Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/keys/keyring.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* Keyring handling
3
*
4
* Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5
* Written by David Howells ([email protected])
6
*/
7
8
#include <linux/export.h>
9
#include <linux/init.h>
10
#include <linux/sched.h>
11
#include <linux/slab.h>
12
#include <linux/security.h>
13
#include <linux/seq_file.h>
14
#include <linux/err.h>
15
#include <linux/user_namespace.h>
16
#include <linux/nsproxy.h>
17
#include <keys/keyring-type.h>
18
#include <keys/user-type.h>
19
#include <linux/assoc_array_priv.h>
20
#include <linux/uaccess.h>
21
#include <net/net_namespace.h>
22
#include "internal.h"
23
24
/*
25
* When plumbing the depths of the key tree, this sets a hard limit
26
* set on how deep we're willing to go.
27
*/
28
#define KEYRING_SEARCH_MAX_DEPTH 6
29
30
/*
31
* We mark pointers we pass to the associative array with bit 1 set if
32
* they're keyrings and clear otherwise.
33
*/
34
#define KEYRING_PTR_SUBTYPE 0x2UL
35
36
static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37
{
38
return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39
}
40
static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41
{
42
void *object = assoc_array_ptr_to_leaf(x);
43
return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44
}
45
static inline void *keyring_key_to_ptr(struct key *key)
46
{
47
if (key->type == &key_type_keyring)
48
return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49
return key;
50
}
51
52
static DEFINE_RWLOCK(keyring_name_lock);
53
54
/*
55
* Clean up the bits of user_namespace that belong to us.
56
*/
57
void key_free_user_ns(struct user_namespace *ns)
58
{
59
write_lock(&keyring_name_lock);
60
list_del_init(&ns->keyring_name_list);
61
write_unlock(&keyring_name_lock);
62
63
key_put(ns->user_keyring_register);
64
#ifdef CONFIG_PERSISTENT_KEYRINGS
65
key_put(ns->persistent_keyring_register);
66
#endif
67
}
68
69
/*
70
* The keyring key type definition. Keyrings are simply keys of this type and
71
* can be treated as ordinary keys in addition to having their own special
72
* operations.
73
*/
74
static int keyring_preparse(struct key_preparsed_payload *prep);
75
static void keyring_free_preparse(struct key_preparsed_payload *prep);
76
static int keyring_instantiate(struct key *keyring,
77
struct key_preparsed_payload *prep);
78
static void keyring_revoke(struct key *keyring);
79
static void keyring_destroy(struct key *keyring);
80
static void keyring_describe(const struct key *keyring, struct seq_file *m);
81
static long keyring_read(const struct key *keyring,
82
char *buffer, size_t buflen);
83
84
struct key_type key_type_keyring = {
85
.name = "keyring",
86
.def_datalen = 0,
87
.preparse = keyring_preparse,
88
.free_preparse = keyring_free_preparse,
89
.instantiate = keyring_instantiate,
90
.revoke = keyring_revoke,
91
.destroy = keyring_destroy,
92
.describe = keyring_describe,
93
.read = keyring_read,
94
};
95
EXPORT_SYMBOL(key_type_keyring);
96
97
/*
98
* Semaphore to serialise link/link calls to prevent two link calls in parallel
99
* introducing a cycle.
100
*/
101
static DEFINE_MUTEX(keyring_serialise_link_lock);
102
103
/*
104
* Publish the name of a keyring so that it can be found by name (if it has
105
* one and it doesn't begin with a dot).
106
*/
107
static void keyring_publish_name(struct key *keyring)
108
{
109
struct user_namespace *ns = current_user_ns();
110
111
if (keyring->description &&
112
keyring->description[0] &&
113
keyring->description[0] != '.') {
114
write_lock(&keyring_name_lock);
115
list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116
write_unlock(&keyring_name_lock);
117
}
118
}
119
120
/*
121
* Preparse a keyring payload
122
*/
123
static int keyring_preparse(struct key_preparsed_payload *prep)
124
{
125
return prep->datalen != 0 ? -EINVAL : 0;
126
}
127
128
/*
129
* Free a preparse of a user defined key payload
130
*/
131
static void keyring_free_preparse(struct key_preparsed_payload *prep)
132
{
133
}
134
135
/*
136
* Initialise a keyring.
137
*
138
* Returns 0 on success, -EINVAL if given any data.
139
*/
140
static int keyring_instantiate(struct key *keyring,
141
struct key_preparsed_payload *prep)
142
{
143
assoc_array_init(&keyring->keys);
144
/* make the keyring available by name if it has one */
145
keyring_publish_name(keyring);
146
return 0;
147
}
148
149
/*
150
* Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
151
* fold the carry back too, but that requires inline asm.
152
*/
153
static u64 mult_64x32_and_fold(u64 x, u32 y)
154
{
155
u64 hi = (u64)(u32)(x >> 32) * y;
156
u64 lo = (u64)(u32)(x) * y;
157
return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158
}
159
160
/*
161
* Hash a key type and description.
162
*/
163
static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164
{
165
const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166
const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167
const char *description = index_key->description;
168
unsigned long hash, type;
169
u32 piece;
170
u64 acc;
171
int n, desc_len = index_key->desc_len;
172
173
type = (unsigned long)index_key->type;
174
acc = mult_64x32_and_fold(type, desc_len + 13);
175
acc = mult_64x32_and_fold(acc, 9207);
176
piece = (unsigned long)index_key->domain_tag;
177
acc = mult_64x32_and_fold(acc, piece);
178
acc = mult_64x32_and_fold(acc, 9207);
179
180
for (;;) {
181
n = desc_len;
182
if (n <= 0)
183
break;
184
if (n > 4)
185
n = 4;
186
piece = 0;
187
memcpy(&piece, description, n);
188
description += n;
189
desc_len -= n;
190
acc = mult_64x32_and_fold(acc, piece);
191
acc = mult_64x32_and_fold(acc, 9207);
192
}
193
194
/* Fold the hash down to 32 bits if need be. */
195
hash = acc;
196
if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197
hash ^= acc >> 32;
198
199
/* Squidge all the keyrings into a separate part of the tree to
200
* ordinary keys by making sure the lowest level segment in the hash is
201
* zero for keyrings and non-zero otherwise.
202
*/
203
if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204
hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205
else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206
hash = (hash + (hash << level_shift)) & ~fan_mask;
207
index_key->hash = hash;
208
}
209
210
/*
211
* Finalise an index key to include a part of the description actually in the
212
* index key, to set the domain tag and to calculate the hash.
213
*/
214
void key_set_index_key(struct keyring_index_key *index_key)
215
{
216
static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217
size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218
219
memcpy(index_key->desc, index_key->description, n);
220
221
if (!index_key->domain_tag) {
222
if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223
index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224
else
225
index_key->domain_tag = &default_domain_tag;
226
}
227
228
hash_key_type_and_desc(index_key);
229
}
230
231
/**
232
* key_put_tag - Release a ref on a tag.
233
* @tag: The tag to release.
