Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/integrity/ima/ima_crypto.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2005,2006,2007,2008 IBM Corporation
4
*
5
* Authors:
6
* Mimi Zohar <[email protected]>
7
* Kylene Hall <[email protected]>
8
*
9
* File: ima_crypto.c
10
* Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11
*/
12
13
#include <linux/kernel.h>
14
#include <linux/moduleparam.h>
15
#include <linux/ratelimit.h>
16
#include <linux/file.h>
17
#include <linux/crypto.h>
18
#include <linux/scatterlist.h>
19
#include <linux/err.h>
20
#include <linux/slab.h>
21
#include <crypto/hash.h>
22
23
#include "ima.h"
24
25
/* minimum file size for ahash use */
26
static unsigned long ima_ahash_minsize;
27
module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
28
MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
29
30
/* default is 0 - 1 page. */
31
static int ima_maxorder;
32
static unsigned int ima_bufsize = PAGE_SIZE;
33
34
static int param_set_bufsize(const char *val, const struct kernel_param *kp)
35
{
36
unsigned long long size;
37
int order;
38
39
size = memparse(val, NULL);
40
order = get_order(size);
41
if (order > MAX_PAGE_ORDER)
42
return -EINVAL;
43
ima_maxorder = order;
44
ima_bufsize = PAGE_SIZE << order;
45
return 0;
46
}
47
48
static const struct kernel_param_ops param_ops_bufsize = {
49
.set = param_set_bufsize,
50
.get = param_get_uint,
51
};
52
#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
53
54
module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
55
MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
56
57
static struct crypto_shash *ima_shash_tfm;
58
static struct crypto_ahash *ima_ahash_tfm;
59
60
int ima_sha1_idx __ro_after_init;
61
int ima_hash_algo_idx __ro_after_init;
62
/*
63
* Additional number of slots reserved, as needed, for SHA1
64
* and IMA default algo.
65
*/
66
int ima_extra_slots __ro_after_init;
67
68
struct ima_algo_desc *ima_algo_array __ro_after_init;
69
70
static int __init ima_init_ima_crypto(void)
71
{
72
long rc;
73
74
ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
75
if (IS_ERR(ima_shash_tfm)) {
76
rc = PTR_ERR(ima_shash_tfm);
77
pr_err("Can not allocate %s (reason: %ld)\n",
78
hash_algo_name[ima_hash_algo], rc);
79
return rc;
80
}
81
pr_info("Allocated hash algorithm: %s\n",
82
hash_algo_name[ima_hash_algo]);
83
return 0;
84
}
85
86
static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
87
{
88
struct crypto_shash *tfm = ima_shash_tfm;
89
int rc, i;
90
91
if (algo < 0 || algo >= HASH_ALGO__LAST)
92
algo = ima_hash_algo;
93
94
if (algo == ima_hash_algo)
95
return tfm;
96
97
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
98
if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo)
99
return ima_algo_array[i].tfm;
100
101
tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
102
if (IS_ERR(tfm)) {
103
rc = PTR_ERR(tfm);
104
pr_err("Can not allocate %s (reason: %d)\n",
105
hash_algo_name[algo], rc);
106
}
107
return tfm;
108
}
109
110
int __init ima_init_crypto(void)
111
{
112
enum hash_algo algo;
113
long rc;
114
int i;
115
116
rc = ima_init_ima_crypto();
117
if (rc)
118
return rc;
119
120
ima_sha1_idx = -1;
121
ima_hash_algo_idx = -1;
122
123
for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
124
algo = ima_tpm_chip->allocated_banks[i].crypto_id;
125
if (algo == HASH_ALGO_SHA1)
126
ima_sha1_idx = i;
127
128
if (algo == ima_hash_algo)
129
ima_hash_algo_idx = i;
130
}
131
132
if (ima_sha1_idx < 0) {
133
ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
134
if (ima_hash_algo == HASH_ALGO_SHA1)
135
ima_hash_algo_idx = ima_sha1_idx;
136
}
137
138
if (ima_hash_algo_idx < 0)
139
ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++;
140
