Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/mptcp/protocol.c
49000 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Multipath TCP
3
*
4
* Copyright (c) 2017 - 2019, Intel Corporation.
5
*/
6
7
#define pr_fmt(fmt) "MPTCP: " fmt
8
9
#include <linux/kernel.h>
10
#include <linux/module.h>
11
#include <linux/netdevice.h>
12
#include <linux/sched/signal.h>
13
#include <linux/atomic.h>
14
#include <net/aligned_data.h>
15
#include <net/rps.h>
16
#include <net/sock.h>
17
#include <net/inet_common.h>
18
#include <net/inet_hashtables.h>
19
#include <net/protocol.h>
20
#include <net/tcp_states.h>
21
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
22
#include <net/transp_v6.h>
23
#endif
24
#include <net/mptcp.h>
25
#include <net/hotdata.h>
26
#include <net/xfrm.h>
27
#include <asm/ioctls.h>
28
#include "protocol.h"
29
#include "mib.h"
30
31
#define CREATE_TRACE_POINTS
32
#include <trace/events/mptcp.h>
33
34
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
35
struct mptcp6_sock {
36
struct mptcp_sock msk;
37
struct ipv6_pinfo np;
38
};
39
#endif
40
41
enum {
42
MPTCP_CMSG_TS = BIT(0),
43
MPTCP_CMSG_INQ = BIT(1),
44
};
45
46
static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47
48
static void __mptcp_destroy_sock(struct sock *sk);
49
static void mptcp_check_send_data_fin(struct sock *sk);
50
51
DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52
.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53
};
54
static struct net_device *mptcp_napi_dev;
55
56
/* Returns end sequence number of the receiver's advertised window */
57
static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58
{
59
return READ_ONCE(msk->wnd_end);
60
}
61
62
static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63
{
64
unsigned short family = READ_ONCE(sk->sk_family);
65
66
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
67
if (family == AF_INET6)
68
return &inet6_stream_ops;
69
#endif
70
WARN_ON_ONCE(family != AF_INET);
71
return &inet_stream_ops;
72
}
73
74
bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
75
{
76
struct net *net = sock_net((struct sock *)msk);
77
78
if (__mptcp_check_fallback(msk))
79
return true;
80
81
/* The caller possibly is not holding the msk socket lock, but
82
* in the fallback case only the current subflow is touching
83
* the OoO queue.
84
*/
85
if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
86
return false;
87
88
spin_lock_bh(&msk->fallback_lock);
89
if (!msk->allow_infinite_fallback) {
90
spin_unlock_bh(&msk->fallback_lock);
91
return false;
92
}
93
94
msk->allow_subflows = false;
95
set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
96
__MPTCP_INC_STATS(net, fb_mib);
97
spin_unlock_bh(&msk->fallback_lock);
98
return true;
99
}
100
101
static int __mptcp_socket_create(struct mptcp_sock *msk)
102
{
103
struct mptcp_subflow_context *subflow;
104
struct sock *sk = (struct sock *)msk;
105
struct socket *ssock;
106
int err;
107
108
err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
109
if (err)
110
return err;
111
112
msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
113
WRITE_ONCE(msk->first, ssock->sk);
114
subflow = mptcp_subflow_ctx(ssock->sk);
115
list_add(&subflow->node, &msk->conn_list);
116
sock_hold(ssock->sk);
117
subflow->request_mptcp = 1;
118
subflow->subflow_id = msk->subflow_id++;
119
120
/* This is the first subflow, always with id 0 */
121
WRITE_ONCE(subflow->local_id, 0);
122
mptcp_sock_graft(msk->first, sk->sk_socket);
123
iput(SOCK_INODE(ssock));
124
125
return 0;
126
}
127
128
/* If the MPC handshake is not started, returns the first subflow,
129
* eventually allocating it.
130
*/
131
struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
132
{
133
struct sock *sk = (struct sock *)msk;
134
int ret;
135
136
if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
137
return ERR_PTR(-EINVAL);
138
139
if (!msk->first) {
140
ret = __mptcp_socket_create(msk);
141
if (ret)
142
return ERR_PTR(ret);
143
}
144
145
return msk->first;
146
}
147
148
static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
149
{
150
sk_drops_skbadd(sk, skb);
151
__kfree_skb(skb);
152
}
153
154
static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
155
struct sk_buff *from, bool *fragstolen,
156
int *delta)
157
{
158
int limit = READ_ONCE(sk->sk_rcvbuf);
159
160
if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
161
MPTCP_SKB_CB(from)->offset ||
162
((to->len + from->len) > (limit >> 3)) ||
163
!skb_try_coalesce(to, from, fragstolen, delta))
164
return false;
165
166
pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
167
MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
168
to->len, MPTCP_SKB_CB(from)->end_seq);
169
MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
170
return true;
171
}
172
173
static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
174
struct sk_buff *from)
175
{
176
bool fragstolen;
177
int delta;
178
179
if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
180
return false;
181
182
/* note the fwd memory can reach a negative value after accounting
183
* for the delta, but the later skb free will restore a non
184
* negative one
185
*/
186
atomic_add(delta, &sk->sk_rmem_alloc);
187
sk_mem_charge(sk, delta);
188
kfree_skb_partial(from, fragstolen);
189
190
return true;
191
}
192
193
static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
194
struct sk_buff *from)
195
{
196
if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
197
return false;
198
199
return mptcp_try_coalesce((struct sock *)msk, to, from);
200
}
201
202
/* "inspired" by tcp_rcvbuf_grow(), main difference:
203
* - mptcp does not maintain a msk-level window clamp
204
* - returns true when the receive buffer is actually updated
205
*/
206
static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
207
{
208
struct mptcp_sock *msk = mptcp_sk(sk);
209
const struct net *net = sock_net(sk);
210
u32 rcvwin, rcvbuf, cap, oldval;
211
u64 grow;
212
213
oldval = msk->rcvq_space.space;
214
msk->rcvq_space.space = newval;
215
if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
216
(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
217
return false;
218
219
/* DRS is always one RTT late. */
220
rcvwin = newval << 1;
221
222
/* slow start: allow the sender to double its rate. */
223
grow = (u64)rcvwin * (newval - oldval);
224
do_div(grow, oldval);
225
rcvwin += grow << 1;
226
227
if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
228
rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
229
230
cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
231
232
rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
233
if (rcvbuf > sk->sk_rcvbuf) {
234
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
235
return true;
236
}
237
return false;
238
}
239
240
/* "inspired" by tcp_data_queue_ofo(), main differences:
241
* - use mptcp seqs
242
* - don't cope with sacks
243
*/
244
static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
245
{
246
struct sock *sk = (struct sock *)msk;
247
struct rb_node **p, *parent;
248
u64 seq, end_seq, max_seq;
249
struct sk_buff *skb1;
250
251
seq = MPTCP_SKB_CB(skb)->map_seq;
252
end_seq = MPTCP_SKB_CB(skb)->end_seq;
253
max_seq = atomic64_read(&msk->rcv_wnd_sent);
254
255
pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
256
RB_EMPTY_ROOT(&msk->out_of_order_queue));
257
if (after64(end_seq, max_seq)) {
258
/* out of window */
259
mptcp_drop(sk, skb);
260
pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
261
(unsigned long long)end_seq - (unsigned long)max_seq,
262
(unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
263
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
264
return;
265
}
266
267
p = &msk->out_of_order_queue.rb_node;
268
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
269
if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
270
rb_link_node(&skb->rbnode, NULL, p);
271
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
272
msk->ooo_last_skb = skb;
273
goto end;
274
}
275
276
/* with 2 subflows, adding at end of ooo queue is quite likely
277
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
278
*/
279
if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
280
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
281
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
282
return;
283
}
284
285
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
286
if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
287
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
288
parent = &msk->ooo_last_skb->rbnode;
289
p = &parent->rb_right;
290
goto insert;
291
}
292
293
/* Find place to insert this segment. Handle overlaps on the way. */
294
parent = NULL;
295
while (*p) {
296
parent = *p;
297
skb1 = rb_to_skb(parent);
298
if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
299
p = &parent->rb_left;
300
continue;
301
}
302
if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
303
if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
304
/* All the bits are present. Drop. */
305
mptcp_drop(sk, skb);
306
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
307
return;
308
}
309
if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
310
/* partial overlap:
311
* | skb |
312
* | skb1 |
313
* continue traversing
314
*/
315
} else {
316
/* skb's seq == skb1's seq and skb covers skb1.
317
* Replace skb1 with skb.
318
*/
319
rb_replace_node(&skb1->rbnode, &skb->rbnode,
320
&msk->out_of_order_queue);
321
mptcp_drop(sk, skb1);
322
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323
goto merge_right;
324
}
325
} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
326
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
327
return;
328
}
329
p = &parent->rb_right;
330
}
331
332
insert:
333
/* Insert segment into RB tree. */
334
rb_link_node(&skb->rbnode, parent, p);
335
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
336
337
merge_right:
338
/* Remove other segments covered by skb. */
339
while ((skb1 = skb_rb_next(skb)) != NULL) {
340
if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
341
break;
342
rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
343
mptcp_drop(sk, skb1);
344
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
345
}
346
/* If there is no skb after us, we are the last_skb ! */
347
if (!skb1)
348
msk->ooo_last_skb = skb;
349
350
end:
351
skb_condense(skb);
352
skb_set_owner_r(skb, sk);
353
/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
354
if (sk->sk_socket)
355
mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
356
}
357
358
static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
359
int copy_len)
360
{
361
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
362
bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
363
364
/* the skb map_seq accounts for the skb offset:
365
* mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
366
* value
367
*/
368
MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
369
MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
370
MPTCP_SKB_CB(skb)->offset = offset;
371
MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
372
MPTCP_SKB_CB(skb)->cant_coalesce = 0;
373
374
__skb_unlink(skb, &ssk->sk_receive_queue);
375
376
skb_ext_reset(skb);
377
skb_dst_drop(skb);
378
}
379
380
static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
381
{
382
u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
383
struct mptcp_sock *msk = mptcp_sk(sk);
384
struct sk_buff *tail;
385
386
mptcp_borrow_fwdmem(sk, skb);
387
388
if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
389
/* in sequence */
390
msk->bytes_received += copy_len;
391
WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
392
tail = skb_peek_tail(&sk->sk_receive_queue);
393
if (tail && mptcp_try_coalesce(sk, tail, skb))
394
return true;
395
396
skb_set_owner_r(skb, sk);
397
__skb_queue_tail(&sk->sk_receive_queue, skb);
398
return true;
399
} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
400
mptcp_data_queue_ofo(msk, skb);
401
return false;
402
}
403
404
/* old data, keep it simple and drop the whole pkt, sender
405
* will retransmit as needed, if needed.
406
*/
407
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
408
mptcp_drop(sk, skb);
409
return false;
410
}
411
412
static void mptcp_stop_rtx_timer(struct sock *sk)
413
{
414
sk_stop_timer(sk, &sk->mptcp_retransmit_timer);
415
mptcp_sk(sk)->timer_ival = 0;
416
}
417
418
static void mptcp_close_wake_up(struct sock *sk)
419
{
420
if (sock_flag(sk, SOCK_DEAD))
421
return;
422
423
sk->sk_state_change(sk);
424
if (sk->sk_shutdown == SHUTDOWN_MASK ||
425
sk->sk_state == TCP_CLOSE)
426
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
427
else
428
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
429
}
430
431
static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
432
{
433
struct mptcp_subflow_context *subflow;
434
435
mptcp_for_each_subflow(msk, subflow) {
436
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
437
bool slow;
438
439
slow = lock_sock_fast(ssk);
440
tcp_shutdown(ssk, SEND_SHUTDOWN);
441
unlock_sock_fast(ssk, slow);
442
}
443
}
444
445
/* called under the msk socket lock */
446
static bool mptcp_pending_data_fin_ack(struct sock *sk)
447
{
448
struct mptcp_sock *msk = mptcp_sk(sk);
449
450
return ((1 << sk->sk_state) &
451
(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
452
msk->write_seq == READ_ONCE(msk->snd_una);
453
}
454
455
static void mptcp_check_data_fin_ack(struct sock *sk)
456
{
457
struct mptcp_sock *msk = mptcp_sk(sk);
458
459
/* Look for an acknowledged DATA_FIN */
460
if (mptcp_pending_data_fin_ack(sk)) {
461
WRITE_ONCE(msk->snd_data_fin_enable, 0);
462
463
switch (sk->sk_state) {
464
case TCP_FIN_WAIT1:
465
mptcp_set_state(sk, TCP_FIN_WAIT2);
466
break;
467
case TCP_CLOSING:
468
case TCP_LAST_ACK:
469
mptcp_shutdown_subflows(msk);
470
mptcp_set_state(sk, TCP_CLOSE);
471
break;
472
}
473
474
mptcp_close_wake_up(sk);
475
}
476
}
477
478
/* can be called with no lock acquired */
479
static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
480
{
481
struct mptcp_sock *msk = mptcp_sk(sk);
482
483
if (READ_ONCE(msk->rcv_data_fin) &&
484
((1 << inet_sk_state_load(sk)) &
485
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
486
u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
487
488
if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
489
if (seq)
490
*seq = rcv_data_fin_seq;
491
492
return true;
493
}
494
}
495
496
return false;
497
}
498
499
static void mptcp_set_datafin_timeout(struct sock *sk)
500
{
501
struct inet_connection_sock *icsk = inet_csk(sk);
502
u32 retransmits;
503
504
retransmits = min_t(u32, icsk->icsk_retransmits,
505
ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
506
507
mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
508
}
509
510
static void __mptcp_set_timeout(struct sock *sk, long tout)
511
{
512
mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
513
}
514
515
static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
516
{
517
const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
518
519
return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
520
tcp_timeout_expires(ssk) - jiffies : 0;
521
}
522
523
static void mptcp_set_timeout(struct sock *sk)
524
{
525
struct mptcp_subflow_context *subflow;
526
long tout = 0;
527
528
mptcp_for_each_subflow(mptcp_sk(sk), subflow)
529
tout = max(tout, mptcp_timeout_from_subflow(subflow));
530
__mptcp_set_timeout(sk, tout);
531
}
532
533
static inline bool tcp_can_send_ack(const struct sock *ssk)
534
{
535
return !((1 << inet_sk_state_load(ssk)) &
536
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
537
}
538
539
void __mptcp_subflow_send_ack(struct sock *ssk)
540
{
541
if (tcp_can_send_ack(ssk))
542
tcp_send_ack(ssk);
543
}
544
545
static void mptcp_subflow_send_ack(struct sock *ssk)
546
{
547
bool slow;
548
549
slow = lock_sock_fast(ssk);
550
__mptcp_subflow_send_ack(ssk);
551
unlock_sock_fast(ssk, slow);
552
}
553
554
static void mptcp_send_ack(struct mptcp_sock *msk)
555
{
556
struct mptcp_subflow_context *subflow;
557
558
mptcp_for_each_subflow(msk, subflow)
559
mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
560
}
561
562
static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
563
{
564
bool slow;
565
566
slow = lock_sock_fast(ssk);
567
if (tcp_can_send_ack(ssk))
568
tcp_cleanup_rbuf(ssk, copied);
569
unlock_sock_fast(ssk, slow);
570
}
571
572
static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
573
{
574
const struct inet_connection_sock *icsk = inet_csk(ssk);
575
u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
576
const struct tcp_sock *tp = tcp_sk(ssk);
577
578
return (ack_pending & ICSK_ACK_SCHED) &&
579
((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
580
READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
581
(rx_empty && ack_pending &
582
(ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
583
}
584
585
static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
586
{
587
int old_space = READ_ONCE(msk->old_wspace);
588
struct mptcp_subflow_context *subflow;
589
struct sock *sk = (struct sock *)msk;
590
int space = __mptcp_space(sk);
591
bool cleanup, rx_empty;
592
593
cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
594
rx_empty = !sk_rmem_alloc_get(sk) && copied;
595
596
mptcp_for_each_subflow(msk, subflow) {
597
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
598
599
if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
600
mptcp_subflow_cleanup_rbuf(ssk, copied);
601
}
602
}
603
604
static void mptcp_check_data_fin(struct sock *sk)
605
{
606
struct mptcp_sock *msk = mptcp_sk(sk);
607
u64 rcv_data_fin_seq;
608
609
/* Need to ack a DATA_FIN received from a peer while this side
610
* of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
611
* msk->rcv_data_fin was set when parsing the incoming options
612
* at the subflow level and the msk lock was not held, so this
613
* is the first opportunity to act on the DATA_FIN and change
614
* the msk state.
615
*
616
* If we are caught up to the sequence number of the incoming
617
* DATA_FIN, send the DATA_ACK now and do state transition. If
618
* not caught up, do nothing and let the recv code send DATA_ACK
619
* when catching up.
