Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/selinux/ss/services.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Implementation of the security services.
4
*
5
* Authors : Stephen Smalley, <[email protected]>
6
* James Morris <[email protected]>
7
*
8
* Updated: Trusted Computer Solutions, Inc. <[email protected]>
9
*
10
* Support for enhanced MLS infrastructure.
11
* Support for context based audit filters.
12
*
13
* Updated: Frank Mayer <[email protected]> and Karl MacMillan <[email protected]>
14
*
15
* Added conditional policy language extensions
16
*
17
* Updated: Hewlett-Packard <[email protected]>
18
*
19
* Added support for NetLabel
20
* Added support for the policy capability bitmap
21
*
22
* Updated: Chad Sellers <[email protected]>
23
*
24
* Added validation of kernel classes and permissions
25
*
26
* Updated: KaiGai Kohei <[email protected]>
27
*
28
* Added support for bounds domain and audit messaged on masked permissions
29
*
30
* Updated: Guido Trentalancia <[email protected]>
31
*
32
* Added support for runtime switching of the policy type
33
*
34
* Copyright (C) 2008, 2009 NEC Corporation
35
* Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36
* Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37
* Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38
* Copyright (C) 2003 Red Hat, Inc., James Morris <[email protected]>
39
*/
40
#include <linux/kernel.h>
41
#include <linux/slab.h>
42
#include <linux/string.h>
43
#include <linux/spinlock.h>
44
#include <linux/rcupdate.h>
45
#include <linux/errno.h>
46
#include <linux/in.h>
47
#include <linux/sched.h>
48
#include <linux/audit.h>
49
#include <linux/parser.h>
50
#include <linux/vmalloc.h>
51
#include <linux/lsm_hooks.h>
52
#include <net/netlabel.h>
53
54
#include "flask.h"
55
#include "avc.h"
56
#include "avc_ss.h"
57
#include "security.h"
58
#include "context.h"
59
#include "policydb.h"
60
#include "sidtab.h"
61
#include "services.h"
62
#include "conditional.h"
63
#include "mls.h"
64
#include "objsec.h"
65
#include "netlabel.h"
66
#include "xfrm.h"
67
#include "ebitmap.h"
68
#include "audit.h"
69
#include "policycap_names.h"
70
#include "ima.h"
71
72
struct selinux_policy_convert_data {
73
struct convert_context_args args;
74
struct sidtab_convert_params sidtab_params;
75
};
76
77
/* Forward declaration. */
78
static int context_struct_to_string(struct policydb *policydb,
79
struct context *context,
80
char **scontext,
81
u32 *scontext_len);
82
83
static int sidtab_entry_to_string(struct policydb *policydb,
84
struct sidtab *sidtab,
85
struct sidtab_entry *entry,
86
char **scontext,
87
u32 *scontext_len);
88
89
static void context_struct_compute_av(struct policydb *policydb,
90
struct context *scontext,
91
struct context *tcontext,
92
u16 tclass,
93
struct av_decision *avd,
94
struct extended_perms *xperms);
95
96
static int selinux_set_mapping(struct policydb *pol,
97
const struct security_class_mapping *map,
98
struct selinux_map *out_map)
99
{
100
u16 i, j;
101
bool print_unknown_handle = false;
102
103
/* Find number of classes in the input mapping */
104
if (!map)
105
return -EINVAL;
106
i = 0;
107
while (map[i].name)
108
i++;
109
110
/* Allocate space for the class records, plus one for class zero */
111
out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112
if (!out_map->mapping)
113
return -ENOMEM;
114
115
/* Store the raw class and permission values */
116
j = 0;
117
while (map[j].name) {
118
const struct security_class_mapping *p_in = map + (j++);
119
struct selinux_mapping *p_out = out_map->mapping + j;
120
u16 k;
121
122
/* An empty class string skips ahead */
123
