Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/dma.rs
48955 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Direct memory access (DMA).
4
//!
5
//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7
use crate::{
8
bindings, build_assert, device,
9
device::{Bound, Core},
10
error::{to_result, Result},
11
prelude::*,
12
sync::aref::ARef,
13
transmute::{AsBytes, FromBytes},
14
};
15
use core::ptr::NonNull;
16
17
/// DMA address type.
18
///
19
/// Represents a bus address used for Direct Memory Access (DMA) operations.
20
///
21
/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
22
/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
23
///
24
/// Note that this may be `u64` even on 32-bit architectures.
25
pub type DmaAddress = bindings::dma_addr_t;
26
27
/// Trait to be implemented by DMA capable bus devices.
28
///
29
/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
30
/// where the underlying bus is DMA capable, such as:
31
#[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
32
/// * [`platform::Device`](::kernel::platform::Device)
33
pub trait Device: AsRef<device::Device<Core>> {
34
/// Set up the device's DMA streaming addressing capabilities.
35
///
36
/// This method is usually called once from `probe()` as soon as the device capabilities are
37
/// known.
38
///
39
/// # Safety
40
///
41
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
42
/// such as [`CoherentAllocation::alloc_attrs`].
43
unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
44
// SAFETY:
45
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
46
// - The safety requirement of this function guarantees that there are no concurrent calls
47
// to DMA allocation and mapping primitives using this mask.
48
to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
49
}
50
51
/// Set up the device's DMA coherent addressing capabilities.
52
///
53
/// This method is usually called once from `probe()` as soon as the device capabilities are
54
/// known.
55
///
56
/// # Safety
57
///
58
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
59
/// such as [`CoherentAllocation::alloc_attrs`].
60
unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
61
// SAFETY:
62
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
63
// - The safety requirement of this function guarantees that there are no concurrent calls
64
// to DMA allocation and mapping primitives using this mask.
65
to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
66
}
67
68
/// Set up the device's DMA addressing capabilities.
69
///
70
/// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
71
///
72
/// This method is usually called once from `probe()` as soon as the device capabilities are
73
/// known.
74
///
75
/// # Safety
76
///
77
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
78
/// such as [`CoherentAllocation::alloc_attrs`].
79
unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
80
// SAFETY:
81
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
82
// - The safety requirement of this function guarantees that there are no concurrent calls
83
// to DMA allocation and mapping primitives using this mask.
84
to_result(unsafe {
85
bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
86
})
87
}
88
}
89
90
/// A DMA mask that holds a bitmask with the lowest `n` bits set.
91
///
92
/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
93
/// are guaranteed to never exceed the bit width of `u64`.
94
///
95
/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
96
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
97
pub struct DmaMask(u64);
98
99
impl DmaMask {
100
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
101
///
102
/// For `n <= 64`, sets exactly the lowest `n` bits.
103
/// For `n > 64`, results in a build error.
104
///
105
/// # Examples
106
///
107
/// ```
108
/// use kernel::dma::DmaMask;
109
///
110
/// let mask0 = DmaMask::new::<0>();
111
/// assert_eq!(mask0.value(), 0);
112
///
113
/// let mask1 = DmaMask::new::<1>();
114
/// assert_eq!(mask1.value(), 0b1);
115
///
116
/// let mask64 = DmaMask::new::<64>();
117
/// assert_eq!(mask64.value(), u64::MAX);
118
///
119
/// // Build failure.
120
/// // let mask_overflow = DmaMask::new::<100>();
121
/// ```
122
#[inline]
123
pub const fn new<const N: u32>() -> Self {
124
let Ok(mask) = Self::try_new(N) else {
125
build_error!("Invalid DMA Mask.");
126
};
127
128
mask
129
}
130
131
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
132
///
133
/// For `n <= 64`, sets exactly the lowest `n` bits.
134
/// For `n > 64`, returns [`EINVAL`].
