
if (fn && fn->fn_flags & RTN_RTINFO)
1791
return fn;
1792
1793
return NULL;
1794
}
1795
1796
1797
/*
1798
* Deletion
1799
*
1800
*/
1801
1802
static struct fib6_info *fib6_find_prefix(struct net *net,
1803
struct fib6_table *table,
1804
struct fib6_node *fn)
1805
{
1806
struct fib6_node *child_left, *child_right;
1807
1808
if (fn->fn_flags & RTN_ROOT)
1809
return net->ipv6.fib6_null_entry;
1810
1811
while (fn) {
1812
child_left = rcu_dereference_protected(fn->left,
1813
lockdep_is_held(&table->tb6_lock));
1814
child_right = rcu_dereference_protected(fn->right,
1815
lockdep_is_held(&table->tb6_lock));
1816
if (child_left)
1817
return rcu_dereference_protected(child_left->leaf,
1818
lockdep_is_held(&table->tb6_lock));
1819
if (child_right)
1820
return rcu_dereference_protected(child_right->leaf,
1821
lockdep_is_held(&table->tb6_lock));
1822
1823
fn = FIB6_SUBTREE(fn);
1824
}
1825
return NULL;
1826
}
1827
1828
/*
1829
* Called to trim the tree of intermediate nodes when possible. "fn"
1830
* is the node we want to try and remove.
1831
* Need to own table->tb6_lock
1832
*/
1833
1834
static struct fib6_node *fib6_repair_tree(struct net *net,
1835
struct fib6_table *table,
1836
struct fib6_node *fn)
1837
{
1838
int children;
1839
int nstate;
1840
struct fib6_node *child;
1841
struct fib6_walker *w;
1842
int iter = 0;
1843
1844
/* Set fn->leaf to null_entry for root node. */
1845
if (fn->fn_flags & RTN_TL_ROOT) {
1846
rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1847
return fn;
1848
}
1849
1850
for (;;) {
1851
struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1852
lockdep_is_held(&table->tb6_lock));
1853
struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1854
lockdep_is_held(&table->tb6_lock));
1855
struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1856
lockdep_is_held(&table->tb6_lock));
1857
struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1858
lockdep_is_held(&table->tb6_lock));
1859
struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1860
lockdep_is_held(&table->tb6_lock));
1861
struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1862
lockdep_is_held(&table->tb6_lock));
1863
struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1864
lockdep_is_held(&table->tb6_lock));
1865
struct fib6_info *new_fn_leaf;
1866
1867
pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1868
iter++;
1869
1870
WARN_ON(fn->fn_flags & RTN_RTINFO);
1871
WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1872
WARN_ON(fn_leaf);
1873
1874
children = 0;
1875
child = NULL;
1876
if (fn_r) {
1877
child = fn_r;
1878
children |= 1;
1879
}
1880
if (fn_l) {
1881
child = fn_l;
1882
children |= 2;
1883
}
1884
1885
if (children == 3 || FIB6_SUBTREE(fn)
1886
#ifdef CONFIG_IPV6_SUBTREES
1887
/* Subtree root (i.e. fn) may have one child */
1888
|| (children && fn->fn_flags & RTN_ROOT)
1889
#endif
1890
) {
1891
new_fn_leaf = fib6_find_prefix(net, table, fn);
1892
#if RT6_DEBUG >= 2
1893
if (!new_fn_leaf) {
1894
WARN_ON(!new_fn_leaf);
1895
new_fn_leaf = net->ipv6.fib6_null_entry;
1896
}
1897
#endif
1898
fib6_info_hold(new_fn_leaf);
