Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/keys/encrypted-keys/encrypted.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2010 IBM Corporation
4
* Copyright (C) 2010 Politecnico di Torino, Italy
5
* TORSEC group -- https://security.polito.it
6
*
7
* Authors:
8
* Mimi Zohar <[email protected]>
9
* Roberto Sassu <[email protected]>
10
*
11
* See Documentation/security/keys/trusted-encrypted.rst
12
*/
13
14
#include <linux/uaccess.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/slab.h>
18
#include <linux/parser.h>
19
#include <linux/string.h>
20
#include <linux/err.h>
21
#include <keys/user-type.h>
22
#include <keys/trusted-type.h>
23
#include <keys/encrypted-type.h>
24
#include <linux/key-type.h>
25
#include <linux/random.h>
26
#include <linux/rcupdate.h>
27
#include <linux/scatterlist.h>
28
#include <linux/ctype.h>
29
#include <crypto/aes.h>
30
#include <crypto/hash.h>
31
#include <crypto/sha2.h>
32
#include <crypto/skcipher.h>
33
#include <crypto/utils.h>
34
35
#include "encrypted.h"
36
#include "ecryptfs_format.h"
37
38
static const char KEY_TRUSTED_PREFIX[] = "trusted:";
39
static const char KEY_USER_PREFIX[] = "user:";
40
static const char hash_alg[] = "sha256";
41
static const char hmac_alg[] = "hmac(sha256)";
42
static const char blkcipher_alg[] = "cbc(aes)";
43
static const char key_format_default[] = "default";
44
static const char key_format_ecryptfs[] = "ecryptfs";
45
static const char key_format_enc32[] = "enc32";
46
static unsigned int ivsize;
47
static int blksize;
48
49
#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
50
#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
51
#define KEY_ECRYPTFS_DESC_LEN 16
52
#define HASH_SIZE SHA256_DIGEST_SIZE
53
#define MAX_DATA_SIZE 4096
54
#define MIN_DATA_SIZE 20
55
#define KEY_ENC32_PAYLOAD_LEN 32
56
57
static struct crypto_shash *hash_tfm;
58
59
enum {
60
Opt_new, Opt_load, Opt_update, Opt_err
61
};
62
63
enum {
64
Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
65
};
66
67
static const match_table_t key_format_tokens = {
68
{Opt_default, "default"},
69
{Opt_ecryptfs, "ecryptfs"},
70
{Opt_enc32, "enc32"},
71
{Opt_error, NULL}
72
};
73
74
static const match_table_t key_tokens = {
75
{Opt_new, "new"},
76
{Opt_load, "load"},
77
{Opt_update, "update"},
78
{Opt_err, NULL}
79
};
80
81
static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
82
module_param(user_decrypted_data, bool, 0);
83
MODULE_PARM_DESC(user_decrypted_data,
84
"Allow instantiation of encrypted keys using provided decrypted data");
85
86
static int aes_get_sizes(void)
87
{
88
struct crypto_skcipher *tfm;
89
90
tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91
if (IS_ERR(tfm)) {
92
pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93
PTR_ERR(tfm));
94
return PTR_ERR(tfm);
95
}
96
ivsize = crypto_skcipher_ivsize(tfm);
97
blksize = crypto_skcipher_blocksize(tfm);
98
crypto_free_skcipher(tfm);
99
return 0;
100
}
101
102
/*
103
* valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104
*
105
* The description of a encrypted key with format 'ecryptfs' must contain
106
* exactly 16 hexadecimal characters.
107
*
108
*/
109
static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110
{
111
int i;
112
113
if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114
pr_err("encrypted_key: key description must be %d hexadecimal "
115
"characters long\n", KEY_ECRYPTFS_DESC_LEN);
116
return -EINVAL;
117
}
118
119
for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120
if (!isxdigit(ecryptfs_desc[i])) {
121
pr_err("encrypted_key: key description must contain "
122
"only hexadecimal characters\n");
123
return -EINVAL;
124
}
125
}
126
127
return 0;
128
}
129
130
/*
131
* valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132
*
133
* key-type:= "trusted:" | "user:"
134
* desc:= master-key description
135
*
136
* Verify that 'key-type' is valid and that 'desc' exists. On key update,
137
* only the master key description is permitted to change, not the key-type.
