Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/device.rs
49150 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Generic devices that are part of the kernel's driver model.
4
//!
5
//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6
7
use crate::{
8
bindings, fmt,
9
prelude::*,
10
sync::aref::ARef,
11
types::{ForeignOwnable, Opaque},
12
};
13
use core::{any::TypeId, marker::PhantomData, ptr};
14
15
#[cfg(CONFIG_PRINTK)]
16
use crate::c_str;
17
18
pub mod property;
19
20
// Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
21
static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
22
23
/// The core representation of a device in the kernel's driver model.
24
///
25
/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
26
/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
27
/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
28
///
29
/// # Device Types
30
///
31
/// A [`Device`] can represent either a bus device or a class device.
32
///
33
/// ## Bus Devices
34
///
35
/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
36
/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
37
/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
38
/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
39
///
40
/// ## Class Devices
41
///
42
/// A class device is a [`Device`] that is associated with a logical category of functionality
43
/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
44
/// cards, and input devices. Class devices are grouped under a common class and exposed to
45
/// userspace via entries in `/sys/class/<class-name>/`.
46
///
47
/// # Device Context
48
///
49
/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
50
/// a [`Device`].
51
///
52
/// As the name indicates, this type state represents the context of the scope the [`Device`]
53
/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
54
/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
55
///
56
/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
57
///
58
/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
59
/// itself has no additional requirements.
60
///
61
/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
62
/// type for the corresponding scope the [`Device`] reference is created in.
63
///
64
/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
65
/// [bus devices](#bus-devices) only.
66
///
67
/// # Implementing Bus Devices
68
///
69
/// This section provides a guideline to implement bus specific devices, such as:
70
#[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
71
/// * [`platform::Device`]
72
///
73
/// A bus specific device should be defined as follows.
74
///
75
/// ```ignore
76
/// #[repr(transparent)]
77
/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
78
/// Opaque<bindings::bus_device_type>,
79
/// PhantomData<Ctx>,
80
/// );
81
/// ```
82
///
83
/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
84
/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
85
/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
86
///
87
/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
88
/// implementations should call the [`impl_device_context_deref`] macro as shown below.
89
///
90
/// ```ignore
91
/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
92
/// // generic argument.
93
/// kernel::impl_device_context_deref!(unsafe { Device });
94
/// ```
95
///
96
/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
97
/// the following macro call.
98
///
99
/// ```ignore
100
/// kernel::impl_device_context_into_aref!(Device);
101
/// ```
102
///
103
/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
104
/// easily derive a generic [`Device`] reference.
105
///
106
/// ```ignore
107
/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
108
/// fn as_ref(&self) -> &device::Device<Ctx> {
109
/// ...
110
/// }
111
/// }
112
/// ```
113
///
114
/// # Implementing Class Devices
115
///
116
/// Class device implementations require less infrastructure and depend slightly more on the
117
/// specific subsystem.
118
///
119
/// An example implementation for a class device could look like this.
120
///
121
/// ```ignore
122
/// #[repr(C)]
123
/// pub struct Device<T: class::Driver> {
124
/// dev: Opaque<bindings::class_device_type>,
125
/// data: T::Data,
126
/// }
127
/// ```
128
///
129
/// This class device uses the sub-classing pattern to embed the driver's private data within the
130
/// allocation of the class device. For this to be possible the class device is generic over the
131
/// class specific `Driver` trait implementation.
132
///
133
/// Just like any device, class devices are reference counted and should hence implement
134
/// [`AlwaysRefCounted`] for `Device`.
135
///
136
/// Class devices should also implement the following [`AsRef`] implementation, such that users can
137
/// easily derive a generic [`Device`] reference.
138
///
139
/// ```ignore
140
/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
141
/// fn as_ref(&self) -> &device::Device {
142
/// ...
143
/// }
144
/// }
145
/// ```
146
///
147
/// An example for a class device implementation is
148
#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
149
#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
150
///
151
/// # Invariants
152
///
153
/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
154
///
155
/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
156
/// that the allocation remains valid at least until the matching call to `put_device`.
157
///
158
/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
159
/// dropped from any thread.