135
///
136
/// # Examples
137
///
138
/// ```
139
/// use kernel::dma::DmaMask;
140
///
141
/// let mask0 = DmaMask::try_new(0)?;
142
/// assert_eq!(mask0.value(), 0);
143
///
144
/// let mask1 = DmaMask::try_new(1)?;
145
/// assert_eq!(mask1.value(), 0b1);
146
///
147
/// let mask64 = DmaMask::try_new(64)?;
148
/// assert_eq!(mask64.value(), u64::MAX);
149
///
150
/// let mask_overflow = DmaMask::try_new(100);
151
/// assert!(mask_overflow.is_err());
152
/// # Ok::<(), Error>(())
153
/// ```
154
#[inline]
155
pub const fn try_new(n: u32) -> Result<Self> {
156
Ok(Self(match n {
157
0 => 0,
158
1..=64 => u64::MAX >> (64 - n),
159
_ => return Err(EINVAL),
160
}))
161
}
162
163
/// Returns the underlying `u64` bitmask value.
164
#[inline]
165
pub const fn value(&self) -> u64 {
166
self.0
167
}
168
}
169
170
/// Possible attributes associated with a DMA mapping.
171
///
172
/// They can be combined with the operators `|`, `&`, and `!`.
173
///
174
/// Values can be used from the [`attrs`] module.
175
///
176
/// # Examples
177
///
178
/// ```
179
/// # use kernel::device::{Bound, Device};
180
/// use kernel::dma::{attrs::*, CoherentAllocation};
181
///
182
/// # fn test(dev: &Device<Bound>) -> Result {
183
/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
184
/// let c: CoherentAllocation<u64> =
185
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
186
/// # Ok::<(), Error>(()) }
187
/// ```
188
#[derive(Clone, Copy, PartialEq)]
189
#[repr(transparent)]
190
pub struct Attrs(u32);
191
192
impl Attrs {
193
/// Get the raw representation of this attribute.
194
pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
195
self.0 as crate::ffi::c_ulong
196
}
197
198
/// Check whether `flags` is contained in `self`.
199
pub fn contains(self, flags: Attrs) -> bool {
200
(self & flags) == flags
201
}
202
}
203
204
impl core::ops::BitOr for Attrs {
205
type Output = Self;
206
fn bitor(self, rhs: Self) -> Self::Output {
207
Self(self.0 | rhs.0)
208
}
209
}
210
211
impl core::ops::BitAnd for Attrs {
212
type Output = Self;
213
fn bitand(self, rhs: Self) -> Self::Output {
214
Self(self.0 & rhs.0)
215
}
216
}
217
218
impl core::ops::Not for Attrs {
219
type Output = Self;
220
fn not(self) -> Self::Output {
221
Self(!self.0)
222
}
223
}
224
225
/// DMA mapping attributes.
226
pub mod attrs {
227
use super::Attrs;
228
229
/// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
230
/// and writes may pass each other.
231
pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
232
233
/// Specifies that writes to the mapping may be buffered to improve performance.
234
pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
235
236
/// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
237
pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
238
239
/// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
240
/// that it has been already transferred to 'device' domain.
241
pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
242
243
/// Forces contiguous allocation of the buffer in physical memory.
244
pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
245
246
/// Hints DMA-mapping subsystem that it's probably not worth the time to try
247
/// to allocate memory to in a way that gives better TLB efficiency.
248
pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
249
250
/// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
251
/// `__GFP_NOWARN`).
252
pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
253
254
/// Indicates that the buffer is fully accessible at an elevated privilege level (and
255
/// ideally inaccessible or at least read-only at lesser-privileged levels).
256
pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
257
258
/// Indicates that the buffer is MMIO memory.
259
pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO);
260
}
261
262
/// DMA data direction.
263
///
264
/// Corresponds to the C [`enum dma_data_direction`].
265
///
266
/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
267
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
268
#[repr(u32)]
269
pub enum DataDirection {
270
/// The DMA mapping is for bidirectional data transfer.