138
* The key-type remains constant.
139
*
140
* On success returns 0, otherwise -EINVAL.
141
*/
142
static int valid_master_desc(const char *new_desc, const char *orig_desc)
143
{
144
int prefix_len;
145
146
if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
147
prefix_len = KEY_TRUSTED_PREFIX_LEN;
148
else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
149
prefix_len = KEY_USER_PREFIX_LEN;
150
else
151
return -EINVAL;
152
153
if (!new_desc[prefix_len])
154
return -EINVAL;
155
156
if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
157
return -EINVAL;
158
159
return 0;
160
}
161
162
/*
163
* datablob_parse - parse the keyctl data
164
*
165
* datablob format:
166
* new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
167
* load [<format>] <master-key name> <decrypted data length>
168
* <encrypted iv + data>
169
* update <new-master-key name>
170
*
171
* Tokenizes a copy of the keyctl data, returning a pointer to each token,
172
* which is null terminated.
173
*
174
* On success returns 0, otherwise -EINVAL.
175
*/
176
static int datablob_parse(char *datablob, const char **format,
177
char **master_desc, char **decrypted_datalen,
178
char **hex_encoded_iv, char **decrypted_data)
179
{
180
substring_t args[MAX_OPT_ARGS];
181
int ret = -EINVAL;
182
int key_cmd;
183
int key_format;
184
char *p, *keyword;
185
186
keyword = strsep(&datablob, " \t");
187
if (!keyword) {
188
pr_info("encrypted_key: insufficient parameters specified\n");
189
return ret;
190
}
191
key_cmd = match_token(keyword, key_tokens, args);
192
193
/* Get optional format: default | ecryptfs */
194
p = strsep(&datablob, " \t");
195
if (!p) {
196
pr_err("encrypted_key: insufficient parameters specified\n");
197
return ret;
198
}
199
200
key_format = match_token(p, key_format_tokens, args);
201
switch (key_format) {
202
case Opt_ecryptfs:
203
case Opt_enc32:
204
case Opt_default:
205
*format = p;
206
*master_desc = strsep(&datablob, " \t");
207
break;
208
case Opt_error:
209
*master_desc = p;
210
break;
211
}
212
213
if (!*master_desc) {
214
pr_info("encrypted_key: master key parameter is missing\n");
215
goto out;
216
}
217
218
if (valid_master_desc(*master_desc, NULL) < 0) {
219
pr_info("encrypted_key: master key parameter \'%s\' "
220
"is invalid\n", *master_desc);
221
goto out;
222
}
223
224
if (decrypted_datalen) {
225
*decrypted_datalen = strsep(&datablob, " \t");
226
if (!*decrypted_datalen) {
227
pr_info("encrypted_key: keylen parameter is missing\n");
228
goto out;
229
}
230
}
231
232
switch (key_cmd) {
233
case Opt_new:
234
if (!decrypted_datalen) {
235
pr_info("encrypted_key: keyword \'%s\' not allowed "
236
"when called from .update method\n", keyword);
237
break;
238
}
239
*decrypted_data = strsep(&datablob, " \t");
240
ret = 0;
241
break;
242
case Opt_load:
243
if (!decrypted_datalen) {
244
pr_info("encrypted_key: keyword \'%s\' not allowed "
245
"when called from .update method\n", keyword);
246
break;
247
}
248
*hex_encoded_iv = strsep(&datablob, " \t");
249
if (!*hex_encoded_iv) {
250
pr_info("encrypted_key: hex blob is missing\n");
251
break;
252
}
253
ret = 0;
254
break;
255
case Opt_update:
256
if (decrypted_datalen) {
257
pr_info("encrypted_key: keyword \'%s\' not allowed "
258
"when called from .instantiate method\n",
259
keyword);
260
break;
261
}
262
ret = 0;
263
break;
264
case Opt_err:
265
pr_info("encrypted_key: keyword \'%s\' not recognized\n",
266
keyword);
267
break;
268
}
269
out:
270
return ret;
271
}
272
273
/*
274
* datablob_format - format as an ascii string, before copying to userspace
275
*/
276
static char *datablob_format(struct encrypted_key_payload *epayload,
277
size_t asciiblob_len)
278
{
279
char *ascii_buf, *bufp;
280
u8 *iv = epayload->iv;
281
int len;
282
int i;
283
284
ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
285
if (!ascii_buf)
286
goto out;
287
288
ascii_buf[asciiblob_len] = '\0';
289
290
/* copy datablob master_desc and datalen strings */
291
len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
292
epayload->master_desc, epayload->datalen);
293
294
/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
295
bufp = &ascii_buf[len];
296
for (i = 0; i < (asciiblob_len - len) / 2; i++)
297
bufp = hex_byte_pack(bufp, iv[i]);
298
out:
299
return ascii_buf;
300
}
301
302
/*
303
* request_user_key - request the user key
304
*
305
* Use a user provided key to encrypt/decrypt an encrypted-key.