234
*
235
* This releases a reference the given tag and returns true if that ref was the
236
* last one.
237
*/
238
bool key_put_tag(struct key_tag *tag)
239
{
240
if (refcount_dec_and_test(&tag->usage)) {
241
kfree_rcu(tag, rcu);
242
return true;
243
}
244
245
return false;
246
}
247
248
/**
249
* key_remove_domain - Kill off a key domain and gc its keys
250
* @domain_tag: The domain tag to release.
251
*
252
* This marks a domain tag as being dead and releases a ref on it. If that
253
* wasn't the last reference, the garbage collector is poked to try and delete
254
* all keys that were in the domain.
255
*/
256
void key_remove_domain(struct key_tag *domain_tag)
257
{
258
domain_tag->removed = true;
259
if (!key_put_tag(domain_tag))
260
key_schedule_gc_links();
261
}
262
263
/*
264
* Build the next index key chunk.
265
*
266
* We return it one word-sized chunk at a time.
267
*/
268
static unsigned long keyring_get_key_chunk(const void *data, int level)
269
{
270
const struct keyring_index_key *index_key = data;
271
unsigned long chunk = 0;
272
const u8 *d;
273
int desc_len = index_key->desc_len, n = sizeof(chunk);
274
275
level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276
switch (level) {
277
case 0:
278
return index_key->hash;
279
case 1:
280
return index_key->x;
281
case 2:
282
return (unsigned long)index_key->type;
283
case 3:
284
return (unsigned long)index_key->domain_tag;
285
default:
286
level -= 4;
287
if (desc_len <= sizeof(index_key->desc))
288
return 0;
289
290
d = index_key->description + sizeof(index_key->desc);
291
d += level * sizeof(long);
292
desc_len -= sizeof(index_key->desc);
293
if (desc_len > n)
294
desc_len = n;
295
do {
296
chunk <<= 8;
297
chunk |= *d++;
298
} while (--desc_len > 0);
299
return chunk;
300
}
301
}
302
303
static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304
{
305
const struct key *key = keyring_ptr_to_key(object);
306
return keyring_get_key_chunk(&key->index_key, level);
307
}
308
309
static bool keyring_compare_object(const void *object, const void *data)
310
{
311
const struct keyring_index_key *index_key = data;
312
const struct key *key = keyring_ptr_to_key(object);
313
314
return key->index_key.type == index_key->type &&
315
key->index_key.domain_tag == index_key->domain_tag &&
316
key->index_key.desc_len == index_key->desc_len &&
317
memcmp(key->index_key.description, index_key->description,
318
index_key->desc_len) == 0;
319
}
320
321
/*
322
* Compare the index keys of a pair of objects and determine the bit position
323
* at which they differ - if they differ.
324
*/
325
static int keyring_diff_objects(const void *object, const void *data)
326
{
327
const struct key *key_a = keyring_ptr_to_key(object);
328
const struct keyring_index_key *a = &key_a->index_key;
329
const struct keyring_index_key *b = data;
330
unsigned long seg_a, seg_b;
331
int level, i;
332
333
level = 0;
334
seg_a = a->hash;
335
seg_b = b->hash;
336
if ((seg_a ^ seg_b) != 0)
337
goto differ;
338
level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339
340
/* The number of bits contributed by the hash is controlled by a
341
* constant in the assoc_array headers. Everything else thereafter we
342
* can deal with as being machine word-size dependent.
343
*/
344
seg_a = a->x;
345
seg_b = b->x;
346
if ((seg_a ^ seg_b) != 0)
347
goto differ;
348
level += sizeof(unsigned long);
349
350
/* The next bit may not work on big endian */
351
seg_a = (unsigned long)a->type;
352
seg_b = (unsigned long)b->type;
353
if ((seg_a ^ seg_b) != 0)
354
goto differ;
355
level += sizeof(unsigned long);
356
357
seg_a = (unsigned long)a->domain_tag;
358
seg_b = (unsigned long)b->domain_tag;
359
if ((seg_a ^ seg_b) != 0)
360
goto differ;
361
level += sizeof(unsigned long);
362
363
i = sizeof(a->desc);
364
if (a->desc_len <= i)
365
goto same;
366
367
for (; i < a->desc_len; i++) {
368
seg_a = *(unsigned char *)(a->description + i);
369
seg_b = *(unsigned char *)(b->description + i);
370
if ((seg_a ^ seg_b) != 0)
371
goto differ_plus_i;
372
}
373
374
same:
375
return -1;
376
377
differ_plus_i:
378
level += i;
379
differ:
380
i = level * 8 + __ffs(seg_a ^ seg_b);
381
return i;
382
}
383
384
/*
385
* Free an object after stripping the keyring flag off of the pointer.
386
*/
387
static void keyring_free_object(void *object)
388
{
389
key_put(keyring_ptr_to_key(object));
390
}
391
392
/*
393
* Operations for keyring management by the index-tree routines.
394
*/
395
static const struct assoc_array_ops keyring_assoc_array_ops = {
396
.get_key_chunk = keyring_get_key_chunk,
397
.get_object_key_chunk = keyring_get_object_key_chunk,
398
.compare_object = keyring_compare_object,
399
.diff_objects = keyring_diff_objects,
400
.free_object = keyring_free_object,
401
};
402
403
/*
404
* Clean up a keyring when it is destroyed. Unpublish its name if it had one
405
* and dispose of its data.
406
*
407
* The garbage collector detects the final key_put(), removes the keyring from
408
* the serial number tree and then does RCU synchronisation before coming here,
409
* so we shouldn't need to worry about code poking around here with the RCU
410
* readlock held by this time.
411
*/
412
static void keyring_destroy(struct key *keyring)
413
{
414
if (keyring->description) {
415
write_lock(&keyring_name_lock);
416
417
if (keyring->name_link.next != NULL &&
418
!list_empty(&keyring->name_link))
419
list_del(&keyring->name_link);
420
421
write_unlock(&keyring_name_lock);
422
}
423
424
if (keyring->restrict_link) {
425
struct key_restriction *keyres = keyring->restrict_link;
426
427
key_put(keyres->key);
428
kfree(keyres);
429
}
430
431
assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432
}
433
434
/*
435
* Describe a keyring for /proc.
436
*/
437
static void keyring_describe(const struct key *keyring, struct seq_file *m)
438
{
439
if (keyring->description)
440
seq_puts(m, keyring->description);
441
else
442
seq_puts(m, "[anon]");
443
444
if (key_is_positive(keyring)) {
445
if (keyring->keys.nr_leaves_on_tree != 0)
446
seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447
else
448
seq_puts(m, ": empty");
449
}
450
}
451
452
struct keyring_read_iterator_context {
453
size_t buflen;
454
size_t count;
455
key_serial_t *buffer;
456
};
457
458
static int keyring_read_iterator(const void *object, void *data)
459
{
460
struct keyring_read_iterator_context *ctx = data;
461
const struct key *key = keyring_ptr_to_key(object);
462
463
kenter("{%s,%d},,{%zu/%zu}",
464
key->type->name, key->serial, ctx->count, ctx->buflen);
465
466
if (ctx->count >= ctx->buflen)
467
return 1;
468
469
*ctx->buffer++ = key->serial;
470
ctx->count += sizeof(key->serial);
471
return 0;
472
}
473
474
/*
475
* Read a list of key IDs from the keyring's contents in binary form
476
*
477
* The keyring's semaphore is read-locked by the caller. This prevents someone
478
* from modifying it under us - which could cause us to read key IDs multiple
479
* times.