620
*/
621
622
if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
623
WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
624
WRITE_ONCE(msk->rcv_data_fin, 0);
625
626
WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
627
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
628
629
switch (sk->sk_state) {
630
case TCP_ESTABLISHED:
631
mptcp_set_state(sk, TCP_CLOSE_WAIT);
632
break;
633
case TCP_FIN_WAIT1:
634
mptcp_set_state(sk, TCP_CLOSING);
635
break;
636
case TCP_FIN_WAIT2:
637
mptcp_shutdown_subflows(msk);
638
mptcp_set_state(sk, TCP_CLOSE);
639
break;
640
default:
641
/* Other states not expected */
642
WARN_ON_ONCE(1);
643
break;
644
}
645
646
if (!__mptcp_check_fallback(msk))
647
mptcp_send_ack(msk);
648
mptcp_close_wake_up(sk);
649
}
650
}
651
652
static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
653
{
654
if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
655
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
656
mptcp_subflow_reset(ssk);
657
}
658
}
659
660
static void __mptcp_add_backlog(struct sock *sk,
661
struct mptcp_subflow_context *subflow,
662
struct sk_buff *skb)
663
{
664
struct mptcp_sock *msk = mptcp_sk(sk);
665
struct sk_buff *tail = NULL;
666
struct sock *ssk = skb->sk;
667
bool fragstolen;
668
int delta;
669
670
if (unlikely(sk->sk_state == TCP_CLOSE)) {
671
kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
672
return;
673
}
674
675
/* Try to coalesce with the last skb in our backlog */
676
if (!list_empty(&msk->backlog_list))
677
tail = list_last_entry(&msk->backlog_list, struct sk_buff, list);
678
679
if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq &&
680
ssk == tail->sk &&
681
__mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) {
682
skb->truesize -= delta;
683
kfree_skb_partial(skb, fragstolen);
684
__mptcp_subflow_lend_fwdmem(subflow, delta);
685
goto account;
686
}
687
688
list_add_tail(&skb->list, &msk->backlog_list);
689
mptcp_subflow_lend_fwdmem(subflow, skb);
690
delta = skb->truesize;
691
692
account:
693
WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta);
694
695
/* Possibly not accept()ed yet, keep track of memory not CG
696
* accounted, mptcp_graft_subflows() will handle it.
697
*/
698
if (!mem_cgroup_from_sk(ssk))
699
msk->backlog_unaccounted += delta;
700
}
701
702
static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
703
struct sock *ssk, bool own_msk)
704
{
705
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
706
struct sock *sk = (struct sock *)msk;
707
bool more_data_avail;
708
struct tcp_sock *tp;
709
bool ret = false;
710
711
pr_debug("msk=%p ssk=%p\n", msk, ssk);
712
tp = tcp_sk(ssk);
713
do {
714
u32 map_remaining, offset;
715
u32 seq = tp->copied_seq;
716
struct sk_buff *skb;
717
bool fin;
718
719
/* try to move as much data as available */
720
map_remaining = subflow->map_data_len -
721
mptcp_subflow_get_map_offset(subflow);
722
723
skb = skb_peek(&ssk->sk_receive_queue);
724
if (unlikely(!skb))
725
break;
726
727
if (__mptcp_check_fallback(msk)) {
728
/* Under fallback skbs have no MPTCP extension and TCP could
729
* collapse them between the dummy map creation and the
730
* current dequeue. Be sure to adjust the map size.
731
*/
732
map_remaining = skb->len;
733
subflow->map_data_len = skb->len;
734
}
735
736
offset = seq - TCP_SKB_CB(skb)->seq;
737
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
738
if (fin)
739
seq++;
740
741
if (offset < skb->len) {
742
size_t len = skb->len - offset;
743
744
mptcp_init_skb(ssk, skb, offset, len);
745
746
if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) {
747
mptcp_subflow_lend_fwdmem(subflow, skb);
748
ret |= __mptcp_move_skb(sk, skb);
749
} else {
750
__mptcp_add_backlog(sk, subflow, skb);
751
}
752
seq += len;
753
754
if (unlikely(map_remaining < len)) {
755
DEBUG_NET_WARN_ON_ONCE(1);
756
mptcp_dss_corruption(msk, ssk);
757
}
758
} else {
759
if (unlikely(!fin)) {
760
DEBUG_NET_WARN_ON_ONCE(1);
761
mptcp_dss_corruption(msk, ssk);
762
}
763
764
sk_eat_skb(ssk, skb);
765
}
766
767
WRITE_ONCE(tp->copied_seq, seq);
768
more_data_avail = mptcp_subflow_data_available(ssk);
769
770
} while (more_data_avail);
771
772
if (ret)
773
msk->last_data_recv = tcp_jiffies32;
774
return ret;
775
}
776
777
static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
778
{
779
struct sock *sk = (struct sock *)msk;
780
struct sk_buff *skb, *tail;
781
bool moved = false;
782
struct rb_node *p;
783
u64 end_seq;
784
785
p = rb_first(&msk->out_of_order_queue);
786
pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
787
while (p) {
788
skb = rb_to_skb(p);
789
if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
790
break;
791
792
p = rb_next(p);
793
rb_erase(&skb->rbnode, &msk->out_of_order_queue);
794
795
if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
796
msk->ack_seq))) {
797
mptcp_drop(sk, skb);
798
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
799
continue;
800
}
801
802
end_seq = MPTCP_SKB_CB(skb)->end_seq;
803
tail = skb_peek_tail(&sk->sk_receive_queue);
804
if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
805
int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
806
807
/* skip overlapping data, if any */
808
pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
809
MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
810
delta);
811
MPTCP_SKB_CB(skb)->offset += delta;
812
MPTCP_SKB_CB(skb)->map_seq += delta;
813
__skb_queue_tail(&sk->sk_receive_queue, skb);
814
}
815
msk->bytes_received += end_seq - msk->ack_seq;
816
WRITE_ONCE(msk->ack_seq, end_seq);
817
moved = true;
818
}
819
return moved;
820
}
821
822
static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
823
{
824
int ssk_state;
825
int err;
826
827
/* only propagate errors on fallen-back sockets or
828
* on MPC connect
829
*/
830
if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
831
return false;
832
833
err = sock_error(ssk);
834
if (!err)
835
return false;
836
837
/* We need to propagate only transition to CLOSE state.
838
* Orphaned socket will see such state change via
839
* subflow_sched_work_if_closed() and that path will properly
840
* destroy the msk as needed.
841
*/
842
ssk_state = inet_sk_state_load(ssk);
843
if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
844
mptcp_set_state(sk, ssk_state);
845
WRITE_ONCE(sk->sk_err, -err);
846
847
/* This barrier is coupled with smp_rmb() in mptcp_poll() */
848
smp_wmb();
849
sk_error_report(sk);
850
return true;
851
}
852
853
void __mptcp_error_report(struct sock *sk)
854
{
855
struct mptcp_subflow_context *subflow;
856
struct mptcp_sock *msk = mptcp_sk(sk);
857
858
mptcp_for_each_subflow(msk, subflow)
859
if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
860
break;
861
}
862
863
/* In most cases we will be able to lock the mptcp socket. If its already
864
* owned, we need to defer to the work queue to avoid ABBA deadlock.
865
*/
866
static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
867
{
868
struct sock *sk = (struct sock *)msk;
869
bool moved;
870
871
moved = __mptcp_move_skbs_from_subflow(msk, ssk, true);
872
__mptcp_ofo_queue(msk);
873
if (unlikely(ssk->sk_err))
874
__mptcp_subflow_error_report(sk, ssk);
875
876
/* If the moves have caught up with the DATA_FIN sequence number
877
* it's time to ack the DATA_FIN and change socket state, but
878
* this is not a good place to change state. Let the workqueue
879
* do it.
880
*/
881
if (mptcp_pending_data_fin(sk, NULL))
882
mptcp_schedule_work(sk);
883
return moved;
884
}
885
886
void mptcp_data_ready(struct sock *sk, struct sock *ssk)
887
{
888
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
889
struct mptcp_sock *msk = mptcp_sk(sk);
890
891
/* The peer can send data while we are shutting down this
892
* subflow at subflow destruction time, but we must avoid enqueuing
893
* more data to the msk receive queue
894
*/
895
if (unlikely(subflow->closing))
896
return;
897
898
mptcp_data_lock(sk);
899
if (!sock_owned_by_user(sk)) {
900
/* Wake-up the reader only for in-sequence data */
901
if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
902
sk->sk_data_ready(sk);
903
} else {
904
__mptcp_move_skbs_from_subflow(msk, ssk, false);
905
}
906
mptcp_data_unlock(sk);
907
}
908
909
static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
910
{
911
mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
912
msk->allow_infinite_fallback = false;
913
mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
914
}
915
916
static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
917
{
918
struct sock *sk = (struct sock *)msk;
919
920
if (sk->sk_state != TCP_ESTABLISHED)
921
return false;
922
923
spin_lock_bh(&msk->fallback_lock);
924
if (!msk->allow_subflows) {
925
spin_unlock_bh(&msk->fallback_lock);
926
return false;
927
}
928
mptcp_subflow_joined(msk, ssk);
929
spin_unlock_bh(&msk->fallback_lock);
930
931
mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
932
mptcp_sockopt_sync_locked(msk, ssk);
933
mptcp_stop_tout_timer(sk);
934
__mptcp_propagate_sndbuf(sk, ssk);
935
return true;
936
}
937
938
static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
939
{
940
struct mptcp_subflow_context *tmp, *subflow;
941
struct mptcp_sock *msk = mptcp_sk(sk);
942
943
list_for_each_entry_safe(subflow, tmp, join_list, node) {
944
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
945
bool slow = lock_sock_fast(ssk);
946
947
list_move_tail(&subflow->node, &msk->conn_list);
948
if (!__mptcp_finish_join(msk, ssk))
949
mptcp_subflow_reset(ssk);
950
unlock_sock_fast(ssk, slow);
951
}
952
}
953
954
static bool mptcp_rtx_timer_pending(struct sock *sk)
955
{
956
return timer_pending(&sk->mptcp_retransmit_timer);
957
}
958
959
static void mptcp_reset_rtx_timer(struct sock *sk)
960
{
961
unsigned long tout;
962
963
/* prevent rescheduling on close */
964
if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
965
return;
966
967
tout = mptcp_sk(sk)->timer_ival;
968
sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout);
969
}
970
971
bool mptcp_schedule_work(struct sock *sk)
972
{
973
if (inet_sk_state_load(sk) == TCP_CLOSE)
974
return false;
975
976
/* Get a reference on this socket, mptcp_worker() will release it.
977
* As mptcp_worker() might complete before us, we can not avoid
978
* a sock_hold()/sock_put() if schedule_work() returns false.
979
*/
980
sock_hold(sk);
981
982
if (schedule_work(&mptcp_sk(sk)->work))
983
return true;
984
985
sock_put(sk);
986
return false;
987
}
988
989
static bool mptcp_skb_can_collapse_to(u64 write_seq,
990
const struct sk_buff *skb,
991
const struct mptcp_ext *mpext)
992
{
993
if (!tcp_skb_can_collapse_to(skb))
994
return false;
995
996
/* can collapse only if MPTCP level sequence is in order and this
997
* mapping has not been xmitted yet
998
*/
999
return mpext && mpext->data_seq + mpext->data_len == write_seq &&
1000
!mpext->frozen;
1001
}
1002
1003
/* we can append data to the given data frag if:
1004
* - there is space available in the backing page_frag
1005
* - the data frag tail matches the current page_frag free offset
1006
* - the data frag end sequence number matches the current write seq
1007
*/
1008
static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1009
const struct page_frag *pfrag,
1010
const struct mptcp_data_frag *df)
1011
{
1012
return df && pfrag->page == df->page &&
1013
pfrag->size - pfrag->offset > 0 &&
1014
pfrag->offset == (df->offset + df->data_len) &&
1015
df->data_seq + df->data_len == msk->write_seq;
1016
}
1017
1018
static void dfrag_uncharge(struct sock *sk, int len)
1019
{
1020
sk_mem_uncharge(sk, len);
1021
sk_wmem_queued_add(sk, -len);
1022
}
1023
1024
static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1025
{
1026
int len = dfrag->data_len + dfrag->overhead;
1027
1028
list_del(&dfrag->list);
1029
dfrag_uncharge(sk, len);
1030
put_page(dfrag->page);
1031
}
1032
1033
/* called under both the msk socket lock and the data lock */
1034
static void __mptcp_clean_una(struct sock *sk)
1035
{
1036
struct mptcp_sock *msk = mptcp_sk(sk);
1037
struct mptcp_data_frag *dtmp, *dfrag;
1038
u64 snd_una;
1039
1040
snd_una = msk->snd_una;
1041
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1042
if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1043
break;
1044
1045
if (unlikely(dfrag == msk->first_pending)) {
1046
/* in recovery mode can see ack after the current snd head */
1047
if (WARN_ON_ONCE(!msk->recovery))
1048
break;
1049
1050
msk->first_pending = mptcp_send_next(sk);
1051
}
1052
1053
dfrag_clear(sk, dfrag);
1054
}
1055
1056
dfrag = mptcp_rtx_head(sk);
1057
if (dfrag && after64(snd_una, dfrag->data_seq)) {
1058
u64 delta = snd_una - dfrag->data_seq;
1059
1060
/* prevent wrap around in recovery mode */
1061
if (unlikely(delta > dfrag->already_sent)) {
1062
if (WARN_ON_ONCE(!msk->recovery))
1063
goto out;
1064
if (WARN_ON_ONCE(delta > dfrag->data_len))
1065
goto out;
1066
dfrag->already_sent += delta - dfrag->already_sent;
1067
}
1068
1069
dfrag->data_seq += delta;
1070
dfrag->offset += delta;
1071
dfrag->data_len -= delta;
1072
dfrag->already_sent -= delta;
1073
1074
dfrag_uncharge(sk, delta);
1075
}
1076
1077
/* all retransmitted data acked, recovery completed */
1078
if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1079
msk->recovery = false;
1080
1081
out:
1082
if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1083
if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1084
mptcp_stop_rtx_timer(sk);
1085
} else {
1086
mptcp_reset_rtx_timer(sk);
1087
}
1088
1089
if (mptcp_pending_data_fin_ack(sk))
1090
mptcp_schedule_work(sk);
1091
}
1092
1093
static void __mptcp_clean_una_wakeup(struct sock *sk)
1094
{
1095
lockdep_assert_held_once(&sk->sk_lock.slock);
1096
1097
__mptcp_clean_una(sk);
1098
mptcp_write_space(sk);
1099
}
1100
1101
static void mptcp_clean_una_wakeup(struct sock *sk)
1102
{
1103
mptcp_data_lock(sk);
1104
__mptcp_clean_una_wakeup(sk);
1105
mptcp_data_unlock(sk);
1106
}
1107
1108
static void mptcp_enter_memory_pressure(struct sock *sk)
1109
{
1110
struct mptcp_subflow_context *subflow;
1111
struct mptcp_sock *msk = mptcp_sk(sk);
1112
bool first = true;
1113
1114
mptcp_for_each_subflow(msk, subflow) {
1115
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1116
1117
if (first && !ssk->sk_bypass_prot_mem) {
1118
tcp_enter_memory_pressure(ssk);
1119
first = false;
1120
}
1121
1122
sk_stream_moderate_sndbuf(ssk);
1123
}
1124
__mptcp_sync_sndbuf(sk);
1125
}
1126
1127
/* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1128
* data
1129
*/
1130
static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1131
{
1132
if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1133
pfrag, sk->sk_allocation)))
1134
return true;
1135
1136
mptcp_enter_memory_pressure(sk);
1137
return false;
1138
}
1139
1140
static struct mptcp_data_frag *
1141
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1142
int orig_offset)
1143
{
1144
int offset = ALIGN(orig_offset, sizeof(long));
1145
struct mptcp_data_frag *dfrag;
1146
1147
dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1148
dfrag->data_len = 0;
1149
dfrag->data_seq = msk->write_seq;
1150
dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1151
dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1152
dfrag->already_sent = 0;
1153
dfrag->page = pfrag->page;
1154
1155
return dfrag;
1156
}
1157
1158
struct mptcp_sendmsg_info {
1159
int mss_now;
1160
int size_goal;
1161
u16 limit;
1162
u16 sent;
1163
unsigned int flags;
1164
bool data_lock_held;
1165
};
1166
1167
static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1168
u64 data_seq, int avail_size)
1169
{
1170
u64 window_end = mptcp_wnd_end(msk);
1171
u64 mptcp_snd_wnd;
1172
1173
if (__mptcp_check_fallback(msk))
1174
return avail_size;
1175
1176
mptcp_snd_wnd = window_end - data_seq;
1177
avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1178
1179
if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1180
tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1181
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1182
}
1183
1184
return avail_size;
1185
}
1186
1187
static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1188
{
1189
struct skb_ext *mpext = __skb_ext_alloc(gfp);
1190
1191
if (!mpext)
1192
return false;
1193
__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1194
return true;
1195
}
1196
1197
static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1198
{
1199
struct sk_buff *skb;
1200
1201
skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1202
if (likely(skb)) {
1203
if (likely(__mptcp_add_ext(skb, gfp))) {
1204
skb_reserve(skb, MAX_TCP_HEADER);
1205
skb->ip_summed = CHECKSUM_PARTIAL;
1206
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1207
return skb;
1208
}
1209
__kfree_skb(skb);
1210
} else {
1211
mptcp_enter_memory_pressure(sk);
1212
}
1213
return NULL;
1214
}
1215
1216
static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1217
{
1218
struct sk_buff *skb;
1219
1220
skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1221
if (!skb)
1222
return NULL;
1223
1224
if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1225
tcp_skb_entail(ssk, skb);
1226
return skb;
1227
}
1228
tcp_skb_tsorted_anchor_cleanup(skb);
1229
kfree_skb(skb);
1230
return NULL;
1231
}
1232
1233
static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1234
{
1235
gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1236
1237
return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1238
}
1239
1240
/* note: this always recompute the csum on the whole skb, even
1241
* if we just appended a single frag. More status info needed
1242
*/
1243
static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1244
{
1245
struct mptcp_ext *mpext = mptcp_get_ext(skb);
1246
__wsum csum = ~csum_unfold(mpext->csum);
1247
int offset = skb->len - added;
1248
1249
mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1250
}
1251
1252
static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1253
struct sock *ssk,
1254
struct mptcp_ext *mpext)
1255
{
1256
if (!mpext)
1257
return;
1258
1259
mpext->infinite_map = 1;
1260
mpext->data_len = 0;
1261
1262
if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1263
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1264
mptcp_subflow_reset(ssk);
1265
return;
1266
}
1267
1268
mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1269
}
1270
1271
#define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1272
1273
static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1274
struct mptcp_data_frag *dfrag,
1275
struct mptcp_sendmsg_info *info)
1276
{
1277
u64 data_seq = dfrag->data_seq + info->sent;
1278
int offset = dfrag->offset + info->sent;
1279
struct mptcp_sock *msk = mptcp_sk(sk);
1280
bool zero_window_probe = false;
1281
struct mptcp_ext *mpext = NULL;
1282
bool can_coalesce = false;
1283
bool reuse_skb = true;
1284
struct sk_buff *skb;
1285
size_t copy;
1286
int i;
1287
1288
pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1289
msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1290
1291
if (WARN_ON_ONCE(info->sent > info->limit ||
1292
info->limit > dfrag->data_len))
1293
return 0;
1294
1295
if (unlikely(!__tcp_can_send(ssk)))
1296
return -EAGAIN;
1297
1298
/* compute send limit */
1299
if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1300
ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1301
info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1302
copy = info->size_goal;
1303
1304
skb = tcp_write_queue_tail(ssk);
1305
if (skb && copy > skb->len) {
1306
/* Limit the write to the size available in the
1307
* current skb, if any, so that we create at most a new skb.
