Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/rust/pin-init/src/lib.rs
49182 views
1
// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3
//! Library to safely and fallibly initialize pinned `struct`s using in-place constructors.
4
//!
5
//! [Pinning][pinning] is Rust's way of ensuring data does not move.
6
//!
7
//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
8
//! overflow.
9
//!
10
//! This library's main use-case is in [Rust-for-Linux]. Although this version can be used
11
//! standalone.
12
//!
13
//! There are cases when you want to in-place initialize a struct. For example when it is very big
14
//! and moving it from the stack is not an option, because it is bigger than the stack itself.
15
//! Another reason would be that you need the address of the object to initialize it. This stands
16
//! in direct conflict with Rust's normal process of first initializing an object and then moving
17
//! it into it's final memory location. For more information, see
18
//! <https://rust-for-linux.com/the-safe-pinned-initialization-problem>.
19
//!
20
//! This library allows you to do in-place initialization safely.
21
//!
22
//! ## Nightly Needed for `alloc` feature
23
//!
24
//! This library requires the [`allocator_api` unstable feature] when the `alloc` feature is
25
//! enabled and thus this feature can only be used with a nightly compiler. When enabling the
26
//! `alloc` feature, the user will be required to activate `allocator_api` as well.
27
//!
28
//! [`allocator_api` unstable feature]: https://doc.rust-lang.org/nightly/unstable-book/library-features/allocator-api.html
29
//!
30
//! The feature is enabled by default, thus by default `pin-init` will require a nightly compiler.
31
//! However, using the crate on stable compilers is possible by disabling `alloc`. In practice this
32
//! will require the `std` feature, because stable compilers have neither `Box` nor `Arc` in no-std
33
//! mode.
34
//!
35
//! ## Nightly needed for `unsafe-pinned` feature
36
//!
37
//! This feature enables the `Wrapper` implementation on the unstable `core::pin::UnsafePinned` type.
38
//! This requires the [`unsafe_pinned` unstable feature](https://github.com/rust-lang/rust/issues/125735)
39
//! and therefore a nightly compiler. Note that this feature is not enabled by default.
40
//!
41
//! # Overview
42
//!
43
//! To initialize a `struct` with an in-place constructor you will need two things:
44
//! - an in-place constructor,
45
//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
46
//! [`Box<T>`] or any other smart pointer that supports this library).
47
//!
48
//! To get an in-place constructor there are generally three options:
49
//! - directly creating an in-place constructor using the [`pin_init!`] macro,
50
//! - a custom function/macro returning an in-place constructor provided by someone else,
51
//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
52
//!
53
//! Aside from pinned initialization, this library also supports in-place construction without
54
//! pinning, the macros/types/functions are generally named like the pinned variants without the
55
//! `pin_` prefix.
56
//!
57
//! # Examples
58
//!
59
//! Throughout the examples we will often make use of the `CMutex` type which can be found in
60
//! `../examples/mutex.rs`. It is essentially a userland rebuild of the `struct mutex` type from
61
//! the Linux kernel. It also uses a wait list and a basic spinlock. Importantly the wait list
62
//! requires it to be pinned to be locked and thus is a prime candidate for using this library.
63
//!
64
//! ## Using the [`pin_init!`] macro
65
//!
66
//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
67
//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
68
//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
69
//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
70
//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
71
//!
72
//! ```rust
73
//! # #![expect(clippy::disallowed_names)]
74
//! # #![feature(allocator_api)]
75
//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
76
//! # use core::pin::Pin;
77
//! use pin_init::{pin_data, pin_init, InPlaceInit};
78
//!
79
//! #[pin_data]
80
//! struct Foo {
81
//! #[pin]
82
//! a: CMutex<usize>,
83
//! b: u32,
84
//! }
85
//!
86
//! let foo = pin_init!(Foo {
87
//! a <- CMutex::new(42),
88
//! b: 24,
89
//! });
90
//! # let _ = Box::pin_init(foo);
91
//! ```
92
//!
93
//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
94
//! (or just the stack) to actually initialize a `Foo`:
95
//!
96
//! ```rust
97
//! # #![expect(clippy::disallowed_names)]
98
//! # #![feature(allocator_api)]
99
//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
100
//! # use core::{alloc::AllocError, pin::Pin};
101
//! # use pin_init::*;
102
//! #
103
//! # #[pin_data]
104
//! # struct Foo {
105
//! # #[pin]
106
//! # a: CMutex<usize>,
107
//! # b: u32,
108
//! # }
109
//! #
110
//! # let foo = pin_init!(Foo {
111
//! # a <- CMutex::new(42),
112
//! # b: 24,
113
//! # });
114
//! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
115
//! ```
116
//!
117
//! For more information see the [`pin_init!`] macro.
118
//!
119
//! ## Using a custom function/macro that returns an initializer
120
//!
121
//! Many types that use this library supply a function/macro that returns an initializer, because
122
//! the above method only works for types where you can access the fields.
123
//!
124
//! ```rust
125
//! # #![feature(allocator_api)]
126
//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
127
//! # use pin_init::*;
128
//! # use std::sync::Arc;
129
//! # use core::pin::Pin;
130
//! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
131
//! ```
132
//!
133
//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
134
//!
135
//! ```rust
136
//! # #![feature(allocator_api)]
137
//! # use pin_init::*;
138
//! # #[path = "../examples/error.rs"] mod error; use error::Error;
139
//! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
140
//! #[pin_data]
141
//! struct DriverData {
142
//! #[pin]
143
//! status: CMutex<i32>,
144
//! buffer: Box<[u8; 1_000_000]>,
145
//! }
146
//!
147
//! impl DriverData {
148
//! fn new() -> impl PinInit<Self, Error> {
149
//! try_pin_init!(Self {
150
//! status <- CMutex::new(0),
151
//! buffer: Box::init(pin_init::init_zeroed())?,
152
//! }? Error)
153
//! }
154
//! }
155
//! ```
156
//!
157
//! ## Manual creation of an initializer
158
//!
159
//! Often when working with primitives the previous approaches are not sufficient. That is where
160
//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
161
//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
162
//! actually does the initialization in the correct way. Here are the things to look out for
163
//! (we are calling the parameter to the closure `slot`):
164
//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
165
//! `slot` now contains a valid bit pattern for the type `T`,
166
//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
167
//! you need to take care to clean up anything if your initialization fails mid-way,
168
//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
169
//! `slot` gets called.
170
//!
171
//! ```rust
172
//! # #![feature(extern_types)]
173
//! use pin_init::{pin_data, pinned_drop, PinInit, PinnedDrop, pin_init_from_closure};
174
//! use core::{
175
//! ptr::addr_of_mut,
176
//! marker::PhantomPinned,
177
//! cell::UnsafeCell,
178
//! pin::Pin,
179
//! mem::MaybeUninit,
180
//! };
181
//! mod bindings {
182
//! #[repr(C)]
183
//! pub struct foo {
184
//! /* fields from C ... */
185
//! }
186
//! extern "C" {
187
//! pub fn init_foo(ptr: *mut foo);
188
//! pub fn destroy_foo(ptr: *mut foo);
189
//! #[must_use = "you must check the error return code"]
190
//! pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
191
//! }
192
//! }
193
//!
194
//! /// # Invariants
195
//! ///
196
//! /// `foo` is always initialized
197
//! #[pin_data(PinnedDrop)]
198
//! pub struct RawFoo {
199
//! #[pin]
200
//! _p: PhantomPinned,
201
//! #[pin]
202
//! foo: UnsafeCell<MaybeUninit<bindings::foo>>,
203
//! }
204
//!