480
*/
481
static long keyring_read(const struct key *keyring,
482
char *buffer, size_t buflen)
483
{
484
struct keyring_read_iterator_context ctx;
485
long ret;
486
487
kenter("{%d},,%zu", key_serial(keyring), buflen);
488
489
if (buflen & (sizeof(key_serial_t) - 1))
490
return -EINVAL;
491
492
/* Copy as many key IDs as fit into the buffer */
493
if (buffer && buflen) {
494
ctx.buffer = (key_serial_t *)buffer;
495
ctx.buflen = buflen;
496
ctx.count = 0;
497
ret = assoc_array_iterate(&keyring->keys,
498
keyring_read_iterator, &ctx);
499
if (ret < 0) {
500
kleave(" = %ld [iterate]", ret);
501
return ret;
502
}
503
}
504
505
/* Return the size of the buffer needed */
506
ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
507
if (ret <= buflen)
508
kleave("= %ld [ok]", ret);
509
else
510
kleave("= %ld [buffer too small]", ret);
511
return ret;
512
}
513
514
/*
515
* Allocate a keyring and link into the destination keyring.
516
*/
517
struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
518
const struct cred *cred, key_perm_t perm,
519
unsigned long flags,
520
struct key_restriction *restrict_link,
521
struct key *dest)
522
{
523
struct key *keyring;
524
int ret;
525
526
keyring = key_alloc(&key_type_keyring, description,
527
uid, gid, cred, perm, flags, restrict_link);
528
if (!IS_ERR(keyring)) {
529
ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
530
if (ret < 0) {
531
key_put(keyring);
532
keyring = ERR_PTR(ret);
533
}
534
}
535
536
return keyring;
537
}
538
EXPORT_SYMBOL(keyring_alloc);
539
540
/**
541
* restrict_link_reject - Give -EPERM to restrict link
542
* @keyring: The keyring being added to.
543
* @type: The type of key being added.
544
* @payload: The payload of the key intended to be added.
545
* @restriction_key: Keys providing additional data for evaluating restriction.
546
*
547
* Reject the addition of any links to a keyring. It can be overridden by
548
* passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
549
* adding a key to a keyring.
550
*
551
* This is meant to be stored in a key_restriction structure which is passed
552
* in the restrict_link parameter to keyring_alloc().
553
*/
554
int restrict_link_reject(struct key *keyring,
555
const struct key_type *type,
556
const union key_payload *payload,
557
struct key *restriction_key)
558
{
559
return -EPERM;
560
}
561
562
/*
563
* By default, we keys found by getting an exact match on their descriptions.
564
*/
565
bool key_default_cmp(const struct key *key,
566
const struct key_match_data *match_data)
567
{
568
return strcmp(key->description, match_data->raw_data) == 0;
569
}
570
571
/*
572
* Iteration function to consider each key found.
573
*/
574
static int keyring_search_iterator(const void *object, void *iterator_data)
575
{
576
struct keyring_search_context *ctx = iterator_data;
577
const struct key *key = keyring_ptr_to_key(object);
578
unsigned long kflags = READ_ONCE(key->flags);
579
short state = READ_ONCE(key->state);
580
581
kenter("{%d}", key->serial);
582
583
/* ignore keys not of this type */
584
if (key->type != ctx->index_key.type) {
585
kleave(" = 0 [!type]");
586
return 0;
587
}
588
589
/* skip invalidated, revoked and expired keys */
590
if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
591
time64_t expiry = READ_ONCE(key->expiry);
592
593
if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
594
(1 << KEY_FLAG_REVOKED))) {
595
ctx->result = ERR_PTR(-EKEYREVOKED);
596
kleave(" = %d [invrev]", ctx->skipped_ret);
597
goto skipped;
598
}
599
600
if (expiry && ctx->now >= expiry) {
601
if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
602
ctx->result = ERR_PTR(-EKEYEXPIRED);
603
kleave(" = %d [expire]", ctx->skipped_ret);
604
goto skipped;
605
}
606
}
607
608
/* keys that don't match */
609
if (!ctx->match_data.cmp(key, &ctx->match_data)) {
610
kleave(" = 0 [!match]");
611
return 0;
612
}
613
614
/* key must have search permissions */
615
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
616
key_task_permission(make_key_ref(key, ctx->possessed),
617
ctx->cred, KEY_NEED_SEARCH) < 0) {
618
ctx->result = ERR_PTR(-EACCES);
619
kleave(" = %d [!perm]", ctx->skipped_ret);
620
goto skipped;
621
}
622
623
if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
624
/* we set a different error code if we pass a negative key */
625
if (state < 0) {
626
ctx->result = ERR_PTR(state);
627
kleave(" = %d [neg]", ctx->skipped_ret);
628
goto skipped;
629
}
630
}
631
632
/* Found */
633
ctx->result = make_key_ref(key, ctx->possessed);
634
kleave(" = 1 [found]");
635
return 1;
636
637
skipped:
638
return ctx->skipped_ret;
639
}
640
641
/*
642
* Search inside a keyring for a key. We can search by walking to it
643
* directly based on its index-key or we can iterate over the entire
644
* tree looking for it, based on the match function.
645
*/
646
static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
647
{
648
if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
649
const void *object;
650
651
object = assoc_array_find(&keyring->keys,
652
&keyring_assoc_array_ops,
653
&ctx->index_key);
654
return object ? ctx->iterator(object, ctx) : 0;
655
}
656
return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
657
}
658
659
/*
660
* Search a tree of keyrings that point to other keyrings up to the maximum
661
* depth.
662
*/
663
static bool search_nested_keyrings(struct key *keyring,
664
struct keyring_search_context *ctx)
665
{
666
struct {
667
struct key *keyring;
668
struct assoc_array_node *node;
669
int slot;
670
} stack[KEYRING_SEARCH_MAX_DEPTH];
671
672
struct assoc_array_shortcut *shortcut;
673
struct assoc_array_node *node;
674
struct assoc_array_ptr *ptr;
675
struct key *key;
676
int sp = 0, slot;
677
678
kenter("{%d},{%s,%s}",
679
keyring->serial,
680
ctx->index_key.type->name,
681
ctx->index_key.description);
682
683
#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
684
BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
685
(ctx->flags & STATE_CHECKS) == STATE_CHECKS);
686
687
if (ctx->index_key.description)
688
key_set_index_key(&ctx->index_key);
689
690
/* Check to see if this top-level keyring is what we are looking for
691
* and whether it is valid or not.