306
*/
307
static struct key *request_user_key(const char *master_desc, const u8 **master_key,
308
size_t *master_keylen)
309
{
310
const struct user_key_payload *upayload;
311
struct key *ukey;
312
313
ukey = request_key(&key_type_user, master_desc, NULL);
314
if (IS_ERR(ukey))
315
goto error;
316
317
down_read(&ukey->sem);
318
upayload = user_key_payload_locked(ukey);
319
if (!upayload) {
320
/* key was revoked before we acquired its semaphore */
321
up_read(&ukey->sem);
322
key_put(ukey);
323
ukey = ERR_PTR(-EKEYREVOKED);
324
goto error;
325
}
326
*master_key = upayload->data;
327
*master_keylen = upayload->datalen;
328
error:
329
return ukey;
330
}
331
332
static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
333
const u8 *buf, unsigned int buflen)
334
{
335
struct crypto_shash *tfm;
336
int err;
337
338
tfm = crypto_alloc_shash(hmac_alg, 0, 0);
339
if (IS_ERR(tfm)) {
340
pr_err("encrypted_key: can't alloc %s transform: %ld\n",
341
hmac_alg, PTR_ERR(tfm));
342
return PTR_ERR(tfm);
343
}
344
345
err = crypto_shash_setkey(tfm, key, keylen);
346
if (!err)
347
err = crypto_shash_tfm_digest(tfm, buf, buflen, digest);
348
crypto_free_shash(tfm);
349
return err;
350
}
351
352
enum derived_key_type { ENC_KEY, AUTH_KEY };
353
354
/* Derive authentication/encryption key from trusted key */
355
static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
356
const u8 *master_key, size_t master_keylen)
357
{
358
u8 *derived_buf;
359
unsigned int derived_buf_len;
360
int ret;
361
362
derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
363
if (derived_buf_len < HASH_SIZE)
364
derived_buf_len = HASH_SIZE;
365
366
derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
367
if (!derived_buf)
368
return -ENOMEM;
369
370
if (key_type)
371
strcpy(derived_buf, "AUTH_KEY");
372
else
373
strcpy(derived_buf, "ENC_KEY");
374
375
memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
376
master_keylen);
377
ret = crypto_shash_tfm_digest(hash_tfm, derived_buf, derived_buf_len,
378
derived_key);
379
kfree_sensitive(derived_buf);
380
return ret;
381
}
382
383
static struct skcipher_request *init_skcipher_req(const u8 *key,
384
unsigned int key_len)
385
{
386
struct skcipher_request *req;
387
struct crypto_skcipher *tfm;
388
int ret;
389
390
tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
391
if (IS_ERR(tfm)) {
392
pr_err("encrypted_key: failed to load %s transform (%ld)\n",
393
blkcipher_alg, PTR_ERR(tfm));
394
return ERR_CAST(tfm);
395
}
396
397
ret = crypto_skcipher_setkey(tfm, key, key_len);
398
if (ret < 0) {
399
pr_err("encrypted_key: failed to setkey (%d)\n", ret);
400
crypto_free_skcipher(tfm);
401
return ERR_PTR(ret);
402
}
403
404
req = skcipher_request_alloc(tfm, GFP_KERNEL);
405
if (!req) {
406
pr_err("encrypted_key: failed to allocate request for %s\n",
407
blkcipher_alg);
408
crypto_free_skcipher(tfm);
409
return ERR_PTR(-ENOMEM);
410
}
411
412
skcipher_request_set_callback(req, 0, NULL, NULL);
413
return req;
414
}
415
416
static struct key *request_master_key(struct encrypted_key_payload *epayload,
417
const u8 **master_key, size_t *master_keylen)
418
{
419
struct key *mkey = ERR_PTR(-EINVAL);
420
421
if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
422
KEY_TRUSTED_PREFIX_LEN)) {
423
mkey = request_trusted_key(epayload->master_desc +
424
KEY_TRUSTED_PREFIX_LEN,
425
master_key, master_keylen);
426
} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
427
KEY_USER_PREFIX_LEN)) {
428
mkey = request_user_key(epayload->master_desc +
429
KEY_USER_PREFIX_LEN,
430
master_key, master_keylen);
431
} else
432
goto out;
433
434
if (IS_ERR(mkey)) {
435
int ret = PTR_ERR(mkey);
436
437
if (ret == -ENOTSUPP)
438
pr_info("encrypted_key: key %s not supported",
439
epayload->master_desc);