141
ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots,
142
sizeof(*ima_algo_array), GFP_KERNEL);
143
if (!ima_algo_array) {
144
rc = -ENOMEM;
145
goto out;
146
}
147
148
for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) {
149
algo = ima_tpm_chip->allocated_banks[i].crypto_id;
150
ima_algo_array[i].algo = algo;
151
152
/* unknown TPM algorithm */
153
if (algo == HASH_ALGO__LAST)
154
continue;
155
156
if (algo == ima_hash_algo) {
157
ima_algo_array[i].tfm = ima_shash_tfm;
158
continue;
159
}
160
161
ima_algo_array[i].tfm = ima_alloc_tfm(algo);
162
if (IS_ERR(ima_algo_array[i].tfm)) {
163
if (algo == HASH_ALGO_SHA1) {
164
rc = PTR_ERR(ima_algo_array[i].tfm);
165
ima_algo_array[i].tfm = NULL;
166
goto out_array;
167
}
168
169
ima_algo_array[i].tfm = NULL;
170
}
171
}
172
173
if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) {
174
if (ima_hash_algo == HASH_ALGO_SHA1) {
175
ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm;
176
} else {
177
ima_algo_array[ima_sha1_idx].tfm =
178
ima_alloc_tfm(HASH_ALGO_SHA1);
179
if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) {
180
rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm);
181
goto out_array;
182
}
183
}
184
185
ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1;
186
}
187
188
if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) &&
189
ima_hash_algo_idx != ima_sha1_idx) {
190
ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm;
191
ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo;
192
}
193
194
return 0;
195
out_array:
196
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
197
if (!ima_algo_array[i].tfm ||
198
ima_algo_array[i].tfm == ima_shash_tfm)
199
continue;
200
201
crypto_free_shash(ima_algo_array[i].tfm);
202
}
203
kfree(ima_algo_array);
204
out:
205
crypto_free_shash(ima_shash_tfm);
206
return rc;
207
}
208
209
static void ima_free_tfm(struct crypto_shash *tfm)
210
{
211
int i;
212
213
if (tfm == ima_shash_tfm)
214
return;
215
216
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++)
217
if (ima_algo_array[i].tfm == tfm)
218
return;
219
220
crypto_free_shash(tfm);
221
}
222
223
/**
224
* ima_alloc_pages() - Allocate contiguous pages.
225
* @max_size: Maximum amount of memory to allocate.
226
* @allocated_size: Returned size of actual allocation.
227
* @last_warn: Should the min_size allocation warn or not.
228
*
229
* Tries to do opportunistic allocation for memory first trying to allocate
230
* max_size amount of memory and then splitting that until zero order is
231
* reached. Allocation is tried without generating allocation warnings unless
232
* last_warn is set. Last_warn set affects only last allocation of zero order.
233
*
234
* By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
235
*
236
* Return pointer to allocated memory, or NULL on failure.
237
*/
238
static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
239
int last_warn)
240
{
241
void *ptr;
242
int order = ima_maxorder;
243
gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
244
245
if (order)
246
order = min(get_order(max_size), order);
247
248
for (; order; order--) {
249
ptr = (void *)__get_free_pages(gfp_mask, order);
250
if (ptr) {
251
*allocated_size = PAGE_SIZE << order;
252
return ptr;
253
}
254
}
255
256
/* order is zero - one page */
257
258
gfp_mask = GFP_KERNEL;
259
260
if (!last_warn)
261
gfp_mask |= __GFP_NOWARN;
262
263
ptr = (void *)__get_free_pages(gfp_mask, 0);
264
if (ptr) {
265
*allocated_size = PAGE_SIZE;
266
return ptr;
267
}
268
269
*allocated_size = 0;
270
return NULL;
271
}
272
273
/**
274
* ima_free_pages() - Free pages allocated by ima_alloc_pages().
275
* @ptr: Pointer to allocated pages.
276
* @size: Size of allocated buffer.