205
//! impl RawFoo {
206
//! pub fn new(flags: u32) -> impl PinInit<Self, i32> {
207
//! // SAFETY:
208
//! // - when the closure returns `Ok(())`, then it has successfully initialized and
209
//! // enabled `foo`,
210
//! // - when it returns `Err(e)`, then it has cleaned up before
211
//! unsafe {
212
//! pin_init_from_closure(move |slot: *mut Self| {
213
//! // `slot` contains uninit memory, avoid creating a reference.
214
//! let foo = addr_of_mut!((*slot).foo);
215
//! let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
216
//!
217
//! // Initialize the `foo`
218
//! bindings::init_foo(foo);
219
//!
220
//! // Try to enable it.
221
//! let err = bindings::enable_foo(foo, flags);
222
//! if err != 0 {
223
//! // Enabling has failed, first clean up the foo and then return the error.
224
//! bindings::destroy_foo(foo);
225
//! Err(err)
226
//! } else {
227
//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
228
//! Ok(())
229
//! }
230
//! })
231
//! }
232
//! }
233
//! }
234
//!
235
//! #[pinned_drop]
236
//! impl PinnedDrop for RawFoo {
237
//! fn drop(self: Pin<&mut Self>) {
238
//! // SAFETY: Since `foo` is initialized, destroying is safe.
239
//! unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
240
//! }
241
//! }
242
//! ```
243
//!
244
//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
245
//! the `kernel` crate. The [`sync`] module is a good starting point.
246
//!
247
//! [`sync`]: https://rust.docs.kernel.org/kernel/sync/index.html
248
//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
249
//! [structurally pinned fields]:
250
//! https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning
251
//! [stack]: crate::stack_pin_init
252
#![cfg_attr(
253
kernel,
254
doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
255
)]
256
#![cfg_attr(
257
kernel,
258
doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
259
)]
260
#![cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
261
#![cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
262
//! [`impl PinInit<Foo>`]: crate::PinInit
263
//! [`impl PinInit<T, E>`]: crate::PinInit
264
//! [`impl Init<T, E>`]: crate::Init
265
//! [Rust-for-Linux]: https://rust-for-linux.com/
266
267
#![cfg_attr(not(RUSTC_LINT_REASONS_IS_STABLE), feature(lint_reasons))]
268
#![cfg_attr(
269
all(
270
any(feature = "alloc", feature = "std"),
271
not(RUSTC_NEW_UNINIT_IS_STABLE)
272
),
273
feature(new_uninit)
274
)]
275
#![forbid(missing_docs, unsafe_op_in_unsafe_fn)]
276
#![cfg_attr(not(feature = "std"), no_std)]
277
#![cfg_attr(feature = "alloc", feature(allocator_api))]
278
#![cfg_attr(
279
all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED),
280
feature(unsafe_pinned)
281
)]
282
283
use core::{
284
cell::UnsafeCell,
285
convert::Infallible,
286
marker::PhantomData,
287
mem::MaybeUninit,
288
num::*,
289
pin::Pin,
290
ptr::{self, NonNull},
291
};
292
293
#[doc(hidden)]
294
pub mod __internal;
295
#[doc(hidden)]
296
pub mod macros;
297
298
#[cfg(any(feature = "std", feature = "alloc"))]
299
mod alloc;
300
#[cfg(any(feature = "std", feature = "alloc"))]
301
pub use alloc::InPlaceInit;
302
303
/// Used to specify the pinning information of the fields of a struct.
304
///
305
/// This is somewhat similar in purpose as
306
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
307
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
308
/// field you want to structurally pin.
309
///
310
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
311
/// then `#[pin]` directs the type of initializer that is required.
312
///
313
/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
314
/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
315
/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
316
///
317
/// # Examples
318
///
319
/// ```
320
/// # #![feature(allocator_api)]
321
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
322
/// use pin_init::pin_data;
323
///
324
/// enum Command {
325
/// /* ... */
326
/// }
327
///
328
/// #[pin_data]
329
/// struct DriverData {
330
/// #[pin]
331
/// queue: CMutex<Vec<Command>>,
332
/// buf: Box<[u8; 1024 * 1024]>,
333
/// }
334
/// ```
335
///
336
/// ```
337
/// # #![feature(allocator_api)]
338
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
339
/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
340
/// use core::pin::Pin;
341
/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
342
///
343
/// enum Command {
344
/// /* ... */
345
/// }
346
///
347
/// #[pin_data(PinnedDrop)]
348
/// struct DriverData {
349
/// #[pin]
350
/// queue: CMutex<Vec<Command>>,
351
/// buf: Box<[u8; 1024 * 1024]>,
352
/// raw_info: *mut bindings::info,
353
/// }
354
///
355
/// #[pinned_drop]
356
/// impl PinnedDrop for DriverData {
357
/// fn drop(self: Pin<&mut Self>) {
358
/// unsafe { bindings::destroy_info(self.raw_info) };
359
/// }
360
/// }
361
/// ```
362
pub use ::pin_init_internal::pin_data;
363
364
/// Used to implement `PinnedDrop` safely.
365
///
366
/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
367
///
368
/// # Examples
369
///
370
/// ```
371
/// # #![feature(allocator_api)]
372
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
373
/// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
374
/// use core::pin::Pin;
375
/// use pin_init::{pin_data, pinned_drop, PinnedDrop};
376
///
377
/// enum Command {
378
/// /* ... */
379
/// }
380
///
381
/// #[pin_data(PinnedDrop)]
382
/// struct DriverData {
383
/// #[pin]
384
/// queue: CMutex<Vec<Command>>,
385
/// buf: Box<[u8; 1024 * 1024]>,
386
/// raw_info: *mut bindings::info,
387
/// }
388
///
389
/// #[pinned_drop]
390
/// impl PinnedDrop for DriverData {
391
/// fn drop(self: Pin<&mut Self>) {
392
/// unsafe { bindings::destroy_info(self.raw_info) };
393
/// }
394
/// }
395
/// ```
396
pub use ::pin_init_internal::pinned_drop;
397
398
/// Derives the [`Zeroable`] trait for the given `struct` or `union`.
399
///
400
/// This can only be used for `struct`s/`union`s where every field implements the [`Zeroable`]
401
/// trait.
402
///
403
/// # Examples
404
///
405
/// ```
406
/// use pin_init::Zeroable;
407
///
408
/// #[derive(Zeroable)]
409
/// pub struct DriverData {
410
/// pub(crate) id: i64,
411
/// buf_ptr: *mut u8,
412
/// len: usize,
413
/// }
414
/// ```
415
///
416
/// ```
417
/// use pin_init::Zeroable;
418
///
419
/// #[derive(Zeroable)]
420
/// pub union SignCast {
421
/// signed: i64,
422
/// unsigned: u64,
423
/// }
424
/// ```
425
pub use ::pin_init_internal::Zeroable;
426
427
/// Derives the [`Zeroable`] trait for the given `struct` or `union` if all fields implement
428
/// [`Zeroable`].
429
///
430
/// Contrary to the derive macro named [`macro@Zeroable`], this one silently fails when a field
431
/// doesn't implement [`Zeroable`].
432
///
433
/// # Examples
434
///
435
/// ```
436
/// use pin_init::MaybeZeroable;
437
///
438
/// // implmements `Zeroable`
439
/// #[derive(MaybeZeroable)]
440
/// pub struct DriverData {
441
/// pub(crate) id: i64,
442
/// buf_ptr: *mut u8,
443
/// len: usize,
444
/// }
445
///
446
/// // does not implmement `Zeroable`
447
/// #[derive(MaybeZeroable)]
448
/// pub struct DriverData2 {
449
/// pub(crate) id: i64,
450
/// buf_ptr: *mut u8,
451
/// len: usize,
452
/// // this field doesn't implement `Zeroable`
453
/// other_data: &'static i32,
454
/// }
455
/// ```
456
pub use ::pin_init_internal::MaybeZeroable;
457
458
/// Initialize and pin a type directly on the stack.
