Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/net/mptcp/protocol.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Multipath TCP
3
*
4
* Copyright (c) 2017 - 2019, Intel Corporation.
5
*/
6
7
#define pr_fmt(fmt) "MPTCP: " fmt
8
9
#include <linux/kernel.h>
10
#include <linux/module.h>
11
#include <linux/netdevice.h>
12
#include <linux/sched/signal.h>
13
#include <linux/atomic.h>
14
#include <net/aligned_data.h>
15
#include <net/sock.h>
16
#include <net/inet_common.h>
17
#include <net/inet_hashtables.h>
18
#include <net/protocol.h>
19
#include <net/tcp_states.h>
20
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
21
#include <net/transp_v6.h>
22
#endif
23
#include <net/mptcp.h>
24
#include <net/hotdata.h>
25
#include <net/xfrm.h>
26
#include <asm/ioctls.h>
27
#include "protocol.h"
28
#include "mib.h"
29
30
#define CREATE_TRACE_POINTS
31
#include <trace/events/mptcp.h>
32
33
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
34
struct mptcp6_sock {
35
struct mptcp_sock msk;
36
struct ipv6_pinfo np;
37
};
38
#endif
39
40
enum {
41
MPTCP_CMSG_TS = BIT(0),
42
MPTCP_CMSG_INQ = BIT(1),
43
};
44
45
static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
46
47
static void __mptcp_destroy_sock(struct sock *sk);
48
static void mptcp_check_send_data_fin(struct sock *sk);
49
50
DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
51
.bh_lock = INIT_LOCAL_LOCK(bh_lock),
52
};
53
static struct net_device *mptcp_napi_dev;
54
55
/* Returns end sequence number of the receiver's advertised window */
56
static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
57
{
58
return READ_ONCE(msk->wnd_end);
59
}
60
61
static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
62
{
63
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
64
if (sk->sk_prot == &tcpv6_prot)
65
return &inet6_stream_ops;
66
#endif
67
WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
68
return &inet_stream_ops;
69
}
70
71
bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
72
{
73
struct net *net = sock_net((struct sock *)msk);
74
75
if (__mptcp_check_fallback(msk))
76
return true;
77
78
spin_lock_bh(&msk->fallback_lock);
79
if (!msk->allow_infinite_fallback) {
80
spin_unlock_bh(&msk->fallback_lock);
81
return false;
82
}
83
84
msk->allow_subflows = false;
85
set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
86
__MPTCP_INC_STATS(net, fb_mib);
87
spin_unlock_bh(&msk->fallback_lock);
88
return true;
89
}
90
91
static int __mptcp_socket_create(struct mptcp_sock *msk)
92
{
93
struct mptcp_subflow_context *subflow;
94
struct sock *sk = (struct sock *)msk;
95
struct socket *ssock;
96
int err;
97
98
err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
99
if (err)
100
return err;
101
102
msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
103
WRITE_ONCE(msk->first, ssock->sk);
104
subflow = mptcp_subflow_ctx(ssock->sk);
105
list_add(&subflow->node, &msk->conn_list);
106
sock_hold(ssock->sk);
107
subflow->request_mptcp = 1;
108
subflow->subflow_id = msk->subflow_id++;
109
110
/* This is the first subflow, always with id 0 */
111
WRITE_ONCE(subflow->local_id, 0);
112
mptcp_sock_graft(msk->first, sk->sk_socket);
113
iput(SOCK_INODE(ssock));
114
115
return 0;
116
}
117
118
/* If the MPC handshake is not started, returns the first subflow,
119
* eventually allocating it.
120
*/
121
struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
122
{
123
struct sock *sk = (struct sock *)msk;
124
int ret;
125
126
if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
127
return ERR_PTR(-EINVAL);
128
129
if (!msk->first) {
130
ret = __mptcp_socket_create(msk);
131
if (ret)
132
return ERR_PTR(ret);
133
}
134
135
return msk->first;
136
}
137
138
static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
139
{
140
sk_drops_add(sk, skb);
141
__kfree_skb(skb);
142
}
143
144
static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
145
struct sk_buff *from)
146
{
147
bool fragstolen;
148
int delta;
149
150
if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
151
MPTCP_SKB_CB(from)->offset ||
152
((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
153
!skb_try_coalesce(to, from, &fragstolen, &delta))
154
return false;
155
156
pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
157
MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
158
to->len, MPTCP_SKB_CB(from)->end_seq);
159
MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
160
161
/* note the fwd memory can reach a negative value after accounting
162
* for the delta, but the later skb free will restore a non
163
* negative one
164
*/
165
atomic_add(delta, &sk->sk_rmem_alloc);
166
sk_mem_charge(sk, delta);
167
kfree_skb_partial(from, fragstolen);
168
169
return true;
170
}
171
172
static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
173
struct sk_buff *from)
174
{
175
if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
176
return false;
177
178
return mptcp_try_coalesce((struct sock *)msk, to, from);
179
}
180
181
/* "inspired" by tcp_data_queue_ofo(), main differences:
182
* - use mptcp seqs
183
* - don't cope with sacks
184
*/
185
static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
186
{
187
struct sock *sk = (struct sock *)msk;
188
struct rb_node **p, *parent;
189
u64 seq, end_seq, max_seq;
190
struct sk_buff *skb1;
191
192
seq = MPTCP_SKB_CB(skb)->map_seq;
193
end_seq = MPTCP_SKB_CB(skb)->end_seq;
194
max_seq = atomic64_read(&msk->rcv_wnd_sent);
195
196
pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
197
RB_EMPTY_ROOT(&msk->out_of_order_queue));
198
if (after64(end_seq, max_seq)) {
199
/* out of window */
200
mptcp_drop(sk, skb);
201
pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
202
(unsigned long long)end_seq - (unsigned long)max_seq,
203
(unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
204
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
205
return;
206
}
207
208
p = &msk->out_of_order_queue.rb_node;
209
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
210
if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
211
rb_link_node(&skb->rbnode, NULL, p);
212
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
213
msk->ooo_last_skb = skb;
214
goto end;
215
}
216
217
/* with 2 subflows, adding at end of ooo queue is quite likely
218
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
219
*/
220
if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
221
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
222
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
223
return;
224
}
225
226
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
227
if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
228
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
229
parent = &msk->ooo_last_skb->rbnode;
230
p = &parent->rb_right;
231
goto insert;
232
}
233
234
/* Find place to insert this segment. Handle overlaps on the way. */
235
parent = NULL;
236
while (*p) {
237
parent = *p;
238
skb1 = rb_to_skb(parent);
239
if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
240
p = &parent->rb_left;
241
continue;
242
}
243
if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
244
if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
245
/* All the bits are present. Drop. */
246
mptcp_drop(sk, skb);
247
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
248
return;
249
}
250
if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
251
/* partial overlap:
252
* | skb |
253
* | skb1 |
254
* continue traversing
255
*/
256
} else {
257
/* skb's seq == skb1's seq and skb covers skb1.
258
* Replace skb1 with skb.
259
*/
260
rb_replace_node(&skb1->rbnode, &skb->rbnode,
261
&msk->out_of_order_queue);
262
mptcp_drop(sk, skb1);
263
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
264
goto merge_right;
265
}
266
} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
267
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
268
return;
269
}
270
p = &parent->rb_right;
271
}
272
273
insert:
274
/* Insert segment into RB tree. */
275
rb_link_node(&skb->rbnode, parent, p);
276
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
277
278
merge_right:
279
/* Remove other segments covered by skb. */
280
while ((skb1 = skb_rb_next(skb)) != NULL) {
281
if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
282
break;
283
rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
284
mptcp_drop(sk, skb1);
285
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
286
}
287
/* If there is no skb after us, we are the last_skb ! */
288
if (!skb1)
289
msk->ooo_last_skb = skb;
290
291
end:
292
skb_condense(skb);
293
skb_set_owner_r(skb, sk);
294
}
295
296
static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
297
struct sk_buff *skb, unsigned int offset,
298
size_t copy_len)
299
{
300
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
301
struct sock *sk = (struct sock *)msk;
302
struct sk_buff *tail;
303
bool has_rxtstamp;
304
305
__skb_unlink(skb, &ssk->sk_receive_queue);
306
307
skb_ext_reset(skb);
308
skb_orphan(skb);
309
310
/* try to fetch required memory from subflow */
311
if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
312
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
313
goto drop;
314
}
315
316
has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
317
318
/* the skb map_seq accounts for the skb offset:
319
* mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
320
* value
321
*/
322
MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
323
MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
324
MPTCP_SKB_CB(skb)->offset = offset;
325
MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
326
MPTCP_SKB_CB(skb)->cant_coalesce = 0;
327
328
if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
329
/* in sequence */
330
msk->bytes_received += copy_len;
331
WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
332
tail = skb_peek_tail(&sk->sk_receive_queue);
333
if (tail && mptcp_try_coalesce(sk, tail, skb))
334
return true;
335
336
skb_set_owner_r(skb, sk);
337
__skb_queue_tail(&sk->sk_receive_queue, skb);
338
return true;
339
} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
340
mptcp_data_queue_ofo(msk, skb);
341
return false;
342
}
343
344
/* old data, keep it simple and drop the whole pkt, sender
345
* will retransmit as needed, if needed.
346
*/
347
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
348
drop:
349
mptcp_drop(sk, skb);
350
return false;
351
}
352
353
static void mptcp_stop_rtx_timer(struct sock *sk)
354
{
355
struct inet_connection_sock *icsk = inet_csk(sk);
356
357
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
358
mptcp_sk(sk)->timer_ival = 0;
359
}
360
361
static void mptcp_close_wake_up(struct sock *sk)
362
{
363
if (sock_flag(sk, SOCK_DEAD))
364
return;
365
366
sk->sk_state_change(sk);
367
if (sk->sk_shutdown == SHUTDOWN_MASK ||
368
sk->sk_state == TCP_CLOSE)
369
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
370
else
371
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
372
}
373
374
/* called under the msk socket lock */
375
static bool mptcp_pending_data_fin_ack(struct sock *sk)
376
{
377
struct mptcp_sock *msk = mptcp_sk(sk);
378
379
return ((1 << sk->sk_state) &
380
(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
381
msk->write_seq == READ_ONCE(msk->snd_una);
382
}
383
384
static void mptcp_check_data_fin_ack(struct sock *sk)
385
{
386
struct mptcp_sock *msk = mptcp_sk(sk);
387
388
/* Look for an acknowledged DATA_FIN */
389
if (mptcp_pending_data_fin_ack(sk)) {
390
WRITE_ONCE(msk->snd_data_fin_enable, 0);
391
392
switch (sk->sk_state) {
393
case TCP_FIN_WAIT1:
394
mptcp_set_state(sk, TCP_FIN_WAIT2);
395
break;
396
case TCP_CLOSING:
397
case TCP_LAST_ACK:
398
mptcp_set_state(sk, TCP_CLOSE);
399
break;
400
}
401
402
mptcp_close_wake_up(sk);
403
}
404
}
405
406
/* can be called with no lock acquired */
407
static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
408
{
409
struct mptcp_sock *msk = mptcp_sk(sk);
410
411
if (READ_ONCE(msk->rcv_data_fin) &&
412
((1 << inet_sk_state_load(sk)) &
413
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
414
u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
415
416
if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
417
if (seq)
418
*seq = rcv_data_fin_seq;
419
420
return true;
421
}
422
}
423
424
return false;
425
}
426
427
static void mptcp_set_datafin_timeout(struct sock *sk)
428
{
429
struct inet_connection_sock *icsk = inet_csk(sk);
430
u32 retransmits;
431
432
retransmits = min_t(u32, icsk->icsk_retransmits,
433
ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
434
435
mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
436
}
437
438
static void __mptcp_set_timeout(struct sock *sk, long tout)
439
{
440
mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
441
}
442
443
static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
444
{
445
const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
446
447
return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
448
icsk_timeout(inet_csk(ssk)) - jiffies : 0;
449
}
450
451
static void mptcp_set_timeout(struct sock *sk)
452
{
453
struct mptcp_subflow_context *subflow;
454
long tout = 0;
455
456
mptcp_for_each_subflow(mptcp_sk(sk), subflow)
457
tout = max(tout, mptcp_timeout_from_subflow(subflow));
458
__mptcp_set_timeout(sk, tout);
459
}
460
461
static inline bool tcp_can_send_ack(const struct sock *ssk)
462
{
463
return !((1 << inet_sk_state_load(ssk)) &
464
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
465
}
466
467
void __mptcp_subflow_send_ack(struct sock *ssk)
468
{
469
if (tcp_can_send_ack(ssk))
470
tcp_send_ack(ssk);
471
}
472
473
static void mptcp_subflow_send_ack(struct sock *ssk)
474
{
475
bool slow;
476
477
slow = lock_sock_fast(ssk);
478
__mptcp_subflow_send_ack(ssk);
479
unlock_sock_fast(ssk, slow);
480
}
481
482
static void mptcp_send_ack(struct mptcp_sock *msk)
483
{
484
struct mptcp_subflow_context *subflow;
485
486
mptcp_for_each_subflow(msk, subflow)
487
mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
488
}
489
490
static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
491
{
492
bool slow;
493
494
slow = lock_sock_fast(ssk);
495
if (tcp_can_send_ack(ssk))
496
tcp_cleanup_rbuf(ssk, copied);
497
unlock_sock_fast(ssk, slow);
498
}
499
500
static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
501
{
502
const struct inet_connection_sock *icsk = inet_csk(ssk);
503
u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
504
const struct tcp_sock *tp = tcp_sk(ssk);
505
506
return (ack_pending & ICSK_ACK_SCHED) &&
507
((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
508
READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
509
(rx_empty && ack_pending &
510
(ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
511
}
512
513
static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
514
{
515
int old_space = READ_ONCE(msk->old_wspace);
516
struct mptcp_subflow_context *subflow;
517
struct sock *sk = (struct sock *)msk;
518
int space = __mptcp_space(sk);
519
bool cleanup, rx_empty;
520
521
cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
522
rx_empty = !sk_rmem_alloc_get(sk) && copied;
523
524
mptcp_for_each_subflow(msk, subflow) {
525
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
526
527
if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
528
mptcp_subflow_cleanup_rbuf(ssk, copied);
529
}
530
}
531
532
static bool mptcp_check_data_fin(struct sock *sk)
533
{
534
struct mptcp_sock *msk = mptcp_sk(sk);
535
u64 rcv_data_fin_seq;
536
bool ret = false;
537
538
/* Need to ack a DATA_FIN received from a peer while this side
539
* of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
540
* msk->rcv_data_fin was set when parsing the incoming options
541
* at the subflow level and the msk lock was not held, so this
542
* is the first opportunity to act on the DATA_FIN and change
543
* the msk state.
544
*
545
* If we are caught up to the sequence number of the incoming
546
* DATA_FIN, send the DATA_ACK now and do state transition. If
547
* not caught up, do nothing and let the recv code send DATA_ACK
548
* when catching up.