271
///
272
/// This is used when the buffer can be both read from and written to by the device.
273
/// The cache for the corresponding memory region is both flushed and invalidated.
274
Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
275
276
/// The DMA mapping is for data transfer from memory to the device (write).
277
///
278
/// The CPU has prepared data in the buffer, and the device will read it.
279
/// The cache for the corresponding memory region is flushed before device access.
280
ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
281
282
/// The DMA mapping is for data transfer from the device to memory (read).
283
///
284
/// The device will write data into the buffer for the CPU to read.
285
/// The cache for the corresponding memory region is invalidated before CPU access.
286
FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
287
288
/// The DMA mapping is not for data transfer.
289
///
290
/// This is primarily for debugging purposes. With this direction, the DMA mapping API
291
/// will not perform any cache coherency operations.
292
None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
293
}
294
295
impl DataDirection {
296
/// Casts the bindgen-generated enum type to a `u32` at compile time.
297
///
298
/// This function will cause a compile-time error if the underlying value of the
299
/// C enum is out of bounds for `u32`.
300
const fn const_cast(val: bindings::dma_data_direction) -> u32 {
301
// CAST: The C standard allows compilers to choose different integer types for enums.
302
// To safely check the value, we cast it to a wide signed integer type (`i128`)
303
// which can hold any standard C integer enum type without truncation.
304
let wide_val = val as i128;
305
306
// Check if the value is outside the valid range for the target type `u32`.
307
// CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
308
if wide_val < 0 || wide_val > u32::MAX as i128 {
309
// Trigger a compile-time error in a const context.
310
build_error!("C enum value is out of bounds for the target type `u32`.");
311
}
312
313
// CAST: This cast is valid because the check above guarantees that `wide_val`
314
// is within the representable range of `u32`.
315
wide_val as u32
316
}
317
}
318
319
impl From<DataDirection> for bindings::dma_data_direction {
320
/// Returns the raw representation of [`enum dma_data_direction`].
321
fn from(direction: DataDirection) -> Self {
322
// CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
323
// The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
324
// with the enum variants of `DataDirection`, which is a valid assumption given our
325
// compile-time checks.
326
direction as u32 as Self
327
}
328
}
329
330
/// An abstraction of the `dma_alloc_coherent` API.
331
///
332
/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
333
/// large coherent DMA regions.
334
///
335
/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
336
/// processor's virtual address space) and the device address which can be given to the device
337
/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
338
/// is dropped.
339
///
340
/// # Invariants
341
///
342
/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
343
/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
344
/// region.
345
/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
346
/// - `size_of::<T> * count` fits into a `usize`.
347
// TODO
348
//
349
// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
350
// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
351
// that device resources can never survive device unbind.
352
//
353
// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
354
// allocation from surviving device unbind; it would require RCU read side critical sections to
355
// access the memory, which may require subsequent unnecessary copies.
356
//
357
// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
358
// entire `CoherentAllocation` including the allocated memory itself.
359
pub struct CoherentAllocation<T: AsBytes + FromBytes> {
360
dev: ARef<device::Device>,
361
dma_handle: DmaAddress,
362
count: usize,
363
cpu_addr: NonNull<T>,
364
dma_attrs: Attrs,
365
}
366
367
impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
368
/// Allocates a region of `size_of::<T> * count` of coherent memory.