1308
* Explicitly tells TCP internals to avoid collapsing on later
1309
* queue management operation, to avoid breaking the ext <->
1310
* SSN association set here
1311
*/
1312
mpext = mptcp_get_ext(skb);
1313
if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1314
TCP_SKB_CB(skb)->eor = 1;
1315
tcp_mark_push(tcp_sk(ssk), skb);
1316
goto alloc_skb;
1317
}
1318
1319
i = skb_shinfo(skb)->nr_frags;
1320
can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1321
if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1322
tcp_mark_push(tcp_sk(ssk), skb);
1323
goto alloc_skb;
1324
}
1325
1326
copy -= skb->len;
1327
} else {
1328
alloc_skb:
1329
skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1330
if (!skb)
1331
return -ENOMEM;
1332
1333
i = skb_shinfo(skb)->nr_frags;
1334
reuse_skb = false;
1335
mpext = mptcp_get_ext(skb);
1336
}
1337
1338
/* Zero window and all data acked? Probe. */
1339
copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1340
if (copy == 0) {
1341
u64 snd_una = READ_ONCE(msk->snd_una);
1342
1343
/* No need for zero probe if there are any data pending
1344
* either at the msk or ssk level; skb is the current write
1345
* queue tail and can be empty at this point.
1346
*/
1347
if (snd_una != msk->snd_nxt || skb->len ||
1348
skb != tcp_send_head(ssk)) {
1349
tcp_remove_empty_skb(ssk);
1350
return 0;
1351
}
1352
1353
zero_window_probe = true;
1354
data_seq = snd_una - 1;
1355
copy = 1;
1356
}
1357
1358
copy = min_t(size_t, copy, info->limit - info->sent);
1359
if (!sk_wmem_schedule(ssk, copy)) {
1360
tcp_remove_empty_skb(ssk);
1361
return -ENOMEM;
1362
}
1363
1364
if (can_coalesce) {
1365
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1366
} else {
1367
get_page(dfrag->page);
1368
skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1369
}
1370
1371
skb->len += copy;
1372
skb->data_len += copy;
1373
skb->truesize += copy;
1374
sk_wmem_queued_add(ssk, copy);
1375
sk_mem_charge(ssk, copy);
1376
WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1377
TCP_SKB_CB(skb)->end_seq += copy;
1378
tcp_skb_pcount_set(skb, 0);
1379
1380
/* on skb reuse we just need to update the DSS len */
1381
if (reuse_skb) {
1382
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1383
mpext->data_len += copy;
1384
goto out;
1385
}
1386
1387
memset(mpext, 0, sizeof(*mpext));
1388
mpext->data_seq = data_seq;
1389
mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1390
mpext->data_len = copy;
1391
mpext->use_map = 1;
1392
mpext->dsn64 = 1;
1393
1394
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1395
mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1396
mpext->dsn64);
1397
1398
if (zero_window_probe) {
1399
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1400
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1401
mpext->frozen = 1;
1402
if (READ_ONCE(msk->csum_enabled))
1403
mptcp_update_data_checksum(skb, copy);
1404
tcp_push_pending_frames(ssk);
1405
return 0;
1406
}
1407
out:
1408
if (READ_ONCE(msk->csum_enabled))
1409
mptcp_update_data_checksum(skb, copy);
1410
if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1411
mptcp_update_infinite_map(msk, ssk, mpext);
1412
trace_mptcp_sendmsg_frag(mpext);
1413
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1414
return copy;
1415
}
1416
1417
#define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1418
sizeof(struct tcphdr) - \
1419
MAX_TCP_OPTION_SPACE - \
1420
sizeof(struct ipv6hdr) - \
1421
sizeof(struct frag_hdr))
1422
1423
struct subflow_send_info {
1424
struct sock *ssk;
1425
u64 linger_time;
1426
};
1427
1428
void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1429
{
1430
if (!subflow->stale)
1431
return;
1432
1433
subflow->stale = 0;
1434
MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1435
}
1436
1437
bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1438
{
1439
if (unlikely(subflow->stale)) {
1440
u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1441
1442
if (subflow->stale_rcv_tstamp == rcv_tstamp)
1443
return false;
1444
1445
mptcp_subflow_set_active(subflow);
1446
}
1447
return __mptcp_subflow_active(subflow);
1448
}
1449
1450
#define SSK_MODE_ACTIVE 0
1451
#define SSK_MODE_BACKUP 1
1452
#define SSK_MODE_MAX 2
1453
1454
/* implement the mptcp packet scheduler;
1455
* returns the subflow that will transmit the next DSS
1456
* additionally updates the rtx timeout
1457
*/
1458
struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1459
{
1460
struct subflow_send_info send_info[SSK_MODE_MAX];
1461
struct mptcp_subflow_context *subflow;
1462
struct sock *sk = (struct sock *)msk;
1463
u32 pace, burst, wmem;
1464
int i, nr_active = 0;
1465
struct sock *ssk;
1466
u64 linger_time;
1467
long tout = 0;
1468
1469
/* pick the subflow with the lower wmem/wspace ratio */
1470
for (i = 0; i < SSK_MODE_MAX; ++i) {
1471
send_info[i].ssk = NULL;
1472
send_info[i].linger_time = -1;
1473
}
1474
1475
mptcp_for_each_subflow(msk, subflow) {
1476
bool backup = subflow->backup || subflow->request_bkup;
1477
1478
trace_mptcp_subflow_get_send(subflow);
1479
ssk = mptcp_subflow_tcp_sock(subflow);
1480
if (!mptcp_subflow_active(subflow))
1481
continue;
1482
1483
tout = max(tout, mptcp_timeout_from_subflow(subflow));
1484
nr_active += !backup;
1485
pace = subflow->avg_pacing_rate;
1486
if (unlikely(!pace)) {
1487
/* init pacing rate from socket */
1488
subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1489
pace = subflow->avg_pacing_rate;
1490
if (!pace)
1491
continue;
1492
}
1493
1494
linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1495
if (linger_time < send_info[backup].linger_time) {
1496
send_info[backup].ssk = ssk;
1497
send_info[backup].linger_time = linger_time;
1498
}
1499
}
1500
__mptcp_set_timeout(sk, tout);
1501
1502
/* pick the best backup if no other subflow is active */
1503
if (!nr_active)
1504
send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1505
1506
/* According to the blest algorithm, to avoid HoL blocking for the
1507
* faster flow, we need to:
1508
* - estimate the faster flow linger time
1509
* - use the above to estimate the amount of byte transferred
1510
* by the faster flow
1511
* - check that the amount of queued data is greater than the above,
1512
* otherwise do not use the picked, slower, subflow
1513
* We select the subflow with the shorter estimated time to flush
1514
* the queued mem, which basically ensure the above. We just need
1515
* to check that subflow has a non empty cwin.
1516
*/
1517
ssk = send_info[SSK_MODE_ACTIVE].ssk;
1518
if (!ssk || !sk_stream_memory_free(ssk))
1519
return NULL;
1520
1521
burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1522
wmem = READ_ONCE(ssk->sk_wmem_queued);
1523
if (!burst)
1524
return ssk;
1525
1526
subflow = mptcp_subflow_ctx(ssk);
1527
subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1528
READ_ONCE(ssk->sk_pacing_rate) * burst,
1529
burst + wmem);
1530
msk->snd_burst = burst;
1531
return ssk;
1532
}
1533
1534
static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1535
{
1536
tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1537
release_sock(ssk);
1538
}
1539
1540
static void mptcp_update_post_push(struct mptcp_sock *msk,
1541
struct mptcp_data_frag *dfrag,
1542
u32 sent)
1543
{
1544
u64 snd_nxt_new = dfrag->data_seq;
1545
1546
dfrag->already_sent += sent;
1547
1548
msk->snd_burst -= sent;
1549
1550
snd_nxt_new += dfrag->already_sent;
1551
1552
/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1553
* is recovering after a failover. In that event, this re-sends
1554
* old segments.
1555
*
1556
* Thus compute snd_nxt_new candidate based on
1557
* the dfrag->data_seq that was sent and the data
1558
* that has been handed to the subflow for transmission
1559
* and skip update in case it was old dfrag.
1560
*/
1561
if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1562
msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1563
WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1564
}
1565
}
1566
1567
void mptcp_check_and_set_pending(struct sock *sk)
1568
{
1569
if (mptcp_send_head(sk)) {
1570
mptcp_data_lock(sk);
1571
mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1572
mptcp_data_unlock(sk);
1573
}
1574
}
1575
1576
static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1577
struct mptcp_sendmsg_info *info)
1578
{
1579
struct mptcp_sock *msk = mptcp_sk(sk);
1580
struct mptcp_data_frag *dfrag;
1581
int len, copied = 0, err = 0;
1582
1583
while ((dfrag = mptcp_send_head(sk))) {
1584
info->sent = dfrag->already_sent;
1585
info->limit = dfrag->data_len;
1586
len = dfrag->data_len - dfrag->already_sent;
1587
while (len > 0) {
1588
int ret = 0;
1589
1590
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1591
if (ret <= 0) {
1592
err = copied ? : ret;
1593
goto out;
1594
}
1595
1596
info->sent += ret;
1597
copied += ret;
1598
len -= ret;
1599
1600
mptcp_update_post_push(msk, dfrag, ret);
1601
}
1602
msk->first_pending = mptcp_send_next(sk);
1603
1604
if (msk->snd_burst <= 0 ||
1605
!sk_stream_memory_free(ssk) ||
1606
!mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1607
err = copied;
1608
goto out;
1609
}
1610
mptcp_set_timeout(sk);
1611
}
1612
err = copied;
1613
1614
out:
1615
if (err > 0)
1616
msk->last_data_sent = tcp_jiffies32;
1617
return err;
1618
}
1619
1620
void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1621
{
1622
struct sock *prev_ssk = NULL, *ssk = NULL;
1623
struct mptcp_sock *msk = mptcp_sk(sk);
1624
struct mptcp_sendmsg_info info = {
1625
.flags = flags,
1626
};
1627
bool copied = false;
1628
int push_count = 1;
1629
1630
while (mptcp_send_head(sk) && (push_count > 0)) {
1631
struct mptcp_subflow_context *subflow;
1632
int ret = 0;
1633
1634
if (mptcp_sched_get_send(msk))
1635
break;
1636
1637
push_count = 0;
1638
1639
mptcp_for_each_subflow(msk, subflow) {
1640
if (READ_ONCE(subflow->scheduled)) {
1641
mptcp_subflow_set_scheduled(subflow, false);
1642
1643
prev_ssk = ssk;
1644
ssk = mptcp_subflow_tcp_sock(subflow);
1645
if (ssk != prev_ssk) {
1646
/* First check. If the ssk has changed since
1647
* the last round, release prev_ssk
1648
*/
1649
if (prev_ssk)
1650
mptcp_push_release(prev_ssk, &info);
1651
1652
/* Need to lock the new subflow only if different
1653
* from the previous one, otherwise we are still
1654
* helding the relevant lock
1655
*/
1656
lock_sock(ssk);
1657
}
1658
1659
push_count++;
1660
1661
ret = __subflow_push_pending(sk, ssk, &info);
1662
if (ret <= 0) {
1663
if (ret != -EAGAIN ||
1664
(1 << ssk->sk_state) &
1665
(TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1666
push_count--;
1667
continue;
1668
}
1669
copied = true;
1670
}
1671
}
1672
}
1673
1674
/* at this point we held the socket lock for the last subflow we used */
1675
if (ssk)
1676
mptcp_push_release(ssk, &info);
1677
1678
/* Avoid scheduling the rtx timer if no data has been pushed; the timer
1679
* will be updated on positive acks by __mptcp_cleanup_una().
1680
*/
1681
if (copied) {
1682
if (!mptcp_rtx_timer_pending(sk))
1683
mptcp_reset_rtx_timer(sk);
1684
mptcp_check_send_data_fin(sk);
1685
}
1686
}
1687
1688
static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1689
{
1690
struct mptcp_sock *msk = mptcp_sk(sk);
1691
struct mptcp_sendmsg_info info = {
1692
.data_lock_held = true,
1693
};
1694
bool keep_pushing = true;
1695
struct sock *xmit_ssk;
1696
int copied = 0;
1697
1698
info.flags = 0;
1699
while (mptcp_send_head(sk) && keep_pushing) {
1700
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1701
int ret = 0;
1702
1703
/* check for a different subflow usage only after
1704
* spooling the first chunk of data
1705
*/
1706
if (first) {
1707
mptcp_subflow_set_scheduled(subflow, false);
1708
ret = __subflow_push_pending(sk, ssk, &info);
1709
first = false;
1710
if (ret <= 0)
1711
break;
1712
copied += ret;
1713
continue;
1714
}
1715
1716
if (mptcp_sched_get_send(msk))
1717
goto out;
1718
1719
if (READ_ONCE(subflow->scheduled)) {
1720
mptcp_subflow_set_scheduled(subflow, false);
1721
ret = __subflow_push_pending(sk, ssk, &info);
1722
if (ret <= 0)
1723
keep_pushing = false;
1724
copied += ret;
1725
}
1726
1727
mptcp_for_each_subflow(msk, subflow) {
1728
if (READ_ONCE(subflow->scheduled)) {
1729
xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1730
if (xmit_ssk != ssk) {
1731
mptcp_subflow_delegate(subflow,
1732
MPTCP_DELEGATE_SEND);
1733
keep_pushing = false;
1734
}
1735
}
1736
}
1737
}
1738
1739
out:
1740
/* __mptcp_alloc_tx_skb could have released some wmem and we are
1741
* not going to flush it via release_sock()
1742
*/
1743
if (copied) {
1744
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1745
info.size_goal);
1746
if (!mptcp_rtx_timer_pending(sk))
1747
mptcp_reset_rtx_timer(sk);
1748
1749
if (msk->snd_data_fin_enable &&
1750
msk->snd_nxt + 1 == msk->write_seq)
1751
mptcp_schedule_work(sk);
1752
}
1753
}
1754
1755
static int mptcp_disconnect(struct sock *sk, int flags);
1756
1757
static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1758
size_t len, int *copied_syn)
1759
{
1760
unsigned int saved_flags = msg->msg_flags;
1761
struct mptcp_sock *msk = mptcp_sk(sk);
1762
struct sock *ssk;
1763
int ret;
1764
1765
/* on flags based fastopen the mptcp is supposed to create the
1766
* first subflow right now. Otherwise we are in the defer_connect
1767
* path, and the first subflow must be already present.
1768
* Since the defer_connect flag is cleared after the first succsful
1769
* fastopen attempt, no need to check for additional subflow status.