1899
rcu_assign_pointer(fn->leaf, new_fn_leaf);
1900
return pn;
1901
}
1902
1903
#ifdef CONFIG_IPV6_SUBTREES
1904
if (FIB6_SUBTREE(pn) == fn) {
1905
WARN_ON(!(fn->fn_flags & RTN_ROOT));
1906
RCU_INIT_POINTER(pn->subtree, NULL);
1907
nstate = FWS_L;
1908
} else {
1909
WARN_ON(fn->fn_flags & RTN_ROOT);
1910
#endif
1911
if (pn_r == fn)
1912
rcu_assign_pointer(pn->right, child);
1913
else if (pn_l == fn)
1914
rcu_assign_pointer(pn->left, child);
1915
#if RT6_DEBUG >= 2
1916
else
1917
WARN_ON(1);
1918
#endif
1919
if (child)
1920
rcu_assign_pointer(child->parent, pn);
1921
nstate = FWS_R;
1922
#ifdef CONFIG_IPV6_SUBTREES
1923
}
1924
#endif
1925
1926
read_lock(&net->ipv6.fib6_walker_lock);
1927
FOR_WALKERS(net, w) {
1928
if (!child) {
1929
if (w->node == fn) {
1930
pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1931
w, w->state, nstate);
1932
w->node = pn;
1933
w->state = nstate;
1934
}
1935
} else {
1936
if (w->node == fn) {
1937
w->node = child;
1938
if (children&2) {
1939
pr_debug("W %p adjusted by delnode 2, s=%d\n",
1940
w, w->state);
1941
w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1942
} else {
1943
pr_debug("W %p adjusted by delnode 2, s=%d\n",
1944
w, w->state);
1945
w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1946
}
1947
}
1948
}
1949
}
1950
read_unlock(&net->ipv6.fib6_walker_lock);
1951
1952
node_free(net, fn);
1953
if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1954
return pn;
1955
1956
RCU_INIT_POINTER(pn->leaf, NULL);
1957
fib6_info_release(pn_leaf);
1958
fn = pn;
1959
}
1960
}
1961
1962
static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1963
struct fib6_info __rcu **rtp, struct nl_info *info)
1964
{
1965
struct fib6_info *leaf, *replace_rt = NULL;
1966
struct fib6_walker *w;
1967
struct fib6_info *rt = rcu_dereference_protected(*rtp,
1968
lockdep_is_held(&table->tb6_lock));
1969
struct net *net = info->nl_net;
1970
bool notify_del = false;
1971
1972
/* If the deleted route is the first in the node and it is not part of
1973
* a multipath route, then we need to replace it with the next route
1974
* in the node, if exists.
1975
*/
1976
leaf = rcu_dereference_protected(fn->leaf,
1977
lockdep_is_held(&table->tb6_lock));
1978
if (leaf == rt && !rt->fib6_nsiblings) {
1979
if (rcu_access_pointer(rt->fib6_next))
1980
replace_rt = rcu_dereference_protected(rt->fib6_next,
1981
lockdep_is_held(&table->tb6_lock));
1982
else
1983
notify_del = true;
1984
}
1985
1986
/* Unlink it */
1987
*rtp = rt->fib6_next;
1988
rt->fib6_node = NULL;
1989
net->ipv6.rt6_stats->fib_rt_entries--;
1990
net->ipv6.rt6_stats->fib_discarded_routes++;
1991
1992
/* Reset round-robin state, if necessary */
1993
if (rcu_access_pointer(fn->rr_ptr) == rt)
1994
fn->rr_ptr = NULL;
1995
1996
/* Remove this entry from other siblings */
1997
if (rt->fib6_nsiblings) {
1998
struct fib6_info *sibling, *next_sibling;
1999
2000
/* The route is deleted from a multipath route. If this
2001
* multipath route is the first route in the node, then we need
2002
* to emit a delete notification. Otherwise, we need to skip
2003
* the notification.