277
*/
278
static void ima_free_pages(void *ptr, size_t size)
279
{
280
if (!ptr)
281
return;
282
free_pages((unsigned long)ptr, get_order(size));
283
}
284
285
static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
286
{
287
struct crypto_ahash *tfm = ima_ahash_tfm;
288
int rc;
289
290
if (algo < 0 || algo >= HASH_ALGO__LAST)
291
algo = ima_hash_algo;
292
293
if (algo != ima_hash_algo || !tfm) {
294
tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
295
if (!IS_ERR(tfm)) {
296
if (algo == ima_hash_algo)
297
ima_ahash_tfm = tfm;
298
} else {
299
rc = PTR_ERR(tfm);
300
pr_err("Can not allocate %s (reason: %d)\n",
301
hash_algo_name[algo], rc);
302
}
303
}
304
return tfm;
305
}
306
307
static void ima_free_atfm(struct crypto_ahash *tfm)
308
{
309
if (tfm != ima_ahash_tfm)
310
crypto_free_ahash(tfm);
311
}
312
313
static inline int ahash_wait(int err, struct crypto_wait *wait)
314
{
315
316
err = crypto_wait_req(err, wait);
317
318
if (err)
319
pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
320
321
return err;
322
}
323
324
static int ima_calc_file_hash_atfm(struct file *file,
325
struct ima_digest_data *hash,
326
struct crypto_ahash *tfm)
327
{
328
loff_t i_size, offset;
329
char *rbuf[2] = { NULL, };
330
int rc, rbuf_len, active = 0, ahash_rc = 0;
331
struct ahash_request *req;
332
struct scatterlist sg[1];
333
struct crypto_wait wait;
334
size_t rbuf_size[2];
335
336
hash->length = crypto_ahash_digestsize(tfm);
337
338
req = ahash_request_alloc(tfm, GFP_KERNEL);
339
if (!req)
340
return -ENOMEM;
341
342
crypto_init_wait(&wait);
343
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
344
CRYPTO_TFM_REQ_MAY_SLEEP,
345
crypto_req_done, &wait);
346
347
rc = ahash_wait(crypto_ahash_init(req), &wait);
348
if (rc)
349
goto out1;
350
351
i_size = i_size_read(file_inode(file));
352
353
if (i_size == 0)
354
goto out2;
355
356
/*
357
* Try to allocate maximum size of memory.
358
* Fail if even a single page cannot be allocated.
359
*/
360
rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
361
if (!rbuf[0]) {
362
rc = -ENOMEM;
363
goto out1;
364
}
365
366
/* Only allocate one buffer if that is enough. */
367
if (i_size > rbuf_size[0]) {
368
/*
369
* Try to allocate secondary buffer. If that fails fallback to
370
* using single buffering. Use previous memory allocation size
371
* as baseline for possible allocation size.
372
*/
373
rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
374
&rbuf_size[1], 0);
375
}
376
377
for (offset = 0; offset < i_size; offset += rbuf_len) {
378
if (!rbuf[1] && offset) {
379
/* Not using two buffers, and it is not the first
380
* read/request, wait for the completion of the
381
* previous ahash_update() request.
382
*/
383
rc = ahash_wait(ahash_rc, &wait);
384
if (rc)
385
goto out3;
386
}
387
/* read buffer */
388
rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
389
rc = integrity_kernel_read(file, offset, rbuf[active],
390
rbuf_len);
391
if (rc != rbuf_len) {
392
if (rc >= 0)
393
rc = -EINVAL;
394
/*
395
* Forward current rc, do not overwrite with return value
396
* from ahash_wait()
397
*/
398
ahash_wait(ahash_rc, &wait);
399
goto out3;
400
}
401
402
if (rbuf[1] && offset) {
403
/* Using two buffers, and it is not the first
404
* read/request, wait for the completion of the
405
* previous ahash_update() request.