1770
*/
1771
if (msg->msg_flags & MSG_FASTOPEN) {
1772
ssk = __mptcp_nmpc_sk(msk);
1773
if (IS_ERR(ssk))
1774
return PTR_ERR(ssk);
1775
}
1776
if (!msk->first)
1777
return -EINVAL;
1778
1779
ssk = msk->first;
1780
1781
lock_sock(ssk);
1782
msg->msg_flags |= MSG_DONTWAIT;
1783
msk->fastopening = 1;
1784
ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1785
msk->fastopening = 0;
1786
msg->msg_flags = saved_flags;
1787
release_sock(ssk);
1788
1789
/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1790
if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1791
ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1792
msg->msg_namelen, msg->msg_flags, 1);
1793
1794
/* Keep the same behaviour of plain TCP: zero the copied bytes in
1795
* case of any error, except timeout or signal
1796
*/
1797
if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1798
*copied_syn = 0;
1799
} else if (ret && ret != -EINPROGRESS) {
1800
/* The disconnect() op called by tcp_sendmsg_fastopen()/
1801
* __inet_stream_connect() can fail, due to looking check,
1802
* see mptcp_disconnect().
1803
* Attempt it again outside the problematic scope.
1804
*/
1805
if (!mptcp_disconnect(sk, 0)) {
1806
sk->sk_disconnects++;
1807
sk->sk_socket->state = SS_UNCONNECTED;
1808
}
1809
}
1810
inet_clear_bit(DEFER_CONNECT, sk);
1811
1812
return ret;
1813
}
1814
1815
static int do_copy_data_nocache(struct sock *sk, int copy,
1816
struct iov_iter *from, char *to)
1817
{
1818
if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1819
if (!copy_from_iter_full_nocache(to, copy, from))
1820
return -EFAULT;
1821
} else if (!copy_from_iter_full(to, copy, from)) {
1822
return -EFAULT;
1823
}
1824
return 0;
1825
}
1826
1827
/* open-code sk_stream_memory_free() plus sent limit computation to
1828
* avoid indirect calls in fast-path.
1829
* Called under the msk socket lock, so we can avoid a bunch of ONCE
1830
* annotations.
1831
*/
1832
static u32 mptcp_send_limit(const struct sock *sk)
1833
{
1834
const struct mptcp_sock *msk = mptcp_sk(sk);
1835
u32 limit, not_sent;
1836
1837
if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1838
return 0;
1839
1840
limit = mptcp_notsent_lowat(sk);
1841
if (limit == UINT_MAX)
1842
return UINT_MAX;
1843
1844
not_sent = msk->write_seq - msk->snd_nxt;
1845
if (not_sent >= limit)
1846
return 0;
1847
1848
return limit - not_sent;
1849
}
1850
1851
static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1852
{
1853
struct mptcp_subflow_context *subflow;
1854
1855
if (!rfs_is_needed())
1856
return;
1857
1858
mptcp_for_each_subflow(msk, subflow) {
1859
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1860
1861
sock_rps_record_flow(ssk);
1862
}
1863
}
1864
1865
static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1866
{
1867
struct mptcp_sock *msk = mptcp_sk(sk);
1868
struct page_frag *pfrag;
1869
size_t copied = 0;
1870
int ret = 0;
1871
long timeo;
1872
1873
/* silently ignore everything else */
1874
msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1875
1876
lock_sock(sk);
1877
1878
mptcp_rps_record_subflows(msk);
1879
1880
if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1881
msg->msg_flags & MSG_FASTOPEN)) {
1882
int copied_syn = 0;
1883
1884
ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1885
copied += copied_syn;
1886
if (ret == -EINPROGRESS && copied_syn > 0)
1887
goto out;
1888
else if (ret)
1889
goto do_error;
1890
}
1891
1892
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1893
1894
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1895
ret = sk_stream_wait_connect(sk, &timeo);
1896
if (ret)
1897
goto do_error;
1898
}
1899
1900
ret = -EPIPE;
1901
if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1902
goto do_error;
1903
1904
pfrag = sk_page_frag(sk);
1905
1906
while (msg_data_left(msg)) {
1907
int total_ts, frag_truesize = 0;
1908
struct mptcp_data_frag *dfrag;
1909
bool dfrag_collapsed;
1910
size_t psize, offset;
1911
u32 copy_limit;
1912
1913
/* ensure fitting the notsent_lowat() constraint */
1914
copy_limit = mptcp_send_limit(sk);
1915
if (!copy_limit)
1916
goto wait_for_memory;
1917
1918
/* reuse tail pfrag, if possible, or carve a new one from the
1919
* page allocator
1920
*/
1921
dfrag = mptcp_pending_tail(sk);
1922
dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1923
if (!dfrag_collapsed) {
1924
if (!mptcp_page_frag_refill(sk, pfrag))
1925
goto wait_for_memory;
1926
1927
dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1928
frag_truesize = dfrag->overhead;
1929
}
1930
1931
/* we do not bound vs wspace, to allow a single packet.
1932
* memory accounting will prevent execessive memory usage
1933
* anyway
1934
*/
1935
offset = dfrag->offset + dfrag->data_len;
1936
psize = pfrag->size - offset;
1937
psize = min_t(size_t, psize, msg_data_left(msg));
1938
psize = min_t(size_t, psize, copy_limit);
1939
total_ts = psize + frag_truesize;
1940
1941
if (!sk_wmem_schedule(sk, total_ts))
1942
goto wait_for_memory;
1943
1944
ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1945
page_address(dfrag->page) + offset);
1946
if (ret)
1947
goto do_error;
1948
1949
/* data successfully copied into the write queue */
1950
sk_forward_alloc_add(sk, -total_ts);
1951
copied += psize;
1952
dfrag->data_len += psize;
1953
frag_truesize += psize;
1954
pfrag->offset += frag_truesize;
1955
WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1956
1957
/* charge data on mptcp pending queue to the msk socket
1958
* Note: we charge such data both to sk and ssk
1959
*/
1960
sk_wmem_queued_add(sk, frag_truesize);
1961
if (!dfrag_collapsed) {
1962
get_page(dfrag->page);
1963
list_add_tail(&dfrag->list, &msk->rtx_queue);
1964
if (!msk->first_pending)
1965
msk->first_pending = dfrag;
1966
}
1967
pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1968
dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1969
!dfrag_collapsed);
1970
1971
continue;
1972
1973
wait_for_memory:
1974
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1975
__mptcp_push_pending(sk, msg->msg_flags);
1976
ret = sk_stream_wait_memory(sk, &timeo);
1977
if (ret)
1978
goto do_error;
1979
}
1980
1981
if (copied)
1982
__mptcp_push_pending(sk, msg->msg_flags);
1983
1984
out:
1985
release_sock(sk);
1986
return copied;
1987
1988
do_error:
1989
if (copied)
1990
goto out;
1991
1992
copied = sk_stream_error(sk, msg->msg_flags, ret);
1993
goto out;
1994
}
1995
1996
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1997
1998
static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1999
size_t len, int flags, int copied_total,
2000
struct scm_timestamping_internal *tss,
2001
int *cmsg_flags)
2002
{
2003
struct mptcp_sock *msk = mptcp_sk(sk);
2004
struct sk_buff *skb, *tmp;
2005
int total_data_len = 0;
2006
int copied = 0;
2007
2008
skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
2009
u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
2010
u32 data_len = skb->len - offset;
2011
u32 count;
2012
int err;
2013
2014
if (flags & MSG_PEEK) {
2015
/* skip already peeked skbs */
2016
if (total_data_len + data_len <= copied_total) {
2017
total_data_len += data_len;
2018
continue;
2019
}
2020
2021
/* skip the already peeked data in the current skb */
2022
delta = copied_total - total_data_len;
2023
offset += delta;
2024
data_len -= delta;
2025
}
2026
2027
count = min_t(size_t, len - copied, data_len);
2028
if (!(flags & MSG_TRUNC)) {
2029
err = skb_copy_datagram_msg(skb, offset, msg, count);
2030
if (unlikely(err < 0)) {
2031
if (!copied)
2032
return err;
2033
break;
2034
}
2035
}
2036
2037
if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
2038
tcp_update_recv_tstamps(skb, tss);
2039
*cmsg_flags |= MPTCP_CMSG_TS;
2040
}
2041
2042
copied += count;
2043
2044
if (!(flags & MSG_PEEK)) {
2045
msk->bytes_consumed += count;
2046
if (count < data_len) {
2047
MPTCP_SKB_CB(skb)->offset += count;
2048
MPTCP_SKB_CB(skb)->map_seq += count;
2049
break;
2050
}
2051
2052
/* avoid the indirect call, we know the destructor is sock_rfree */
2053
skb->destructor = NULL;
2054
skb->sk = NULL;
2055
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2056
sk_mem_uncharge(sk, skb->truesize);
2057
__skb_unlink(skb, &sk->sk_receive_queue);
2058
skb_attempt_defer_free(skb);
2059
}
2060
2061
if (copied >= len)
2062
break;
2063
}
2064
2065
mptcp_rcv_space_adjust(msk, copied);
2066
return copied;
2067
}
2068
2069
/* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
2070
*
2071
* Only difference: Use highest rtt estimate of the subflows in use.
2072
*/
2073
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2074
{
2075
struct mptcp_subflow_context *subflow;
2076
struct sock *sk = (struct sock *)msk;
2077
u8 scaling_ratio = U8_MAX;
2078
u32 time, advmss = 1;
2079
u64 rtt_us, mstamp;
2080
2081
msk_owned_by_me(msk);
2082
2083
if (copied <= 0)
2084
return;
2085
2086
if (!msk->rcvspace_init)
2087
mptcp_rcv_space_init(msk, msk->first);
2088
2089
msk->rcvq_space.copied += copied;
2090
2091
mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2092
time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2093
2094
rtt_us = msk->rcvq_space.rtt_us;
2095
if (rtt_us && time < (rtt_us >> 3))
2096
return;
2097
2098
rtt_us = 0;
2099
mptcp_for_each_subflow(msk, subflow) {
2100
const struct tcp_sock *tp;
2101
u64 sf_rtt_us;
2102
u32 sf_advmss;
2103
2104
tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2105
2106
sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2107
sf_advmss = READ_ONCE(tp->advmss);
2108
2109
rtt_us = max(sf_rtt_us, rtt_us);
2110
advmss = max(sf_advmss, advmss);
2111
scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2112
}
2113
2114
msk->rcvq_space.rtt_us = rtt_us;
2115
msk->scaling_ratio = scaling_ratio;
2116
if (time < (rtt_us >> 3) || rtt_us == 0)
2117
return;
2118
2119
if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2120
goto new_measure;
2121
2122
if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2123
/* Make subflows follow along. If we do not do this, we
2124
* get drops at subflow level if skbs can't be moved to
2125
* the mptcp rx queue fast enough (announced rcv_win can
2126
* exceed ssk->sk_rcvbuf).
2127
*/
2128
mptcp_for_each_subflow(msk, subflow) {
2129
struct sock *ssk;
2130
bool slow;
2131
2132
ssk = mptcp_subflow_tcp_sock(subflow);
2133
slow = lock_sock_fast(ssk);
2134
/* subflows can be added before tcp_init_transfer() */
2135
if (tcp_sk(ssk)->rcvq_space.space)
2136
tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2137
unlock_sock_fast(ssk, slow);
2138
}
2139
}
2140
2141
new_measure:
2142
msk->rcvq_space.copied = 0;
2143
msk->rcvq_space.time = mstamp;
2144
}
2145
2146
static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta)
2147
{
2148
struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list);
2149
struct mptcp_sock *msk = mptcp_sk(sk);
2150
bool moved = false;
2151
2152
*delta = 0;
2153
while (1) {
2154
/* If the msk recvbuf is full stop, don't drop */
2155
if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2156
break;
2157
2158
prefetch(skb->next);
2159
list_del(&skb->list);
2160
*delta += skb->truesize;
2161
2162
moved |= __mptcp_move_skb(sk, skb);
2163
if (list_empty(skbs))
2164
break;
2165
2166
skb = list_first_entry(skbs, struct sk_buff, list);
2167
}
2168
2169
__mptcp_ofo_queue(msk);
2170
if (moved)
2171
mptcp_check_data_fin((struct sock *)msk);
2172
return moved;
2173
}
2174
2175
static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs)
2176
{
2177
struct mptcp_sock *msk = mptcp_sk(sk);
2178
2179
/* After CG initialization, subflows should never add skb before
2180
* gaining the CG themself.
2181
*/
2182
DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket &&
2183
mem_cgroup_from_sk(sk));
2184
2185
/* Don't spool the backlog if the rcvbuf is full. */
2186
if (list_empty(&msk->backlog_list) ||
2187
sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2188
return false;
2189
2190
INIT_LIST_HEAD(skbs);
2191
list_splice_init(&msk->backlog_list, skbs);
2192
return true;
2193
}
2194
2195
static void mptcp_backlog_spooled(struct sock *sk, u32 moved,
2196
struct list_head *skbs)
2197
{
2198
struct mptcp_sock *msk = mptcp_sk(sk);
2199
2200
WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved);
2201
list_splice(skbs, &msk->backlog_list);
2202
}
2203
2204
static bool mptcp_move_skbs(struct sock *sk)
2205
{
2206
struct list_head skbs;
2207
bool enqueued = false;
2208
u32 moved;
2209
2210
mptcp_data_lock(sk);
2211
while (mptcp_can_spool_backlog(sk, &skbs)) {
2212
mptcp_data_unlock(sk);
2213
enqueued |= __mptcp_move_skbs(sk, &skbs, &moved);
2214
2215
mptcp_data_lock(sk);
2216
mptcp_backlog_spooled(sk, moved, &skbs);
2217
}
2218
mptcp_data_unlock(sk);
2219
return enqueued;
2220
}
2221
2222
static unsigned int mptcp_inq_hint(const struct sock *sk)
2223
{
2224
const struct mptcp_sock *msk = mptcp_sk(sk);
2225
const struct sk_buff *skb;
2226
2227
skb = skb_peek(&sk->sk_receive_queue);
2228
if (skb) {
2229
u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2230
2231
if (hint_val >= INT_MAX)
2232
return INT_MAX;
2233
2234
return (unsigned int)hint_val;
2235
}
2236
2237
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2238
return 1;
2239
2240
return 0;
2241
}
2242
2243
static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2244
int flags, int *addr_len)
2245
{
2246
struct mptcp_sock *msk = mptcp_sk(sk);
2247
struct scm_timestamping_internal tss;
2248
int copied = 0, cmsg_flags = 0;
2249
int target;
2250
long timeo;
2251
2252
/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2253
if (unlikely(flags & MSG_ERRQUEUE))
2254
return inet_recv_error(sk, msg, len, addr_len);
2255
2256
lock_sock(sk);
2257
if (unlikely(sk->sk_state == TCP_LISTEN)) {
2258
copied = -ENOTCONN;
2259
goto out_err;
2260
}
2261
2262
mptcp_rps_record_subflows(msk);
2263
2264
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2265
2266
len = min_t(size_t, len, INT_MAX);
2267
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2268
2269
if (unlikely(msk->recvmsg_inq))
2270
cmsg_flags = MPTCP_CMSG_INQ;
2271
2272
while (copied < len) {
2273
int err, bytes_read;
2274
2275
bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2276
copied, &tss, &cmsg_flags);
2277
if (unlikely(bytes_read < 0)) {
2278
if (!copied)
2279
copied = bytes_read;
2280
goto out_err;
2281
}
2282
2283
copied += bytes_read;
2284
2285
if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk))
2286
continue;
2287
2288
/* only the MPTCP socket status is relevant here. The exit
2289
* conditions mirror closely tcp_recvmsg()
2290
*/
2291
if (copied >= target)
2292
break;
2293
2294
if (copied) {
2295
if (sk->sk_err ||
2296
sk->sk_state == TCP_CLOSE ||
2297
(sk->sk_shutdown & RCV_SHUTDOWN) ||
2298
!timeo ||
2299
signal_pending(current))
2300
break;
2301
} else {
2302
if (sk->sk_err) {
2303
copied = sock_error(sk);
2304
break;
2305
}
2306
2307
if (sk->sk_shutdown & RCV_SHUTDOWN)
2308
break;
2309
2310
if (sk->sk_state == TCP_CLOSE) {
2311
copied = -ENOTCONN;
2312
break;
2313
}
2314
2315
if (!timeo) {
2316
copied = -EAGAIN;
2317
break;
2318
}
2319
2320
if (signal_pending(current)) {
2321
copied = sock_intr_errno(timeo);
2322
break;
2323
}
2324
}
2325
2326
pr_debug("block timeout %ld\n", timeo);
2327
mptcp_cleanup_rbuf(msk, copied);
2328
err = sk_wait_data(sk, &timeo, NULL);
2329
if (err < 0) {
2330
err = copied ? : err;
2331
goto out_err;
2332
}
2333
}
2334
2335
mptcp_cleanup_rbuf(msk, copied);
2336
2337
out_err:
2338
if (cmsg_flags && copied >= 0) {
2339
if (cmsg_flags & MPTCP_CMSG_TS)
2340
tcp_recv_timestamp(msg, sk, &tss);
2341
2342
if (cmsg_flags & MPTCP_CMSG_INQ) {
2343
unsigned int inq = mptcp_inq_hint(sk);
2344
2345
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2346
}
2347
}
2348
2349
pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2350
msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2351
2352
release_sock(sk);
2353
return copied;
2354
}
2355
2356
static void mptcp_retransmit_timer(struct timer_list *t)
2357
{
2358
struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer);
2359
struct mptcp_sock *msk = mptcp_sk(sk);
2360
2361
bh_lock_sock(sk);
2362
if (!sock_owned_by_user(sk)) {
2363
/* we need a process context to retransmit */
2364
if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2365
mptcp_schedule_work(sk);
2366
} else {
2367
/* delegate our work to tcp_release_cb() */
2368
__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2369
}
2370
bh_unlock_sock(sk);
2371
sock_put(sk);
2372
}
2373
2374
static void mptcp_tout_timer(struct timer_list *t)
2375
{
2376
struct inet_connection_sock *icsk =
2377
timer_container_of(icsk, t, mptcp_tout_timer);
2378
struct sock *sk = &icsk->icsk_inet.sk;
2379
2380
mptcp_schedule_work(sk);
2381
sock_put(sk);
2382
}
2383
2384
/* Find an idle subflow. Return NULL if there is unacked data at tcp
2385
* level.