160
///
161
/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
162
/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
163
/// [`platform::Device`]: kernel::platform::Device
164
#[repr(transparent)]
165
pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
166
167
impl Device {
168
/// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
169
///
170
/// # Safety
171
///
172
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
173
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
174
/// can't drop to zero, for the duration of this function call.
175
///
176
/// It must also be ensured that `bindings::device::release` can be called from any thread.
177
/// While not officially documented, this should be the case for any `struct device`.
178
pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
179
// SAFETY: By the safety requirements ptr is valid
180
unsafe { Self::from_raw(ptr) }.into()
181
}
182
183
/// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
184
///
185
/// # Safety
186
///
187
/// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
188
/// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
189
pub unsafe fn as_bound(&self) -> &Device<Bound> {
190
let ptr = core::ptr::from_ref(self);
191
192
// CAST: By the safety requirements the caller is responsible to guarantee that the
193
// returned reference only lives as long as the device is actually bound.
194
let ptr = ptr.cast();
195
196
// SAFETY:
197
// - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
198
// - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
199
unsafe { &*ptr }
200
}
201
}
202
203
impl Device<CoreInternal> {
204
fn set_type_id<T: 'static>(&self) {
205
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
206
let private = unsafe { (*self.as_raw()).p };
207
208
// SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
209
// guaranteed to be a valid pointer to a `struct device_private`.
210
let driver_type = unsafe { &raw mut (*private).driver_type };
211
212
// SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
213
unsafe {
214
driver_type
215
.cast::<TypeId>()
216
.write_unaligned(TypeId::of::<T>())
217
};
218
}
219
220
/// Store a pointer to the bound driver's private data.
221
pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
222
let data = KBox::pin_init(data, GFP_KERNEL)?;
223
224
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
225
unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
226
self.set_type_id::<T>();
227
228
Ok(())
229
}
230
231
/// Take ownership of the private data stored in this [`Device`].
232
///
233
/// # Safety
234
///
235
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
236
/// [`Device::set_drvdata`].
237
pub(crate) unsafe fn drvdata_obtain<T: 'static>(&self) -> Option<Pin<KBox<T>>> {
238
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
239
let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
240
241
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
242
unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
243
244
if ptr.is_null() {
245
return None;
246
}
247
248
// SAFETY:
249
// - If `ptr` is not NULL, it comes from a previous call to `into_foreign()`.
250
// - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
251
// in `into_foreign()`.
252
Some(unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) })
253
}
254
255
/// Borrow the driver's private data bound to this [`Device`].
256
///
257
/// # Safety
258
///
259
/// - Must only be called after a preceding call to [`Device::set_drvdata`] and before the
260
/// device is fully unbound.
261
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
262
/// [`Device::set_drvdata`].
263
pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
264
// SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
265
// required by this method.
266
unsafe { self.drvdata_unchecked() }
267
}
268
}
269
270
impl Device<Bound> {
271
/// Borrow the driver's private data bound to this [`Device`].
272
///
273
/// # Safety
274
///
275
/// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
276
/// the device is fully unbound.
277
/// - The type `T` must match the type of the `ForeignOwnable` previously stored by
278
/// [`Device::set_drvdata`].
279
unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
280
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
281
let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
282
283
// SAFETY:
284
// - By the safety requirements of this function, `ptr` comes from a previous call to
285
// `into_foreign()`.
286
// - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
287
// in `into_foreign()`.
288
unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
289
}
290
291
fn match_type_id<T: 'static>(&self) -> Result {
292
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
293
let private = unsafe { (*self.as_raw()).p };
294
295
// SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
296
// `struct device_private`.
297
let driver_type = unsafe { &raw mut (*private).driver_type };
298
299
// SAFETY:
300
// - `driver_type` is valid for (unaligned) reads of a `TypeId`.
301
// - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
302
let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
303
304
if type_id != TypeId::of::<T>() {
305
return Err(EINVAL);
306
}
307
308
Ok(())
309
}
310
311
/// Access a driver's private data.
312
///
313
/// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
314
/// the asserted type `T`.
315
pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
316
// SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
317
if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
318
return Err(ENOENT);
319
}
320
321
self.match_type_id::<T>()?;
322
323
// SAFETY:
324
// - The above check of `dev_get_drvdata()` guarantees that we are called after
325
// `set_drvdata()`.