2004
*/
2005
if (rt->fib6_metric == leaf->fib6_metric &&
2006
rt6_qualify_for_ecmp(leaf))
2007
notify_del = true;
2008
list_for_each_entry_safe(sibling, next_sibling,
2009
&rt->fib6_siblings, fib6_siblings)
2010
WRITE_ONCE(sibling->fib6_nsiblings,
2011
sibling->fib6_nsiblings - 1);
2012
WRITE_ONCE(rt->fib6_nsiblings, 0);
2013
list_del_rcu(&rt->fib6_siblings);
2014
rt6_multipath_rebalance(next_sibling);
2015
}
2016
2017
/* Adjust walkers */
2018
read_lock(&net->ipv6.fib6_walker_lock);
2019
FOR_WALKERS(net, w) {
2020
if (w->state == FWS_C && w->leaf == rt) {
2021
pr_debug("walker %p adjusted by delroute\n", w);
2022
w->leaf = rcu_dereference_protected(rt->fib6_next,
2023
lockdep_is_held(&table->tb6_lock));
2024
if (!w->leaf)
2025
w->state = FWS_U;
2026
}
2027
}
2028
read_unlock(&net->ipv6.fib6_walker_lock);
2029
2030
/* If it was last route, call fib6_repair_tree() to:
2031
* 1. For root node, put back null_entry as how the table was created.
2032
* 2. For other nodes, expunge its radix tree node.
2033
*/
2034
if (!rcu_access_pointer(fn->leaf)) {
2035
if (!(fn->fn_flags & RTN_TL_ROOT)) {
2036
fn->fn_flags &= ~RTN_RTINFO;
2037
net->ipv6.rt6_stats->fib_route_nodes--;
2038
}
2039
fn = fib6_repair_tree(net, table, fn);
2040
}
2041
2042
fib6_purge_rt(rt, fn, net);
2043
2044
if (!info->skip_notify_kernel) {
2045
if (notify_del)
2046
call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2047
rt, NULL);
2048
else if (replace_rt)
2049
call_fib6_entry_notifiers_replace(net, replace_rt);
2050
}
2051
if (!info->skip_notify)
2052
inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2053
2054
fib6_info_release(rt);
2055
}
2056
2057
/* Need to own table->tb6_lock */
2058
int fib6_del(struct fib6_info *rt, struct nl_info *info)
2059
{
2060
struct net *net = info->nl_net;
2061
struct fib6_info __rcu **rtp;
2062
struct fib6_info __rcu **rtp_next;
2063
struct fib6_table *table;
2064
struct fib6_node *fn;
2065
2066
if (rt == net->ipv6.fib6_null_entry)
2067
return -ENOENT;
2068
2069
table = rt->fib6_table;
2070
fn = rcu_dereference_protected(rt->fib6_node,
2071
lockdep_is_held(&table->tb6_lock));
2072
if (!fn)
2073
return -ENOENT;
2074
2075
WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2076
2077
/*
2078
* Walk the leaf entries looking for ourself
2079
*/
2080
2081
for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2082
struct fib6_info *cur = rcu_dereference_protected(*rtp,
2083
lockdep_is_held(&table->tb6_lock));
2084
if (rt == cur) {
2085
if (fib6_requires_src(cur))
2086
fib6_routes_require_src_dec(info->nl_net);
2087
fib6_del_route(table, fn, rtp, info);
2088
return 0;
2089
}
2090
rtp_next = &cur->fib6_next;
2091
}
2092
return -ENOENT;
2093
}
2094
2095
/*
2096
* Tree traversal function.
2097
*
2098
* Certainly, it is not interrupt safe.
2099
* However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2100
* It means, that we can modify tree during walking
2101
* and use this function for garbage collection, clone pruning,
2102
* cleaning tree when a device goes down etc. etc.
2103
*
2104
* It guarantees that every node will be traversed,
2105
* and that it will be traversed only once.
2106
*
2107
* Callback function w->func may return:
2108
* 0 -> continue walking.
2109
* positive value -> walking is suspended (used by tree dumps,
2110
* and probably by gc, if it will be split to several slices)
2111
* negative value -> terminate walking.
2112
*
2113
* The function itself returns:
2114
* 0 -> walk is complete.
2115
* >0 -> walk is incomplete (i.e. suspended)
2116
* <0 -> walk is terminated by an error.
2117
*
2118
* This function is called with tb6_lock held.