459
///
460
/// # Examples
461
///
462
/// ```rust
463
/// # #![expect(clippy::disallowed_names)]
464
/// # #![feature(allocator_api)]
465
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
466
/// # use pin_init::*;
467
/// # use core::pin::Pin;
468
/// #[pin_data]
469
/// struct Foo {
470
/// #[pin]
471
/// a: CMutex<usize>,
472
/// b: Bar,
473
/// }
474
///
475
/// #[pin_data]
476
/// struct Bar {
477
/// x: u32,
478
/// }
479
///
480
/// stack_pin_init!(let foo = pin_init!(Foo {
481
/// a <- CMutex::new(42),
482
/// b: Bar {
483
/// x: 64,
484
/// },
485
/// }));
486
/// let foo: Pin<&mut Foo> = foo;
487
/// println!("a: {}", &*foo.a.lock());
488
/// ```
489
///
490
/// # Syntax
491
///
492
/// A normal `let` binding with optional type annotation. The expression is expected to implement
493
/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
494
/// type, then use [`stack_try_pin_init!`].
495
#[macro_export]
496
macro_rules! stack_pin_init {
497
(let $var:ident $(: $t:ty)? = $val:expr) => {
498
let val = $val;
499
let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
500
let mut $var = match $crate::__internal::StackInit::init($var, val) {
501
Ok(res) => res,
502
Err(x) => {
503
let x: ::core::convert::Infallible = x;
504
match x {}
505
}
506
};
507
};
508
}
509
510
/// Initialize and pin a type directly on the stack.
511
///
512
/// # Examples
513
///
514
/// ```rust
515
/// # #![expect(clippy::disallowed_names)]
516
/// # #![feature(allocator_api)]
517
/// # #[path = "../examples/error.rs"] mod error; use error::Error;
518
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
519
/// # use pin_init::*;
520
/// #[pin_data]
521
/// struct Foo {
522
/// #[pin]
523
/// a: CMutex<usize>,
524
/// b: Box<Bar>,
525
/// }
526
///
527
/// struct Bar {
528
/// x: u32,
529
/// }
530
///
531
/// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
532
/// a <- CMutex::new(42),
533
/// b: Box::try_new(Bar {
534
/// x: 64,
535
/// })?,
536
/// }? Error));
537
/// let foo = foo.unwrap();
538
/// println!("a: {}", &*foo.a.lock());
539
/// ```
540
///
541
/// ```rust
542
/// # #![expect(clippy::disallowed_names)]
543
/// # #![feature(allocator_api)]
544
/// # #[path = "../examples/error.rs"] mod error; use error::Error;
545
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
546
/// # use pin_init::*;
547
/// #[pin_data]
548
/// struct Foo {
549
/// #[pin]
550
/// a: CMutex<usize>,
551
/// b: Box<Bar>,
552
/// }
553
///
554
/// struct Bar {
555
/// x: u32,
556
/// }
557
///
558
/// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
559
/// a <- CMutex::new(42),
560
/// b: Box::try_new(Bar {
561
/// x: 64,
562
/// })?,
563
/// }? Error));
564
/// println!("a: {}", &*foo.a.lock());
565
/// # Ok::<_, Error>(())
566
/// ```
567
///
568
/// # Syntax
569
///
570
/// A normal `let` binding with optional type annotation. The expression is expected to implement
571
/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
572
/// `=` will propagate this error.
573
#[macro_export]
574
macro_rules! stack_try_pin_init {
575
(let $var:ident $(: $t:ty)? = $val:expr) => {
576
let val = $val;
577
let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
578
let mut $var = $crate::__internal::StackInit::init($var, val);
579
};
580
(let $var:ident $(: $t:ty)? =? $val:expr) => {
581
let val = $val;
582
let mut $var = ::core::pin::pin!($crate::__internal::StackInit$(::<$t>)?::uninit());
583
let mut $var = $crate::__internal::StackInit::init($var, val)?;
584
};
585
}
586
587
/// Construct an in-place, pinned initializer for `struct`s.
588
///
589
/// This macro defaults the error to [`Infallible`]. If you need a different error, then use
590
/// [`try_pin_init!`].
591
///
592
/// The syntax is almost identical to that of a normal `struct` initializer:
593
///
594
/// ```rust
595
/// # use pin_init::*;
596
/// # use core::pin::Pin;
597
/// #[pin_data]
598
/// struct Foo {
599
/// a: usize,
600
/// b: Bar,
601
/// }
602
///
603
/// #[pin_data]
604
/// struct Bar {
605
/// x: u32,
606
/// }
607
///
608
/// # fn demo() -> impl PinInit<Foo> {
609
/// let a = 42;
610
///
611
/// let initializer = pin_init!(Foo {
612
/// a,
613
/// b: Bar {
614
/// x: 64,
615
/// },
616
/// });
617
/// # initializer }
618
/// # Box::pin_init(demo()).unwrap();
619
/// ```
620
///
621
/// Arbitrary Rust expressions can be used to set the value of a variable.
622
///
623
/// The fields are initialized in the order that they appear in the initializer. So it is possible
624
/// to read already initialized fields using raw pointers.
625
///
626
/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
627
/// initializer.
628
///
629
/// # Init-functions
630
///
631
/// When working with this library it is often desired to let others construct your types without
632
/// giving access to all fields. This is where you would normally write a plain function `new` that
633
/// would return a new instance of your type. With this library that is also possible. However,
634
/// there are a few extra things to keep in mind.
635
///
636
/// To create an initializer function, simply declare it like this:
637
///
638
/// ```rust
639
/// # use pin_init::*;
640
/// # use core::pin::Pin;
641
/// # #[pin_data]
642
/// # struct Foo {
643
/// # a: usize,
644
/// # b: Bar,
645
/// # }
646
/// # #[pin_data]
647
/// # struct Bar {
648
/// # x: u32,
649
/// # }
650
/// impl Foo {
651
/// fn new() -> impl PinInit<Self> {
652
/// pin_init!(Self {
653
/// a: 42,
654
/// b: Bar {
655
/// x: 64,
656
/// },
657
/// })
658
/// }
659
/// }
660
/// ```
661
///
662
/// Users of `Foo` can now create it like this:
663
///
664
/// ```rust
665
/// # #![expect(clippy::disallowed_names)]
666
/// # use pin_init::*;
667
/// # use core::pin::Pin;
668
/// # #[pin_data]
669
/// # struct Foo {
670
/// # a: usize,
671
/// # b: Bar,
672
/// # }
673
/// # #[pin_data]
674
/// # struct Bar {
675
/// # x: u32,
676
/// # }
677
/// # impl Foo {
678
/// # fn new() -> impl PinInit<Self> {
679
/// # pin_init!(Self {
680
/// # a: 42,
681
/// # b: Bar {
682
/// # x: 64,
683
/// # },
684
/// # })
685
/// # }
686
/// # }
687
/// let foo = Box::pin_init(Foo::new());
688
/// ```
689
///
690
/// They can also easily embed it into their own `struct`s:
691
///
692
/// ```rust
693
/// # use pin_init::*;
694
/// # use core::pin::Pin;
695
/// # #[pin_data]
696
/// # struct Foo {
697
/// # a: usize,
698
/// # b: Bar,
699
/// # }
700
/// # #[pin_data]
701
/// # struct Bar {
702
/// # x: u32,
703
/// # }
704
/// # impl Foo {
705
/// # fn new() -> impl PinInit<Self> {
706
/// # pin_init!(Self {
707
/// # a: 42,
708
/// # b: Bar {
709
/// # x: 64,
710
/// # },
711
/// # })
712
/// # }
713
/// # }
714
/// #[pin_data]
715
/// struct FooContainer {
716
/// #[pin]
717
/// foo1: Foo,
718
/// #[pin]
719
/// foo2: Foo,
720
/// other: u32,
721
/// }
722
///
723
/// impl FooContainer {
724
/// fn new(other: u32) -> impl PinInit<Self> {
725
/// pin_init!(Self {
726
/// foo1 <- Foo::new(),
727
/// foo2 <- Foo::new(),
728
/// other,
729
/// })
730
/// }
731
/// }
732
/// ```
733
///
734
/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
735
/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
736
/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
737
///
738
/// # Syntax
739
///
740
/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
741
/// the following modifications is expected:
742
/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
743
/// - You can use `_: { /* run any user-code here */ },` anywhere where you can place fields in
744
/// order to run arbitrary code.