326
// - We've just checked that the type of the driver's private data is in fact `T`.
327
Ok(unsafe { self.drvdata_unchecked() })
328
}
329
}
330
331
impl<Ctx: DeviceContext> Device<Ctx> {
332
/// Obtain the raw `struct device *`.
333
pub(crate) fn as_raw(&self) -> *mut bindings::device {
334
self.0.get()
335
}
336
337
/// Returns a reference to the parent device, if any.
338
#[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
339
pub(crate) fn parent(&self) -> Option<&Device> {
340
// SAFETY:
341
// - By the type invariant `self.as_raw()` is always valid.
342
// - The parent device is only ever set at device creation.
343
let parent = unsafe { (*self.as_raw()).parent };
344
345
if parent.is_null() {
346
None
347
} else {
348
// SAFETY:
349
// - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
350
// - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
351
// reference count of its parent.
352
Some(unsafe { Device::from_raw(parent) })
353
}
354
}
355
356
/// Convert a raw C `struct device` pointer to a `&'a Device`.
357
///
358
/// # Safety
359
///
360
/// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
361
/// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
362
/// can't drop to zero, for the duration of this function call and the entire duration when the
363
/// returned reference exists.
364
pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
365
// SAFETY: Guaranteed by the safety requirements of the function.
366
unsafe { &*ptr.cast() }
367
}
368
369
/// Prints an emergency-level message (level 0) prefixed with device information.
370
///
371
/// More details are available from [`dev_emerg`].
372
///
373
/// [`dev_emerg`]: crate::dev_emerg
374
pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
375
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
376
unsafe { self.printk(bindings::KERN_EMERG, args) };
377
}
378
379
/// Prints an alert-level message (level 1) prefixed with device information.
380
///
381
/// More details are available from [`dev_alert`].
382
///
383
/// [`dev_alert`]: crate::dev_alert
384
pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
385
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
386
unsafe { self.printk(bindings::KERN_ALERT, args) };
387
}
388
389
/// Prints a critical-level message (level 2) prefixed with device information.
390
///
391
/// More details are available from [`dev_crit`].
392
///
393
/// [`dev_crit`]: crate::dev_crit
394
pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
395
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
396
unsafe { self.printk(bindings::KERN_CRIT, args) };
397
}
398
399
/// Prints an error-level message (level 3) prefixed with device information.
400
///
401
/// More details are available from [`dev_err`].
402
///
403
/// [`dev_err`]: crate::dev_err
404
pub fn pr_err(&self, args: fmt::Arguments<'_>) {
405
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
406
unsafe { self.printk(bindings::KERN_ERR, args) };
407
}
408
409
/// Prints a warning-level message (level 4) prefixed with device information.
410
///
411
/// More details are available from [`dev_warn`].
412
///
413
/// [`dev_warn`]: crate::dev_warn
414
pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
415
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
416
unsafe { self.printk(bindings::KERN_WARNING, args) };
417
}
418
419
/// Prints a notice-level message (level 5) prefixed with device information.
420
///
421
/// More details are available from [`dev_notice`].
422
///
423
/// [`dev_notice`]: crate::dev_notice
424
pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
425
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
426
unsafe { self.printk(bindings::KERN_NOTICE, args) };
427
}
428
429
/// Prints an info-level message (level 6) prefixed with device information.
430
///
431
/// More details are available from [`dev_info`].
432
///
433
/// [`dev_info`]: crate::dev_info
434
pub fn pr_info(&self, args: fmt::Arguments<'_>) {
435
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
436
unsafe { self.printk(bindings::KERN_INFO, args) };
437
}
438
439
/// Prints a debug-level message (level 7) prefixed with device information.
440
///
441
/// More details are available from [`dev_dbg`].
442
///
443
/// [`dev_dbg`]: crate::dev_dbg
444
pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
445
if cfg!(debug_assertions) {
446
// SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
447
unsafe { self.printk(bindings::KERN_DEBUG, args) };
448
}
449
}
450
451
/// Prints the provided message to the console.
