Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/security.c
48855 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Security plug functions
4
*
5
* Copyright (C) 2001 WireX Communications, Inc <[email protected]>
6
* Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
7
* Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
8
* Copyright (C) 2016 Mellanox Technologies
9
* Copyright (C) 2023 Microsoft Corporation <[email protected]>
10
*/
11
12
#define pr_fmt(fmt) "LSM: " fmt
13
14
#include <linux/bpf.h>
15
#include <linux/capability.h>
16
#include <linux/dcache.h>
17
#include <linux/export.h>
18
#include <linux/init.h>
19
#include <linux/kernel.h>
20
#include <linux/kernel_read_file.h>
21
#include <linux/lsm_hooks.h>
22
#include <linux/mman.h>
23
#include <linux/mount.h>
24
#include <linux/personality.h>
25
#include <linux/backing-dev.h>
26
#include <linux/string.h>
27
#include <linux/xattr.h>
28
#include <linux/msg.h>
29
#include <linux/overflow.h>
30
#include <linux/perf_event.h>
31
#include <linux/fs.h>
32
#include <net/flow.h>
33
#include <net/sock.h>
34
35
#include "lsm.h"
36
37
/*
38
* These are descriptions of the reasons that can be passed to the
39
* security_locked_down() LSM hook. Placing this array here allows
40
* all security modules to use the same descriptions for auditing
41
* purposes.
42
*/
43
const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
44
[LOCKDOWN_NONE] = "none",
45
[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46
[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47
[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48
[LOCKDOWN_KEXEC] = "kexec of unsigned images",
49
[LOCKDOWN_HIBERNATION] = "hibernation",
50
[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51
[LOCKDOWN_IOPORT] = "raw io port access",
52
[LOCKDOWN_MSR] = "raw MSR access",
53
[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54
[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
55
[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56
[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57
[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58
[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59
[LOCKDOWN_DEBUGFS] = "debugfs access",
60
[LOCKDOWN_XMON_WR] = "xmon write access",
61
[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62
[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63
[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
64
[LOCKDOWN_INTEGRITY_MAX] = "integrity",
65
[LOCKDOWN_KCORE] = "/proc/kcore access",
66
[LOCKDOWN_KPROBES] = "use of kprobes",
67
[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
68
[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
69
[LOCKDOWN_PERF] = "unsafe use of perf",
70
[LOCKDOWN_TRACEFS] = "use of tracefs",
71
[LOCKDOWN_XMON_RW] = "xmon read and write access",
72
[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
73
[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
74
};
75
76
bool lsm_debug __ro_after_init;
77
78
unsigned int lsm_active_cnt __ro_after_init;
79
const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
80
81
struct lsm_blob_sizes blob_sizes;
82
83
struct kmem_cache *lsm_file_cache;
84
struct kmem_cache *lsm_inode_cache;
85
86
#define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
87
88
/*
89
* Identifier for the LSM static calls.
90
* HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
91
* IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
92
*/
93
#define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
94
95
/*
96
* Call the macro M for each LSM hook MAX_LSM_COUNT times.
97
*/
98
#define LSM_LOOP_UNROLL(M, ...) \
99
do { \
100
UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \
101
} while (0)
102
103
#define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
104
105
#ifdef CONFIG_HAVE_STATIC_CALL
106
#define LSM_HOOK_TRAMP(NAME, NUM) \
107
&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
108
#else
109
#define LSM_HOOK_TRAMP(NAME, NUM) NULL
110
#endif
111
112
/*
113
* Define static calls and static keys for each LSM hook.
114
*/
115
#define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \
116
DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \
117
*((RET(*)(__VA_ARGS__))NULL)); \
118
DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
119
120
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
121
LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
122
#include <linux/lsm_hook_defs.h>
123
#undef LSM_HOOK
124
#undef DEFINE_LSM_STATIC_CALL
125
126
/*
127
* Initialise a table of static calls for each LSM hook.
128
* DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
129
* and a trampoline (STATIC_CALL_TRAMP) which are used to call
130
* __static_call_update when updating the static call.
131
*
132
* The static calls table is used by early LSMs, some architectures can fault on
133
* unaligned accesses and the fault handling code may not be ready by then.
134
* Thus, the static calls table should be aligned to avoid any unhandled faults
135
* in early init.
136
*/
137
struct lsm_static_calls_table
138
static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
139
#define INIT_LSM_STATIC_CALL(NUM, NAME) \
140
(struct lsm_static_call) { \
141
.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \
142
.trampoline = LSM_HOOK_TRAMP(NAME, NUM), \
143
.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \
144
},
145
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
146
.NAME = { \
147
LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \
148
},
149
#include <linux/lsm_hook_defs.h>
150
#undef LSM_HOOK
151
#undef INIT_LSM_STATIC_CALL
152
};
153
154
/**
155
* lsm_file_alloc - allocate a composite file blob
156
* @file: the file that needs a blob
157
*
158
* Allocate the file blob for all the modules
159
*
160
* Returns 0, or -ENOMEM if memory can't be allocated.
161
*/
162
static int lsm_file_alloc(struct file *file)
163
{
164
if (!lsm_file_cache) {
165
file->f_security = NULL;
166
return 0;
167
}
168
169
file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
170
if (file->f_security == NULL)
171
return -ENOMEM;
172
return 0;
173
}
174
175
/**
176
* lsm_blob_alloc - allocate a composite blob
177
* @dest: the destination for the blob
178
* @size: the size of the blob
179
* @gfp: allocation type
180
*
181
* Allocate a blob for all the modules
182
*
183
* Returns 0, or -ENOMEM if memory can't be allocated.
184
*/
185
static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
186
{
187
if (size == 0) {
188
*dest = NULL;
189
return 0;
190
}
191
192
*dest = kzalloc(size, gfp);
193
if (*dest == NULL)
194
return -ENOMEM;
195
return 0;
196
}
197
198
/**
199
* lsm_cred_alloc - allocate a composite cred blob
200
* @cred: the cred that needs a blob
201
* @gfp: allocation type
202
*
203
* Allocate the cred blob for all the modules
204
*
205
* Returns 0, or -ENOMEM if memory can't be allocated.
206
*/
207
int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
208
{
209
return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
210
}
211
212
/**
213
* lsm_inode_alloc - allocate a composite inode blob
214
* @inode: the inode that needs a blob
215
* @gfp: allocation flags
216
*
217
* Allocate the inode blob for all the modules
218
*
219
* Returns 0, or -ENOMEM if memory can't be allocated.
220
*/
221
static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
222
{
223
if (!lsm_inode_cache) {
224
inode->i_security = NULL;
225
return 0;
226
}
227
228
inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
229
if (inode->i_security == NULL)
230
return -ENOMEM;
231
return 0;
232
}
233
234
/**
235
* lsm_task_alloc - allocate a composite task blob
236
* @task: the task that needs a blob
237
*
238
* Allocate the task blob for all the modules
239
*
240
* Returns 0, or -ENOMEM if memory can't be allocated.
241
*/
242
int lsm_task_alloc(struct task_struct *task)
243
{
244
return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
245
}
246
247
/**
248
* lsm_ipc_alloc - allocate a composite ipc blob
249
* @kip: the ipc that needs a blob
250
*
251
* Allocate the ipc blob for all the modules
252
*
253
* Returns 0, or -ENOMEM if memory can't be allocated.
254
*/
255
static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
256
{
257
return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
258
}
259
260
#ifdef CONFIG_KEYS
261
/**
262
* lsm_key_alloc - allocate a composite key blob
263
* @key: the key that needs a blob
264
*
265
* Allocate the key blob for all the modules
266
*
267
* Returns 0, or -ENOMEM if memory can't be allocated.
268
*/
269
static int lsm_key_alloc(struct key *key)
270
{
271
return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
272
}
273
#endif /* CONFIG_KEYS */
274
275
/**
276
* lsm_msg_msg_alloc - allocate a composite msg_msg blob
277
* @mp: the msg_msg that needs a blob
278
*
279
* Allocate the ipc blob for all the modules
280
*
281
* Returns 0, or -ENOMEM if memory can't be allocated.
282
*/
283
static int lsm_msg_msg_alloc(struct msg_msg *mp)
284
{
285
return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
286
GFP_KERNEL);
287
}
288
289
/**
290
* lsm_bdev_alloc - allocate a composite block_device blob
291
* @bdev: the block_device that needs a blob
292
*
293
* Allocate the block_device blob for all the modules
294
*
295
* Returns 0, or -ENOMEM if memory can't be allocated.
296
*/
297
static int lsm_bdev_alloc(struct block_device *bdev)
298
{
299
return lsm_blob_alloc(&bdev->bd_security, blob_sizes.lbs_bdev,
300
GFP_KERNEL);
301
}
302
303
#ifdef CONFIG_BPF_SYSCALL
304
/**
305
* lsm_bpf_map_alloc - allocate a composite bpf_map blob
306
* @map: the bpf_map that needs a blob
307
*
308
* Allocate the bpf_map blob for all the modules
309
*
310
* Returns 0, or -ENOMEM if memory can't be allocated.
311
*/
312
static int lsm_bpf_map_alloc(struct bpf_map *map)
313
{
314
return lsm_blob_alloc(&map->security, blob_sizes.lbs_bpf_map, GFP_KERNEL);
315
}
316
317
/**
318
* lsm_bpf_prog_alloc - allocate a composite bpf_prog blob
319
* @prog: the bpf_prog that needs a blob
320
*
321
* Allocate the bpf_prog blob for all the modules
322
*
323
* Returns 0, or -ENOMEM if memory can't be allocated.
324
*/
325
static int lsm_bpf_prog_alloc(struct bpf_prog *prog)
326
{
327
return lsm_blob_alloc(&prog->aux->security, blob_sizes.lbs_bpf_prog, GFP_KERNEL);
328
}
329
330
/**
331
* lsm_bpf_token_alloc - allocate a composite bpf_token blob
332
* @token: the bpf_token that needs a blob
333
*
334
* Allocate the bpf_token blob for all the modules
335
*
336
* Returns 0, or -ENOMEM if memory can't be allocated.
337
*/
338
static int lsm_bpf_token_alloc(struct bpf_token *token)
339
{
340
return lsm_blob_alloc(&token->security, blob_sizes.lbs_bpf_token, GFP_KERNEL);
341
}
342
#endif /* CONFIG_BPF_SYSCALL */
343
344
/**
345
* lsm_superblock_alloc - allocate a composite superblock blob
346
* @sb: the superblock that needs a blob
347
*
348
* Allocate the superblock blob for all the modules
349
*
350
* Returns 0, or -ENOMEM if memory can't be allocated.
351
*/
352
static int lsm_superblock_alloc(struct super_block *sb)
353
{
354
return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
355
GFP_KERNEL);
356
}
357
358
/**
359
* lsm_fill_user_ctx - Fill a user space lsm_ctx structure
360
* @uctx: a userspace LSM context to be filled
361
* @uctx_len: available uctx size (input), used uctx size (output)
362
* @val: the new LSM context value
363
* @val_len: the size of the new LSM context value
364
* @id: LSM id
365
* @flags: LSM defined flags
366
*
367
* Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
368
* simply calculate the required size to output via @utc_len and return
369
* success.
370
*
371
* Returns 0 on success, -E2BIG if userspace buffer is not large enough,
372
* -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
373
*/
374
int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
375
void *val, size_t val_len,
376
u64 id, u64 flags)
377
{
378
struct lsm_ctx *nctx = NULL;
379
size_t nctx_len;
380
int rc = 0;
381
382
nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
383
if (nctx_len > *uctx_len) {
384
rc = -E2BIG;
385
goto out;
386
}
387
388
/* no buffer - return success/0 and set @uctx_len to the req size */
389
if (!uctx)
390
goto out;
391
392
nctx = kzalloc(nctx_len, GFP_KERNEL);
393
if (nctx == NULL) {
394
rc = -ENOMEM;
395
goto out;
396
}
397
nctx->id = id;
398
nctx->flags = flags;
399
nctx->len = nctx_len;
400
nctx->ctx_len = val_len;
401
memcpy(nctx->ctx, val, val_len);
402
403
if (copy_to_user(uctx, nctx, nctx_len))
404
rc = -EFAULT;
405
406
out:
407
kfree(nctx);
408
*uctx_len = nctx_len;
409
return rc;
410
}
411
412
/*
413
* The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
414
* can be accessed with:
415
*
416
* LSM_RET_DEFAULT(<hook_name>)
417
*
418
* The macros below define static constants for the default value of each
419
* LSM hook.
420
*/
421
#define LSM_RET_DEFAULT(NAME) (NAME##_default)
422
#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
423
#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
424
static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
425
#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
426
DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
427
428
#include <linux/lsm_hook_defs.h>
429
#undef LSM_HOOK
430
431
/*
432
* Hook list operation macros.
433
*
434
* call_void_hook:
435
* This is a hook that does not return a value.
436
*
437
* call_int_hook:
438
* This is a hook that returns a value.
439
*/
440
#define __CALL_STATIC_VOID(NUM, HOOK, ...) \
441
do { \
442
if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
443
static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
444
} \
445
} while (0);
446
447
#define call_void_hook(HOOK, ...) \
448
do { \
449
LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
450
} while (0)
451
452
453
#define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \
454
do { \
455
if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
456
R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
457
if (R != LSM_RET_DEFAULT(HOOK)) \
458
goto LABEL; \
459
} \
460
} while (0);
461
462
#define call_int_hook(HOOK, ...) \
463
({ \
464
__label__ OUT; \
465
int RC = LSM_RET_DEFAULT(HOOK); \
466
\
467
LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \
468
OUT: \
469
RC; \
470
})
471
472
#define lsm_for_each_hook(scall, NAME) \
473
for (scall = static_calls_table.NAME; \
474
scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \
475
if (static_key_enabled(&scall->active->key))
476
477
/* Security operations */
478
479
/**
480
* security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
481
* @mgr: task credentials of current binder process
482
*
483
* Check whether @mgr is allowed to be the binder context manager.
484
*
485
* Return: Return 0 if permission is granted.
486
*/
487
int security_binder_set_context_mgr(const struct cred *mgr)
488
{
489
return call_int_hook(binder_set_context_mgr, mgr);
490
}
491
492
/**
493
* security_binder_transaction() - Check if a binder transaction is allowed
494
* @from: sending process
495
* @to: receiving process
496
*
497
* Check whether @from is allowed to invoke a binder transaction call to @to.
498
*
499
* Return: Returns 0 if permission is granted.
500
*/
501
int security_binder_transaction(const struct cred *from,
502
const struct cred *to)
503
{
504
return call_int_hook(binder_transaction, from, to);
505
}
506
507
/**
508
* security_binder_transfer_binder() - Check if a binder transfer is allowed
509
* @from: sending process
510
* @to: receiving process
511
*
512
* Check whether @from is allowed to transfer a binder reference to @to.
513
*
514
* Return: Returns 0 if permission is granted.
515
*/
516
int security_binder_transfer_binder(const struct cred *from,
517
const struct cred *to)
518
{
519
return call_int_hook(binder_transfer_binder, from, to);
520
}
521
522
/**
523
* security_binder_transfer_file() - Check if a binder file xfer is allowed
524
* @from: sending process
525
* @to: receiving process
526
* @file: file being transferred
527
*
528
* Check whether @from is allowed to transfer @file to @to.
529
*
530
* Return: Returns 0 if permission is granted.
531
*/
532
int security_binder_transfer_file(const struct cred *from,
533
const struct cred *to, const struct file *file)
534
{
535
return call_int_hook(binder_transfer_file, from, to, file);
536
}
537
538
/**
539
* security_ptrace_access_check() - Check if tracing is allowed
540
* @child: target process
541
* @mode: PTRACE_MODE flags
542
*
543
* Check permission before allowing the current process to trace the @child
544
* process. Security modules may also want to perform a process tracing check
545
* during an execve in the set_security or apply_creds hooks of tracing check
546
* during an execve in the bprm_set_creds hook of binprm_security_ops if the
547
* process is being traced and its security attributes would be changed by the
548
* execve.
549
*
550
* Return: Returns 0 if permission is granted.
551
*/
552
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
553
{
554
return call_int_hook(ptrace_access_check, child, mode);
555
}
556
557
/**
558
* security_ptrace_traceme() - Check if tracing is allowed
559
* @parent: tracing process
560
*
561
* Check that the @parent process has sufficient permission to trace the
562
* current process before allowing the current process to present itself to the
563
* @parent process for tracing.
564
*
565
* Return: Returns 0 if permission is granted.
566
*/
567
int security_ptrace_traceme(struct task_struct *parent)
568
{
569
return call_int_hook(ptrace_traceme, parent);
570
}
571
572
/**
573
* security_capget() - Get the capability sets for a process
574
* @target: target process
575
* @effective: effective capability set
576
* @inheritable: inheritable capability set
577
* @permitted: permitted capability set
578
*
579
* Get the @effective, @inheritable, and @permitted capability sets for the
580
* @target process. The hook may also perform permission checking to determine
581
* if the current process is allowed to see the capability sets of the @target
582
* process.
583
*
584
* Return: Returns 0 if the capability sets were successfully obtained.
585
*/
586
int security_capget(const struct task_struct *target,
587
kernel_cap_t *effective,
588
kernel_cap_t *inheritable,
589
kernel_cap_t *permitted)
590
{
591
return call_int_hook(capget, target, effective, inheritable, permitted);
592
}
593
594
/**
595
* security_capset() - Set the capability sets for a process
596
* @new: new credentials for the target process
597
* @old: current credentials of the target process
598
* @effective: effective capability set
599
* @inheritable: inheritable capability set
600
* @permitted: permitted capability set
601
*
602
* Set the @effective, @inheritable, and @permitted capability sets for the
603
* current process.
604
*
605
* Return: Returns 0 and update @new if permission is granted.
606
*/
607
int security_capset(struct cred *new, const struct cred *old,
608
const kernel_cap_t *effective,
609
const kernel_cap_t *inheritable,
610
const kernel_cap_t *permitted)
611
{
612
return call_int_hook(capset, new, old, effective, inheritable,
613
permitted);
614
}
615
616
/**
617
* security_capable() - Check if a process has the necessary capability
618
* @cred: credentials to examine
619
* @ns: user namespace
620
* @cap: capability requested
621
* @opts: capability check options
622
*
623
* Check whether the @tsk process has the @cap capability in the indicated
624
* credentials. @cap contains the capability <include/linux/capability.h>.
625
* @opts contains options for the capable check <include/linux/security.h>.
626
*
627
* Return: Returns 0 if the capability is granted.
628
*/
629
int security_capable(const struct cred *cred,
630
struct user_namespace *ns,
631
int cap,
632
unsigned int opts)
633
{
634
return call_int_hook(capable, cred, ns, cap, opts);
635
}
636
637
/**
638
* security_quotactl() - Check if a quotactl() syscall is allowed for this fs
639
* @cmds: commands
640
* @type: type
641
* @id: id
642
* @sb: filesystem
643
*
644
* Check whether the quotactl syscall is allowed for this @sb.
645
*
646
* Return: Returns 0 if permission is granted.
647
*/
648
int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
649
{
650
return call_int_hook(quotactl, cmds, type, id, sb);
651
}
652
653
/**
654
* security_quota_on() - Check if QUOTAON is allowed for a dentry
655
* @dentry: dentry
656
*
657
* Check whether QUOTAON is allowed for @dentry.
658
*
659
* Return: Returns 0 if permission is granted.
660
*/
661
int security_quota_on(struct dentry *dentry)
662
{
663
return call_int_hook(quota_on, dentry);
664
}
665
666
/**
667
* security_syslog() - Check if accessing the kernel message ring is allowed
668
* @type: SYSLOG_ACTION_* type
669
*
670
* Check permission before accessing the kernel message ring or changing
671
* logging to the console. See the syslog(2) manual page for an explanation of
672
* the @type values.
673
*
674
* Return: Return 0 if permission is granted.
675
*/
676
int security_syslog(int type)
677
{
678
return call_int_hook(syslog, type);
679
}
680
681
/**
682
* security_settime64() - Check if changing the system time is allowed
683
* @ts: new time
684
* @tz: timezone
685
*
686
* Check permission to change the system time, struct timespec64 is defined in
687
* <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
688
*
689
* Return: Returns 0 if permission is granted.
690
*/
691
int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
692
{
693
return call_int_hook(settime, ts, tz);
694
}
695
696
/**
697
* security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
698
* @mm: mm struct
699
* @pages: number of pages
700
*
701
* Check permissions for allocating a new virtual mapping. If all LSMs return
702
* a positive value, __vm_enough_memory() will be called with cap_sys_admin
703
* set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
704
* called with cap_sys_admin cleared.
705
*
706
* Return: Returns 0 if permission is granted by the LSM infrastructure to the
707
* caller.
708
*/
709
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
710
{
711
struct lsm_static_call *scall;
712
int cap_sys_admin = 1;
713
int rc;
714
715
/*
716
* The module will respond with 0 if it thinks the __vm_enough_memory()
717
* call should be made with the cap_sys_admin set. If all of the modules
718
* agree that it should be set it will. If any module thinks it should
719
* not be set it won't.
720
*/
721
lsm_for_each_hook(scall, vm_enough_memory) {
722
rc = scall->hl->hook.vm_enough_memory(mm, pages);
723
if (rc < 0) {
724
cap_sys_admin = 0;
725
break;
726
}
727
}
728
return __vm_enough_memory(mm, pages, cap_sys_admin);
729
}
730
731
/**
732
* security_bprm_creds_for_exec() - Prepare the credentials for exec()
733
* @bprm: binary program information
734
*
735
* If the setup in prepare_exec_creds did not setup @bprm->cred->security
736
* properly for executing @bprm->file, update the LSM's portion of
737
* @bprm->cred->security to be what commit_creds needs to install for the new
738
* program. This hook may also optionally check permissions (e.g. for
739
* transitions between security domains). The hook must set @bprm->secureexec
740
* to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
741
* contains the linux_binprm structure.
742
*
743
* If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
744
* set. The result must be the same as without this flag even if the execution
745
* will never really happen and @bprm will always be dropped.
746
*
747
* This hook must not change current->cred, only @bprm->cred.
748
*
749
* Return: Returns 0 if the hook is successful and permission is granted.