369
///
370
/// # Examples
371
///
372
/// ```
373
/// # use kernel::device::{Bound, Device};
374
/// use kernel::dma::{attrs::*, CoherentAllocation};
375
///
376
/// # fn test(dev: &Device<Bound>) -> Result {
377
/// let c: CoherentAllocation<u64> =
378
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
379
/// # Ok::<(), Error>(()) }
380
/// ```
381
pub fn alloc_attrs(
382
dev: &device::Device<Bound>,
383
count: usize,
384
gfp_flags: kernel::alloc::Flags,
385
dma_attrs: Attrs,
386
) -> Result<CoherentAllocation<T>> {
387
build_assert!(
388
core::mem::size_of::<T>() > 0,
389
"It doesn't make sense for the allocated type to be a ZST"
390
);
391
392
let size = count
393
.checked_mul(core::mem::size_of::<T>())
394
.ok_or(EOVERFLOW)?;
395
let mut dma_handle = 0;
396
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
397
let addr = unsafe {
398
bindings::dma_alloc_attrs(
399
dev.as_raw(),
400
size,
401
&mut dma_handle,
402
gfp_flags.as_raw(),
403
dma_attrs.as_raw(),
404
)
405
};
406
let addr = NonNull::new(addr).ok_or(ENOMEM)?;
407
// INVARIANT:
408
// - We just successfully allocated a coherent region which is accessible for
409
// `count` elements, hence the cpu address is valid. We also hold a refcounted reference
410
// to the device.
411
// - The allocated `size` is equal to `size_of::<T> * count`.
412
// - The allocated `size` fits into a `usize`.
413
Ok(Self {
414
dev: dev.into(),
415
dma_handle,
416
count,
417
cpu_addr: addr.cast(),
418
dma_attrs,
419
})
420
}
421
422
/// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
423
/// `dma_attrs` is 0 by default.
424
pub fn alloc_coherent(
425
dev: &device::Device<Bound>,
426
count: usize,
427
gfp_flags: kernel::alloc::Flags,
428
) -> Result<CoherentAllocation<T>> {
429
CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
430
}
431
432
/// Returns the number of elements `T` in this allocation.
433
///
434
/// Note that this is not the size of the allocation in bytes, which is provided by
435
/// [`Self::size`].
436
pub fn count(&self) -> usize {
437
self.count
438
}
439
440
/// Returns the size in bytes of this allocation.
441
pub fn size(&self) -> usize {
442
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
443
// a `usize`.
444
self.count * core::mem::size_of::<T>()
445
}
446
447
/// Returns the base address to the allocated region in the CPU's virtual address space.
448
pub fn start_ptr(&self) -> *const T {
449
self.cpu_addr.as_ptr()
450
}
451
452
/// Returns the base address to the allocated region in the CPU's virtual address space as
453
/// a mutable pointer.
454
pub fn start_ptr_mut(&mut self) -> *mut T {
455
self.cpu_addr.as_ptr()
456
}
457
458
/// Returns a DMA handle which may be given to the device as the DMA address base of
459
/// the region.
460
pub fn dma_handle(&self) -> DmaAddress {
461
self.dma_handle
462
}
463
464
/// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
465
/// device as the DMA address base of the region.
466
///
467
/// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
468
pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
469
if offset >= self.count {
470
Err(EINVAL)
471
} else {
472
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
473
// into a `usize`, and `offset` is inferior to `count`.
474
Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
475
}
476
}
477
478
/// Common helper to validate a range applied from the allocated region in the CPU's virtual
479
/// address space.
480
fn validate_range(&self, offset: usize, count: usize) -> Result {
481
if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
482
return Err(EINVAL);
483
}
484
Ok(())
485
}
486
487
/// Returns the data from the region starting from `offset` as a slice.
488
/// `offset` and `count` are in units of `T`, not the number of bytes.
489
///
490
/// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
491
/// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
492
/// instead.
493
///
494
/// # Safety
495
///
496
/// * Callers must ensure that the device does not read/write to/from memory while the returned
497
/// slice is live.
498
/// * Callers must ensure that this call does not race with a write to the same region while
499
/// the returned slice is live.
500
pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
501
self.validate_range(offset, count)?;
502
// SAFETY:
503
// - The pointer is valid due to type invariant on `CoherentAllocation`,
504
// we've just checked that the range and index is within bounds. The immutability of the
505
// data is also guaranteed by the safety requirements of the function.
506
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
507
// that `self.count` won't overflow early in the constructor.
508
Ok(unsafe { core::slice::from_raw_parts(self.start_ptr().add(offset), count) })
509
}
510
511
/// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
512
/// slice is returned.