2386
*
2387
* A backup subflow is returned only if that is the only kind available.
2388
*/
2389
struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2390
{
2391
struct sock *backup = NULL, *pick = NULL;
2392
struct mptcp_subflow_context *subflow;
2393
int min_stale_count = INT_MAX;
2394
2395
mptcp_for_each_subflow(msk, subflow) {
2396
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2397
2398
if (!__mptcp_subflow_active(subflow))
2399
continue;
2400
2401
/* still data outstanding at TCP level? skip this */
2402
if (!tcp_rtx_and_write_queues_empty(ssk)) {
2403
mptcp_pm_subflow_chk_stale(msk, ssk);
2404
min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2405
continue;
2406
}
2407
2408
if (subflow->backup || subflow->request_bkup) {
2409
if (!backup)
2410
backup = ssk;
2411
continue;
2412
}
2413
2414
if (!pick)
2415
pick = ssk;
2416
}
2417
2418
if (pick)
2419
return pick;
2420
2421
/* use backup only if there are no progresses anywhere */
2422
return min_stale_count > 1 ? backup : NULL;
2423
}
2424
2425
bool __mptcp_retransmit_pending_data(struct sock *sk)
2426
{
2427
struct mptcp_data_frag *cur, *rtx_head;
2428
struct mptcp_sock *msk = mptcp_sk(sk);
2429
2430
if (__mptcp_check_fallback(msk))
2431
return false;
2432
2433
/* the closing socket has some data untransmitted and/or unacked:
2434
* some data in the mptcp rtx queue has not really xmitted yet.
2435
* keep it simple and re-inject the whole mptcp level rtx queue
2436
*/
2437
mptcp_data_lock(sk);
2438
__mptcp_clean_una_wakeup(sk);
2439
rtx_head = mptcp_rtx_head(sk);
2440
if (!rtx_head) {
2441
mptcp_data_unlock(sk);
2442
return false;
2443
}
2444
2445
msk->recovery_snd_nxt = msk->snd_nxt;
2446
msk->recovery = true;
2447
mptcp_data_unlock(sk);
2448
2449
msk->first_pending = rtx_head;
2450
msk->snd_burst = 0;
2451
2452
/* be sure to clear the "sent status" on all re-injected fragments */
2453
list_for_each_entry(cur, &msk->rtx_queue, list) {
2454
if (!cur->already_sent)
2455
break;
2456
cur->already_sent = 0;
2457
}
2458
2459
return true;
2460
}
2461
2462
/* flags for __mptcp_close_ssk() */
2463
#define MPTCP_CF_PUSH BIT(1)
2464
2465
/* be sure to send a reset only if the caller asked for it, also
2466
* clean completely the subflow status when the subflow reaches
2467
* TCP_CLOSE state
2468
*/
2469
static void __mptcp_subflow_disconnect(struct sock *ssk,
2470
struct mptcp_subflow_context *subflow,
2471
bool fastclosing)
2472
{
2473
if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2474
fastclosing) {
2475
/* The MPTCP code never wait on the subflow sockets, TCP-level
2476
* disconnect should never fail
2477
*/
2478
WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2479
mptcp_subflow_ctx_reset(subflow);
2480
} else {
2481
tcp_shutdown(ssk, SEND_SHUTDOWN);
2482
}
2483
}
2484
2485
/* subflow sockets can be either outgoing (connect) or incoming
2486
* (accept).
2487
*
2488
* Outgoing subflows use in-kernel sockets.
2489
* Incoming subflows do not have their own 'struct socket' allocated,
2490
* so we need to use tcp_close() after detaching them from the mptcp
2491
* parent socket.
2492
*/
2493
static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2494
struct mptcp_subflow_context *subflow,
2495
unsigned int flags)
2496
{
2497
struct mptcp_sock *msk = mptcp_sk(sk);
2498
bool dispose_it, need_push = false;
2499
int fwd_remaining;
2500
2501
/* Do not pass RX data to the msk, even if the subflow socket is not
2502
* going to be freed (i.e. even for the first subflow on graceful
2503
* subflow close.
2504
*/
2505
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2506
subflow->closing = 1;
2507
2508
/* Borrow the fwd allocated page left-over; fwd memory for the subflow
2509
* could be negative at this point, but will be reach zero soon - when
2510
* the data allocated using such fragment will be freed.
2511
*/
2512
if (subflow->lent_mem_frag) {
2513
fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag;
2514
sk_forward_alloc_add(sk, fwd_remaining);
2515
sk_forward_alloc_add(ssk, -fwd_remaining);
2516
subflow->lent_mem_frag = 0;
2517
}
2518
2519
/* If the first subflow moved to a close state before accept, e.g. due
2520
* to an incoming reset or listener shutdown, the subflow socket is
2521
* already deleted by inet_child_forget() and the mptcp socket can't
2522
* survive too.
2523
*/
2524
if (msk->in_accept_queue && msk->first == ssk &&
2525
(sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2526
/* ensure later check in mptcp_worker() will dispose the msk */
2527
sock_set_flag(sk, SOCK_DEAD);
2528
mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2529
mptcp_subflow_drop_ctx(ssk);
2530
goto out_release;
2531
}
2532
2533
dispose_it = msk->free_first || ssk != msk->first;
2534
if (dispose_it)
2535
list_del(&subflow->node);
2536
2537
if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE)
2538
tcp_set_state(ssk, TCP_CLOSE);
2539
2540
need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2541
if (!dispose_it) {
2542
__mptcp_subflow_disconnect(ssk, subflow, msk->fastclosing);
2543
release_sock(ssk);
2544
2545
goto out;
2546
}
2547
2548
subflow->disposable = 1;
2549
2550
/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2551
* the ssk has been already destroyed, we just need to release the
2552
* reference owned by msk;
2553
*/
2554
if (!inet_csk(ssk)->icsk_ulp_ops) {
2555
WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2556
kfree_rcu(subflow, rcu);
2557
} else {
2558
/* otherwise tcp will dispose of the ssk and subflow ctx */
2559
__tcp_close(ssk, 0);
2560
2561
/* close acquired an extra ref */
2562
__sock_put(ssk);
2563
}
2564
2565
out_release:
2566
__mptcp_subflow_error_report(sk, ssk);
2567
release_sock(ssk);
2568
2569
sock_put(ssk);
2570
2571
if (ssk == msk->first)
2572
WRITE_ONCE(msk->first, NULL);
2573
2574
out:
2575
__mptcp_sync_sndbuf(sk);
2576
if (need_push)
2577
__mptcp_push_pending(sk, 0);
2578
2579
/* Catch every 'all subflows closed' scenario, including peers silently
2580
* closing them, e.g. due to timeout.
2581
* For established sockets, allow an additional timeout before closing,
2582
* as the protocol can still create more subflows.
2583
*/
2584
if (list_is_singular(&msk->conn_list) && msk->first &&
2585
inet_sk_state_load(msk->first) == TCP_CLOSE) {
2586
if (sk->sk_state != TCP_ESTABLISHED ||
2587
msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2588
mptcp_set_state(sk, TCP_CLOSE);
2589
mptcp_close_wake_up(sk);
2590
} else {
2591
mptcp_start_tout_timer(sk);
2592
}
2593
}
2594
}
2595
2596
void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2597
struct mptcp_subflow_context *subflow)
2598
{
2599
struct mptcp_sock *msk = mptcp_sk(sk);
2600
struct sk_buff *skb;
2601
2602
/* The first subflow can already be closed or disconnected */
2603
if (subflow->close_event_done || READ_ONCE(subflow->local_id) < 0)
2604
return;
2605
2606
subflow->close_event_done = true;
2607
2608
if (sk->sk_state == TCP_ESTABLISHED)
2609
mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2610
2611
/* Remove any reference from the backlog to this ssk; backlog skbs consume
2612
* space in the msk receive queue, no need to touch sk->sk_rmem_alloc
2613
*/
2614
list_for_each_entry(skb, &msk->backlog_list, list) {
2615
if (skb->sk != ssk)
2616
continue;
2617
2618
atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc);
2619
skb->sk = NULL;
2620
}
2621
2622
/* subflow aborted before reaching the fully_established status
2623
* attempt the creation of the next subflow
2624
*/
2625
mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2626
2627
__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2628
}
2629
2630
static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2631
{
2632
return 0;
2633
}
2634
2635
static void __mptcp_close_subflow(struct sock *sk)
2636
{
2637
struct mptcp_subflow_context *subflow, *tmp;
2638
struct mptcp_sock *msk = mptcp_sk(sk);
2639
2640
might_sleep();
2641
2642
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2643
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2644
int ssk_state = inet_sk_state_load(ssk);
2645
2646
if (ssk_state != TCP_CLOSE &&
2647
(ssk_state != TCP_CLOSE_WAIT ||
2648
inet_sk_state_load(sk) != TCP_ESTABLISHED ||
2649
__mptcp_check_fallback(msk)))
2650
continue;
2651
2652
/* 'subflow_data_ready' will re-sched once rx queue is empty */
2653
if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2654
continue;
2655
2656
mptcp_close_ssk(sk, ssk, subflow);
2657
}
2658
2659
}
2660
2661
static bool mptcp_close_tout_expired(const struct sock *sk)
2662
{
2663
if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2664
sk->sk_state == TCP_CLOSE)
2665
return false;
2666
2667
return time_after32(tcp_jiffies32,
2668
inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2669
}
2670
2671
static void mptcp_check_fastclose(struct mptcp_sock *msk)
2672
{
2673
struct mptcp_subflow_context *subflow, *tmp;
2674
struct sock *sk = (struct sock *)msk;
2675
2676
if (likely(!READ_ONCE(msk->rcv_fastclose)))
2677
return;
2678
2679
mptcp_token_destroy(msk);
2680
2681
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2682
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2683
bool slow;
2684
2685
slow = lock_sock_fast(tcp_sk);
2686
if (tcp_sk->sk_state != TCP_CLOSE) {
2687
mptcp_send_active_reset_reason(tcp_sk);
2688
tcp_set_state(tcp_sk, TCP_CLOSE);
2689
}
2690
unlock_sock_fast(tcp_sk, slow);
2691
}
2692
2693
/* Mirror the tcp_reset() error propagation */
2694
switch (sk->sk_state) {
2695
case TCP_SYN_SENT:
2696
WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2697
break;
2698
case TCP_CLOSE_WAIT:
2699
WRITE_ONCE(sk->sk_err, EPIPE);
2700
break;
2701
case TCP_CLOSE:
2702
return;
2703
default:
2704
WRITE_ONCE(sk->sk_err, ECONNRESET);
2705
}
2706
2707
mptcp_set_state(sk, TCP_CLOSE);
2708
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2709
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2710
set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2711
2712
/* the calling mptcp_worker will properly destroy the socket */
2713
if (sock_flag(sk, SOCK_DEAD))
2714
return;
2715
2716
sk->sk_state_change(sk);
2717
sk_error_report(sk);
2718
}
2719
2720
static void __mptcp_retrans(struct sock *sk)
2721
{
2722
struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2723
struct mptcp_sock *msk = mptcp_sk(sk);
2724
struct mptcp_subflow_context *subflow;
2725
struct mptcp_data_frag *dfrag;
2726
struct sock *ssk;
2727
int ret, err;
2728
u16 len = 0;
2729
2730
mptcp_clean_una_wakeup(sk);
2731
2732
/* first check ssk: need to kick "stale" logic */
2733
err = mptcp_sched_get_retrans(msk);
2734
dfrag = mptcp_rtx_head(sk);
2735
if (!dfrag) {
2736
if (mptcp_data_fin_enabled(msk)) {
2737
struct inet_connection_sock *icsk = inet_csk(sk);
2738
2739
WRITE_ONCE(icsk->icsk_retransmits,
2740
icsk->icsk_retransmits + 1);
2741
mptcp_set_datafin_timeout(sk);
2742
mptcp_send_ack(msk);
2743
2744
goto reset_timer;
2745
}
2746
2747
if (!mptcp_send_head(sk))
2748
goto clear_scheduled;
2749
2750
goto reset_timer;
2751
}
2752
2753
if (err)
2754
goto reset_timer;
2755
2756
mptcp_for_each_subflow(msk, subflow) {
2757
if (READ_ONCE(subflow->scheduled)) {
2758
u16 copied = 0;
2759
2760
mptcp_subflow_set_scheduled(subflow, false);
2761
2762
ssk = mptcp_subflow_tcp_sock(subflow);
2763
2764
lock_sock(ssk);
2765
2766
/* limit retransmission to the bytes already sent on some subflows */
2767
info.sent = 0;
2768
info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2769
dfrag->already_sent;
2770
2771
/*
2772
* make the whole retrans decision, xmit, disallow
2773
* fallback atomic, note that we can't retrans even
2774
* when an infinite fallback is in progress, i.e. new
2775
* subflows are disallowed.
2776
*/
2777
spin_lock_bh(&msk->fallback_lock);
2778
if (__mptcp_check_fallback(msk) ||
2779
!msk->allow_subflows) {
2780
spin_unlock_bh(&msk->fallback_lock);
2781
release_sock(ssk);
2782
goto clear_scheduled;
2783
}
2784
2785
while (info.sent < info.limit) {
2786
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2787
if (ret <= 0)
2788
break;
2789
2790
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2791
copied += ret;
2792
info.sent += ret;
2793
}
2794
if (copied) {
2795
len = max(copied, len);
2796
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2797
info.size_goal);
2798
msk->allow_infinite_fallback = false;
2799
}
2800
spin_unlock_bh(&msk->fallback_lock);
2801
2802
release_sock(ssk);
2803
}
2804
}
2805
2806
msk->bytes_retrans += len;
2807
dfrag->already_sent = max(dfrag->already_sent, len);
2808
2809
reset_timer:
2810
mptcp_check_and_set_pending(sk);
2811
2812
if (!mptcp_rtx_timer_pending(sk))
2813
mptcp_reset_rtx_timer(sk);
2814
2815
clear_scheduled:
2816
/* If no rtx data was available or in case of fallback, there
2817
* could be left-over scheduled subflows; clear them all
2818
* or later xmit could use bad ones
2819
*/
2820
mptcp_for_each_subflow(msk, subflow)
2821
if (READ_ONCE(subflow->scheduled))
2822
mptcp_subflow_set_scheduled(subflow, false);
2823
}
2824
2825
/* schedule the timeout timer for the relevant event: either close timeout
2826
* or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2827
*/
2828
void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2829
{
2830
struct sock *sk = (struct sock *)msk;
2831
unsigned long timeout, close_timeout;
2832
2833
if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2834
return;
2835
2836
close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2837
tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2838
2839
/* the close timeout takes precedence on the fail one, and here at least one of
2840
* them is active
2841
*/
2842
timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2843
2844
sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout);
2845
}
2846
2847
static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2848
{
2849
struct sock *ssk = msk->first;
2850
bool slow;
2851
2852
if (!ssk)
2853
return;
2854
2855
pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2856
2857
slow = lock_sock_fast(ssk);
2858
mptcp_subflow_reset(ssk);
2859
WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2860
unlock_sock_fast(ssk, slow);
2861
}
2862
2863
static void mptcp_backlog_purge(struct sock *sk)
2864
{
2865
struct mptcp_sock *msk = mptcp_sk(sk);
2866
struct sk_buff *tmp, *skb;
2867
LIST_HEAD(backlog);
2868
2869
mptcp_data_lock(sk);
2870
list_splice_init(&msk->backlog_list, &backlog);
2871
msk->backlog_len = 0;
2872
mptcp_data_unlock(sk);
2873
2874
list_for_each_entry_safe(skb, tmp, &backlog, list) {
2875
mptcp_borrow_fwdmem(sk, skb);
2876
kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
2877
}
2878
sk_mem_reclaim(sk);
2879
}
2880
2881
static void mptcp_do_fastclose(struct sock *sk)
2882
{
2883
struct mptcp_subflow_context *subflow, *tmp;
2884
struct mptcp_sock *msk = mptcp_sk(sk);
2885
2886
mptcp_set_state(sk, TCP_CLOSE);
2887
mptcp_backlog_purge(sk);
2888
msk->fastclosing = 1;
2889
2890
/* Explicitly send the fastclose reset as need */
2891
if (__mptcp_check_fallback(msk))
2892
return;
2893
2894
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2895
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2896
2897
lock_sock(ssk);
2898
2899
/* Some subflow socket states don't allow/need a reset.*/
2900
if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
2901
goto unlock;
2902
2903
subflow->send_fastclose = 1;
2904
2905
/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2906
* issue in __tcp_select_window(), see tcp_disconnect().