549
*/
550
551
if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
552
WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
553
WRITE_ONCE(msk->rcv_data_fin, 0);
554
555
WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
556
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
557
558
switch (sk->sk_state) {
559
case TCP_ESTABLISHED:
560
mptcp_set_state(sk, TCP_CLOSE_WAIT);
561
break;
562
case TCP_FIN_WAIT1:
563
mptcp_set_state(sk, TCP_CLOSING);
564
break;
565
case TCP_FIN_WAIT2:
566
mptcp_set_state(sk, TCP_CLOSE);
567
break;
568
default:
569
/* Other states not expected */
570
WARN_ON_ONCE(1);
571
break;
572
}
573
574
ret = true;
575
if (!__mptcp_check_fallback(msk))
576
mptcp_send_ack(msk);
577
mptcp_close_wake_up(sk);
578
}
579
return ret;
580
}
581
582
static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
583
{
584
if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
585
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
586
mptcp_subflow_reset(ssk);
587
}
588
}
589
590
static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
591
struct sock *ssk)
592
{
593
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
594
struct sock *sk = (struct sock *)msk;
595
bool more_data_avail;
596
struct tcp_sock *tp;
597
bool ret = false;
598
599
pr_debug("msk=%p ssk=%p\n", msk, ssk);
600
tp = tcp_sk(ssk);
601
do {
602
u32 map_remaining, offset;
603
u32 seq = tp->copied_seq;
604
struct sk_buff *skb;
605
bool fin;
606
607
if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
608
break;
609
610
/* try to move as much data as available */
611
map_remaining = subflow->map_data_len -
612
mptcp_subflow_get_map_offset(subflow);
613
614
skb = skb_peek(&ssk->sk_receive_queue);
615
if (unlikely(!skb))
616
break;
617
618
if (__mptcp_check_fallback(msk)) {
619
/* Under fallback skbs have no MPTCP extension and TCP could
620
* collapse them between the dummy map creation and the
621
* current dequeue. Be sure to adjust the map size.
622
*/
623
map_remaining = skb->len;
624
subflow->map_data_len = skb->len;
625
}
626
627
offset = seq - TCP_SKB_CB(skb)->seq;
628
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
629
if (fin)
630
seq++;
631
632
if (offset < skb->len) {
633
size_t len = skb->len - offset;
634
635
ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
636
seq += len;
637
638
if (unlikely(map_remaining < len)) {
639
DEBUG_NET_WARN_ON_ONCE(1);
640
mptcp_dss_corruption(msk, ssk);
641
}
642
} else {
643
if (unlikely(!fin)) {
644
DEBUG_NET_WARN_ON_ONCE(1);
645
mptcp_dss_corruption(msk, ssk);
646
}
647
648
sk_eat_skb(ssk, skb);
649
}
650
651
WRITE_ONCE(tp->copied_seq, seq);
652
more_data_avail = mptcp_subflow_data_available(ssk);
653
654
} while (more_data_avail);
655
656
if (ret)
657
msk->last_data_recv = tcp_jiffies32;
658
return ret;
659
}
660
661
static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
662
{
663
struct sock *sk = (struct sock *)msk;
664
struct sk_buff *skb, *tail;
665
bool moved = false;
666
struct rb_node *p;
667
u64 end_seq;
668
669
p = rb_first(&msk->out_of_order_queue);
670
pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
671
while (p) {
672
skb = rb_to_skb(p);
673
if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
674
break;
675
676
p = rb_next(p);
677
rb_erase(&skb->rbnode, &msk->out_of_order_queue);
678
679
if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
680
msk->ack_seq))) {
681
mptcp_drop(sk, skb);
682
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
683
continue;
684
}
685
686
end_seq = MPTCP_SKB_CB(skb)->end_seq;
687
tail = skb_peek_tail(&sk->sk_receive_queue);
688
if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
689
int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
690
691
/* skip overlapping data, if any */
692
pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
693
MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
694
delta);
695
MPTCP_SKB_CB(skb)->offset += delta;
696
MPTCP_SKB_CB(skb)->map_seq += delta;
697
__skb_queue_tail(&sk->sk_receive_queue, skb);
698
}
699
msk->bytes_received += end_seq - msk->ack_seq;
700
WRITE_ONCE(msk->ack_seq, end_seq);
701
moved = true;
702
}
703
return moved;
704
}
705
706
static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
707
{
708
int err = sock_error(ssk);
709
int ssk_state;
710
711
if (!err)
712
return false;
713
714
/* only propagate errors on fallen-back sockets or
715
* on MPC connect
716
*/
717
if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
718
return false;
719
720
/* We need to propagate only transition to CLOSE state.
721
* Orphaned socket will see such state change via
722
* subflow_sched_work_if_closed() and that path will properly
723
* destroy the msk as needed.
724
*/
725
ssk_state = inet_sk_state_load(ssk);
726
if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
727
mptcp_set_state(sk, ssk_state);
728
WRITE_ONCE(sk->sk_err, -err);
729
730
/* This barrier is coupled with smp_rmb() in mptcp_poll() */
731
smp_wmb();
732
sk_error_report(sk);
733
return true;
734
}
735
736
void __mptcp_error_report(struct sock *sk)
737
{
738
struct mptcp_subflow_context *subflow;
739
struct mptcp_sock *msk = mptcp_sk(sk);
740
741
mptcp_for_each_subflow(msk, subflow)
742
if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
743
break;
744
}
745
746
/* In most cases we will be able to lock the mptcp socket. If its already
747
* owned, we need to defer to the work queue to avoid ABBA deadlock.
748
*/
749
static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
750
{
751
struct sock *sk = (struct sock *)msk;
752
bool moved;
753
754
moved = __mptcp_move_skbs_from_subflow(msk, ssk);
755
__mptcp_ofo_queue(msk);
756
if (unlikely(ssk->sk_err)) {
757
if (!sock_owned_by_user(sk))
758
__mptcp_error_report(sk);
759
else
760
__set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
761
}
762
763
/* If the moves have caught up with the DATA_FIN sequence number
764
* it's time to ack the DATA_FIN and change socket state, but
765
* this is not a good place to change state. Let the workqueue
766
* do it.
767
*/
768
if (mptcp_pending_data_fin(sk, NULL))
769
mptcp_schedule_work(sk);
770
return moved;
771
}
772
773
static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
774
{
775
if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
776
WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
777
}
778
779
static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
780
{
781
struct mptcp_sock *msk = mptcp_sk(sk);
782
783
__mptcp_rcvbuf_update(sk, ssk);
784
785
/* Wake-up the reader only for in-sequence data */
786
if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
787
sk->sk_data_ready(sk);
788
}
789
790
void mptcp_data_ready(struct sock *sk, struct sock *ssk)
791
{
792
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
793
794
/* The peer can send data while we are shutting down this
795
* subflow at msk destruction time, but we must avoid enqueuing
796
* more data to the msk receive queue
797
*/
798
if (unlikely(subflow->disposable))
799
return;
800
801
mptcp_data_lock(sk);
802
if (!sock_owned_by_user(sk))
803
__mptcp_data_ready(sk, ssk);
804
else
805
__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
806
mptcp_data_unlock(sk);
807
}
808
809
static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
810
{
811
mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
812
msk->allow_infinite_fallback = false;
813
mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
814
}
815
816
static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
817
{
818
struct sock *sk = (struct sock *)msk;
819
820
if (sk->sk_state != TCP_ESTABLISHED)
821
return false;
822
823
spin_lock_bh(&msk->fallback_lock);
824
if (!msk->allow_subflows) {
825
spin_unlock_bh(&msk->fallback_lock);
826
return false;
827
}
828
mptcp_subflow_joined(msk, ssk);
829
spin_unlock_bh(&msk->fallback_lock);
830
831
/* attach to msk socket only after we are sure we will deal with it
832
* at close time
833
*/
834
if (sk->sk_socket && !ssk->sk_socket)
835
mptcp_sock_graft(ssk, sk->sk_socket);
836
837
mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
838
mptcp_sockopt_sync_locked(msk, ssk);
839
mptcp_stop_tout_timer(sk);
840
__mptcp_propagate_sndbuf(sk, ssk);
841
return true;
842
}
843
844
static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
845
{
846
struct mptcp_subflow_context *tmp, *subflow;
847
struct mptcp_sock *msk = mptcp_sk(sk);
848
849
list_for_each_entry_safe(subflow, tmp, join_list, node) {
850
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
851
bool slow = lock_sock_fast(ssk);
852
853
list_move_tail(&subflow->node, &msk->conn_list);
854
if (!__mptcp_finish_join(msk, ssk))
855
mptcp_subflow_reset(ssk);
856
unlock_sock_fast(ssk, slow);
857
}
858
}
859
860
static bool mptcp_rtx_timer_pending(struct sock *sk)
861
{
862
return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
863
}
864
865
static void mptcp_reset_rtx_timer(struct sock *sk)
866
{
867
struct inet_connection_sock *icsk = inet_csk(sk);
868
unsigned long tout;
869
870
/* prevent rescheduling on close */
871
if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
872
return;
873
874
tout = mptcp_sk(sk)->timer_ival;
875
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
876
}
877
878
bool mptcp_schedule_work(struct sock *sk)
879
{
880
if (inet_sk_state_load(sk) != TCP_CLOSE &&
881
schedule_work(&mptcp_sk(sk)->work)) {
882
/* each subflow already holds a reference to the sk, and the
883
* workqueue is invoked by a subflow, so sk can't go away here.
884
*/
885
sock_hold(sk);
886
return true;
887
}
888
return false;
889
}
890
891
static bool mptcp_skb_can_collapse_to(u64 write_seq,
892
const struct sk_buff *skb,
893
const struct mptcp_ext *mpext)
894
{
895
if (!tcp_skb_can_collapse_to(skb))
896
return false;
897
898
/* can collapse only if MPTCP level sequence is in order and this
899
* mapping has not been xmitted yet
900
*/
901
return mpext && mpext->data_seq + mpext->data_len == write_seq &&
902
!mpext->frozen;
903
}
904
905
/* we can append data to the given data frag if:
906
* - there is space available in the backing page_frag
907
* - the data frag tail matches the current page_frag free offset
908
* - the data frag end sequence number matches the current write seq
909
*/
910
static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
911
const struct page_frag *pfrag,
912
const struct mptcp_data_frag *df)
913
{
914
return df && pfrag->page == df->page &&
915
pfrag->size - pfrag->offset > 0 &&
916
pfrag->offset == (df->offset + df->data_len) &&
917
df->data_seq + df->data_len == msk->write_seq;
918
}
919
920
static void dfrag_uncharge(struct sock *sk, int len)
921
{
922
sk_mem_uncharge(sk, len);
923
sk_wmem_queued_add(sk, -len);
924
}
925
926
static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
927
{
928
int len = dfrag->data_len + dfrag->overhead;
929
930
list_del(&dfrag->list);
931
dfrag_uncharge(sk, len);
932
put_page(dfrag->page);
933
}
934
935
/* called under both the msk socket lock and the data lock */
936
static void __mptcp_clean_una(struct sock *sk)
937
{
938
struct mptcp_sock *msk = mptcp_sk(sk);
939
struct mptcp_data_frag *dtmp, *dfrag;
940
u64 snd_una;
941
942
snd_una = msk->snd_una;
943
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
944
if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
945
break;
946
947
if (unlikely(dfrag == msk->first_pending)) {
948
/* in recovery mode can see ack after the current snd head */
949
if (WARN_ON_ONCE(!msk->recovery))
950
break;
951
952
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
953
}
954
955
dfrag_clear(sk, dfrag);
956
}
957
958
dfrag = mptcp_rtx_head(sk);
959
if (dfrag && after64(snd_una, dfrag->data_seq)) {
960
u64 delta = snd_una - dfrag->data_seq;
961
962
/* prevent wrap around in recovery mode */
963
if (unlikely(delta > dfrag->already_sent)) {
964
if (WARN_ON_ONCE(!msk->recovery))
965
goto out;
966
if (WARN_ON_ONCE(delta > dfrag->data_len))
967
goto out;
968
dfrag->already_sent += delta - dfrag->already_sent;
969
}
970
971
dfrag->data_seq += delta;
972
dfrag->offset += delta;
973
dfrag->data_len -= delta;
974
dfrag->already_sent -= delta;
975
976
dfrag_uncharge(sk, delta);
977
}
978
979
/* all retransmitted data acked, recovery completed */
980
if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
981
msk->recovery = false;
982
983
out:
984
if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
985
if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
986
mptcp_stop_rtx_timer(sk);
987
} else {
988
mptcp_reset_rtx_timer(sk);
989
}
990
991
if (mptcp_pending_data_fin_ack(sk))
992
mptcp_schedule_work(sk);
993
}
994
995
static void __mptcp_clean_una_wakeup(struct sock *sk)
996
{
997
lockdep_assert_held_once(&sk->sk_lock.slock);
998
999
__mptcp_clean_una(sk);
1000
mptcp_write_space(sk);
1001
}
1002
1003
static void mptcp_clean_una_wakeup(struct sock *sk)
1004
{
1005
mptcp_data_lock(sk);
1006
__mptcp_clean_una_wakeup(sk);
1007
mptcp_data_unlock(sk);
1008
}
1009
1010
static void mptcp_enter_memory_pressure(struct sock *sk)
1011
{
1012
struct mptcp_subflow_context *subflow;
1013
struct mptcp_sock *msk = mptcp_sk(sk);
1014
bool first = true;
1015
1016
mptcp_for_each_subflow(msk, subflow) {
1017
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1018
1019
if (first)
1020
tcp_enter_memory_pressure(ssk);
1021
sk_stream_moderate_sndbuf(ssk);
1022
1023
first = false;
1024
}
1025
__mptcp_sync_sndbuf(sk);
1026
}
1027
1028
/* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1029
* data
1030
*/
1031
static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1032
{
1033
if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1034
pfrag, sk->sk_allocation)))
1035
return true;
1036
1037
mptcp_enter_memory_pressure(sk);
1038
return false;
1039
}
1040
1041
static struct mptcp_data_frag *
1042
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1043
int orig_offset)
1044
{
1045
int offset = ALIGN(orig_offset, sizeof(long));
1046
struct mptcp_data_frag *dfrag;
1047
1048
dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1049
dfrag->data_len = 0;
1050
dfrag->data_seq = msk->write_seq;
1051
dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1052
dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1053
dfrag->already_sent = 0;
1054
dfrag->page = pfrag->page;
1055
1056
return dfrag;
1057
}
1058
1059
struct mptcp_sendmsg_info {
1060
int mss_now;
1061
int size_goal;
1062
u16 limit;
1063
u16 sent;
1064
unsigned int flags;
1065
bool data_lock_held;
1066
};
1067
1068
static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1069
u64 data_seq, int avail_size)
1070
{
1071
u64 window_end = mptcp_wnd_end(msk);
1072
u64 mptcp_snd_wnd;
1073
1074
if (__mptcp_check_fallback(msk))
1075
return avail_size;
1076
1077
mptcp_snd_wnd = window_end - data_seq;
1078
avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1079
1080
if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1081
tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1082
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1083
}
1084
1085
return avail_size;
1086
}
1087
1088
static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1089
{
1090
struct skb_ext *mpext = __skb_ext_alloc(gfp);
1091
1092
if (!mpext)
1093
return false;
1094
__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1095
return true;
1096
}
1097
1098
static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1099
{
1100
struct sk_buff *skb;
1101
1102
skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1103
if (likely(skb)) {
1104
if (likely(__mptcp_add_ext(skb, gfp))) {
1105
skb_reserve(skb, MAX_TCP_HEADER);
1106
skb->ip_summed = CHECKSUM_PARTIAL;
1107
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1108
return skb;
1109
}
1110
__kfree_skb(skb);
1111
} else {
1112
mptcp_enter_memory_pressure(sk);
1113
}
1114
return NULL;
1115
}
1116
1117
static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1118
{
1119
struct sk_buff *skb;
1120
1121
skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1122
if (!skb)
1123
return NULL;
1124
1125
if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1126
tcp_skb_entail(ssk, skb);
1127
return skb;
1128
}
1129
tcp_skb_tsorted_anchor_cleanup(skb);
1130
kfree_skb(skb);
1131
return NULL;
1132
}
1133
1134
static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1135
{
1136
gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1137
1138
return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1139
}
1140
1141
/* note: this always recompute the csum on the whole skb, even
1142
* if we just appended a single frag. More status info needed
1143
*/
1144
static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1145
{
1146
struct mptcp_ext *mpext = mptcp_get_ext(skb);
1147
__wsum csum = ~csum_unfold(mpext->csum);
1148
int offset = skb->len - added;
1149
1150
mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1151
}
1152
1153
static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1154
struct sock *ssk,
1155
struct mptcp_ext *mpext)
1156
{
1157
if (!mpext)
1158
return;
1159
1160
mpext->infinite_map = 1;
1161
mpext->data_len = 0;
1162
1163
if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1164
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1165
mptcp_subflow_reset(ssk);
1166
return;
1167
}
1168
1169
mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1170
}
1171
1172
#define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1173
1174
static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1175
struct mptcp_data_frag *dfrag,
1176
struct mptcp_sendmsg_info *info)
1177
{
1178
u64 data_seq = dfrag->data_seq + info->sent;
1179
int offset = dfrag->offset + info->sent;
1180
struct mptcp_sock *msk = mptcp_sk(sk);
1181
bool zero_window_probe = false;
1182
struct mptcp_ext *mpext = NULL;
1183
bool can_coalesce = false;
1184
bool reuse_skb = true;
1185
struct sk_buff *skb;
1186
size_t copy;
1187
int i;
1188
1189
pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1190
msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1191
1192
if (WARN_ON_ONCE(info->sent > info->limit ||
1193
info->limit > dfrag->data_len))
1194
return 0;
1195
1196
if (unlikely(!__tcp_can_send(ssk)))
1197
return -EAGAIN;
1198
1199
/* compute send limit */
1200
if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1201
ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1202
info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1203
copy = info->size_goal;
1204
1205
skb = tcp_write_queue_tail(ssk);
1206
if (skb && copy > skb->len) {
1207
/* Limit the write to the size available in the
1208
* current skb, if any, so that we create at most a new skb.
