Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/mac80211/fils_aead.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* FILS AEAD for (Re)Association Request/Response frames
4
* Copyright 2016, Qualcomm Atheros, Inc.
5
*/
6
7
#include <crypto/aes.h>
8
#include <crypto/hash.h>
9
#include <crypto/skcipher.h>
10
#include <crypto/utils.h>
11
12
#include "ieee80211_i.h"
13
#include "aes_cmac.h"
14
#include "fils_aead.h"
15
16
static void gf_mulx(u8 *pad)
17
{
18
u64 a = get_unaligned_be64(pad);
19
u64 b = get_unaligned_be64(pad + 8);
20
21
put_unaligned_be64((a << 1) | (b >> 63), pad);
22
put_unaligned_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0), pad + 8);
23
}
24
25
static int aes_s2v(struct crypto_shash *tfm,
26
size_t num_elem, const u8 *addr[], size_t len[], u8 *v)
27
{
28
u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE] = {};
29
SHASH_DESC_ON_STACK(desc, tfm);
30
size_t i;
31
32
desc->tfm = tfm;
33
34
/* D = AES-CMAC(K, <zero>) */
35
crypto_shash_digest(desc, tmp, AES_BLOCK_SIZE, d);
36
37
for (i = 0; i < num_elem - 1; i++) {
38
/* D = dbl(D) xor AES_CMAC(K, Si) */
39
gf_mulx(d); /* dbl */
40
crypto_shash_digest(desc, addr[i], len[i], tmp);
41
crypto_xor(d, tmp, AES_BLOCK_SIZE);
42
}
43
44
crypto_shash_init(desc);
45
46
if (len[i] >= AES_BLOCK_SIZE) {
47
/* len(Sn) >= 128 */
48
/* T = Sn xorend D */
49
crypto_shash_update(desc, addr[i], len[i] - AES_BLOCK_SIZE);
50
crypto_xor(d, addr[i] + len[i] - AES_BLOCK_SIZE,
51
AES_BLOCK_SIZE);
52
} else {
53
/* len(Sn) < 128 */
54
/* T = dbl(D) xor pad(Sn) */
55
gf_mulx(d); /* dbl */
56
crypto_xor(d, addr[i], len[i]);
57
d[len[i]] ^= 0x80;
58
}
59
/* V = AES-CMAC(K, T) */
60
crypto_shash_finup(desc, d, AES_BLOCK_SIZE, v);
61
62
return 0;
63
}
64
65
/* Note: addr[] and len[] needs to have one extra slot at the end. */
66
static int aes_siv_encrypt(const u8 *key, size_t key_len,
67
const u8 *plain, size_t plain_len,
68
size_t num_elem, const u8 *addr[],
69
size_t len[], u8 *out)
70
{
71
u8 v[AES_BLOCK_SIZE];
72
struct crypto_shash *tfm;
73
struct crypto_skcipher *tfm2;
74
struct skcipher_request *req;
75
int res;
76
struct scatterlist src[1], dst[1];
77
u8 *tmp;
78
79
key_len /= 2; /* S2V key || CTR key */
80
81
addr[num_elem] = plain;
82
len[num_elem] = plain_len;
83
num_elem++;
84
85
/* S2V */
86
87
tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
88
if (IS_ERR(tfm))
89
return PTR_ERR(tfm);
90
/* K1 for S2V */
91
res = crypto_shash_setkey(tfm, key, key_len);
92
if (!res)
93
res = aes_s2v(tfm, num_elem, addr, len, v);
94
crypto_free_shash(tfm);
95
if (res)
96
return res;
97
98
/* Use a temporary buffer of the plaintext to handle need for
99
* overwriting this during AES-CTR.