if (!strcmp(p_in->name, "")) {
124
p_out->num_perms = 0;
125
continue;
126
}
127
128
p_out->value = string_to_security_class(pol, p_in->name);
129
if (!p_out->value) {
130
pr_info("SELinux: Class %s not defined in policy.\n",
131
p_in->name);
132
if (pol->reject_unknown)
133
goto err;
134
p_out->num_perms = 0;
135
print_unknown_handle = true;
136
continue;
137
}
138
139
k = 0;
140
while (p_in->perms[k]) {
141
/* An empty permission string skips ahead */
142
if (!*p_in->perms[k]) {
143
k++;
144
continue;
145
}
146
p_out->perms[k] = string_to_av_perm(pol, p_out->value,
147
p_in->perms[k]);
148
if (!p_out->perms[k]) {
149
pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
150
p_in->perms[k], p_in->name);
151
if (pol->reject_unknown)
152
goto err;
153
print_unknown_handle = true;
154
}
155
156
k++;
157
}
158
p_out->num_perms = k;
159
}
160
161
if (print_unknown_handle)
162
pr_info("SELinux: the above unknown classes and permissions will be %s\n",
163
pol->allow_unknown ? "allowed" : "denied");
164
165
out_map->size = i;
166
return 0;
167
err:
168
kfree(out_map->mapping);
169
out_map->mapping = NULL;
170
return -EINVAL;
171
}
172
173
/*
174
* Get real, policy values from mapped values
175
*/
176
177
static u16 unmap_class(struct selinux_map *map, u16 tclass)
178
{
179
if (tclass < map->size)
180
return map->mapping[tclass].value;
181
182
return tclass;
183
}
184
185
/*
186
* Get kernel value for class from its policy value
187
*/
188
static u16 map_class(struct selinux_map *map, u16 pol_value)
189
{
190
u16 i;
191
192
for (i = 1; i < map->size; i++) {
193
if (map->mapping[i].value == pol_value)
194
return i;
195
}
196
197
return SECCLASS_NULL;
198
}
199
200
static void map_decision(struct selinux_map *map,
201
u16 tclass, struct av_decision *avd,
202
int allow_unknown)
203
{
204
if (tclass < map->size) {
205
struct selinux_mapping *mapping = &map->mapping[tclass];
206
unsigned int i, n = mapping->num_perms;
207
u32 result;
208
209
for (i = 0, result = 0; i < n; i++) {
210
if (avd->allowed & mapping->perms[i])
211
result |= (u32)1<<i;
212
if (allow_unknown && !mapping->perms[i])
213
result |= (u32)1<<i;
214
}
215
avd->allowed = result;
216
217
for (i = 0, result = 0; i < n; i++)
218
if (avd->auditallow & mapping->perms[i])
219
result |= (u32)1<<i;
220
avd->auditallow = result;
221
222
for (i = 0, result = 0; i < n; i++) {
223
if (avd->auditdeny & mapping->perms[i])
224
result |= (u32)1<<i;
225
if (!allow_unknown && !mapping->perms[i])
226
result |= (u32)1<<i;
227
}
228
/*
229
* In case the kernel has a bug and requests a permission
230
* between num_perms and the maximum permission number, we
231
* should audit that denial
232
*/
233
for (; i < (sizeof(u32)*8); i++)
234
result |= (u32)1<<i;
235
avd->auditdeny = result;
236
}
237
}
238
239
int security_mls_enabled(void)
240
{
241
int mls_enabled;
242
struct selinux_policy *policy;
243
244
if (!selinux_initialized())
245
return 0;
246
247
rcu_read_lock();
248
policy = rcu_dereference(selinux_state.policy);
249
mls_enabled = policy->policydb.mls_enabled;
250
rcu_read_unlock();
251
return mls_enabled;
252
}
253
254
/*
255
* Return the boolean value of a constraint expression
256
* when it is applied to the specified source and target
257
* security contexts.
258
*
259
* xcontext is a special beast... It is used by the validatetrans rules
260
* only. For these rules, scontext is the context before the transition,
261
* tcontext is the context after the transition, and xcontext is the context
262
* of the process performing the transition. All other callers of
263
* constraint_expr_eval should pass in NULL for xcontext.