750
*/
751
int security_bprm_creds_for_exec(struct linux_binprm *bprm)
752
{
753
return call_int_hook(bprm_creds_for_exec, bprm);
754
}
755
756
/**
757
* security_bprm_creds_from_file() - Update linux_binprm creds based on file
758
* @bprm: binary program information
759
* @file: associated file
760
*
761
* If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
762
* exec, update @bprm->cred to reflect that change. This is called after
763
* finding the binary that will be executed without an interpreter. This
764
* ensures that the credentials will not be derived from a script that the
765
* binary will need to reopen, which when reopend may end up being a completely
766
* different file. This hook may also optionally check permissions (e.g. for
767
* transitions between security domains). The hook must set @bprm->secureexec
768
* to 1 if AT_SECURE should be set to request libc enable secure mode. The
769
* hook must add to @bprm->per_clear any personality flags that should be
770
* cleared from current->personality. @bprm contains the linux_binprm
771
* structure.
772
*
773
* Return: Returns 0 if the hook is successful and permission is granted.
774
*/
775
int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
776
{
777
return call_int_hook(bprm_creds_from_file, bprm, file);
778
}
779
780
/**
781
* security_bprm_check() - Mediate binary handler search
782
* @bprm: binary program information
783
*
784
* This hook mediates the point when a search for a binary handler will begin.
785
* It allows a check against the @bprm->cred->security value which was set in
786
* the preceding creds_for_exec call. The argv list and envp list are reliably
787
* available in @bprm. This hook may be called multiple times during a single
788
* execve. @bprm contains the linux_binprm structure.
789
*
790
* Return: Returns 0 if the hook is successful and permission is granted.
791
*/
792
int security_bprm_check(struct linux_binprm *bprm)
793
{
794
return call_int_hook(bprm_check_security, bprm);
795
}
796
797
/**
798
* security_bprm_committing_creds() - Install creds for a process during exec()
799
* @bprm: binary program information
800
*
801
* Prepare to install the new security attributes of a process being
802
* transformed by an execve operation, based on the old credentials pointed to
803
* by @current->cred and the information set in @bprm->cred by the
804
* bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
805
* hook is a good place to perform state changes on the process such as closing
806
* open file descriptors to which access will no longer be granted when the
807
* attributes are changed. This is called immediately before commit_creds().
808
*/
809
void security_bprm_committing_creds(const struct linux_binprm *bprm)
810
{
811
call_void_hook(bprm_committing_creds, bprm);
812
}
813
814
/**
815
* security_bprm_committed_creds() - Tidy up after cred install during exec()
816
* @bprm: binary program information
817
*
818
* Tidy up after the installation of the new security attributes of a process
819
* being transformed by an execve operation. The new credentials have, by this
820
* point, been set to @current->cred. @bprm points to the linux_binprm
821
* structure. This hook is a good place to perform state changes on the
822
* process such as clearing out non-inheritable signal state. This is called
823
* immediately after commit_creds().
824
*/
825
void security_bprm_committed_creds(const struct linux_binprm *bprm)
826
{
827
call_void_hook(bprm_committed_creds, bprm);
828
}
829
830
/**
831
* security_fs_context_submount() - Initialise fc->security
832
* @fc: new filesystem context
833
* @reference: dentry reference for submount/remount
834
*
835
* Fill out the ->security field for a new fs_context.
836
*
837
* Return: Returns 0 on success or negative error code on failure.
838
*/
839
int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
840
{
841
return call_int_hook(fs_context_submount, fc, reference);
842
}
843
844
/**
845
* security_fs_context_dup() - Duplicate a fs_context LSM blob
846
* @fc: destination filesystem context
847
* @src_fc: source filesystem context
848
*
849
* Allocate and attach a security structure to sc->security. This pointer is
850
* initialised to NULL by the caller. @fc indicates the new filesystem context.
851
* @src_fc indicates the original filesystem context.
852
*
853
* Return: Returns 0 on success or a negative error code on failure.
854
*/
855
int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
856
{
857
return call_int_hook(fs_context_dup, fc, src_fc);
858
}
859
860
/**
861
* security_fs_context_parse_param() - Configure a filesystem context
862
* @fc: filesystem context
863
* @param: filesystem parameter
864
*
865
* Userspace provided a parameter to configure a superblock. The LSM can
866
* consume the parameter or return it to the caller for use elsewhere.
867
*
868
* Return: If the parameter is used by the LSM it should return 0, if it is
869
* returned to the caller -ENOPARAM is returned, otherwise a negative
870
* error code is returned.
871
*/
872
int security_fs_context_parse_param(struct fs_context *fc,
873
struct fs_parameter *param)
874
{
875
struct lsm_static_call *scall;
876
int trc;
877
int rc = -ENOPARAM;
878
879
lsm_for_each_hook(scall, fs_context_parse_param) {
880
trc = scall->hl->hook.fs_context_parse_param(fc, param);
881
if (trc == 0)
882
rc = 0;
883
else if (trc != -ENOPARAM)
884
return trc;
885
}
886
return rc;
887
}
888
889
/**
890
* security_sb_alloc() - Allocate a super_block LSM blob
891
* @sb: filesystem superblock
892
*
893
* Allocate and attach a security structure to the sb->s_security field. The
894
* s_security field is initialized to NULL when the structure is allocated.
895
* @sb contains the super_block structure to be modified.
896
*
897
* Return: Returns 0 if operation was successful.
898
*/
899
int security_sb_alloc(struct super_block *sb)
900
{
901
int rc = lsm_superblock_alloc(sb);
902
903
if (unlikely(rc))
904
return rc;
905
rc = call_int_hook(sb_alloc_security, sb);
906
if (unlikely(rc))
907
security_sb_free(sb);
908
return rc;
909
}
910
911
/**
912
* security_sb_delete() - Release super_block LSM associated objects
913
* @sb: filesystem superblock
914
*
915
* Release objects tied to a superblock (e.g. inodes). @sb contains the
916
* super_block structure being released.
917
*/
918
void security_sb_delete(struct super_block *sb)
919
{
920
call_void_hook(sb_delete, sb);
921
}
922
923
/**
924
* security_sb_free() - Free a super_block LSM blob
925
* @sb: filesystem superblock
926
*
927
* Deallocate and clear the sb->s_security field. @sb contains the super_block
928
* structure to be modified.
929
*/
930
void security_sb_free(struct super_block *sb)
931
{
932
call_void_hook(sb_free_security, sb);
933
kfree(sb->s_security);
934
sb->s_security = NULL;
935
}
936
937
/**
938
* security_free_mnt_opts() - Free memory associated with mount options
939
* @mnt_opts: LSM processed mount options
940
*
941
* Free memory associated with @mnt_ops.
942
*/
943
void security_free_mnt_opts(void **mnt_opts)
944
{
945
if (!*mnt_opts)
946
return;
947
call_void_hook(sb_free_mnt_opts, *mnt_opts);
948
*mnt_opts = NULL;
949
}
950
EXPORT_SYMBOL(security_free_mnt_opts);
951
952
/**
953
* security_sb_eat_lsm_opts() - Consume LSM mount options
954
* @options: mount options
955
* @mnt_opts: LSM processed mount options
956
*
957
* Eat (scan @options) and save them in @mnt_opts.
958
*
959
* Return: Returns 0 on success, negative values on failure.
960
*/
961
int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
962
{
963
return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
964
}
965
EXPORT_SYMBOL(security_sb_eat_lsm_opts);
966
967
/**
968
* security_sb_mnt_opts_compat() - Check if new mount options are allowed
969
* @sb: filesystem superblock
970
* @mnt_opts: new mount options
971
*
972
* Determine if the new mount options in @mnt_opts are allowed given the
973
* existing mounted filesystem at @sb. @sb superblock being compared.
974
*
975
* Return: Returns 0 if options are compatible.
976
*/
977
int security_sb_mnt_opts_compat(struct super_block *sb,
978
void *mnt_opts)
979
{
980
return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
981
}
982
EXPORT_SYMBOL(security_sb_mnt_opts_compat);
983
984
/**
985
* security_sb_remount() - Verify no incompatible mount changes during remount
986
* @sb: filesystem superblock
987
* @mnt_opts: (re)mount options
988
*
989
* Extracts security system specific mount options and verifies no changes are
990
* being made to those options.
991
*
992
* Return: Returns 0 if permission is granted.
993
*/
994
int security_sb_remount(struct super_block *sb,
995
void *mnt_opts)
996
{
997
return call_int_hook(sb_remount, sb, mnt_opts);
998
}
999
EXPORT_SYMBOL(security_sb_remount);
1000
1001
/**
1002
* security_sb_kern_mount() - Check if a kernel mount is allowed
1003
* @sb: filesystem superblock
1004
*
1005
* Mount this @sb if allowed by permissions.
1006
*
1007
* Return: Returns 0 if permission is granted.
1008
*/
1009
int security_sb_kern_mount(const struct super_block *sb)
1010
{
1011
return call_int_hook(sb_kern_mount, sb);
1012
}
1013
1014
/**
1015
* security_sb_show_options() - Output the mount options for a superblock
1016
* @m: output file
1017
* @sb: filesystem superblock
1018
*
1019
* Show (print on @m) mount options for this @sb.
1020
*
1021
* Return: Returns 0 on success, negative values on failure.
1022
*/
1023
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1024
{
1025
return call_int_hook(sb_show_options, m, sb);
1026
}
1027
1028
/**
1029
* security_sb_statfs() - Check if accessing fs stats is allowed
1030
* @dentry: superblock handle
1031
*
1032
* Check permission before obtaining filesystem statistics for the @mnt
1033
* mountpoint. @dentry is a handle on the superblock for the filesystem.
1034
*
1035
* Return: Returns 0 if permission is granted.
1036
*/
1037
int security_sb_statfs(struct dentry *dentry)
1038
{
1039
return call_int_hook(sb_statfs, dentry);
1040
}
1041
1042
/**
1043
* security_sb_mount() - Check permission for mounting a filesystem
1044
* @dev_name: filesystem backing device
1045
* @path: mount point
1046
* @type: filesystem type
1047
* @flags: mount flags
1048
* @data: filesystem specific data
1049
*
1050
* Check permission before an object specified by @dev_name is mounted on the
1051
* mount point named by @nd. For an ordinary mount, @dev_name identifies a
1052
* device if the file system type requires a device. For a remount
1053
* (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1054
* (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1055
* mounted.
1056
*
1057
* Return: Returns 0 if permission is granted.
1058
*/
1059
int security_sb_mount(const char *dev_name, const struct path *path,
1060
const char *type, unsigned long flags, void *data)
1061
{
1062
return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1063
}
1064
1065
/**
1066
* security_sb_umount() - Check permission for unmounting a filesystem
1067
* @mnt: mounted filesystem
1068
* @flags: unmount flags
1069
*
1070
* Check permission before the @mnt file system is unmounted.
1071
*
1072
* Return: Returns 0 if permission is granted.
1073
*/
1074
int security_sb_umount(struct vfsmount *mnt, int flags)
1075
{
1076
return call_int_hook(sb_umount, mnt, flags);
1077
}
1078
1079
/**
1080
* security_sb_pivotroot() - Check permissions for pivoting the rootfs
1081
* @old_path: new location for current rootfs
1082
* @new_path: location of the new rootfs
1083
*
1084
* Check permission before pivoting the root filesystem.
1085
*
1086
* Return: Returns 0 if permission is granted.
1087
*/
1088
int security_sb_pivotroot(const struct path *old_path,
1089
const struct path *new_path)
1090
{
1091
return call_int_hook(sb_pivotroot, old_path, new_path);
1092
}
1093
1094
/**
1095
* security_sb_set_mnt_opts() - Set the mount options for a filesystem
1096
* @sb: filesystem superblock
1097
* @mnt_opts: binary mount options
1098
* @kern_flags: kernel flags (in)
1099
* @set_kern_flags: kernel flags (out)
1100
*
1101
* Set the security relevant mount options used for a superblock.
1102
*
1103
* Return: Returns 0 on success, error on failure.
1104
*/
1105
int security_sb_set_mnt_opts(struct super_block *sb,
1106
void *mnt_opts,
1107
unsigned long kern_flags,
1108
unsigned long *set_kern_flags)
1109
{
1110
struct lsm_static_call *scall;
1111
int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1112
1113
lsm_for_each_hook(scall, sb_set_mnt_opts) {
1114
rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1115
set_kern_flags);
1116
if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1117
break;
1118
}
1119
return rc;
1120
}
1121
EXPORT_SYMBOL(security_sb_set_mnt_opts);
1122
1123
/**
1124
* security_sb_clone_mnt_opts() - Duplicate superblock mount options
1125
* @oldsb: source superblock
1126
* @newsb: destination superblock
1127
* @kern_flags: kernel flags (in)
1128
* @set_kern_flags: kernel flags (out)
1129
*
1130
* Copy all security options from a given superblock to another.
1131
*
1132
* Return: Returns 0 on success, error on failure.
1133
*/
1134
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1135
struct super_block *newsb,
1136
unsigned long kern_flags,
1137
unsigned long *set_kern_flags)
1138
{
1139
return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1140
kern_flags, set_kern_flags);
1141
}
1142
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1143
1144
/**
1145
* security_move_mount() - Check permissions for moving a mount
1146
* @from_path: source mount point
1147
* @to_path: destination mount point
1148
*
1149
* Check permission before a mount is moved.
1150
*
1151
* Return: Returns 0 if permission is granted.
1152
*/
1153
int security_move_mount(const struct path *from_path,
1154
const struct path *to_path)
1155
{
1156
return call_int_hook(move_mount, from_path, to_path);
1157
}
1158
1159
/**
1160
* security_path_notify() - Check if setting a watch is allowed
1161
* @path: file path
1162
* @mask: event mask
1163
* @obj_type: file path type
1164
*
1165
* Check permissions before setting a watch on events as defined by @mask, on
1166
* an object at @path, whose type is defined by @obj_type.
1167
*
1168
* Return: Returns 0 if permission is granted.
1169
*/
1170
int security_path_notify(const struct path *path, u64 mask,
1171
unsigned int obj_type)
1172
{
1173
return call_int_hook(path_notify, path, mask, obj_type);
1174
}
1175
1176
/**
1177
* security_inode_alloc() - Allocate an inode LSM blob
1178
* @inode: the inode
1179
* @gfp: allocation flags
1180
*
1181
* Allocate and attach a security structure to @inode->i_security. The
1182
* i_security field is initialized to NULL when the inode structure is
1183
* allocated.
1184
*
1185
* Return: Return 0 if operation was successful.
1186
*/
1187
int security_inode_alloc(struct inode *inode, gfp_t gfp)
1188
{
1189
int rc = lsm_inode_alloc(inode, gfp);
1190
1191
if (unlikely(rc))
1192
return rc;
1193
rc = call_int_hook(inode_alloc_security, inode);
1194
if (unlikely(rc))
1195
security_inode_free(inode);
1196
return rc;
1197
}
1198
1199
static void inode_free_by_rcu(struct rcu_head *head)
1200
{
1201
/* The rcu head is at the start of the inode blob */
1202
call_void_hook(inode_free_security_rcu, head);
1203
kmem_cache_free(lsm_inode_cache, head);
1204
}
1205
1206
/**
1207
* security_inode_free() - Free an inode's LSM blob
1208
* @inode: the inode
1209
*
1210
* Release any LSM resources associated with @inode, although due to the
1211
* inode's RCU protections it is possible that the resources will not be
1212
* fully released until after the current RCU grace period has elapsed.
1213
*
1214
* It is important for LSMs to note that despite being present in a call to
1215
* security_inode_free(), @inode may still be referenced in a VFS path walk
1216
* and calls to security_inode_permission() may be made during, or after,
1217
* a call to security_inode_free(). For this reason the inode->i_security
1218
* field is released via a call_rcu() callback and any LSMs which need to
1219
* retain inode state for use in security_inode_permission() should only
1220
* release that state in the inode_free_security_rcu() LSM hook callback.
1221
*/
1222
void security_inode_free(struct inode *inode)
1223
{
1224
call_void_hook(inode_free_security, inode);
1225
if (!inode->i_security)
1226
return;
1227
call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1228
}
1229
1230
/**
1231
* security_dentry_init_security() - Perform dentry initialization
1232
* @dentry: the dentry to initialize
1233
* @mode: mode used to determine resource type
1234
* @name: name of the last path component
1235
* @xattr_name: name of the security/LSM xattr
1236
* @lsmctx: pointer to the resulting LSM context
1237
*
1238
* Compute a context for a dentry as the inode is not yet available since NFSv4
1239
* has no label backed by an EA anyway. It is important to note that
1240
* @xattr_name does not need to be free'd by the caller, it is a static string.
1241
*
1242
* Return: Returns 0 on success, negative values on failure.
1243
*/
1244
int security_dentry_init_security(struct dentry *dentry, int mode,
1245
const struct qstr *name,
1246
const char **xattr_name,
1247
struct lsm_context *lsmctx)
1248
{
1249
return call_int_hook(dentry_init_security, dentry, mode, name,
1250
xattr_name, lsmctx);
1251
}
1252
EXPORT_SYMBOL(security_dentry_init_security);
1253
1254
/**
1255
* security_dentry_create_files_as() - Perform dentry initialization
1256
* @dentry: the dentry to initialize
1257
* @mode: mode used to determine resource type
1258
* @name: name of the last path component
1259
* @old: creds to use for LSM context calculations
1260
* @new: creds to modify
1261
*
1262
* Compute a context for a dentry as the inode is not yet available and set
1263
* that context in passed in creds so that new files are created using that
1264
* context. Context is calculated using the passed in creds and not the creds
1265
* of the caller.
1266
*
1267
* Return: Returns 0 on success, error on failure.
1268
*/
1269
int security_dentry_create_files_as(struct dentry *dentry, int mode,
1270
const struct qstr *name,
1271
const struct cred *old, struct cred *new)
1272
{
1273
return call_int_hook(dentry_create_files_as, dentry, mode,
1274
name, old, new);
1275
}
1276
EXPORT_SYMBOL(security_dentry_create_files_as);
1277
1278
/**
1279
* security_inode_init_security() - Initialize an inode's LSM context
1280
* @inode: the inode
1281
* @dir: parent directory
1282
* @qstr: last component of the pathname
1283
* @initxattrs: callback function to write xattrs
1284
* @fs_data: filesystem specific data
1285
*
1286
* Obtain the security attribute name suffix and value to set on a newly
1287
* created inode and set up the incore security field for the new inode. This
1288
* hook is called by the fs code as part of the inode creation transaction and
1289
* provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1290
* hooks called by the VFS.
1291
*
1292
* The hook function is expected to populate the xattrs array, by calling
1293
* lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1294
* with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1295
* slot, the hook function should set ->name to the attribute name suffix
1296
* (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1297
* to the attribute value, to set ->value_len to the length of the value. If
1298
* the security module does not use security attributes or does not wish to put
1299
* a security attribute on this particular inode, then it should return
1300
* -EOPNOTSUPP to skip this processing.
1301
*
1302
* Return: Returns 0 if the LSM successfully initialized all of the inode
1303
* security attributes that are required, negative values otherwise.
1304
*/
1305
int security_inode_init_security(struct inode *inode, struct inode *dir,
1306
const struct qstr *qstr,
1307
const initxattrs initxattrs, void *fs_data)
1308
{
1309
struct lsm_static_call *scall;
1310
struct xattr *new_xattrs = NULL;
1311
int ret = -EOPNOTSUPP, xattr_count = 0;
1312
1313
if (unlikely(IS_PRIVATE(inode)))
1314
return 0;
1315
1316
if (!blob_sizes.lbs_xattr_count)
1317
return 0;
1318
1319
if (initxattrs) {
1320
/* Allocate +1 as terminator. */
1321
new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1322
sizeof(*new_xattrs), GFP_NOFS);
1323
if (!new_xattrs)
1324
return -ENOMEM;
1325
}
1326
1327
lsm_for_each_hook(scall, inode_init_security) {
1328
ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1329
&xattr_count);
1330
if (ret && ret != -EOPNOTSUPP)
1331
goto out;
1332
/*
1333
* As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1334
* means that the LSM is not willing to provide an xattr, not
1335
* that it wants to signal an error. Thus, continue to invoke
1336
* the remaining LSMs.
1337
*/
1338
}
1339
1340
/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1341
if (!xattr_count)
1342
goto out;
1343
1344
ret = initxattrs(inode, new_xattrs, fs_data);
1345
out:
1346
for (; xattr_count > 0; xattr_count--)
1347
kfree(new_xattrs[xattr_count - 1].value);
1348
kfree(new_xattrs);
1349
return (ret == -EOPNOTSUPP) ? 0 : ret;
1350
}
1351
EXPORT_SYMBOL(security_inode_init_security);
1352
1353
/**
1354
* security_inode_init_security_anon() - Initialize an anonymous inode
1355
* @inode: the inode
1356
* @name: the anonymous inode class
1357
* @context_inode: an optional related inode
1358
*
1359
* Set up the incore security field for the new anonymous inode and return
1360
* whether the inode creation is permitted by the security module or not.
1361
*
1362
* Return: Returns 0 on success, -EACCES if the security module denies the
1363
* creation of this inode, or another -errno upon other errors.
1364
*/
1365
int security_inode_init_security_anon(struct inode *inode,
1366
const struct qstr *name,
1367
const struct inode *context_inode)
1368
{
1369
return call_int_hook(inode_init_security_anon, inode, name,
1370
context_inode);
1371
}
1372
1373
#ifdef CONFIG_SECURITY_PATH
1374
/**
1375
* security_path_mknod() - Check if creating a special file is allowed
1376
* @dir: parent directory
1377
* @dentry: new file
1378
* @mode: new file mode
1379
* @dev: device number
1380
*
1381
* Check permissions when creating a file. Note that this hook is called even
1382
* if mknod operation is being done for a regular file.
1383
*
1384
* Return: Returns 0 if permission is granted.
1385
*/
1386
int security_path_mknod(const struct path *dir, struct dentry *dentry,
1387
umode_t mode, unsigned int dev)
1388
{
1389
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1390
return 0;
1391
return call_int_hook(path_mknod, dir, dentry, mode, dev);
1392
}
1393
EXPORT_SYMBOL(security_path_mknod);
1394
1395
/**
1396
* security_path_post_mknod() - Update inode security after reg file creation
1397
* @idmap: idmap of the mount
1398
* @dentry: new file
1399
*
1400
* Update inode security field after a regular file has been created.
1401
*/
1402
void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1403
{
1404
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1405
return;
1406
call_void_hook(path_post_mknod, idmap, dentry);
1407
}
1408
1409
/**
1410
* security_path_mkdir() - Check if creating a new directory is allowed
1411
* @dir: parent directory
1412
* @dentry: new directory
1413
* @mode: new directory mode
1414
*
1415
* Check permissions to create a new directory in the existing directory.