452
///
453
/// # Safety
454
///
455
/// Callers must ensure that `klevel` is null-terminated; in particular, one of the
456
/// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
457
#[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
458
unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
459
// SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
460
// is valid because `self` is valid. The "%pA" format string expects a pointer to
461
// `fmt::Arguments`, which is what we're passing as the last argument.
462
#[cfg(CONFIG_PRINTK)]
463
unsafe {
464
bindings::_dev_printk(
465
klevel.as_ptr().cast::<crate::ffi::c_char>(),
466
self.as_raw(),
467
c_str!("%pA").as_char_ptr(),
468
core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
469
)
470
};
471
}
472
473
/// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
474
pub fn fwnode(&self) -> Option<&property::FwNode> {
475
// SAFETY: `self` is valid.
476
let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
477
if fwnode_handle.is_null() {
478
return None;
479
}
480
// SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
481
// return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
482
// doesn't increment the refcount. It is safe to cast from a
483
// `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
484
// defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
485
Some(unsafe { &*fwnode_handle.cast() })
486
}
487
}
488
489
// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
490
// argument.
491
kernel::impl_device_context_deref!(unsafe { Device });
492
kernel::impl_device_context_into_aref!(Device);
493
494
// SAFETY: Instances of `Device` are always reference-counted.
495
unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
496
fn inc_ref(&self) {
497
// SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
498
unsafe { bindings::get_device(self.as_raw()) };
499
}
500
501
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
502
// SAFETY: The safety requirements guarantee that the refcount is non-zero.
503
unsafe { bindings::put_device(obj.cast().as_ptr()) }
504
}
505
}
506
507
// SAFETY: As by the type invariant `Device` can be sent to any thread.
508
unsafe impl Send for Device {}
509
510
// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
511
// synchronization in `struct device`.
512
unsafe impl Sync for Device {}
513
514
/// Marker trait for the context or scope of a bus specific device.
515
///
516
/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
517
/// [`Device`].
518
///
519
/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
520
///
521
/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
522
/// defines which [`DeviceContext`] type can be derived from another. For instance, any
523
/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
524
///
525
/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
526
///
527
/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
528
///
529
/// Bus devices can automatically implement the dereference hierarchy by using
530
/// [`impl_device_context_deref`].
531
///
532
/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
533
/// from the specific scope the [`Device`] reference is valid in.
534
///
535
/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
536
pub trait DeviceContext: private::Sealed {}
537
538
/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
539
///
540
/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
541
/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
542
/// [`AlwaysRefCounted`] for.
543
///
544
/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
545
pub struct Normal;
546
547
/// The [`Core`] context is the context of a bus specific device when it appears as argument of
548
/// any bus specific callback, such as `probe()`.
549
///
550
/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
551
/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
552
/// implementations can implement methods for [`Device<Core>`], such that they can only be called
553
/// from bus callbacks.
554
pub struct Core;
555
556
/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
557
/// abstraction.
558
///
559
/// The internal core context is intended to be used in exactly the same way as the [`Core`]
560
/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
561
/// abstraction.
562
///
563
/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
564
/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
565
pub struct CoreInternal;
566
567
/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
568
/// be bound to a driver.
569
///
570
/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
571
/// reference, the [`Device`] is guaranteed to be bound to a driver.
572
///
573
/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
574
/// which can be proven with the [`Bound`] device context.
575
///
576
/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
577
/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
578
/// from optimizations for accessing device resources, see also [`Devres::access`].
579
///
580
/// [`Devres`]: kernel::devres::Devres
581
/// [`Devres::access`]: kernel::devres::Devres::access
582
/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
583
pub struct Bound;
584
585
mod private {
586
pub trait Sealed {}
587
588
impl Sealed for super::Bound {}
589
impl Sealed for super::Core {}
590
impl Sealed for super::CoreInternal {}
591
impl Sealed for super::Normal {}
592
}
593
594
impl DeviceContext for Bound {}
595
impl DeviceContext for Core {}
596
impl DeviceContext for CoreInternal {}
597
impl DeviceContext for Normal {}
598
599
/// Convert device references to bus device references.
600
///
601
/// Bus devices can implement this trait to allow abstractions to provide the bus device in
602
/// class device callbacks.
603
///
604
/// This must not be used by drivers and is intended for bus and class device abstractions only.