264
*/
265
static int constraint_expr_eval(struct policydb *policydb,
266
struct context *scontext,
267
struct context *tcontext,
268
struct context *xcontext,
269
struct constraint_expr *cexpr)
270
{
271
u32 val1, val2;
272
struct context *c;
273
struct role_datum *r1, *r2;
274
struct mls_level *l1, *l2;
275
struct constraint_expr *e;
276
int s[CEXPR_MAXDEPTH];
277
int sp = -1;
278
279
for (e = cexpr; e; e = e->next) {
280
switch (e->expr_type) {
281
case CEXPR_NOT:
282
BUG_ON(sp < 0);
283
s[sp] = !s[sp];
284
break;
285
case CEXPR_AND:
286
BUG_ON(sp < 1);
287
sp--;
288
s[sp] &= s[sp + 1];
289
break;
290
case CEXPR_OR:
291
BUG_ON(sp < 1);
292
sp--;
293
s[sp] |= s[sp + 1];
294
break;
295
case CEXPR_ATTR:
296
if (sp == (CEXPR_MAXDEPTH - 1))
297
return 0;
298
switch (e->attr) {
299
case CEXPR_USER:
300
val1 = scontext->user;
301
val2 = tcontext->user;
302
break;
303
case CEXPR_TYPE:
304
val1 = scontext->type;
305
val2 = tcontext->type;
306
break;
307
case CEXPR_ROLE:
308
val1 = scontext->role;
309
val2 = tcontext->role;
310
r1 = policydb->role_val_to_struct[val1 - 1];
311
r2 = policydb->role_val_to_struct[val2 - 1];
312
switch (e->op) {
313
case CEXPR_DOM:
314
s[++sp] = ebitmap_get_bit(&r1->dominates,
315
val2 - 1);
316
continue;
317
case CEXPR_DOMBY:
318
s[++sp] = ebitmap_get_bit(&r2->dominates,
319
val1 - 1);
320
continue;
321
case CEXPR_INCOMP:
322
s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323
val2 - 1) &&
324
!ebitmap_get_bit(&r2->dominates,
325
val1 - 1));
326
continue;
327
default:
328
break;
329
}
330
break;
331
case CEXPR_L1L2:
332
l1 = &(scontext->range.level[0]);
333
l2 = &(tcontext->range.level[0]);
334
goto mls_ops;
335
case CEXPR_L1H2:
336
l1 = &(scontext->range.level[0]);
337
l2 = &(tcontext->range.level[1]);
338
goto mls_ops;
339
case CEXPR_H1L2:
340
l1 = &(scontext->range.level[1]);
341
l2 = &(tcontext->range.level[0]);
342
goto mls_ops;
343
case CEXPR_H1H2:
344
l1 = &(scontext->range.level[1]);
345
l2 = &(tcontext->range.level[1]);
346
goto mls_ops;
347
case CEXPR_L1H1:
348
l1 = &(scontext->range.level[0]);
349
l2 = &(scontext->range.level[1]);
350
goto mls_ops;
351
case CEXPR_L2H2:
352
l1 = &(tcontext->range.level[0]);
353
l2 = &(tcontext->range.level[1]);
354
goto mls_ops;
355
mls_ops:
356
switch (e->op) {
357
case CEXPR_EQ:
358
s[++sp] = mls_level_eq(l1, l2);
359
continue;
360
case CEXPR_NEQ:
361
s[++sp] = !mls_level_eq(l1, l2);
362
continue;
363
case CEXPR_DOM:
364
s[++sp] = mls_level_dom(l1, l2);
365
continue;
366
case CEXPR_DOMBY:
367
s[++sp] = mls_level_dom(l2, l1);
368
continue;
369
case CEXPR_INCOMP:
370
s[++sp] = mls_level_incomp(l2, l1);
371
continue;
372
default:
373
BUG();
374
return 0;
375
}
376
break;
377
default:
378
BUG();
379
return 0;
380
}
381
382
switch (e->op) {
383
case CEXPR_EQ:
384
s[++sp] = (val1 == val2);
385
break;
386
case CEXPR_NEQ:
387
s[++sp] = (val1 != val2);
388
break;
389
default:
390
BUG();
391
return 0;
392
}
393
break;
394
case CEXPR_NAMES:
395
if (sp == (CEXPR_MAXDEPTH-1))
396
return 0;
397
c = scontext;
398
if (e->attr & CEXPR_TARGET)
399
c = tcontext;
400
else if (e->attr & CEXPR_XTARGET) {
401
c = xcontext;
402
if (!c) {
403
BUG();
404
return 0;
405
}
406
}
407
if (e->attr & CEXPR_USER)
408
val1 = c->user;
409
else if (e->attr & CEXPR_ROLE)
410
val1 = c->role;
411
else if (e->attr & CEXPR_TYPE)
412
val1 = c->type;
413
else {
414
BUG();
415
return 0;
416
}
417
418
switch (e->op) {
419
case CEXPR_EQ:
420
s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421
break;
422
case CEXPR_NEQ:
423
s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424
break;
425
default:
426
BUG();
427
return 0;
428
}
429
break;
430
default:
431
BUG();
432
return 0;
433
}
434
}
435
436
BUG_ON(sp != 0);
437
return s[0];
438
}
439
440
/*
441
* security_dump_masked_av - dumps masked permissions during
442