513
///
514
/// # Safety
515
///
516
/// * Callers must ensure that the device does not read/write to/from memory while the returned
517
/// slice is live.
518
/// * Callers must ensure that this call does not race with a read or write to the same region
519
/// while the returned slice is live.
520
pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
521
self.validate_range(offset, count)?;
522
// SAFETY:
523
// - The pointer is valid due to type invariant on `CoherentAllocation`,
524
// we've just checked that the range and index is within bounds. The immutability of the
525
// data is also guaranteed by the safety requirements of the function.
526
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
527
// that `self.count` won't overflow early in the constructor.
528
Ok(unsafe { core::slice::from_raw_parts_mut(self.start_ptr_mut().add(offset), count) })
529
}
530
531
/// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
532
/// number of bytes.
533
///
534
/// # Safety
535
///
536
/// * Callers must ensure that this call does not race with a read or write to the same region
537
/// that overlaps with this write.
538
///
539
/// # Examples
540
///
541
/// ```
542
/// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
543
/// let somedata: [u8; 4] = [0xf; 4];
544
/// let buf: &[u8] = &somedata;
545
/// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
546
/// // region.
547
/// unsafe { alloc.write(buf, 0)?; }
548
/// # Ok::<(), Error>(()) }
549
/// ```
550
pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
551
self.validate_range(offset, src.len())?;
552
// SAFETY:
553
// - The pointer is valid due to type invariant on `CoherentAllocation`
554
// and we've just checked that the range and index is within bounds.
555
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
556
// that `self.count` won't overflow early in the constructor.
557
unsafe {
558
core::ptr::copy_nonoverlapping(
559
src.as_ptr(),
560
self.start_ptr_mut().add(offset),
561
src.len(),
562
)
563
};
564
Ok(())
565
}
566
567
/// Returns a pointer to an element from the region with bounds checking. `offset` is in
568
/// units of `T`, not the number of bytes.
569
///
570
/// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
571
#[doc(hidden)]
572
pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
573
if offset >= self.count {
574
return Err(EINVAL);
575
}
576
// SAFETY:
577
// - The pointer is valid due to type invariant on `CoherentAllocation`
578
// and we've just checked that the range and index is within bounds.
579
// - `offset` can't overflow since it is smaller than `self.count` and we've checked
580
// that `self.count` won't overflow early in the constructor.
581
Ok(unsafe { self.cpu_addr.as_ptr().add(offset) })
582
}
583
584
/// Reads the value of `field` and ensures that its type is [`FromBytes`].
585
///
586
/// # Safety
587
///
588
/// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
589
/// validated beforehand.
590
///
591
/// Public but hidden since it should only be used from [`dma_read`] macro.
592
#[doc(hidden)]
593
pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
594
// SAFETY:
595
// - By the safety requirements field is valid.
596
// - Using read_volatile() here is not sound as per the usual rules, the usage here is
597
// a special exception with the following notes in place. When dealing with a potential
598
// race from a hardware or code outside kernel (e.g. user-space program), we need that
599
// read on a valid memory is not UB. Currently read_volatile() is used for this, and the
600
// rationale behind is that it should generate the same code as READ_ONCE() which the
601
// kernel already relies on to avoid UB on data races. Note that the usage of
602
// read_volatile() is limited to this particular case, it cannot be used to prevent
603
// the UB caused by racing between two kernel functions nor do they provide atomicity.
604
unsafe { field.read_volatile() }
605
}
606
607
/// Writes a value to `field` and ensures that its type is [`AsBytes`].
608
///
609
/// # Safety
610
///
611
/// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
612
/// validated beforehand.
613
///
614
/// Public but hidden since it should only be used from [`dma_write`] macro.
615
#[doc(hidden)]
616
pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
617
// SAFETY:
618
// - By the safety requirements field is valid.
