Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/kernel/io.rs
49039 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
//! Memory-mapped IO.
4
//!
5
//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
6
7
use crate::{
8
bindings,
9
prelude::*, //
10
};
11
12
pub mod mem;
13
pub mod poll;
14
pub mod resource;
15
16
pub use resource::Resource;
17
18
/// Physical address type.
19
///
20
/// This is a type alias to either `u32` or `u64` depending on the config option
21
/// `CONFIG_PHYS_ADDR_T_64BIT`, and it can be a u64 even on 32-bit architectures.
22
pub type PhysAddr = bindings::phys_addr_t;
23
24
/// Resource Size type.
25
///
26
/// This is a type alias to either `u32` or `u64` depending on the config option
27
/// `CONFIG_PHYS_ADDR_T_64BIT`, and it can be a u64 even on 32-bit architectures.
28
pub type ResourceSize = bindings::resource_size_t;
29
30
/// Raw representation of an MMIO region.
31
///
32
/// By itself, the existence of an instance of this structure does not provide any guarantees that
33
/// the represented MMIO region does exist or is properly mapped.
34
///
35
/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
36
/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
37
/// any guarantees are given.
38
pub struct IoRaw<const SIZE: usize = 0> {
39
addr: usize,
40
maxsize: usize,
41
}
42
43
impl<const SIZE: usize> IoRaw<SIZE> {
44
/// Returns a new `IoRaw` instance on success, an error otherwise.
45
pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
46
if maxsize < SIZE {
47
return Err(EINVAL);
48
}
49
50
Ok(Self { addr, maxsize })
51
}
52
53
/// Returns the base address of the MMIO region.
54
#[inline]
55
pub fn addr(&self) -> usize {
56
self.addr
57
}
58
59
/// Returns the maximum size of the MMIO region.
60
#[inline]
61
pub fn maxsize(&self) -> usize {
62
self.maxsize
63
}
64
}
65
66
/// IO-mapped memory region.
67
///
68
/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
69
/// mapping, performing an additional region request etc.
70
///
71
/// # Invariant
72
///
73
/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
74
/// `maxsize`.
75
///
76
/// # Examples
77
///
78
/// ```no_run
79
/// use kernel::{
80
/// bindings,
81
/// ffi::c_void,
82
/// io::{
83
/// Io,
84
/// IoRaw,
85
/// PhysAddr,
86
/// },
87
/// };
88
/// use core::ops::Deref;
89
///
90
/// // See also [`pci::Bar`] for a real example.
91
/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
92
///
93
/// impl<const SIZE: usize> IoMem<SIZE> {
94
/// /// # Safety
95
/// ///
96
/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
97
/// /// virtual address space.
98
/// unsafe fn new(paddr: usize) -> Result<Self>{
99
/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
100
/// // valid for `ioremap`.
101
/// let addr = unsafe { bindings::ioremap(paddr as PhysAddr, SIZE) };
102
/// if addr.is_null() {
103
/// return Err(ENOMEM);
104
/// }
105
///
106
/// Ok(IoMem(IoRaw::new(addr as usize, SIZE)?))
107
/// }
108
/// }
109
///
110
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
111
/// fn drop(&mut self) {
112
/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
113
/// unsafe { bindings::iounmap(self.0.addr() as *mut c_void); };
114
/// }
115
/// }
116
///
117
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
118
/// type Target = Io<SIZE>;
119
///
120
/// fn deref(&self) -> &Self::Target {
121
/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
122
/// unsafe { Io::from_raw(&self.0) }
123
/// }
124
/// }
125
///
126
///# fn no_run() -> Result<(), Error> {
127
/// // SAFETY: Invalid usage for example purposes.
128
/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
129
/// iomem.write32(0x42, 0x0);
130
/// assert!(iomem.try_write32(0x42, 0x0).is_ok());
131
/// assert!(iomem.try_write32(0x42, 0x4).is_err());
132
/// # Ok(())
133
/// # }
134
/// ```
135
#[repr(transparent)]
136
pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
137
138
macro_rules! define_read {
139
($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
140
/// Read IO data from a given offset known at compile time.
141
///
142
/// Bound checks are performed on compile time, hence if the offset is not known at compile
143
/// time, the build will fail.
144
$(#[$attr])*
145
// Always inline to optimize out error path of `io_addr_assert`.