* security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443
*/
444
static int dump_masked_av_helper(void *k, void *d, void *args)
445
{
446
struct perm_datum *pdatum = d;
447
char **permission_names = args;
448
449
BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450
451
permission_names[pdatum->value - 1] = (char *)k;
452
453
return 0;
454
}
455
456
static void security_dump_masked_av(struct policydb *policydb,
457
struct context *scontext,
458
struct context *tcontext,
459
u16 tclass,
460
u32 permissions,
461
const char *reason)
462
{
463
struct common_datum *common_dat;
464
struct class_datum *tclass_dat;
465
struct audit_buffer *ab;
466
char *tclass_name;
467
char *scontext_name = NULL;
468
char *tcontext_name = NULL;
469
char *permission_names[32];
470
int index;
471
u32 length;
472
bool need_comma = false;
473
474
if (!permissions)
475
return;
476
477
tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478
tclass_dat = policydb->class_val_to_struct[tclass - 1];
479
common_dat = tclass_dat->comdatum;
480
481
/* init permission_names */
482
if (common_dat &&
483
hashtab_map(&common_dat->permissions.table,
484
dump_masked_av_helper, permission_names) < 0)
485
goto out;
486
487
if (hashtab_map(&tclass_dat->permissions.table,
488
dump_masked_av_helper, permission_names) < 0)
489
goto out;
490
491
/* get scontext/tcontext in text form */
492
if (context_struct_to_string(policydb, scontext,
493
&scontext_name, &length) < 0)
494
goto out;
495
496
if (context_struct_to_string(policydb, tcontext,
497
&tcontext_name, &length) < 0)
498
goto out;
499
500
/* audit a message */
501
ab = audit_log_start(audit_context(),
502
GFP_ATOMIC, AUDIT_SELINUX_ERR);
503
if (!ab)
504
goto out;
505
506
audit_log_format(ab, "op=security_compute_av reason=%s "
507
"scontext=%s tcontext=%s tclass=%s perms=",
508
reason, scontext_name, tcontext_name, tclass_name);
509
510
for (index = 0; index < 32; index++) {
511
u32 mask = (1 << index);
512
513
if ((mask & permissions) == 0)
514
continue;
515
516
audit_log_format(ab, "%s%s",
517
need_comma ? "," : "",
518
permission_names[index]
519
? permission_names[index] : "????");
520
need_comma = true;
521
}
522
audit_log_end(ab);
523
out:
524
/* release scontext/tcontext */
525
kfree(tcontext_name);
526
kfree(scontext_name);
527
}
528
529
/*
530
* security_boundary_permission - drops violated permissions
531
* on boundary constraint.
532
*/
533
static void type_attribute_bounds_av(struct policydb *policydb,
534
struct context *scontext,
535
struct context *tcontext,
536
u16 tclass,
537
struct av_decision *avd)
538
{
539
struct context lo_scontext;
540
struct context lo_tcontext, *tcontextp = tcontext;
541
struct av_decision lo_avd;
542
struct type_datum *source;
543
struct type_datum *target;
544
u32 masked = 0;
545
546
source = policydb->type_val_to_struct[scontext->type - 1];
547
BUG_ON(!source);
548
549
if (!source->bounds)
550
return;
551
552
target = policydb->type_val_to_struct[tcontext->type - 1];
553
BUG_ON(!target);
554
555
memset(&lo_avd, 0, sizeof(lo_avd));
556
557
memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
558
lo_scontext.type = source->bounds;
559
560
if (target->bounds) {
561
memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
562
lo_tcontext.type = target->bounds;
563
tcontextp = &lo_tcontext;
564
}
565
566
context_struct_compute_av(policydb, &lo_scontext,
567
tcontextp,
568
tclass,
569
&lo_avd,
570
NULL);
571
572
masked = ~lo_avd.allowed & avd->allowed;
573
574
if (likely(!masked))
575
return; /* no masked permission */
576
577
/* mask violated permissions */
578
avd->allowed &= ~masked;
579
580
/* audit masked permissions */
581
security_dump_masked_av(policydb, scontext, tcontext,
582
tclass, masked, "bounds");
583
}
584
585
/*
586
* Flag which drivers have permissions and which base permissions are covered.