440
else
441
pr_info("encrypted_key: key %s not found",
442
epayload->master_desc);
443
goto out;
444
}
445
446
dump_master_key(*master_key, *master_keylen);
447
out:
448
return mkey;
449
}
450
451
/* Before returning data to userspace, encrypt decrypted data. */
452
static int derived_key_encrypt(struct encrypted_key_payload *epayload,
453
const u8 *derived_key,
454
unsigned int derived_keylen)
455
{
456
struct scatterlist sg_in[2];
457
struct scatterlist sg_out[1];
458
struct crypto_skcipher *tfm;
459
struct skcipher_request *req;
460
unsigned int encrypted_datalen;
461
u8 iv[AES_BLOCK_SIZE];
462
int ret;
463
464
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
465
466
req = init_skcipher_req(derived_key, derived_keylen);
467
ret = PTR_ERR(req);
468
if (IS_ERR(req))
469
goto out;
470
dump_decrypted_data(epayload);
471
472
sg_init_table(sg_in, 2);
473
sg_set_buf(&sg_in[0], epayload->decrypted_data,
474
epayload->decrypted_datalen);
475
sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
476
477
sg_init_table(sg_out, 1);
478
sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
479
480
memcpy(iv, epayload->iv, sizeof(iv));
481
skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
482
ret = crypto_skcipher_encrypt(req);
483
tfm = crypto_skcipher_reqtfm(req);
484
skcipher_request_free(req);
485
crypto_free_skcipher(tfm);
486
if (ret < 0)
487
pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
488
else
489
dump_encrypted_data(epayload, encrypted_datalen);
490
out:
491
return ret;
492
}
493
494
static int datablob_hmac_append(struct encrypted_key_payload *epayload,
495
const u8 *master_key, size_t master_keylen)
496
{
497
u8 derived_key[HASH_SIZE];
498
u8 *digest;
499
int ret;
500
501
ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
502
if (ret < 0)
503
goto out;
504
505
digest = epayload->format + epayload->datablob_len;
506
ret = calc_hmac(digest, derived_key, sizeof derived_key,
507
epayload->format, epayload->datablob_len);
508
if (!ret)
509
dump_hmac(NULL, digest, HASH_SIZE);
510
out:
511
memzero_explicit(derived_key, sizeof(derived_key));
512
return ret;
513
}
514
515
/* verify HMAC before decrypting encrypted key */
516
static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
517
const u8 *format, const u8 *master_key,
518
size_t master_keylen)
519
{
520
u8 derived_key[HASH_SIZE];
521
u8 digest[HASH_SIZE];
522
int ret;
523
char *p;
524
unsigned short len;
525
526
ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
527
if (ret < 0)
528
goto out;
529
530
len = epayload->datablob_len;
531
if (!format) {
532
p = epayload->master_desc;
533
len -= strlen(epayload->format) + 1;
534
} else
535
p = epayload->format;
536
537
ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
538
if (ret < 0)
539
goto out;
540
ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
541
sizeof(digest));
542
if (ret) {
543
ret = -EINVAL;
544
dump_hmac("datablob",
545
epayload->format + epayload->datablob_len,
546
HASH_SIZE);
547
dump_hmac("calc", digest, HASH_SIZE);
548
}
549
out:
550
memzero_explicit(derived_key, sizeof(derived_key));
551
return ret;
552
}
553
554
static int derived_key_decrypt(struct encrypted_key_payload *epayload,
555
const u8 *derived_key,
556
unsigned int derived_keylen)
557
{
558
struct scatterlist sg_in[1];
559
struct scatterlist sg_out[2];
560
struct crypto_skcipher *tfm;
561
struct skcipher_request *req;
562
unsigned int encrypted_datalen;
563
u8 iv[AES_BLOCK_SIZE];
564
u8 *pad;
565
int ret;
566
567
/* Throwaway buffer to hold the unused zero padding at the end */
568
pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
569
if (!pad)
570
return -ENOMEM;
571
572
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
573
req = init_skcipher_req(derived_key, derived_keylen);