1209
* Explicitly tells TCP internals to avoid collapsing on later
1210
* queue management operation, to avoid breaking the ext <->
1211
* SSN association set here
1212
*/
1213
mpext = mptcp_get_ext(skb);
1214
if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1215
TCP_SKB_CB(skb)->eor = 1;
1216
tcp_mark_push(tcp_sk(ssk), skb);
1217
goto alloc_skb;
1218
}
1219
1220
i = skb_shinfo(skb)->nr_frags;
1221
can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1222
if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1223
tcp_mark_push(tcp_sk(ssk), skb);
1224
goto alloc_skb;
1225
}
1226
1227
copy -= skb->len;
1228
} else {
1229
alloc_skb:
1230
skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1231
if (!skb)
1232
return -ENOMEM;
1233
1234
i = skb_shinfo(skb)->nr_frags;
1235
reuse_skb = false;
1236
mpext = mptcp_get_ext(skb);
1237
}
1238
1239
/* Zero window and all data acked? Probe. */
1240
copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1241
if (copy == 0) {
1242
u64 snd_una = READ_ONCE(msk->snd_una);
1243
1244
if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1245
tcp_remove_empty_skb(ssk);
1246
return 0;
1247
}
1248
1249
zero_window_probe = true;
1250
data_seq = snd_una - 1;
1251
copy = 1;
1252
}
1253
1254
copy = min_t(size_t, copy, info->limit - info->sent);
1255
if (!sk_wmem_schedule(ssk, copy)) {
1256
tcp_remove_empty_skb(ssk);
1257
return -ENOMEM;
1258
}
1259
1260
if (can_coalesce) {
1261
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262
} else {
1263
get_page(dfrag->page);
1264
skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1265
}
1266
1267
skb->len += copy;
1268
skb->data_len += copy;
1269
skb->truesize += copy;
1270
sk_wmem_queued_add(ssk, copy);
1271
sk_mem_charge(ssk, copy);
1272
WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1273
TCP_SKB_CB(skb)->end_seq += copy;
1274
tcp_skb_pcount_set(skb, 0);
1275
1276
/* on skb reuse we just need to update the DSS len */
1277
if (reuse_skb) {
1278
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1279
mpext->data_len += copy;
1280
goto out;
1281
}
1282
1283
memset(mpext, 0, sizeof(*mpext));
1284
mpext->data_seq = data_seq;
1285
mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1286
mpext->data_len = copy;
1287
mpext->use_map = 1;
1288
mpext->dsn64 = 1;
1289
1290
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1291
mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1292
mpext->dsn64);
1293
1294
if (zero_window_probe) {
1295
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1296
mpext->frozen = 1;
1297
if (READ_ONCE(msk->csum_enabled))
1298
mptcp_update_data_checksum(skb, copy);
1299
tcp_push_pending_frames(ssk);
1300
return 0;
1301
}
1302
out:
1303
if (READ_ONCE(msk->csum_enabled))
1304
mptcp_update_data_checksum(skb, copy);
1305
if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1306
mptcp_update_infinite_map(msk, ssk, mpext);
1307
trace_mptcp_sendmsg_frag(mpext);
1308
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1309
return copy;
1310
}
1311
1312
#define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1313
sizeof(struct tcphdr) - \
1314
MAX_TCP_OPTION_SPACE - \
1315
sizeof(struct ipv6hdr) - \
1316
sizeof(struct frag_hdr))
1317
1318
struct subflow_send_info {
1319
struct sock *ssk;
1320
u64 linger_time;
1321
};
1322
1323
void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1324
{
1325
if (!subflow->stale)
1326
return;
1327
1328
subflow->stale = 0;
1329
MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1330
}
1331
1332
bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1333
{
1334
if (unlikely(subflow->stale)) {
1335
u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1336
1337
if (subflow->stale_rcv_tstamp == rcv_tstamp)
1338
return false;
1339
1340
mptcp_subflow_set_active(subflow);
1341
}
1342
return __mptcp_subflow_active(subflow);
1343
}
1344
1345
#define SSK_MODE_ACTIVE 0
1346
#define SSK_MODE_BACKUP 1
1347
#define SSK_MODE_MAX 2
1348
1349
/* implement the mptcp packet scheduler;
1350
* returns the subflow that will transmit the next DSS
1351
* additionally updates the rtx timeout
1352
*/
1353
struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1354
{
1355
struct subflow_send_info send_info[SSK_MODE_MAX];
1356
struct mptcp_subflow_context *subflow;
1357
struct sock *sk = (struct sock *)msk;
1358
u32 pace, burst, wmem;
1359
int i, nr_active = 0;
1360
struct sock *ssk;
1361
u64 linger_time;
1362
long tout = 0;
1363
1364
/* pick the subflow with the lower wmem/wspace ratio */
1365
for (i = 0; i < SSK_MODE_MAX; ++i) {
1366
send_info[i].ssk = NULL;
1367
send_info[i].linger_time = -1;
1368
}
1369
1370
mptcp_for_each_subflow(msk, subflow) {
1371
bool backup = subflow->backup || subflow->request_bkup;
1372
1373
trace_mptcp_subflow_get_send(subflow);
1374
ssk = mptcp_subflow_tcp_sock(subflow);
1375
if (!mptcp_subflow_active(subflow))
1376
continue;
1377
1378
tout = max(tout, mptcp_timeout_from_subflow(subflow));
1379
nr_active += !backup;
1380
pace = subflow->avg_pacing_rate;
1381
if (unlikely(!pace)) {
1382
/* init pacing rate from socket */
1383
subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1384
pace = subflow->avg_pacing_rate;
1385
if (!pace)
1386
continue;
1387
}
1388
1389
linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1390
if (linger_time < send_info[backup].linger_time) {
1391
send_info[backup].ssk = ssk;
1392
send_info[backup].linger_time = linger_time;
1393
}
1394
}
1395
__mptcp_set_timeout(sk, tout);
1396
1397
/* pick the best backup if no other subflow is active */
1398
if (!nr_active)
1399
send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1400
1401
/* According to the blest algorithm, to avoid HoL blocking for the
1402
* faster flow, we need to:
1403
* - estimate the faster flow linger time
1404
* - use the above to estimate the amount of byte transferred
1405
* by the faster flow
1406
* - check that the amount of queued data is greater than the above,
1407
* otherwise do not use the picked, slower, subflow
1408
* We select the subflow with the shorter estimated time to flush
1409
* the queued mem, which basically ensure the above. We just need
1410
* to check that subflow has a non empty cwin.
1411
*/
1412
ssk = send_info[SSK_MODE_ACTIVE].ssk;
1413
if (!ssk || !sk_stream_memory_free(ssk))
1414
return NULL;
1415
1416
burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1417
wmem = READ_ONCE(ssk->sk_wmem_queued);
1418
if (!burst)
1419
return ssk;
1420
1421
subflow = mptcp_subflow_ctx(ssk);
1422
subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1423
READ_ONCE(ssk->sk_pacing_rate) * burst,
1424
burst + wmem);
1425
msk->snd_burst = burst;
1426
return ssk;
1427
}
1428
1429
static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1430
{
1431
tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1432
release_sock(ssk);
1433
}
1434
1435
static void mptcp_update_post_push(struct mptcp_sock *msk,
1436
struct mptcp_data_frag *dfrag,
1437
u32 sent)
1438
{
1439
u64 snd_nxt_new = dfrag->data_seq;
1440
1441
dfrag->already_sent += sent;
1442
1443
msk->snd_burst -= sent;
1444
1445
snd_nxt_new += dfrag->already_sent;
1446
1447
/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1448
* is recovering after a failover. In that event, this re-sends
1449
* old segments.
1450
*
1451
* Thus compute snd_nxt_new candidate based on
1452
* the dfrag->data_seq that was sent and the data
1453
* that has been handed to the subflow for transmission
1454
* and skip update in case it was old dfrag.
1455
*/
1456
if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1457
msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1458
WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1459
}
1460
}
1461
1462
void mptcp_check_and_set_pending(struct sock *sk)
1463
{
1464
if (mptcp_send_head(sk)) {
1465
mptcp_data_lock(sk);
1466
mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1467
mptcp_data_unlock(sk);
1468
}
1469
}
1470
1471
static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1472
struct mptcp_sendmsg_info *info)
1473
{
1474
struct mptcp_sock *msk = mptcp_sk(sk);
1475
struct mptcp_data_frag *dfrag;
1476
int len, copied = 0, err = 0;
1477
1478
while ((dfrag = mptcp_send_head(sk))) {
1479
info->sent = dfrag->already_sent;
1480
info->limit = dfrag->data_len;
1481
len = dfrag->data_len - dfrag->already_sent;
1482
while (len > 0) {
1483
int ret = 0;
1484
1485
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1486
if (ret <= 0) {
1487
err = copied ? : ret;
1488
goto out;
1489
}
1490
1491
info->sent += ret;
1492
copied += ret;
1493
len -= ret;
1494
1495
mptcp_update_post_push(msk, dfrag, ret);
1496
}
1497
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1498
1499
if (msk->snd_burst <= 0 ||
1500
!sk_stream_memory_free(ssk) ||
1501
!mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1502
err = copied;
1503
goto out;
1504
}
1505
mptcp_set_timeout(sk);
1506
}
1507
err = copied;
1508
1509
out:
1510
if (err > 0)
1511
msk->last_data_sent = tcp_jiffies32;
1512
return err;
1513
}
1514
1515
void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1516
{
1517
struct sock *prev_ssk = NULL, *ssk = NULL;
1518
struct mptcp_sock *msk = mptcp_sk(sk);
1519
struct mptcp_sendmsg_info info = {
1520
.flags = flags,
1521
};
1522
bool do_check_data_fin = false;
1523
int push_count = 1;
1524
1525
while (mptcp_send_head(sk) && (push_count > 0)) {
1526
struct mptcp_subflow_context *subflow;
1527
int ret = 0;
1528
1529
if (mptcp_sched_get_send(msk))
1530
break;
1531
1532
push_count = 0;
1533
1534
mptcp_for_each_subflow(msk, subflow) {
1535
if (READ_ONCE(subflow->scheduled)) {
1536
mptcp_subflow_set_scheduled(subflow, false);
1537
1538
prev_ssk = ssk;
1539
ssk = mptcp_subflow_tcp_sock(subflow);
1540
if (ssk != prev_ssk) {
1541
/* First check. If the ssk has changed since
1542
* the last round, release prev_ssk
1543
*/
1544
if (prev_ssk)
1545
mptcp_push_release(prev_ssk, &info);
1546
1547
/* Need to lock the new subflow only if different
1548
* from the previous one, otherwise we are still
1549
* helding the relevant lock
1550
*/
1551
lock_sock(ssk);
1552
}
1553
1554
push_count++;
1555
1556
ret = __subflow_push_pending(sk, ssk, &info);
1557
if (ret <= 0) {
1558
if (ret != -EAGAIN ||
1559
(1 << ssk->sk_state) &
1560
(TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1561
push_count--;
1562
continue;
1563
}
1564
do_check_data_fin = true;
1565
}
1566
}
1567
}
1568
1569
/* at this point we held the socket lock for the last subflow we used */
1570
if (ssk)
1571
mptcp_push_release(ssk, &info);
1572
1573
/* ensure the rtx timer is running */
1574
if (!mptcp_rtx_timer_pending(sk))
1575
mptcp_reset_rtx_timer(sk);
1576
if (do_check_data_fin)
1577
mptcp_check_send_data_fin(sk);
1578
}
1579
1580
static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1581
{
1582
struct mptcp_sock *msk = mptcp_sk(sk);
1583
struct mptcp_sendmsg_info info = {
1584
.data_lock_held = true,
1585
};
1586
bool keep_pushing = true;
1587
struct sock *xmit_ssk;
1588
int copied = 0;
1589
1590
info.flags = 0;
1591
while (mptcp_send_head(sk) && keep_pushing) {
1592
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1593
int ret = 0;
1594
1595
/* check for a different subflow usage only after
1596
* spooling the first chunk of data
1597
*/
1598
if (first) {
1599
mptcp_subflow_set_scheduled(subflow, false);
1600
ret = __subflow_push_pending(sk, ssk, &info);
1601
first = false;
1602
if (ret <= 0)
1603
break;
1604
copied += ret;
1605
continue;
1606
}
1607
1608
if (mptcp_sched_get_send(msk))
1609
goto out;
1610
1611
if (READ_ONCE(subflow->scheduled)) {
1612
mptcp_subflow_set_scheduled(subflow, false);
1613
ret = __subflow_push_pending(sk, ssk, &info);
1614
if (ret <= 0)
1615
keep_pushing = false;
1616
copied += ret;
1617
}
1618
1619
mptcp_for_each_subflow(msk, subflow) {
1620
if (READ_ONCE(subflow->scheduled)) {
1621
xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1622
if (xmit_ssk != ssk) {
1623
mptcp_subflow_delegate(subflow,
1624
MPTCP_DELEGATE_SEND);
1625
keep_pushing = false;
1626
}
1627
}
1628
}
1629
}
1630
1631
out:
1632
/* __mptcp_alloc_tx_skb could have released some wmem and we are
1633
* not going to flush it via release_sock()
1634
*/
1635
if (copied) {
1636
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1637
info.size_goal);
1638
if (!mptcp_rtx_timer_pending(sk))
1639
mptcp_reset_rtx_timer(sk);
1640
1641
if (msk->snd_data_fin_enable &&
1642
msk->snd_nxt + 1 == msk->write_seq)
1643
mptcp_schedule_work(sk);
1644
}
1645
}
1646
1647
static int mptcp_disconnect(struct sock *sk, int flags);
1648
1649
static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1650
size_t len, int *copied_syn)
1651
{
1652
unsigned int saved_flags = msg->msg_flags;
1653
struct mptcp_sock *msk = mptcp_sk(sk);
1654
struct sock *ssk;
1655
int ret;
1656
1657
/* on flags based fastopen the mptcp is supposed to create the
1658
* first subflow right now. Otherwise we are in the defer_connect
1659
* path, and the first subflow must be already present.