406
*/
407
rc = ahash_wait(ahash_rc, &wait);
408
if (rc)
409
goto out3;
410
}
411
412
sg_init_one(&sg[0], rbuf[active], rbuf_len);
413
ahash_request_set_crypt(req, sg, NULL, rbuf_len);
414
415
ahash_rc = crypto_ahash_update(req);
416
417
if (rbuf[1])
418
active = !active; /* swap buffers, if we use two */
419
}
420
/* wait for the last update request to complete */
421
rc = ahash_wait(ahash_rc, &wait);
422
out3:
423
ima_free_pages(rbuf[0], rbuf_size[0]);
424
ima_free_pages(rbuf[1], rbuf_size[1]);
425
out2:
426
if (!rc) {
427
ahash_request_set_crypt(req, NULL, hash->digest, 0);
428
rc = ahash_wait(crypto_ahash_final(req), &wait);
429
}
430
out1:
431
ahash_request_free(req);
432
return rc;
433
}
434
435
static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
436
{
437
struct crypto_ahash *tfm;
438
int rc;
439
440
tfm = ima_alloc_atfm(hash->algo);
441
if (IS_ERR(tfm))
442
return PTR_ERR(tfm);
443
444
rc = ima_calc_file_hash_atfm(file, hash, tfm);
445
446
ima_free_atfm(tfm);
447
448
return rc;
449
}
450
451
static int ima_calc_file_hash_tfm(struct file *file,
452
struct ima_digest_data *hash,
453
struct crypto_shash *tfm)
454
{
455
loff_t i_size, offset = 0;
456
char *rbuf;
457
int rc;
458
SHASH_DESC_ON_STACK(shash, tfm);
459
460
shash->tfm = tfm;
461
462
hash->length = crypto_shash_digestsize(tfm);
463
464
rc = crypto_shash_init(shash);
465
if (rc != 0)
466
return rc;
467
468
i_size = i_size_read(file_inode(file));
469
470
if (i_size == 0)
471
goto out;
472
473
rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
474
if (!rbuf)
475
return -ENOMEM;
476
477
while (offset < i_size) {
478
int rbuf_len;
479
480
rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
481
if (rbuf_len < 0) {
482
rc = rbuf_len;
483
break;
484
}
485
if (rbuf_len == 0) { /* unexpected EOF */
486
rc = -EINVAL;
487
break;
488
}
489
offset += rbuf_len;
490
491
rc = crypto_shash_update(shash, rbuf, rbuf_len);
492
if (rc)
493
break;
494
}
495
kfree(rbuf);
496
out:
497
if (!rc)
498
rc = crypto_shash_final(shash, hash->digest);
499
return rc;
500
}
501
502
static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
503
{
504
struct crypto_shash *tfm;
505
int rc;
506
507
tfm = ima_alloc_tfm(hash->algo);
508
if (IS_ERR(tfm))
509
return PTR_ERR(tfm);
510
511
rc = ima_calc_file_hash_tfm(file, hash, tfm);
512
513
ima_free_tfm(tfm);
514
515
return rc;
516
}
517
518
/*
519
* ima_calc_file_hash - calculate file hash
520
*
521
* Asynchronous hash (ahash) allows using HW acceleration for calculating
522
* a hash. ahash performance varies for different data sizes on different
523
* crypto accelerators. shash performance might be better for smaller files.
524
* The 'ima.ahash_minsize' module parameter allows specifying the best
525
* minimum file size for using ahash on the system.
526
*
527
* If the ima.ahash_minsize parameter is not specified, this function uses
528
* shash for the hash calculation. If ahash fails, it falls back to using
529
* shash.
530
*/
531
int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
532
{
533
loff_t i_size;
534
int rc;
535
struct file *f = file;
536
bool new_file_instance = false;
537
538
/*
539
* For consistency, fail file's opened with the O_DIRECT flag on
540
* filesystems mounted with/without DAX option.
541
*/
542
if (file->f_flags & O_DIRECT) {
543
hash->length = hash_digest_size[ima_hash_algo];
544
hash->algo = ima_hash_algo;
545
return -EINVAL;
546
}
547
548
/* Open a new file instance in O_RDONLY if we cannot read */
549
if (!(file->f_mode & FMODE_READ)) {
550
int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
551
O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
552
flags |= O_RDONLY;
553
f = dentry_open(&file->f_path, flags, file->f_cred);
554
if (IS_ERR(f))
555
return PTR_ERR(f);
556
557
new_file_instance = true;
558
}
559
560
i_size = i_size_read(file_inode(f));
561
562
if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
563
rc = ima_calc_file_ahash(f, hash);
564
if (!rc)
565
goto out;
566
}
567
568
rc = ima_calc_file_shash(f, hash);
569
out:
570
if (new_file_instance)
571
fput(f);
572
return rc;
573
}
574
575
/*
576
* Calculate the hash of template data
577
*/
578
static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
579
struct ima_template_entry *entry,
580
int tfm_idx)
581
{
582
SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm);
583
struct ima_template_desc *td = entry->template_desc;
584
int num_fields = entry->template_desc->num_fields;
585
int rc, i;
586
587
shash->tfm = ima_algo_array[tfm_idx].tfm;
588
589
rc = crypto_shash_init(shash);
590
if (rc != 0)
591
return rc;
592
593
for (i = 0; i < num_fields; i++) {
594
u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
595
u8 *data_to_hash = field_data[i].data;
596
u32 datalen = field_data[i].len;
597
u32 datalen_to_hash = !ima_canonical_fmt ?