587
*/
588
void services_compute_xperms_drivers(
589
struct extended_perms *xperms,
590
struct avtab_node *node)
591
{
592
unsigned int i;
593
594
switch (node->datum.u.xperms->specified) {
595
case AVTAB_XPERMS_IOCTLDRIVER:
596
xperms->base_perms |= AVC_EXT_IOCTL;
597
/* if one or more driver has all permissions allowed */
598
for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599
xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600
break;
601
case AVTAB_XPERMS_IOCTLFUNCTION:
602
xperms->base_perms |= AVC_EXT_IOCTL;
603
/* if allowing permissions within a driver */
604
security_xperm_set(xperms->drivers.p,
605
node->datum.u.xperms->driver);
606
break;
607
case AVTAB_XPERMS_NLMSG:
608
xperms->base_perms |= AVC_EXT_NLMSG;
609
/* if allowing permissions within a driver */
610
security_xperm_set(xperms->drivers.p,
611
node->datum.u.xperms->driver);
612
break;
613
}
614
615
xperms->len = 1;
616
}
617
618
/*
619
* Compute access vectors and extended permissions based on a context
620
* structure pair for the permissions in a particular class.
621
*/
622
static void context_struct_compute_av(struct policydb *policydb,
623
struct context *scontext,
624
struct context *tcontext,
625
u16 tclass,
626
struct av_decision *avd,
627
struct extended_perms *xperms)
628
{
629
struct constraint_node *constraint;
630
struct role_allow *ra;
631
struct avtab_key avkey;
632
struct avtab_node *node;
633
struct class_datum *tclass_datum;
634
struct ebitmap *sattr, *tattr;
635
struct ebitmap_node *snode, *tnode;
636
unsigned int i, j;
637
638
avd->allowed = 0;
639
avd->auditallow = 0;
640
avd->auditdeny = 0xffffffff;
641
if (xperms) {
642
memset(xperms, 0, sizeof(*xperms));
643
}
644
645
if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646
pr_warn_ratelimited("SELinux: Invalid class %u\n", tclass);
647
return;
648
}
649
650
tclass_datum = policydb->class_val_to_struct[tclass - 1];
651
652
/*
653
* If a specific type enforcement rule was defined for
654
* this permission check, then use it.
655
*/
656
avkey.target_class = tclass;
657
avkey.specified = AVTAB_AV | AVTAB_XPERMS;
658
sattr = &policydb->type_attr_map_array[scontext->type - 1];
659
tattr = &policydb->type_attr_map_array[tcontext->type - 1];
660
ebitmap_for_each_positive_bit(sattr, snode, i) {
661
ebitmap_for_each_positive_bit(tattr, tnode, j) {
662
avkey.source_type = i + 1;
663
avkey.target_type = j + 1;
664
for (node = avtab_search_node(&policydb->te_avtab,
665
&avkey);
666
node;
667
node = avtab_search_node_next(node, avkey.specified)) {
668
if (node->key.specified == AVTAB_ALLOWED)
669
avd->allowed |= node->datum.u.data;
670
else if (node->key.specified == AVTAB_AUDITALLOW)
671
avd->auditallow |= node->datum.u.data;
672
else if (node->key.specified == AVTAB_AUDITDENY)
673
avd->auditdeny &= node->datum.u.data;
674
else if (xperms && (node->key.specified & AVTAB_XPERMS))
675
services_compute_xperms_drivers(xperms, node);
676
}
677
678
/* Check conditional av table for additional permissions */
679
cond_compute_av(&policydb->te_cond_avtab, &avkey,
680
avd, xperms);
681
682
}
683
}
684
685
/*
686
* Remove any permissions prohibited by a constraint (this includes
687
* the MLS policy).
688
*/
689
constraint = tclass_datum->constraints;
690
while (constraint) {
691
if ((constraint->permissions & (avd->allowed)) &&
692
!constraint_expr_eval(policydb, scontext, tcontext, NULL,
693
constraint->expr)) {
694
avd->allowed &= ~(constraint->permissions);
695
}
696
constraint = constraint->next;
697
}
698
699
/*
700
* If checking process transition permission and the
701
* role is changing, then check the (current_role, new_role)
702
* pair.