574
ret = PTR_ERR(req);
575
if (IS_ERR(req))
576
goto out;
577
dump_encrypted_data(epayload, encrypted_datalen);
578
579
sg_init_table(sg_in, 1);
580
sg_init_table(sg_out, 2);
581
sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
582
sg_set_buf(&sg_out[0], epayload->decrypted_data,
583
epayload->decrypted_datalen);
584
sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
585
586
memcpy(iv, epayload->iv, sizeof(iv));
587
skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
588
ret = crypto_skcipher_decrypt(req);
589
tfm = crypto_skcipher_reqtfm(req);
590
skcipher_request_free(req);
591
crypto_free_skcipher(tfm);
592
if (ret < 0)
593
goto out;
594
dump_decrypted_data(epayload);
595
out:
596
kfree(pad);
597
return ret;
598
}
599
600
/* Allocate memory for decrypted key and datablob. */
601
static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
602
const char *format,
603
const char *master_desc,
604
const char *datalen,
605
const char *decrypted_data)
606
{
607
struct encrypted_key_payload *epayload = NULL;
608
unsigned short datablob_len;
609
unsigned short decrypted_datalen;
610
unsigned short payload_datalen;
611
unsigned int encrypted_datalen;
612
unsigned int format_len;
613
long dlen;
614
int i;
615
int ret;
616
617
ret = kstrtol(datalen, 10, &dlen);
618
if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
619
return ERR_PTR(-EINVAL);
620
621
format_len = (!format) ? strlen(key_format_default) : strlen(format);
622
decrypted_datalen = dlen;
623
payload_datalen = decrypted_datalen;
624
625
if (decrypted_data) {
626
if (!user_decrypted_data) {
627
pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
628
return ERR_PTR(-EINVAL);
629
}
630
if (strlen(decrypted_data) != decrypted_datalen * 2) {
631
pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
632
return ERR_PTR(-EINVAL);
633
}
634
for (i = 0; i < strlen(decrypted_data); i++) {
635
if (!isxdigit(decrypted_data[i])) {
636
pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
637
return ERR_PTR(-EINVAL);
638
}
639
}
640
}
641
642
if (format) {
643
if (!strcmp(format, key_format_ecryptfs)) {
644
if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
645
pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
646
ECRYPTFS_MAX_KEY_BYTES);
647
return ERR_PTR(-EINVAL);
648
}
649
decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
650
payload_datalen = sizeof(struct ecryptfs_auth_tok);
651
} else if (!strcmp(format, key_format_enc32)) {
652
if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
653
pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
654
decrypted_datalen);
655
return ERR_PTR(-EINVAL);
656
}
657
}
658
}
659
660
encrypted_datalen = roundup(decrypted_datalen, blksize);
661
662
datablob_len = format_len + 1 + strlen(master_desc) + 1
663
+ strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
664
665
ret = key_payload_reserve(key, payload_datalen + datablob_len
666
+ HASH_SIZE + 1);
667
if (ret < 0)
668
return ERR_PTR(ret);
669
670
epayload = kzalloc(sizeof(*epayload) + payload_datalen +
671
datablob_len + HASH_SIZE + 1, GFP_KERNEL);
672
if (!epayload)
673
return ERR_PTR(-ENOMEM);
674
675
epayload->payload_datalen = payload_datalen;
676
epayload->decrypted_datalen = decrypted_datalen;
677
epayload->datablob_len = datablob_len;
678
return epayload;
679
}
680
681
static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
682
const char *format, const char *hex_encoded_iv)
683
{
684
struct key *mkey;
685
u8 derived_key[HASH_SIZE];
686
const u8 *master_key;
687
u8 *hmac;
688
const char *hex_encoded_data;
689
unsigned int encrypted_datalen;
690
size_t master_keylen;
691
size_t asciilen;
692
int ret;
693
694
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
695
asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
696
if (strlen(hex_encoded_iv) != asciilen)
697
return -EINVAL;
698
699
hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
700
ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
701
if (ret < 0)
702
return -EINVAL;
703
ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
704
encrypted_datalen);
705
if (ret < 0)
706
return -EINVAL;
707
708
hmac = epayload->format + epayload->datablob_len;
709
ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
710
HASH_SIZE);
711
if (ret < 0)
712
return -EINVAL;
713
714
mkey = request_master_key(epayload, &master_key, &master_keylen);
715
if (IS_ERR(mkey))
716
return PTR_ERR(mkey);
717
718
ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
719
if (ret < 0) {
720
pr_err("encrypted_key: bad hmac (%d)\n", ret);
721
goto out;
722
}
723
724
ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
725
if (ret < 0)
726
goto out;
727
728
ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
729
if (ret < 0)
730
pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
731
out:
732
up_read(&mkey->sem);
733
key_put(mkey);
734
memzero_explicit(derived_key, sizeof(derived_key));
735
return ret;
736
}
737
738
static void __ekey_init(struct encrypted_key_payload *epayload,
739
const char *format, const char *master_desc,
740
const char *datalen)
741
{
742
unsigned int format_len;
743
744
format_len = (!format) ? strlen(key_format_default) : strlen(format);
745
epayload->format = epayload->payload_data + epayload->payload_datalen;
746
epayload->master_desc = epayload->format + format_len + 1;
747
epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
748
epayload->iv = epayload->datalen + strlen(datalen) + 1;
749
epayload->encrypted_data = epayload->iv + ivsize + 1;
750
epayload->decrypted_data = epayload->payload_data;
751
752
if (!format)
753
memcpy(epayload->format, key_format_default, format_len);
754
else {
755
if (!strcmp(format, key_format_ecryptfs))
756
epayload->decrypted_data =
757
ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
758
759
memcpy(epayload->format, format, format_len);
760
}
761
762
memcpy(epayload->master_desc, master_desc, strlen(master_desc));
763
memcpy(epayload->datalen, datalen, strlen(datalen));
764
}
765
766
/*
767
* encrypted_init - initialize an encrypted key
768
*
769
* For a new key, use either a random number or user-provided decrypted data in
770
* case it is provided. A random number is used for the iv in both cases. For
771
* an old key, decrypt the hex encoded data.
772
*/
773
static int encrypted_init(struct encrypted_key_payload *epayload,
774
const char *key_desc, const char *format,
775
const char *master_desc, const char *datalen,
776
const char *hex_encoded_iv, const char *decrypted_data)
777
{
778
int ret = 0;
779
780
if (format && !strcmp(format, key_format_ecryptfs)) {
781
ret = valid_ecryptfs_desc(key_desc);
782
if (ret < 0)
783
return ret;
784
785
ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
786
key_desc);
787
}
788
789
__ekey_init(epayload, format, master_desc, datalen);
790
if (hex_encoded_iv) {
791
ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
792
} else if (decrypted_data) {
793
get_random_bytes(epayload->iv, ivsize);
794
ret = hex2bin(epayload->decrypted_data, decrypted_data,
795
epayload->decrypted_datalen);
796
} else {
797
get_random_bytes(epayload->iv, ivsize);
798
get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
799
}
800
return ret;
801
}
802
803
/*
804
* encrypted_instantiate - instantiate an encrypted key
805
*
806
* Instantiates the key:
807
* - by decrypting an existing encrypted datablob, or
808
* - by creating a new encrypted key based on a kernel random number, or
809
* - using provided decrypted data.