2907
*/
2908
inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS;
2909
2910
tcp_send_active_reset(ssk, ssk->sk_allocation,
2911
SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2912
unlock:
2913
release_sock(ssk);
2914
}
2915
}
2916
2917
static void mptcp_worker(struct work_struct *work)
2918
{
2919
struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2920
struct sock *sk = (struct sock *)msk;
2921
unsigned long fail_tout;
2922
int state;
2923
2924
lock_sock(sk);
2925
state = sk->sk_state;
2926
if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2927
goto unlock;
2928
2929
mptcp_check_fastclose(msk);
2930
2931
mptcp_pm_worker(msk);
2932
2933
mptcp_check_send_data_fin(sk);
2934
mptcp_check_data_fin_ack(sk);
2935
mptcp_check_data_fin(sk);
2936
2937
if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2938
__mptcp_close_subflow(sk);
2939
2940
if (mptcp_close_tout_expired(sk)) {
2941
struct mptcp_subflow_context *subflow, *tmp;
2942
2943
mptcp_do_fastclose(sk);
2944
mptcp_for_each_subflow_safe(msk, subflow, tmp)
2945
__mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0);
2946
mptcp_close_wake_up(sk);
2947
}
2948
2949
if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2950
__mptcp_destroy_sock(sk);
2951
goto unlock;
2952
}
2953
2954
if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2955
__mptcp_retrans(sk);
2956
2957
fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2958
if (fail_tout && time_after(jiffies, fail_tout))
2959
mptcp_mp_fail_no_response(msk);
2960
2961
unlock:
2962
release_sock(sk);
2963
sock_put(sk);
2964
}
2965
2966
static void __mptcp_init_sock(struct sock *sk)
2967
{
2968
struct mptcp_sock *msk = mptcp_sk(sk);
2969
2970
INIT_LIST_HEAD(&msk->conn_list);
2971
INIT_LIST_HEAD(&msk->join_list);
2972
INIT_LIST_HEAD(&msk->rtx_queue);
2973
INIT_LIST_HEAD(&msk->backlog_list);
2974
INIT_WORK(&msk->work, mptcp_worker);
2975
msk->out_of_order_queue = RB_ROOT;
2976
msk->first_pending = NULL;
2977
msk->timer_ival = TCP_RTO_MIN;
2978
msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2979
msk->backlog_len = 0;
2980
2981
WRITE_ONCE(msk->first, NULL);
2982
inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2983
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2984
msk->allow_infinite_fallback = true;
2985
msk->allow_subflows = true;
2986
msk->recovery = false;
2987
msk->subflow_id = 1;
2988
msk->last_data_sent = tcp_jiffies32;
2989
msk->last_data_recv = tcp_jiffies32;
2990
msk->last_ack_recv = tcp_jiffies32;
2991
2992
mptcp_pm_data_init(msk);
2993
spin_lock_init(&msk->fallback_lock);
2994
2995
/* re-use the csk retrans timer for MPTCP-level retrans */
2996
timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0);
2997
timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0);
2998
}
2999
3000
static void mptcp_ca_reset(struct sock *sk)
3001
{
3002
struct inet_connection_sock *icsk = inet_csk(sk);
3003
3004
tcp_assign_congestion_control(sk);
3005
strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
3006
sizeof(mptcp_sk(sk)->ca_name));
3007
3008
/* no need to keep a reference to the ops, the name will suffice */
3009
tcp_cleanup_congestion_control(sk);
3010
icsk->icsk_ca_ops = NULL;
3011
}
3012
3013
static int mptcp_init_sock(struct sock *sk)
3014
{
3015
struct net *net = sock_net(sk);
3016
int ret;
3017
3018
__mptcp_init_sock(sk);
3019
3020
if (!mptcp_is_enabled(net))
3021
return -ENOPROTOOPT;
3022
3023
if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
3024
return -ENOMEM;
3025
3026
rcu_read_lock();
3027
ret = mptcp_init_sched(mptcp_sk(sk),
3028
mptcp_sched_find(mptcp_get_scheduler(net)));
3029
rcu_read_unlock();
3030
if (ret)
3031
return ret;
3032
3033
set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
3034
3035
/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
3036
* propagate the correct value
3037
*/
3038
mptcp_ca_reset(sk);
3039
3040
sk_sockets_allocated_inc(sk);
3041
sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
3042
sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
3043
3044
return 0;
3045
}
3046
3047
static void __mptcp_clear_xmit(struct sock *sk)
3048
{
3049
struct mptcp_sock *msk = mptcp_sk(sk);
3050
struct mptcp_data_frag *dtmp, *dfrag;
3051
3052
msk->first_pending = NULL;
3053
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
3054
dfrag_clear(sk, dfrag);
3055
}
3056
3057
void mptcp_cancel_work(struct sock *sk)
3058
{
3059
struct mptcp_sock *msk = mptcp_sk(sk);
3060
3061
if (cancel_work_sync(&msk->work))
3062
__sock_put(sk);
3063
}
3064
3065
void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
3066
{
3067
lock_sock(ssk);
3068
3069
switch (ssk->sk_state) {
3070
case TCP_LISTEN:
3071
if (!(how & RCV_SHUTDOWN))
3072
break;
3073
fallthrough;
3074
case TCP_SYN_SENT:
3075
WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
3076
break;
3077
default:
3078
if (__mptcp_check_fallback(mptcp_sk(sk))) {
3079
pr_debug("Fallback\n");
3080
ssk->sk_shutdown |= how;
3081
tcp_shutdown(ssk, how);
3082
3083
/* simulate the data_fin ack reception to let the state
3084
* machine move forward
3085
*/
3086
WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
3087
mptcp_schedule_work(sk);
3088
} else {
3089
pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
3090
tcp_send_ack(ssk);
3091
if (!mptcp_rtx_timer_pending(sk))
3092
mptcp_reset_rtx_timer(sk);
3093
}
3094
break;
3095
}
3096
3097
release_sock(ssk);
3098
}
3099
3100
void mptcp_set_state(struct sock *sk, int state)
3101
{
3102
int oldstate = sk->sk_state;
3103
3104
switch (state) {
3105
case TCP_ESTABLISHED:
3106
if (oldstate != TCP_ESTABLISHED)
3107
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3108
break;
3109
case TCP_CLOSE_WAIT:
3110
/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
3111
* MPTCP "accepted" sockets will be created later on. So no
3112
* transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
3113
*/
3114
break;
3115
default:
3116
if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3117
MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3118
}
3119
3120
inet_sk_state_store(sk, state);
3121
}
3122
3123
static const unsigned char new_state[16] = {
3124
/* current state: new state: action: */
3125
[0 /* (Invalid) */] = TCP_CLOSE,
3126
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3127
[TCP_SYN_SENT] = TCP_CLOSE,
3128
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3129
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
3130
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
3131
[TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
3132
[TCP_CLOSE] = TCP_CLOSE,
3133
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
3134
[TCP_LAST_ACK] = TCP_LAST_ACK,
3135
[TCP_LISTEN] = TCP_CLOSE,
3136
[TCP_CLOSING] = TCP_CLOSING,
3137
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
3138
};
3139
3140
static int mptcp_close_state(struct sock *sk)
3141
{
3142
int next = (int)new_state[sk->sk_state];
3143
int ns = next & TCP_STATE_MASK;
3144
3145
mptcp_set_state(sk, ns);
3146
3147
return next & TCP_ACTION_FIN;
3148
}
3149
3150
static void mptcp_check_send_data_fin(struct sock *sk)
3151
{
3152
struct mptcp_subflow_context *subflow;
3153
struct mptcp_sock *msk = mptcp_sk(sk);
3154
3155
pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3156
msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3157
msk->snd_nxt, msk->write_seq);
3158
3159
/* we still need to enqueue subflows or not really shutting down,
3160
* skip this
3161
*/
3162
if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3163
mptcp_send_head(sk))
3164
return;
3165
3166
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3167
3168
mptcp_for_each_subflow(msk, subflow) {
3169
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3170
3171
mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3172
}
3173
}
3174
3175
static void __mptcp_wr_shutdown(struct sock *sk)
3176
{
3177
struct mptcp_sock *msk = mptcp_sk(sk);
3178
3179
pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3180
msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3181
!!mptcp_send_head(sk));
3182
3183
/* will be ignored by fallback sockets */
3184
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3185
WRITE_ONCE(msk->snd_data_fin_enable, 1);
3186
3187
mptcp_check_send_data_fin(sk);
3188
}
3189
3190
static void __mptcp_destroy_sock(struct sock *sk)
3191
{
3192
struct mptcp_sock *msk = mptcp_sk(sk);
3193
3194
pr_debug("msk=%p\n", msk);
3195
3196
might_sleep();
3197
3198
mptcp_stop_rtx_timer(sk);
3199
sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer);
3200
msk->pm.status = 0;
3201
mptcp_release_sched(msk);
3202
3203
sk->sk_prot->destroy(sk);
3204
3205
sk_stream_kill_queues(sk);
3206
xfrm_sk_free_policy(sk);
3207
3208
sock_put(sk);
3209
}
3210
3211
void __mptcp_unaccepted_force_close(struct sock *sk)
3212
{
3213
sock_set_flag(sk, SOCK_DEAD);
3214
mptcp_do_fastclose(sk);
3215
__mptcp_destroy_sock(sk);
3216
}
3217
3218
static __poll_t mptcp_check_readable(struct sock *sk)
3219
{
3220
return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3221
}
3222
3223
static void mptcp_check_listen_stop(struct sock *sk)
3224
{
3225
struct sock *ssk;
3226
3227
if (inet_sk_state_load(sk) != TCP_LISTEN)
3228
return;
3229
3230
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3231
ssk = mptcp_sk(sk)->first;
3232
if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3233
return;
3234
3235
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3236
tcp_set_state(ssk, TCP_CLOSE);
3237
mptcp_subflow_queue_clean(sk, ssk);
3238
inet_csk_listen_stop(ssk);
3239
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3240
release_sock(ssk);
3241
}
3242
3243
bool __mptcp_close(struct sock *sk, long timeout)
3244
{
3245
struct mptcp_subflow_context *subflow;
3246
struct mptcp_sock *msk = mptcp_sk(sk);
3247
bool do_cancel_work = false;
3248
int subflows_alive = 0;
3249
3250
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3251
3252
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3253
mptcp_check_listen_stop(sk);
3254
mptcp_set_state(sk, TCP_CLOSE);
3255
goto cleanup;
3256
}
3257
3258
if (mptcp_data_avail(msk) || timeout < 0) {
3259
/* If the msk has read data, or the caller explicitly ask it,
3260
* do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3261
*/
3262
mptcp_do_fastclose(sk);
3263
timeout = 0;
3264
} else if (mptcp_close_state(sk)) {
3265
__mptcp_wr_shutdown(sk);
3266
}
3267
3268
sk_stream_wait_close(sk, timeout);
3269
3270
cleanup:
3271
/* orphan all the subflows */
3272
mptcp_for_each_subflow(msk, subflow) {
3273
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3274
bool slow = lock_sock_fast_nested(ssk);
3275
3276
subflows_alive += ssk->sk_state != TCP_CLOSE;
3277
3278
/* since the close timeout takes precedence on the fail one,
3279
* cancel the latter
3280
*/
3281
if (ssk == msk->first)
3282
subflow->fail_tout = 0;
3283
3284
/* detach from the parent socket, but allow data_ready to
3285
* push incoming data into the mptcp stack, to properly ack it
3286
*/
3287
ssk->sk_socket = NULL;
3288
ssk->sk_wq = NULL;
3289
unlock_sock_fast(ssk, slow);
3290
}
3291
sock_orphan(sk);
3292
3293
/* all the subflows are closed, only timeout can change the msk
3294
* state, let's not keep resources busy for no reasons
3295
*/
3296
if (subflows_alive == 0)
3297
mptcp_set_state(sk, TCP_CLOSE);
3298
3299
sock_hold(sk);
3300
pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3301
mptcp_pm_connection_closed(msk);
3302
3303
if (sk->sk_state == TCP_CLOSE) {
3304
__mptcp_destroy_sock(sk);
3305
do_cancel_work = true;
3306
} else {
3307
mptcp_start_tout_timer(sk);
3308
}
3309
3310
return do_cancel_work;
3311
}
3312
3313
static void mptcp_close(struct sock *sk, long timeout)
3314
{
3315
bool do_cancel_work;
3316
3317
lock_sock(sk);
3318
3319
do_cancel_work = __mptcp_close(sk, timeout);
3320
release_sock(sk);
3321
if (do_cancel_work)
3322
mptcp_cancel_work(sk);
3323
3324
sock_put(sk);
3325
}
3326
3327
static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3328
{
3329
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3330
const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3331
struct ipv6_pinfo *msk6 = inet6_sk(msk);
3332
3333
msk->sk_v6_daddr = ssk->sk_v6_daddr;
3334
msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3335
3336
if (msk6 && ssk6) {
3337
msk6->saddr = ssk6->saddr;
3338
msk6->flow_label = ssk6->flow_label;
3339
}
3340
#endif
3341
3342
inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3343
inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3344
inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3345
inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3346
inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3347
inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3348
}
3349
3350
static void mptcp_destroy_common(struct mptcp_sock *msk)
3351
{
3352
struct mptcp_subflow_context *subflow, *tmp;
3353
struct sock *sk = (struct sock *)msk;
3354
3355
__mptcp_clear_xmit(sk);
3356
mptcp_backlog_purge(sk);
3357
3358
/* join list will be eventually flushed (with rst) at sock lock release time */
3359
mptcp_for_each_subflow_safe(msk, subflow, tmp)
3360
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0);
3361
3362
__skb_queue_purge(&sk->sk_receive_queue);
3363
skb_rbtree_purge(&msk->out_of_order_queue);
3364
3365
/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3366
* inet_sock_destruct() will dispose it
3367
*/
3368
mptcp_token_destroy(msk);
3369
mptcp_pm_destroy(msk);
3370
}
3371
3372
static int mptcp_disconnect(struct sock *sk, int flags)
3373
{
3374
struct mptcp_sock *msk = mptcp_sk(sk);
3375
3376
/* We are on the fastopen error path. We can't call straight into the
3377
* subflows cleanup code due to lock nesting (we are already under
3378
* msk->firstsocket lock).