1416
*
1417
* Return: Returns 0 if permission is granted.
1418
*/
1419
int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1420
umode_t mode)
1421
{
1422
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1423
return 0;
1424
return call_int_hook(path_mkdir, dir, dentry, mode);
1425
}
1426
EXPORT_SYMBOL(security_path_mkdir);
1427
1428
/**
1429
* security_path_rmdir() - Check if removing a directory is allowed
1430
* @dir: parent directory
1431
* @dentry: directory to remove
1432
*
1433
* Check the permission to remove a directory.
1434
*
1435
* Return: Returns 0 if permission is granted.
1436
*/
1437
int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1438
{
1439
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1440
return 0;
1441
return call_int_hook(path_rmdir, dir, dentry);
1442
}
1443
1444
/**
1445
* security_path_unlink() - Check if removing a hard link is allowed
1446
* @dir: parent directory
1447
* @dentry: file
1448
*
1449
* Check the permission to remove a hard link to a file.
1450
*
1451
* Return: Returns 0 if permission is granted.
1452
*/
1453
int security_path_unlink(const struct path *dir, struct dentry *dentry)
1454
{
1455
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1456
return 0;
1457
return call_int_hook(path_unlink, dir, dentry);
1458
}
1459
EXPORT_SYMBOL(security_path_unlink);
1460
1461
/**
1462
* security_path_symlink() - Check if creating a symbolic link is allowed
1463
* @dir: parent directory
1464
* @dentry: symbolic link
1465
* @old_name: file pathname
1466
*
1467
* Check the permission to create a symbolic link to a file.
1468
*
1469
* Return: Returns 0 if permission is granted.
1470
*/
1471
int security_path_symlink(const struct path *dir, struct dentry *dentry,
1472
const char *old_name)
1473
{
1474
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1475
return 0;
1476
return call_int_hook(path_symlink, dir, dentry, old_name);
1477
}
1478
1479
/**
1480
* security_path_link - Check if creating a hard link is allowed
1481
* @old_dentry: existing file
1482
* @new_dir: new parent directory
1483
* @new_dentry: new link
1484
*
1485
* Check permission before creating a new hard link to a file.
1486
*
1487
* Return: Returns 0 if permission is granted.
1488
*/
1489
int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1490
struct dentry *new_dentry)
1491
{
1492
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1493
return 0;
1494
return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1495
}
1496
1497
/**
1498
* security_path_rename() - Check if renaming a file is allowed
1499
* @old_dir: parent directory of the old file
1500
* @old_dentry: the old file
1501
* @new_dir: parent directory of the new file
1502
* @new_dentry: the new file
1503
* @flags: flags
1504
*
1505
* Check for permission to rename a file or directory.
1506
*
1507
* Return: Returns 0 if permission is granted.
1508
*/
1509
int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1510
const struct path *new_dir, struct dentry *new_dentry,
1511
unsigned int flags)
1512
{
1513
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1514
(d_is_positive(new_dentry) &&
1515
IS_PRIVATE(d_backing_inode(new_dentry)))))
1516
return 0;
1517
1518
return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1519
new_dentry, flags);
1520
}
1521
EXPORT_SYMBOL(security_path_rename);
1522
1523
/**
1524
* security_path_truncate() - Check if truncating a file is allowed
1525
* @path: file
1526
*
1527
* Check permission before truncating the file indicated by path. Note that
1528
* truncation permissions may also be checked based on already opened files,
1529
* using the security_file_truncate() hook.
1530
*
1531
* Return: Returns 0 if permission is granted.
1532
*/
1533
int security_path_truncate(const struct path *path)
1534
{
1535
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1536
return 0;
1537
return call_int_hook(path_truncate, path);
1538
}
1539
1540
/**
1541
* security_path_chmod() - Check if changing the file's mode is allowed
1542
* @path: file
1543
* @mode: new mode
1544
*
1545
* Check for permission to change a mode of the file @path. The new mode is
1546
* specified in @mode which is a bitmask of constants from
1547
* <include/uapi/linux/stat.h>.
1548
*
1549
* Return: Returns 0 if permission is granted.
1550
*/
1551
int security_path_chmod(const struct path *path, umode_t mode)
1552
{
1553
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1554
return 0;
1555
return call_int_hook(path_chmod, path, mode);
1556
}
1557
1558
/**
1559
* security_path_chown() - Check if changing the file's owner/group is allowed
1560
* @path: file
1561
* @uid: file owner
1562
* @gid: file group
1563
*
1564
* Check for permission to change owner/group of a file or directory.
1565
*
1566
* Return: Returns 0 if permission is granted.
1567
*/
1568
int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1569
{
1570
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1571
return 0;
1572
return call_int_hook(path_chown, path, uid, gid);
1573
}
1574
1575
/**
1576
* security_path_chroot() - Check if changing the root directory is allowed
1577
* @path: directory
1578
*
1579
* Check for permission to change root directory.
1580
*
1581
* Return: Returns 0 if permission is granted.
1582
*/
1583
int security_path_chroot(const struct path *path)
1584
{
1585
return call_int_hook(path_chroot, path);
1586
}
1587
#endif /* CONFIG_SECURITY_PATH */
1588
1589
/**
1590
* security_inode_create() - Check if creating a file is allowed
1591
* @dir: the parent directory
1592
* @dentry: the file being created
1593
* @mode: requested file mode
1594
*
1595
* Check permission to create a regular file.
1596
*
1597
* Return: Returns 0 if permission is granted.
1598
*/
1599
int security_inode_create(struct inode *dir, struct dentry *dentry,
1600
umode_t mode)
1601
{
1602
if (unlikely(IS_PRIVATE(dir)))
1603
return 0;
1604
return call_int_hook(inode_create, dir, dentry, mode);
1605
}
1606
EXPORT_SYMBOL_GPL(security_inode_create);
1607
1608
/**
1609
* security_inode_post_create_tmpfile() - Update inode security of new tmpfile
1610
* @idmap: idmap of the mount
1611
* @inode: inode of the new tmpfile
1612
*
1613
* Update inode security data after a tmpfile has been created.
1614
*/
1615
void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
1616
struct inode *inode)
1617
{
1618
if (unlikely(IS_PRIVATE(inode)))
1619
return;
1620
call_void_hook(inode_post_create_tmpfile, idmap, inode);
1621
}
1622
1623
/**
1624
* security_inode_link() - Check if creating a hard link is allowed
1625
* @old_dentry: existing file
1626
* @dir: new parent directory
1627
* @new_dentry: new link
1628
*
1629
* Check permission before creating a new hard link to a file.
1630
*
1631
* Return: Returns 0 if permission is granted.
1632
*/
1633
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1634
struct dentry *new_dentry)
1635
{
1636
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1637
return 0;
1638
return call_int_hook(inode_link, old_dentry, dir, new_dentry);
1639
}
1640
1641
/**
1642
* security_inode_unlink() - Check if removing a hard link is allowed
1643
* @dir: parent directory
1644
* @dentry: file
1645
*
1646
* Check the permission to remove a hard link to a file.
1647
*
1648
* Return: Returns 0 if permission is granted.
1649
*/
1650
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1651
{
1652
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1653
return 0;
1654
return call_int_hook(inode_unlink, dir, dentry);
1655
}
1656
1657
/**
1658
* security_inode_symlink() - Check if creating a symbolic link is allowed
1659
* @dir: parent directory
1660
* @dentry: symbolic link
1661
* @old_name: existing filename
1662
*
1663
* Check the permission to create a symbolic link to a file.
1664
*
1665
* Return: Returns 0 if permission is granted.
1666
*/
1667
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1668
const char *old_name)
1669
{
1670
if (unlikely(IS_PRIVATE(dir)))
1671
return 0;
1672
return call_int_hook(inode_symlink, dir, dentry, old_name);
1673
}
1674
1675
/**
1676
* security_inode_mkdir() - Check if creating a new directory is allowed
1677
* @dir: parent directory
1678
* @dentry: new directory
1679
* @mode: new directory mode
1680
*
1681
* Check permissions to create a new directory in the existing directory
1682
* associated with inode structure @dir.
1683
*
1684
* Return: Returns 0 if permission is granted.
1685
*/
1686
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1687
{
1688
if (unlikely(IS_PRIVATE(dir)))
1689
return 0;
1690
return call_int_hook(inode_mkdir, dir, dentry, mode);
1691
}
1692
EXPORT_SYMBOL_GPL(security_inode_mkdir);
1693
1694
/**
1695
* security_inode_rmdir() - Check if removing a directory is allowed
1696
* @dir: parent directory
1697
* @dentry: directory to be removed
1698
*
1699
* Check the permission to remove a directory.
1700
*
1701
* Return: Returns 0 if permission is granted.
1702
*/
1703
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1704
{
1705
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1706
return 0;
1707
return call_int_hook(inode_rmdir, dir, dentry);
1708
}
1709
1710
/**
1711
* security_inode_mknod() - Check if creating a special file is allowed
1712
* @dir: parent directory
1713
* @dentry: new file
1714
* @mode: new file mode
1715
* @dev: device number
1716
*
1717
* Check permissions when creating a special file (or a socket or a fifo file
1718
* created via the mknod system call). Note that if mknod operation is being
1719
* done for a regular file, then the create hook will be called and not this
1720
* hook.
1721
*
1722
* Return: Returns 0 if permission is granted.
1723
*/
1724
int security_inode_mknod(struct inode *dir, struct dentry *dentry,
1725
umode_t mode, dev_t dev)
1726
{
1727
if (unlikely(IS_PRIVATE(dir)))
1728
return 0;
1729
return call_int_hook(inode_mknod, dir, dentry, mode, dev);
1730
}
1731
1732
/**
1733
* security_inode_rename() - Check if renaming a file is allowed
1734
* @old_dir: parent directory of the old file
1735
* @old_dentry: the old file
1736
* @new_dir: parent directory of the new file
1737
* @new_dentry: the new file
1738
* @flags: flags
1739
*
1740
* Check for permission to rename a file or directory.
1741
*
1742
* Return: Returns 0 if permission is granted.
1743
*/
1744
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1745
struct inode *new_dir, struct dentry *new_dentry,
1746
unsigned int flags)
1747
{
1748
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1749
(d_is_positive(new_dentry) &&
1750
IS_PRIVATE(d_backing_inode(new_dentry)))))
1751
return 0;
1752
1753
if (flags & RENAME_EXCHANGE) {
1754
int err = call_int_hook(inode_rename, new_dir, new_dentry,
1755
old_dir, old_dentry);
1756
if (err)
1757
return err;
1758
}
1759
1760
return call_int_hook(inode_rename, old_dir, old_dentry,
1761
new_dir, new_dentry);
1762
}
1763
1764
/**
1765
* security_inode_readlink() - Check if reading a symbolic link is allowed
1766
* @dentry: link
1767
*
1768
* Check the permission to read the symbolic link.
1769
*
1770
* Return: Returns 0 if permission is granted.
1771
*/
1772
int security_inode_readlink(struct dentry *dentry)
1773
{
1774
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1775
return 0;
1776
return call_int_hook(inode_readlink, dentry);
1777
}
1778
1779
/**
1780
* security_inode_follow_link() - Check if following a symbolic link is allowed
1781
* @dentry: link dentry
1782
* @inode: link inode
1783
* @rcu: true if in RCU-walk mode
1784
*
1785
* Check permission to follow a symbolic link when looking up a pathname. If
1786
* @rcu is true, @inode is not stable.
1787
*
1788
* Return: Returns 0 if permission is granted.
1789
*/
1790
int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1791
bool rcu)
1792
{
1793
if (unlikely(IS_PRIVATE(inode)))
1794
return 0;
1795
return call_int_hook(inode_follow_link, dentry, inode, rcu);
1796
}
1797
1798
/**
1799
* security_inode_permission() - Check if accessing an inode is allowed
1800
* @inode: inode
1801
* @mask: access mask
1802
*
1803
* Check permission before accessing an inode. This hook is called by the
1804
* existing Linux permission function, so a security module can use it to
1805
* provide additional checking for existing Linux permission checks. Notice
1806
* that this hook is called when a file is opened (as well as many other
1807
* operations), whereas the file_security_ops permission hook is called when
1808
* the actual read/write operations are performed.
1809
*
1810
* Return: Returns 0 if permission is granted.
1811
*/
1812
int security_inode_permission(struct inode *inode, int mask)
1813
{
1814
if (unlikely(IS_PRIVATE(inode)))
1815
return 0;
1816
return call_int_hook(inode_permission, inode, mask);
1817
}
1818
1819
/**
1820
* security_inode_setattr() - Check if setting file attributes is allowed
1821
* @idmap: idmap of the mount
1822
* @dentry: file
1823
* @attr: new attributes
1824
*
1825
* Check permission before setting file attributes. Note that the kernel call
1826
* to notify_change is performed from several locations, whenever file
1827
* attributes change (such as when a file is truncated, chown/chmod operations,
1828
* transferring disk quotas, etc).
1829
*
1830
* Return: Returns 0 if permission is granted.
1831
*/
1832
int security_inode_setattr(struct mnt_idmap *idmap,
1833
struct dentry *dentry, struct iattr *attr)
1834
{
1835
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1836
return 0;
1837
return call_int_hook(inode_setattr, idmap, dentry, attr);
1838
}
1839
EXPORT_SYMBOL_GPL(security_inode_setattr);
1840
1841
/**
1842
* security_inode_post_setattr() - Update the inode after a setattr operation
1843
* @idmap: idmap of the mount
1844
* @dentry: file
1845
* @ia_valid: file attributes set
1846
*
1847
* Update inode security field after successful setting file attributes.
1848
*/
1849
void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1850
int ia_valid)
1851
{
1852
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1853
return;
1854
call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
1855
}
1856
1857
/**
1858
* security_inode_getattr() - Check if getting file attributes is allowed
1859
* @path: file
1860
*
1861
* Check permission before obtaining file attributes.
1862
*
1863
* Return: Returns 0 if permission is granted.
1864
*/
1865
int security_inode_getattr(const struct path *path)
1866
{
1867
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1868
return 0;
1869
return call_int_hook(inode_getattr, path);
1870
}
1871
1872
/**
1873
* security_inode_setxattr() - Check if setting file xattrs is allowed
1874
* @idmap: idmap of the mount
1875
* @dentry: file
1876
* @name: xattr name
1877
* @value: xattr value
1878
* @size: size of xattr value
1879
* @flags: flags
1880
*
1881
* This hook performs the desired permission checks before setting the extended
1882
* attributes (xattrs) on @dentry. It is important to note that we have some
1883
* additional logic before the main LSM implementation calls to detect if we
1884
* need to perform an additional capability check at the LSM layer.
1885
*
1886
* Normally we enforce a capability check prior to executing the various LSM
1887
* hook implementations, but if a LSM wants to avoid this capability check,
1888
* it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
1889
* xattrs that it wants to avoid the capability check, leaving the LSM fully
1890
* responsible for enforcing the access control for the specific xattr. If all
1891
* of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
1892
* or return a 0 (the default return value), the capability check is still
1893
* performed. If no 'inode_xattr_skipcap' hooks are registered the capability
1894
* check is performed.
1895
*
1896
* Return: Returns 0 if permission is granted.
1897
*/
1898
int security_inode_setxattr(struct mnt_idmap *idmap,
1899
struct dentry *dentry, const char *name,
1900
const void *value, size_t size, int flags)
1901
{
1902
int rc;
1903
1904
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1905
return 0;
1906
1907
/* enforce the capability checks at the lsm layer, if needed */
1908
if (!call_int_hook(inode_xattr_skipcap, name)) {
1909
rc = cap_inode_setxattr(dentry, name, value, size, flags);
1910
if (rc)
1911
return rc;
1912
}
1913
1914
return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
1915
flags);
1916
}
1917
1918
/**
1919
* security_inode_set_acl() - Check if setting posix acls is allowed
1920
* @idmap: idmap of the mount
1921
* @dentry: file
1922
* @acl_name: acl name
1923
* @kacl: acl struct
1924
*
1925
* Check permission before setting posix acls, the posix acls in @kacl are
1926
* identified by @acl_name.
1927
*
1928
* Return: Returns 0 if permission is granted.
1929
*/
1930
int security_inode_set_acl(struct mnt_idmap *idmap,
1931
struct dentry *dentry, const char *acl_name,
1932
struct posix_acl *kacl)
1933
{
1934
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1935
return 0;
1936
return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
1937
}
1938
1939
/**
1940
* security_inode_post_set_acl() - Update inode security from posix acls set
1941
* @dentry: file
1942
* @acl_name: acl name
1943
* @kacl: acl struct
1944
*
1945
* Update inode security data after successfully setting posix acls on @dentry.
1946
* The posix acls in @kacl are identified by @acl_name.
1947
*/
1948
void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
1949
struct posix_acl *kacl)
1950
{
1951
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1952
return;
1953
call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
1954
}
1955
1956
/**
1957
* security_inode_get_acl() - Check if reading posix acls is allowed
1958
* @idmap: idmap of the mount
1959
* @dentry: file
1960
* @acl_name: acl name
1961
*
1962
* Check permission before getting osix acls, the posix acls are identified by
1963
* @acl_name.
1964
*
1965
* Return: Returns 0 if permission is granted.
1966
*/
1967
int security_inode_get_acl(struct mnt_idmap *idmap,
1968
struct dentry *dentry, const char *acl_name)
1969
{
1970
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1971
return 0;
1972
return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
1973
}
1974
1975
/**
1976
* security_inode_remove_acl() - Check if removing a posix acl is allowed
1977
* @idmap: idmap of the mount
1978
* @dentry: file
1979
* @acl_name: acl name
1980
*
1981
* Check permission before removing posix acls, the posix acls are identified
1982
* by @acl_name.
1983
*
1984
* Return: Returns 0 if permission is granted.
1985
*/
1986
int security_inode_remove_acl(struct mnt_idmap *idmap,
1987
struct dentry *dentry, const char *acl_name)
1988
{
1989
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1990
return 0;
1991
return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
1992
}
1993
1994
/**
1995
* security_inode_post_remove_acl() - Update inode security after rm posix acls
1996
* @idmap: idmap of the mount
1997
* @dentry: file
1998
* @acl_name: acl name
1999
*
2000
* Update inode security data after successfully removing posix acls on
2001
* @dentry in @idmap. The posix acls are identified by @acl_name.
2002
*/
2003
void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2004
struct dentry *dentry, const char *acl_name)
2005
{
2006
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2007
return;
2008
call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2009
}
2010
2011
/**
2012
* security_inode_post_setxattr() - Update the inode after a setxattr operation
2013
* @dentry: file
2014
* @name: xattr name
2015
* @value: xattr value
2016
* @size: xattr value size
2017
* @flags: flags
2018
*
2019
* Update inode security field after successful setxattr operation.
2020
*/
2021
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2022
const void *value, size_t size, int flags)
2023
{
2024
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2025
return;
2026
call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2027
}
2028
2029
/**
2030
* security_inode_getxattr() - Check if xattr access is allowed
2031
* @dentry: file
2032
* @name: xattr name
2033
*
2034
* Check permission before obtaining the extended attributes identified by
2035
* @name for @dentry.
2036
*
2037
* Return: Returns 0 if permission is granted.
2038
*/
2039
int security_inode_getxattr(struct dentry *dentry, const char *name)
2040
{
2041
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2042
return 0;
2043
return call_int_hook(inode_getxattr, dentry, name);
2044
}
2045
2046
/**
2047
* security_inode_listxattr() - Check if listing xattrs is allowed
2048
* @dentry: file
2049
*
2050
* Check permission before obtaining the list of extended attribute names for
2051
* @dentry.
2052
*
2053
* Return: Returns 0 if permission is granted.
2054
*/
2055
int security_inode_listxattr(struct dentry *dentry)
2056
{
2057
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2058
return 0;
2059
return call_int_hook(inode_listxattr, dentry);
2060
}
2061
2062
/**
2063
* security_inode_removexattr() - Check if removing an xattr is allowed
2064
* @idmap: idmap of the mount
2065
* @dentry: file
2066
* @name: xattr name
2067
*
2068
* This hook performs the desired permission checks before setting the extended
2069
* attributes (xattrs) on @dentry. It is important to note that we have some
2070
* additional logic before the main LSM implementation calls to detect if we
2071
* need to perform an additional capability check at the LSM layer.
2072
*
2073
* Normally we enforce a capability check prior to executing the various LSM
2074
* hook implementations, but if a LSM wants to avoid this capability check,
2075
* it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2076
* xattrs that it wants to avoid the capability check, leaving the LSM fully
2077
* responsible for enforcing the access control for the specific xattr. If all
2078
* of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2079
* or return a 0 (the default return value), the capability check is still
2080
* performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2081
* check is performed.
2082
*
2083
* Return: Returns 0 if permission is granted.
2084
*/
2085
int security_inode_removexattr(struct mnt_idmap *idmap,
2086
struct dentry *dentry, const char *name)
2087
{
2088
int rc;
2089
2090
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2091
return 0;
2092
2093
/* enforce the capability checks at the lsm layer, if needed */
2094
if (!call_int_hook(inode_xattr_skipcap, name)) {
2095
rc = cap_inode_removexattr(idmap, dentry, name);
2096
if (rc)
2097
return rc;
2098
}
2099
2100
return call_int_hook(inode_removexattr, idmap, dentry, name);
2101
}
2102
2103
/**
2104
* security_inode_post_removexattr() - Update the inode after a removexattr op
2105
* @dentry: file
2106
* @name: xattr name
2107
*
2108
* Update the inode after a successful removexattr operation.
2109
*/
2110
void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2111
{
2112
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2113
return;
2114
call_void_hook(inode_post_removexattr, dentry, name);
2115
}
2116
2117
/**
2118
* security_inode_file_setattr() - check if setting fsxattr is allowed
2119
* @dentry: file to set filesystem extended attributes on
2120
* @fa: extended attributes to set on the inode
2121
*
2122
* Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on
2123
* inode
2124
*
2125
* Return: Returns 0 if permission is granted.
2126
*/
2127
int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa)
2128
{
2129
return call_int_hook(inode_file_setattr, dentry, fa);
2130
}
2131
2132
/**
2133
* security_inode_file_getattr() - check if retrieving fsxattr is allowed
2134
* @dentry: file to retrieve filesystem extended attributes from
2135
* @fa: extended attributes to get
2136
*
2137
* Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on
2138
* inode
2139
*
2140
* Return: Returns 0 if permission is granted.