810
*
811
* On success, return 0. Otherwise return errno.
812
*/
813
static int encrypted_instantiate(struct key *key,
814
struct key_preparsed_payload *prep)
815
{
816
struct encrypted_key_payload *epayload = NULL;
817
char *datablob = NULL;
818
const char *format = NULL;
819
char *master_desc = NULL;
820
char *decrypted_datalen = NULL;
821
char *hex_encoded_iv = NULL;
822
char *decrypted_data = NULL;
823
size_t datalen = prep->datalen;
824
int ret;
825
826
if (datalen <= 0 || datalen > 32767 || !prep->data)
827
return -EINVAL;
828
829
datablob = kmalloc(datalen + 1, GFP_KERNEL);
830
if (!datablob)
831
return -ENOMEM;
832
datablob[datalen] = 0;
833
memcpy(datablob, prep->data, datalen);
834
ret = datablob_parse(datablob, &format, &master_desc,
835
&decrypted_datalen, &hex_encoded_iv, &decrypted_data);
836
if (ret < 0)
837
goto out;
838
839
epayload = encrypted_key_alloc(key, format, master_desc,
840
decrypted_datalen, decrypted_data);
841
if (IS_ERR(epayload)) {
842
ret = PTR_ERR(epayload);
843
goto out;
844
}
845
ret = encrypted_init(epayload, key->description, format, master_desc,
846
decrypted_datalen, hex_encoded_iv, decrypted_data);
847
if (ret < 0) {
848
kfree_sensitive(epayload);
849
goto out;
850
}
851
852
rcu_assign_keypointer(key, epayload);
853
out:
854
kfree_sensitive(datablob);
855
return ret;
856
}
857
858
static void encrypted_rcu_free(struct rcu_head *rcu)
859
{
860
struct encrypted_key_payload *epayload;
861
862
epayload = container_of(rcu, struct encrypted_key_payload, rcu);
863
kfree_sensitive(epayload);
864
}
865
866
/*
867
* encrypted_update - update the master key description
868
*
869
* Change the master key description for an existing encrypted key.
870
* The next read will return an encrypted datablob using the new
871
* master key description.
872
*
873
* On success, return 0. Otherwise return errno.
874
*/
875
static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
876
{
877
struct encrypted_key_payload *epayload = key->payload.data[0];
878
struct encrypted_key_payload *new_epayload;
879
char *buf;
880
char *new_master_desc = NULL;
881
const char *format = NULL;
882
size_t datalen = prep->datalen;
883
int ret = 0;
884
885
if (key_is_negative(key))
886
return -ENOKEY;
887
if (datalen <= 0 || datalen > 32767 || !prep->data)
888
return -EINVAL;
889
890
buf = kmalloc(datalen + 1, GFP_KERNEL);
891
if (!buf)
892
return -ENOMEM;
893
894
buf[datalen] = 0;
895
memcpy(buf, prep->data, datalen);
896
ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
897
if (ret < 0)
898
goto out;
899
900
ret = valid_master_desc(new_master_desc, epayload->master_desc);
901
if (ret < 0)
902
goto out;
903
904
new_epayload = encrypted_key_alloc(key, epayload->format,
905
new_master_desc, epayload->datalen, NULL);
906
if (IS_ERR(new_epayload)) {
907
ret = PTR_ERR(new_epayload);
908
goto out;
909
}
910
911
__ekey_init(new_epayload, epayload->format, new_master_desc,
912
epayload->datalen);
913
914
memcpy(new_epayload->iv, epayload->iv, ivsize);
915
memcpy(new_epayload->payload_data, epayload->payload_data,
916
epayload->payload_datalen);
917
918
rcu_assign_keypointer(key, new_epayload);
919
call_rcu(&epayload->rcu, encrypted_rcu_free);
920
out:
921
kfree_sensitive(buf);
922
return ret;
923
}
924
925
/*
926
* encrypted_read - format and copy out the encrypted data
927
*
928
* The resulting datablob format is:
929
* <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
930
*
931
* On success, return to userspace the encrypted key datablob size.