2119
*/
2120
2121
static int fib6_walk_continue(struct fib6_walker *w)
2122
{
2123
struct fib6_node *fn, *pn, *left, *right;
2124
2125
/* w->root should always be table->tb6_root */
2126
WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2127
2128
for (;;) {
2129
fn = w->node;
2130
if (!fn)
2131
return 0;
2132
2133
switch (w->state) {
2134
#ifdef CONFIG_IPV6_SUBTREES
2135
case FWS_S:
2136
if (FIB6_SUBTREE(fn)) {
2137
w->node = FIB6_SUBTREE(fn);
2138
continue;
2139
}
2140
w->state = FWS_L;
2141
fallthrough;
2142
#endif
2143
case FWS_L:
2144
left = rcu_dereference_protected(fn->left, 1);
2145
if (left) {
2146
w->node = left;
2147
w->state = FWS_INIT;
2148
continue;
2149
}
2150
w->state = FWS_R;
2151
fallthrough;
2152
case FWS_R:
2153
right = rcu_dereference_protected(fn->right, 1);
2154
if (right) {
2155
w->node = right;
2156
w->state = FWS_INIT;
2157
continue;
2158
}
2159
w->state = FWS_C;
2160
w->leaf = rcu_dereference_protected(fn->leaf, 1);
2161
fallthrough;
2162
case FWS_C:
2163
if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2164
int err;
2165
2166
if (w->skip) {
2167
w->skip--;
2168
goto skip;
2169
}
2170
2171
err = w->func(w);
2172
if (err)
2173
return err;
2174
2175
w->count++;
2176
continue;
2177
}
2178
skip:
2179
w->state = FWS_U;
2180
fallthrough;
2181
case FWS_U:
2182
if (fn == w->root)
2183
return 0;
2184
pn = rcu_dereference_protected(fn->parent, 1);
2185
left = rcu_dereference_protected(pn->left, 1);
2186
right = rcu_dereference_protected(pn->right, 1);
2187
w->node = pn;
2188
#ifdef CONFIG_IPV6_SUBTREES
2189
if (FIB6_SUBTREE(pn) == fn) {
2190
WARN_ON(!(fn->fn_flags & RTN_ROOT));
2191
w->state = FWS_L;
2192
continue;
2193
}
2194
#endif
2195
if (left == fn) {
2196
w->state = FWS_R;
2197
continue;
2198
}
2199
if (right == fn) {
2200
w->state = FWS_C;
2201
w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2202
continue;
2203
}
2204
#if RT6_DEBUG >= 2
2205
WARN_ON(1);
2206
#endif
2207
}
2208
}
2209
}
2210
2211
static int fib6_walk(struct net *net, struct fib6_walker *w)
2212
{
2213
int res;
2214
2215
w->state = FWS_INIT;
2216
w->node = w->root;
2217
2218
fib6_walker_link(net, w);
2219
res = fib6_walk_continue(w);
2220
if (res <= 0)
2221
fib6_walker_unlink(net, w);
2222
return res;
2223
}
2224
2225
static int fib6_clean_node(struct fib6_walker *w)
2226
{
2227
int res;
2228
struct fib6_info *rt;
2229
struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2230
struct nl_info info = {
2231
.nl_net = c->net,
2232
.skip_notify = c->skip_notify,
2233
};
2234
2235
if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2236
READ_ONCE(w->node->fn_sernum) != c->sernum)
2237
WRITE_ONCE(w->node->fn_sernum, c->sernum);
2238
2239
if (!c->func) {
2240
WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2241
w->leaf = NULL;
2242
return 0;
2243
}
2244
2245
for_each_fib6_walker_rt(w) {
2246
res = c->func(rt, c->arg);
2247
if (res == -1) {
2248
w->leaf = rt;
2249
res = fib6_del(rt, &info);
2250
if (res) {
2251
#if RT6_DEBUG >= 2
2252
pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2253
__func__, rt,
2254
rcu_access_pointer(rt->fib6_node),
2255
res);
2256
#endif
2257
continue;
2258
}
2259
return 0;
2260
} else if (res == -2) {
2261
if (WARN_ON(!rt->fib6_nsiblings))
2262
continue;
2263
rt = list_last_entry(&rt->fib6_siblings,
2264
struct fib6_info, fib6_siblings);
2265
continue;
2266
}
2267
WARN_ON(res != 0);
2268
}
2269
w->leaf = rt;
2270
return 0;
2271
}
2272
2273
/*
2274
* Convenient frontend to tree walker.