2141
*/
2142
int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa)
2143
{
2144
return call_int_hook(inode_file_getattr, dentry, fa);
2145
}
2146
2147
/**
2148
* security_inode_need_killpriv() - Check if security_inode_killpriv() required
2149
* @dentry: associated dentry
2150
*
2151
* Called when an inode has been changed to determine if
2152
* security_inode_killpriv() should be called.
2153
*
2154
* Return: Return <0 on error to abort the inode change operation, return 0 if
2155
* security_inode_killpriv() does not need to be called, return >0 if
2156
* security_inode_killpriv() does need to be called.
2157
*/
2158
int security_inode_need_killpriv(struct dentry *dentry)
2159
{
2160
return call_int_hook(inode_need_killpriv, dentry);
2161
}
2162
2163
/**
2164
* security_inode_killpriv() - The setuid bit is removed, update LSM state
2165
* @idmap: idmap of the mount
2166
* @dentry: associated dentry
2167
*
2168
* The @dentry's setuid bit is being removed. Remove similar security labels.
2169
* Called with the dentry->d_inode->i_mutex held.
2170
*
2171
* Return: Return 0 on success. If error is returned, then the operation
2172
* causing setuid bit removal is failed.
2173
*/
2174
int security_inode_killpriv(struct mnt_idmap *idmap,
2175
struct dentry *dentry)
2176
{
2177
return call_int_hook(inode_killpriv, idmap, dentry);
2178
}
2179
2180
/**
2181
* security_inode_getsecurity() - Get the xattr security label of an inode
2182
* @idmap: idmap of the mount
2183
* @inode: inode
2184
* @name: xattr name
2185
* @buffer: security label buffer
2186
* @alloc: allocation flag
2187
*
2188
* Retrieve a copy of the extended attribute representation of the security
2189
* label associated with @name for @inode via @buffer. Note that @name is the
2190
* remainder of the attribute name after the security prefix has been removed.
2191
* @alloc is used to specify if the call should return a value via the buffer
2192
* or just the value length.
2193
*
2194
* Return: Returns size of buffer on success.
2195
*/
2196
int security_inode_getsecurity(struct mnt_idmap *idmap,
2197
struct inode *inode, const char *name,
2198
void **buffer, bool alloc)
2199
{
2200
if (unlikely(IS_PRIVATE(inode)))
2201
return LSM_RET_DEFAULT(inode_getsecurity);
2202
2203
return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2204
alloc);
2205
}
2206
2207
/**
2208
* security_inode_setsecurity() - Set the xattr security label of an inode
2209
* @inode: inode
2210
* @name: xattr name
2211
* @value: security label
2212
* @size: length of security label
2213
* @flags: flags
2214
*
2215
* Set the security label associated with @name for @inode from the extended
2216
* attribute value @value. @size indicates the size of the @value in bytes.
2217
* @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2218
* remainder of the attribute name after the security. prefix has been removed.
2219
*
2220
* Return: Returns 0 on success.
2221
*/
2222
int security_inode_setsecurity(struct inode *inode, const char *name,
2223
const void *value, size_t size, int flags)
2224
{
2225
if (unlikely(IS_PRIVATE(inode)))
2226
return LSM_RET_DEFAULT(inode_setsecurity);
2227
2228
return call_int_hook(inode_setsecurity, inode, name, value, size,
2229
flags);
2230
}
2231
2232
/**
2233
* security_inode_listsecurity() - List the xattr security label names
2234
* @inode: inode
2235
* @buffer: buffer
2236
* @buffer_size: size of buffer
2237
*
2238
* Copy the extended attribute names for the security labels associated with
2239
* @inode into @buffer. The maximum size of @buffer is specified by
2240
* @buffer_size. @buffer may be NULL to request the size of the buffer
2241
* required.
2242
*
2243
* Return: Returns number of bytes used/required on success.
2244
*/
2245
int security_inode_listsecurity(struct inode *inode,
2246
char *buffer, size_t buffer_size)
2247
{
2248
if (unlikely(IS_PRIVATE(inode)))
2249
return 0;
2250
return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2251
}
2252
EXPORT_SYMBOL(security_inode_listsecurity);
2253
2254
/**
2255
* security_inode_getlsmprop() - Get an inode's LSM data
2256
* @inode: inode
2257
* @prop: lsm specific information to return
2258
*
2259
* Get the lsm specific information associated with the node.
2260
*/
2261
void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2262
{
2263
call_void_hook(inode_getlsmprop, inode, prop);
2264
}
2265
2266
/**
2267
* security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2268
* @src: union dentry of copy-up file
2269
* @new: newly created creds
2270
*
2271
* A file is about to be copied up from lower layer to upper layer of overlay
2272
* filesystem. Security module can prepare a set of new creds and modify as
2273
* need be and return new creds. Caller will switch to new creds temporarily to
2274
* create new file and release newly allocated creds.
2275
*
2276
* Return: Returns 0 on success or a negative error code on error.
2277
*/
2278
int security_inode_copy_up(struct dentry *src, struct cred **new)
2279
{
2280
return call_int_hook(inode_copy_up, src, new);
2281
}
2282
EXPORT_SYMBOL(security_inode_copy_up);
2283
2284
/**
2285
* security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2286
* @src: union dentry of copy-up file
2287
* @name: xattr name
2288
*
2289
* Filter the xattrs being copied up when a unioned file is copied up from a
2290
* lower layer to the union/overlay layer. The caller is responsible for
2291
* reading and writing the xattrs, this hook is merely a filter.
2292
*
2293
* Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2294
* -EOPNOTSUPP if the security module does not know about attribute,
2295
* or a negative error code to abort the copy up.
2296
*/
2297
int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2298
{
2299
int rc;
2300
2301
rc = call_int_hook(inode_copy_up_xattr, src, name);
2302
if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2303
return rc;
2304
2305
return LSM_RET_DEFAULT(inode_copy_up_xattr);
2306
}
2307
EXPORT_SYMBOL(security_inode_copy_up_xattr);
2308
2309
/**
2310
* security_inode_setintegrity() - Set the inode's integrity data
2311
* @inode: inode
2312
* @type: type of integrity, e.g. hash digest, signature, etc
2313
* @value: the integrity value
2314
* @size: size of the integrity value
2315
*
2316
* Register a verified integrity measurement of a inode with LSMs.
2317
* LSMs should free the previously saved data if @value is NULL.
2318
*
2319
* Return: Returns 0 on success, negative values on failure.
2320
*/
2321
int security_inode_setintegrity(const struct inode *inode,
2322
enum lsm_integrity_type type, const void *value,
2323
size_t size)
2324
{
2325
return call_int_hook(inode_setintegrity, inode, type, value, size);
2326
}
2327
EXPORT_SYMBOL(security_inode_setintegrity);
2328
2329
/**
2330
* security_kernfs_init_security() - Init LSM context for a kernfs node
2331
* @kn_dir: parent kernfs node
2332
* @kn: the kernfs node to initialize
2333
*
2334
* Initialize the security context of a newly created kernfs node based on its
2335
* own and its parent's attributes.
2336
*
2337
* Return: Returns 0 if permission is granted.
2338
*/
2339
int security_kernfs_init_security(struct kernfs_node *kn_dir,
2340
struct kernfs_node *kn)
2341
{
2342
return call_int_hook(kernfs_init_security, kn_dir, kn);
2343
}
2344
2345
/**
2346
* security_file_permission() - Check file permissions
2347
* @file: file
2348
* @mask: requested permissions
2349
*
2350
* Check file permissions before accessing an open file. This hook is called
2351
* by various operations that read or write files. A security module can use
2352
* this hook to perform additional checking on these operations, e.g. to
2353
* revalidate permissions on use to support privilege bracketing or policy
2354
* changes. Notice that this hook is used when the actual read/write
2355
* operations are performed, whereas the inode_security_ops hook is called when
2356
* a file is opened (as well as many other operations). Although this hook can
2357
* be used to revalidate permissions for various system call operations that
2358
* read or write files, it does not address the revalidation of permissions for
2359
* memory-mapped files. Security modules must handle this separately if they
2360
* need such revalidation.
2361
*
2362
* Return: Returns 0 if permission is granted.
2363
*/
2364
int security_file_permission(struct file *file, int mask)
2365
{
2366
return call_int_hook(file_permission, file, mask);
2367
}
2368
2369
/**
2370
* security_file_alloc() - Allocate and init a file's LSM blob
2371
* @file: the file
2372
*
2373
* Allocate and attach a security structure to the file->f_security field. The
2374
* security field is initialized to NULL when the structure is first created.
2375
*
2376
* Return: Return 0 if the hook is successful and permission is granted.
2377
*/
2378
int security_file_alloc(struct file *file)
2379
{
2380
int rc = lsm_file_alloc(file);
2381
2382
if (rc)
2383
return rc;
2384
rc = call_int_hook(file_alloc_security, file);
2385
if (unlikely(rc))
2386
security_file_free(file);
2387
return rc;
2388
}
2389
2390
/**
2391
* security_file_release() - Perform actions before releasing the file ref
2392
* @file: the file
2393
*
2394
* Perform actions before releasing the last reference to a file.
2395
*/
2396
void security_file_release(struct file *file)
2397
{
2398
call_void_hook(file_release, file);
2399
}
2400
2401
/**
2402
* security_file_free() - Free a file's LSM blob
2403
* @file: the file
2404
*
2405
* Deallocate and free any security structures stored in file->f_security.
2406
*/
2407
void security_file_free(struct file *file)
2408
{
2409
void *blob;
2410
2411
call_void_hook(file_free_security, file);
2412
2413
blob = file->f_security;
2414
if (blob) {
2415
file->f_security = NULL;
2416
kmem_cache_free(lsm_file_cache, blob);
2417
}
2418
}
2419
2420
/**
2421
* security_file_ioctl() - Check if an ioctl is allowed
2422
* @file: associated file
2423
* @cmd: ioctl cmd
2424
* @arg: ioctl arguments
2425
*
2426
* Check permission for an ioctl operation on @file. Note that @arg sometimes
2427
* represents a user space pointer; in other cases, it may be a simple integer
2428
* value. When @arg represents a user space pointer, it should never be used
2429
* by the security module.
2430
*
2431
* Return: Returns 0 if permission is granted.
2432
*/
2433
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2434
{
2435
return call_int_hook(file_ioctl, file, cmd, arg);
2436
}
2437
EXPORT_SYMBOL_GPL(security_file_ioctl);
2438
2439
/**
2440
* security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2441
* @file: associated file
2442
* @cmd: ioctl cmd
2443
* @arg: ioctl arguments
2444
*
2445
* Compat version of security_file_ioctl() that correctly handles 32-bit
2446
* processes running on 64-bit kernels.
2447
*
2448
* Return: Returns 0 if permission is granted.
2449
*/
2450
int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2451
unsigned long arg)
2452
{
2453
return call_int_hook(file_ioctl_compat, file, cmd, arg);
2454
}
2455
EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2456
2457
static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2458
{
2459
/*
2460
* Does we have PROT_READ and does the application expect
2461
* it to imply PROT_EXEC? If not, nothing to talk about...
2462
*/
2463
if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2464
return prot;
2465
if (!(current->personality & READ_IMPLIES_EXEC))
2466
return prot;
2467
/*
2468
* if that's an anonymous mapping, let it.
2469
*/
2470
if (!file)
2471
return prot | PROT_EXEC;
2472
/*
2473
* ditto if it's not on noexec mount, except that on !MMU we need
2474
* NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2475
*/
2476
if (!path_noexec(&file->f_path)) {
2477
#ifndef CONFIG_MMU
2478
if (file->f_op->mmap_capabilities) {
2479
unsigned caps = file->f_op->mmap_capabilities(file);
2480
if (!(caps & NOMMU_MAP_EXEC))
2481
return prot;
2482
}
2483
#endif
2484
return prot | PROT_EXEC;
2485
}
2486
/* anything on noexec mount won't get PROT_EXEC */
2487
return prot;
2488
}
2489
2490
/**
2491
* security_mmap_file() - Check if mmap'ing a file is allowed
2492
* @file: file
2493
* @prot: protection applied by the kernel
2494
* @flags: flags
2495
*
2496
* Check permissions for a mmap operation. The @file may be NULL, e.g. if
2497
* mapping anonymous memory.
2498
*
2499
* Return: Returns 0 if permission is granted.
2500
*/
2501
int security_mmap_file(struct file *file, unsigned long prot,
2502
unsigned long flags)
2503
{
2504
return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2505
flags);
2506
}
2507
2508
/**
2509
* security_mmap_addr() - Check if mmap'ing an address is allowed
2510
* @addr: address
2511
*
2512
* Check permissions for a mmap operation at @addr.
2513
*
2514
* Return: Returns 0 if permission is granted.
2515
*/
2516
int security_mmap_addr(unsigned long addr)
2517
{
2518
return call_int_hook(mmap_addr, addr);
2519
}
2520
2521
/**
2522
* security_file_mprotect() - Check if changing memory protections is allowed
2523
* @vma: memory region
2524
* @reqprot: application requested protection
2525
* @prot: protection applied by the kernel
2526
*
2527
* Check permissions before changing memory access permissions.
2528
*
2529
* Return: Returns 0 if permission is granted.
2530
*/
2531
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2532
unsigned long prot)
2533
{
2534
return call_int_hook(file_mprotect, vma, reqprot, prot);
2535
}
2536
2537
/**
2538
* security_file_lock() - Check if a file lock is allowed
2539
* @file: file
2540
* @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2541
*
2542
* Check permission before performing file locking operations. Note the hook
2543
* mediates both flock and fcntl style locks.
2544
*
2545
* Return: Returns 0 if permission is granted.
2546
*/
2547
int security_file_lock(struct file *file, unsigned int cmd)
2548
{
2549
return call_int_hook(file_lock, file, cmd);
2550
}
2551
2552
/**
2553
* security_file_fcntl() - Check if fcntl() op is allowed
2554
* @file: file
2555
* @cmd: fcntl command
2556
* @arg: command argument
2557
*
2558
* Check permission before allowing the file operation specified by @cmd from
2559
* being performed on the file @file. Note that @arg sometimes represents a
2560
* user space pointer; in other cases, it may be a simple integer value. When
2561
* @arg represents a user space pointer, it should never be used by the
2562
* security module.
2563
*
2564
* Return: Returns 0 if permission is granted.
2565
*/
2566
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2567
{
2568
return call_int_hook(file_fcntl, file, cmd, arg);
2569
}
2570
2571
/**
2572
* security_file_set_fowner() - Set the file owner info in the LSM blob
2573
* @file: the file
2574
*
2575
* Save owner security information (typically from current->security) in
2576
* file->f_security for later use by the send_sigiotask hook.
2577
*
2578
* This hook is called with file->f_owner.lock held.
2579
*
2580
* Return: Returns 0 on success.
2581
*/
2582
void security_file_set_fowner(struct file *file)
2583
{
2584
call_void_hook(file_set_fowner, file);
2585
}
2586
2587
/**
2588
* security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2589
* @tsk: target task
2590
* @fown: signal sender
2591
* @sig: signal to be sent, SIGIO is sent if 0
2592
*
2593
* Check permission for the file owner @fown to send SIGIO or SIGURG to the
2594
* process @tsk. Note that this hook is sometimes called from interrupt. Note
2595
* that the fown_struct, @fown, is never outside the context of a struct file,
2596
* so the file structure (and associated security information) can always be
2597
* obtained: container_of(fown, struct file, f_owner).
2598
*
2599
* Return: Returns 0 if permission is granted.
2600
*/
2601
int security_file_send_sigiotask(struct task_struct *tsk,
2602
struct fown_struct *fown, int sig)
2603
{
2604
return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2605
}
2606
2607
/**
2608
* security_file_receive() - Check if receiving a file via IPC is allowed
2609
* @file: file being received
2610
*
2611
* This hook allows security modules to control the ability of a process to
2612
* receive an open file descriptor via socket IPC.
2613
*
2614
* Return: Returns 0 if permission is granted.
2615
*/
2616
int security_file_receive(struct file *file)
2617
{
2618
return call_int_hook(file_receive, file);
2619
}
2620
2621
/**
2622
* security_file_open() - Save open() time state for late use by the LSM
2623
* @file:
2624
*
2625
* Save open-time permission checking state for later use upon file_permission,
2626
* and recheck access if anything has changed since inode_permission.
2627
*
2628
* We can check if a file is opened for execution (e.g. execve(2) call), either
2629
* directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
2630
* __FMODE_EXEC .
2631
*
2632
* Return: Returns 0 if permission is granted.
2633
*/
2634
int security_file_open(struct file *file)
2635
{
2636
return call_int_hook(file_open, file);
2637
}
2638
2639
/**
2640
* security_file_post_open() - Evaluate a file after it has been opened
2641
* @file: the file
2642
* @mask: access mask
2643
*
2644
* Evaluate an opened file and the access mask requested with open(). The hook
2645
* is useful for LSMs that require the file content to be available in order to
2646
* make decisions.
2647
*
2648
* Return: Returns 0 if permission is granted.
2649
*/
2650
int security_file_post_open(struct file *file, int mask)
2651
{
2652
return call_int_hook(file_post_open, file, mask);
2653
}
2654
EXPORT_SYMBOL_GPL(security_file_post_open);
2655
2656
/**
2657
* security_file_truncate() - Check if truncating a file is allowed
2658
* @file: file
2659
*
2660
* Check permission before truncating a file, i.e. using ftruncate. Note that
2661
* truncation permission may also be checked based on the path, using the
2662
* @path_truncate hook.
2663
*
2664
* Return: Returns 0 if permission is granted.
2665
*/
2666
int security_file_truncate(struct file *file)
2667
{
2668
return call_int_hook(file_truncate, file);
2669
}
2670
2671
/**
2672
* security_task_alloc() - Allocate a task's LSM blob
2673
* @task: the task
2674
* @clone_flags: flags indicating what is being shared
2675
*
2676
* Handle allocation of task-related resources.
2677
*
2678
* Return: Returns a zero on success, negative values on failure.
2679
*/
2680
int security_task_alloc(struct task_struct *task, u64 clone_flags)
2681
{
2682
int rc = lsm_task_alloc(task);
2683
2684
if (rc)
2685
return rc;
2686
rc = call_int_hook(task_alloc, task, clone_flags);
2687
if (unlikely(rc))
2688
security_task_free(task);
2689
return rc;
2690
}
2691
2692
/**
2693
* security_task_free() - Free a task's LSM blob and related resources
2694
* @task: task
2695
*
2696
* Handle release of task-related resources. Note that this can be called from
2697
* interrupt context.
2698
*/
2699
void security_task_free(struct task_struct *task)
2700
{
2701
call_void_hook(task_free, task);
2702
2703
kfree(task->security);
2704
task->security = NULL;
2705
}
2706
2707
/**
2708
* security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
2709
* @cred: credentials
2710
* @gfp: gfp flags
2711
*
2712
* Only allocate sufficient memory and attach to @cred such that
2713
* cred_transfer() will not get ENOMEM.
2714
*
2715
* Return: Returns 0 on success, negative values on failure.
2716
*/
2717
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
2718
{
2719
int rc = lsm_cred_alloc(cred, gfp);
2720
2721
if (rc)
2722
return rc;
2723
2724
rc = call_int_hook(cred_alloc_blank, cred, gfp);
2725
if (unlikely(rc))
2726
security_cred_free(cred);
2727
return rc;
2728
}
2729
2730
/**
2731
* security_cred_free() - Free the cred's LSM blob and associated resources
2732
* @cred: credentials
2733
*
2734
* Deallocate and clear the cred->security field in a set of credentials.
2735
*/
2736
void security_cred_free(struct cred *cred)
2737
{
2738
/*
2739
* There is a failure case in prepare_creds() that
2740
* may result in a call here with ->security being NULL.
2741
*/
2742
if (unlikely(cred->security == NULL))
2743
return;
2744
2745
call_void_hook(cred_free, cred);
2746
2747
kfree(cred->security);
2748
cred->security = NULL;
2749
}
2750
2751
/**
2752
* security_prepare_creds() - Prepare a new set of credentials
2753
* @new: new credentials
2754
* @old: original credentials
2755
* @gfp: gfp flags
2756
*
2757
* Prepare a new set of credentials by copying the data from the old set.
2758
*
2759
* Return: Returns 0 on success, negative values on failure.
2760
*/
2761
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
2762
{
2763
int rc = lsm_cred_alloc(new, gfp);
2764
2765
if (rc)
2766
return rc;
2767
2768
rc = call_int_hook(cred_prepare, new, old, gfp);
2769
if (unlikely(rc))
2770
security_cred_free(new);
2771
return rc;
2772
}
2773
2774
/**
2775
* security_transfer_creds() - Transfer creds
2776
* @new: target credentials
2777
* @old: original credentials
2778
*
2779
* Transfer data from original creds to new creds.
2780
*/
2781
void security_transfer_creds(struct cred *new, const struct cred *old)
2782
{
2783
call_void_hook(cred_transfer, new, old);
2784
}
2785
2786
/**
2787
* security_cred_getsecid() - Get the secid from a set of credentials
2788
* @c: credentials
2789
* @secid: secid value
2790
*
2791
* Retrieve the security identifier of the cred structure @c. In case of
2792
* failure, @secid will be set to zero.
2793
*/
2794
void security_cred_getsecid(const struct cred *c, u32 *secid)
2795
{
2796
*secid = 0;
2797
call_void_hook(cred_getsecid, c, secid);
2798
}
2799
EXPORT_SYMBOL(security_cred_getsecid);
2800
2801
/**
2802
* security_cred_getlsmprop() - Get the LSM data from a set of credentials
2803
* @c: credentials
2804
* @prop: destination for the LSM data
2805
*
2806
* Retrieve the security data of the cred structure @c. In case of
2807
* failure, @prop will be cleared.
2808
*/
2809
void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
2810
{
2811
lsmprop_init(prop);
2812
call_void_hook(cred_getlsmprop, c, prop);
2813
}
2814
EXPORT_SYMBOL(security_cred_getlsmprop);
2815
2816
/**
2817
* security_kernel_act_as() - Set the kernel credentials to act as secid
2818
* @new: credentials
2819
* @secid: secid
2820
*
2821
* Set the credentials for a kernel service to act as (subjective context).
2822
* The current task must be the one that nominated @secid.