703
*/
704
if (tclass == policydb->process_class &&
705
(avd->allowed & policydb->process_trans_perms) &&
706
scontext->role != tcontext->role) {
707
for (ra = policydb->role_allow; ra; ra = ra->next) {
708
if (scontext->role == ra->role &&
709
tcontext->role == ra->new_role)
710
break;
711
}
712
if (!ra)
713
avd->allowed &= ~policydb->process_trans_perms;
714
}
715
716
/*
717
* If the given source and target types have boundary
718
* constraint, lazy checks have to mask any violated
719
* permission and notice it to userspace via audit.
720
*/
721
type_attribute_bounds_av(policydb, scontext, tcontext,
722
tclass, avd);
723
}
724
725
static int security_validtrans_handle_fail(struct selinux_policy *policy,
726
struct sidtab_entry *oentry,
727
struct sidtab_entry *nentry,
728
struct sidtab_entry *tentry,
729
u16 tclass)
730
{
731
struct policydb *p = &policy->policydb;
732
struct sidtab *sidtab = policy->sidtab;
733
char *o = NULL, *n = NULL, *t = NULL;
734
u32 olen, nlen, tlen;
735
736
if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737
goto out;
738
if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739
goto out;
740
if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741
goto out;
742
audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743
"op=security_validate_transition seresult=denied"
744
" oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745
o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746
out:
747
kfree(o);
748
kfree(n);
749
kfree(t);
750
751
if (!enforcing_enabled())
752
return 0;
753
return -EPERM;
754
}
755
756
static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
757
u16 orig_tclass, bool user)
758
{
759
struct selinux_policy *policy;
760
struct policydb *policydb;
761
struct sidtab *sidtab;
762
struct sidtab_entry *oentry;
763
struct sidtab_entry *nentry;
764
struct sidtab_entry *tentry;
765
struct class_datum *tclass_datum;
766
struct constraint_node *constraint;
767
u16 tclass;
768
int rc = 0;
769
770
771
if (!selinux_initialized())
772
return 0;
773
774
rcu_read_lock();
775
776
policy = rcu_dereference(selinux_state.policy);
777
policydb = &policy->policydb;
778
sidtab = policy->sidtab;
779
780
if (!user)
781
tclass = unmap_class(&policy->map, orig_tclass);
782
else
783
tclass = orig_tclass;
784
785
if (!tclass || tclass > policydb->p_classes.nprim) {
786
rc = -EINVAL;
787
goto out;
788
}
789
tclass_datum = policydb->class_val_to_struct[tclass - 1];
790
791
oentry = sidtab_search_entry(sidtab, oldsid);
792
if (!oentry) {
793
pr_err("SELinux: %s: unrecognized SID %d\n",
794
__func__, oldsid);
795
rc = -EINVAL;
796
goto out;
797
}
798
799
nentry = sidtab_search_entry(sidtab, newsid);
800
if (!nentry) {
801
pr_err("SELinux: %s: unrecognized SID %d\n",
802
__func__, newsid);
803
rc = -EINVAL;
804
goto out;
805
}
806
807
tentry = sidtab_search_entry(sidtab, tasksid);
808
if (!tentry) {
809
pr_err("SELinux: %s: unrecognized SID %d\n",
810
__func__, tasksid);
811
rc = -EINVAL;
812
goto out;
813
}
814
815
constraint = tclass_datum->validatetrans;
816
while (constraint) {
817
if (!constraint_expr_eval(policydb, &oentry->context,
818
&nentry->context, &tentry->context,
819
constraint->expr)) {
820
if (user)
821
rc = -EPERM;
822
else
823
rc = security_validtrans_handle_fail(policy,
824
oentry,
825
nentry,
826
tentry,
827
tclass);
828
goto out;
829
}
830
constraint = constraint->next;
831
}
832
833
out:
834
rcu_read_unlock();
835
return rc;
836
}
837
838
int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839
u16 tclass)
840
{
841
return security_compute_validatetrans(oldsid, newsid, tasksid,
842
tclass, true);
843
}
844
845
int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846
u16 orig_tclass)
847
{
848
return security_compute_validatetrans(oldsid, newsid, tasksid,
849
orig_tclass, false);
850
}
851
852
/*
853
* security_bounded_transition - check whether the given
854
* transition is directed to bounded, or not.