598
datalen : (__force u32)cpu_to_le32(datalen);
599
600
if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
601
rc = crypto_shash_update(shash,
602
(const u8 *) &datalen_to_hash,
603
sizeof(datalen_to_hash));
604
if (rc)
605
break;
606
} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
607
memcpy(buffer, data_to_hash, datalen);
608
data_to_hash = buffer;
609
datalen = IMA_EVENT_NAME_LEN_MAX + 1;
610
}
611
rc = crypto_shash_update(shash, data_to_hash, datalen);
612
if (rc)
613
break;
614
}
615
616
if (!rc)
617
rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest);
618
619
return rc;
620
}
621
622
int ima_calc_field_array_hash(struct ima_field_data *field_data,
623
struct ima_template_entry *entry)
624
{
625
u16 alg_id;
626
int rc, i;
627
628
rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx);
629
if (rc)
630
return rc;
631
632
entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1;
633
634
for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) {
635
if (i == ima_sha1_idx)
636
continue;
637
638
if (i < NR_BANKS(ima_tpm_chip)) {
639
alg_id = ima_tpm_chip->allocated_banks[i].alg_id;
640
entry->digests[i].alg_id = alg_id;
641
}
642
643
/* for unmapped TPM algorithms digest is still a padded SHA1 */
644
if (!ima_algo_array[i].tfm) {
645
memcpy(entry->digests[i].digest,
646
entry->digests[ima_sha1_idx].digest,
647
TPM_DIGEST_SIZE);
648
continue;
649
}
650
651
rc = ima_calc_field_array_hash_tfm(field_data, entry, i);
652
if (rc)
653
return rc;
654
}
655
return rc;
656
}
657
658
static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
659
struct ima_digest_data *hash,
660
struct crypto_ahash *tfm)
661
{
662
struct ahash_request *req;
663
struct scatterlist sg;
664
struct crypto_wait wait;
665
int rc, ahash_rc = 0;
666
667
hash->length = crypto_ahash_digestsize(tfm);
668
669
req = ahash_request_alloc(tfm, GFP_KERNEL);
670
if (!req)
671
return -ENOMEM;
672
673
crypto_init_wait(&wait);
674
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
675
CRYPTO_TFM_REQ_MAY_SLEEP,
676
crypto_req_done, &wait);
677
678
rc = ahash_wait(crypto_ahash_init(req), &wait);
679
if (rc)
680
goto out;
681
682
sg_init_one(&sg, buf, len);
683
ahash_request_set_crypt(req, &sg, NULL, len);
684
685
ahash_rc = crypto_ahash_update(req);
686
687
/* wait for the update request to complete */
688
rc = ahash_wait(ahash_rc, &wait);
689
if (!rc) {
690
ahash_request_set_crypt(req, NULL, hash->digest, 0);
691
rc = ahash_wait(crypto_ahash_final(req), &wait);
692
}
693
out:
694
ahash_request_free(req);
695
return rc;
696
}
697
698
static int calc_buffer_ahash(const void *buf, loff_t len,
699
struct ima_digest_data *hash)
700
{
701
struct crypto_ahash *tfm;
702
int rc;
703
704
tfm = ima_alloc_atfm(hash->algo);
705
if (IS_ERR(tfm))
706
return PTR_ERR(tfm);
707
708
rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
709
710
ima_free_atfm(tfm);
711
712
return rc;
713
}
714
715
static int calc_buffer_shash_tfm(const void *buf, loff_t size,
716
struct ima_digest_data *hash,
717
struct crypto_shash *tfm)
718
{
719
SHASH_DESC_ON_STACK(shash, tfm);
720
unsigned int len;
721
int rc;
722
723
shash->tfm = tfm;
724
725
hash->length = crypto_shash_digestsize(tfm);
726
727
rc = crypto_shash_init(shash);
728
if (rc != 0)
729
return rc;
730
731
while (size) {
732
len = size < PAGE_SIZE ? size : PAGE_SIZE;
733
rc = crypto_shash_update(shash, buf, len);
734
if (rc)
735
break;
736
buf += len;
737
size -= len;
738
}
739
740
if (!rc)
741
rc = crypto_shash_final(shash, hash->digest);
742
return rc;
743
}
744
745
static int calc_buffer_shash(const void *buf, loff_t len,
746