2823
*
2824
* Return: Returns 0 if successful.
2825
*/
2826
int security_kernel_act_as(struct cred *new, u32 secid)
2827
{
2828
return call_int_hook(kernel_act_as, new, secid);
2829
}
2830
2831
/**
2832
* security_kernel_create_files_as() - Set file creation context using an inode
2833
* @new: target credentials
2834
* @inode: reference inode
2835
*
2836
* Set the file creation context in a set of credentials to be the same as the
2837
* objective context of the specified inode. The current task must be the one
2838
* that nominated @inode.
2839
*
2840
* Return: Returns 0 if successful.
2841
*/
2842
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
2843
{
2844
return call_int_hook(kernel_create_files_as, new, inode);
2845
}
2846
2847
/**
2848
* security_kernel_module_request() - Check if loading a module is allowed
2849
* @kmod_name: module name
2850
*
2851
* Ability to trigger the kernel to automatically upcall to userspace for
2852
* userspace to load a kernel module with the given name.
2853
*
2854
* Return: Returns 0 if successful.
2855
*/
2856
int security_kernel_module_request(char *kmod_name)
2857
{
2858
return call_int_hook(kernel_module_request, kmod_name);
2859
}
2860
2861
/**
2862
* security_kernel_read_file() - Read a file specified by userspace
2863
* @file: file
2864
* @id: file identifier
2865
* @contents: trust if security_kernel_post_read_file() will be called
2866
*
2867
* Read a file specified by userspace.
2868
*
2869
* Return: Returns 0 if permission is granted.
2870
*/
2871
int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
2872
bool contents)
2873
{
2874
return call_int_hook(kernel_read_file, file, id, contents);
2875
}
2876
EXPORT_SYMBOL_GPL(security_kernel_read_file);
2877
2878
/**
2879
* security_kernel_post_read_file() - Read a file specified by userspace
2880
* @file: file
2881
* @buf: file contents
2882
* @size: size of file contents
2883
* @id: file identifier
2884
*
2885
* Read a file specified by userspace. This must be paired with a prior call
2886
* to security_kernel_read_file() call that indicated this hook would also be
2887
* called, see security_kernel_read_file() for more information.
2888
*
2889
* Return: Returns 0 if permission is granted.
2890
*/
2891
int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
2892
enum kernel_read_file_id id)
2893
{
2894
return call_int_hook(kernel_post_read_file, file, buf, size, id);
2895
}
2896
EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
2897
2898
/**
2899
* security_kernel_load_data() - Load data provided by userspace
2900
* @id: data identifier
2901
* @contents: true if security_kernel_post_load_data() will be called
2902
*
2903
* Load data provided by userspace.
2904
*
2905
* Return: Returns 0 if permission is granted.
2906
*/
2907
int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
2908
{
2909
return call_int_hook(kernel_load_data, id, contents);
2910
}
2911
EXPORT_SYMBOL_GPL(security_kernel_load_data);
2912
2913
/**
2914
* security_kernel_post_load_data() - Load userspace data from a non-file source
2915
* @buf: data
2916
* @size: size of data
2917
* @id: data identifier
2918
* @description: text description of data, specific to the id value
2919
*
2920
* Load data provided by a non-file source (usually userspace buffer). This
2921
* must be paired with a prior security_kernel_load_data() call that indicated
2922
* this hook would also be called, see security_kernel_load_data() for more
2923
* information.
2924
*
2925
* Return: Returns 0 if permission is granted.
2926
*/
2927
int security_kernel_post_load_data(char *buf, loff_t size,
2928
enum kernel_load_data_id id,
2929
char *description)
2930
{
2931
return call_int_hook(kernel_post_load_data, buf, size, id, description);
2932
}
2933
EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
2934
2935
/**
2936
* security_task_fix_setuid() - Update LSM with new user id attributes
2937
* @new: updated credentials
2938
* @old: credentials being replaced
2939
* @flags: LSM_SETID_* flag values
2940
*
2941
* Update the module's state after setting one or more of the user identity
2942
* attributes of the current process. The @flags parameter indicates which of
2943
* the set*uid system calls invoked this hook. If @new is the set of
2944
* credentials that will be installed. Modifications should be made to this
2945
* rather than to @current->cred.
2946
*
2947
* Return: Returns 0 on success.
2948
*/
2949
int security_task_fix_setuid(struct cred *new, const struct cred *old,
2950
int flags)
2951
{
2952
return call_int_hook(task_fix_setuid, new, old, flags);
2953
}
2954
2955
/**
2956
* security_task_fix_setgid() - Update LSM with new group id attributes
2957
* @new: updated credentials
2958
* @old: credentials being replaced
2959
* @flags: LSM_SETID_* flag value
2960
*
2961
* Update the module's state after setting one or more of the group identity
2962
* attributes of the current process. The @flags parameter indicates which of
2963
* the set*gid system calls invoked this hook. @new is the set of credentials
2964
* that will be installed. Modifications should be made to this rather than to
2965
* @current->cred.
2966
*
2967
* Return: Returns 0 on success.
2968
*/
2969
int security_task_fix_setgid(struct cred *new, const struct cred *old,
2970
int flags)
2971
{
2972
return call_int_hook(task_fix_setgid, new, old, flags);
2973
}
2974
2975
/**
2976
* security_task_fix_setgroups() - Update LSM with new supplementary groups
2977
* @new: updated credentials
2978
* @old: credentials being replaced
2979
*
2980
* Update the module's state after setting the supplementary group identity
2981
* attributes of the current process. @new is the set of credentials that will
2982
* be installed. Modifications should be made to this rather than to
2983
* @current->cred.
2984
*
2985
* Return: Returns 0 on success.
2986
*/
2987
int security_task_fix_setgroups(struct cred *new, const struct cred *old)
2988
{
2989
return call_int_hook(task_fix_setgroups, new, old);
2990
}
2991
2992
/**
2993
* security_task_setpgid() - Check if setting the pgid is allowed
2994
* @p: task being modified
2995
* @pgid: new pgid
2996
*
2997
* Check permission before setting the process group identifier of the process
2998
* @p to @pgid.
2999
*
3000
* Return: Returns 0 if permission is granted.
3001
*/
3002
int security_task_setpgid(struct task_struct *p, pid_t pgid)
3003
{
3004
return call_int_hook(task_setpgid, p, pgid);
3005
}
3006
3007
/**
3008
* security_task_getpgid() - Check if getting the pgid is allowed
3009
* @p: task
3010
*
3011
* Check permission before getting the process group identifier of the process
3012
* @p.
3013
*
3014
* Return: Returns 0 if permission is granted.
3015
*/
3016
int security_task_getpgid(struct task_struct *p)
3017
{
3018
return call_int_hook(task_getpgid, p);
3019
}
3020
3021
/**
3022
* security_task_getsid() - Check if getting the session id is allowed
3023
* @p: task
3024
*
3025
* Check permission before getting the session identifier of the process @p.
3026
*
3027
* Return: Returns 0 if permission is granted.
3028
*/
3029
int security_task_getsid(struct task_struct *p)
3030
{
3031
return call_int_hook(task_getsid, p);
3032
}
3033
3034
/**
3035
* security_current_getlsmprop_subj() - Current task's subjective LSM data
3036
* @prop: lsm specific information
3037
*
3038
* Retrieve the subjective security identifier of the current task and return
3039
* it in @prop.
3040
*/
3041
void security_current_getlsmprop_subj(struct lsm_prop *prop)
3042
{
3043
lsmprop_init(prop);
3044
call_void_hook(current_getlsmprop_subj, prop);
3045
}
3046
EXPORT_SYMBOL(security_current_getlsmprop_subj);
3047
3048
/**
3049
* security_task_getlsmprop_obj() - Get a task's objective LSM data
3050
* @p: target task
3051
* @prop: lsm specific information
3052
*
3053
* Retrieve the objective security identifier of the task_struct in @p and
3054
* return it in @prop.
3055
*/
3056
void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3057
{
3058
lsmprop_init(prop);
3059
call_void_hook(task_getlsmprop_obj, p, prop);
3060
}
3061
EXPORT_SYMBOL(security_task_getlsmprop_obj);
3062
3063
/**
3064
* security_task_setnice() - Check if setting a task's nice value is allowed
3065
* @p: target task
3066
* @nice: nice value
3067
*
3068
* Check permission before setting the nice value of @p to @nice.
3069
*
3070
* Return: Returns 0 if permission is granted.
3071
*/
3072
int security_task_setnice(struct task_struct *p, int nice)
3073
{
3074
return call_int_hook(task_setnice, p, nice);
3075
}
3076
3077
/**
3078
* security_task_setioprio() - Check if setting a task's ioprio is allowed
3079
* @p: target task
3080
* @ioprio: ioprio value
3081
*
3082
* Check permission before setting the ioprio value of @p to @ioprio.
3083
*
3084
* Return: Returns 0 if permission is granted.
3085
*/
3086
int security_task_setioprio(struct task_struct *p, int ioprio)
3087
{
3088
return call_int_hook(task_setioprio, p, ioprio);
3089
}
3090
3091
/**
3092
* security_task_getioprio() - Check if getting a task's ioprio is allowed
3093
* @p: task
3094
*
3095
* Check permission before getting the ioprio value of @p.
3096
*
3097
* Return: Returns 0 if permission is granted.
3098
*/
3099
int security_task_getioprio(struct task_struct *p)
3100
{
3101
return call_int_hook(task_getioprio, p);
3102
}
3103
3104
/**
3105
* security_task_prlimit() - Check if get/setting resources limits is allowed
3106
* @cred: current task credentials
3107
* @tcred: target task credentials
3108
* @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3109
*
3110
* Check permission before getting and/or setting the resource limits of
3111
* another task.
3112
*
3113
* Return: Returns 0 if permission is granted.
3114
*/
3115
int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3116
unsigned int flags)
3117
{
3118
return call_int_hook(task_prlimit, cred, tcred, flags);
3119
}
3120
3121
/**
3122
* security_task_setrlimit() - Check if setting a new rlimit value is allowed
3123
* @p: target task's group leader
3124
* @resource: resource whose limit is being set
3125
* @new_rlim: new resource limit
3126
*
3127
* Check permission before setting the resource limits of process @p for
3128
* @resource to @new_rlim. The old resource limit values can be examined by
3129
* dereferencing (p->signal->rlim + resource).
3130
*
3131
* Return: Returns 0 if permission is granted.
3132
*/
3133
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3134
struct rlimit *new_rlim)
3135
{
3136
return call_int_hook(task_setrlimit, p, resource, new_rlim);
3137
}
3138
3139
/**
3140
* security_task_setscheduler() - Check if setting sched policy/param is allowed
3141
* @p: target task
3142
*
3143
* Check permission before setting scheduling policy and/or parameters of
3144
* process @p.
3145
*
3146
* Return: Returns 0 if permission is granted.
3147
*/
3148
int security_task_setscheduler(struct task_struct *p)
3149
{
3150
return call_int_hook(task_setscheduler, p);
3151
}
3152
3153
/**
3154
* security_task_getscheduler() - Check if getting scheduling info is allowed
3155
* @p: target task
3156
*
3157
* Check permission before obtaining scheduling information for process @p.
3158
*
3159
* Return: Returns 0 if permission is granted.
3160
*/
3161
int security_task_getscheduler(struct task_struct *p)
3162
{
3163
return call_int_hook(task_getscheduler, p);
3164
}
3165
3166
/**
3167
* security_task_movememory() - Check if moving memory is allowed
3168
* @p: task
3169
*
3170
* Check permission before moving memory owned by process @p.
3171
*
3172
* Return: Returns 0 if permission is granted.
3173
*/
3174
int security_task_movememory(struct task_struct *p)
3175
{
3176
return call_int_hook(task_movememory, p);
3177
}
3178
3179
/**
3180
* security_task_kill() - Check if sending a signal is allowed
3181
* @p: target process
3182
* @info: signal information
3183
* @sig: signal value
3184
* @cred: credentials of the signal sender, NULL if @current
3185
*
3186
* Check permission before sending signal @sig to @p. @info can be NULL, the
3187
* constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3188
* SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3189
* the kernel and should typically be permitted. SIGIO signals are handled
3190
* separately by the send_sigiotask hook in file_security_ops.
3191
*
3192
* Return: Returns 0 if permission is granted.
3193
*/
3194
int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3195
int sig, const struct cred *cred)
3196
{
3197
return call_int_hook(task_kill, p, info, sig, cred);
3198
}
3199
3200
/**
3201
* security_task_prctl() - Check if a prctl op is allowed
3202
* @option: operation
3203
* @arg2: argument
3204
* @arg3: argument
3205
* @arg4: argument
3206
* @arg5: argument
3207
*
3208
* Check permission before performing a process control operation on the
3209
* current process.
3210
*
3211
* Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3212
* to cause prctl() to return immediately with that value.
3213
*/
3214
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3215
unsigned long arg4, unsigned long arg5)
3216
{
3217
int thisrc;
3218
int rc = LSM_RET_DEFAULT(task_prctl);
3219
struct lsm_static_call *scall;
3220
3221
lsm_for_each_hook(scall, task_prctl) {
3222
thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3223
if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3224
rc = thisrc;
3225
if (thisrc != 0)
3226
break;
3227
}
3228
}
3229
return rc;
3230
}
3231
3232
/**
3233
* security_task_to_inode() - Set the security attributes of a task's inode
3234
* @p: task
3235
* @inode: inode
3236
*
3237
* Set the security attributes for an inode based on an associated task's
3238
* security attributes, e.g. for /proc/pid inodes.
3239
*/
3240
void security_task_to_inode(struct task_struct *p, struct inode *inode)
3241
{
3242
call_void_hook(task_to_inode, p, inode);
3243
}
3244
3245
/**
3246
* security_create_user_ns() - Check if creating a new userns is allowed
3247
* @cred: prepared creds
3248
*
3249
* Check permission prior to creating a new user namespace.
3250
*
3251
* Return: Returns 0 if successful, otherwise < 0 error code.
3252
*/
3253
int security_create_user_ns(const struct cred *cred)
3254
{
3255
return call_int_hook(userns_create, cred);
3256
}
3257
3258
/**
3259
* security_ipc_permission() - Check if sysv ipc access is allowed
3260
* @ipcp: ipc permission structure
3261
* @flag: requested permissions
3262
*
3263
* Check permissions for access to IPC.
3264
*
3265
* Return: Returns 0 if permission is granted.
3266
*/
3267
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3268
{
3269
return call_int_hook(ipc_permission, ipcp, flag);
3270
}
3271
3272
/**
3273
* security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3274
* @ipcp: ipc permission structure
3275
* @prop: pointer to lsm information
3276
*
3277
* Get the lsm information associated with the ipc object.
3278
*/
3279
3280
void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3281
{
3282
lsmprop_init(prop);
3283
call_void_hook(ipc_getlsmprop, ipcp, prop);
3284
}
3285
3286
/**
3287
* security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3288
* @msg: message structure
3289
*
3290
* Allocate and attach a security structure to the msg->security field. The
3291
* security field is initialized to NULL when the structure is first created.
3292
*
3293
* Return: Return 0 if operation was successful and permission is granted.
3294
*/
3295
int security_msg_msg_alloc(struct msg_msg *msg)
3296
{
3297
int rc = lsm_msg_msg_alloc(msg);
3298
3299
if (unlikely(rc))
3300
return rc;
3301
rc = call_int_hook(msg_msg_alloc_security, msg);
3302
if (unlikely(rc))
3303
security_msg_msg_free(msg);
3304
return rc;
3305
}
3306
3307
/**
3308
* security_msg_msg_free() - Free a sysv ipc message LSM blob
3309
* @msg: message structure
3310
*
3311
* Deallocate the security structure for this message.
3312
*/
3313
void security_msg_msg_free(struct msg_msg *msg)
3314
{
3315
call_void_hook(msg_msg_free_security, msg);
3316
kfree(msg->security);
3317
msg->security = NULL;
3318
}
3319
3320
/**
3321
* security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3322
* @msq: sysv ipc permission structure
3323
*
3324
* Allocate and attach a security structure to @msg. The security field is
3325
* initialized to NULL when the structure is first created.
3326
*
3327
* Return: Returns 0 if operation was successful and permission is granted.
3328
*/
3329
int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3330
{
3331
int rc = lsm_ipc_alloc(msq);
3332
3333
if (unlikely(rc))
3334
return rc;
3335
rc = call_int_hook(msg_queue_alloc_security, msq);
3336
if (unlikely(rc))
3337
security_msg_queue_free(msq);
3338
return rc;
3339
}
3340
3341
/**
3342
* security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3343
* @msq: sysv ipc permission structure
3344
*
3345
* Deallocate security field @perm->security for the message queue.
3346
*/
3347
void security_msg_queue_free(struct kern_ipc_perm *msq)
3348
{
3349
call_void_hook(msg_queue_free_security, msq);
3350
kfree(msq->security);
3351
msq->security = NULL;
3352
}
3353
3354
/**
3355
* security_msg_queue_associate() - Check if a msg queue operation is allowed
3356
* @msq: sysv ipc permission structure
3357
* @msqflg: operation flags
3358
*
3359
* Check permission when a message queue is requested through the msgget system
3360
* call. This hook is only called when returning the message queue identifier
3361
* for an existing message queue, not when a new message queue is created.
3362
*
3363
* Return: Return 0 if permission is granted.
3364
*/
3365
int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3366
{
3367
return call_int_hook(msg_queue_associate, msq, msqflg);
3368
}
3369
3370
/**
3371
* security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3372
* @msq: sysv ipc permission structure
3373
* @cmd: operation
3374
*
3375
* Check permission when a message control operation specified by @cmd is to be
3376
* performed on the message queue with permissions.
3377
*
3378
* Return: Returns 0 if permission is granted.
3379
*/
3380
int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3381
{
3382
return call_int_hook(msg_queue_msgctl, msq, cmd);
3383
}
3384
3385
/**
3386
* security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3387
* @msq: sysv ipc permission structure
3388
* @msg: message
3389
* @msqflg: operation flags
3390
*
3391
* Check permission before a message, @msg, is enqueued on the message queue
3392
* with permissions specified in @msq.
3393
*
3394
* Return: Returns 0 if permission is granted.
3395
*/
3396
int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3397
struct msg_msg *msg, int msqflg)
3398
{
3399
return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3400
}
3401
3402
/**
3403
* security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3404
* @msq: sysv ipc permission structure
3405
* @msg: message
3406
* @target: target task
3407
* @type: type of message requested
3408
* @mode: operation flags
3409
*
3410
* Check permission before a message, @msg, is removed from the message queue.
3411
* The @target task structure contains a pointer to the process that will be
3412
* receiving the message (not equal to the current process when inline receives
3413
* are being performed).
3414
*
3415
* Return: Returns 0 if permission is granted.
3416
*/
3417
int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3418
struct task_struct *target, long type, int mode)
3419
{
3420
return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3421
}
3422
3423
/**
3424
* security_shm_alloc() - Allocate a sysv shm LSM blob
3425
* @shp: sysv ipc permission structure
3426
*
3427
* Allocate and attach a security structure to the @shp security field. The
3428
* security field is initialized to NULL when the structure is first created.
3429
*
3430
* Return: Returns 0 if operation was successful and permission is granted.
3431
*/
3432
int security_shm_alloc(struct kern_ipc_perm *shp)
3433
{
3434
int rc = lsm_ipc_alloc(shp);
3435
3436
if (unlikely(rc))
3437
return rc;
3438
rc = call_int_hook(shm_alloc_security, shp);
3439
if (unlikely(rc))
3440
security_shm_free(shp);
3441
return rc;
3442
}
3443
3444
/**
3445
* security_shm_free() - Free a sysv shm LSM blob
3446
* @shp: sysv ipc permission structure
3447
*
3448
* Deallocate the security structure @perm->security for the memory segment.
3449
*/
3450
void security_shm_free(struct kern_ipc_perm *shp)
3451
{
3452
call_void_hook(shm_free_security, shp);
3453
kfree(shp->security);
3454
shp->security = NULL;
3455
}
3456
3457
/**
3458
* security_shm_associate() - Check if a sysv shm operation is allowed
3459
* @shp: sysv ipc permission structure
3460
* @shmflg: operation flags
3461
*
3462
* Check permission when a shared memory region is requested through the shmget
3463
* system call. This hook is only called when returning the shared memory
3464
* region identifier for an existing region, not when a new shared memory
3465
* region is created.
3466
*
3467
* Return: Returns 0 if permission is granted.
3468
*/
3469
int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3470
{
3471
return call_int_hook(shm_associate, shp, shmflg);
3472
}
3473
3474
/**
3475
* security_shm_shmctl() - Check if a sysv shm operation is allowed
3476
* @shp: sysv ipc permission structure
3477
* @cmd: operation
3478
*
3479
* Check permission when a shared memory control operation specified by @cmd is
3480
* to be performed on the shared memory region with permissions in @shp.
3481
*
3482
* Return: Return 0 if permission is granted.
3483
*/
3484
int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3485
{
3486
return call_int_hook(shm_shmctl, shp, cmd);
3487
}
3488
3489
/**
3490
* security_shm_shmat() - Check if a sysv shm attach operation is allowed
3491
* @shp: sysv ipc permission structure
3492
* @shmaddr: address of memory region to attach
3493
* @shmflg: operation flags
3494
*
3495
* Check permissions prior to allowing the shmat system call to attach the
3496
* shared memory segment with permissions @shp to the data segment of the
3497
* calling process. The attaching address is specified by @shmaddr.
3498
*
3499
* Return: Returns 0 if permission is granted.
3500
*/
3501
int security_shm_shmat(struct kern_ipc_perm *shp,
3502
char __user *shmaddr, int shmflg)
3503
{
3504
return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3505
}
3506
3507
/**
3508
* security_sem_alloc() - Allocate a sysv semaphore LSM blob
3509
* @sma: sysv ipc permission structure
3510
*
3511
* Allocate and attach a security structure to the @sma security field. The
3512
* security field is initialized to NULL when the structure is first created.
3513
*
3514
* Return: Returns 0 if operation was successful and permission is granted.
3515
*/
3516
int security_sem_alloc(struct kern_ipc_perm *sma)
3517
{
3518
int rc = lsm_ipc_alloc(sma);
3519
3520
if (unlikely(rc))
3521
return rc;
3522
rc = call_int_hook(sem_alloc_security, sma);
3523
if (unlikely(rc))
3524
security_sem_free(sma);
3525
return rc;
3526
}
3527
3528
/**
3529
* security_sem_free() - Free a sysv semaphore LSM blob
3530
* @sma: sysv ipc permission structure
3531
*
3532
* Deallocate security structure @sma->security for the semaphore.