855
* It returns 0, if @newsid is bounded by @oldsid.
856
* Otherwise, it returns error code.
857
*
858
* @oldsid : current security identifier
859
* @newsid : destinated security identifier
860
*/
861
int security_bounded_transition(u32 old_sid, u32 new_sid)
862
{
863
struct selinux_policy *policy;
864
struct policydb *policydb;
865
struct sidtab *sidtab;
866
struct sidtab_entry *old_entry, *new_entry;
867
struct type_datum *type;
868
u32 index;
869
int rc;
870
871
if (!selinux_initialized())
872
return 0;
873
874
rcu_read_lock();
875
policy = rcu_dereference(selinux_state.policy);
876
policydb = &policy->policydb;
877
sidtab = policy->sidtab;
878
879
rc = -EINVAL;
880
old_entry = sidtab_search_entry(sidtab, old_sid);
881
if (!old_entry) {
882
pr_err("SELinux: %s: unrecognized SID %u\n",
883
__func__, old_sid);
884
goto out;
885
}
886
887
rc = -EINVAL;
888
new_entry = sidtab_search_entry(sidtab, new_sid);
889
if (!new_entry) {
890
pr_err("SELinux: %s: unrecognized SID %u\n",
891
__func__, new_sid);
892
goto out;
893
}
894
895
rc = 0;
896
/* type/domain unchanged */
897
if (old_entry->context.type == new_entry->context.type)
898
goto out;
899
900
index = new_entry->context.type;
901
while (true) {
902
type = policydb->type_val_to_struct[index - 1];
903
BUG_ON(!type);
904
905
/* not bounded anymore */
906
rc = -EPERM;
907
if (!type->bounds)
908
break;
909
910
/* @newsid is bounded by @oldsid */
911
rc = 0;
912
if (type->bounds == old_entry->context.type)
913
break;
914
915
index = type->bounds;
916
}
917
918
if (rc) {
919
char *old_name = NULL;
920
char *new_name = NULL;
921
u32 length;
922
923
if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
924
&old_name, &length) &&
925
!sidtab_entry_to_string(policydb, sidtab, new_entry,
926
&new_name, &length)) {
927
audit_log(audit_context(),
928
GFP_ATOMIC, AUDIT_SELINUX_ERR,
929
"op=security_bounded_transition "
930
"seresult=denied "
931
"oldcontext=%s newcontext=%s",
932
old_name, new_name);
933
}
934
kfree(new_name);
935
kfree(old_name);
936
}
937
out:
938
rcu_read_unlock();
939
940
return rc;
941
}
942
943
static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
944
{
945
avd->allowed = 0;
946
avd->auditallow = 0;
947
avd->auditdeny = 0xffffffff;
948
if (policy)
949
avd->seqno = policy->latest_granting;
950
else
951
avd->seqno = 0;
952
avd->flags = 0;
953
}
954
955
static void update_xperms_extended_data(u8 specified,
956
const struct extended_perms_data *from,
957
struct extended_perms_data *xp_data)
958
{
959
unsigned int i;
960
961
switch (specified) {
962
case AVTAB_XPERMS_IOCTLDRIVER:
963
memset(xp_data->p, 0xff, sizeof(xp_data->p));
964
break;
965
case AVTAB_XPERMS_IOCTLFUNCTION:
966
case AVTAB_XPERMS_NLMSG:
967
for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
968
xp_data->p[i] |= from->p[i];
969
break;
970
}
971
972
}
973
974
void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
975
struct avtab_node *node)
976
{
977
u16 specified;
978
979
switch (node->datum.u.xperms->specified) {
980
case AVTAB_XPERMS_IOCTLFUNCTION:
981
if (xpermd->base_perm != AVC_EXT_IOCTL ||
982
xpermd->driver != node->datum.u.xperms->driver)
983
return;
984
break;
985
case AVTAB_XPERMS_IOCTLDRIVER:
986
if (xpermd->base_perm != AVC_EXT_IOCTL ||
987
!security_xperm_test(node->datum.u.xperms->perms.p,
988
xpermd->driver))
989
return;
990
break;
991
case AVTAB_XPERMS_NLMSG:
992
if (xpermd->base_perm != AVC_EXT_NLMSG ||
993
xpermd->driver != node->datum.u.xperms->driver)
994
return;
995
break;
996
default:
997
pr_warn_once(
998