1660
* Since the defer_connect flag is cleared after the first succsful
1661
* fastopen attempt, no need to check for additional subflow status.
1662
*/
1663
if (msg->msg_flags & MSG_FASTOPEN) {
1664
ssk = __mptcp_nmpc_sk(msk);
1665
if (IS_ERR(ssk))
1666
return PTR_ERR(ssk);
1667
}
1668
if (!msk->first)
1669
return -EINVAL;
1670
1671
ssk = msk->first;
1672
1673
lock_sock(ssk);
1674
msg->msg_flags |= MSG_DONTWAIT;
1675
msk->fastopening = 1;
1676
ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1677
msk->fastopening = 0;
1678
msg->msg_flags = saved_flags;
1679
release_sock(ssk);
1680
1681
/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1682
if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1683
ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1684
msg->msg_namelen, msg->msg_flags, 1);
1685
1686
/* Keep the same behaviour of plain TCP: zero the copied bytes in
1687
* case of any error, except timeout or signal
1688
*/
1689
if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1690
*copied_syn = 0;
1691
} else if (ret && ret != -EINPROGRESS) {
1692
/* The disconnect() op called by tcp_sendmsg_fastopen()/
1693
* __inet_stream_connect() can fail, due to looking check,
1694
* see mptcp_disconnect().
1695
* Attempt it again outside the problematic scope.
1696
*/
1697
if (!mptcp_disconnect(sk, 0)) {
1698
sk->sk_disconnects++;
1699
sk->sk_socket->state = SS_UNCONNECTED;
1700
}
1701
}
1702
inet_clear_bit(DEFER_CONNECT, sk);
1703
1704
return ret;
1705
}
1706
1707
static int do_copy_data_nocache(struct sock *sk, int copy,
1708
struct iov_iter *from, char *to)
1709
{
1710
if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1711
if (!copy_from_iter_full_nocache(to, copy, from))
1712
return -EFAULT;
1713
} else if (!copy_from_iter_full(to, copy, from)) {
1714
return -EFAULT;
1715
}
1716
return 0;
1717
}
1718
1719
/* open-code sk_stream_memory_free() plus sent limit computation to
1720
* avoid indirect calls in fast-path.
1721
* Called under the msk socket lock, so we can avoid a bunch of ONCE
1722
* annotations.
1723
*/
1724
static u32 mptcp_send_limit(const struct sock *sk)
1725
{
1726
const struct mptcp_sock *msk = mptcp_sk(sk);
1727
u32 limit, not_sent;
1728
1729
if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1730
return 0;
1731
1732
limit = mptcp_notsent_lowat(sk);
1733
if (limit == UINT_MAX)
1734
return UINT_MAX;
1735
1736
not_sent = msk->write_seq - msk->snd_nxt;
1737
if (not_sent >= limit)
1738
return 0;
1739
1740
return limit - not_sent;
1741
}
1742
1743
static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1744
{
1745
struct mptcp_sock *msk = mptcp_sk(sk);
1746
struct page_frag *pfrag;
1747
size_t copied = 0;
1748
int ret = 0;
1749
long timeo;
1750
1751
/* silently ignore everything else */
1752
msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1753
1754
lock_sock(sk);
1755
1756
if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1757
msg->msg_flags & MSG_FASTOPEN)) {
1758
int copied_syn = 0;
1759
1760
ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1761
copied += copied_syn;
1762
if (ret == -EINPROGRESS && copied_syn > 0)
1763
goto out;
1764
else if (ret)
1765
goto do_error;
1766
}
1767
1768
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1769
1770
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1771
ret = sk_stream_wait_connect(sk, &timeo);
1772
if (ret)
1773
goto do_error;
1774
}
1775
1776
ret = -EPIPE;
1777
if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1778
goto do_error;
1779
1780
pfrag = sk_page_frag(sk);
1781
1782
while (msg_data_left(msg)) {
1783
int total_ts, frag_truesize = 0;
1784
struct mptcp_data_frag *dfrag;
1785
bool dfrag_collapsed;
1786
size_t psize, offset;
1787
u32 copy_limit;
1788
1789
/* ensure fitting the notsent_lowat() constraint */
1790
copy_limit = mptcp_send_limit(sk);
1791
if (!copy_limit)
1792
goto wait_for_memory;
1793
1794
/* reuse tail pfrag, if possible, or carve a new one from the
1795
* page allocator
1796
*/
1797
dfrag = mptcp_pending_tail(sk);
1798
dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1799
if (!dfrag_collapsed) {
1800
if (!mptcp_page_frag_refill(sk, pfrag))
1801
goto wait_for_memory;
1802
1803
dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1804
frag_truesize = dfrag->overhead;
1805
}
1806
1807
/* we do not bound vs wspace, to allow a single packet.
1808
* memory accounting will prevent execessive memory usage
1809
* anyway
1810
*/
1811
offset = dfrag->offset + dfrag->data_len;
1812
psize = pfrag->size - offset;
1813
psize = min_t(size_t, psize, msg_data_left(msg));
1814
psize = min_t(size_t, psize, copy_limit);
1815
total_ts = psize + frag_truesize;
1816
1817
if (!sk_wmem_schedule(sk, total_ts))
1818
goto wait_for_memory;
1819
1820
ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1821
page_address(dfrag->page) + offset);
1822
if (ret)
1823
goto do_error;
1824
1825
/* data successfully copied into the write queue */
1826
sk_forward_alloc_add(sk, -total_ts);
1827
copied += psize;
1828
dfrag->data_len += psize;
1829
frag_truesize += psize;
1830
pfrag->offset += frag_truesize;
1831
WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1832
1833
/* charge data on mptcp pending queue to the msk socket
1834
* Note: we charge such data both to sk and ssk
1835
*/
1836
sk_wmem_queued_add(sk, frag_truesize);
1837
if (!dfrag_collapsed) {
1838
get_page(dfrag->page);
1839
list_add_tail(&dfrag->list, &msk->rtx_queue);
1840
if (!msk->first_pending)
1841
WRITE_ONCE(msk->first_pending, dfrag);
1842
}
1843
pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1844
dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1845
!dfrag_collapsed);
1846
1847
continue;
1848
1849
wait_for_memory:
1850
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1851
__mptcp_push_pending(sk, msg->msg_flags);
1852
ret = sk_stream_wait_memory(sk, &timeo);
1853
if (ret)
1854
goto do_error;
1855
}
1856
1857
if (copied)
1858
__mptcp_push_pending(sk, msg->msg_flags);
1859
1860
out:
1861
release_sock(sk);
1862
return copied;
1863
1864
do_error:
1865
if (copied)
1866
goto out;
1867
1868
copied = sk_stream_error(sk, msg->msg_flags, ret);
1869
goto out;
1870
}
1871
1872
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1873
1874
static int __mptcp_recvmsg_mskq(struct sock *sk,
1875
struct msghdr *msg,
1876
size_t len, int flags,
1877
struct scm_timestamping_internal *tss,
1878
int *cmsg_flags)
1879
{
1880
struct mptcp_sock *msk = mptcp_sk(sk);
1881
struct sk_buff *skb, *tmp;
1882
int copied = 0;
1883
1884
skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1885
u32 offset = MPTCP_SKB_CB(skb)->offset;
1886
u32 data_len = skb->len - offset;
1887
u32 count = min_t(size_t, len - copied, data_len);
1888
int err;
1889
1890
if (!(flags & MSG_TRUNC)) {
1891
err = skb_copy_datagram_msg(skb, offset, msg, count);
1892
if (unlikely(err < 0)) {
1893
if (!copied)
1894
return err;
1895
break;
1896
}
1897
}
1898
1899
if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1900
tcp_update_recv_tstamps(skb, tss);
1901
*cmsg_flags |= MPTCP_CMSG_TS;
1902
}
1903
1904
copied += count;
1905
1906
if (count < data_len) {
1907
if (!(flags & MSG_PEEK)) {
1908
MPTCP_SKB_CB(skb)->offset += count;
1909
MPTCP_SKB_CB(skb)->map_seq += count;
1910
msk->bytes_consumed += count;
1911
}
1912
break;
1913
}
1914
1915
if (!(flags & MSG_PEEK)) {
1916
/* avoid the indirect call, we know the destructor is sock_wfree */
1917
skb->destructor = NULL;
1918
atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1919
sk_mem_uncharge(sk, skb->truesize);
1920
__skb_unlink(skb, &sk->sk_receive_queue);
1921
__kfree_skb(skb);
1922
msk->bytes_consumed += count;
1923
}
1924
1925
if (copied >= len)
1926
break;
1927
}
1928
1929
mptcp_rcv_space_adjust(msk, copied);
1930
return copied;
1931
}
1932
1933
/* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1934
*
1935
* Only difference: Use highest rtt estimate of the subflows in use.
1936
*/
1937
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1938
{
1939
struct mptcp_subflow_context *subflow;
1940
struct sock *sk = (struct sock *)msk;
1941
u8 scaling_ratio = U8_MAX;
1942
u32 time, advmss = 1;
1943
u64 rtt_us, mstamp;
1944
1945
msk_owned_by_me(msk);
1946
1947
if (copied <= 0)
1948
return;
1949
1950
if (!msk->rcvspace_init)
1951
mptcp_rcv_space_init(msk, msk->first);
1952
1953
msk->rcvq_space.copied += copied;
1954
1955
mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1956
time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1957
1958
rtt_us = msk->rcvq_space.rtt_us;
1959
if (rtt_us && time < (rtt_us >> 3))
1960
return;
1961
1962
rtt_us = 0;
1963
mptcp_for_each_subflow(msk, subflow) {
1964
const struct tcp_sock *tp;
1965
u64 sf_rtt_us;
1966
u32 sf_advmss;
1967
1968
tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1969
1970
sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1971
sf_advmss = READ_ONCE(tp->advmss);
1972
1973
rtt_us = max(sf_rtt_us, rtt_us);
1974
advmss = max(sf_advmss, advmss);
1975
scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1976
}
1977
1978
msk->rcvq_space.rtt_us = rtt_us;
1979
msk->scaling_ratio = scaling_ratio;
1980
if (time < (rtt_us >> 3) || rtt_us == 0)
1981
return;
1982
1983
if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1984
goto new_measure;
1985
1986
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1987
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1988
u64 rcvwin, grow;
1989
int rcvbuf;
1990
1991
rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1992
1993
grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1994
1995
do_div(grow, msk->rcvq_space.space);
1996
rcvwin += (grow << 1);
1997
1998
rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1999
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2000
2001
if (rcvbuf > sk->sk_rcvbuf) {
2002
u32 window_clamp;
2003
2004
window_clamp = mptcp_win_from_space(sk, rcvbuf);
2005
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2006
2007
/* Make subflows follow along. If we do not do this, we
2008
* get drops at subflow level if skbs can't be moved to
2009
* the mptcp rx queue fast enough (announced rcv_win can
2010
* exceed ssk->sk_rcvbuf).
2011
*/
2012
mptcp_for_each_subflow(msk, subflow) {
2013
struct sock *ssk;
2014
bool slow;
2015
2016
ssk = mptcp_subflow_tcp_sock(subflow);
2017
slow = lock_sock_fast(ssk);
2018
WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2019
WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2020
if (tcp_can_send_ack(ssk))
2021
tcp_cleanup_rbuf(ssk, 1);
2022
unlock_sock_fast(ssk, slow);
2023
}
2024
}
2025
}
2026
2027
msk->rcvq_space.space = msk->rcvq_space.copied;
2028
new_measure:
2029
msk->rcvq_space.copied = 0;
2030
msk->rcvq_space.time = mstamp;
2031
}
2032
2033
static struct mptcp_subflow_context *
2034
__mptcp_first_ready_from(struct mptcp_sock *msk,
2035
struct mptcp_subflow_context *subflow)
2036
{
2037
struct mptcp_subflow_context *start_subflow = subflow;
2038
2039
while (!READ_ONCE(subflow->data_avail)) {
2040
subflow = mptcp_next_subflow(msk, subflow);
2041
if (subflow == start_subflow)
2042
return NULL;
2043
}
2044
return subflow;
2045
}
2046
2047
static bool __mptcp_move_skbs(struct sock *sk)
2048
{
2049
struct mptcp_subflow_context *subflow;
2050
struct mptcp_sock *msk = mptcp_sk(sk);
2051
bool ret = false;
2052
2053
if (list_empty(&msk->conn_list))
2054
return false;
2055
2056
/* verify we can move any data from the subflow, eventually updating */
2057
if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2058
mptcp_for_each_subflow(msk, subflow)
2059
__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2060
2061
subflow = list_first_entry(&msk->conn_list,
2062
struct mptcp_subflow_context, node);
2063
for (;;) {
2064
struct sock *ssk;
2065
bool slowpath;
2066
2067
/*
2068
* As an optimization avoid traversing the subflows list
2069
* and ev. acquiring the subflow socket lock before baling out
2070
*/
2071
if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2072
break;
2073
2074
subflow = __mptcp_first_ready_from(msk, subflow);
2075
if (!subflow)
2076
break;
2077
2078
ssk = mptcp_subflow_tcp_sock(subflow);
2079
slowpath = lock_sock_fast(ssk);
2080
ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2081
if (unlikely(ssk->sk_err))
2082
__mptcp_error_report(sk);
2083
unlock_sock_fast(ssk, slowpath);
2084
2085
subflow = mptcp_next_subflow(msk, subflow);
2086
}
2087
2088
__mptcp_ofo_queue(msk);
2089
if (ret)
2090
mptcp_check_data_fin((struct sock *)msk);
2091
return ret;
2092
}
2093
2094
static unsigned int mptcp_inq_hint(const struct sock *sk)
2095
{
2096
const struct mptcp_sock *msk = mptcp_sk(sk);
2097
const struct sk_buff *skb;
2098
2099
skb = skb_peek(&sk->sk_receive_queue);
2100
if (skb) {
2101
u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2102
2103
if (hint_val >= INT_MAX)
2104
return INT_MAX;
2105
2106
return (unsigned int)hint_val;
2107
}
2108
2109
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2110
return 1;
2111
2112
return 0;
2113
}
2114
2115
static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2116
int flags, int *addr_len)
2117
{
2118
struct mptcp_sock *msk = mptcp_sk(sk);
2119
struct scm_timestamping_internal tss;
2120
int copied = 0, cmsg_flags = 0;
2121
int target;
2122
long timeo;
2123
2124
/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2125
if (unlikely(flags & MSG_ERRQUEUE))
2126
return inet_recv_error(sk, msg, len, addr_len);
2127
2128
lock_sock(sk);
2129
if (unlikely(sk->sk_state == TCP_LISTEN)) {
2130
copied = -ENOTCONN;
2131
goto out_err;
2132
}
2133
2134
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2135
2136
len = min_t(size_t, len, INT_MAX);
2137
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2138
2139
if (unlikely(msk->recvmsg_inq))
2140
cmsg_flags = MPTCP_CMSG_INQ;
2141
2142
while (copied < len) {
2143
int err, bytes_read;
2144
2145
bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2146
if (unlikely(bytes_read < 0)) {
2147
if (!copied)
2148
copied = bytes_read;
2149
goto out_err;
2150
}
2151
2152
copied += bytes_read;
2153
2154
if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2155
continue;
2156
2157
/* only the MPTCP socket status is relevant here. The exit
2158
* conditions mirror closely tcp_recvmsg()
2159
*/
2160
if (copied >= target)
2161
break;
2162
2163
if (copied) {
2164
if (sk->sk_err ||
2165
sk->sk_state == TCP_CLOSE ||
2166
(sk->sk_shutdown & RCV_SHUTDOWN) ||
2167
!timeo ||
2168
signal_pending(current))
2169
break;
2170
} else {
2171
if (sk->sk_err) {
2172
copied = sock_error(sk);
2173
break;
2174
}
2175
2176
if (sk->sk_shutdown & RCV_SHUTDOWN) {
2177
/* race breaker: the shutdown could be after the
2178
* previous receive queue check
2179
*/
2180
if (__mptcp_move_skbs(sk))
2181
continue;
2182
break;
2183
}
2184
2185
if (sk->sk_state == TCP_CLOSE) {
2186
copied = -ENOTCONN;
2187
break;
2188
}
2189
2190
if (!timeo) {
2191
copied = -EAGAIN;
2192
break;
2193
}
2194
2195
if (signal_pending(current)) {
2196
copied = sock_intr_errno(timeo);
2197
break;
2198
}
2199
}
2200
2201
pr_debug("block timeout %ld\n", timeo);
2202
mptcp_cleanup_rbuf(msk, copied);
2203
err = sk_wait_data(sk, &timeo, NULL);
2204
if (err < 0) {
2205
err = copied ? : err;
2206
goto out_err;
2207
}
2208
}
2209
2210
mptcp_cleanup_rbuf(msk, copied);
2211
2212
out_err:
2213
if (cmsg_flags && copied >= 0) {
2214
if (cmsg_flags & MPTCP_CMSG_TS)
2215
tcp_recv_timestamp(msg, sk, &tss);
2216
2217
if (cmsg_flags & MPTCP_CMSG_INQ) {
2218
unsigned int inq = mptcp_inq_hint(sk);
2219
2220
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2221
}
2222
}
2223
2224
pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2225
msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2226
2227
release_sock(sk);
2228
return copied;
2229
}
2230
2231
static void mptcp_retransmit_timer(struct timer_list *t)
2232
{
2233
struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2234
icsk_retransmit_timer);
2235
struct sock *sk = &icsk->icsk_inet.sk;
2236
struct mptcp_sock *msk = mptcp_sk(sk);
2237
2238
bh_lock_sock(sk);
2239
if (!sock_owned_by_user(sk)) {
2240
/* we need a process context to retransmit */
2241
if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2242
mptcp_schedule_work(sk);
2243
} else {
2244
/* delegate our work to tcp_release_cb() */
2245
__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2246
}
2247
bh_unlock_sock(sk);
2248
sock_put(sk);
2249
}
2250
2251
static void mptcp_tout_timer(struct timer_list *t)
2252
{
2253
struct sock *sk = timer_container_of(sk, t, sk_timer);
2254
2255
mptcp_schedule_work(sk);
2256
sock_put(sk);
2257
}
2258
2259
/* Find an idle subflow. Return NULL if there is unacked data at tcp
2260
* level.