2275
*
2276
* func is called on each route.
2277
* It may return -2 -> skip multipath route.
2278
* -1 -> delete this route.
2279
* 0 -> continue walking
2280
*/
2281
2282
static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2283
int (*func)(struct fib6_info *, void *arg),
2284
int sernum, void *arg, bool skip_notify)
2285
{
2286
struct fib6_cleaner c;
2287
2288
c.w.root = root;
2289
c.w.func = fib6_clean_node;
2290
c.w.count = 0;
2291
c.w.skip = 0;
2292
c.w.skip_in_node = 0;
2293
c.func = func;
2294
c.sernum = sernum;
2295
c.arg = arg;
2296
c.net = net;
2297
c.skip_notify = skip_notify;
2298
2299
fib6_walk(net, &c.w);
2300
}
2301
2302
static void __fib6_clean_all(struct net *net,
2303
int (*func)(struct fib6_info *, void *),
2304
int sernum, void *arg, bool skip_notify)
2305
{
2306
struct fib6_table *table;
2307
struct hlist_head *head;
2308
unsigned int h;
2309
2310
rcu_read_lock();
2311
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2312
head = &net->ipv6.fib_table_hash[h];
2313
hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2314
spin_lock_bh(&table->tb6_lock);
2315
fib6_clean_tree(net, &table->tb6_root,
2316
func, sernum, arg, skip_notify);
2317
spin_unlock_bh(&table->tb6_lock);
2318
}
2319
}
2320
rcu_read_unlock();
2321
}
2322
2323
void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2324
void *arg)
2325
{
2326
__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2327
}
2328
2329
void fib6_clean_all_skip_notify(struct net *net,
2330
int (*func)(struct fib6_info *, void *),
2331
void *arg)
2332
{
2333
__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2334
}
2335
2336
static void fib6_flush_trees(struct net *net)
2337
{
2338
int new_sernum = fib6_new_sernum(net);
2339
2340
__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2341
}
2342
2343
/*
2344
* Garbage collection
2345
*/
2346
2347
static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2348
{
2349
unsigned long now = jiffies;
2350
2351
/*
2352
* check addrconf expiration here.
2353
* Routes are expired even if they are in use.
2354
*/
2355
2356
if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2357
if (time_after(now, rt->expires)) {
2358
pr_debug("expiring %p\n", rt);
2359
return -1;
2360
}
2361
gc_args->more++;
2362
}
2363
2364
/* Also age clones in the exception table.
2365
* Note, that clones are aged out
2366
* only if they are not in use now.
2367
*/
2368
rt6_age_exceptions(rt, gc_args, now);
2369
2370
return 0;
2371
}
2372
2373
static void fib6_gc_table(struct net *net,
2374
struct fib6_table *tb6,
2375
struct fib6_gc_args *gc_args)
2376
{
2377
struct fib6_info *rt;
2378
struct hlist_node *n;
2379
struct nl_info info = {
2380
.nl_net = net,
2381
.skip_notify = false,
2382
};
2383
2384
hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2385
if (fib6_age(rt, gc_args) == -1)
2386
fib6_del(rt, &info);
2387
}
2388
2389
static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2390
{
2391
struct fib6_table *table;
2392
struct hlist_head *head;
2393
unsigned int h;
2394
2395
rcu_read_lock();
2396
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2397
head = &net->ipv6.fib_table_hash[h];
2398
hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2399
spin_lock_bh(&table->tb6_lock);
2400
2401
fib6_gc_table(net, table, gc_args);
2402
2403
spin_unlock_bh(&table->tb6_lock);
2404
}
2405
}
2406
rcu_read_unlock();
2407
}
2408
2409
void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2410
{
2411
struct fib6_gc_args gc_args;
2412
unsigned long now;
2413
2414
if (force) {
2415
spin_lock_bh(&net->ipv6.fib6_gc_lock);
2416
} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2417
mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2418
return;
2419
}
2420