619
// - Using write_volatile() here is not sound as per the usual rules, the usage here is
620
// a special exception with the following notes in place. When dealing with a potential
621
// race from a hardware or code outside kernel (e.g. user-space program), we need that
622
// write on a valid memory is not UB. Currently write_volatile() is used for this, and the
623
// rationale behind is that it should generate the same code as WRITE_ONCE() which the
624
// kernel already relies on to avoid UB on data races. Note that the usage of
625
// write_volatile() is limited to this particular case, it cannot be used to prevent
626
// the UB caused by racing between two kernel functions nor do they provide atomicity.
627
unsafe { field.write_volatile(val) }
628
}
629
}
630
631
/// Note that the device configured to do DMA must be halted before this object is dropped.
632
impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
633
fn drop(&mut self) {
634
let size = self.count * core::mem::size_of::<T>();
635
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
636
// The cpu address, and the dma handle are valid due to the type invariants on
637
// `CoherentAllocation`.
638
unsafe {
639
bindings::dma_free_attrs(
640
self.dev.as_raw(),
641
size,
642
self.start_ptr_mut().cast(),
643
self.dma_handle,
644
self.dma_attrs.as_raw(),
645
)
646
}
647
}
648
}
649
650
// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
651
// can be sent to another thread.
652
unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
653
654
/// Reads a field of an item from an allocated region of structs.
655
///
656
/// # Examples
657
///
658
/// ```
659
/// use kernel::device::Device;
660
/// use kernel::dma::{attrs::*, CoherentAllocation};
661
///
662
/// struct MyStruct { field: u32, }
663
///
664
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
665
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
666
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
667
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
668
///
669
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
670
/// let whole = kernel::dma_read!(alloc[2]);
671
/// let field = kernel::dma_read!(alloc[1].field);
672
/// # Ok::<(), Error>(()) }
673
/// ```
674
#[macro_export]
675
macro_rules! dma_read {
676
($dma:expr, $idx: expr, $($field:tt)*) => {{
677
(|| -> ::core::result::Result<_, $crate::error::Error> {
678
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
679
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
680
// dereferenced. The compiler also further validates the expression on whether `field`
681
// is a member of `item` when expanded by the macro.
682
unsafe {
683
let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
684
::core::result::Result::Ok(
685
$crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
686
)
687
}
688
})()
689
}};
690
($dma:ident [ $idx:expr ] $($field:tt)* ) => {
691
$crate::dma_read!($dma, $idx, $($field)*)
692
};
693
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
694
$crate::dma_read!($($dma).*, $idx, $($field)*)
695
};
696
}
697
698
/// Writes to a field of an item from an allocated region of structs.
699
///
700
/// # Examples
701
///
702
/// ```
703
/// use kernel::device::Device;
704
/// use kernel::dma::{attrs::*, CoherentAllocation};
705
///
706
/// struct MyStruct { member: u32, }
707
///
708
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
709
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
710
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
711
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
712
///
713
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
714
/// kernel::dma_write!(alloc[2].member = 0xf);
715
/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
716
/// # Ok::<(), Error>(()) }
717
/// ```
718
#[macro_export]
719
macro_rules! dma_write {
720
($dma:ident [ $idx:expr ] $($field:tt)*) => {{
721
$crate::dma_write!($dma, $idx, $($field)*)
722
}};
723
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
724
$crate::dma_write!($($dma).*, $idx, $($field)*)
725
}};
726
($dma:expr, $idx: expr, = $val:expr) => {
727
(|| -> ::core::result::Result<_, $crate::error::Error> {
728
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
729
// SAFETY: `item_from_index` ensures that `item` is always a valid item.
730
unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
731
::core::result::Result::Ok(())
732
})()
733
};
734
($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
735
(|| -> ::core::result::Result<_, $crate::error::Error> {
736
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
737
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
738
// dereferenced. The compiler also further validates the expression on whether `field`
739
// is a member of `item` when expanded by the macro.
740
unsafe {
741
let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
742
$crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
743
}
744
::core::result::Result::Ok(())
745
})()
746
};
747
}
748
749