2261
*
2262
* A backup subflow is returned only if that is the only kind available.
2263
*/
2264
struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2265
{
2266
struct sock *backup = NULL, *pick = NULL;
2267
struct mptcp_subflow_context *subflow;
2268
int min_stale_count = INT_MAX;
2269
2270
mptcp_for_each_subflow(msk, subflow) {
2271
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2272
2273
if (!__mptcp_subflow_active(subflow))
2274
continue;
2275
2276
/* still data outstanding at TCP level? skip this */
2277
if (!tcp_rtx_and_write_queues_empty(ssk)) {
2278
mptcp_pm_subflow_chk_stale(msk, ssk);
2279
min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2280
continue;
2281
}
2282
2283
if (subflow->backup || subflow->request_bkup) {
2284
if (!backup)
2285
backup = ssk;
2286
continue;
2287
}
2288
2289
if (!pick)
2290
pick = ssk;
2291
}
2292
2293
if (pick)
2294
return pick;
2295
2296
/* use backup only if there are no progresses anywhere */
2297
return min_stale_count > 1 ? backup : NULL;
2298
}
2299
2300
bool __mptcp_retransmit_pending_data(struct sock *sk)
2301
{
2302
struct mptcp_data_frag *cur, *rtx_head;
2303
struct mptcp_sock *msk = mptcp_sk(sk);
2304
2305
if (__mptcp_check_fallback(msk))
2306
return false;
2307
2308
/* the closing socket has some data untransmitted and/or unacked:
2309
* some data in the mptcp rtx queue has not really xmitted yet.
2310
* keep it simple and re-inject the whole mptcp level rtx queue
2311
*/
2312
mptcp_data_lock(sk);
2313
__mptcp_clean_una_wakeup(sk);
2314
rtx_head = mptcp_rtx_head(sk);
2315
if (!rtx_head) {
2316
mptcp_data_unlock(sk);
2317
return false;
2318
}
2319
2320
msk->recovery_snd_nxt = msk->snd_nxt;
2321
msk->recovery = true;
2322
mptcp_data_unlock(sk);
2323
2324
msk->first_pending = rtx_head;
2325
msk->snd_burst = 0;
2326
2327
/* be sure to clear the "sent status" on all re-injected fragments */
2328
list_for_each_entry(cur, &msk->rtx_queue, list) {
2329
if (!cur->already_sent)
2330
break;
2331
cur->already_sent = 0;
2332
}
2333
2334
return true;
2335
}
2336
2337
/* flags for __mptcp_close_ssk() */
2338
#define MPTCP_CF_PUSH BIT(1)
2339
#define MPTCP_CF_FASTCLOSE BIT(2)
2340
2341
/* be sure to send a reset only if the caller asked for it, also
2342
* clean completely the subflow status when the subflow reaches
2343
* TCP_CLOSE state
2344
*/
2345
static void __mptcp_subflow_disconnect(struct sock *ssk,
2346
struct mptcp_subflow_context *subflow,
2347
unsigned int flags)
2348
{
2349
if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2350
(flags & MPTCP_CF_FASTCLOSE)) {
2351
/* The MPTCP code never wait on the subflow sockets, TCP-level
2352
* disconnect should never fail
2353
*/
2354
WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2355
mptcp_subflow_ctx_reset(subflow);
2356
} else {
2357
tcp_shutdown(ssk, SEND_SHUTDOWN);
2358
}
2359
}
2360
2361
/* subflow sockets can be either outgoing (connect) or incoming
2362
* (accept).
2363
*
2364
* Outgoing subflows use in-kernel sockets.
2365
* Incoming subflows do not have their own 'struct socket' allocated,
2366
* so we need to use tcp_close() after detaching them from the mptcp
2367
* parent socket.
2368
*/
2369
static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2370
struct mptcp_subflow_context *subflow,
2371
unsigned int flags)
2372
{
2373
struct mptcp_sock *msk = mptcp_sk(sk);
2374
bool dispose_it, need_push = false;
2375
2376
/* If the first subflow moved to a close state before accept, e.g. due
2377
* to an incoming reset or listener shutdown, the subflow socket is
2378
* already deleted by inet_child_forget() and the mptcp socket can't
2379
* survive too.
2380
*/
2381
if (msk->in_accept_queue && msk->first == ssk &&
2382
(sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2383
/* ensure later check in mptcp_worker() will dispose the msk */
2384
sock_set_flag(sk, SOCK_DEAD);
2385
mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2386
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2387
mptcp_subflow_drop_ctx(ssk);
2388
goto out_release;
2389
}
2390
2391
dispose_it = msk->free_first || ssk != msk->first;
2392
if (dispose_it)
2393
list_del(&subflow->node);
2394
2395
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2396
2397
if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2398
/* be sure to force the tcp_close path
2399
* to generate the egress reset
2400
*/
2401
ssk->sk_lingertime = 0;
2402
sock_set_flag(ssk, SOCK_LINGER);
2403
subflow->send_fastclose = 1;
2404
}
2405
2406
need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2407
if (!dispose_it) {
2408
__mptcp_subflow_disconnect(ssk, subflow, flags);
2409
release_sock(ssk);
2410
2411
goto out;
2412
}
2413
2414
subflow->disposable = 1;
2415
2416
/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2417
* the ssk has been already destroyed, we just need to release the
2418
* reference owned by msk;
2419
*/
2420
if (!inet_csk(ssk)->icsk_ulp_ops) {
2421
WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2422
kfree_rcu(subflow, rcu);
2423
} else {
2424
/* otherwise tcp will dispose of the ssk and subflow ctx */
2425
__tcp_close(ssk, 0);
2426
2427
/* close acquired an extra ref */
2428
__sock_put(ssk);
2429
}
2430
2431
out_release:
2432
__mptcp_subflow_error_report(sk, ssk);
2433
release_sock(ssk);
2434
2435
sock_put(ssk);
2436
2437
if (ssk == msk->first)
2438
WRITE_ONCE(msk->first, NULL);
2439
2440
out:
2441
__mptcp_sync_sndbuf(sk);
2442
if (need_push)
2443
__mptcp_push_pending(sk, 0);
2444
2445
/* Catch every 'all subflows closed' scenario, including peers silently
2446
* closing them, e.g. due to timeout.
2447
* For established sockets, allow an additional timeout before closing,
2448
* as the protocol can still create more subflows.
2449
*/
2450
if (list_is_singular(&msk->conn_list) && msk->first &&
2451
inet_sk_state_load(msk->first) == TCP_CLOSE) {
2452
if (sk->sk_state != TCP_ESTABLISHED ||
2453
msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2454
mptcp_set_state(sk, TCP_CLOSE);
2455
mptcp_close_wake_up(sk);
2456
} else {
2457
mptcp_start_tout_timer(sk);
2458
}
2459
}
2460
}
2461
2462
void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2463
struct mptcp_subflow_context *subflow)
2464
{
2465
/* The first subflow can already be closed and still in the list */
2466
if (subflow->close_event_done)
2467
return;
2468
2469
subflow->close_event_done = true;
2470
2471
if (sk->sk_state == TCP_ESTABLISHED)
2472
mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2473
2474
/* subflow aborted before reaching the fully_established status
2475
* attempt the creation of the next subflow
2476
*/
2477
mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2478
2479
__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2480
}
2481
2482
static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2483
{
2484
return 0;
2485
}
2486
2487
static void __mptcp_close_subflow(struct sock *sk)
2488
{
2489
struct mptcp_subflow_context *subflow, *tmp;
2490
struct mptcp_sock *msk = mptcp_sk(sk);
2491
2492
might_sleep();
2493
2494
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2495
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2496
int ssk_state = inet_sk_state_load(ssk);
2497
2498
if (ssk_state != TCP_CLOSE &&
2499
(ssk_state != TCP_CLOSE_WAIT ||
2500
inet_sk_state_load(sk) != TCP_ESTABLISHED))
2501
continue;
2502
2503
/* 'subflow_data_ready' will re-sched once rx queue is empty */
2504
if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2505
continue;
2506
2507
mptcp_close_ssk(sk, ssk, subflow);
2508
}
2509
2510
}
2511
2512
static bool mptcp_close_tout_expired(const struct sock *sk)
2513
{
2514
if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2515
sk->sk_state == TCP_CLOSE)
2516
return false;
2517
2518
return time_after32(tcp_jiffies32,
2519
inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2520
}
2521
2522
static void mptcp_check_fastclose(struct mptcp_sock *msk)
2523
{
2524
struct mptcp_subflow_context *subflow, *tmp;
2525
struct sock *sk = (struct sock *)msk;
2526
2527
if (likely(!READ_ONCE(msk->rcv_fastclose)))
2528
return;
2529
2530
mptcp_token_destroy(msk);
2531
2532
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2533
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2534
bool slow;
2535
2536
slow = lock_sock_fast(tcp_sk);
2537
if (tcp_sk->sk_state != TCP_CLOSE) {
2538
mptcp_send_active_reset_reason(tcp_sk);
2539
tcp_set_state(tcp_sk, TCP_CLOSE);
2540
}
2541
unlock_sock_fast(tcp_sk, slow);
2542
}
2543
2544
/* Mirror the tcp_reset() error propagation */
2545
switch (sk->sk_state) {
2546
case TCP_SYN_SENT:
2547
WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2548
break;
2549
case TCP_CLOSE_WAIT:
2550
WRITE_ONCE(sk->sk_err, EPIPE);
2551
break;
2552
case TCP_CLOSE:
2553
return;
2554
default:
2555
WRITE_ONCE(sk->sk_err, ECONNRESET);
2556
}
2557
2558
mptcp_set_state(sk, TCP_CLOSE);
2559
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2560
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2561
set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2562
2563
/* the calling mptcp_worker will properly destroy the socket */
2564
if (sock_flag(sk, SOCK_DEAD))
2565
return;
2566
2567
sk->sk_state_change(sk);
2568
sk_error_report(sk);
2569
}
2570
2571
static void __mptcp_retrans(struct sock *sk)
2572
{
2573
struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2574
struct mptcp_sock *msk = mptcp_sk(sk);
2575
struct mptcp_subflow_context *subflow;
2576
struct mptcp_data_frag *dfrag;
2577
struct sock *ssk;
2578
int ret, err;
2579
u16 len = 0;
2580
2581
mptcp_clean_una_wakeup(sk);
2582
2583
/* first check ssk: need to kick "stale" logic */
2584
err = mptcp_sched_get_retrans(msk);
2585
dfrag = mptcp_rtx_head(sk);
2586
if (!dfrag) {
2587
if (mptcp_data_fin_enabled(msk)) {
2588
struct inet_connection_sock *icsk = inet_csk(sk);
2589
2590
icsk->icsk_retransmits++;
2591
mptcp_set_datafin_timeout(sk);
2592
mptcp_send_ack(msk);
2593
2594
goto reset_timer;
2595
}
2596
2597
if (!mptcp_send_head(sk))
2598
return;
2599
2600
goto reset_timer;
2601
}
2602
2603
if (err)
2604
goto reset_timer;
2605
2606
mptcp_for_each_subflow(msk, subflow) {
2607
if (READ_ONCE(subflow->scheduled)) {
2608
u16 copied = 0;
2609
2610
mptcp_subflow_set_scheduled(subflow, false);
2611
2612
ssk = mptcp_subflow_tcp_sock(subflow);
2613
2614
lock_sock(ssk);
2615
2616
/* limit retransmission to the bytes already sent on some subflows */
2617
info.sent = 0;
2618
info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2619
dfrag->already_sent;
2620
2621
/*
2622
* make the whole retrans decision, xmit, disallow
2623
* fallback atomic
2624
*/
2625
spin_lock_bh(&msk->fallback_lock);
2626
if (__mptcp_check_fallback(msk)) {
2627
spin_unlock_bh(&msk->fallback_lock);
2628
release_sock(ssk);
2629
return;
2630
}
2631
2632
while (info.sent < info.limit) {
2633
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2634
if (ret <= 0)
2635
break;
2636
2637
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2638
copied += ret;
2639
info.sent += ret;
2640
}
2641
if (copied) {
2642
len = max(copied, len);
2643
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2644
info.size_goal);
2645
msk->allow_infinite_fallback = false;
2646
}
2647
spin_unlock_bh(&msk->fallback_lock);
2648
2649
release_sock(ssk);
2650
}
2651
}
2652
2653
msk->bytes_retrans += len;
2654
dfrag->already_sent = max(dfrag->already_sent, len);
2655
2656
reset_timer:
2657
mptcp_check_and_set_pending(sk);
2658
2659
if (!mptcp_rtx_timer_pending(sk))
2660
mptcp_reset_rtx_timer(sk);
2661
}
2662
2663
/* schedule the timeout timer for the relevant event: either close timeout
2664
* or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2665
*/
2666
void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2667
{
2668
struct sock *sk = (struct sock *)msk;
2669
unsigned long timeout, close_timeout;
2670
2671
if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2672
return;
2673
2674
close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2675
tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2676
2677
/* the close timeout takes precedence on the fail one, and here at least one of
2678
* them is active
2679
*/
2680
timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2681
2682
sk_reset_timer(sk, &sk->sk_timer, timeout);
2683
}
2684
2685
static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2686
{
2687
struct sock *ssk = msk->first;
2688
bool slow;
2689
2690
if (!ssk)
2691
return;
2692
2693
pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2694
2695
slow = lock_sock_fast(ssk);
2696
mptcp_subflow_reset(ssk);
2697
WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2698
unlock_sock_fast(ssk, slow);
2699
}
2700
2701
static void mptcp_do_fastclose(struct sock *sk)
2702
{
2703
struct mptcp_subflow_context *subflow, *tmp;