gc_args.timeout = expires ? (int)expires :
2421
net->ipv6.sysctl.ip6_rt_gc_interval;
2422
gc_args.more = 0;
2423
2424
fib6_gc_all(net, &gc_args);
2425
now = jiffies;
2426
net->ipv6.ip6_rt_last_gc = now;
2427
2428
if (gc_args.more)
2429
mod_timer(&net->ipv6.ip6_fib_timer,
2430
round_jiffies(now
2431
+ net->ipv6.sysctl.ip6_rt_gc_interval));
2432
else
2433
timer_delete(&net->ipv6.ip6_fib_timer);
2434
spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2435
}
2436
2437
static void fib6_gc_timer_cb(struct timer_list *t)
2438
{
2439
struct net *arg = timer_container_of(arg, t, ipv6.ip6_fib_timer);
2440
2441
fib6_run_gc(0, arg, true);
2442
}
2443
2444
static int __net_init fib6_net_init(struct net *net)
2445
{
2446
size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2447
int err;
2448
2449
err = fib6_notifier_init(net);
2450
if (err)
2451
return err;
2452
2453
/* Default to 3-tuple */
2454
net->ipv6.sysctl.multipath_hash_fields =
2455
FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2456
2457
spin_lock_init(&net->ipv6.fib6_gc_lock);
2458
rwlock_init(&net->ipv6.fib6_walker_lock);
2459
INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2460
timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2461
2462
net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2463
if (!net->ipv6.rt6_stats)
2464
goto out_notifier;
2465
2466
/* Avoid false sharing : Use at least a full cache line */
2467
size = max_t(size_t, size, L1_CACHE_BYTES);
2468
2469
net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2470
if (!net->ipv6.fib_table_hash)
2471
goto out_rt6_stats;
2472
2473
spin_lock_init(&net->ipv6.fib_table_hash_lock);
2474
2475
net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2476
GFP_KERNEL);
2477
if (!net->ipv6.fib6_main_tbl)
2478
goto out_fib_table_hash;
2479
2480
net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2481
rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2482
net->ipv6.fib6_null_entry);
2483
net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2484
RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2485
inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2486
INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2487
2488
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2489
net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2490
GFP_KERNEL);
2491
if (!net->ipv6.fib6_local_tbl)
2492
goto out_fib6_main_tbl;
2493
net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2494
rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2495
net->ipv6.fib6_null_entry);
2496
net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2497
RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2498
inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2499
INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2500
#endif
2501
fib6_tables_init(net);
2502
2503
return 0;
2504
2505
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2506
out_fib6_main_tbl:
2507
kfree(net->ipv6.fib6_main_tbl);
2508
#endif
2509
out_fib_table_hash:
2510
kfree(net->ipv6.fib_table_hash);
2511
out_rt6_stats:
2512
kfree(net->ipv6.rt6_stats);
2513
out_notifier:
2514
fib6_notifier_exit(net);
2515
return -ENOMEM;
2516
}
2517
2518
static void fib6_net_exit(struct net *net)
2519
{
2520
unsigned int i;
2521
2522
timer_delete_sync(&net->ipv6.ip6_fib_timer);
2523
2524
for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2525
struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2526
struct hlist_node *tmp;
2527
struct fib6_table *tb;
2528
2529
hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2530
hlist_del(&tb->tb6_hlist);
2531
fib6_free_table(tb);
2532
}
2533
}
2534
2535
kfree(net->ipv6.fib_table_hash);
2536
kfree(net->ipv6.rt6_stats);
2537
fib6_notifier_exit(net);
2538
}
2539
2540