146
#[inline(always)]
147
pub fn $name(&self, offset: usize) -> $type_name {
148
let addr = self.io_addr_assert::<$type_name>(offset);
149
150
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
151
unsafe { bindings::$c_fn(addr as *const c_void) }
152
}
153
154
/// Read IO data from a given offset.
155
///
156
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
157
/// out of bounds.
158
$(#[$attr])*
159
pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
160
let addr = self.io_addr::<$type_name>(offset)?;
161
162
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
163
Ok(unsafe { bindings::$c_fn(addr as *const c_void) })
164
}
165
};
166
}
167
168
macro_rules! define_write {
169
($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
170
/// Write IO data from a given offset known at compile time.
171
///
172
/// Bound checks are performed on compile time, hence if the offset is not known at compile
173
/// time, the build will fail.
174
$(#[$attr])*
175
// Always inline to optimize out error path of `io_addr_assert`.
176
#[inline(always)]
177
pub fn $name(&self, value: $type_name, offset: usize) {
178
let addr = self.io_addr_assert::<$type_name>(offset);
179
180
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
181
unsafe { bindings::$c_fn(value, addr as *mut c_void) }
182
}
183
184
/// Write IO data from a given offset.
185
///
186
/// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
187
/// out of bounds.
188
$(#[$attr])*
189
pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
190
let addr = self.io_addr::<$type_name>(offset)?;
191
192
// SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
193
unsafe { bindings::$c_fn(value, addr as *mut c_void) }
194
Ok(())
195
}
196
};
197
}
198
199
impl<const SIZE: usize> Io<SIZE> {
200
/// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
201
///
202
/// # Safety
203
///
204
/// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
205
/// `maxsize`.
206
pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
207
// SAFETY: `Io` is a transparent wrapper around `IoRaw`.
208
unsafe { &*core::ptr::from_ref(raw).cast() }
209
}
210
211
/// Returns the base address of this mapping.
212
#[inline]
213
pub fn addr(&self) -> usize {
214
self.0.addr()
215
}
216
217
/// Returns the maximum size of this mapping.
218
#[inline]
219
pub fn maxsize(&self) -> usize {
220
self.0.maxsize()
221
}
222
223
#[inline]
224
const fn offset_valid<U>(offset: usize, size: usize) -> bool {
225
let type_size = core::mem::size_of::<U>();
226
if let Some(end) = offset.checked_add(type_size) {
227
end <= size && offset % type_size == 0
228
} else {
229
false
230
}
231
}
232
233
#[inline]
234
fn io_addr<U>(&self, offset: usize) -> Result<usize> {
235
if !Self::offset_valid::<U>(offset, self.maxsize()) {
236
return Err(EINVAL);
237
}
238
239
// Probably no need to check, since the safety requirements of `Self::new` guarantee that
240
// this can't overflow.
241
self.addr().checked_add(offset).ok_or(EINVAL)
242
}
243
244
// Always inline to optimize out error path of `build_assert`.
245
#[inline(always)]
246
fn io_addr_assert<U>(&self, offset: usize) -> usize {
247
build_assert!(Self::offset_valid::<U>(offset, SIZE));
248
249
self.addr() + offset
250
}
251
252
define_read!(read8, try_read8, readb -> u8);
253
define_read!(read16, try_read16, readw -> u16);
254
define_read!(read32, try_read32, readl -> u32);
255
define_read!(
256
#[cfg(CONFIG_64BIT)]
257
read64,
258
try_read64,
259
readq -> u64
260
);
261
262
define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
263
define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
264
define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
265
define_read!(
266
#[cfg(CONFIG_64BIT)]
267
read64_relaxed,
268
try_read64_relaxed,
269
readq_relaxed -> u64
270
);
271
272
define_write!(write8, try_write8, writeb <- u8);
273
define_write!(write16, try_write16, writew <- u16);
274
define_write!(write32, try_write32, writel <- u32);
275
define_write!(
276
#[cfg(CONFIG_64BIT)]
277
write64,
278
try_write64,
279
writeq <- u64
280
);
281
282
define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
283
define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
284
define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
285
define_write!(
286
#[cfg(CONFIG_64BIT)]
287
write64_relaxed,
288
try_write64_relaxed,
289
writeq_relaxed <- u64
290
);
291
}
292
293