2704
struct mptcp_sock *msk = mptcp_sk(sk);
2705
2706
mptcp_set_state(sk, TCP_CLOSE);
2707
mptcp_for_each_subflow_safe(msk, subflow, tmp)
2708
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2709
subflow, MPTCP_CF_FASTCLOSE);
2710
}
2711
2712
static void mptcp_worker(struct work_struct *work)
2713
{
2714
struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2715
struct sock *sk = (struct sock *)msk;
2716
unsigned long fail_tout;
2717
int state;
2718
2719
lock_sock(sk);
2720
state = sk->sk_state;
2721
if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2722
goto unlock;
2723
2724
mptcp_check_fastclose(msk);
2725
2726
mptcp_pm_worker(msk);
2727
2728
mptcp_check_send_data_fin(sk);
2729
mptcp_check_data_fin_ack(sk);
2730
mptcp_check_data_fin(sk);
2731
2732
if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2733
__mptcp_close_subflow(sk);
2734
2735
if (mptcp_close_tout_expired(sk)) {
2736
mptcp_do_fastclose(sk);
2737
mptcp_close_wake_up(sk);
2738
}
2739
2740
if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2741
__mptcp_destroy_sock(sk);
2742
goto unlock;
2743
}
2744
2745
if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2746
__mptcp_retrans(sk);
2747
2748
fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2749
if (fail_tout && time_after(jiffies, fail_tout))
2750
mptcp_mp_fail_no_response(msk);
2751
2752
unlock:
2753
release_sock(sk);
2754
sock_put(sk);
2755
}
2756
2757
static void __mptcp_init_sock(struct sock *sk)
2758
{
2759
struct mptcp_sock *msk = mptcp_sk(sk);
2760
2761
INIT_LIST_HEAD(&msk->conn_list);
2762
INIT_LIST_HEAD(&msk->join_list);
2763
INIT_LIST_HEAD(&msk->rtx_queue);
2764
INIT_WORK(&msk->work, mptcp_worker);
2765
msk->out_of_order_queue = RB_ROOT;
2766
msk->first_pending = NULL;
2767
msk->timer_ival = TCP_RTO_MIN;
2768
msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2769
2770
WRITE_ONCE(msk->first, NULL);
2771
inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2772
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2773
msk->allow_infinite_fallback = true;
2774
msk->allow_subflows = true;
2775
msk->recovery = false;
2776
msk->subflow_id = 1;
2777
msk->last_data_sent = tcp_jiffies32;
2778
msk->last_data_recv = tcp_jiffies32;
2779
msk->last_ack_recv = tcp_jiffies32;
2780
2781
mptcp_pm_data_init(msk);
2782
spin_lock_init(&msk->fallback_lock);
2783
2784
/* re-use the csk retrans timer for MPTCP-level retrans */
2785
timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2786
timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2787
}
2788
2789
static void mptcp_ca_reset(struct sock *sk)
2790
{
2791
struct inet_connection_sock *icsk = inet_csk(sk);
2792
2793
tcp_assign_congestion_control(sk);
2794
strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2795
sizeof(mptcp_sk(sk)->ca_name));
2796
2797
/* no need to keep a reference to the ops, the name will suffice */
2798
tcp_cleanup_congestion_control(sk);
2799
icsk->icsk_ca_ops = NULL;
2800
}
2801
2802
static int mptcp_init_sock(struct sock *sk)
2803
{
2804
struct net *net = sock_net(sk);
2805
int ret;
2806
2807
__mptcp_init_sock(sk);
2808
2809
if (!mptcp_is_enabled(net))
2810
return -ENOPROTOOPT;
2811
2812
if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2813
return -ENOMEM;
2814
2815
rcu_read_lock();
2816
ret = mptcp_init_sched(mptcp_sk(sk),
2817
mptcp_sched_find(mptcp_get_scheduler(net)));
2818
rcu_read_unlock();
2819
if (ret)
2820
return ret;
2821
2822
set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2823
2824
/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2825
* propagate the correct value
2826
*/
2827
mptcp_ca_reset(sk);
2828
2829
sk_sockets_allocated_inc(sk);
2830
sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2831
sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2832
2833
return 0;
2834
}
2835
2836
static void __mptcp_clear_xmit(struct sock *sk)
2837
{
2838
struct mptcp_sock *msk = mptcp_sk(sk);
2839
struct mptcp_data_frag *dtmp, *dfrag;
2840
2841
WRITE_ONCE(msk->first_pending, NULL);
2842
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2843
dfrag_clear(sk, dfrag);
2844
}
2845
2846
void mptcp_cancel_work(struct sock *sk)
2847
{
2848
struct mptcp_sock *msk = mptcp_sk(sk);
2849
2850
if (cancel_work_sync(&msk->work))
2851
__sock_put(sk);
2852
}
2853
2854
void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2855
{
2856
lock_sock(ssk);
2857
2858
switch (ssk->sk_state) {
2859
case TCP_LISTEN:
2860
if (!(how & RCV_SHUTDOWN))
2861
break;
2862
fallthrough;
2863
case TCP_SYN_SENT:
2864
WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2865
break;
2866
default:
2867
if (__mptcp_check_fallback(mptcp_sk(sk))) {
2868
pr_debug("Fallback\n");
2869
ssk->sk_shutdown |= how;
2870
tcp_shutdown(ssk, how);
2871
2872
/* simulate the data_fin ack reception to let the state
2873
* machine move forward
2874
*/
2875
WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2876
mptcp_schedule_work(sk);
2877
} else {
2878
pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2879
tcp_send_ack(ssk);
2880
if (!mptcp_rtx_timer_pending(sk))
2881
mptcp_reset_rtx_timer(sk);
2882
}
2883
break;
2884
}
2885
2886
release_sock(ssk);
2887
}
2888
2889
void mptcp_set_state(struct sock *sk, int state)
2890
{
2891
int oldstate = sk->sk_state;
2892
2893
switch (state) {
2894
case TCP_ESTABLISHED:
2895
if (oldstate != TCP_ESTABLISHED)
2896
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2897
break;
2898
case TCP_CLOSE_WAIT:
2899
/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2900
* MPTCP "accepted" sockets will be created later on. So no
2901
* transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2902
*/
2903
break;
2904
default:
2905
if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2906
MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2907
}
2908
2909
inet_sk_state_store(sk, state);
2910
}
2911
2912
static const unsigned char new_state[16] = {
2913
/* current state: new state: action: */
2914
[0 /* (Invalid) */] = TCP_CLOSE,
2915
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2916
[TCP_SYN_SENT] = TCP_CLOSE,
2917
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2918
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2919
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2920
[TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2921
[TCP_CLOSE] = TCP_CLOSE,
2922
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2923
[TCP_LAST_ACK] = TCP_LAST_ACK,
2924
[TCP_LISTEN] = TCP_CLOSE,
2925
[TCP_CLOSING] = TCP_CLOSING,
2926
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2927
};
2928
2929
static int mptcp_close_state(struct sock *sk)
2930
{
2931
int next = (int)new_state[sk->sk_state];
2932
int ns = next & TCP_STATE_MASK;
2933
2934
mptcp_set_state(sk, ns);
2935
2936
return next & TCP_ACTION_FIN;
2937
}
2938
2939
static void mptcp_check_send_data_fin(struct sock *sk)
2940
{
2941
struct mptcp_subflow_context *subflow;
2942
struct mptcp_sock *msk = mptcp_sk(sk);
2943
2944
pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2945
msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2946
msk->snd_nxt, msk->write_seq);
2947
2948
/* we still need to enqueue subflows or not really shutting down,
2949
* skip this
2950
*/
2951
if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2952
mptcp_send_head(sk))
2953
return;
2954
2955
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2956
2957
mptcp_for_each_subflow(msk, subflow) {
2958
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2959
2960
mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2961
}
2962
}
2963
2964
static void __mptcp_wr_shutdown(struct sock *sk)
2965
{
2966
struct mptcp_sock *msk = mptcp_sk(sk);
2967
2968
pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2969
msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2970
!!mptcp_send_head(sk));
2971
2972
/* will be ignored by fallback sockets */
2973
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2974
WRITE_ONCE(msk->snd_data_fin_enable, 1);
2975
2976
mptcp_check_send_data_fin(sk);
2977
}
2978
2979
static void __mptcp_destroy_sock(struct sock *sk)
2980
{
2981
struct mptcp_sock *msk = mptcp_sk(sk);
2982
2983
pr_debug("msk=%p\n", msk);
2984
2985
might_sleep();
2986
2987
mptcp_stop_rtx_timer(sk);
2988
sk_stop_timer(sk, &sk->sk_timer);
2989
msk->pm.status = 0;
2990
mptcp_release_sched(msk);
2991
2992
sk->sk_prot->destroy(sk);
2993
2994
sk_stream_kill_queues(sk);
2995
xfrm_sk_free_policy(sk);
2996
2997
sock_put(sk);
2998
}
2999
3000
void __mptcp_unaccepted_force_close(struct sock *sk)
3001
{
3002
sock_set_flag(sk, SOCK_DEAD);
3003
mptcp_do_fastclose(sk);
3004
__mptcp_destroy_sock(sk);
3005
}
3006
3007
static __poll_t mptcp_check_readable(struct sock *sk)
3008
{
3009
return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3010
}
3011
3012
static void mptcp_check_listen_stop(struct sock *sk)
3013
{
3014
struct sock *ssk;
3015
3016
if (inet_sk_state_load(sk) != TCP_LISTEN)
3017
return;
3018
3019
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3020
ssk = mptcp_sk(sk)->first;
3021
if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3022
return;
3023
3024
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3025
tcp_set_state(ssk, TCP_CLOSE);
3026
mptcp_subflow_queue_clean(sk, ssk);
3027
inet_csk_listen_stop(ssk);
3028
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3029
release_sock(ssk);
3030
}
3031
3032
bool __mptcp_close(struct sock *sk, long timeout)
3033
{
3034
struct mptcp_subflow_context *subflow;
3035
struct mptcp_sock *msk = mptcp_sk(sk);
3036
bool do_cancel_work = false;
3037
int subflows_alive = 0;
3038
3039
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3040
3041
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3042
mptcp_check_listen_stop(sk);
3043
mptcp_set_state(sk, TCP_CLOSE);
3044
goto cleanup;
3045
}
3046
3047
if (mptcp_data_avail(msk) || timeout < 0) {
3048
/* If the msk has read data, or the caller explicitly ask it,
3049
* do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3050
*/
3051
mptcp_do_fastclose(sk);
3052
timeout = 0;
3053
} else if (mptcp_close_state(sk)) {
3054
__mptcp_wr_shutdown(sk);
3055
}
3056
3057
sk_stream_wait_close(sk, timeout);
3058
3059
cleanup:
3060
/* orphan all the subflows */
3061
mptcp_for_each_subflow(msk, subflow) {
3062
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3063
bool slow = lock_sock_fast_nested(ssk);
3064
3065
subflows_alive += ssk->sk_state != TCP_CLOSE;
3066
3067
/* since the close timeout takes precedence on the fail one,
3068
* cancel the latter
3069
*/
3070
if (ssk == msk->first)
3071
subflow->fail_tout = 0;
3072
3073
/* detach from the parent socket, but allow data_ready to
3074
* push incoming data into the mptcp stack, to properly ack it
3075
*/
3076
ssk->sk_socket = NULL;
3077
ssk->sk_wq = NULL;
3078
unlock_sock_fast(ssk, slow);
3079
}
3080
sock_orphan(sk);
3081
3082
/* all the subflows are closed, only timeout can change the msk
3083
* state, let's not keep resources busy for no reasons
3084
*/
3085
if (subflows_alive == 0)
3086
mptcp_set_state(sk, TCP_CLOSE);
3087
3088
sock_hold(sk);
3089
pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3090
mptcp_pm_connection_closed(msk);
3091
3092
if (sk->sk_state == TCP_CLOSE) {
3093
__mptcp_destroy_sock(sk);
3094
do_cancel_work = true;
3095
} else {
3096
mptcp_start_tout_timer(sk);
3097
}
3098
3099
return do_cancel_work;
3100
}
3101
3102
static void mptcp_close(struct sock *sk, long timeout)
3103
{
3104
bool do_cancel_work;
3105
3106
lock_sock(sk);
3107
3108
do_cancel_work = __mptcp_close(sk, timeout);
3109
release_sock(sk);
3110
if (do_cancel_work)
3111
mptcp_cancel_work(sk);
3112
3113
sock_put(sk);
3114
}
3115
3116
static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3117
{
3118
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3119
const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3120
struct ipv6_pinfo *msk6 = inet6_sk(msk);
3121
3122
msk->sk_v6_daddr = ssk->sk_v6_daddr;
3123
msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3124
3125
if (msk6 && ssk6) {
3126
msk6->saddr = ssk6->saddr;
3127
msk6->flow_label = ssk6->flow_label;
3128
}
3129
#endif
3130
3131
inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3132
inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3133
inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3134
inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3135
inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3136
inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3137
}
3138
3139
static int mptcp_disconnect(struct sock *sk, int flags)
3140
{
3141
struct mptcp_sock *msk = mptcp_sk(sk);
3142
3143
/* We are on the fastopen error path. We can't call straight into the
3144
* subflows cleanup code due to lock nesting (we are already under
3145
* msk->firstsocket lock).