692
*/
693
if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
694
keyring_compare_object(keyring, &ctx->index_key)) {
695
ctx->skipped_ret = 2;
696
switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
697
case 1:
698
goto found;
699
case 2:
700
return false;
701
default:
702
break;
703
}
704
}
705
706
ctx->skipped_ret = 0;
707
708
/* Start processing a new keyring */
709
descend_to_keyring:
710
kdebug("descend to %d", keyring->serial);
711
if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
712
(1 << KEY_FLAG_REVOKED)))
713
goto not_this_keyring;
714
715
/* Search through the keys in this keyring before its searching its
716
* subtrees.
717
*/
718
if (search_keyring(keyring, ctx))
719
goto found;
720
721
/* Then manually iterate through the keyrings nested in this one.
722
*
723
* Start from the root node of the index tree. Because of the way the
724
* hash function has been set up, keyrings cluster on the leftmost
725
* branch of the root node (root slot 0) or in the root node itself.
726
* Non-keyrings avoid the leftmost branch of the root entirely (root
727
* slots 1-15).
728
*/
729
if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
730
goto not_this_keyring;
731
732
ptr = READ_ONCE(keyring->keys.root);
733
if (!ptr)
734
goto not_this_keyring;
735
736
if (assoc_array_ptr_is_shortcut(ptr)) {
737
/* If the root is a shortcut, either the keyring only contains
738
* keyring pointers (everything clusters behind root slot 0) or
739
* doesn't contain any keyring pointers.
740
*/
741
shortcut = assoc_array_ptr_to_shortcut(ptr);
742
if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
743
goto not_this_keyring;
744
745
ptr = READ_ONCE(shortcut->next_node);
746
node = assoc_array_ptr_to_node(ptr);
747
goto begin_node;
748
}
749
750
node = assoc_array_ptr_to_node(ptr);
751
ptr = node->slots[0];
752
if (!assoc_array_ptr_is_meta(ptr))
753
goto begin_node;
754
755
descend_to_node:
756
/* Descend to a more distal node in this keyring's content tree and go
757
* through that.
758
*/
759
kdebug("descend");
760
if (assoc_array_ptr_is_shortcut(ptr)) {
761
shortcut = assoc_array_ptr_to_shortcut(ptr);
762
ptr = READ_ONCE(shortcut->next_node);
763
BUG_ON(!assoc_array_ptr_is_node(ptr));
764
}
765
node = assoc_array_ptr_to_node(ptr);
766
767
begin_node:
768
kdebug("begin_node");
769
slot = 0;
770
ascend_to_node:
771
/* Go through the slots in a node */
772
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
773
ptr = READ_ONCE(node->slots[slot]);
774
775
if (assoc_array_ptr_is_meta(ptr)) {
776
if (node->back_pointer ||
777
assoc_array_ptr_is_shortcut(ptr))
778
goto descend_to_node;
779
}
780
781
if (!keyring_ptr_is_keyring(ptr))
782
continue;
783
784
key = keyring_ptr_to_key(ptr);
785
786
if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
787
if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
788
ctx->result = ERR_PTR(-ELOOP);
789
return false;
790
}
791
goto not_this_keyring;
792
}
793
794
/* Search a nested keyring */
795
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
796
key_task_permission(make_key_ref(key, ctx->possessed),
797
ctx->cred, KEY_NEED_SEARCH) < 0)
798
continue;
799
800
/* stack the current position */
801
stack[sp].keyring = keyring;
802
stack[sp].node = node;
803
stack[sp].slot = slot;
804
sp++;
805
806
/* begin again with the new keyring */
807
keyring = key;
808
goto descend_to_keyring;
809
}
810
811
/* We've dealt with all the slots in the current node, so now we need
812
* to ascend to the parent and continue processing there.
813
*/
814
ptr = READ_ONCE(node->back_pointer);
815
slot = node->parent_slot;
816
817
if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
818
shortcut = assoc_array_ptr_to_shortcut(ptr);
819
ptr = READ_ONCE(shortcut->back_pointer);
820
slot = shortcut->parent_slot;
821
}
822
if (!ptr)
823
goto not_this_keyring;
824
node = assoc_array_ptr_to_node(ptr);
825
slot++;
826
827
/* If we've ascended to the root (zero backpointer), we must have just
828
* finished processing the leftmost branch rather than the root slots -
829
* so there can't be any more keyrings for us to find.
830
*/
831
if (node->back_pointer) {
832
kdebug("ascend %d", slot);
833
goto ascend_to_node;
834
}
835
836
/* The keyring we're looking at was disqualified or didn't contain a
837
* matching key.
838
*/
839
not_this_keyring:
840
kdebug("not_this_keyring %d", sp);
841
if (sp <= 0) {
842
kleave(" = false");
843
return false;
844
}
845
846
/* Resume the processing of a keyring higher up in the tree */
847
sp--;
848
keyring = stack[sp].keyring;
849
node = stack[sp].node;
850
slot = stack[sp].slot + 1;
851
kdebug("ascend to %d [%d]", keyring->serial, slot);
852
goto ascend_to_node;
853
854
/* We found a viable match */
855
found:
856
key = key_ref_to_ptr(ctx->result);
857
key_check(key);
858
if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
859
key->last_used_at = ctx->now;
860
keyring->last_used_at = ctx->now;
861
while (sp > 0)
862
stack[--sp].keyring->last_used_at = ctx->now;
863
}
864
kleave(" = true");
865
return true;
866
}
867
868
/**
869
* keyring_search_rcu - Search a keyring tree for a matching key under RCU
870
* @keyring_ref: A pointer to the keyring with possession indicator.
871
* @ctx: The keyring search context.
872
*
873
* Search the supplied keyring tree for a key that matches the criteria given.
874
* The root keyring and any linked keyrings must grant Search permission to the
875
* caller to be searchable and keys can only be found if they too grant Search
876
* to the caller. The possession flag on the root keyring pointer controls use
877
* of the possessor bits in permissions checking of the entire tree. In
878
* addition, the LSM gets to forbid keyring searches and key matches.
879
*
880
* The search is performed as a breadth-then-depth search up to the prescribed
881
* limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to
882
* prevent keyrings from being destroyed or rearranged whilst they are being
883
* searched.
884
*
885
* Keys are matched to the type provided and are then filtered by the match
886
* function, which is given the description to use in any way it sees fit. The
887
* match function may use any attributes of a key that it wishes to
888
* determine the match. Normally the match function from the key type would be
889
* used.
890
*
891
* RCU can be used to prevent the keyring key lists from disappearing without
892
* the need to take lots of locks.
893
*
894
* Returns a pointer to the found key and increments the key usage count if
895
* successful; -EAGAIN if no matching keys were found, or if expired or revoked
896
* keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
897
* specified keyring wasn't a keyring.
898
*
899
* In the case of a successful return, the possession attribute from
900
* @keyring_ref is propagated to the returned key reference.