static struct pernet_operations fib6_net_ops = {
2541
.init = fib6_net_init,
2542
.exit = fib6_net_exit,
2543
};
2544
2545
static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = {
2546
{.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE,
2547
.dumpit = inet6_dump_fib,
2548
.flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE},
2549
};
2550
2551
int __init fib6_init(void)
2552
{
2553
int ret = -ENOMEM;
2554
2555
fib6_node_kmem = KMEM_CACHE(fib6_node,
2556
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2557
if (!fib6_node_kmem)
2558
goto out;
2559
2560
ret = register_pernet_subsys(&fib6_net_ops);
2561
if (ret)
2562
goto out_kmem_cache_create;
2563
2564
ret = rtnl_register_many(fib6_rtnl_msg_handlers);
2565
if (ret)
2566
goto out_unregister_subsys;
2567
2568
__fib6_flush_trees = fib6_flush_trees;
2569
out:
2570
return ret;
2571
2572
out_unregister_subsys:
2573
unregister_pernet_subsys(&fib6_net_ops);
2574
out_kmem_cache_create:
2575
kmem_cache_destroy(fib6_node_kmem);
2576
goto out;
2577
}
2578
2579
void fib6_gc_cleanup(void)
2580
{
2581
unregister_pernet_subsys(&fib6_net_ops);
2582
kmem_cache_destroy(fib6_node_kmem);
2583
}
2584
2585
#ifdef CONFIG_PROC_FS
2586
static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2587
{
2588
struct fib6_info *rt = v;
2589
struct ipv6_route_iter *iter = seq->private;
2590
struct fib6_nh *fib6_nh = rt->fib6_nh;
2591
unsigned int flags = rt->fib6_flags;
2592
const struct net_device *dev;
2593
2594
if (rt->nh)
2595
fib6_nh = nexthop_fib6_nh(rt->nh);
2596
2597
seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2598
2599
#ifdef CONFIG_IPV6_SUBTREES
2600
seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2601
#else
2602
seq_puts(seq, "00000000000000000000000000000000 00 ");
2603
#endif
2604
if (fib6_nh->fib_nh_gw_family) {
2605
flags |= RTF_GATEWAY;
2606
seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2607
} else {
2608
seq_puts(seq, "00000000000000000000000000000000");
2609
}
2610
2611
dev = fib6_nh->fib_nh_dev;
2612
seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2613
rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2614
flags, dev ? dev->name : "");
2615
iter->w.leaf = NULL;
2616
return 0;
2617
}
2618
2619
static int ipv6_route_yield(struct fib6_walker *w)
2620
{
2621
struct ipv6_route_iter *iter = w->args;
2622
2623
if (!iter->skip)
2624
return 1;
2625
2626
do {
2627
iter->w.leaf = rcu_dereference_protected(
2628
iter->w.leaf->fib6_next,
2629
lockdep_is_held(&iter->tbl->tb6_lock));
2630
iter->skip--;
2631
if (!iter->skip && iter->w.leaf)
2632
return 1;
2633
} while (iter->w.leaf);
2634
2635
return 0;
2636
}
2637
2638
static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2639
struct net *net)
2640
{
2641
memset(&iter->w, 0, sizeof(iter->w));
2642
iter->w.func = ipv6_route_yield;
2643
iter->w.root = &iter->tbl->tb6_root;
2644
iter->w.state = FWS_INIT;
2645
iter->w.node = iter->w.root;
2646
iter->w.args = iter;
2647
iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2648
INIT_LIST_HEAD(&iter->w.lh);
2649
fib6_walker_link(net, &iter->w);
2650
}
2651
2652
static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2653
struct net *net)
2654
{
2655
unsigned int h;
2656
struct hlist_node *node;
2657
2658
if (tbl) {
2659
h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2660
node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2661
} else {
2662
h = 0;
2663
node = NULL;
2664
}
2665
2666
while (!node && h < FIB6_TABLE_HASHSZ) {
2667
node = rcu_dereference(
2668
hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2669
}
2670
return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2671
}
2672
2673
static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2674
{
2675