3379
*/
3380
if (msk->fastopening)
3381
return -EBUSY;
3382
3383
mptcp_check_listen_stop(sk);
3384
mptcp_set_state(sk, TCP_CLOSE);
3385
3386
mptcp_stop_rtx_timer(sk);
3387
mptcp_stop_tout_timer(sk);
3388
3389
mptcp_pm_connection_closed(msk);
3390
3391
/* msk->subflow is still intact, the following will not free the first
3392
* subflow
3393
*/
3394
mptcp_do_fastclose(sk);
3395
mptcp_destroy_common(msk);
3396
3397
/* The first subflow is already in TCP_CLOSE status, the following
3398
* can't overlap with a fallback anymore
3399
*/
3400
spin_lock_bh(&msk->fallback_lock);
3401
msk->allow_subflows = true;
3402
msk->allow_infinite_fallback = true;
3403
WRITE_ONCE(msk->flags, 0);
3404
spin_unlock_bh(&msk->fallback_lock);
3405
3406
msk->cb_flags = 0;
3407
msk->recovery = false;
3408
WRITE_ONCE(msk->can_ack, false);
3409
WRITE_ONCE(msk->fully_established, false);
3410
WRITE_ONCE(msk->rcv_data_fin, false);
3411
WRITE_ONCE(msk->snd_data_fin_enable, false);
3412
WRITE_ONCE(msk->rcv_fastclose, false);
3413
WRITE_ONCE(msk->use_64bit_ack, false);
3414
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3415
mptcp_pm_data_reset(msk);
3416
mptcp_ca_reset(sk);
3417
msk->bytes_consumed = 0;
3418
msk->bytes_acked = 0;
3419
msk->bytes_received = 0;
3420
msk->bytes_sent = 0;
3421
msk->bytes_retrans = 0;
3422
msk->rcvspace_init = 0;
3423
msk->fastclosing = 0;
3424
3425
/* for fallback's sake */
3426
WRITE_ONCE(msk->ack_seq, 0);
3427
3428
WRITE_ONCE(sk->sk_shutdown, 0);
3429
sk_error_report(sk);
3430
return 0;
3431
}
3432
3433
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3434
static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3435
{
3436
struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3437
3438
return &msk6->np;
3439
}
3440
3441
static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3442
{
3443
const struct ipv6_pinfo *np = inet6_sk(sk);
3444
struct ipv6_txoptions *opt;
3445
struct ipv6_pinfo *newnp;
3446
3447
newnp = inet6_sk(newsk);
3448
3449
rcu_read_lock();
3450
opt = rcu_dereference(np->opt);
3451
if (opt) {
3452
opt = ipv6_dup_options(newsk, opt);
3453
if (!opt)
3454
net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3455
}
3456
RCU_INIT_POINTER(newnp->opt, opt);
3457
rcu_read_unlock();
3458
}
3459
#endif
3460
3461
static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3462
{
3463
struct ip_options_rcu *inet_opt, *newopt = NULL;
3464
const struct inet_sock *inet = inet_sk(sk);
3465
struct inet_sock *newinet;
3466
3467
newinet = inet_sk(newsk);
3468
3469
rcu_read_lock();
3470
inet_opt = rcu_dereference(inet->inet_opt);
3471
if (inet_opt) {
3472
newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3473
inet_opt->opt.optlen, GFP_ATOMIC);
3474
if (!newopt)
3475
net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3476
}
3477
RCU_INIT_POINTER(newinet->inet_opt, newopt);
3478
rcu_read_unlock();
3479
}
3480
3481
struct sock *mptcp_sk_clone_init(const struct sock *sk,
3482
const struct mptcp_options_received *mp_opt,
3483
struct sock *ssk,
3484
struct request_sock *req)
3485
{
3486
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3487
struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3488
struct mptcp_subflow_context *subflow;
3489
struct mptcp_sock *msk;
3490
3491
if (!nsk)
3492
return NULL;
3493
3494
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3495
if (nsk->sk_family == AF_INET6)
3496
inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3497
#endif
3498
3499
__mptcp_init_sock(nsk);
3500
3501
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3502
if (nsk->sk_family == AF_INET6)
3503
mptcp_copy_ip6_options(nsk, sk);
3504
else
3505
#endif
3506
mptcp_copy_ip_options(nsk, sk);
3507
3508
msk = mptcp_sk(nsk);
3509
WRITE_ONCE(msk->local_key, subflow_req->local_key);
3510
WRITE_ONCE(msk->token, subflow_req->token);
3511
msk->in_accept_queue = 1;
3512
WRITE_ONCE(msk->fully_established, false);
3513
if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3514
WRITE_ONCE(msk->csum_enabled, true);
3515
3516
WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3517
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3518
WRITE_ONCE(msk->snd_una, msk->write_seq);
3519
WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3520
msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3521
mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3522
3523
/* passive msk is created after the first/MPC subflow */
3524
msk->subflow_id = 2;
3525
3526
sock_reset_flag(nsk, SOCK_RCU_FREE);
3527
security_inet_csk_clone(nsk, req);
3528
3529
/* this can't race with mptcp_close(), as the msk is
3530
* not yet exposted to user-space
3531
*/
3532
mptcp_set_state(nsk, TCP_ESTABLISHED);
3533
3534
/* The msk maintain a ref to each subflow in the connections list */
3535
WRITE_ONCE(msk->first, ssk);
3536
subflow = mptcp_subflow_ctx(ssk);
3537
list_add(&subflow->node, &msk->conn_list);
3538
sock_hold(ssk);
3539
3540
/* new mpc subflow takes ownership of the newly
3541
* created mptcp socket
3542
*/
3543
mptcp_token_accept(subflow_req, msk);
3544
3545
/* set msk addresses early to ensure mptcp_pm_get_local_id()
3546
* uses the correct data
3547
*/
3548
mptcp_copy_inaddrs(nsk, ssk);
3549
__mptcp_propagate_sndbuf(nsk, ssk);
3550
3551
mptcp_rcv_space_init(msk, ssk);
3552
3553
if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3554
__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3555
bh_unlock_sock(nsk);
3556
3557
/* note: the newly allocated socket refcount is 2 now */
3558
return nsk;
3559
}
3560
3561
void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3562
{
3563
const struct tcp_sock *tp = tcp_sk(ssk);
3564
3565
msk->rcvspace_init = 1;
3566
msk->rcvq_space.copied = 0;
3567
msk->rcvq_space.rtt_us = 0;
3568
3569
msk->rcvq_space.time = tp->tcp_mstamp;
3570
3571
/* initial rcv_space offering made to peer */
3572
msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3573
TCP_INIT_CWND * tp->advmss);
3574
if (msk->rcvq_space.space == 0)
3575
msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3576
}
3577
3578
static void mptcp_destroy(struct sock *sk)
3579
{
3580
struct mptcp_sock *msk = mptcp_sk(sk);
3581
3582
/* allow the following to close even the initial subflow */
3583
msk->free_first = 1;
3584
mptcp_destroy_common(msk);
3585
sk_sockets_allocated_dec(sk);
3586
}
3587
3588
void __mptcp_data_acked(struct sock *sk)
3589
{
3590
if (!sock_owned_by_user(sk))
3591
__mptcp_clean_una(sk);
3592
else
3593
__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3594
}
3595
3596
void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3597
{
3598
if (!sock_owned_by_user(sk))
3599
__mptcp_subflow_push_pending(sk, ssk, false);
3600
else
3601
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3602
}
3603
3604
#define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3605
BIT(MPTCP_RETRANSMIT) | \
3606
BIT(MPTCP_FLUSH_JOIN_LIST))
3607
3608
/* processes deferred events and flush wmem */
3609
static void mptcp_release_cb(struct sock *sk)
3610
__must_hold(&sk->sk_lock.slock)
3611
{
3612
struct mptcp_sock *msk = mptcp_sk(sk);
3613
3614
for (;;) {
3615
unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3616
struct list_head join_list, skbs;
3617
bool spool_bl;
3618
u32 moved;
3619
3620
spool_bl = mptcp_can_spool_backlog(sk, &skbs);
3621
if (!flags && !spool_bl)
3622
break;
3623
3624
INIT_LIST_HEAD(&join_list);
3625
list_splice_init(&msk->join_list, &join_list);
3626
3627
/* the following actions acquire the subflow socket lock
3628
*
3629
* 1) can't be invoked in atomic scope
3630
* 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3631
* datapath acquires the msk socket spinlock while helding
3632
* the subflow socket lock
3633
*/
3634
msk->cb_flags &= ~flags;
3635
spin_unlock_bh(&sk->sk_lock.slock);
3636
3637
if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3638
__mptcp_flush_join_list(sk, &join_list);
3639
if (flags & BIT(MPTCP_PUSH_PENDING))
3640
__mptcp_push_pending(sk, 0);
3641
if (flags & BIT(MPTCP_RETRANSMIT))
3642
__mptcp_retrans(sk);
3643
if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) {
3644
/* notify ack seq update */
3645
mptcp_cleanup_rbuf(msk, 0);
3646
sk->sk_data_ready(sk);
3647
}
3648
3649
cond_resched();
3650
spin_lock_bh(&sk->sk_lock.slock);
3651
if (spool_bl)
3652
mptcp_backlog_spooled(sk, moved, &skbs);
3653
}
3654
3655
if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3656
__mptcp_clean_una_wakeup(sk);
3657
if (unlikely(msk->cb_flags)) {
3658
/* be sure to sync the msk state before taking actions
3659
* depending on sk_state (MPTCP_ERROR_REPORT)
3660
* On sk release avoid actions depending on the first subflow
3661
*/
3662
if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3663
__mptcp_sync_state(sk, msk->pending_state);
3664
if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3665
__mptcp_error_report(sk);
3666
if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3667
__mptcp_sync_sndbuf(sk);
3668
}
3669
}
3670
3671
/* MP_JOIN client subflow must wait for 4th ack before sending any data:
3672
* TCP can't schedule delack timer before the subflow is fully established.
3673
* MPTCP uses the delack timer to do 3rd ack retransmissions
3674
*/
3675
static void schedule_3rdack_retransmission(struct sock *ssk)
3676
{
3677
struct inet_connection_sock *icsk = inet_csk(ssk);
3678
struct tcp_sock *tp = tcp_sk(ssk);
3679
unsigned long timeout;
3680
3681
if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3682
return;
3683
3684
/* reschedule with a timeout above RTT, as we must look only for drop */
3685
if (tp->srtt_us)
3686
timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3687
else
3688
timeout = TCP_TIMEOUT_INIT;
3689
timeout += jiffies;
3690
3691
WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3692
smp_store_release(&icsk->icsk_ack.pending,
3693
icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3694
sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3695
}
3696
3697
void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3698
{
3699
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3700
struct sock *sk = subflow->conn;
3701
3702
if (status & BIT(MPTCP_DELEGATE_SEND)) {
3703
mptcp_data_lock(sk);
3704
if (!sock_owned_by_user(sk))
3705
__mptcp_subflow_push_pending(sk, ssk, true);
3706
else
3707
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3708
mptcp_data_unlock(sk);
3709
}
3710
if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3711
mptcp_data_lock(sk);
3712
if (!sock_owned_by_user(sk))
3713
__mptcp_sync_sndbuf(sk);
3714
else
3715
__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3716
mptcp_data_unlock(sk);
3717
}
3718
if (status & BIT(MPTCP_DELEGATE_ACK))
3719
schedule_3rdack_retransmission(ssk);
3720
}
3721
3722
static int mptcp_hash(struct sock *sk)
3723
{
3724
/* should never be called,
3725
* we hash the TCP subflows not the MPTCP socket
3726
*/
3727
WARN_ON_ONCE(1);
3728
return 0;
3729
}
3730
3731
static void mptcp_unhash(struct sock *sk)
3732
{
3733
/* called from sk_common_release(), but nothing to do here */
3734
}
3735
3736
static int mptcp_get_port(struct sock *sk, unsigned short snum)
3737
{
3738
struct mptcp_sock *msk = mptcp_sk(sk);
3739
3740
pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3741
if (WARN_ON_ONCE(!msk->first))
3742
return -EINVAL;
3743
3744
return inet_csk_get_port(msk->first, snum);
3745
}
3746
3747
void mptcp_finish_connect(struct sock *ssk)
3748
{
3749
struct mptcp_subflow_context *subflow;
3750
struct mptcp_sock *msk;
3751
struct sock *sk;
3752
3753
subflow = mptcp_subflow_ctx(ssk);
3754
sk = subflow->conn;
3755
msk = mptcp_sk(sk);
3756
3757
pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3758
3759
subflow->map_seq = subflow->iasn;
3760
subflow->map_subflow_seq = 1;
3761
3762
/* the socket is not connected yet, no msk/subflow ops can access/race
3763
* accessing the field below
3764
*/
3765
WRITE_ONCE(msk->local_key, subflow->local_key);
3766
3767
mptcp_pm_new_connection(msk, ssk, 0);
3768
}
3769
3770
void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3771
{
3772
write_lock_bh(&sk->sk_callback_lock);
3773
rcu_assign_pointer(sk->sk_wq, &parent->wq);
3774
sk_set_socket(sk, parent);
3775
write_unlock_bh(&sk->sk_callback_lock);
3776
}
3777
3778
/* Can be called without holding the msk socket lock; use the callback lock
3779
* to avoid {READ_,WRITE_}ONCE annotations on sk_socket.
3780
*/
3781
static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk)
3782
{
3783
struct socket *sock;
3784
3785
write_lock_bh(&sk->sk_callback_lock);
3786
sock = sk->sk_socket;
3787
write_unlock_bh(&sk->sk_callback_lock);
3788
if (sock) {
3789
mptcp_sock_graft(ssk, sock);
3790
__mptcp_inherit_cgrp_data(sk, ssk);
3791
__mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC);
3792
}
3793
}
3794
3795
bool mptcp_finish_join(struct sock *ssk)
3796
{
3797
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3798
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3799
struct sock *parent = (void *)msk;
3800
bool ret = true;
3801
3802
pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3803
3804
/* mptcp socket already closing? */
3805
if (!mptcp_is_fully_established(parent)) {
3806
subflow->reset_reason = MPTCP_RST_EMPTCP;
3807
return false;
3808
}
3809
3810
/* Active subflow, already present inside the conn_list; is grafted
3811
* either by __mptcp_subflow_connect() or accept.
3812
*/
3813
if (!list_empty(&subflow->node)) {
3814
spin_lock_bh(&msk->fallback_lock);
3815
if (!msk->allow_subflows) {
3816
spin_unlock_bh(&msk->fallback_lock);
3817
return false;
3818
}
3819
mptcp_subflow_joined(msk, ssk);
3820
spin_unlock_bh(&msk->fallback_lock);
3821
mptcp_propagate_sndbuf(parent, ssk);
3822
return true;
3823
}
3824
3825
if (!mptcp_pm_allow_new_subflow(msk)) {
3826
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3827
goto err_prohibited;
3828
}
3829
3830
/* If we can't acquire msk socket lock here, let the release callback
3831
* handle it
3832
*/
3833
mptcp_data_lock(parent);
3834
if (!sock_owned_by_user(parent)) {
3835
ret = __mptcp_finish_join(msk, ssk);
3836
if (ret) {
3837
sock_hold(ssk);
3838
list_add_tail(&subflow->node, &msk->conn_list);
3839
mptcp_sock_check_graft(parent, ssk);
3840
}
3841
} else {
3842
sock_hold(ssk);
3843
list_add_tail(&subflow->node, &msk->join_list);
3844
__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3845
3846
/* In case of later failures, __mptcp_flush_join_list() will
3847
* properly orphan the ssk via mptcp_close_ssk().
3848
*/
3849
mptcp_sock_check_graft(parent, ssk);
3850
}
3851
mptcp_data_unlock(parent);
3852
3853
if (!ret) {
3854
err_prohibited:
3855
subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3856
return false;
3857
}
3858
3859
return true;
3860
}
3861
3862
static void mptcp_shutdown(struct sock *sk, int how)
3863
{
3864
pr_debug("sk=%p, how=%d\n", sk, how);
3865
3866
if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3867
__mptcp_wr_shutdown(sk);
3868
}
3869
3870
static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3871
{
3872
const struct sock *sk = (void *)msk;
3873
u64 delta;
3874
3875
if (sk->sk_state == TCP_LISTEN)
3876
return -EINVAL;
3877
3878
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3879
return 0;
3880
3881
delta = msk->write_seq - v;
3882
if (__mptcp_check_fallback(msk) && msk->first) {
3883
struct tcp_sock *tp = tcp_sk(msk->first);
3884
3885
/* the first subflow is disconnected after close - see
3886
* __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3887
* so ignore that status, too.
3888
*/
3889
if (!((1 << msk->first->sk_state) &
3890
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3891
delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3892
}
3893
if (delta > INT_MAX)
3894
delta = INT_MAX;
3895
3896
return (int)delta;
3897
}
3898
3899
static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3900
{
3901
struct mptcp_sock *msk = mptcp_sk(sk);
3902
bool slow;
3903
3904
switch (cmd) {
3905
case SIOCINQ:
3906
if (sk->sk_state == TCP_LISTEN)
3907
return -EINVAL;
3908
3909
lock_sock(sk);
3910
if (mptcp_move_skbs(sk))
3911
mptcp_cleanup_rbuf(msk, 0);
3912
*karg = mptcp_inq_hint(sk);
3913
release_sock(sk);
3914
break;
3915
case SIOCOUTQ:
3916
slow = lock_sock_fast(sk);
3917
*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3918
unlock_sock_fast(sk, slow);
3919
break;
3920
case SIOCOUTQNSD:
3921
slow = lock_sock_fast(sk);
3922
*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3923
unlock_sock_fast(sk, slow);
3924
break;
3925
default:
3926
return -ENOIOCTLCMD;
3927
}
3928
3929
return 0;
3930
}
3931
3932
static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
3933
int addr_len)
3934
{
3935
struct mptcp_subflow_context *subflow;
3936
struct mptcp_sock *msk = mptcp_sk(sk);
3937
int err = -EINVAL;
3938
struct sock *ssk;
3939
3940
ssk = __mptcp_nmpc_sk(msk);
3941
if (IS_ERR(ssk))
3942
return PTR_ERR(ssk);
3943
3944
mptcp_set_state(sk, TCP_SYN_SENT);
3945
subflow = mptcp_subflow_ctx(ssk);
3946
#ifdef CONFIG_TCP_MD5SIG
3947
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3948
* TCP option space.
3949
*/
3950
if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3951
mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3952
#endif
3953
if (subflow->request_mptcp) {
3954
if (mptcp_active_should_disable(sk))
3955
mptcp_early_fallback(msk, subflow,
3956
MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3957
else if (mptcp_token_new_connect(ssk) < 0)
3958
mptcp_early_fallback(msk, subflow,
3959
MPTCP_MIB_TOKENFALLBACKINIT);
3960
}
3961
3962
WRITE_ONCE(msk->write_seq, subflow->idsn);
3963
WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3964
WRITE_ONCE(msk->snd_una, subflow->idsn);
3965
if (likely(!__mptcp_check_fallback(msk)))
3966
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3967
3968
/* if reaching here via the fastopen/sendmsg path, the caller already
3969
* acquired the subflow socket lock, too.