3533
*/
3534
void security_sem_free(struct kern_ipc_perm *sma)
3535
{
3536
call_void_hook(sem_free_security, sma);
3537
kfree(sma->security);
3538
sma->security = NULL;
3539
}
3540
3541
/**
3542
* security_sem_associate() - Check if a sysv semaphore operation is allowed
3543
* @sma: sysv ipc permission structure
3544
* @semflg: operation flags
3545
*
3546
* Check permission when a semaphore is requested through the semget system
3547
* call. This hook is only called when returning the semaphore identifier for
3548
* an existing semaphore, not when a new one must be created.
3549
*
3550
* Return: Returns 0 if permission is granted.
3551
*/
3552
int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3553
{
3554
return call_int_hook(sem_associate, sma, semflg);
3555
}
3556
3557
/**
3558
* security_sem_semctl() - Check if a sysv semaphore operation is allowed
3559
* @sma: sysv ipc permission structure
3560
* @cmd: operation
3561
*
3562
* Check permission when a semaphore operation specified by @cmd is to be
3563
* performed on the semaphore.
3564
*
3565
* Return: Returns 0 if permission is granted.
3566
*/
3567
int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3568
{
3569
return call_int_hook(sem_semctl, sma, cmd);
3570
}
3571
3572
/**
3573
* security_sem_semop() - Check if a sysv semaphore operation is allowed
3574
* @sma: sysv ipc permission structure
3575
* @sops: operations to perform
3576
* @nsops: number of operations
3577
* @alter: flag indicating changes will be made
3578
*
3579
* Check permissions before performing operations on members of the semaphore
3580
* set. If the @alter flag is nonzero, the semaphore set may be modified.
3581
*
3582
* Return: Returns 0 if permission is granted.
3583
*/
3584
int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3585
unsigned nsops, int alter)
3586
{
3587
return call_int_hook(sem_semop, sma, sops, nsops, alter);
3588
}
3589
3590
/**
3591
* security_d_instantiate() - Populate an inode's LSM state based on a dentry
3592
* @dentry: dentry
3593
* @inode: inode
3594
*
3595
* Fill in @inode security information for a @dentry if allowed.
3596
*/
3597
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3598
{
3599
if (unlikely(inode && IS_PRIVATE(inode)))
3600
return;
3601
call_void_hook(d_instantiate, dentry, inode);
3602
}
3603
EXPORT_SYMBOL(security_d_instantiate);
3604
3605
/*
3606
* Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3607
*/
3608
3609
/**
3610
* security_getselfattr - Read an LSM attribute of the current process.
3611
* @attr: which attribute to return
3612
* @uctx: the user-space destination for the information, or NULL
3613
* @size: pointer to the size of space available to receive the data
3614
* @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3615
* attributes associated with the LSM identified in the passed @ctx be
3616
* reported.
3617
*
3618
* A NULL value for @uctx can be used to get both the number of attributes
3619
* and the size of the data.
3620
*
3621
* Returns the number of attributes found on success, negative value
3622
* on error. @size is reset to the total size of the data.
3623
* If @size is insufficient to contain the data -E2BIG is returned.
3624
*/
3625
int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3626
u32 __user *size, u32 flags)
3627
{
3628
struct lsm_static_call *scall;
3629
struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3630
u8 __user *base = (u8 __user *)uctx;
3631
u32 entrysize;
3632
u32 total = 0;
3633
u32 left;
3634
bool toobig = false;
3635
bool single = false;
3636
int count = 0;
3637
int rc;
3638
3639
if (attr == LSM_ATTR_UNDEF)
3640
return -EINVAL;
3641
if (size == NULL)
3642
return -EINVAL;
3643
if (get_user(left, size))
3644
return -EFAULT;
3645
3646
if (flags) {
3647
/*
3648
* Only flag supported is LSM_FLAG_SINGLE
3649
*/
3650
if (flags != LSM_FLAG_SINGLE || !uctx)
3651
return -EINVAL;
3652
if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3653
return -EFAULT;
3654
/*
3655
* If the LSM ID isn't specified it is an error.
3656
*/
3657
if (lctx.id == LSM_ID_UNDEF)
3658
return -EINVAL;
3659
single = true;
3660
}
3661
3662
/*
3663
* In the usual case gather all the data from the LSMs.
3664
* In the single case only get the data from the LSM specified.
3665
*/
3666
lsm_for_each_hook(scall, getselfattr) {
3667
if (single && lctx.id != scall->hl->lsmid->id)
3668
continue;
3669
entrysize = left;
3670
if (base)
3671
uctx = (struct lsm_ctx __user *)(base + total);
3672
rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
3673
if (rc == -EOPNOTSUPP)
3674
continue;
3675
if (rc == -E2BIG) {
3676
rc = 0;
3677
left = 0;
3678
toobig = true;
3679
} else if (rc < 0)
3680
return rc;
3681
else
3682
left -= entrysize;
3683
3684
total += entrysize;
3685
count += rc;
3686
if (single)
3687
break;
3688
}
3689
if (put_user(total, size))
3690
return -EFAULT;
3691
if (toobig)
3692
return -E2BIG;
3693
if (count == 0)
3694
return LSM_RET_DEFAULT(getselfattr);
3695
return count;
3696
}
3697
3698
/*
3699
* Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3700
*/
3701
3702
/**
3703
* security_setselfattr - Set an LSM attribute on the current process.
3704
* @attr: which attribute to set
3705
* @uctx: the user-space source for the information
3706
* @size: the size of the data
3707
* @flags: reserved for future use, must be 0
3708
*
3709
* Set an LSM attribute for the current process. The LSM, attribute
3710
* and new value are included in @uctx.
3711
*
3712
* Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
3713
* if the user buffer is inaccessible, E2BIG if size is too big, or an
3714
* LSM specific failure.
3715
*/
3716
int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3717
u32 size, u32 flags)
3718
{
3719
struct lsm_static_call *scall;
3720
struct lsm_ctx *lctx;
3721
int rc = LSM_RET_DEFAULT(setselfattr);
3722
u64 required_len;
3723
3724
if (flags)
3725
return -EINVAL;
3726
if (size < sizeof(*lctx))
3727
return -EINVAL;
3728
if (size > PAGE_SIZE)
3729
return -E2BIG;
3730
3731
lctx = memdup_user(uctx, size);
3732
if (IS_ERR(lctx))
3733
return PTR_ERR(lctx);
3734
3735
if (size < lctx->len ||
3736
check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
3737
lctx->len < required_len) {
3738
rc = -EINVAL;
3739
goto free_out;
3740
}
3741
3742
lsm_for_each_hook(scall, setselfattr)
3743
if ((scall->hl->lsmid->id) == lctx->id) {
3744
rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
3745
break;
3746
}
3747
3748
free_out:
3749
kfree(lctx);
3750
return rc;
3751
}
3752
3753
/**
3754
* security_getprocattr() - Read an attribute for a task
3755
* @p: the task
3756
* @lsmid: LSM identification
3757
* @name: attribute name
3758
* @value: attribute value
3759
*
3760
* Read attribute @name for task @p and store it into @value if allowed.
3761
*
3762
* Return: Returns the length of @value on success, a negative value otherwise.
3763
*/
3764
int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
3765
char **value)
3766
{
3767
struct lsm_static_call *scall;
3768
3769
lsm_for_each_hook(scall, getprocattr) {
3770
if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
3771
continue;
3772
return scall->hl->hook.getprocattr(p, name, value);
3773
}
3774
return LSM_RET_DEFAULT(getprocattr);
3775
}
3776
3777
/**
3778
* security_setprocattr() - Set an attribute for a task
3779
* @lsmid: LSM identification
3780
* @name: attribute name
3781
* @value: attribute value
3782
* @size: attribute value size
3783
*
3784
* Write (set) the current task's attribute @name to @value, size @size if
3785
* allowed.
3786
*
3787
* Return: Returns bytes written on success, a negative value otherwise.
3788
*/
3789
int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
3790
{
3791
struct lsm_static_call *scall;
3792
3793
lsm_for_each_hook(scall, setprocattr) {
3794
if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
3795
continue;
3796
return scall->hl->hook.setprocattr(name, value, size);
3797
}
3798
return LSM_RET_DEFAULT(setprocattr);
3799
}
3800
3801
/**
3802
* security_ismaclabel() - Check if the named attribute is a MAC label
3803
* @name: full extended attribute name
3804
*
3805
* Check if the extended attribute specified by @name represents a MAC label.
3806
*
3807
* Return: Returns 1 if name is a MAC attribute otherwise returns 0.
3808
*/
3809
int security_ismaclabel(const char *name)
3810
{
3811
return call_int_hook(ismaclabel, name);
3812
}
3813
EXPORT_SYMBOL(security_ismaclabel);
3814
3815
/**
3816
* security_secid_to_secctx() - Convert a secid to a secctx
3817
* @secid: secid
3818
* @cp: the LSM context
3819
*
3820
* Convert secid to security context. If @cp is NULL the length of the
3821
* result will be returned, but no data will be returned. This
3822
* does mean that the length could change between calls to check the length and
3823
* the next call which actually allocates and returns the data.
3824
*
3825
* Return: Return length of data on success, error on failure.
3826
*/
3827
int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
3828
{
3829
return call_int_hook(secid_to_secctx, secid, cp);
3830
}
3831
EXPORT_SYMBOL(security_secid_to_secctx);
3832
3833
/**
3834
* security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
3835
* @prop: lsm specific information
3836
* @cp: the LSM context
3837
* @lsmid: which security module to report
3838
*
3839
* Convert a @prop entry to security context. If @cp is NULL the
3840
* length of the result will be returned. This does mean that the
3841
* length could change between calls to check the length and the
3842
* next call which actually allocates and returns the @cp.
3843
*
3844
* @lsmid identifies which LSM should supply the context.
3845
* A value of LSM_ID_UNDEF indicates that the first LSM suppling
3846
* the hook should be used. This is used in cases where the
3847
* ID of the supplying LSM is unambiguous.
3848
*
3849
* Return: Return length of data on success, error on failure.
3850
*/
3851
int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp,
3852
int lsmid)
3853
{
3854
struct lsm_static_call *scall;
3855
3856
lsm_for_each_hook(scall, lsmprop_to_secctx) {
3857
if (lsmid != LSM_ID_UNDEF && lsmid != scall->hl->lsmid->id)
3858
continue;
3859
return scall->hl->hook.lsmprop_to_secctx(prop, cp);
3860
}
3861
return LSM_RET_DEFAULT(lsmprop_to_secctx);
3862
}
3863
EXPORT_SYMBOL(security_lsmprop_to_secctx);
3864
3865
/**
3866
* security_secctx_to_secid() - Convert a secctx to a secid
3867
* @secdata: secctx
3868
* @seclen: length of secctx
3869
* @secid: secid
3870
*
3871
* Convert security context to secid.
3872
*
3873
* Return: Returns 0 on success, error on failure.
3874
*/
3875
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
3876
{
3877
*secid = 0;
3878
return call_int_hook(secctx_to_secid, secdata, seclen, secid);
3879
}
3880
EXPORT_SYMBOL(security_secctx_to_secid);
3881
3882
/**
3883
* security_release_secctx() - Free a secctx buffer
3884
* @cp: the security context
3885
*
3886
* Release the security context.
3887
*/
3888
void security_release_secctx(struct lsm_context *cp)
3889
{
3890
call_void_hook(release_secctx, cp);
3891
memset(cp, 0, sizeof(*cp));
3892
}
3893
EXPORT_SYMBOL(security_release_secctx);
3894
3895
/**
3896
* security_inode_invalidate_secctx() - Invalidate an inode's security label
3897
* @inode: inode
3898
*
3899
* Notify the security module that it must revalidate the security context of
3900
* an inode.
3901
*/
3902
void security_inode_invalidate_secctx(struct inode *inode)
3903
{
3904
call_void_hook(inode_invalidate_secctx, inode);
3905
}
3906
EXPORT_SYMBOL(security_inode_invalidate_secctx);
3907
3908
/**
3909
* security_inode_notifysecctx() - Notify the LSM of an inode's security label
3910
* @inode: inode
3911
* @ctx: secctx
3912
* @ctxlen: length of secctx
3913
*
3914
* Notify the security module of what the security context of an inode should
3915
* be. Initializes the incore security context managed by the security module
3916
* for this inode. Example usage: NFS client invokes this hook to initialize
3917
* the security context in its incore inode to the value provided by the server
3918
* for the file when the server returned the file's attributes to the client.
3919
* Must be called with inode->i_mutex locked.
3920
*
3921
* Return: Returns 0 on success, error on failure.
3922
*/
3923
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
3924
{
3925
return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
3926
}
3927
EXPORT_SYMBOL(security_inode_notifysecctx);
3928
3929
/**
3930
* security_inode_setsecctx() - Change the security label of an inode
3931
* @dentry: inode
3932
* @ctx: secctx
3933
* @ctxlen: length of secctx
3934
*
3935
* Change the security context of an inode. Updates the incore security
3936
* context managed by the security module and invokes the fs code as needed
3937
* (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
3938
* context. Example usage: NFS server invokes this hook to change the security
3939
* context in its incore inode and on the backing filesystem to a value
3940
* provided by the client on a SETATTR operation. Must be called with
3941
* inode->i_mutex locked.
3942
*
3943
* Return: Returns 0 on success, error on failure.
3944
*/
3945
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
3946
{
3947
return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
3948
}
3949
EXPORT_SYMBOL(security_inode_setsecctx);
3950
3951
/**
3952
* security_inode_getsecctx() - Get the security label of an inode
3953
* @inode: inode
3954
* @cp: security context
3955
*
3956
* On success, returns 0 and fills out @cp with the security context
3957
* for the given @inode.
3958
*
3959
* Return: Returns 0 on success, error on failure.
3960
*/
3961
int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
3962
{
3963
memset(cp, 0, sizeof(*cp));
3964
return call_int_hook(inode_getsecctx, inode, cp);
3965
}
3966
EXPORT_SYMBOL(security_inode_getsecctx);
3967
3968
#ifdef CONFIG_WATCH_QUEUE
3969
/**
3970
* security_post_notification() - Check if a watch notification can be posted
3971
* @w_cred: credentials of the task that set the watch
3972
* @cred: credentials of the task which triggered the watch
3973
* @n: the notification
3974
*
3975
* Check to see if a watch notification can be posted to a particular queue.
3976
*
3977
* Return: Returns 0 if permission is granted.
3978
*/
3979
int security_post_notification(const struct cred *w_cred,
3980
const struct cred *cred,
3981
struct watch_notification *n)
3982
{
3983
return call_int_hook(post_notification, w_cred, cred, n);
3984
}
3985
#endif /* CONFIG_WATCH_QUEUE */
3986
3987
#ifdef CONFIG_KEY_NOTIFICATIONS
3988
/**
3989
* security_watch_key() - Check if a task is allowed to watch for key events
3990
* @key: the key to watch
3991
*
3992
* Check to see if a process is allowed to watch for event notifications from
3993
* a key or keyring.
3994
*
3995
* Return: Returns 0 if permission is granted.
3996
*/
3997
int security_watch_key(struct key *key)
3998
{
3999
return call_int_hook(watch_key, key);
4000
}
4001
#endif /* CONFIG_KEY_NOTIFICATIONS */
4002
4003
#ifdef CONFIG_SECURITY_NETWORK
4004
/**
4005
* security_netlink_send() - Save info and check if netlink sending is allowed
4006
* @sk: sending socket
4007
* @skb: netlink message
4008
*
4009
* Save security information for a netlink message so that permission checking
4010
* can be performed when the message is processed. The security information
4011
* can be saved using the eff_cap field of the netlink_skb_parms structure.
4012
* Also may be used to provide fine grained control over message transmission.
4013
*
4014
* Return: Returns 0 if the information was successfully saved and message is
4015
* allowed to be transmitted.
4016
*/
4017
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4018
{
4019
return call_int_hook(netlink_send, sk, skb);
4020
}
4021
4022
/**
4023
* security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4024
* @sock: originating sock
4025
* @other: peer sock
4026
* @newsk: new sock
4027
*
4028
* Check permissions before establishing a Unix domain stream connection
4029
* between @sock and @other.
4030
*
4031
* The @unix_stream_connect and @unix_may_send hooks were necessary because
4032
* Linux provides an alternative to the conventional file name space for Unix
4033
* domain sockets. Whereas binding and connecting to sockets in the file name
4034
* space is mediated by the typical file permissions (and caught by the mknod
4035
* and permission hooks in inode_security_ops), binding and connecting to
4036
* sockets in the abstract name space is completely unmediated. Sufficient
4037
* control of Unix domain sockets in the abstract name space isn't possible
4038
* using only the socket layer hooks, since we need to know the actual target
4039
* socket, which is not looked up until we are inside the af_unix code.
4040
*
4041
* Return: Returns 0 if permission is granted.
4042
*/
4043
int security_unix_stream_connect(struct sock *sock, struct sock *other,
4044
struct sock *newsk)
4045
{
4046
return call_int_hook(unix_stream_connect, sock, other, newsk);
4047
}
4048
EXPORT_SYMBOL(security_unix_stream_connect);
4049
4050
/**
4051
* security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4052
* @sock: originating sock
4053
* @other: peer sock
4054
*
4055
* Check permissions before connecting or sending datagrams from @sock to
4056
* @other.
4057
*
4058
* The @unix_stream_connect and @unix_may_send hooks were necessary because
4059
* Linux provides an alternative to the conventional file name space for Unix
4060
* domain sockets. Whereas binding and connecting to sockets in the file name
4061
* space is mediated by the typical file permissions (and caught by the mknod
4062
* and permission hooks in inode_security_ops), binding and connecting to
4063
* sockets in the abstract name space is completely unmediated. Sufficient
4064
* control of Unix domain sockets in the abstract name space isn't possible
4065
* using only the socket layer hooks, since we need to know the actual target
4066
* socket, which is not looked up until we are inside the af_unix code.
4067
*
4068
* Return: Returns 0 if permission is granted.
4069
*/
4070
int security_unix_may_send(struct socket *sock, struct socket *other)
4071
{
4072
return call_int_hook(unix_may_send, sock, other);
4073
}
4074
EXPORT_SYMBOL(security_unix_may_send);
4075
4076
/**
4077
* security_socket_create() - Check if creating a new socket is allowed
4078
* @family: protocol family
4079
* @type: communications type
4080
* @protocol: requested protocol
4081
* @kern: set to 1 if a kernel socket is requested
4082
*
4083
* Check permissions prior to creating a new socket.
4084
*
4085
* Return: Returns 0 if permission is granted.
4086
*/
4087
int security_socket_create(int family, int type, int protocol, int kern)
4088
{
4089
return call_int_hook(socket_create, family, type, protocol, kern);
4090
}
4091
4092
/**
4093
* security_socket_post_create() - Initialize a newly created socket
4094
* @sock: socket
4095
* @family: protocol family
4096
* @type: communications type
4097
* @protocol: requested protocol
4098
* @kern: set to 1 if a kernel socket is requested
4099
*
4100
* This hook allows a module to update or allocate a per-socket security
4101
* structure. Note that the security field was not added directly to the socket
4102
* structure, but rather, the socket security information is stored in the
4103
* associated inode. Typically, the inode alloc_security hook will allocate
4104
* and attach security information to SOCK_INODE(sock)->i_security. This hook
4105
* may be used to update the SOCK_INODE(sock)->i_security field with additional
4106
* information that wasn't available when the inode was allocated.
4107
*
4108
* Return: Returns 0 if permission is granted.
4109
*/
4110
int security_socket_post_create(struct socket *sock, int family,
4111
int type, int protocol, int kern)
4112
{
4113
return call_int_hook(socket_post_create, sock, family, type,
4114
protocol, kern);
4115
}
4116
4117
/**
4118
* security_socket_socketpair() - Check if creating a socketpair is allowed
4119
* @socka: first socket
4120
* @sockb: second socket
4121
*
4122
* Check permissions before creating a fresh pair of sockets.
4123
*
4124
* Return: Returns 0 if permission is granted and the connection was
4125
* established.
4126
*/
4127
int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4128
{
4129
return call_int_hook(socket_socketpair, socka, sockb);
4130
}
4131
EXPORT_SYMBOL(security_socket_socketpair);
4132
4133
/**
4134
* security_socket_bind() - Check if a socket bind operation is allowed
4135
* @sock: socket
4136
* @address: requested bind address
4137
* @addrlen: length of address
4138
*
4139
* Check permission before socket protocol layer bind operation is performed
4140
* and the socket @sock is bound to the address specified in the @address
4141
* parameter.
4142
*
4143
* Return: Returns 0 if permission is granted.
4144
*/
4145
int security_socket_bind(struct socket *sock,
4146
struct sockaddr *address, int addrlen)
4147
{
4148
return call_int_hook(socket_bind, sock, address, addrlen);
4149
}
4150
4151
/**
4152
* security_socket_connect() - Check if a socket connect operation is allowed
4153
* @sock: socket
4154
* @address: address of remote connection point
4155
* @addrlen: length of address
4156
*
4157
* Check permission before socket protocol layer connect operation attempts to
4158
* connect socket @sock to a remote address, @address.
4159
*
4160
* Return: Returns 0 if permission is granted.
4161
*/
4162
int security_socket_connect(struct socket *sock,
4163
struct sockaddr *address, int addrlen)
4164
{
4165
return call_int_hook(socket_connect, sock, address, addrlen);
4166
}
4167
4168
/**
4169
* security_socket_listen() - Check if a socket is allowed to listen
4170
* @sock: socket
4171
* @backlog: connection queue size
4172
*
4173
* Check permission before socket protocol layer listen operation.
4174
*
4175
* Return: Returns 0 if permission is granted.
4176
*/
4177
int security_socket_listen(struct socket *sock, int backlog)
4178
{
4179
return call_int_hook(socket_listen, sock, backlog);
4180
}
4181
4182
/**
4183
* security_socket_accept() - Check if a socket is allowed to accept connections
4184
* @sock: listening socket
4185
* @newsock: newly creation connection socket
4186
*
4187
* Check permission before accepting a new connection. Note that the new
4188
* socket, @newsock, has been created and some information copied to it, but
4189
* the accept operation has not actually been performed.
4190
*
4191
* Return: Returns 0 if permission is granted.