int sernum = READ_ONCE(iter->w.root->fn_sernum);
2676
2677
if (iter->sernum != sernum) {
2678
iter->sernum = sernum;
2679
iter->w.state = FWS_INIT;
2680
iter->w.node = iter->w.root;
2681
WARN_ON(iter->w.skip);
2682
iter->w.skip = iter->w.count;
2683
}
2684
}
2685
2686
static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2687
{
2688
int r;
2689
struct fib6_info *n;
2690
struct net *net = seq_file_net(seq);
2691
struct ipv6_route_iter *iter = seq->private;
2692
2693
++(*pos);
2694
if (!v)
2695
goto iter_table;
2696
2697
n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2698
if (n)
2699
return n;
2700
2701
iter_table:
2702
ipv6_route_check_sernum(iter);
2703
spin_lock_bh(&iter->tbl->tb6_lock);
2704
r = fib6_walk_continue(&iter->w);
2705
spin_unlock_bh(&iter->tbl->tb6_lock);
2706
if (r > 0) {
2707
return iter->w.leaf;
2708
} else if (r < 0) {
2709
fib6_walker_unlink(net, &iter->w);
2710
return NULL;
2711
}
2712
fib6_walker_unlink(net, &iter->w);
2713
2714
iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2715
if (!iter->tbl)
2716
return NULL;
2717
2718
ipv6_route_seq_setup_walk(iter, net);
2719
goto iter_table;
2720
}
2721
2722
static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2723
__acquires(RCU)
2724
{
2725
struct net *net = seq_file_net(seq);
2726
struct ipv6_route_iter *iter = seq->private;
2727
2728
rcu_read_lock();
2729
iter->tbl = ipv6_route_seq_next_table(NULL, net);
2730
iter->skip = *pos;
2731
2732
if (iter->tbl) {
2733
loff_t p = 0;
2734
2735
ipv6_route_seq_setup_walk(iter, net);
2736
return ipv6_route_seq_next(seq, NULL, &p);
2737
} else {
2738
return NULL;
2739
}
2740
}
2741
2742
static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2743
{
2744
struct fib6_walker *w = &iter->w;
2745
return w->node && !(w->state == FWS_U && w->node == w->root);
2746
}
2747
2748
static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2749
__releases(RCU)
2750
{
2751
struct net *net = seq_file_net(seq);
2752
struct ipv6_route_iter *iter = seq->private;
2753
2754
if (ipv6_route_iter_active(iter))
2755
fib6_walker_unlink(net, &iter->w);
2756
2757
rcu_read_unlock();
2758
}
2759
2760
#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2761
static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2762
struct bpf_iter_meta *meta,
2763
void *v)
2764
{
2765
struct bpf_iter__ipv6_route ctx;
2766
2767
ctx.meta = meta;
2768
ctx.rt = v;
2769
return bpf_iter_run_prog(prog, &ctx);
2770
}
2771
2772
static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2773
{
2774
struct ipv6_route_iter *iter = seq->private;
2775
struct bpf_iter_meta meta;
2776
struct bpf_prog *prog;
2777
int ret;
2778
2779
meta.seq = seq;
2780
prog = bpf_iter_get_info(&meta, false);
2781
if (!prog)
2782
return ipv6_route_native_seq_show(seq, v);
2783
2784
ret = ipv6_route_prog_seq_show(prog, &meta, v);
2785
iter->w.leaf = NULL;
2786
2787
return ret;
2788
}
2789
2790
static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2791
{
2792
struct bpf_iter_meta meta;
2793
struct bpf_prog *prog;
2794
2795
if (!v) {
2796
meta.seq = seq;
2797
prog = bpf_iter_get_info(&meta, true);
2798
if (prog)
2799
(void)ipv6_route_prog_seq_show(prog, &meta, v);
2800
}
2801
2802
ipv6_route_native_seq_stop(seq, v);
2803
}
2804
#else
2805
static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2806
{
2807
return ipv6_route_native_seq_show(seq, v);
2808
}
2809
2810
static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2811
{
2812
ipv6_route_native_seq_stop(seq, v);
2813
}
2814
#endif
2815
2816
const struct seq_operations ipv6_route_seq_ops = {
2817
.start = ipv6_route_seq_start,
2818
.next = ipv6_route_seq_next,
2819
.stop = ipv6_route_seq_stop,
2820
.show = ipv6_route_seq_show
2821
};
2822
#endif /* CONFIG_PROC_FS */
2823
2824