3146
*/
3147
if (msk->fastopening)
3148
return -EBUSY;
3149
3150
mptcp_check_listen_stop(sk);
3151
mptcp_set_state(sk, TCP_CLOSE);
3152
3153
mptcp_stop_rtx_timer(sk);
3154
mptcp_stop_tout_timer(sk);
3155
3156
mptcp_pm_connection_closed(msk);
3157
3158
/* msk->subflow is still intact, the following will not free the first
3159
* subflow
3160
*/
3161
mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3162
3163
/* The first subflow is already in TCP_CLOSE status, the following
3164
* can't overlap with a fallback anymore
3165
*/
3166
spin_lock_bh(&msk->fallback_lock);
3167
msk->allow_subflows = true;
3168
msk->allow_infinite_fallback = true;
3169
WRITE_ONCE(msk->flags, 0);
3170
spin_unlock_bh(&msk->fallback_lock);
3171
3172
msk->cb_flags = 0;
3173
msk->recovery = false;
3174
WRITE_ONCE(msk->can_ack, false);
3175
WRITE_ONCE(msk->fully_established, false);
3176
WRITE_ONCE(msk->rcv_data_fin, false);
3177
WRITE_ONCE(msk->snd_data_fin_enable, false);
3178
WRITE_ONCE(msk->rcv_fastclose, false);
3179
WRITE_ONCE(msk->use_64bit_ack, false);
3180
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3181
mptcp_pm_data_reset(msk);
3182
mptcp_ca_reset(sk);
3183
msk->bytes_consumed = 0;
3184
msk->bytes_acked = 0;
3185
msk->bytes_received = 0;
3186
msk->bytes_sent = 0;
3187
msk->bytes_retrans = 0;
3188
msk->rcvspace_init = 0;
3189
3190
WRITE_ONCE(sk->sk_shutdown, 0);
3191
sk_error_report(sk);
3192
return 0;
3193
}
3194
3195
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3196
static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3197
{
3198
struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3199
3200
return &msk6->np;
3201
}
3202
3203
static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3204
{
3205
const struct ipv6_pinfo *np = inet6_sk(sk);
3206
struct ipv6_txoptions *opt;
3207
struct ipv6_pinfo *newnp;
3208
3209
newnp = inet6_sk(newsk);
3210
3211
rcu_read_lock();
3212
opt = rcu_dereference(np->opt);
3213
if (opt) {
3214
opt = ipv6_dup_options(newsk, opt);
3215
if (!opt)
3216
net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3217
}
3218
RCU_INIT_POINTER(newnp->opt, opt);
3219
rcu_read_unlock();
3220
}
3221
#endif
3222
3223
static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3224
{
3225
struct ip_options_rcu *inet_opt, *newopt = NULL;
3226
const struct inet_sock *inet = inet_sk(sk);
3227
struct inet_sock *newinet;
3228
3229
newinet = inet_sk(newsk);
3230
3231
rcu_read_lock();
3232
inet_opt = rcu_dereference(inet->inet_opt);
3233
if (inet_opt) {
3234
newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3235
inet_opt->opt.optlen, GFP_ATOMIC);
3236
if (!newopt)
3237
net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3238
}
3239
RCU_INIT_POINTER(newinet->inet_opt, newopt);
3240
rcu_read_unlock();
3241
}
3242
3243
struct sock *mptcp_sk_clone_init(const struct sock *sk,
3244
const struct mptcp_options_received *mp_opt,
3245
struct sock *ssk,
3246
struct request_sock *req)
3247
{
3248
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3249
struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3250
struct mptcp_subflow_context *subflow;
3251
struct mptcp_sock *msk;
3252
3253
if (!nsk)
3254
return NULL;
3255
3256
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3257
if (nsk->sk_family == AF_INET6)
3258
inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3259
#endif
3260
3261
__mptcp_init_sock(nsk);
3262
3263
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3264
if (nsk->sk_family == AF_INET6)
3265
mptcp_copy_ip6_options(nsk, sk);
3266
else
3267
#endif
3268
mptcp_copy_ip_options(nsk, sk);
3269
3270
msk = mptcp_sk(nsk);
3271
WRITE_ONCE(msk->local_key, subflow_req->local_key);
3272
WRITE_ONCE(msk->token, subflow_req->token);
3273
msk->in_accept_queue = 1;
3274
WRITE_ONCE(msk->fully_established, false);
3275
if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3276
WRITE_ONCE(msk->csum_enabled, true);
3277
3278
WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3279
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3280
WRITE_ONCE(msk->snd_una, msk->write_seq);
3281
WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3282
msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3283
mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3284
3285
/* passive msk is created after the first/MPC subflow */
3286
msk->subflow_id = 2;
3287
3288
sock_reset_flag(nsk, SOCK_RCU_FREE);
3289
security_inet_csk_clone(nsk, req);
3290
3291
/* this can't race with mptcp_close(), as the msk is
3292
* not yet exposted to user-space
3293
*/
3294
mptcp_set_state(nsk, TCP_ESTABLISHED);
3295
3296
/* The msk maintain a ref to each subflow in the connections list */
3297
WRITE_ONCE(msk->first, ssk);
3298
subflow = mptcp_subflow_ctx(ssk);
3299
list_add(&subflow->node, &msk->conn_list);
3300
sock_hold(ssk);
3301
3302
/* new mpc subflow takes ownership of the newly
3303
* created mptcp socket
3304
*/
3305
mptcp_token_accept(subflow_req, msk);
3306
3307
/* set msk addresses early to ensure mptcp_pm_get_local_id()
3308
* uses the correct data
3309
*/
3310
mptcp_copy_inaddrs(nsk, ssk);
3311
__mptcp_propagate_sndbuf(nsk, ssk);
3312
3313
mptcp_rcv_space_init(msk, ssk);
3314
3315
if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3316
__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3317
bh_unlock_sock(nsk);
3318
3319
/* note: the newly allocated socket refcount is 2 now */
3320
return nsk;
3321
}
3322
3323
void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3324
{
3325
const struct tcp_sock *tp = tcp_sk(ssk);
3326
3327
msk->rcvspace_init = 1;
3328
msk->rcvq_space.copied = 0;
3329
msk->rcvq_space.rtt_us = 0;
3330
3331
msk->rcvq_space.time = tp->tcp_mstamp;
3332
3333
/* initial rcv_space offering made to peer */
3334
msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3335
TCP_INIT_CWND * tp->advmss);
3336
if (msk->rcvq_space.space == 0)
3337
msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3338
}
3339
3340
void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3341
{
3342
struct mptcp_subflow_context *subflow, *tmp;
3343
struct sock *sk = (struct sock *)msk;
3344
3345
__mptcp_clear_xmit(sk);
3346
3347
/* join list will be eventually flushed (with rst) at sock lock release time */
3348
mptcp_for_each_subflow_safe(msk, subflow, tmp)
3349
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3350
3351
__skb_queue_purge(&sk->sk_receive_queue);
3352
skb_rbtree_purge(&msk->out_of_order_queue);
3353
3354
/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3355
* inet_sock_destruct() will dispose it
3356
*/
3357
mptcp_token_destroy(msk);
3358
mptcp_pm_destroy(msk);
3359
}
3360
3361
static void mptcp_destroy(struct sock *sk)
3362
{
3363
struct mptcp_sock *msk = mptcp_sk(sk);
3364
3365
/* allow the following to close even the initial subflow */
3366
msk->free_first = 1;
3367
mptcp_destroy_common(msk, 0);
3368
sk_sockets_allocated_dec(sk);
3369
}
3370
3371
void __mptcp_data_acked(struct sock *sk)
3372
{
3373
if (!sock_owned_by_user(sk))
3374
__mptcp_clean_una(sk);
3375
else
3376
__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3377
}
3378
3379
void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3380
{
3381
if (!mptcp_send_head(sk))
3382
return;
3383
3384
if (!sock_owned_by_user(sk))
3385
__mptcp_subflow_push_pending(sk, ssk, false);
3386
else
3387
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3388
}
3389
3390
#define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3391
BIT(MPTCP_RETRANSMIT) | \
3392
BIT(MPTCP_FLUSH_JOIN_LIST) | \
3393
BIT(MPTCP_DEQUEUE))
3394
3395
/* processes deferred events and flush wmem */
3396
static void mptcp_release_cb(struct sock *sk)
3397
__must_hold(&sk->sk_lock.slock)
3398
{
3399
struct mptcp_sock *msk = mptcp_sk(sk);
3400
3401
for (;;) {
3402
unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3403
struct list_head join_list;
3404
3405
if (!flags)
3406
break;
3407
3408
INIT_LIST_HEAD(&join_list);
3409
list_splice_init(&msk->join_list, &join_list);
3410
3411
/* the following actions acquire the subflow socket lock
3412
*
3413
* 1) can't be invoked in atomic scope
3414
* 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3415
* datapath acquires the msk socket spinlock while helding
3416
* the subflow socket lock
3417
*/
3418
msk->cb_flags &= ~flags;
3419
spin_unlock_bh(&sk->sk_lock.slock);
3420
3421
if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3422
__mptcp_flush_join_list(sk, &join_list);
3423
if (flags & BIT(MPTCP_PUSH_PENDING))
3424
__mptcp_push_pending(sk, 0);
3425
if (flags & BIT(MPTCP_RETRANSMIT))
3426
__mptcp_retrans(sk);
3427
if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3428
/* notify ack seq update */
3429
mptcp_cleanup_rbuf(msk, 0);
3430
sk->sk_data_ready(sk);
3431
}
3432
3433
cond_resched();
3434
spin_lock_bh(&sk->sk_lock.slock);
3435
}
3436
3437
if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3438
__mptcp_clean_una_wakeup(sk);
3439
if (unlikely(msk->cb_flags)) {
3440
/* be sure to sync the msk state before taking actions
3441
* depending on sk_state (MPTCP_ERROR_REPORT)
3442
* On sk release avoid actions depending on the first subflow
3443
*/
3444
if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3445
__mptcp_sync_state(sk, msk->pending_state);
3446
if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3447
__mptcp_error_report(sk);
3448
if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3449
__mptcp_sync_sndbuf(sk);
3450
}
3451
}
3452
3453
/* MP_JOIN client subflow must wait for 4th ack before sending any data:
3454
* TCP can't schedule delack timer before the subflow is fully established.
3455
* MPTCP uses the delack timer to do 3rd ack retransmissions
3456
*/
3457
static void schedule_3rdack_retransmission(struct sock *ssk)
3458
{
3459
struct inet_connection_sock *icsk = inet_csk(ssk);
3460
struct tcp_sock *tp = tcp_sk(ssk);
3461
unsigned long timeout;
3462
3463
if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3464
return;
3465
3466
/* reschedule with a timeout above RTT, as we must look only for drop */
3467
if (tp->srtt_us)
3468
timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3469
else
3470
timeout = TCP_TIMEOUT_INIT;
3471
timeout += jiffies;
3472
3473
WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3474
smp_store_release(&icsk->icsk_ack.pending,
3475
icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3476
sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3477
}
3478
3479
void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3480
{
3481
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3482
struct sock *sk = subflow->conn;
3483
3484
if (status & BIT(MPTCP_DELEGATE_SEND)) {
3485
mptcp_data_lock(sk);
3486
if (!sock_owned_by_user(sk))
3487
__mptcp_subflow_push_pending(sk, ssk, true);
3488
else
3489
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3490
mptcp_data_unlock(sk);
3491
}
3492
if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3493
mptcp_data_lock(sk);
3494
if (!sock_owned_by_user(sk))
3495
__mptcp_sync_sndbuf(sk);
3496
else
3497
__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3498
mptcp_data_unlock(sk);
3499
}
3500
if (status & BIT(MPTCP_DELEGATE_ACK))
3501
schedule_3rdack_retransmission(ssk);
3502
}
3503
3504
static int mptcp_hash(struct sock *sk)
3505
{
3506
/* should never be called,
3507
* we hash the TCP subflows not the MPTCP socket
3508
*/
3509
WARN_ON_ONCE(1);
3510
return 0;
3511
}
3512
3513
static void mptcp_unhash(struct sock *sk)
3514
{
3515
/* called from sk_common_release(), but nothing to do here */
3516
}
3517
3518
static int mptcp_get_port(struct sock *sk, unsigned short snum)
3519
{
3520
struct mptcp_sock *msk = mptcp_sk(sk);
3521
3522
pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3523
if (WARN_ON_ONCE(!msk->first))
3524
return -EINVAL;
3525
3526
return inet_csk_get_port(msk->first, snum);
3527
}
3528
3529
void mptcp_finish_connect(struct sock *ssk)
3530
{
3531
struct mptcp_subflow_context *subflow;
3532
struct mptcp_sock *msk;
3533
struct sock *sk;
3534
3535
subflow = mptcp_subflow_ctx(ssk);
3536
sk = subflow->conn;
3537
msk = mptcp_sk(sk);
3538
3539
pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3540
3541
subflow->map_seq = subflow->iasn;
3542
subflow->map_subflow_seq = 1;
3543
3544
/* the socket is not connected yet, no msk/subflow ops can access/race
3545
* accessing the field below
3546
*/
3547
WRITE_ONCE(msk->local_key, subflow->local_key);
3548
3549
mptcp_pm_new_connection(msk, ssk, 0);
3550
}
3551
3552
void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3553
{
3554
write_lock_bh(&sk->sk_callback_lock);
3555
rcu_assign_pointer(sk->sk_wq, &parent->wq);
3556
sk_set_socket(sk, parent);
3557
write_unlock_bh(&sk->sk_callback_lock);
3558
}
3559
3560
bool mptcp_finish_join(struct sock *ssk)
3561
{
3562
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3563
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3564
struct sock *parent = (void *)msk;
3565
bool ret = true;
3566
3567
pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3568
3569
/* mptcp socket already closing? */
3570
if (!mptcp_is_fully_established(parent)) {
3571
subflow->reset_reason = MPTCP_RST_EMPTCP;
3572
return false;
3573
}
3574
3575
/* active subflow, already present inside the conn_list */
3576
if (!list_empty(&subflow->node)) {
3577
spin_lock_bh(&msk->fallback_lock);
3578
if (!msk->allow_subflows) {
3579
spin_unlock_bh(&msk->fallback_lock);
3580
return false;
3581
}
3582
mptcp_subflow_joined(msk, ssk);
3583
spin_unlock_bh(&msk->fallback_lock);
3584
mptcp_propagate_sndbuf(parent, ssk);
3585
return true;
3586
}
3587
3588
if (!mptcp_pm_allow_new_subflow(msk)) {
3589
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3590
goto err_prohibited;
3591
}
3592
3593
/* If we can't acquire msk socket lock here, let the release callback
3594
* handle it
3595
*/
3596
mptcp_data_lock(parent);
3597
if (!sock_owned_by_user(parent)) {
3598
ret = __mptcp_finish_join(msk, ssk);
3599
if (ret) {
3600
sock_hold(ssk);
3601
list_add_tail(&subflow->node, &msk->conn_list);
3602
}
3603
} else {
3604
sock_hold(ssk);
3605
list_add_tail(&subflow->node, &msk->join_list);
3606
__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3607
}
3608
mptcp_data_unlock(parent);
3609
3610
if (!ret) {
3611
err_prohibited:
3612
subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3613
return false;
3614
}
3615
3616
return true;
3617
}
3618
3619
static void mptcp_shutdown(struct sock *sk, int how)
3620
{
3621
pr_debug("sk=%p, how=%d\n", sk, how);
3622
3623
if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3624
__mptcp_wr_shutdown(sk);
3625
}
3626
3627
static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3628
{
3629
const struct sock *sk = (void *)msk;
3630
u64 delta;
3631
3632
if (sk->sk_state == TCP_LISTEN)
3633
return -EINVAL;
3634
3635
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3636
return 0;
3637
3638
delta = msk->write_seq - v;
3639
if (__mptcp_check_fallback(msk) && msk->first) {
3640
struct tcp_sock *tp = tcp_sk(msk->first);
3641
3642
/* the first subflow is disconnected after close - see
3643
* __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3644
* so ignore that status, too.
3645
*/
3646
if (!((1 << msk->first->sk_state) &
3647
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3648
delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3649
}
3650
if (delta > INT_MAX)
3651
delta = INT_MAX;
3652
3653
return (int)delta;
3654
}
3655
3656
static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3657
{
3658
struct mptcp_sock *msk = mptcp_sk(sk);
3659
bool slow;
3660
3661
switch (cmd) {
3662
case SIOCINQ:
3663
if (sk->sk_state == TCP_LISTEN)
3664
return -EINVAL;
3665
3666
lock_sock(sk);
3667
if (__mptcp_move_skbs(sk))
3668
mptcp_cleanup_rbuf(msk, 0);
3669
*karg = mptcp_inq_hint(sk);
3670
release_sock(sk);
3671
break;
3672
case SIOCOUTQ:
3673
slow = lock_sock_fast(sk);
3674
*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3675
unlock_sock_fast(sk, slow);
3676
break;
3677
case SIOCOUTQNSD:
3678
slow = lock_sock_fast(sk);
3679
*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3680
unlock_sock_fast(sk, slow);
3681
break;
3682
default:
3683
return -ENOIOCTLCMD;
3684
}
3685
3686
return 0;
3687
}
3688
3689
static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3690
{
3691
struct mptcp_subflow_context *subflow;
3692
struct mptcp_sock *msk = mptcp_sk(sk);
3693
int err = -EINVAL;
3694
struct sock *ssk;
3695
3696
ssk = __mptcp_nmpc_sk(msk);
3697
if (IS_ERR(ssk))
3698
return PTR_ERR(ssk);
3699
3700
mptcp_set_state(sk, TCP_SYN_SENT);
3701
subflow = mptcp_subflow_ctx(ssk);
3702
#ifdef CONFIG_TCP_MD5SIG
3703
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3704
* TCP option space.