745
/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
746
/// pointer named `this` inside of the initializer.
747
/// - Using struct update syntax one can place `..Zeroable::init_zeroed()` at the very end of the
748
/// struct, this initializes every field with 0 and then runs all initializers specified in the
749
/// body. This can only be done if [`Zeroable`] is implemented for the struct.
750
///
751
/// For instance:
752
///
753
/// ```rust
754
/// # use pin_init::*;
755
/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
756
/// #[pin_data]
757
/// #[derive(Zeroable)]
758
/// struct Buf {
759
/// // `ptr` points into `buf`.
760
/// ptr: *mut u8,
761
/// buf: [u8; 64],
762
/// #[pin]
763
/// pin: PhantomPinned,
764
/// }
765
///
766
/// let init = pin_init!(&this in Buf {
767
/// buf: [0; 64],
768
/// // SAFETY: TODO.
769
/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
770
/// pin: PhantomPinned,
771
/// });
772
/// let init = pin_init!(Buf {
773
/// buf: [1; 64],
774
/// ..Zeroable::init_zeroed()
775
/// });
776
/// ```
777
///
778
/// [`NonNull<Self>`]: core::ptr::NonNull
779
// For a detailed example of how this macro works, see the module documentation of the hidden
780
// module `macros` inside of `macros.rs`.
781
#[macro_export]
782
macro_rules! pin_init {
783
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
784
$($fields:tt)*
785
}) => {
786
$crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? {
787
$($fields)*
788
}? ::core::convert::Infallible)
789
};
790
}
791
792
/// Construct an in-place, fallible pinned initializer for `struct`s.
793
///
794
/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
795
///
796
/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
797
/// initialization and return the error.
798
///
799
/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
800
/// initialization fails, the memory can be safely deallocated without any further modifications.
801
///
802
/// The syntax is identical to [`pin_init!`] with the following exception: you must append `? $type`
803
/// after the `struct` initializer to specify the error type you want to use.
804
///
805
/// # Examples
806
///
807
/// ```rust
808
/// # #![feature(allocator_api)]
809
/// # #[path = "../examples/error.rs"] mod error; use error::Error;
810
/// use pin_init::{pin_data, try_pin_init, PinInit, InPlaceInit, init_zeroed};
811
///
812
/// #[pin_data]
813
/// struct BigBuf {
814
/// big: Box<[u8; 1024 * 1024 * 1024]>,
815
/// small: [u8; 1024 * 1024],
816
/// ptr: *mut u8,
817
/// }
818
///
819
/// impl BigBuf {
820
/// fn new() -> impl PinInit<Self, Error> {
821
/// try_pin_init!(Self {
822
/// big: Box::init(init_zeroed())?,
823
/// small: [0; 1024 * 1024],
824
/// ptr: core::ptr::null_mut(),
825
/// }? Error)
826
/// }
827
/// }
828
/// # let _ = Box::pin_init(BigBuf::new());
829
/// ```
830
// For a detailed example of how this macro works, see the module documentation of the hidden
831
// module `macros` inside of `macros.rs`.
832
#[macro_export]
833
macro_rules! try_pin_init {
834
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
835
$($fields:tt)*
836
}? $err:ty) => {
837
$crate::__init_internal!(
838
@this($($this)?),
839
@typ($t $(::<$($generics),*>)? ),
840
@fields($($fields)*),
841
@error($err),
842
@data(PinData, use_data),
843
@has_data(HasPinData, __pin_data),
844
@construct_closure(pin_init_from_closure),
845
@munch_fields($($fields)*),
846
)
847
}
848
}
849
850
/// Construct an in-place initializer for `struct`s.
851
///
852
/// This macro defaults the error to [`Infallible`]. If you need a different error, then use
853
/// [`try_init!`].
854
///
855
/// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
856
/// - `unsafe` code must guarantee either full initialization or return an error and allow
857
/// deallocation of the memory.
858
/// - the fields are initialized in the order given in the initializer.
859
/// - no references to fields are allowed to be created inside of the initializer.
860
///
861
/// This initializer is for initializing data in-place that might later be moved. If you want to
862
/// pin-initialize, use [`pin_init!`].
863
///
864
/// # Examples
865
///
866
/// ```rust
867
/// # #![feature(allocator_api)]
868
/// # #[path = "../examples/error.rs"] mod error; use error::Error;
869
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
870
/// # use pin_init::InPlaceInit;
871
/// use pin_init::{init, Init, init_zeroed};
872
///
873
/// struct BigBuf {
874
/// small: [u8; 1024 * 1024],
875
/// }
876
///
877
/// impl BigBuf {
878
/// fn new() -> impl Init<Self> {
879
/// init!(Self {
880
/// small <- init_zeroed(),
881
/// })
882
/// }
883
/// }
884
/// # let _ = Box::init(BigBuf::new());
885
/// ```
886
// For a detailed example of how this macro works, see the module documentation of the hidden
887
// module `macros` inside of `macros.rs`.
888
#[macro_export]
889
macro_rules! init {
890
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
891
$($fields:tt)*
892
}) => {
893
$crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? {
894
$($fields)*
895
}? ::core::convert::Infallible)
896
}
897
}
898
899
/// Construct an in-place fallible initializer for `struct`s.
900
///
901
/// If the initialization can complete without error (or [`Infallible`]), then use
902
/// [`init!`].
903
///
904
/// The syntax is identical to [`try_pin_init!`]. You need to specify a custom error
905
/// via `? $type` after the `struct` initializer.
906
/// The safety caveats from [`try_pin_init!`] also apply:
907
/// - `unsafe` code must guarantee either full initialization or return an error and allow
908
/// deallocation of the memory.
909
/// - the fields are initialized in the order given in the initializer.
910
/// - no references to fields are allowed to be created inside of the initializer.
911
///
912
/// # Examples
913
///
914
/// ```rust
915
/// # #![feature(allocator_api)]
916
/// # use core::alloc::AllocError;
917
/// # use pin_init::InPlaceInit;
918
/// use pin_init::{try_init, Init, init_zeroed};
919
///
920
/// struct BigBuf {
921
/// big: Box<[u8; 1024 * 1024 * 1024]>,
922
/// small: [u8; 1024 * 1024],
923
/// }
924
///
925
/// impl BigBuf {
926
/// fn new() -> impl Init<Self, AllocError> {
927
/// try_init!(Self {
928
/// big: Box::init(init_zeroed())?,
929
/// small: [0; 1024 * 1024],
930
/// }? AllocError)
931
/// }
932
/// }
933
/// # let _ = Box::init(BigBuf::new());
934
/// ```
935
// For a detailed example of how this macro works, see the module documentation of the hidden
936
// module `macros` inside of `macros.rs`.
937
#[macro_export]
938
macro_rules! try_init {
939
($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
940
$($fields:tt)*
941
}? $err:ty) => {
942
$crate::__init_internal!(
943
@this($($this)?),
944
@typ($t $(::<$($generics),*>)?),
945
@fields($($fields)*),
946
@error($err),
947
@data(InitData, /*no use_data*/),
948
@has_data(HasInitData, __init_data),
949
@construct_closure(init_from_closure),
950
@munch_fields($($fields)*),
951
)
952
}
953
}
954
955
/// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
956
/// structurally pinned.