4192
*/
4193
int security_socket_accept(struct socket *sock, struct socket *newsock)
4194
{
4195
return call_int_hook(socket_accept, sock, newsock);
4196
}
4197
4198
/**
4199
* security_socket_sendmsg() - Check if sending a message is allowed
4200
* @sock: sending socket
4201
* @msg: message to send
4202
* @size: size of message
4203
*
4204
* Check permission before transmitting a message to another socket.
4205
*
4206
* Return: Returns 0 if permission is granted.
4207
*/
4208
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4209
{
4210
return call_int_hook(socket_sendmsg, sock, msg, size);
4211
}
4212
4213
/**
4214
* security_socket_recvmsg() - Check if receiving a message is allowed
4215
* @sock: receiving socket
4216
* @msg: message to receive
4217
* @size: size of message
4218
* @flags: operational flags
4219
*
4220
* Check permission before receiving a message from a socket.
4221
*
4222
* Return: Returns 0 if permission is granted.
4223
*/
4224
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4225
int size, int flags)
4226
{
4227
return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4228
}
4229
4230
/**
4231
* security_socket_getsockname() - Check if reading the socket addr is allowed
4232
* @sock: socket
4233
*
4234
* Check permission before reading the local address (name) of the socket
4235
* object.
4236
*
4237
* Return: Returns 0 if permission is granted.
4238
*/
4239
int security_socket_getsockname(struct socket *sock)
4240
{
4241
return call_int_hook(socket_getsockname, sock);
4242
}
4243
4244
/**
4245
* security_socket_getpeername() - Check if reading the peer's addr is allowed
4246
* @sock: socket
4247
*
4248
* Check permission before the remote address (name) of a socket object.
4249
*
4250
* Return: Returns 0 if permission is granted.
4251
*/
4252
int security_socket_getpeername(struct socket *sock)
4253
{
4254
return call_int_hook(socket_getpeername, sock);
4255
}
4256
4257
/**
4258
* security_socket_getsockopt() - Check if reading a socket option is allowed
4259
* @sock: socket
4260
* @level: option's protocol level
4261
* @optname: option name
4262
*
4263
* Check permissions before retrieving the options associated with socket
4264
* @sock.
4265
*
4266
* Return: Returns 0 if permission is granted.
4267
*/
4268
int security_socket_getsockopt(struct socket *sock, int level, int optname)
4269
{
4270
return call_int_hook(socket_getsockopt, sock, level, optname);
4271
}
4272
4273
/**
4274
* security_socket_setsockopt() - Check if setting a socket option is allowed
4275
* @sock: socket
4276
* @level: option's protocol level
4277
* @optname: option name
4278
*
4279
* Check permissions before setting the options associated with socket @sock.
4280
*
4281
* Return: Returns 0 if permission is granted.
4282
*/
4283
int security_socket_setsockopt(struct socket *sock, int level, int optname)
4284
{
4285
return call_int_hook(socket_setsockopt, sock, level, optname);
4286
}
4287
4288
/**
4289
* security_socket_shutdown() - Checks if shutting down the socket is allowed
4290
* @sock: socket
4291
* @how: flag indicating how sends and receives are handled
4292
*
4293
* Checks permission before all or part of a connection on the socket @sock is
4294
* shut down.
4295
*
4296
* Return: Returns 0 if permission is granted.
4297
*/
4298
int security_socket_shutdown(struct socket *sock, int how)
4299
{
4300
return call_int_hook(socket_shutdown, sock, how);
4301
}
4302
4303
/**
4304
* security_sock_rcv_skb() - Check if an incoming network packet is allowed
4305
* @sk: destination sock
4306
* @skb: incoming packet
4307
*
4308
* Check permissions on incoming network packets. This hook is distinct from
4309
* Netfilter's IP input hooks since it is the first time that the incoming
4310
* sk_buff @skb has been associated with a particular socket, @sk. Must not
4311
* sleep inside this hook because some callers hold spinlocks.
4312
*
4313
* Return: Returns 0 if permission is granted.
4314
*/
4315
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4316
{
4317
return call_int_hook(socket_sock_rcv_skb, sk, skb);
4318
}
4319
EXPORT_SYMBOL(security_sock_rcv_skb);
4320
4321
/**
4322
* security_socket_getpeersec_stream() - Get the remote peer label
4323
* @sock: socket
4324
* @optval: destination buffer
4325
* @optlen: size of peer label copied into the buffer
4326
* @len: maximum size of the destination buffer
4327
*
4328
* This hook allows the security module to provide peer socket security state
4329
* for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4330
* For tcp sockets this can be meaningful if the socket is associated with an
4331
* ipsec SA.
4332
*
4333
* Return: Returns 0 if all is well, otherwise, typical getsockopt return
4334
* values.
4335
*/
4336
int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4337
sockptr_t optlen, unsigned int len)
4338
{
4339
return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4340
len);
4341
}
4342
4343
/**
4344
* security_socket_getpeersec_dgram() - Get the remote peer label
4345
* @sock: socket
4346
* @skb: datagram packet
4347
* @secid: remote peer label secid
4348
*
4349
* This hook allows the security module to provide peer socket security state
4350
* for udp sockets on a per-packet basis to userspace via getsockopt
4351
* SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4352
* option via getsockopt. It can then retrieve the security state returned by
4353
* this hook for a packet via the SCM_SECURITY ancillary message type.
4354
*
4355
* Return: Returns 0 on success, error on failure.
4356
*/
4357
int security_socket_getpeersec_dgram(struct socket *sock,
4358
struct sk_buff *skb, u32 *secid)
4359
{
4360
return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4361
}
4362
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4363
4364
/**
4365
* lsm_sock_alloc - allocate a composite sock blob
4366
* @sock: the sock that needs a blob
4367
* @gfp: allocation mode
4368
*
4369
* Allocate the sock blob for all the modules
4370
*
4371
* Returns 0, or -ENOMEM if memory can't be allocated.
4372
*/
4373
static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4374
{
4375
return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4376
}
4377
4378
/**
4379
* security_sk_alloc() - Allocate and initialize a sock's LSM blob
4380
* @sk: sock
4381
* @family: protocol family
4382
* @priority: gfp flags
4383
*
4384
* Allocate and attach a security structure to the sk->sk_security field, which
4385
* is used to copy security attributes between local stream sockets.
4386
*
4387
* Return: Returns 0 on success, error on failure.
4388
*/
4389
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4390
{
4391
int rc = lsm_sock_alloc(sk, priority);
4392
4393
if (unlikely(rc))
4394
return rc;
4395
rc = call_int_hook(sk_alloc_security, sk, family, priority);
4396
if (unlikely(rc))
4397
security_sk_free(sk);
4398
return rc;
4399
}
4400
4401
/**
4402
* security_sk_free() - Free the sock's LSM blob
4403
* @sk: sock
4404
*
4405
* Deallocate security structure.
4406
*/
4407
void security_sk_free(struct sock *sk)
4408
{
4409
call_void_hook(sk_free_security, sk);
4410
kfree(sk->sk_security);
4411
sk->sk_security = NULL;
4412
}
4413
4414
/**
4415
* security_sk_clone() - Clone a sock's LSM state
4416
* @sk: original sock
4417
* @newsk: target sock
4418
*
4419
* Clone/copy security structure.
4420
*/
4421
void security_sk_clone(const struct sock *sk, struct sock *newsk)
4422
{
4423
call_void_hook(sk_clone_security, sk, newsk);
4424
}
4425
EXPORT_SYMBOL(security_sk_clone);
4426
4427
/**
4428
* security_sk_classify_flow() - Set a flow's secid based on socket
4429
* @sk: original socket
4430
* @flic: target flow
4431
*
4432
* Set the target flow's secid to socket's secid.
4433
*/
4434
void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4435
{
4436
call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4437
}
4438
EXPORT_SYMBOL(security_sk_classify_flow);
4439
4440
/**
4441
* security_req_classify_flow() - Set a flow's secid based on request_sock
4442
* @req: request_sock
4443
* @flic: target flow
4444
*
4445
* Sets @flic's secid to @req's secid.
4446
*/
4447
void security_req_classify_flow(const struct request_sock *req,
4448
struct flowi_common *flic)
4449
{
4450
call_void_hook(req_classify_flow, req, flic);
4451
}
4452
EXPORT_SYMBOL(security_req_classify_flow);
4453
4454
/**
4455
* security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4456
* @sk: sock being grafted
4457
* @parent: target parent socket
4458
*
4459
* Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4460
* LSM state from @parent.
4461
*/
4462
void security_sock_graft(struct sock *sk, struct socket *parent)
4463
{
4464
call_void_hook(sock_graft, sk, parent);
4465
}
4466
EXPORT_SYMBOL(security_sock_graft);
4467
4468
/**
4469
* security_inet_conn_request() - Set request_sock state using incoming connect
4470
* @sk: parent listening sock
4471
* @skb: incoming connection
4472
* @req: new request_sock
4473
*
4474
* Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4475
*
4476
* Return: Returns 0 if permission is granted.
4477
*/
4478
int security_inet_conn_request(const struct sock *sk,
4479
struct sk_buff *skb, struct request_sock *req)
4480
{
4481
return call_int_hook(inet_conn_request, sk, skb, req);
4482
}
4483
EXPORT_SYMBOL(security_inet_conn_request);
4484
4485
/**
4486
* security_inet_csk_clone() - Set new sock LSM state based on request_sock
4487
* @newsk: new sock
4488
* @req: connection request_sock
4489
*
4490
* Set that LSM state of @sock using the LSM state from @req.
4491
*/
4492
void security_inet_csk_clone(struct sock *newsk,
4493
const struct request_sock *req)
4494
{
4495
call_void_hook(inet_csk_clone, newsk, req);
4496
}
4497
4498
/**
4499
* security_inet_conn_established() - Update sock's LSM state with connection
4500
* @sk: sock
4501
* @skb: connection packet
4502
*
4503
* Update @sock's LSM state to represent a new connection from @skb.
4504
*/
4505
void security_inet_conn_established(struct sock *sk,
4506
struct sk_buff *skb)
4507
{
4508
call_void_hook(inet_conn_established, sk, skb);
4509
}
4510
EXPORT_SYMBOL(security_inet_conn_established);
4511
4512
/**
4513
* security_secmark_relabel_packet() - Check if setting a secmark is allowed
4514
* @secid: new secmark value
4515
*
4516
* Check if the process should be allowed to relabel packets to @secid.
4517
*
4518
* Return: Returns 0 if permission is granted.
4519
*/
4520
int security_secmark_relabel_packet(u32 secid)
4521
{
4522
return call_int_hook(secmark_relabel_packet, secid);
4523
}
4524
EXPORT_SYMBOL(security_secmark_relabel_packet);
4525
4526
/**
4527
* security_secmark_refcount_inc() - Increment the secmark labeling rule count
4528
*
4529
* Tells the LSM to increment the number of secmark labeling rules loaded.
4530
*/
4531
void security_secmark_refcount_inc(void)
4532
{
4533
call_void_hook(secmark_refcount_inc);
4534
}
4535
EXPORT_SYMBOL(security_secmark_refcount_inc);
4536
4537
/**
4538
* security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4539
*
4540
* Tells the LSM to decrement the number of secmark labeling rules loaded.
4541
*/
4542
void security_secmark_refcount_dec(void)
4543
{
4544
call_void_hook(secmark_refcount_dec);
4545
}
4546
EXPORT_SYMBOL(security_secmark_refcount_dec);
4547
4548
/**
4549
* security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4550
* @security: pointer to the LSM blob
4551
*
4552
* This hook allows a module to allocate a security structure for a TUN device,
4553
* returning the pointer in @security.
4554
*
4555
* Return: Returns a zero on success, negative values on failure.
4556
*/
4557
int security_tun_dev_alloc_security(void **security)
4558
{
4559
int rc;
4560
4561
rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
4562
if (rc)
4563
return rc;
4564
4565
rc = call_int_hook(tun_dev_alloc_security, *security);
4566
if (rc) {
4567
kfree(*security);
4568
*security = NULL;
4569
}
4570
return rc;
4571
}
4572
EXPORT_SYMBOL(security_tun_dev_alloc_security);
4573
4574
/**
4575
* security_tun_dev_free_security() - Free a TUN device LSM blob
4576
* @security: LSM blob
4577
*
4578
* This hook allows a module to free the security structure for a TUN device.
4579
*/
4580
void security_tun_dev_free_security(void *security)
4581
{
4582
kfree(security);
4583
}
4584
EXPORT_SYMBOL(security_tun_dev_free_security);
4585
4586
/**
4587
* security_tun_dev_create() - Check if creating a TUN device is allowed
4588
*
4589
* Check permissions prior to creating a new TUN device.
4590
*
4591
* Return: Returns 0 if permission is granted.
4592
*/
4593
int security_tun_dev_create(void)
4594
{
4595
return call_int_hook(tun_dev_create);
4596
}
4597
EXPORT_SYMBOL(security_tun_dev_create);
4598
4599
/**
4600
* security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4601
* @security: TUN device LSM blob
4602
*
4603
* Check permissions prior to attaching to a TUN device queue.
4604
*
4605
* Return: Returns 0 if permission is granted.
4606
*/
4607
int security_tun_dev_attach_queue(void *security)
4608
{
4609
return call_int_hook(tun_dev_attach_queue, security);
4610
}
4611
EXPORT_SYMBOL(security_tun_dev_attach_queue);
4612
4613
/**
4614
* security_tun_dev_attach() - Update TUN device LSM state on attach
4615
* @sk: associated sock
4616
* @security: TUN device LSM blob
4617
*
4618
* This hook can be used by the module to update any security state associated
4619
* with the TUN device's sock structure.
4620
*
4621
* Return: Returns 0 if permission is granted.
4622
*/
4623
int security_tun_dev_attach(struct sock *sk, void *security)
4624
{
4625
return call_int_hook(tun_dev_attach, sk, security);
4626
}
4627
EXPORT_SYMBOL(security_tun_dev_attach);
4628
4629
/**
4630
* security_tun_dev_open() - Update TUN device LSM state on open
4631
* @security: TUN device LSM blob
4632
*
4633
* This hook can be used by the module to update any security state associated
4634
* with the TUN device's security structure.
4635
*
4636
* Return: Returns 0 if permission is granted.
4637
*/
4638
int security_tun_dev_open(void *security)
4639
{
4640
return call_int_hook(tun_dev_open, security);
4641
}
4642
EXPORT_SYMBOL(security_tun_dev_open);
4643
4644
/**
4645
* security_sctp_assoc_request() - Update the LSM on a SCTP association req
4646
* @asoc: SCTP association
4647
* @skb: packet requesting the association
4648
*
4649
* Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4650
*
4651
* Return: Returns 0 on success, error on failure.
4652
*/
4653
int security_sctp_assoc_request(struct sctp_association *asoc,
4654
struct sk_buff *skb)
4655
{
4656
return call_int_hook(sctp_assoc_request, asoc, skb);
4657
}
4658
EXPORT_SYMBOL(security_sctp_assoc_request);
4659
4660
/**
4661
* security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4662
* @sk: socket
4663
* @optname: SCTP option to validate
4664
* @address: list of IP addresses to validate
4665
* @addrlen: length of the address list
4666
*
4667
* Validiate permissions required for each address associated with sock @sk.
4668
* Depending on @optname, the addresses will be treated as either a connect or
4669
* bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4670
* sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4671
*
4672
* Return: Returns 0 on success, error on failure.
4673
*/
4674
int security_sctp_bind_connect(struct sock *sk, int optname,
4675
struct sockaddr *address, int addrlen)
4676
{
4677
return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4678
}
4679
EXPORT_SYMBOL(security_sctp_bind_connect);
4680
4681
/**
4682
* security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4683
* @asoc: SCTP association
4684
* @sk: original sock
4685
* @newsk: target sock
4686
*
4687
* Called whenever a new socket is created by accept(2) (i.e. a TCP style
4688
* socket) or when a socket is 'peeled off' e.g userspace calls
4689
* sctp_peeloff(3).
4690
*/
4691
void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4692
struct sock *newsk)
4693
{
4694
call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4695
}
4696
EXPORT_SYMBOL(security_sctp_sk_clone);
4697
4698
/**
4699
* security_sctp_assoc_established() - Update LSM state when assoc established
4700
* @asoc: SCTP association
4701
* @skb: packet establishing the association
4702
*
4703
* Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4704
* security module.
4705
*
4706
* Return: Returns 0 if permission is granted.
4707
*/
4708
int security_sctp_assoc_established(struct sctp_association *asoc,
4709
struct sk_buff *skb)
4710
{
4711
return call_int_hook(sctp_assoc_established, asoc, skb);
4712
}
4713
EXPORT_SYMBOL(security_sctp_assoc_established);
4714
4715
/**
4716
* security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4717
* @sk: the owning MPTCP socket
4718
* @ssk: the new subflow
4719
*
4720
* Update the labeling for the given MPTCP subflow, to match the one of the
4721
* owning MPTCP socket. This hook has to be called after the socket creation and
4722
* initialization via the security_socket_create() and
4723
* security_socket_post_create() LSM hooks.
4724
*
4725
* Return: Returns 0 on success or a negative error code on failure.
4726
*/
4727
int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4728
{
4729
return call_int_hook(mptcp_add_subflow, sk, ssk);
4730
}
4731
4732
#endif /* CONFIG_SECURITY_NETWORK */
4733
4734
#ifdef CONFIG_SECURITY_INFINIBAND
4735
/**
4736
* security_ib_pkey_access() - Check if access to an IB pkey is allowed
4737
* @sec: LSM blob
4738
* @subnet_prefix: subnet prefix of the port
4739
* @pkey: IB pkey
4740
*
4741
* Check permission to access a pkey when modifying a QP.
4742
*
4743
* Return: Returns 0 if permission is granted.
4744
*/
4745
int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4746
{
4747
return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
4748
}
4749
EXPORT_SYMBOL(security_ib_pkey_access);
4750
4751
/**
4752
* security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
4753
* @sec: LSM blob
4754
* @dev_name: IB device name
4755
* @port_num: port number
4756
*
4757
* Check permissions to send and receive SMPs on a end port.
4758
*
4759
* Return: Returns 0 if permission is granted.
4760
*/
4761
int security_ib_endport_manage_subnet(void *sec,
4762
const char *dev_name, u8 port_num)
4763
{
4764
return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
4765
}
4766
EXPORT_SYMBOL(security_ib_endport_manage_subnet);
4767
4768
/**
4769
* security_ib_alloc_security() - Allocate an Infiniband LSM blob
4770
* @sec: LSM blob
4771
*
4772
* Allocate a security structure for Infiniband objects.
4773
*
4774
* Return: Returns 0 on success, non-zero on failure.
4775
*/
4776
int security_ib_alloc_security(void **sec)
4777
{
4778
int rc;
4779
4780
rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
4781
if (rc)
4782
return rc;
4783
4784
rc = call_int_hook(ib_alloc_security, *sec);
4785
if (rc) {
4786
kfree(*sec);
4787
*sec = NULL;
4788
}
4789
return rc;
4790
}
4791
EXPORT_SYMBOL(security_ib_alloc_security);
4792
4793
/**
4794
* security_ib_free_security() - Free an Infiniband LSM blob
4795
* @sec: LSM blob
4796
*
4797
* Deallocate an Infiniband security structure.
4798
*/
4799
void security_ib_free_security(void *sec)
4800
{
4801
kfree(sec);
4802
}
4803
EXPORT_SYMBOL(security_ib_free_security);
4804
#endif /* CONFIG_SECURITY_INFINIBAND */
4805
4806
#ifdef CONFIG_SECURITY_NETWORK_XFRM
4807
/**
4808
* security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
4809
* @ctxp: xfrm security context being added to the SPD
4810
* @sec_ctx: security label provided by userspace
4811
* @gfp: gfp flags
4812
*
4813
* Allocate a security structure to the xp->security field; the security field
4814
* is initialized to NULL when the xfrm_policy is allocated.
4815
*
4816
* Return: Return 0 if operation was successful.
4817
*/
4818
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
4819
struct xfrm_user_sec_ctx *sec_ctx,
4820
gfp_t gfp)
4821
{
4822
return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
4823
}
4824
EXPORT_SYMBOL(security_xfrm_policy_alloc);
4825
4826
/**
4827
* security_xfrm_policy_clone() - Clone xfrm policy LSM state
4828
* @old_ctx: xfrm security context
4829
* @new_ctxp: target xfrm security context
4830
*
4831
* Allocate a security structure in new_ctxp that contains the information from
4832
* the old_ctx structure.
4833
*
4834
* Return: Return 0 if operation was successful.
4835
*/
4836
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
4837
struct xfrm_sec_ctx **new_ctxp)
4838
{
4839
return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
4840
}
4841
4842
/**
4843
* security_xfrm_policy_free() - Free a xfrm security context
4844
* @ctx: xfrm security context
4845
*
4846
* Free LSM resources associated with @ctx.
4847
*/
4848
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
4849
{
4850
call_void_hook(xfrm_policy_free_security, ctx);
4851
}
4852
EXPORT_SYMBOL(security_xfrm_policy_free);
4853
4854
/**
4855
* security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
4856
* @ctx: xfrm security context
4857
*
4858
* Authorize deletion of a SPD entry.
4859
*
4860
* Return: Returns 0 if permission is granted.
4861
*/
4862
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
4863
{
4864
return call_int_hook(xfrm_policy_delete_security, ctx);
4865
}
4866
4867
/**
4868
* security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
4869
* @x: xfrm state being added to the SAD
4870
* @sec_ctx: security label provided by userspace
4871
*
4872
* Allocate a security structure to the @x->security field; the security field
4873
* is initialized to NULL when the xfrm_state is allocated. Set the context to
4874
* correspond to @sec_ctx.
4875
*
4876
* Return: Return 0 if operation was successful.
4877
*/
4878
int security_xfrm_state_alloc(struct xfrm_state *x,
4879
struct xfrm_user_sec_ctx *sec_ctx)
4880
{
4881
return call_int_hook(xfrm_state_alloc, x, sec_ctx);
4882
}
4883
EXPORT_SYMBOL(security_xfrm_state_alloc);
4884
4885
/**
4886
* security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
4887
* @x: xfrm state being added to the SAD
4888
* @polsec: associated policy's security context
4889
* @secid: secid from the flow
4890
*
4891
* Allocate a security structure to the x->security field; the security field
4892
* is initialized to NULL when the xfrm_state is allocated. Set the context to
4893
* correspond to secid.