100
*/
101
tmp = kmemdup(plain, plain_len, GFP_KERNEL);
102
if (!tmp)
103
return -ENOMEM;
104
105
/* IV for CTR before encrypted data */
106
memcpy(out, v, AES_BLOCK_SIZE);
107
108
/* Synthetic IV to be used as the initial counter in CTR:
109
* Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
110
*/
111
v[8] &= 0x7f;
112
v[12] &= 0x7f;
113
114
/* CTR */
115
116
tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
117
if (IS_ERR(tfm2)) {
118
kfree(tmp);
119
return PTR_ERR(tfm2);
120
}
121
/* K2 for CTR */
122
res = crypto_skcipher_setkey(tfm2, key + key_len, key_len);
123
if (res)
124
goto fail;
125
126
req = skcipher_request_alloc(tfm2, GFP_KERNEL);
127
if (!req) {
128
res = -ENOMEM;
129
goto fail;
130
}
131
132
sg_init_one(src, tmp, plain_len);
133
sg_init_one(dst, out + AES_BLOCK_SIZE, plain_len);
134
skcipher_request_set_crypt(req, src, dst, plain_len, v);
135
res = crypto_skcipher_encrypt(req);
136
skcipher_request_free(req);
137
fail:
138
kfree(tmp);
139
crypto_free_skcipher(tfm2);
140
return res;
141
}
142
143
/* Note: addr[] and len[] needs to have one extra slot at the end. */
144
static int aes_siv_decrypt(const u8 *key, size_t key_len,
145
const u8 *iv_crypt, size_t iv_c_len,
146
size_t num_elem, const u8 *addr[], size_t len[],
147
u8 *out)
148
{
149
struct crypto_shash *tfm;
150
struct crypto_skcipher *tfm2;
151
struct skcipher_request *req;
152
struct scatterlist src[1], dst[1];
153
size_t crypt_len;
154
int res;
155
u8 frame_iv[AES_BLOCK_SIZE], iv[AES_BLOCK_SIZE];
156
u8 check[AES_BLOCK_SIZE];
157
158
crypt_len = iv_c_len - AES_BLOCK_SIZE;
159
key_len /= 2; /* S2V key || CTR key */
160
addr[num_elem] = out;
161
len[num_elem] = crypt_len;
162
num_elem++;
163
164
memcpy(iv, iv_crypt, AES_BLOCK_SIZE);
165
memcpy(frame_iv, iv_crypt, AES_BLOCK_SIZE);
166
167
/* Synthetic IV to be used as the initial counter in CTR:
168
* Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
169
*/
170
iv[8] &= 0x7f;
171
iv[12] &= 0x7f;
172
173
/* CTR */
174
175
tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
176
if (IS_ERR(tfm2))
177
return PTR_ERR(tfm2);
178
/* K2 for CTR */
179
res = crypto_skcipher_setkey(tfm2, key + key_len, key_len);
180
if (res) {
181
crypto_free_skcipher(tfm2);
182
return res;
183
}
184
185
req = skcipher_request_alloc(tfm2, GFP_KERNEL);
186
if (!req) {
187
crypto_free_skcipher(tfm2);
188
return -ENOMEM;
189
}
190
191
sg_init_one(src, iv_crypt + AES_BLOCK_SIZE, crypt_len);
192
sg_init_one(dst, out, crypt_len);
193
skcipher_request_set_crypt(req, src, dst, crypt_len, iv);
194
res = crypto_skcipher_decrypt(req);
195
skcipher_request_free(req);
196
crypto_free_skcipher(tfm2);
197
if (res)
198
return res;
199
200
/* S2V */
201
202
tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
203
if (IS_ERR(tfm))
204
return PTR_ERR(tfm);
205
/* K1 for S2V */
206
res = crypto_shash_setkey(tfm, key, key_len);
207
if (!res)
208
res = aes_s2v(tfm, num_elem, addr, len, check);
209
crypto_free_shash(tfm);
210
if (res)
211
return res;
212
if (memcmp(check, frame_iv, AES_BLOCK_SIZE) != 0)
213
return -EINVAL;
214
return 0;
215
}
216
217
int fils_encrypt_assoc_req(struct sk_buff *skb,
218
struct ieee80211_mgd_assoc_data *assoc_data)
219
{
220
struct ieee80211_mgmt *mgmt = (void *)skb->data;
221
u8 *capab, *ies, *encr;
222
const u8 *addr[5 + 1];
223
const struct element *session;
224
size_t len[5 + 1];
225
size_t crypt_len;
226
227
if (ieee80211_is_reassoc_req(mgmt->frame_control)) {
228
capab = (u8 *)&mgmt->u.reassoc_req.capab_info;
229
ies = mgmt->u.reassoc_req.variable;
230
} else {
231
capab = (u8 *)&mgmt->u.assoc_req.capab_info;
232
ies = mgmt->u.assoc_req.variable;
233
}
234
235
session = cfg80211_find_ext_elem(WLAN_EID_EXT_FILS_SESSION,
236
ies, skb->data + skb->len - ies);
237
if (!session || session->datalen != 1 + 8)
238
return -EINVAL;
239
/* encrypt after FILS Session element */
240
encr = (u8 *)session->data + 1 + 8;
241
242
/* AES-SIV AAD vectors */
243
244
/* The STA's MAC address */
245
addr[0] = mgmt->sa;
246
len[0] = ETH_ALEN;
247
/* The AP's BSSID */
248
addr[1] = mgmt->da;
249
len[1] = ETH_ALEN;
250
/* The STA's nonce */
251
addr[2] = assoc_data->fils_nonces;
252
len[2] = FILS_NONCE_LEN;
253
/* The AP's nonce */
254
addr[3] = &assoc_data->fils_nonces[FILS_NONCE_LEN];
255
len[3] = FILS_NONCE_LEN;
256
/* The (Re)Association Request frame from the Capability Information
257
* field to the FILS Session element (both inclusive).