struct ima_digest_data *hash)
747
{
748
struct crypto_shash *tfm;
749
int rc;
750
751
tfm = ima_alloc_tfm(hash->algo);
752
if (IS_ERR(tfm))
753
return PTR_ERR(tfm);
754
755
rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
756
757
ima_free_tfm(tfm);
758
return rc;
759
}
760
761
int ima_calc_buffer_hash(const void *buf, loff_t len,
762
struct ima_digest_data *hash)
763
{
764
int rc;
765
766
if (ima_ahash_minsize && len >= ima_ahash_minsize) {
767
rc = calc_buffer_ahash(buf, len, hash);
768
if (!rc)
769
return 0;
770
}
771
772
return calc_buffer_shash(buf, len, hash);
773
}
774
775
static void ima_pcrread(u32 idx, struct tpm_digest *d)
776
{
777
if (!ima_tpm_chip)
778
return;
779
780
if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
781
pr_err("Error Communicating to TPM chip\n");
782
}
783
784
/*
785
* The boot_aggregate is a cumulative hash over TPM registers 0 - 7. With
786
* TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
787
* TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
788
* allowing firmware to configure and enable different banks.
789
*
790
* Knowing which TPM bank is read to calculate the boot_aggregate digest
791
* needs to be conveyed to a verifier. For this reason, use the same
792
* hash algorithm for reading the TPM PCRs as for calculating the boot
793
* aggregate digest as stored in the measurement list.
794
*/
795
static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
796
struct crypto_shash *tfm)
797
{
798
struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
799
int rc;
800
u32 i;
801
SHASH_DESC_ON_STACK(shash, tfm);
802
803
shash->tfm = tfm;
804
805
pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
806
d.alg_id);
807
808
rc = crypto_shash_init(shash);
809
if (rc != 0)
810
return rc;
811
812
/* cumulative digest over TPM registers 0-7 */
813
for (i = TPM_PCR0; i < TPM_PCR8; i++) {
814
ima_pcrread(i, &d);
815
/* now accumulate with current aggregate */
816
rc = crypto_shash_update(shash, d.digest,
817
crypto_shash_digestsize(tfm));
818
if (rc != 0)
819
return rc;
820
}
821
/*
822
* Extend cumulative digest over TPM registers 8-9, which contain
823
* measurement for the kernel command line (reg. 8) and image (reg. 9)
824
* in a typical PCR allocation. Registers 8-9 are only included in
825
* non-SHA1 boot_aggregate digests to avoid ambiguity.
826
*/
827
if (alg_id != TPM_ALG_SHA1) {
828
for (i = TPM_PCR8; i < TPM_PCR10; i++) {
829
ima_pcrread(i, &d);
830
rc = crypto_shash_update(shash, d.digest,
831
crypto_shash_digestsize(tfm));
832
}
833
}
834
if (!rc)
835
crypto_shash_final(shash, digest);
836
return rc;
837
}
838
839
int ima_calc_boot_aggregate(struct ima_digest_data *hash)
840
{
841
struct crypto_shash *tfm;
842
u16 crypto_id, alg_id;
843
int rc, i, bank_idx = -1;
844
845
for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
846
crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
847
if (crypto_id == hash->algo) {
848
bank_idx = i;
849
break;
850
}
851
852
if (crypto_id == HASH_ALGO_SHA256)
853
bank_idx = i;
854
855
if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
856
bank_idx = i;
857
}
858
859
if (bank_idx == -1) {
860
pr_err("No suitable TPM algorithm for boot aggregate\n");
861
return 0;
862
}
863
864
hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
865
866
tfm = ima_alloc_tfm(hash->algo);
867
if (IS_ERR(tfm))
868
return PTR_ERR(tfm);
869
870
hash->length = crypto_shash_digestsize(tfm);
871
alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
872
rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
873
874
ima_free_tfm(tfm);
875
876
return rc;
877
}
878
879