3705
*/
3706
if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3707
mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3708
#endif
3709
if (subflow->request_mptcp) {
3710
if (mptcp_active_should_disable(sk))
3711
mptcp_early_fallback(msk, subflow,
3712
MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3713
else if (mptcp_token_new_connect(ssk) < 0)
3714
mptcp_early_fallback(msk, subflow,
3715
MPTCP_MIB_TOKENFALLBACKINIT);
3716
}
3717
3718
WRITE_ONCE(msk->write_seq, subflow->idsn);
3719
WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3720
WRITE_ONCE(msk->snd_una, subflow->idsn);
3721
if (likely(!__mptcp_check_fallback(msk)))
3722
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3723
3724
/* if reaching here via the fastopen/sendmsg path, the caller already
3725
* acquired the subflow socket lock, too.
3726
*/
3727
if (!msk->fastopening)
3728
lock_sock(ssk);
3729
3730
/* the following mirrors closely a very small chunk of code from
3731
* __inet_stream_connect()
3732
*/
3733
if (ssk->sk_state != TCP_CLOSE)
3734
goto out;
3735
3736
if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3737
err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3738
if (err)
3739
goto out;
3740
}
3741
3742
err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3743
if (err < 0)
3744
goto out;
3745
3746
inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3747
3748
out:
3749
if (!msk->fastopening)
3750
release_sock(ssk);
3751
3752
/* on successful connect, the msk state will be moved to established by
3753
* subflow_finish_connect()
3754
*/
3755
if (unlikely(err)) {
3756
/* avoid leaving a dangling token in an unconnected socket */
3757
mptcp_token_destroy(msk);
3758
mptcp_set_state(sk, TCP_CLOSE);
3759
return err;
3760
}
3761
3762
mptcp_copy_inaddrs(sk, ssk);
3763
return 0;
3764
}
3765
3766
static struct proto mptcp_prot = {
3767
.name = "MPTCP",
3768
.owner = THIS_MODULE,
3769
.init = mptcp_init_sock,
3770
.connect = mptcp_connect,
3771
.disconnect = mptcp_disconnect,
3772
.close = mptcp_close,
3773
.setsockopt = mptcp_setsockopt,
3774
.getsockopt = mptcp_getsockopt,
3775
.shutdown = mptcp_shutdown,
3776
.destroy = mptcp_destroy,
3777
.sendmsg = mptcp_sendmsg,
3778
.ioctl = mptcp_ioctl,
3779
.recvmsg = mptcp_recvmsg,
3780
.release_cb = mptcp_release_cb,
3781
.hash = mptcp_hash,
3782
.unhash = mptcp_unhash,
3783
.get_port = mptcp_get_port,
3784
.stream_memory_free = mptcp_stream_memory_free,
3785
.sockets_allocated = &mptcp_sockets_allocated,
3786
3787
.memory_allocated = &net_aligned_data.tcp_memory_allocated,
3788
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3789
3790
.memory_pressure = &tcp_memory_pressure,
3791
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3792
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3793
.sysctl_mem = sysctl_tcp_mem,
3794
.obj_size = sizeof(struct mptcp_sock),
3795
.slab_flags = SLAB_TYPESAFE_BY_RCU,
3796
.no_autobind = true,
3797
};
3798
3799
static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3800
{
3801
struct mptcp_sock *msk = mptcp_sk(sock->sk);
3802
struct sock *ssk, *sk = sock->sk;
3803
int err = -EINVAL;
3804
3805
lock_sock(sk);
3806
ssk = __mptcp_nmpc_sk(msk);
3807
if (IS_ERR(ssk)) {
3808
err = PTR_ERR(ssk);
3809
goto unlock;
3810
}
3811
3812
if (sk->sk_family == AF_INET)
3813
err = inet_bind_sk(ssk, uaddr, addr_len);
3814
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
3815
else if (sk->sk_family == AF_INET6)
3816
err = inet6_bind_sk(ssk, uaddr, addr_len);
3817
#endif
3818
if (!err)
3819
mptcp_copy_inaddrs(sk, ssk);
3820
3821
unlock:
3822
release_sock(sk);
3823
return err;
3824
}
3825
3826
static int mptcp_listen(struct socket *sock, int backlog)
3827
{
3828
struct mptcp_sock *msk = mptcp_sk(sock->sk);
3829
struct sock *sk = sock->sk;
3830
struct sock *ssk;
3831
int err;
3832
3833
pr_debug("msk=%p\n", msk);
3834
3835
lock_sock(sk);
3836
3837
err = -EINVAL;
3838
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3839
goto unlock;
3840
3841
ssk = __mptcp_nmpc_sk(msk);
3842
if (IS_ERR(ssk)) {
3843
err = PTR_ERR(ssk);
3844
goto unlock;
3845
}
3846
3847
mptcp_set_state(sk, TCP_LISTEN);
3848
sock_set_flag(sk, SOCK_RCU_FREE);
3849
3850
lock_sock(ssk);
3851
err = __inet_listen_sk(ssk, backlog);
3852
release_sock(ssk);
3853
mptcp_set_state(sk, inet_sk_state_load(ssk));
3854
3855
if (!err) {
3856
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3857
mptcp_copy_inaddrs(sk, ssk);
3858
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3859
}
3860
3861
unlock:
3862
release_sock(sk);
3863
return err;
3864
}
3865
3866
static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3867
struct proto_accept_arg *arg)
3868
{
3869
struct mptcp_sock *msk = mptcp_sk(sock->sk);
3870
struct sock *ssk, *newsk;
3871
3872
pr_debug("msk=%p\n", msk);
3873
3874
/* Buggy applications can call accept on socket states other then LISTEN
3875
* but no need to allocate the first subflow just to error out.
3876
*/
3877
ssk = READ_ONCE(msk->first);
3878
if (!ssk)
3879
return -EINVAL;
3880
3881
pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3882
newsk = inet_csk_accept(ssk, arg);
3883
if (!newsk)
3884
return arg->err;
3885
3886
pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3887
if (sk_is_mptcp(newsk)) {
3888
struct mptcp_subflow_context *subflow;
3889
struct sock *new_mptcp_sock;
3890
3891
subflow = mptcp_subflow_ctx(newsk);
3892
new_mptcp_sock = subflow->conn;
3893
3894
/* is_mptcp should be false if subflow->conn is missing, see
3895
* subflow_syn_recv_sock()
3896
*/
3897
if (WARN_ON_ONCE(!new_mptcp_sock)) {
3898
tcp_sk(newsk)->is_mptcp = 0;
3899
goto tcpfallback;
3900
}
3901
3902
newsk = new_mptcp_sock;
3903
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3904
3905
newsk->sk_kern_sock = arg->kern;
3906
lock_sock(newsk);
3907
__inet_accept(sock, newsock, newsk);
3908
3909
set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3910
msk = mptcp_sk(newsk);
3911
msk->in_accept_queue = 0;
3912
3913
/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3914
* This is needed so NOSPACE flag can be set from tcp stack.
3915
*/
3916
mptcp_for_each_subflow(msk, subflow) {
3917
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3918
3919
if (!ssk->sk_socket)
3920
mptcp_sock_graft(ssk, newsock);
3921
}
3922
3923
/* Do late cleanup for the first subflow as necessary. Also
3924
* deal with bad peers not doing a complete shutdown.
3925
*/
3926
if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3927
__mptcp_close_ssk(newsk, msk->first,
3928
mptcp_subflow_ctx(msk->first), 0);
3929
if (unlikely(list_is_singular(&msk->conn_list)))
3930
mptcp_set_state(newsk, TCP_CLOSE);
3931
}
3932
} else {
3933
tcpfallback:
3934
newsk->sk_kern_sock = arg->kern;
3935
lock_sock(newsk);
3936
__inet_accept(sock, newsock, newsk);
3937
/* we are being invoked after accepting a non-mp-capable
3938
* flow: sk is a tcp_sk, not an mptcp one.
3939
*
3940
* Hand the socket over to tcp so all further socket ops
3941
* bypass mptcp.
3942
*/
3943
WRITE_ONCE(newsock->sk->sk_socket->ops,
3944
mptcp_fallback_tcp_ops(newsock->sk));
3945
}
3946
release_sock(newsk);
3947
3948
return 0;
3949
}
3950
3951
static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3952
{
3953
struct sock *sk = (struct sock *)msk;
3954
3955
if (__mptcp_stream_is_writeable(sk, 1))
3956
return EPOLLOUT | EPOLLWRNORM;
3957
3958
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3959
smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3960
if (__mptcp_stream_is_writeable(sk, 1))
3961
return EPOLLOUT | EPOLLWRNORM;
3962
3963
return 0;
3964
}
3965
3966
static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3967
struct poll_table_struct *wait)
3968
{
3969
struct sock *sk = sock->sk;
3970
struct mptcp_sock *msk;
3971
__poll_t mask = 0;
3972
u8 shutdown;
3973
int state;
3974
3975
msk = mptcp_sk(sk);
3976
sock_poll_wait(file, sock, wait);
3977
3978
state = inet_sk_state_load(sk);
3979
pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3980
if (state == TCP_LISTEN) {
3981
struct sock *ssk = READ_ONCE(msk->first);
3982
3983
if (WARN_ON_ONCE(!ssk))
3984
return 0;
3985
3986
return inet_csk_listen_poll(ssk);
3987
}
3988
3989
shutdown = READ_ONCE(sk->sk_shutdown);
3990
if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3991
mask |= EPOLLHUP;
3992
if (shutdown & RCV_SHUTDOWN)
3993
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3994
3995
if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3996
mask |= mptcp_check_readable(sk);
3997
if (shutdown & SEND_SHUTDOWN)
3998
mask |= EPOLLOUT | EPOLLWRNORM;
3999
else
4000
mask |= mptcp_check_writeable(msk);
4001
} else if (state == TCP_SYN_SENT &&
4002
inet_test_bit(DEFER_CONNECT, sk)) {
4003
/* cf tcp_poll() note about TFO */
4004
mask |= EPOLLOUT | EPOLLWRNORM;
4005
}
4006
4007
/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4008
smp_rmb();
4009
if (READ_ONCE(sk->sk_err))
4010
mask |= EPOLLERR;
4011
4012
return mask;
4013
}
4014
4015
static const struct proto_ops mptcp_stream_ops = {
4016
.family = PF_INET,
4017
.owner = THIS_MODULE,
4018
.release = inet_release,
4019
.bind = mptcp_bind,
4020
.connect = inet_stream_connect,
4021
.socketpair = sock_no_socketpair,
4022
.accept = mptcp_stream_accept,
4023
.getname = inet_getname,
4024
.poll = mptcp_poll,
4025
.ioctl = inet_ioctl,
4026
.gettstamp = sock_gettstamp,
4027
.listen = mptcp_listen,
4028
.shutdown = inet_shutdown,
4029
.setsockopt = sock_common_setsockopt,
4030
.getsockopt = sock_common_getsockopt,
4031
.sendmsg = inet_sendmsg,
4032
.recvmsg = inet_recvmsg,
4033
.mmap = sock_no_mmap,
4034
.set_rcvlowat = mptcp_set_rcvlowat,
4035
};
4036
4037
static struct inet_protosw mptcp_protosw = {
4038
.type = SOCK_STREAM,
4039
.protocol = IPPROTO_MPTCP,
4040
.prot = &mptcp_prot,
4041
.ops = &mptcp_stream_ops,
4042
.flags = INET_PROTOSW_ICSK,
4043
};
4044
4045
static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4046
{
4047
struct mptcp_delegated_action *delegated;
4048
struct mptcp_subflow_context *subflow;
4049
int work_done = 0;
4050
4051
delegated = container_of(napi, struct mptcp_delegated_action, napi);
4052
while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4053
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4054
4055
bh_lock_sock_nested(ssk);
4056
if (!sock_owned_by_user(ssk)) {
4057
mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4058
} else {
4059
/* tcp_release_cb_override already processed
4060
* the action or will do at next release_sock().
4061
* In both case must dequeue the subflow here - on the same
4062
* CPU that scheduled it.
4063
*/
4064
smp_wmb();
4065
clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4066
}
4067
bh_unlock_sock(ssk);
4068
sock_put(ssk);
4069
4070
if (++work_done == budget)
4071
return budget;
4072
}
4073
4074
/* always provide a 0 'work_done' argument, so that napi_complete_done
4075
* will not try accessing the NULL napi->dev ptr
4076
*/
4077
napi_complete_done(napi, 0);
4078
return work_done;
4079
}
4080
4081
void __init mptcp_proto_init(void)
4082
{
4083
struct mptcp_delegated_action *delegated;
4084
int cpu;
4085
4086
mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4087
4088
if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4089
panic("Failed to allocate MPTCP pcpu counter\n");
4090
4091
mptcp_napi_dev = alloc_netdev_dummy(0);
4092
if (!mptcp_napi_dev)
4093
panic("Failed to allocate MPTCP dummy netdev\n");
4094
for_each_possible_cpu(cpu) {
4095
delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4096
INIT_LIST_HEAD(&delegated->head);
4097
netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4098
mptcp_napi_poll);
4099
napi_enable(&delegated->napi);
4100
}
4101
4102
mptcp_subflow_init();
4103
mptcp_pm_init();
4104
mptcp_sched_init();
4105
mptcp_token_init();
4106
4107
if (proto_register(&mptcp_prot, 1) != 0)
4108
panic("Failed to register MPTCP proto.\n");
4109
4110
inet_register_protosw(&mptcp_protosw);
4111
4112
BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4113
}
4114
4115
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
4116
static const struct proto_ops mptcp_v6_stream_ops = {
4117
.family = PF_INET6,
4118
.owner = THIS_MODULE,
4119
.release = inet6_release,
4120
.bind = mptcp_bind,
4121
.connect = inet_stream_connect,
4122
.socketpair = sock_no_socketpair,
4123
.accept = mptcp_stream_accept,
4124
.getname = inet6_getname,
4125
.poll = mptcp_poll,
4126
.ioctl = inet6_ioctl,
4127
.gettstamp = sock_gettstamp,
4128
.listen = mptcp_listen,
4129
.shutdown = inet_shutdown,
4130
.setsockopt = sock_common_setsockopt,
4131
.getsockopt = sock_common_getsockopt,
4132
.sendmsg = inet6_sendmsg,
4133
.recvmsg = inet6_recvmsg,
4134
.mmap = sock_no_mmap,
4135
#ifdef CONFIG_COMPAT
4136
.compat_ioctl = inet6_compat_ioctl,
4137
#endif
4138
.set_rcvlowat = mptcp_set_rcvlowat,
4139
};
4140
4141
static struct proto mptcp_v6_prot;
4142
4143
static struct inet_protosw mptcp_v6_protosw = {
4144
.type = SOCK_STREAM,
4145
.protocol = IPPROTO_MPTCP,
4146
.prot = &mptcp_v6_prot,
4147
.ops = &mptcp_v6_stream_ops,
4148
.flags = INET_PROTOSW_ICSK,
4149
};
4150
4151
int __init mptcp_proto_v6_init(void)
4152
{
4153
int err;
4154
4155
mptcp_v6_prot = mptcp_prot;
4156
strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4157
mptcp_v6_prot.slab = NULL;
4158
mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4159
mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4160
4161
err = proto_register(&mptcp_v6_prot, 1);
4162
if (err)
4163
return err;
4164
4165
err = inet6_register_protosw(&mptcp_v6_protosw);
4166
if (err)
4167
proto_unregister(&mptcp_v6_prot);
4168
4169
return err;
4170
}
4171
#endif
4172
4173