901
*/
902
key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
903
struct keyring_search_context *ctx)
904
{
905
struct key *keyring;
906
long err;
907
908
ctx->iterator = keyring_search_iterator;
909
ctx->possessed = is_key_possessed(keyring_ref);
910
ctx->result = ERR_PTR(-EAGAIN);
911
912
keyring = key_ref_to_ptr(keyring_ref);
913
key_check(keyring);
914
915
if (keyring->type != &key_type_keyring)
916
return ERR_PTR(-ENOTDIR);
917
918
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
919
err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
920
if (err < 0)
921
return ERR_PTR(err);
922
}
923
924
ctx->now = ktime_get_real_seconds();
925
if (search_nested_keyrings(keyring, ctx))
926
__key_get(key_ref_to_ptr(ctx->result));
927
return ctx->result;
928
}
929
930
/**
931
* keyring_search - Search the supplied keyring tree for a matching key
932
* @keyring: The root of the keyring tree to be searched.
933
* @type: The type of keyring we want to find.
934
* @description: The name of the keyring we want to find.
935
* @recurse: True to search the children of @keyring also
936
*
937
* As keyring_search_rcu() above, but using the current task's credentials and
938
* type's default matching function and preferred search method.
939
*/
940
key_ref_t keyring_search(key_ref_t keyring,
941
struct key_type *type,
942
const char *description,
943
bool recurse)
944
{
945
struct keyring_search_context ctx = {
946
.index_key.type = type,
947
.index_key.description = description,
948
.index_key.desc_len = strlen(description),
949
.cred = current_cred(),
950
.match_data.cmp = key_default_cmp,
951
.match_data.raw_data = description,
952
.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
953
.flags = KEYRING_SEARCH_DO_STATE_CHECK,
954
};
955
key_ref_t key;
956
int ret;
957
958
if (recurse)
959
ctx.flags |= KEYRING_SEARCH_RECURSE;
960
if (type->match_preparse) {
961
ret = type->match_preparse(&ctx.match_data);
962
if (ret < 0)
963
return ERR_PTR(ret);
964
}
965
966
rcu_read_lock();
967
key = keyring_search_rcu(keyring, &ctx);
968
rcu_read_unlock();
969
970
if (type->match_free)
971
type->match_free(&ctx.match_data);
972
return key;
973
}
974
EXPORT_SYMBOL(keyring_search);
975
976
static struct key_restriction *keyring_restriction_alloc(
977
key_restrict_link_func_t check)
978
{
979
struct key_restriction *keyres =
980
kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
981
982
if (!keyres)
983
return ERR_PTR(-ENOMEM);
984
985
keyres->check = check;
986
987
return keyres;
988
}
989
990
/*
991
* Semaphore to serialise restriction setup to prevent reference count
992
* cycles through restriction key pointers.
993
*/
994
static DECLARE_RWSEM(keyring_serialise_restrict_sem);
995
996
/*
997
* Check for restriction cycles that would prevent keyring garbage collection.
998
* keyring_serialise_restrict_sem must be held.
999
*/
1000
static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1001
struct key_restriction *keyres)
1002
{
1003
while (keyres && keyres->key &&
1004
keyres->key->type == &key_type_keyring) {
1005
if (keyres->key == dest_keyring)
1006
return true;
1007
1008
keyres = keyres->key->restrict_link;
1009
}
1010
1011
return false;
1012
}
1013
1014
/**
1015
* keyring_restrict - Look up and apply a restriction to a keyring
1016
* @keyring_ref: The keyring to be restricted
1017
* @type: The key type that will provide the restriction checker.
1018
* @restriction: The restriction options to apply to the keyring
1019
*
1020
* Look up a keyring and apply a restriction to it. The restriction is managed
1021
* by the specific key type, but can be configured by the options specified in
1022
* the restriction string.
1023
*/
1024
int keyring_restrict(key_ref_t keyring_ref, const char *type,
1025
const char *restriction)
1026
{
1027
struct key *keyring;
1028
struct key_type *restrict_type = NULL;
1029
struct key_restriction *restrict_link;
1030
int ret = 0;
1031
1032
keyring = key_ref_to_ptr(keyring_ref);
1033
key_check(keyring);
1034
1035
if (keyring->type != &key_type_keyring)
1036
return -ENOTDIR;
1037
1038
if (!type) {
1039
restrict_link = keyring_restriction_alloc(restrict_link_reject);
1040
} else {
1041
restrict_type = key_type_lookup(type);
1042
1043
if (IS_ERR(restrict_type))
1044
return PTR_ERR(restrict_type);
1045
1046
if (!restrict_type->lookup_restriction) {
1047
ret = -ENOENT;
1048
goto error;
1049
}
1050
1051
restrict_link = restrict_type->lookup_restriction(restriction);
1052
}
1053
1054
if (IS_ERR(restrict_link)) {
1055
ret = PTR_ERR(restrict_link);
1056
goto error;
1057
}
1058
1059
down_write(&keyring->sem);
1060
down_write(&keyring_serialise_restrict_sem);
1061
1062
if (keyring->restrict_link) {
1063
ret = -EEXIST;
1064
} else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
1065
ret = -EDEADLK;
1066
} else {
1067
keyring->restrict_link = restrict_link;
1068
notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
1069
}
1070
1071
up_write(&keyring_serialise_restrict_sem);
1072
up_write(&keyring->sem);
1073
1074
if (ret < 0) {
1075
key_put(restrict_link->key);
1076
kfree(restrict_link);
1077
}
1078
1079
error:
1080
if (restrict_type)
1081
key_type_put(restrict_type);
1082
1083
return ret;
1084
}
1085
EXPORT_SYMBOL(keyring_restrict);
1086
1087
/*
1088
* Search the given keyring for a key that might be updated.
1089
*
1090
* The caller must guarantee that the keyring is a keyring and that the
1091
* permission is granted to modify the keyring as no check is made here. The
1092
* caller must also hold a lock on the keyring semaphore.
1093
*
1094
* Returns a pointer to the found key with usage count incremented if
1095
* successful and returns NULL if not found. Revoked and invalidated keys are
1096
* skipped over.
1097
*
1098
* If successful, the possession indicator is propagated from the keyring ref
1099
* to the returned key reference.
1100
*/
1101
key_ref_t find_key_to_update(key_ref_t keyring_ref,
1102
const struct keyring_index_key *index_key)
1103
{
1104
struct key *keyring, *key;
1105
const void *object;
1106
1107
keyring = key_ref_to_ptr(keyring_ref);
1108
1109
kenter("{%d},{%s,%s}",
1110
keyring->serial, index_key->type->name, index_key->description);
1111
1112
object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1113
index_key);
1114
1115
if (object)
1116
goto found;
1117
1118
kleave(" = NULL");
1119
return NULL;
1120
1121
found:
1122
key = keyring_ptr_to_key(object);
1123
if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1124
(1 << KEY_FLAG_REVOKED))) {
1125
kleave(" = NULL [x]");
1126
return NULL;
1127
}
1128
__key_get(key);
1129
kleave(" = {%d}", key->serial);
1130
return make_key_ref(key, is_key_possessed(keyring_ref));
1131
}
1132
1133
/*
1134
* Find a keyring with the specified name.