957
///
958
/// # Examples
959
///
960
/// This will succeed:
961
/// ```
962
/// use pin_init::{pin_data, assert_pinned};
963
///
964
/// #[pin_data]
965
/// struct MyStruct {
966
/// #[pin]
967
/// some_field: u64,
968
/// }
969
///
970
/// assert_pinned!(MyStruct, some_field, u64);
971
/// ```
972
///
973
/// This will fail:
974
/// ```compile_fail
975
/// use pin_init::{pin_data, assert_pinned};
976
///
977
/// #[pin_data]
978
/// struct MyStruct {
979
/// some_field: u64,
980
/// }
981
///
982
/// assert_pinned!(MyStruct, some_field, u64);
983
/// ```
984
///
985
/// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
986
/// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
987
/// only be used when the macro is invoked from a function body.
988
/// ```
989
/// # use core::pin::Pin;
990
/// use pin_init::{pin_data, assert_pinned};
991
///
992
/// #[pin_data]
993
/// struct Foo<T> {
994
/// #[pin]
995
/// elem: T,
996
/// }
997
///
998
/// impl<T> Foo<T> {
999
/// fn project_this(self: Pin<&mut Self>) -> Pin<&mut T> {
1000
/// assert_pinned!(Foo<T>, elem, T, inline);
1001
///
1002
/// // SAFETY: The field is structurally pinned.
1003
/// unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
1004
/// }
1005
/// }
1006
/// ```
1007
#[macro_export]
1008
macro_rules! assert_pinned {
1009
($ty:ty, $field:ident, $field_ty:ty, inline) => {
1010
let _ = move |ptr: *mut $field_ty| {
1011
// SAFETY: This code is unreachable.
1012
let data = unsafe { <$ty as $crate::__internal::HasPinData>::__pin_data() };
1013
let init = $crate::__internal::AlwaysFail::<$field_ty>::new();
1014
// SAFETY: This code is unreachable.
1015
unsafe { data.$field(ptr, init) }.ok();
1016
};
1017
};
1018
1019
($ty:ty, $field:ident, $field_ty:ty) => {
1020
const _: () = {
1021
$crate::assert_pinned!($ty, $field, $field_ty, inline);
1022
};
1023
};
1024
}
1025
1026
/// A pin-initializer for the type `T`.
1027
///
1028
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1029
/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]).
1030
///
1031
/// Also see the [module description](self).
1032
///
1033
/// # Safety
1034
///
1035
/// When implementing this trait you will need to take great care. Also there are probably very few
1036
/// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
1037
///
1038
/// The [`PinInit::__pinned_init`] function:
1039
/// - returns `Ok(())` if it initialized every field of `slot`,
1040
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1041
/// - `slot` can be deallocated without UB occurring,
1042
/// - `slot` does not need to be dropped,
1043
/// - `slot` is not partially initialized.
1044
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1045
///
1046
#[cfg_attr(
1047
kernel,
1048
doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
1049
)]
1050
#[cfg_attr(
1051
kernel,
1052
doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
1053
)]
1054
#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1055
#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1056
#[must_use = "An initializer must be used in order to create its value."]
1057
pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
1058
/// Initializes `slot`.
1059
///
1060
/// # Safety
1061
///
1062
/// - `slot` is a valid pointer to uninitialized memory.
1063
/// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1064
/// deallocate.
1065
/// - `slot` will not move until it is dropped, i.e. it will be pinned.
1066
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
1067
1068
/// First initializes the value using `self` then calls the function `f` with the initialized
1069
/// value.
1070
///
1071
/// If `f` returns an error the value is dropped and the initializer will forward the error.
1072
///
1073
/// # Examples
1074
///
1075
/// ```rust
1076
/// # #![feature(allocator_api)]
1077
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1078
/// # use pin_init::*;
1079
/// let mtx_init = CMutex::new(42);
1080
/// // Make the initializer print the value.
1081
/// let mtx_init = mtx_init.pin_chain(|mtx| {
1082
/// println!("{:?}", mtx.get_data_mut());
1083
/// Ok(())
1084
/// });
1085
/// ```
1086
fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
1087
where
1088
F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1089
{
1090
ChainPinInit(self, f, PhantomData)
1091
}
1092
}
1093
1094
/// An initializer returned by [`PinInit::pin_chain`].
1095
pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1096
1097
// SAFETY: The `__pinned_init` function is implemented such that it
1098
// - returns `Ok(())` on successful initialization,
1099
// - returns `Err(err)` on error and in this case `slot` will be dropped.
1100
// - considers `slot` pinned.
1101
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
1102
where
1103
I: PinInit<T, E>,
1104
F: FnOnce(Pin<&mut T>) -> Result<(), E>,
1105
{
1106
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1107
// SAFETY: All requirements fulfilled since this function is `__pinned_init`.
1108
unsafe { self.0.__pinned_init(slot)? };
1109
// SAFETY: The above call initialized `slot` and we still have unique access.
1110
let val = unsafe { &mut *slot };
1111
// SAFETY: `slot` is considered pinned.
1112
let val = unsafe { Pin::new_unchecked(val) };
1113
// SAFETY: `slot` was initialized above.
1114
(self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
1115
}
1116
}
1117
1118
/// An initializer for `T`.
1119
///
1120
/// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1121
/// be [`Box<T>`], [`Arc<T>`] or even the stack (see [`stack_pin_init!`]). Because
1122
/// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1123
///
1124
/// Also see the [module description](self).
1125
///
1126
/// # Safety
1127
///
1128
/// When implementing this trait you will need to take great care. Also there are probably very few
1129
/// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1130
///
1131
/// The [`Init::__init`] function:
1132
/// - returns `Ok(())` if it initialized every field of `slot`,
1133
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1134
/// - `slot` can be deallocated without UB occurring,
1135
/// - `slot` does not need to be dropped,
1136
/// - `slot` is not partially initialized.
1137
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1138
///
1139
/// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1140
/// code as `__init`.
1141
///
1142
/// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1143
/// move the pointee after initialization.
1144
///
1145
#[cfg_attr(
1146
kernel,
1147
doc = "[`Arc<T>`]: https://rust.docs.kernel.org/kernel/sync/struct.Arc.html"
1148
)]
1149
#[cfg_attr(
1150
kernel,
1151
doc = "[`Box<T>`]: https://rust.docs.kernel.org/kernel/alloc/kbox/struct.Box.html"
1152
)]
1153
#[cfg_attr(not(kernel), doc = "[`Arc<T>`]: alloc::alloc::sync::Arc")]
1154
#[cfg_attr(not(kernel), doc = "[`Box<T>`]: alloc::alloc::boxed::Box")]
1155
#[must_use = "An initializer must be used in order to create its value."]
1156
pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1157
/// Initializes `slot`.
1158
///
1159
/// # Safety
1160
///
1161
/// - `slot` is a valid pointer to uninitialized memory.
1162
/// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1163
/// deallocate.
1164
unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1165
1166
/// First initializes the value using `self` then calls the function `f` with the initialized
1167
/// value.
1168
///
1169
/// If `f` returns an error the value is dropped and the initializer will forward the error.
1170
///
1171
/// # Examples
1172
///
1173
/// ```rust
1174
/// # #![expect(clippy::disallowed_names)]
1175
/// use pin_init::{init, init_zeroed, Init};
1176
///
1177
/// struct Foo {
1178
/// buf: [u8; 1_000_000],
1179
/// }
1180
///
1181
/// impl Foo {
1182
/// fn setup(&mut self) {
1183
/// println!("Setting up foo");
1184
/// }
1185
/// }
1186
///
1187
/// let foo = init!(Foo {
1188
/// buf <- init_zeroed()
1189
/// }).chain(|foo| {
1190
/// foo.setup();
1191
/// Ok(())
1192
/// });
1193
/// ```
1194
fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1195
where
1196
F: FnOnce(&mut T) -> Result<(), E>,
1197
{
1198
ChainInit(self, f, PhantomData)
1199
}
1200
}
1201
1202
/// An initializer returned by [`Init::chain`].