3970
*/
3971
if (!msk->fastopening)
3972
lock_sock(ssk);
3973
3974
/* the following mirrors closely a very small chunk of code from
3975
* __inet_stream_connect()
3976
*/
3977
if (ssk->sk_state != TCP_CLOSE)
3978
goto out;
3979
3980
if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3981
err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3982
if (err)
3983
goto out;
3984
}
3985
3986
err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3987
if (err < 0)
3988
goto out;
3989
3990
inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3991
3992
out:
3993
if (!msk->fastopening)
3994
release_sock(ssk);
3995
3996
/* on successful connect, the msk state will be moved to established by
3997
* subflow_finish_connect()
3998
*/
3999
if (unlikely(err)) {
4000
/* avoid leaving a dangling token in an unconnected socket */
4001
mptcp_token_destroy(msk);
4002
mptcp_set_state(sk, TCP_CLOSE);
4003
return err;
4004
}
4005
4006
mptcp_copy_inaddrs(sk, ssk);
4007
return 0;
4008
}
4009
4010
static struct proto mptcp_prot = {
4011
.name = "MPTCP",
4012
.owner = THIS_MODULE,
4013
.init = mptcp_init_sock,
4014
.connect = mptcp_connect,
4015
.disconnect = mptcp_disconnect,
4016
.close = mptcp_close,
4017
.setsockopt = mptcp_setsockopt,
4018
.getsockopt = mptcp_getsockopt,
4019
.shutdown = mptcp_shutdown,
4020
.destroy = mptcp_destroy,
4021
.sendmsg = mptcp_sendmsg,
4022
.ioctl = mptcp_ioctl,
4023
.recvmsg = mptcp_recvmsg,
4024
.release_cb = mptcp_release_cb,
4025
.hash = mptcp_hash,
4026
.unhash = mptcp_unhash,
4027
.get_port = mptcp_get_port,
4028
.stream_memory_free = mptcp_stream_memory_free,
4029
.sockets_allocated = &mptcp_sockets_allocated,
4030
4031
.memory_allocated = &net_aligned_data.tcp_memory_allocated,
4032
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
4033
4034
.memory_pressure = &tcp_memory_pressure,
4035
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
4036
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
4037
.sysctl_mem = sysctl_tcp_mem,
4038
.obj_size = sizeof(struct mptcp_sock),
4039
.slab_flags = SLAB_TYPESAFE_BY_RCU,
4040
.no_autobind = true,
4041
};
4042
4043
static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len)
4044
{
4045
struct mptcp_sock *msk = mptcp_sk(sock->sk);
4046
struct sock *ssk, *sk = sock->sk;
4047
int err = -EINVAL;
4048
4049
lock_sock(sk);
4050
ssk = __mptcp_nmpc_sk(msk);
4051
if (IS_ERR(ssk)) {
4052
err = PTR_ERR(ssk);
4053
goto unlock;
4054
}
4055
4056
if (sk->sk_family == AF_INET)
4057
err = inet_bind_sk(ssk, uaddr, addr_len);
4058
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
4059
else if (sk->sk_family == AF_INET6)
4060
err = inet6_bind_sk(ssk, uaddr, addr_len);
4061
#endif
4062
if (!err)
4063
mptcp_copy_inaddrs(sk, ssk);
4064
4065
unlock:
4066
release_sock(sk);
4067
return err;
4068
}
4069
4070
static int mptcp_listen(struct socket *sock, int backlog)
4071
{
4072
struct mptcp_sock *msk = mptcp_sk(sock->sk);
4073
struct sock *sk = sock->sk;
4074
struct sock *ssk;
4075
int err;
4076
4077
pr_debug("msk=%p\n", msk);
4078
4079
lock_sock(sk);
4080
4081
err = -EINVAL;
4082
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
4083
goto unlock;
4084
4085
ssk = __mptcp_nmpc_sk(msk);
4086
if (IS_ERR(ssk)) {
4087
err = PTR_ERR(ssk);
4088
goto unlock;
4089
}
4090
4091
mptcp_set_state(sk, TCP_LISTEN);
4092
sock_set_flag(sk, SOCK_RCU_FREE);
4093
4094
lock_sock(ssk);
4095
err = __inet_listen_sk(ssk, backlog);
4096
release_sock(ssk);
4097
mptcp_set_state(sk, inet_sk_state_load(ssk));
4098
4099
if (!err) {
4100
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
4101
mptcp_copy_inaddrs(sk, ssk);
4102
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
4103
}
4104
4105
unlock:
4106
release_sock(sk);
4107
return err;
4108
}
4109
4110
static void mptcp_graft_subflows(struct sock *sk)
4111
{
4112
struct mptcp_subflow_context *subflow;
4113
struct mptcp_sock *msk = mptcp_sk(sk);
4114
4115
if (mem_cgroup_sockets_enabled) {
4116
LIST_HEAD(join_list);
4117
4118
/* Subflows joining after __inet_accept() will get the
4119
* mem CG properly initialized at mptcp_finish_join() time,
4120
* but subflows pending in join_list need explicit
4121
* initialization before flushing `backlog_unaccounted`
4122
* or MPTCP can later unexpectedly observe unaccounted memory.
4123
*/
4124
mptcp_data_lock(sk);
4125
list_splice_init(&msk->join_list, &join_list);
4126
mptcp_data_unlock(sk);
4127
4128
__mptcp_flush_join_list(sk, &join_list);
4129
}
4130
4131
mptcp_for_each_subflow(msk, subflow) {
4132
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4133
4134
lock_sock(ssk);
4135
4136
/* Set ssk->sk_socket of accept()ed flows to mptcp socket.
4137
* This is needed so NOSPACE flag can be set from tcp stack.
4138
*/
4139
if (!ssk->sk_socket)
4140
mptcp_sock_graft(ssk, sk->sk_socket);
4141
4142
if (!mem_cgroup_sk_enabled(sk))
4143
goto unlock;
4144
4145
__mptcp_inherit_cgrp_data(sk, ssk);
4146
__mptcp_inherit_memcg(sk, ssk, GFP_KERNEL);
4147
4148
unlock:
4149
release_sock(ssk);
4150
}
4151
4152
if (mem_cgroup_sk_enabled(sk)) {
4153
gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
4154
int amt;
4155
4156
/* Account the backlog memory; prior accept() is aware of
4157
* fwd and rmem only.
4158
*/
4159
mptcp_data_lock(sk);
4160
amt = sk_mem_pages(sk->sk_forward_alloc +
4161
msk->backlog_unaccounted +
4162
atomic_read(&sk->sk_rmem_alloc)) -
4163
sk_mem_pages(sk->sk_forward_alloc +
4164
atomic_read(&sk->sk_rmem_alloc));
4165
msk->backlog_unaccounted = 0;
4166
mptcp_data_unlock(sk);
4167
4168
if (amt)
4169
mem_cgroup_sk_charge(sk, amt, gfp);
4170
}
4171
}
4172
4173
static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
4174
struct proto_accept_arg *arg)
4175
{
4176
struct mptcp_sock *msk = mptcp_sk(sock->sk);
4177
struct sock *ssk, *newsk;
4178
4179
pr_debug("msk=%p\n", msk);
4180
4181
/* Buggy applications can call accept on socket states other then LISTEN
4182
* but no need to allocate the first subflow just to error out.
4183
*/
4184
ssk = READ_ONCE(msk->first);
4185
if (!ssk)
4186
return -EINVAL;
4187
4188
pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
4189
newsk = inet_csk_accept(ssk, arg);
4190
if (!newsk)
4191
return arg->err;
4192
4193
pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
4194
if (sk_is_mptcp(newsk)) {
4195
struct mptcp_subflow_context *subflow;
4196
struct sock *new_mptcp_sock;
4197
4198
subflow = mptcp_subflow_ctx(newsk);
4199
new_mptcp_sock = subflow->conn;
4200
4201
/* is_mptcp should be false if subflow->conn is missing, see
4202
* subflow_syn_recv_sock()
4203
*/
4204
if (WARN_ON_ONCE(!new_mptcp_sock)) {
4205
tcp_sk(newsk)->is_mptcp = 0;
4206
goto tcpfallback;
4207
}
4208
4209
newsk = new_mptcp_sock;
4210
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
4211
4212
newsk->sk_kern_sock = arg->kern;
4213
lock_sock(newsk);
4214
__inet_accept(sock, newsock, newsk);
4215
4216
set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4217
msk = mptcp_sk(newsk);
4218
msk->in_accept_queue = 0;
4219
4220
mptcp_graft_subflows(newsk);
4221
mptcp_rps_record_subflows(msk);
4222
4223
/* Do late cleanup for the first subflow as necessary. Also
4224
* deal with bad peers not doing a complete shutdown.
4225
*/
4226
if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4227
if (unlikely(list_is_singular(&msk->conn_list)))
4228
mptcp_set_state(newsk, TCP_CLOSE);
4229
mptcp_close_ssk(newsk, msk->first,
4230
mptcp_subflow_ctx(msk->first));
4231
}
4232
} else {
4233
tcpfallback:
4234
newsk->sk_kern_sock = arg->kern;
4235
lock_sock(newsk);
4236
__inet_accept(sock, newsock, newsk);
4237
/* we are being invoked after accepting a non-mp-capable
4238
* flow: sk is a tcp_sk, not an mptcp one.
4239
*
4240
* Hand the socket over to tcp so all further socket ops
4241
* bypass mptcp.
4242
*/
4243
WRITE_ONCE(newsock->sk->sk_socket->ops,
4244
mptcp_fallback_tcp_ops(newsock->sk));
4245
}
4246
release_sock(newsk);
4247
4248
return 0;
4249
}
4250
4251
static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4252
{
4253
struct sock *sk = (struct sock *)msk;
4254
4255
if (__mptcp_stream_is_writeable(sk, 1))
4256
return EPOLLOUT | EPOLLWRNORM;
4257
4258
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4259
smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4260
if (__mptcp_stream_is_writeable(sk, 1))
4261
return EPOLLOUT | EPOLLWRNORM;
4262
4263
return 0;
4264
}
4265
4266
static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4267
struct poll_table_struct *wait)
4268
{
4269
struct sock *sk = sock->sk;
4270
struct mptcp_sock *msk;
4271
__poll_t mask = 0;
4272
u8 shutdown;
4273
int state;
4274
4275
msk = mptcp_sk(sk);
4276
sock_poll_wait(file, sock, wait);
4277
4278
state = inet_sk_state_load(sk);
4279
pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4280
if (state == TCP_LISTEN) {
4281
struct sock *ssk = READ_ONCE(msk->first);
4282
4283
if (WARN_ON_ONCE(!ssk))
4284
return 0;
4285
4286
return inet_csk_listen_poll(ssk);
4287
}
4288
4289
shutdown = READ_ONCE(sk->sk_shutdown);
4290
if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4291
mask |= EPOLLHUP;
4292
if (shutdown & RCV_SHUTDOWN)
4293
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4294
4295
if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4296
mask |= mptcp_check_readable(sk);
4297
if (shutdown & SEND_SHUTDOWN)
4298
mask |= EPOLLOUT | EPOLLWRNORM;
4299
else
4300
mask |= mptcp_check_writeable(msk);
4301
} else if (state == TCP_SYN_SENT &&
4302
inet_test_bit(DEFER_CONNECT, sk)) {
4303
/* cf tcp_poll() note about TFO */
4304
mask |= EPOLLOUT | EPOLLWRNORM;
4305
}
4306
4307
/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4308
smp_rmb();
4309
if (READ_ONCE(sk->sk_err))
4310
mask |= EPOLLERR;
4311
4312
return mask;
4313
}
4314
4315
static const struct proto_ops mptcp_stream_ops = {
4316
.family = PF_INET,
4317
.owner = THIS_MODULE,
4318
.release = inet_release,
4319
.bind = mptcp_bind,
4320
.connect = inet_stream_connect,
4321
.socketpair = sock_no_socketpair,
4322
.accept = mptcp_stream_accept,
4323
.getname = inet_getname,
4324
.poll = mptcp_poll,
4325
.ioctl = inet_ioctl,
4326
.gettstamp = sock_gettstamp,
4327
.listen = mptcp_listen,
4328
.shutdown = inet_shutdown,
4329
.setsockopt = sock_common_setsockopt,
4330
.getsockopt = sock_common_getsockopt,
4331
.sendmsg = inet_sendmsg,
4332
.recvmsg = inet_recvmsg,
4333
.mmap = sock_no_mmap,
4334
.set_rcvlowat = mptcp_set_rcvlowat,
4335
};
4336
4337
static struct inet_protosw mptcp_protosw = {
4338
.type = SOCK_STREAM,
4339
.protocol = IPPROTO_MPTCP,
4340
.prot = &mptcp_prot,
4341
.ops = &mptcp_stream_ops,
4342
.flags = INET_PROTOSW_ICSK,
4343
};
4344
4345
static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4346
{
4347
struct mptcp_delegated_action *delegated;
4348
struct mptcp_subflow_context *subflow;
4349
int work_done = 0;
4350
4351
delegated = container_of(napi, struct mptcp_delegated_action, napi);
4352
while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4353
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4354
4355
bh_lock_sock_nested(ssk);
4356
if (!sock_owned_by_user(ssk)) {
4357
mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4358
} else {
4359
/* tcp_release_cb_override already processed
4360
* the action or will do at next release_sock().
4361
* In both case must dequeue the subflow here - on the same
4362
* CPU that scheduled it.
4363
*/
4364
smp_wmb();
4365
clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4366
}
4367
bh_unlock_sock(ssk);
4368
sock_put(ssk);
4369
4370
if (++work_done == budget)
4371
return budget;
4372
}
4373
4374
/* always provide a 0 'work_done' argument, so that napi_complete_done
4375
* will not try accessing the NULL napi->dev ptr
4376
*/
4377
napi_complete_done(napi, 0);
4378
return work_done;
4379
}
4380
4381
void __init mptcp_proto_init(void)
4382
{
4383
struct mptcp_delegated_action *delegated;
4384
int cpu;
4385
4386
mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4387
4388
if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4389
panic("Failed to allocate MPTCP pcpu counter\n");
4390
4391
mptcp_napi_dev = alloc_netdev_dummy(0);
4392
if (!mptcp_napi_dev)
4393
panic("Failed to allocate MPTCP dummy netdev\n");
4394
for_each_possible_cpu(cpu) {
4395
delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4396
INIT_LIST_HEAD(&delegated->head);
4397
netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4398
mptcp_napi_poll);
4399
napi_enable(&delegated->napi);
4400
}
4401
4402
mptcp_subflow_init();
4403
mptcp_pm_init();
4404
mptcp_sched_init();
4405
mptcp_token_init();
4406
4407
if (proto_register(&mptcp_prot, 1) != 0)
4408
panic("Failed to register MPTCP proto.\n");
4409
4410
inet_register_protosw(&mptcp_protosw);
4411
4412
BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4413
}
4414
4415
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
4416
static const struct proto_ops mptcp_v6_stream_ops = {
4417
.family = PF_INET6,
4418
.owner = THIS_MODULE,
4419
.release = inet6_release,
4420
.bind = mptcp_bind,
4421
.connect = inet_stream_connect,
4422
.socketpair = sock_no_socketpair,
4423
.accept = mptcp_stream_accept,
4424
.getname = inet6_getname,
4425
.poll = mptcp_poll,
4426
.ioctl = inet6_ioctl,
4427
.gettstamp = sock_gettstamp,
4428
.listen = mptcp_listen,
4429
.shutdown = inet_shutdown,
4430
.setsockopt = sock_common_setsockopt,
4431
.getsockopt = sock_common_getsockopt,
4432
.sendmsg = inet6_sendmsg,
4433
.recvmsg = inet6_recvmsg,
4434
.mmap = sock_no_mmap,
4435
#ifdef CONFIG_COMPAT
4436
.compat_ioctl = inet6_compat_ioctl,
4437
#endif
4438
.set_rcvlowat = mptcp_set_rcvlowat,
4439
};
4440
4441
static struct proto mptcp_v6_prot;
4442
4443
static struct inet_protosw mptcp_v6_protosw = {
4444
.type = SOCK_STREAM,
4445
.protocol = IPPROTO_MPTCP,
4446
.prot = &mptcp_v6_prot,
4447
.ops = &mptcp_v6_stream_ops,
4448
.flags = INET_PROTOSW_ICSK,
4449
};
4450
4451
int __init mptcp_proto_v6_init(void)
4452
{
4453
int err;
4454
4455
mptcp_v6_prot = mptcp_prot;
4456
strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4457
mptcp_v6_prot.slab = NULL;
4458
mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4459
mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4460
4461
err = proto_register(&mptcp_v6_prot, 1);
4462
if (err)
4463
return err;
4464
4465
err = inet6_register_protosw(&mptcp_v6_protosw);
4466
if (err)
4467
proto_unregister(&mptcp_v6_prot);
4468
4469
return err;
4470
}
4471
#endif
4472
4473