605
///
606
/// # Safety
607
///
608
/// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
609
/// bus device structure.
610
pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
611
/// The relative offset to the device field.
612
///
613
/// Use `offset_of!(bindings, field)` macro to avoid breakage.
614
const OFFSET: usize;
615
616
/// Convert a reference to [`Device`] into `Self`.
617
///
618
/// # Safety
619
///
620
/// `dev` must be contained in `Self`.
621
unsafe fn from_device(dev: &Device<Ctx>) -> &Self
622
where
623
Self: Sized,
624
{
625
let raw = dev.as_raw();
626
// SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
627
// to be a valid pointer to `Self`.
628
unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
629
}
630
}
631
632
/// # Safety
633
///
634
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
635
/// generic argument of `$device`.
636
#[doc(hidden)]
637
#[macro_export]
638
macro_rules! __impl_device_context_deref {
639
(unsafe { $device:ident, $src:ty => $dst:ty }) => {
640
impl ::core::ops::Deref for $device<$src> {
641
type Target = $device<$dst>;
642
643
fn deref(&self) -> &Self::Target {
644
let ptr: *const Self = self;
645
646
// CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
647
// safety requirement of the macro.
648
let ptr = ptr.cast::<Self::Target>();
649
650
// SAFETY: `ptr` was derived from `&self`.
651
unsafe { &*ptr }
652
}
653
}
654
};
655
}
656
657
/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
658
/// specific) device.
659
///
660
/// # Safety
661
///
662
/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
663
/// generic argument of `$device`.
664
#[macro_export]
665
macro_rules! impl_device_context_deref {
666
(unsafe { $device:ident }) => {
667
// SAFETY: This macro has the exact same safety requirement as
668
// `__impl_device_context_deref!`.
669
::kernel::__impl_device_context_deref!(unsafe {
670
$device,
671
$crate::device::CoreInternal => $crate::device::Core
672
});
673
674
// SAFETY: This macro has the exact same safety requirement as
675
// `__impl_device_context_deref!`.
676
::kernel::__impl_device_context_deref!(unsafe {
677
$device,
678
$crate::device::Core => $crate::device::Bound
679
});
680
681
// SAFETY: This macro has the exact same safety requirement as
682
// `__impl_device_context_deref!`.
683
::kernel::__impl_device_context_deref!(unsafe {
684
$device,
685
$crate::device::Bound => $crate::device::Normal
686
});
687
};
688
}
689
690
#[doc(hidden)]
691
#[macro_export]
692
macro_rules! __impl_device_context_into_aref {
693
($src:ty, $device:tt) => {
694
impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
695
fn from(dev: &$device<$src>) -> Self {
696
(&**dev).into()
697
}
698
}
699
};
700
}
701
702
/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
703
/// `ARef<Device>`.
704
#[macro_export]
705
macro_rules! impl_device_context_into_aref {
706
($device:tt) => {
707
::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
708
::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
709
::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
710
};
711
}
712
713
#[doc(hidden)]
714
#[macro_export]
715
macro_rules! dev_printk {
716
($method:ident, $dev:expr, $($f:tt)*) => {
717
{
718
($dev).$method($crate::prelude::fmt!($($f)*));
719
}
720
}
721
}
722
723
/// Prints an emergency-level message (level 0) prefixed with device information.
724
///
725
/// This level should be used if the system is unusable.
726
///
727
/// Equivalent to the kernel's `dev_emerg` macro.
728
///
729
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
730
/// [`core::fmt`] and [`std::format!`].
731
///
732
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
733
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
734
///
735
/// # Examples
736
///
737
/// ```
738
/// # use kernel::device::Device;
739
///
740
/// fn example(dev: &Device) {
741
/// dev_emerg!(dev, "hello {}\n", "there");
742
/// }
743
/// ```
744
#[macro_export]
745
macro_rules! dev_emerg {
746
($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
747
}
748
749
/// Prints an alert-level message (level 1) prefixed with device information.
750
///
751
/// This level should be used if action must be taken immediately.
752
///
753
/// Equivalent to the kernel's `dev_alert` macro.
754
///
755
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
756
/// [`core::fmt`] and [`std::format!`].