258
*/
259
addr[4] = capab;
260
len[4] = encr - capab;
261
262
crypt_len = skb->data + skb->len - encr;
263
skb_put(skb, AES_BLOCK_SIZE);
264
return aes_siv_encrypt(assoc_data->fils_kek, assoc_data->fils_kek_len,
265
encr, crypt_len, 5, addr, len, encr);
266
}
267
268
int fils_decrypt_assoc_resp(struct ieee80211_sub_if_data *sdata,
269
u8 *frame, size_t *frame_len,
270
struct ieee80211_mgd_assoc_data *assoc_data)
271
{
272
struct ieee80211_mgmt *mgmt = (void *)frame;
273
u8 *capab, *ies, *encr;
274
const u8 *addr[5 + 1];
275
const struct element *session;
276
size_t len[5 + 1];
277
int res;
278
size_t crypt_len;
279
280
if (*frame_len < 24 + 6)
281
return -EINVAL;
282
283
capab = (u8 *)&mgmt->u.assoc_resp.capab_info;
284
ies = mgmt->u.assoc_resp.variable;
285
session = cfg80211_find_ext_elem(WLAN_EID_EXT_FILS_SESSION,
286
ies, frame + *frame_len - ies);
287
if (!session || session->datalen != 1 + 8) {
288
mlme_dbg(sdata,
289
"No (valid) FILS Session element in (Re)Association Response frame from %pM",
290
mgmt->sa);
291
return -EINVAL;
292
}
293
/* decrypt after FILS Session element */
294
encr = (u8 *)session->data + 1 + 8;
295
296
/* AES-SIV AAD vectors */
297
298
/* The AP's BSSID */
299
addr[0] = mgmt->sa;
300
len[0] = ETH_ALEN;
301
/* The STA's MAC address */
302
addr[1] = mgmt->da;
303
len[1] = ETH_ALEN;
304
/* The AP's nonce */
305
addr[2] = &assoc_data->fils_nonces[FILS_NONCE_LEN];
306
len[2] = FILS_NONCE_LEN;
307
/* The STA's nonce */
308
addr[3] = assoc_data->fils_nonces;
309
len[3] = FILS_NONCE_LEN;
310
/* The (Re)Association Response frame from the Capability Information
311
* field to the FILS Session element (both inclusive).
312
*/
313
addr[4] = capab;
314
len[4] = encr - capab;
315
316
crypt_len = frame + *frame_len - encr;
317
if (crypt_len < AES_BLOCK_SIZE) {
318
mlme_dbg(sdata,
319
"Not enough room for AES-SIV data after FILS Session element in (Re)Association Response frame from %pM",
320
mgmt->sa);
321
return -EINVAL;
322
}
323
res = aes_siv_decrypt(assoc_data->fils_kek, assoc_data->fils_kek_len,
324
encr, crypt_len, 5, addr, len, encr);
325
if (res != 0) {
326
mlme_dbg(sdata,
327
"AES-SIV decryption of (Re)Association Response frame from %pM failed",
328
mgmt->sa);
329
return res;
330
}
331
*frame_len -= AES_BLOCK_SIZE;
332
return 0;
333
}
334
335