1135
*
1136
* Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1137
* user in the current user namespace are considered. If @uid_keyring is %true,
1138
* the keyring additionally must have been allocated as a user or user session
1139
* keyring; otherwise, it must grant Search permission directly to the caller.
1140
*
1141
* Returns a pointer to the keyring with the keyring's refcount having being
1142
* incremented on success. -ENOKEY is returned if a key could not be found.
1143
*/
1144
struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1145
{
1146
struct user_namespace *ns = current_user_ns();
1147
struct key *keyring;
1148
1149
if (!name)
1150
return ERR_PTR(-EINVAL);
1151
1152
read_lock(&keyring_name_lock);
1153
1154
/* Search this hash bucket for a keyring with a matching name that
1155
* grants Search permission and that hasn't been revoked
1156
*/
1157
list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1158
if (!kuid_has_mapping(ns, keyring->user->uid))
1159
continue;
1160
1161
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1162
continue;
1163
1164
if (strcmp(keyring->description, name) != 0)
1165
continue;
1166
1167
if (uid_keyring) {
1168
if (!test_bit(KEY_FLAG_UID_KEYRING,
1169
&keyring->flags))
1170
continue;
1171
} else {
1172
if (key_permission(make_key_ref(keyring, 0),
1173
KEY_NEED_SEARCH) < 0)
1174
continue;
1175
}
1176
1177
/* we've got a match but we might end up racing with
1178
* key_cleanup() if the keyring is currently 'dead'
1179
* (ie. it has a zero usage count) */
1180
if (!refcount_inc_not_zero(&keyring->usage))
1181
continue;
1182
keyring->last_used_at = ktime_get_real_seconds();
1183
goto out;
1184
}
1185
1186
keyring = ERR_PTR(-ENOKEY);
1187
out:
1188
read_unlock(&keyring_name_lock);
1189
return keyring;
1190
}
1191
1192
static int keyring_detect_cycle_iterator(const void *object,
1193
void *iterator_data)
1194
{
1195
struct keyring_search_context *ctx = iterator_data;
1196
const struct key *key = keyring_ptr_to_key(object);
1197
1198
kenter("{%d}", key->serial);
1199
1200
/* We might get a keyring with matching index-key that is nonetheless a
1201
* different keyring. */
1202
if (key != ctx->match_data.raw_data)
1203
return 0;
1204
1205
ctx->result = ERR_PTR(-EDEADLK);
1206
return 1;
1207
}
1208
1209
/*
1210
* See if a cycle will be created by inserting acyclic tree B in acyclic
1211
* tree A at the topmost level (ie: as a direct child of A).
1212
*
1213
* Since we are adding B to A at the top level, checking for cycles should just
1214
* be a matter of seeing if node A is somewhere in tree B.
1215
*/
1216
static int keyring_detect_cycle(struct key *A, struct key *B)
1217
{
1218
struct keyring_search_context ctx = {
1219
.index_key = A->index_key,
1220
.match_data.raw_data = A,
1221
.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1222
.iterator = keyring_detect_cycle_iterator,
1223
.flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1224
KEYRING_SEARCH_NO_UPDATE_TIME |
1225
KEYRING_SEARCH_NO_CHECK_PERM |
1226
KEYRING_SEARCH_DETECT_TOO_DEEP |
1227
KEYRING_SEARCH_RECURSE),
1228
};
1229
1230
rcu_read_lock();
1231
search_nested_keyrings(B, &ctx);
1232
rcu_read_unlock();
1233
return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1234
}
1235
1236
/*
1237
* Lock keyring for link.
1238
*/
1239
int __key_link_lock(struct key *keyring,
1240
const struct keyring_index_key *index_key)
1241
__acquires(&keyring->sem)
1242
__acquires(&keyring_serialise_link_lock)
1243
{
1244
if (keyring->type != &key_type_keyring)
1245
return -ENOTDIR;
1246
1247
down_write(&keyring->sem);
1248
1249
/* Serialise link/link calls to prevent parallel calls causing a cycle
1250
* when linking two keyring in opposite orders.
1251
*/
1252
if (index_key->type == &key_type_keyring)
1253
mutex_lock(&keyring_serialise_link_lock);
1254
1255
return 0;
1256
}
1257
1258
/*
1259
* Lock keyrings for move (link/unlink combination).
1260
*/
1261
int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1262
const struct keyring_index_key *index_key)
1263
__acquires(&l_keyring->sem)
1264
__acquires(&u_keyring->sem)
1265
__acquires(&keyring_serialise_link_lock)
1266
{
1267
if (l_keyring->type != &key_type_keyring ||
1268
u_keyring->type != &key_type_keyring)
1269
return -ENOTDIR;
1270
1271
/* We have to be very careful here to take the keyring locks in the
1272
* right order, lest we open ourselves to deadlocking against another
1273
* move operation.
1274
*/
1275
if (l_keyring < u_keyring) {
1276
down_write(&l_keyring->sem);
1277
down_write_nested(&u_keyring->sem, 1);
1278
} else {
1279
down_write(&u_keyring->sem);
1280
down_write_nested(&l_keyring->sem, 1);
1281
}
1282
1283
/* Serialise link/link calls to prevent parallel calls causing a cycle
1284
* when linking two keyring in opposite orders.
1285
*/
1286
if (index_key->type == &key_type_keyring)
1287
mutex_lock(&keyring_serialise_link_lock);
1288
1289
return 0;
1290
}
1291
1292
/*
1293
* Preallocate memory so that a key can be linked into to a keyring.
1294
*/
1295
int __key_link_begin(struct key *keyring,
1296
const struct keyring_index_key *index_key,
1297
struct assoc_array_edit **_edit)
1298
{
1299
struct assoc_array_edit *edit;
1300
int ret;
1301
1302
kenter("%d,%s,%s,",
1303
keyring->serial, index_key->type->name, index_key->description);
1304
1305
BUG_ON(index_key->desc_len == 0);
1306
BUG_ON(*_edit != NULL);
1307
1308
*_edit = NULL;
1309
1310
ret = -EKEYREVOKED;
1311
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1312
goto error;
1313
1314
/* Create an edit script that will insert/replace the key in the
1315
* keyring tree.
1316
*/
1317
edit = assoc_array_insert(&keyring->keys,
1318
&keyring_assoc_array_ops,
1319
index_key,
1320
NULL);
1321
if (IS_ERR(edit)) {
1322
ret = PTR_ERR(edit);
1323
goto error;
1324
}
1325
1326
/* If we're not replacing a link in-place then we're going to need some
1327
* extra quota.
1328
*/
1329
if (!edit->dead_leaf) {
1330
ret = key_payload_reserve(keyring,
1331
keyring->datalen + KEYQUOTA_LINK_BYTES);
1332
if (ret < 0)
1333
goto error_cancel;
1334
}
1335
1336
*_edit = edit;
1337
kleave(" = 0");
1338
return 0;
1339
1340
error_cancel:
1341
assoc_array_cancel_edit(edit);
1342
error:
1343
kleave(" = %d", ret);
1344
return ret;
1345
}
1346
1347
/*
1348
* Check already instantiated keys aren't going to be a problem.