1203
pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, T)>);
1204
1205
// SAFETY: The `__init` function is implemented such that it
1206
// - returns `Ok(())` on successful initialization,
1207
// - returns `Err(err)` on error and in this case `slot` will be dropped.
1208
unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1209
where
1210
I: Init<T, E>,
1211
F: FnOnce(&mut T) -> Result<(), E>,
1212
{
1213
unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1214
// SAFETY: All requirements fulfilled since this function is `__init`.
1215
unsafe { self.0.__pinned_init(slot)? };
1216
// SAFETY: The above call initialized `slot` and we still have unique access.
1217
(self.1)(unsafe { &mut *slot }).inspect_err(|_|
1218
// SAFETY: `slot` was initialized above.
1219
unsafe { core::ptr::drop_in_place(slot) })
1220
}
1221
}
1222
1223
// SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1224
unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1225
where
1226
I: Init<T, E>,
1227
F: FnOnce(&mut T) -> Result<(), E>,
1228
{
1229
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1230
// SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1231
unsafe { self.__init(slot) }
1232
}
1233
}
1234
1235
/// Creates a new [`PinInit<T, E>`] from the given closure.
1236
///
1237
/// # Safety
1238
///
1239
/// The closure:
1240
/// - returns `Ok(())` if it initialized every field of `slot`,
1241
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1242
/// - `slot` can be deallocated without UB occurring,
1243
/// - `slot` does not need to be dropped,
1244
/// - `slot` is not partially initialized.
1245
/// - may assume that the `slot` does not move if `T: !Unpin`,
1246
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1247
#[inline]
1248
pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1249
f: impl FnOnce(*mut T) -> Result<(), E>,
1250
) -> impl PinInit<T, E> {
1251
__internal::InitClosure(f, PhantomData)
1252
}
1253
1254
/// Creates a new [`Init<T, E>`] from the given closure.
1255
///
1256
/// # Safety
1257
///
1258
/// The closure:
1259
/// - returns `Ok(())` if it initialized every field of `slot`,
1260
/// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1261
/// - `slot` can be deallocated without UB occurring,
1262
/// - `slot` does not need to be dropped,
1263
/// - `slot` is not partially initialized.
1264
/// - the `slot` may move after initialization.
1265
/// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1266
#[inline]
1267
pub const unsafe fn init_from_closure<T: ?Sized, E>(
1268
f: impl FnOnce(*mut T) -> Result<(), E>,
1269
) -> impl Init<T, E> {
1270
__internal::InitClosure(f, PhantomData)
1271
}
1272
1273
/// Changes the to be initialized type.
1274
///
1275
/// # Safety
1276
///
1277
/// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
1278
/// pointer must result in a valid `U`.
1279
#[expect(clippy::let_and_return)]
1280
pub const unsafe fn cast_pin_init<T, U, E>(init: impl PinInit<T, E>) -> impl PinInit<U, E> {
1281
// SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
1282
// requirements.
1283
let res = unsafe { pin_init_from_closure(|ptr: *mut U| init.__pinned_init(ptr.cast::<T>())) };
1284
// FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
1285
// cycle when computing the type returned by this function)
1286
res
1287
}
1288
1289
/// Changes the to be initialized type.
1290
///
1291
/// # Safety
1292
///
1293
/// - `*mut U` must be castable to `*mut T` and any value of type `T` written through such a
1294
/// pointer must result in a valid `U`.
1295
#[expect(clippy::let_and_return)]
1296
pub const unsafe fn cast_init<T, U, E>(init: impl Init<T, E>) -> impl Init<U, E> {
1297
// SAFETY: initialization delegated to a valid initializer. Cast is valid by function safety
1298
// requirements.
1299
let res = unsafe { init_from_closure(|ptr: *mut U| init.__init(ptr.cast::<T>())) };
1300
// FIXME: remove the let statement once the nightly-MSRV allows it (1.78 otherwise encounters a
1301
// cycle when computing the type returned by this function)
1302
res
1303
}
1304
1305
/// An initializer that leaves the memory uninitialized.
1306
///
1307
/// The initializer is a no-op. The `slot` memory is not changed.
1308
#[inline]
1309
pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1310
// SAFETY: The memory is allowed to be uninitialized.
1311
unsafe { init_from_closure(|_| Ok(())) }
1312
}
1313
1314
/// Initializes an array by initializing each element via the provided initializer.
1315
///
1316
/// # Examples
1317
///
1318
/// ```rust
1319
/// # use pin_init::*;
1320
/// use pin_init::init_array_from_fn;
1321
/// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1322
/// assert_eq!(array.len(), 1_000);
1323
/// ```
1324
pub fn init_array_from_fn<I, const N: usize, T, E>(
1325
mut make_init: impl FnMut(usize) -> I,
1326
) -> impl Init<[T; N], E>
1327
where
1328
I: Init<T, E>,
1329
{
1330
let init = move |slot: *mut [T; N]| {
1331
let slot = slot.cast::<T>();
1332
for i in 0..N {
1333
let init = make_init(i);
1334
// SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1335
let ptr = unsafe { slot.add(i) };
1336
// SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1337
// requirements.
1338
if let Err(e) = unsafe { init.__init(ptr) } {
1339
// SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1340
// `Err` below, `slot` will be considered uninitialized memory.
1341
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1342
return Err(e);
1343
}
1344
}
1345
Ok(())
1346
};
1347
// SAFETY: The initializer above initializes every element of the array. On failure it drops
1348
// any initialized elements and returns `Err`.
1349
unsafe { init_from_closure(init) }
1350
}
1351
1352
/// Initializes an array by initializing each element via the provided initializer.
1353
///
1354
/// # Examples
1355
///
1356
/// ```rust
1357
/// # #![feature(allocator_api)]
1358
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1359
/// # use pin_init::*;
1360
/// # use core::pin::Pin;
1361
/// use pin_init::pin_init_array_from_fn;
1362
/// use std::sync::Arc;
1363
/// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1364
/// Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1365
/// assert_eq!(array.len(), 1_000);
1366
/// ```
1367
pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1368
mut make_init: impl FnMut(usize) -> I,
1369
) -> impl PinInit<[T; N], E>
1370
where
1371
I: PinInit<T, E>,
1372
{
1373
let init = move |slot: *mut [T; N]| {
1374
let slot = slot.cast::<T>();
1375
for i in 0..N {
1376
let init = make_init(i);
1377
// SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1378
let ptr = unsafe { slot.add(i) };
1379
// SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1380
// requirements.
1381
if let Err(e) = unsafe { init.__pinned_init(ptr) } {
1382
// SAFETY: The loop has initialized the elements `slot[0..i]` and since we return
1383
// `Err` below, `slot` will be considered uninitialized memory.
1384
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1385
return Err(e);
1386
}
1387
}
1388
Ok(())
1389
};
1390
// SAFETY: The initializer above initializes every element of the array. On failure it drops
1391
// any initialized elements and returns `Err`.
1392
unsafe { pin_init_from_closure(init) }
1393
}
1394
1395
/// Construct an initializer in a closure and run it.
1396
///
1397
/// Returns an initializer that first runs the closure and then the initializer returned by it.
1398
///
1399
/// See also [`init_scope`].