4894
*
4895
* Return: Returns 0 if operation was successful.
4896
*/
4897
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
4898
struct xfrm_sec_ctx *polsec, u32 secid)
4899
{
4900
return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
4901
}
4902
4903
/**
4904
* security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
4905
* @x: xfrm state
4906
*
4907
* Authorize deletion of x->security.
4908
*
4909
* Return: Returns 0 if permission is granted.
4910
*/
4911
int security_xfrm_state_delete(struct xfrm_state *x)
4912
{
4913
return call_int_hook(xfrm_state_delete_security, x);
4914
}
4915
EXPORT_SYMBOL(security_xfrm_state_delete);
4916
4917
/**
4918
* security_xfrm_state_free() - Free a xfrm state
4919
* @x: xfrm state
4920
*
4921
* Deallocate x->security.
4922
*/
4923
void security_xfrm_state_free(struct xfrm_state *x)
4924
{
4925
call_void_hook(xfrm_state_free_security, x);
4926
}
4927
4928
/**
4929
* security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
4930
* @ctx: target xfrm security context
4931
* @fl_secid: flow secid used to authorize access
4932
*
4933
* Check permission when a flow selects a xfrm_policy for processing XFRMs on a
4934
* packet. The hook is called when selecting either a per-socket policy or a
4935
* generic xfrm policy.
4936
*
4937
* Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
4938
* other errors.
4939
*/
4940
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
4941
{
4942
return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
4943
}
4944
4945
/**
4946
* security_xfrm_state_pol_flow_match() - Check for a xfrm match
4947
* @x: xfrm state to match
4948
* @xp: xfrm policy to check for a match
4949
* @flic: flow to check for a match.
4950
*
4951
* Check @xp and @flic for a match with @x.
4952
*
4953
* Return: Returns 1 if there is a match.
4954
*/
4955
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
4956
struct xfrm_policy *xp,
4957
const struct flowi_common *flic)
4958
{
4959
struct lsm_static_call *scall;
4960
int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
4961
4962
/*
4963
* Since this function is expected to return 0 or 1, the judgment
4964
* becomes difficult if multiple LSMs supply this call. Fortunately,
4965
* we can use the first LSM's judgment because currently only SELinux
4966
* supplies this call.
4967
*
4968
* For speed optimization, we explicitly break the loop rather than
4969
* using the macro
4970
*/
4971
lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
4972
rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
4973
break;
4974
}
4975
return rc;
4976
}
4977
4978
/**
4979
* security_xfrm_decode_session() - Determine the xfrm secid for a packet
4980
* @skb: xfrm packet
4981
* @secid: secid
4982
*
4983
* Decode the packet in @skb and return the security label in @secid.
4984
*
4985
* Return: Return 0 if all xfrms used have the same secid.
4986
*/
4987
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
4988
{
4989
return call_int_hook(xfrm_decode_session, skb, secid, 1);
4990
}
4991
4992
void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
4993
{
4994
int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
4995
0);
4996
4997
BUG_ON(rc);
4998
}
4999
EXPORT_SYMBOL(security_skb_classify_flow);
5000
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
5001
5002
#ifdef CONFIG_KEYS
5003
/**
5004
* security_key_alloc() - Allocate and initialize a kernel key LSM blob
5005
* @key: key
5006
* @cred: credentials
5007
* @flags: allocation flags
5008
*
5009
* Permit allocation of a key and assign security data. Note that key does not
5010
* have a serial number assigned at this point.
5011
*
5012
* Return: Return 0 if permission is granted, -ve error otherwise.
5013
*/
5014
int security_key_alloc(struct key *key, const struct cred *cred,
5015
unsigned long flags)
5016
{
5017
int rc = lsm_key_alloc(key);
5018
5019
if (unlikely(rc))
5020
return rc;
5021
rc = call_int_hook(key_alloc, key, cred, flags);
5022
if (unlikely(rc))
5023
security_key_free(key);
5024
return rc;
5025
}
5026
5027
/**
5028
* security_key_free() - Free a kernel key LSM blob
5029
* @key: key
5030
*
5031
* Notification of destruction; free security data.
5032
*/
5033
void security_key_free(struct key *key)
5034
{
5035
kfree(key->security);
5036
key->security = NULL;
5037
}
5038
5039
/**
5040
* security_key_permission() - Check if a kernel key operation is allowed
5041
* @key_ref: key reference
5042
* @cred: credentials of actor requesting access
5043
* @need_perm: requested permissions
5044
*
5045
* See whether a specific operational right is granted to a process on a key.
5046
*
5047
* Return: Return 0 if permission is granted, -ve error otherwise.
5048
*/
5049
int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5050
enum key_need_perm need_perm)
5051
{
5052
return call_int_hook(key_permission, key_ref, cred, need_perm);
5053
}
5054
5055
/**
5056
* security_key_getsecurity() - Get the key's security label
5057
* @key: key
5058
* @buffer: security label buffer
5059
*
5060
* Get a textual representation of the security context attached to a key for
5061
* the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5062
* storage for the NUL-terminated string and the caller should free it.
5063
*
5064
* Return: Returns the length of @buffer (including terminating NUL) or -ve if
5065
* an error occurs. May also return 0 (and a NULL buffer pointer) if
5066
* there is no security label assigned to the key.
5067
*/
5068
int security_key_getsecurity(struct key *key, char **buffer)
5069
{
5070
*buffer = NULL;
5071
return call_int_hook(key_getsecurity, key, buffer);
5072
}
5073
5074
/**
5075
* security_key_post_create_or_update() - Notification of key create or update
5076
* @keyring: keyring to which the key is linked to
5077
* @key: created or updated key
5078
* @payload: data used to instantiate or update the key
5079
* @payload_len: length of payload
5080
* @flags: key flags
5081
* @create: flag indicating whether the key was created or updated
5082
*
5083
* Notify the caller of a key creation or update.
5084
*/
5085
void security_key_post_create_or_update(struct key *keyring, struct key *key,
5086
const void *payload, size_t payload_len,
5087
unsigned long flags, bool create)
5088
{
5089
call_void_hook(key_post_create_or_update, keyring, key, payload,
5090
payload_len, flags, create);
5091
}
5092
#endif /* CONFIG_KEYS */
5093
5094
#ifdef CONFIG_AUDIT
5095
/**
5096
* security_audit_rule_init() - Allocate and init an LSM audit rule struct
5097
* @field: audit action
5098
* @op: rule operator
5099
* @rulestr: rule context
5100
* @lsmrule: receive buffer for audit rule struct
5101
* @gfp: GFP flag used for kmalloc
5102
*
5103
* Allocate and initialize an LSM audit rule structure.
5104
*
5105
* Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5106
* an invalid rule.
5107
*/
5108
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5109
gfp_t gfp)
5110
{
5111
return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5112
}
5113
5114
/**
5115
* security_audit_rule_known() - Check if an audit rule contains LSM fields
5116
* @krule: audit rule
5117
*
5118
* Specifies whether given @krule contains any fields related to the current
5119
* LSM.
5120
*
5121
* Return: Returns 1 in case of relation found, 0 otherwise.
5122
*/
5123
int security_audit_rule_known(struct audit_krule *krule)
5124
{
5125
return call_int_hook(audit_rule_known, krule);
5126
}
5127
5128
/**
5129
* security_audit_rule_free() - Free an LSM audit rule struct
5130
* @lsmrule: audit rule struct
5131
*
5132
* Deallocate the LSM audit rule structure previously allocated by
5133
* audit_rule_init().
5134
*/
5135
void security_audit_rule_free(void *lsmrule)
5136
{
5137
call_void_hook(audit_rule_free, lsmrule);
5138
}
5139
5140
/**
5141
* security_audit_rule_match() - Check if a label matches an audit rule
5142
* @prop: security label
5143
* @field: LSM audit field
5144
* @op: matching operator
5145
* @lsmrule: audit rule
5146
*
5147
* Determine if given @secid matches a rule previously approved by
5148
* security_audit_rule_known().
5149
*
5150
* Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5151
* failure.
5152
*/
5153
int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5154
void *lsmrule)
5155
{
5156
return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5157
}
5158
#endif /* CONFIG_AUDIT */
5159
5160
#ifdef CONFIG_BPF_SYSCALL
5161
/**
5162
* security_bpf() - Check if the bpf syscall operation is allowed
5163
* @cmd: command
5164
* @attr: bpf attribute
5165
* @size: size
5166
* @kernel: whether or not call originated from kernel
5167
*
5168
* Do a initial check for all bpf syscalls after the attribute is copied into
5169
* the kernel. The actual security module can implement their own rules to
5170
* check the specific cmd they need.
5171
*
5172
* Return: Returns 0 if permission is granted.
5173
*/
5174
int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel)
5175
{
5176
return call_int_hook(bpf, cmd, attr, size, kernel);
5177
}
5178
5179
/**
5180
* security_bpf_map() - Check if access to a bpf map is allowed
5181
* @map: bpf map
5182
* @fmode: mode
5183
*
5184
* Do a check when the kernel generates and returns a file descriptor for eBPF
5185
* maps.
5186
*
5187
* Return: Returns 0 if permission is granted.
5188
*/
5189
int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5190
{
5191
return call_int_hook(bpf_map, map, fmode);
5192
}
5193
5194
/**
5195
* security_bpf_prog() - Check if access to a bpf program is allowed
5196
* @prog: bpf program
5197
*
5198
* Do a check when the kernel generates and returns a file descriptor for eBPF
5199
* programs.
5200
*
5201
* Return: Returns 0 if permission is granted.
5202
*/
5203
int security_bpf_prog(struct bpf_prog *prog)
5204
{
5205
return call_int_hook(bpf_prog, prog);
5206
}
5207
5208
/**
5209
* security_bpf_map_create() - Check if BPF map creation is allowed
5210
* @map: BPF map object
5211
* @attr: BPF syscall attributes used to create BPF map
5212
* @token: BPF token used to grant user access
5213
* @kernel: whether or not call originated from kernel
5214
*
5215
* Do a check when the kernel creates a new BPF map. This is also the
5216
* point where LSM blob is allocated for LSMs that need them.
5217
*
5218
* Return: Returns 0 on success, error on failure.
5219
*/
5220
int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5221
struct bpf_token *token, bool kernel)
5222
{
5223
int rc;
5224
5225
rc = lsm_bpf_map_alloc(map);
5226
if (unlikely(rc))
5227
return rc;
5228
5229
rc = call_int_hook(bpf_map_create, map, attr, token, kernel);
5230
if (unlikely(rc))
5231
security_bpf_map_free(map);
5232
return rc;
5233
}
5234
5235
/**
5236
* security_bpf_prog_load() - Check if loading of BPF program is allowed
5237
* @prog: BPF program object
5238
* @attr: BPF syscall attributes used to create BPF program
5239
* @token: BPF token used to grant user access to BPF subsystem
5240
* @kernel: whether or not call originated from kernel
5241
*
5242
* Perform an access control check when the kernel loads a BPF program and
5243
* allocates associated BPF program object. This hook is also responsible for
5244
* allocating any required LSM state for the BPF program.
5245
*
5246
* Return: Returns 0 on success, error on failure.
5247
*/
5248
int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5249
struct bpf_token *token, bool kernel)
5250
{
5251
int rc;
5252
5253
rc = lsm_bpf_prog_alloc(prog);
5254
if (unlikely(rc))
5255
return rc;
5256
5257
rc = call_int_hook(bpf_prog_load, prog, attr, token, kernel);
5258
if (unlikely(rc))
5259
security_bpf_prog_free(prog);
5260
return rc;
5261
}
5262
5263
/**
5264
* security_bpf_token_create() - Check if creating of BPF token is allowed
5265
* @token: BPF token object
5266
* @attr: BPF syscall attributes used to create BPF token
5267
* @path: path pointing to BPF FS mount point from which BPF token is created
5268
*
5269
* Do a check when the kernel instantiates a new BPF token object from BPF FS
5270
* instance. This is also the point where LSM blob can be allocated for LSMs.
5271
*
5272
* Return: Returns 0 on success, error on failure.
5273
*/
5274
int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5275
const struct path *path)
5276
{
5277
int rc;
5278
5279
rc = lsm_bpf_token_alloc(token);
5280
if (unlikely(rc))
5281
return rc;
5282
5283
rc = call_int_hook(bpf_token_create, token, attr, path);
5284
if (unlikely(rc))
5285
security_bpf_token_free(token);
5286
return rc;
5287
}
5288
5289
/**
5290
* security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5291
* requested BPF syscall command
5292
* @token: BPF token object
5293
* @cmd: BPF syscall command requested to be delegated by BPF token
5294
*
5295
* Do a check when the kernel decides whether provided BPF token should allow
5296
* delegation of requested BPF syscall command.
5297
*
5298
* Return: Returns 0 on success, error on failure.
5299
*/
5300
int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5301
{
5302
return call_int_hook(bpf_token_cmd, token, cmd);
5303
}
5304
5305
/**
5306
* security_bpf_token_capable() - Check if BPF token is allowed to delegate
5307
* requested BPF-related capability
5308
* @token: BPF token object
5309
* @cap: capabilities requested to be delegated by BPF token
5310
*
5311
* Do a check when the kernel decides whether provided BPF token should allow
5312
* delegation of requested BPF-related capabilities.
5313
*
5314
* Return: Returns 0 on success, error on failure.
5315
*/
5316
int security_bpf_token_capable(const struct bpf_token *token, int cap)
5317
{
5318
return call_int_hook(bpf_token_capable, token, cap);
5319
}
5320
5321
/**
5322
* security_bpf_map_free() - Free a bpf map's LSM blob
5323
* @map: bpf map
5324
*
5325
* Clean up the security information stored inside bpf map.
5326
*/
5327
void security_bpf_map_free(struct bpf_map *map)
5328
{
5329
call_void_hook(bpf_map_free, map);
5330
kfree(map->security);
5331
map->security = NULL;
5332
}
5333
5334
/**
5335
* security_bpf_prog_free() - Free a BPF program's LSM blob
5336
* @prog: BPF program struct
5337
*
5338
* Clean up the security information stored inside BPF program.
5339
*/
5340
void security_bpf_prog_free(struct bpf_prog *prog)
5341
{
5342
call_void_hook(bpf_prog_free, prog);
5343
kfree(prog->aux->security);
5344
prog->aux->security = NULL;
5345
}
5346
5347
/**
5348
* security_bpf_token_free() - Free a BPF token's LSM blob
5349
* @token: BPF token struct
5350
*
5351
* Clean up the security information stored inside BPF token.
5352
*/
5353
void security_bpf_token_free(struct bpf_token *token)
5354
{
5355
call_void_hook(bpf_token_free, token);
5356
kfree(token->security);
5357
token->security = NULL;
5358
}
5359
#endif /* CONFIG_BPF_SYSCALL */
5360
5361
/**
5362
* security_locked_down() - Check if a kernel feature is allowed
5363
* @what: requested kernel feature
5364
*
5365
* Determine whether a kernel feature that potentially enables arbitrary code
5366
* execution in kernel space should be permitted.
5367
*
5368
* Return: Returns 0 if permission is granted.
5369
*/
5370
int security_locked_down(enum lockdown_reason what)
5371
{
5372
return call_int_hook(locked_down, what);
5373
}
5374
EXPORT_SYMBOL(security_locked_down);
5375
5376
/**
5377
* security_bdev_alloc() - Allocate a block device LSM blob
5378
* @bdev: block device
5379
*
5380
* Allocate and attach a security structure to @bdev->bd_security. The
5381
* security field is initialized to NULL when the bdev structure is
5382
* allocated.
5383
*
5384
* Return: Return 0 if operation was successful.
5385
*/
5386
int security_bdev_alloc(struct block_device *bdev)
5387
{
5388
int rc = 0;
5389
5390
rc = lsm_bdev_alloc(bdev);
5391
if (unlikely(rc))
5392
return rc;
5393
5394
rc = call_int_hook(bdev_alloc_security, bdev);
5395
if (unlikely(rc))
5396
security_bdev_free(bdev);
5397
5398
return rc;
5399
}
5400
EXPORT_SYMBOL(security_bdev_alloc);
5401
5402
/**
5403
* security_bdev_free() - Free a block device's LSM blob
5404
* @bdev: block device
5405
*
5406
* Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5407
*/
5408
void security_bdev_free(struct block_device *bdev)
5409
{
5410
if (!bdev->bd_security)
5411
return;
5412
5413
call_void_hook(bdev_free_security, bdev);
5414
5415
kfree(bdev->bd_security);
5416
bdev->bd_security = NULL;
5417
}
5418
EXPORT_SYMBOL(security_bdev_free);
5419
5420
/**
5421
* security_bdev_setintegrity() - Set the device's integrity data
5422
* @bdev: block device
5423
* @type: type of integrity, e.g. hash digest, signature, etc
5424
* @value: the integrity value
5425
* @size: size of the integrity value
5426
*
5427
* Register a verified integrity measurement of a bdev with LSMs.
5428
* LSMs should free the previously saved data if @value is NULL.
5429
* Please note that the new hook should be invoked every time the security
5430
* information is updated to keep these data current. For example, in dm-verity,
5431
* if the mapping table is reloaded and configured to use a different dm-verity
5432
* target with a new roothash and signing information, the previously stored
5433
* data in the LSM blob will become obsolete. It is crucial to re-invoke the
5434
* hook to refresh these data and ensure they are up to date. This necessity
5435
* arises from the design of device-mapper, where a device-mapper device is
5436
* first created, and then targets are subsequently loaded into it. These
5437
* targets can be modified multiple times during the device's lifetime.
5438
* Therefore, while the LSM blob is allocated during the creation of the block
5439
* device, its actual contents are not initialized at this stage and can change
5440
* substantially over time. This includes alterations from data that the LSMs
5441
* 'trusts' to those they do not, making it essential to handle these changes
5442
* correctly. Failure to address this dynamic aspect could potentially allow
5443
* for bypassing LSM checks.
5444
*
5445
* Return: Returns 0 on success, negative values on failure.
5446
*/
5447
int security_bdev_setintegrity(struct block_device *bdev,
5448
enum lsm_integrity_type type, const void *value,
5449
size_t size)
5450
{
5451
return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5452
}
5453
EXPORT_SYMBOL(security_bdev_setintegrity);
5454
5455
#ifdef CONFIG_PERF_EVENTS
5456
/**
5457
* security_perf_event_open() - Check if a perf event open is allowed
5458
* @type: type of event
5459
*
5460
* Check whether the @type of perf_event_open syscall is allowed.
5461
*
5462
* Return: Returns 0 if permission is granted.
5463
*/
5464
int security_perf_event_open(int type)
5465
{
5466
return call_int_hook(perf_event_open, type);
5467
}
5468
5469
/**
5470
* security_perf_event_alloc() - Allocate a perf event LSM blob
5471
* @event: perf event
5472
*
5473
* Allocate and save perf_event security info.
5474
*
5475
* Return: Returns 0 on success, error on failure.
5476
*/
5477
int security_perf_event_alloc(struct perf_event *event)
5478
{
5479
int rc;
5480
5481
rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5482
GFP_KERNEL);
5483
if (rc)
5484
return rc;
5485
5486
rc = call_int_hook(perf_event_alloc, event);
5487
if (rc) {
5488
kfree(event->security);
5489
event->security = NULL;
5490
}
5491
return rc;
5492
}
5493
5494
/**
5495
* security_perf_event_free() - Free a perf event LSM blob
5496
* @event: perf event
5497
*
5498
* Release (free) perf_event security info.
5499
*/
5500
void security_perf_event_free(struct perf_event *event)
5501
{
5502
kfree(event->security);
5503
event->security = NULL;
5504
}
5505
5506
/**
5507
* security_perf_event_read() - Check if reading a perf event label is allowed
5508
* @event: perf event
5509
*
5510
* Read perf_event security info if allowed.
5511
*
5512
* Return: Returns 0 if permission is granted.
5513
*/
5514
int security_perf_event_read(struct perf_event *event)
5515
{
5516
return call_int_hook(perf_event_read, event);
5517
}
5518
5519
/**
5520
* security_perf_event_write() - Check if writing a perf event label is allowed
5521
* @event: perf event
5522
*
5523
* Write perf_event security info if allowed.
5524
*
5525
* Return: Returns 0 if permission is granted.
5526
*/
5527
int security_perf_event_write(struct perf_event *event)
5528
{
5529
return call_int_hook(perf_event_write, event);
5530
}
5531
#endif /* CONFIG_PERF_EVENTS */
5532
5533
#ifdef CONFIG_IO_URING
5534
/**
5535
* security_uring_override_creds() - Check if overriding creds is allowed
5536
* @new: new credentials
5537
*
5538
* Check if the current task, executing an io_uring operation, is allowed to
5539
* override it's credentials with @new.
5540
*
5541
* Return: Returns 0 if permission is granted.
5542
*/
5543
int security_uring_override_creds(const struct cred *new)
5544
{
5545
return call_int_hook(uring_override_creds, new);
5546
}
5547
5548
/**
5549
* security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5550
*
5551
* Check whether the current task is allowed to spawn a io_uring polling thread
5552
* (IORING_SETUP_SQPOLL).
5553
*
5554
* Return: Returns 0 if permission is granted.
5555
*/
5556
int security_uring_sqpoll(void)
5557
{
5558
return call_int_hook(uring_sqpoll);
5559
}
5560
5561
/**
5562
* security_uring_cmd() - Check if a io_uring passthrough command is allowed
5563
* @ioucmd: command
5564
*
5565
* Check whether the file_operations uring_cmd is allowed to run.
5566
*
5567
* Return: Returns 0 if permission is granted.
5568
*/
5569
int security_uring_cmd(struct io_uring_cmd *ioucmd)
5570
{
5571
return call_int_hook(uring_cmd, ioucmd);
5572
}
5573
5574
/**
5575
* security_uring_allowed() - Check if io_uring_setup() is allowed
5576
*
5577
* Check whether the current task is allowed to call io_uring_setup().
5578
*
5579
* Return: Returns 0 if permission is granted.
5580
*/
5581
int security_uring_allowed(void)
5582
{
5583
return call_int_hook(uring_allowed);
5584
}
5585
#endif /* CONFIG_IO_URING */
5586
5587
/**
5588
* security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5589
*
5590
* Tells the LSMs the initramfs has been unpacked into the rootfs.
5591
*/
5592
void security_initramfs_populated(void)
5593
{
5594
call_void_hook(initramfs_populated);
5595
}
5596
5597