1349
*
1350
* The caller must have called __key_link_begin(). Don't need to call this for
1351
* keys that were created since __key_link_begin() was called.
1352
*/
1353
int __key_link_check_live_key(struct key *keyring, struct key *key)
1354
{
1355
if (key->type == &key_type_keyring)
1356
/* check that we aren't going to create a cycle by linking one
1357
* keyring to another */
1358
return keyring_detect_cycle(keyring, key);
1359
return 0;
1360
}
1361
1362
/*
1363
* Link a key into to a keyring.
1364
*
1365
* Must be called with __key_link_begin() having being called. Discards any
1366
* already extant link to matching key if there is one, so that each keyring
1367
* holds at most one link to any given key of a particular type+description
1368
* combination.
1369
*/
1370
void __key_link(struct key *keyring, struct key *key,
1371
struct assoc_array_edit **_edit)
1372
{
1373
__key_get(key);
1374
assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1375
assoc_array_apply_edit(*_edit);
1376
*_edit = NULL;
1377
notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
1378
}
1379
1380
/*
1381
* Finish linking a key into to a keyring.
1382
*
1383
* Must be called with __key_link_begin() having being called.
1384
*/
1385
void __key_link_end(struct key *keyring,
1386
const struct keyring_index_key *index_key,
1387
struct assoc_array_edit *edit)
1388
__releases(&keyring->sem)
1389
__releases(&keyring_serialise_link_lock)
1390
{
1391
BUG_ON(index_key->type == NULL);
1392
kenter("%d,%s,", keyring->serial, index_key->type->name);
1393
1394
if (edit) {
1395
if (!edit->dead_leaf) {
1396
key_payload_reserve(keyring,
1397
keyring->datalen - KEYQUOTA_LINK_BYTES);
1398
}
1399
assoc_array_cancel_edit(edit);
1400
}
1401
up_write(&keyring->sem);
1402
1403
if (index_key->type == &key_type_keyring)
1404
mutex_unlock(&keyring_serialise_link_lock);
1405
}
1406
1407
/*
1408
* Check addition of keys to restricted keyrings.
1409
*/
1410
static int __key_link_check_restriction(struct key *keyring, struct key *key)
1411
{
1412
if (!keyring->restrict_link || !keyring->restrict_link->check)
1413
return 0;
1414
return keyring->restrict_link->check(keyring, key->type, &key->payload,
1415
keyring->restrict_link->key);
1416
}
1417
1418
/**
1419
* key_link - Link a key to a keyring
1420
* @keyring: The keyring to make the link in.
1421
* @key: The key to link to.
1422
*
1423
* Make a link in a keyring to a key, such that the keyring holds a reference
1424
* on that key and the key can potentially be found by searching that keyring.
1425
*
1426
* This function will write-lock the keyring's semaphore and will consume some
1427
* of the user's key data quota to hold the link.
1428
*
1429
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1430
* -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1431
* full, -EDQUOT if there is insufficient key data quota remaining to add
1432
* another link or -ENOMEM if there's insufficient memory.
1433
*
1434
* It is assumed that the caller has checked that it is permitted for a link to
1435
* be made (the keyring should have Write permission and the key Link
1436
* permission).
1437
*/
1438
int key_link(struct key *keyring, struct key *key)
1439
{
1440
struct assoc_array_edit *edit = NULL;
1441
int ret;
1442
1443
kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1444
1445
key_check(keyring);
1446
key_check(key);
1447
1448
ret = __key_link_lock(keyring, &key->index_key);
1449
if (ret < 0)
1450
goto error;
1451
1452
ret = __key_link_begin(keyring, &key->index_key, &edit);
1453
if (ret < 0)
1454
goto error_end;
1455
1456
kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1457
ret = __key_link_check_restriction(keyring, key);
1458
if (ret == 0)
1459
ret = __key_link_check_live_key(keyring, key);
1460
if (ret == 0)
1461
__key_link(keyring, key, &edit);
1462
1463
error_end:
1464
__key_link_end(keyring, &key->index_key, edit);
1465
error:
1466
kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1467
return ret;
1468
}
1469
EXPORT_SYMBOL(key_link);
1470
1471
/*
1472
* Lock a keyring for unlink.
1473
*/
1474
static int __key_unlink_lock(struct key *keyring)
1475
__acquires(&keyring->sem)
1476
{
1477
if (keyring->type != &key_type_keyring)
1478
return -ENOTDIR;
1479
1480
down_write(&keyring->sem);
1481
return 0;
1482
}
1483
1484
/*
1485
* Begin the process of unlinking a key from a keyring.
1486
*/
1487
static int __key_unlink_begin(struct key *keyring, struct key *key,
1488
struct assoc_array_edit **_edit)
1489
{
1490
struct assoc_array_edit *edit;
1491
1492
BUG_ON(*_edit != NULL);
1493
1494
edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1495
&key->index_key);
1496
if (IS_ERR(edit))
1497
return PTR_ERR(edit);
1498
1499
if (!edit)
1500
return -ENOENT;
1501
1502
*_edit = edit;
1503
return 0;
1504
}
1505
1506
/*
1507
* Apply an unlink change.
1508
*/
1509
static void __key_unlink(struct key *keyring, struct key *key,
1510
struct assoc_array_edit **_edit)
1511
{
1512
assoc_array_apply_edit(*_edit);
1513
notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
1514
*_edit = NULL;
1515
key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1516
}
1517
1518
/*
1519
* Finish unlinking a key from to a keyring.
1520
*/
1521
static void __key_unlink_end(struct key *keyring,
1522
struct key *key,
1523
struct assoc_array_edit *edit)
1524
__releases(&keyring->sem)
1525
{
1526
if (edit)
1527
assoc_array_cancel_edit(edit);
1528
up_write(&keyring->sem);
1529
}
1530
1531
/**
1532
* key_unlink - Unlink the first link to a key from a keyring.
1533
* @keyring: The keyring to remove the link from.
1534
* @key: The key the link is to.
1535
*
1536
* Remove a link from a keyring to a key.
1537
*
1538
* This function will write-lock the keyring's semaphore.
1539
*
1540
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1541
* the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1542
* memory.
1543
*
1544
* It is assumed that the caller has checked that it is permitted for a link to
1545
* be removed (the keyring should have Write permission; no permissions are
1546
* required on the key).
1547
*/
1548
int key_unlink(struct key *keyring, struct key *key)
1549
{
1550
struct assoc_array_edit *edit = NULL;
1551
int ret;
1552
1553
key_check(keyring);
1554
key_check(key);
1555
1556
ret = __key_unlink_lock(keyring);
1557
if (ret < 0)
1558
return ret;
1559
1560
ret = __key_unlink_begin(keyring, key, &edit);
1561
if (ret == 0)
1562
__key_unlink(keyring, key, &edit);
1563
__key_unlink_end(keyring, key, edit);
1564
return ret;
1565
}
1566
EXPORT_SYMBOL(key_unlink);
1567
1568
/**
1569
* key_move - Move a key from one keyring to another
1570
* @key: The key to move
1571
* @from_keyring: The keyring to remove the link from.