1400
///
1401
/// # Examples
1402
///
1403
/// ```
1404
/// # use pin_init::*;
1405
/// # #[pin_data]
1406
/// # struct Foo { a: u64, b: isize }
1407
/// # struct Bar { a: u32, b: isize }
1408
/// # fn lookup_bar() -> Result<Bar, Error> { todo!() }
1409
/// # struct Error;
1410
/// fn init_foo() -> impl PinInit<Foo, Error> {
1411
/// pin_init_scope(|| {
1412
/// let bar = lookup_bar()?;
1413
/// Ok(try_pin_init!(Foo { a: bar.a.into(), b: bar.b }? Error))
1414
/// })
1415
/// }
1416
/// ```
1417
///
1418
/// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the
1419
/// initializer itself will fail with that error. If it returned `Ok`, then it will run the
1420
/// initializer returned by the [`try_pin_init!`] invocation.
1421
pub fn pin_init_scope<T, E, F, I>(make_init: F) -> impl PinInit<T, E>
1422
where
1423
F: FnOnce() -> Result<I, E>,
1424
I: PinInit<T, E>,
1425
{
1426
// SAFETY:
1427
// - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized,
1428
// - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__pinned_init`.
1429
// - The safety requirements of `init.__pinned_init` are fulfilled, since it's being called
1430
// from an initializer.
1431
unsafe {
1432
pin_init_from_closure(move |slot: *mut T| -> Result<(), E> {
1433
let init = make_init()?;
1434
init.__pinned_init(slot)
1435
})
1436
}
1437
}
1438
1439
/// Construct an initializer in a closure and run it.
1440
///
1441
/// Returns an initializer that first runs the closure and then the initializer returned by it.
1442
///
1443
/// See also [`pin_init_scope`].
1444
///
1445
/// # Examples
1446
///
1447
/// ```
1448
/// # use pin_init::*;
1449
/// # struct Foo { a: u64, b: isize }
1450
/// # struct Bar { a: u32, b: isize }
1451
/// # fn lookup_bar() -> Result<Bar, Error> { todo!() }
1452
/// # struct Error;
1453
/// fn init_foo() -> impl Init<Foo, Error> {
1454
/// init_scope(|| {
1455
/// let bar = lookup_bar()?;
1456
/// Ok(try_init!(Foo { a: bar.a.into(), b: bar.b }? Error))
1457
/// })
1458
/// }
1459
/// ```
1460
///
1461
/// This initializer will first execute `lookup_bar()`, match on it, if it returned an error, the
1462
/// initializer itself will fail with that error. If it returned `Ok`, then it will run the
1463
/// initializer returned by the [`try_init!`] invocation.
1464
pub fn init_scope<T, E, F, I>(make_init: F) -> impl Init<T, E>
1465
where
1466
F: FnOnce() -> Result<I, E>,
1467
I: Init<T, E>,
1468
{
1469
// SAFETY:
1470
// - If `make_init` returns `Err`, `Err` is returned and `slot` is completely uninitialized,
1471
// - If `make_init` returns `Ok`, safety requirement are fulfilled by `init.__init`.
1472
// - The safety requirements of `init.__init` are fulfilled, since it's being called from an
1473
// initializer.
1474
unsafe {
1475
init_from_closure(move |slot: *mut T| -> Result<(), E> {
1476
let init = make_init()?;
1477
init.__init(slot)
1478
})
1479
}
1480
}
1481
1482
// SAFETY: the `__init` function always returns `Ok(())` and initializes every field of `slot`.
1483
unsafe impl<T> Init<T> for T {
1484
unsafe fn __init(self, slot: *mut T) -> Result<(), Infallible> {
1485
// SAFETY: `slot` is valid for writes by the safety requirements of this function.
1486
unsafe { slot.write(self) };
1487
Ok(())
1488
}
1489
}
1490
1491
// SAFETY: the `__pinned_init` function always returns `Ok(())` and initializes every field of
1492
// `slot`. Additionally, all pinning invariants of `T` are upheld.
1493
unsafe impl<T> PinInit<T> for T {
1494
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), Infallible> {
1495
// SAFETY: `slot` is valid for writes by the safety requirements of this function.
1496
unsafe { slot.write(self) };
1497
Ok(())
1498
}
1499
}
1500
1501
// SAFETY: when the `__init` function returns with
1502
// - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
1503
// - `Err(err)`, slot was not written to.
1504
unsafe impl<T, E> Init<T, E> for Result<T, E> {
1505
unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1506
// SAFETY: `slot` is valid for writes by the safety requirements of this function.
1507
unsafe { slot.write(self?) };
1508
Ok(())
1509
}
1510
}
1511
1512
// SAFETY: when the `__pinned_init` function returns with
1513
// - `Ok(())`, `slot` was initialized and all pinned invariants of `T` are upheld.
1514
// - `Err(err)`, slot was not written to.
1515
unsafe impl<T, E> PinInit<T, E> for Result<T, E> {
1516
unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1517
// SAFETY: `slot` is valid for writes by the safety requirements of this function.
1518
unsafe { slot.write(self?) };
1519
Ok(())
1520
}
1521
}
1522
1523
/// Smart pointer containing uninitialized memory and that can write a value.
1524
pub trait InPlaceWrite<T> {
1525
/// The type `Self` turns into when the contents are initialized.
1526
type Initialized;
1527
1528
/// Use the given initializer to write a value into `self`.
1529
///
1530
/// Does not drop the current value and considers it as uninitialized memory.
1531
fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1532
1533
/// Use the given pin-initializer to write a value into `self`.
1534
///
1535
/// Does not drop the current value and considers it as uninitialized memory.
1536
fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1537
}
1538
1539
/// Trait facilitating pinned destruction.
1540
///
1541
/// Use [`pinned_drop`] to implement this trait safely:
1542
///
1543
/// ```rust
1544
/// # #![feature(allocator_api)]
1545
/// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1546
/// # use pin_init::*;
1547
/// use core::pin::Pin;
1548
/// #[pin_data(PinnedDrop)]
1549
/// struct Foo {
1550
/// #[pin]
1551
/// mtx: CMutex<usize>,
1552
/// }
1553
///
1554
/// #[pinned_drop]
1555
/// impl PinnedDrop for Foo {
1556
/// fn drop(self: Pin<&mut Self>) {
1557
/// println!("Foo is being dropped!");
1558
/// }
1559
/// }
1560
/// ```
1561
///
1562
/// # Safety
1563
///
1564
/// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1565
pub unsafe trait PinnedDrop: __internal::HasPinData {
1566
/// Executes the pinned destructor of this type.
1567
///
1568
/// While this function is marked safe, it is actually unsafe to call it manually. For this
1569
/// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1570
/// and thus prevents this function from being called where it should not.
1571
///
1572
/// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1573
/// automatically.
1574
fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1575
}
1576
1577
/// Marker trait for types that can be initialized by writing just zeroes.
1578
///
1579
/// # Safety
1580
///
1581
/// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1582
/// this is not UB:
1583
///
1584
/// ```rust,ignore
1585
/// let val: Self = unsafe { core::mem::zeroed() };
1586
/// ```
1587
pub unsafe trait Zeroable {
1588
/// Create a new zeroed `Self`.
1589
///
1590
/// The returned initializer will write `0x00` to every byte of the given `slot`.
1591
#[inline]
1592
fn init_zeroed() -> impl Init<Self>
1593
where
1594
Self: Sized,
1595
{
1596
init_zeroed()
1597
}
1598
1599
/// Create a `Self` consisting of all zeroes.
1600
///
1601
/// Whenever a type implements [`Zeroable`], this function should be preferred over
1602
/// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
1603
///
1604
/// # Examples
1605
///
1606
/// ```
1607
/// use pin_init::{Zeroable, zeroed};
1608
///
1609
/// #[derive(Zeroable)]
1610
/// struct Point {
1611
/// x: u32,
1612
/// y: u32,
1613
/// }
1614
///
1615
/// let point: Point = zeroed();
1616
/// assert_eq!(point.x, 0);
1617
/// assert_eq!(point.y, 0);
1618
/// ```
1619
fn zeroed() -> Self
1620
where
1621
Self: Sized,
1622
{
1623
zeroed()
1624
}
1625
}
1626
1627
/// Marker trait for types that allow `Option<Self>` to be set to all zeroes in order to write
1628
/// `None` to that location.