757
///
758
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
759
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
760
///
761
/// # Examples
762
///
763
/// ```
764
/// # use kernel::device::Device;
765
///
766
/// fn example(dev: &Device) {
767
/// dev_alert!(dev, "hello {}\n", "there");
768
/// }
769
/// ```
770
#[macro_export]
771
macro_rules! dev_alert {
772
($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
773
}
774
775
/// Prints a critical-level message (level 2) prefixed with device information.
776
///
777
/// This level should be used in critical conditions.
778
///
779
/// Equivalent to the kernel's `dev_crit` macro.
780
///
781
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
782
/// [`core::fmt`] and [`std::format!`].
783
///
784
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
785
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
786
///
787
/// # Examples
788
///
789
/// ```
790
/// # use kernel::device::Device;
791
///
792
/// fn example(dev: &Device) {
793
/// dev_crit!(dev, "hello {}\n", "there");
794
/// }
795
/// ```
796
#[macro_export]
797
macro_rules! dev_crit {
798
($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
799
}
800
801
/// Prints an error-level message (level 3) prefixed with device information.
802
///
803
/// This level should be used in error conditions.
804
///
805
/// Equivalent to the kernel's `dev_err` macro.
806
///
807
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
808
/// [`core::fmt`] and [`std::format!`].
809
///
810
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
811
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
812
///
813
/// # Examples
814
///
815
/// ```
816
/// # use kernel::device::Device;
817
///
818
/// fn example(dev: &Device) {
819
/// dev_err!(dev, "hello {}\n", "there");
820
/// }
821
/// ```
822
#[macro_export]
823
macro_rules! dev_err {
824
($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
825
}
826
827
/// Prints a warning-level message (level 4) prefixed with device information.
828
///
829
/// This level should be used in warning conditions.
830
///
831
/// Equivalent to the kernel's `dev_warn` macro.
832
///
833
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
834
/// [`core::fmt`] and [`std::format!`].
835
///
836
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
837
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
838
///
839
/// # Examples
840
///
841
/// ```
842
/// # use kernel::device::Device;
843
///
844
/// fn example(dev: &Device) {
845
/// dev_warn!(dev, "hello {}\n", "there");
846
/// }
847
/// ```
848
#[macro_export]
849
macro_rules! dev_warn {
850
($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
851
}
852
853
/// Prints a notice-level message (level 5) prefixed with device information.
854
///
855
/// This level should be used in normal but significant conditions.
856
///
857
/// Equivalent to the kernel's `dev_notice` macro.
858
///
859
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
860
/// [`core::fmt`] and [`std::format!`].
861
///
862
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
863
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
864
///
865
/// # Examples
866
///
867
/// ```
868
/// # use kernel::device::Device;
869
///
870
/// fn example(dev: &Device) {
871
/// dev_notice!(dev, "hello {}\n", "there");
872
/// }
873
/// ```
874
#[macro_export]
875
macro_rules! dev_notice {
876
($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
877
}
878
879
/// Prints an info-level message (level 6) prefixed with device information.
880
///
881
/// This level should be used for informational messages.
882
///
883
/// Equivalent to the kernel's `dev_info` macro.
884
///
885
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
886
/// [`core::fmt`] and [`std::format!`].
887
///
888
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
889
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
890
///
891
/// # Examples
892
///
893
/// ```
894
/// # use kernel::device::Device;
895
///
896
/// fn example(dev: &Device) {
897
/// dev_info!(dev, "hello {}\n", "there");
898
/// }
899
/// ```
900
#[macro_export]
901
macro_rules! dev_info {
902
($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
903
}
904
905
/// Prints a debug-level message (level 7) prefixed with device information.
906
///
907
/// This level should be used for debug messages.
908
///
909
/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
910
///
911
/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
912
/// [`core::fmt`] and [`std::format!`].
913
///
914
/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
915
/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
916
///
917
/// # Examples
918
///
919
/// ```
920
/// # use kernel::device::Device;
921
///
922
/// fn example(dev: &Device) {
923
/// dev_dbg!(dev, "hello {}\n", "there");
924
/// }
925
/// ```
926
#[macro_export]
927
macro_rules! dev_dbg {
928
($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
929
}
930
931