1572
* @to_keyring: The keyring to make the link in.
1573
* @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1574
*
1575
* Make a link in @to_keyring to a key, such that the keyring holds a reference
1576
* on that key and the key can potentially be found by searching that keyring
1577
* whilst simultaneously removing a link to the key from @from_keyring.
1578
*
1579
* This function will write-lock both keyring's semaphores and will consume
1580
* some of the user's key data quota to hold the link on @to_keyring.
1581
*
1582
* Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1583
* -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1584
* keyring is full, -EDQUOT if there is insufficient key data quota remaining
1585
* to add another link or -ENOMEM if there's insufficient memory. If
1586
* KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1587
* matching key in @to_keyring.
1588
*
1589
* It is assumed that the caller has checked that it is permitted for a link to
1590
* be made (the keyring should have Write permission and the key Link
1591
* permission).
1592
*/
1593
int key_move(struct key *key,
1594
struct key *from_keyring,
1595
struct key *to_keyring,
1596
unsigned int flags)
1597
{
1598
struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1599
int ret;
1600
1601
kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1602
1603
if (from_keyring == to_keyring)
1604
return 0;
1605
1606
key_check(key);
1607
key_check(from_keyring);
1608
key_check(to_keyring);
1609
1610
ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1611
if (ret < 0)
1612
goto out;
1613
ret = __key_unlink_begin(from_keyring, key, &from_edit);
1614
if (ret < 0)
1615
goto error;
1616
ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1617
if (ret < 0)
1618
goto error;
1619
1620
ret = -EEXIST;
1621
if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1622
goto error;
1623
1624
ret = __key_link_check_restriction(to_keyring, key);
1625
if (ret < 0)
1626
goto error;
1627
ret = __key_link_check_live_key(to_keyring, key);
1628
if (ret < 0)
1629
goto error;
1630
1631
__key_unlink(from_keyring, key, &from_edit);
1632
__key_link(to_keyring, key, &to_edit);
1633
error:
1634
__key_link_end(to_keyring, &key->index_key, to_edit);
1635
__key_unlink_end(from_keyring, key, from_edit);
1636
out:
1637
kleave(" = %d", ret);
1638
return ret;
1639
}
1640
EXPORT_SYMBOL(key_move);
1641
1642
/**
1643
* keyring_clear - Clear a keyring
1644
* @keyring: The keyring to clear.
1645
*
1646
* Clear the contents of the specified keyring.
1647
*
1648
* Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1649
*/
1650
int keyring_clear(struct key *keyring)
1651
{
1652
struct assoc_array_edit *edit;
1653
int ret;
1654
1655
if (keyring->type != &key_type_keyring)
1656
return -ENOTDIR;
1657
1658
down_write(&keyring->sem);
1659
1660
edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1661
if (IS_ERR(edit)) {
1662
ret = PTR_ERR(edit);
1663
} else {
1664
if (edit)
1665
assoc_array_apply_edit(edit);
1666
notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
1667
key_payload_reserve(keyring, 0);
1668
ret = 0;
1669
}
1670
1671
up_write(&keyring->sem);
1672
return ret;
1673
}
1674
EXPORT_SYMBOL(keyring_clear);
1675
1676
/*
1677
* Dispose of the links from a revoked keyring.
1678
*
1679
* This is called with the key sem write-locked.
1680
*/
1681
static void keyring_revoke(struct key *keyring)
1682
{
1683
struct assoc_array_edit *edit;
1684
1685
edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1686
if (!IS_ERR(edit)) {
1687
if (edit)
1688
assoc_array_apply_edit(edit);
1689
key_payload_reserve(keyring, 0);
1690
}
1691
}
1692
1693
static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1694
{
1695
struct key *key = keyring_ptr_to_key(object);
1696
time64_t *limit = iterator_data;
1697
1698
if (key_is_dead(key, *limit))
1699
return false;
1700
key_get(key);
1701
return true;
1702
}
1703
1704
static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1705
{
1706
const struct key *key = keyring_ptr_to_key(object);
1707
time64_t *limit = iterator_data;
1708
1709
key_check(key);
1710
return key_is_dead(key, *limit);
1711
}
1712
1713
/*
1714
* Garbage collect pointers from a keyring.
1715
*
1716
* Not called with any locks held. The keyring's key struct will not be
1717
* deallocated under us as only our caller may deallocate it.
1718
*/
1719
void keyring_gc(struct key *keyring, time64_t limit)
1720
{
1721
int result;
1722
1723
kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1724
1725
if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1726
(1 << KEY_FLAG_REVOKED)))
1727
goto dont_gc;
1728
1729
/* scan the keyring looking for dead keys */
1730
rcu_read_lock();
1731
result = assoc_array_iterate(&keyring->keys,
1732
keyring_gc_check_iterator, &limit);
1733
rcu_read_unlock();
1734
if (result == true)
1735
goto do_gc;
1736
1737
dont_gc:
1738
kleave(" [no gc]");
1739
return;
1740
1741
do_gc:
1742
down_write(&keyring->sem);
1743
assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1744
keyring_gc_select_iterator, &limit);
1745
up_write(&keyring->sem);
1746
kleave(" [gc]");
1747
}
1748
1749
/*
1750
* Garbage collect restriction pointers from a keyring.
1751
*
1752
* Keyring restrictions are associated with a key type, and must be cleaned
1753
* up if the key type is unregistered. The restriction is altered to always
1754
* reject additional keys so a keyring cannot be opened up by unregistering
1755
* a key type.
1756
*
1757
* Not called with any keyring locks held. The keyring's key struct will not
1758
* be deallocated under us as only our caller may deallocate it.
1759
*
1760
* The caller is required to hold key_types_sem and dead_type->sem. This is
1761
* fulfilled by key_gc_keytype() holding the locks on behalf of
1762
* key_garbage_collector(), which it invokes on a workqueue.
1763
*/
1764
void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1765
{
1766
struct key_restriction *keyres;
1767
1768
kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1769
1770
/*
1771
* keyring->restrict_link is only assigned at key allocation time
1772
* or with the key type locked, so the only values that could be
1773
* concurrently assigned to keyring->restrict_link are for key
1774
* types other than dead_type. Given this, it's ok to check
1775
* the key type before acquiring keyring->sem.
1776
*/
1777
if (!dead_type || !keyring->restrict_link ||
1778
keyring->restrict_link->keytype != dead_type) {
1779
kleave(" [no restriction gc]");
1780
return;
1781
}
1782
1783
/* Lock the keyring to ensure that a link is not in progress */
1784
down_write(&keyring->sem);
1785
1786
keyres = keyring->restrict_link;
1787
1788
keyres->check = restrict_link_reject;
1789
1790
key_put(keyres->key);
1791
keyres->key = NULL;
1792
keyres->keytype = NULL;
1793
1794
up_write(&keyring->sem);
1795
1796
kleave(" [restriction gc]");
1797
}
1798
1799