1629
///
1630
/// # Safety
1631
///
1632
/// The implementer needs to ensure that `unsafe impl Zeroable for Option<Self> {}` is sound.
1633
pub unsafe trait ZeroableOption {}
1634
1635
// SAFETY: by the safety requirement of `ZeroableOption`, this is valid.
1636
unsafe impl<T: ZeroableOption> Zeroable for Option<T> {}
1637
1638
// SAFETY: `Option<&T>` is part of the option layout optimization guarantee:
1639
// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1640
unsafe impl<T> ZeroableOption for &T {}
1641
// SAFETY: `Option<&mut T>` is part of the option layout optimization guarantee:
1642
// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1643
unsafe impl<T> ZeroableOption for &mut T {}
1644
// SAFETY: `Option<NonNull<T>>` is part of the option layout optimization guarantee:
1645
// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1646
unsafe impl<T> ZeroableOption for NonNull<T> {}
1647
1648
/// Create an initializer for a zeroed `T`.
1649
///
1650
/// The returned initializer will write `0x00` to every byte of the given `slot`.
1651
#[inline]
1652
pub fn init_zeroed<T: Zeroable>() -> impl Init<T> {
1653
// SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1654
// and because we write all zeroes, the memory is initialized.
1655
unsafe {
1656
init_from_closure(|slot: *mut T| {
1657
slot.write_bytes(0, 1);
1658
Ok(())
1659
})
1660
}
1661
}
1662
1663
/// Create a `T` consisting of all zeroes.
1664
///
1665
/// Whenever a type implements [`Zeroable`], this function should be preferred over
1666
/// [`core::mem::zeroed()`] or using `MaybeUninit<T>::zeroed().assume_init()`.
1667
///
1668
/// # Examples
1669
///
1670
/// ```
1671
/// use pin_init::{Zeroable, zeroed};
1672
///
1673
/// #[derive(Zeroable)]
1674
/// struct Point {
1675
/// x: u32,
1676
/// y: u32,
1677
/// }
1678
///
1679
/// let point: Point = zeroed();
1680
/// assert_eq!(point.x, 0);
1681
/// assert_eq!(point.y, 0);
1682
/// ```
1683
pub const fn zeroed<T: Zeroable>() -> T {
1684
// SAFETY:By the type invariants of `Zeroable`, all zeroes is a valid bit pattern for `T`.
1685
unsafe { core::mem::zeroed() }
1686
}
1687
1688
macro_rules! impl_zeroable {
1689
($($({$($generics:tt)*})? $t:ty, )*) => {
1690
// SAFETY: Safety comments written in the macro invocation.
1691
$(unsafe impl$($($generics)*)? Zeroable for $t {})*
1692
};
1693
}
1694
1695
impl_zeroable! {
1696
// SAFETY: All primitives that are allowed to be zero.
1697
bool,
1698
char,
1699
u8, u16, u32, u64, u128, usize,
1700
i8, i16, i32, i64, i128, isize,
1701
f32, f64,
1702
1703
// Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1704
// creating an instance of an uninhabited type is immediate undefined behavior. For more on
1705
// uninhabited/empty types, consult The Rustonomicon:
1706
// <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1707
// also has information on undefined behavior:
1708
// <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1709
//
1710
// SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1711
{<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1712
1713
// SAFETY: Type is allowed to take any value, including all zeros.
1714
{<T>} MaybeUninit<T>,
1715
1716
// SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1717
{<T: ?Sized + Zeroable>} UnsafeCell<T>,
1718
1719
// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
1720
// <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
1721
Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1722
Option<NonZeroU128>, Option<NonZeroUsize>,
1723
Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1724
Option<NonZeroI128>, Option<NonZeroIsize>,
1725
1726
// SAFETY: `null` pointer is valid.
1727
//
1728
// We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1729
// null.
1730
//
1731
// When `Pointee` gets stabilized, we could use
1732
// `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1733
{<T>} *mut T, {<T>} *const T,
1734
1735
// SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1736
// zero.
1737
{<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1738
1739
// SAFETY: `T` is `Zeroable`.
1740
{<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1741
}
1742
1743
macro_rules! impl_tuple_zeroable {
1744
($(,)?) => {};
1745
($first:ident, $($t:ident),* $(,)?) => {
1746
// SAFETY: All elements are zeroable and padding can be zero.
1747
unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1748
impl_tuple_zeroable!($($t),* ,);
1749
}
1750
}
1751
1752
impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1753
1754
macro_rules! impl_fn_zeroable_option {
1755
([$($abi:literal),* $(,)?] $args:tt) => {
1756
$(impl_fn_zeroable_option!({extern $abi} $args);)*
1757
$(impl_fn_zeroable_option!({unsafe extern $abi} $args);)*
1758
};
1759
({$($prefix:tt)*} {$(,)?}) => {};
1760
({$($prefix:tt)*} {$ret:ident, $($rest:ident),* $(,)?}) => {
1761
// SAFETY: function pointers are part of the option layout optimization:
1762
// <https://doc.rust-lang.org/stable/std/option/index.html#representation>.
1763
unsafe impl<$ret, $($rest),*> ZeroableOption for $($prefix)* fn($($rest),*) -> $ret {}
1764
impl_fn_zeroable_option!({$($prefix)*} {$($rest),*,});
1765
};
1766
}
1767
1768
impl_fn_zeroable_option!(["Rust", "C"] { A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U });
1769
1770
/// This trait allows creating an instance of `Self` which contains exactly one
1771
/// [structurally pinned value](https://doc.rust-lang.org/std/pin/index.html#projections-and-structural-pinning).
1772
///
1773
/// This is useful when using wrapper `struct`s like [`UnsafeCell`] or with new-type `struct`s.
1774
///
1775
/// # Examples
1776
///
1777
/// ```
1778
/// # use core::cell::UnsafeCell;
1779
/// # use pin_init::{pin_data, pin_init, Wrapper};
1780
///
1781
/// #[pin_data]
1782
/// struct Foo {}
1783
///
1784
/// #[pin_data]
1785
/// struct Bar {
1786
/// #[pin]
1787
/// content: UnsafeCell<Foo>
1788
/// };
1789
///
1790
/// let foo_initializer = pin_init!(Foo{});
1791
/// let initializer = pin_init!(Bar {
1792
/// content <- UnsafeCell::pin_init(foo_initializer)
1793
/// });
1794
/// ```
1795
pub trait Wrapper<T> {
1796
/// Creates an pin-initializer for a [`Self`] containing `T` from the `value_init` initializer.
1797
fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E>;
1798
}
1799
1800
impl<T> Wrapper<T> for UnsafeCell<T> {
1801
fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1802
// SAFETY: `UnsafeCell<T>` has a compatible layout to `T`.
1803
unsafe { cast_pin_init(value_init) }
1804
}
1805
}
1806
1807
impl<T> Wrapper<T> for MaybeUninit<T> {
1808
fn pin_init<E>(value_init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1809
// SAFETY: `MaybeUninit<T>` has a compatible layout to `T`.
1810
unsafe { cast_pin_init(value_init) }
1811
}
1812
}
1813
1814
#[cfg(all(feature = "unsafe-pinned", CONFIG_RUSTC_HAS_UNSAFE_PINNED))]
1815
impl<T> Wrapper<T> for core::pin::UnsafePinned<T> {
1816
fn pin_init<E>(init: impl PinInit<T, E>) -> impl PinInit<Self, E> {
1817
// SAFETY: `UnsafePinned<T>` has a compatible layout to `T`.
1818
unsafe { cast_pin_init(init) }
1819
}
1820
}
1821
1822