932
*/
933
static long encrypted_read(const struct key *key, char *buffer,
934
size_t buflen)
935
{
936
struct encrypted_key_payload *epayload;
937
struct key *mkey;
938
const u8 *master_key;
939
size_t master_keylen;
940
char derived_key[HASH_SIZE];
941
char *ascii_buf;
942
size_t asciiblob_len;
943
int ret;
944
945
epayload = dereference_key_locked(key);
946
947
/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
948
asciiblob_len = epayload->datablob_len + ivsize + 1
949
+ roundup(epayload->decrypted_datalen, blksize)
950
+ (HASH_SIZE * 2);
951
952
if (!buffer || buflen < asciiblob_len)
953
return asciiblob_len;
954
955
mkey = request_master_key(epayload, &master_key, &master_keylen);
956
if (IS_ERR(mkey))
957
return PTR_ERR(mkey);
958
959
ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
960
if (ret < 0)
961
goto out;
962
963
ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
964
if (ret < 0)
965
goto out;
966
967
ret = datablob_hmac_append(epayload, master_key, master_keylen);
968
if (ret < 0)
969
goto out;
970
971
ascii_buf = datablob_format(epayload, asciiblob_len);
972
if (!ascii_buf) {
973
ret = -ENOMEM;
974
goto out;
975
}
976
977
up_read(&mkey->sem);
978
key_put(mkey);
979
memzero_explicit(derived_key, sizeof(derived_key));
980
981
memcpy(buffer, ascii_buf, asciiblob_len);
982
kfree_sensitive(ascii_buf);
983
984
return asciiblob_len;
985
out:
986
up_read(&mkey->sem);
987
key_put(mkey);
988
memzero_explicit(derived_key, sizeof(derived_key));
989
return ret;
990
}
991
992
/*
993
* encrypted_destroy - clear and free the key's payload
994
*/
995
static void encrypted_destroy(struct key *key)
996
{
997
kfree_sensitive(key->payload.data[0]);
998
}
999
1000
struct key_type key_type_encrypted = {
1001
.name = "encrypted",
1002
.instantiate = encrypted_instantiate,
1003
.update = encrypted_update,
1004
.destroy = encrypted_destroy,
1005
.describe = user_describe,
1006
.read = encrypted_read,
1007
};
1008
EXPORT_SYMBOL_GPL(key_type_encrypted);
1009
1010
static int __init init_encrypted(void)
1011
{
1012
int ret;
1013
1014
hash_tfm = crypto_alloc_shash(hash_alg, 0, 0);
1015
if (IS_ERR(hash_tfm)) {
1016
pr_err("encrypted_key: can't allocate %s transform: %ld\n",
1017
hash_alg, PTR_ERR(hash_tfm));
1018
return PTR_ERR(hash_tfm);
1019
}
1020
1021
ret = aes_get_sizes();
1022
if (ret < 0)
1023
goto out;
1024
ret = register_key_type(&key_type_encrypted);
1025
if (ret < 0)
1026
goto out;
1027
return 0;
1028
out:
1029
crypto_free_shash(hash_tfm);
1030
return ret;
1031
1032
}
1033
1034
static void __exit cleanup_encrypted(void)
1035
{
1036
crypto_free_shash(hash_tfm);
1037
unregister_key_type(&key_type_encrypted);
1038
}
1039
1040
late_initcall(init_encrypted);
1041
module_exit(cleanup_encrypted);
1042
1043
MODULE_DESCRIPTION("Encrypted key type");
1044
MODULE_LICENSE("GPL");
1045
1046