"SELinux: unknown extended permission (%u) will be ignored\n",
999
node->datum.u.xperms->specified);
1000
return;
1001
}
1002
1003
specified = node->key.specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD);
1004
1005
if (specified == AVTAB_XPERMS_ALLOWED) {
1006
xpermd->used |= XPERMS_ALLOWED;
1007
update_xperms_extended_data(node->datum.u.xperms->specified,
1008
&node->datum.u.xperms->perms,
1009
xpermd->allowed);
1010
} else if (specified == AVTAB_XPERMS_AUDITALLOW) {
1011
xpermd->used |= XPERMS_AUDITALLOW;
1012
update_xperms_extended_data(node->datum.u.xperms->specified,
1013
&node->datum.u.xperms->perms,
1014
xpermd->auditallow);
1015
} else if (specified == AVTAB_XPERMS_DONTAUDIT) {
1016
xpermd->used |= XPERMS_DONTAUDIT;
1017
update_xperms_extended_data(node->datum.u.xperms->specified,
1018
&node->datum.u.xperms->perms,
1019
xpermd->dontaudit);
1020
} else {
1021
pr_warn_once("SELinux: unknown specified key (%u)\n",
1022
node->key.specified);
1023
}
1024
}
1025
1026
void security_compute_xperms_decision(u32 ssid,
1027
u32 tsid,
1028
u16 orig_tclass,
1029
u8 driver,
1030
u8 base_perm,
1031
struct extended_perms_decision *xpermd)
1032
{
1033
struct selinux_policy *policy;
1034
struct policydb *policydb;
1035
struct sidtab *sidtab;
1036
u16 tclass;
1037
struct context *scontext, *tcontext;
1038
struct avtab_key avkey;
1039
struct avtab_node *node;
1040
struct ebitmap *sattr, *tattr;
1041
struct ebitmap_node *snode, *tnode;
1042
unsigned int i, j;
1043
1044
xpermd->base_perm = base_perm;
1045
xpermd->driver = driver;
1046
xpermd->used = 0;
1047
memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1048
memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1049
memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1050
1051
rcu_read_lock();
1052
if (!selinux_initialized())
1053
goto allow;
1054
1055
policy = rcu_dereference(selinux_state.policy);
1056
policydb = &policy->policydb;
1057
sidtab = policy->sidtab;
1058
1059
scontext = sidtab_search(sidtab, ssid);
1060
if (!scontext) {
1061
pr_err("SELinux: %s: unrecognized SID %d\n",
1062
__func__, ssid);
1063
goto out;
1064
}
1065
1066
tcontext = sidtab_search(sidtab, tsid);
1067
if (!tcontext) {
1068
pr_err("SELinux: %s: unrecognized SID %d\n",
1069
__func__, tsid);
1070
goto out;
1071
}
1072
1073
tclass = unmap_class(&policy->map, orig_tclass);
1074
if (unlikely(orig_tclass && !tclass)) {
1075
if (policydb->allow_unknown)
1076
goto allow;
1077
goto out;
1078
}
1079
1080
1081
if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1082
pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1083
goto out;
1084
}
1085
1086
avkey.target_class = tclass;
1087
avkey.specified = AVTAB_XPERMS;
1088
sattr = &policydb->type_attr_map_array[scontext->type - 1];
1089
tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1090
ebitmap_for_each_positive_bit(sattr, snode, i) {
1091
ebitmap_for_each_positive_bit(tattr, tnode, j) {
1092
avkey.source_type = i + 1;
1093
avkey.target_type = j + 1;
1094
for (node = avtab_search_node(&policydb->te_avtab,
1095
&avkey);
1096
node;
1097
node = avtab_search_node_next(node, avkey.specified))
1098
services_compute_xperms_decision(xpermd, node);
1099
1100
cond_compute_xperms(&policydb->te_cond_avtab,
1101
&avkey, xpermd);
1102
}
1103
}
1104
out:
1105
rcu_read_unlock();
1106
return;
1107
allow:
1108
memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1109
goto out;
1110
}
1111
1112
/**
1113
* security_compute_av - Compute access vector decisions.
1114
* @ssid: source security identifier
1115
* @tsid: target security identifier
1116
* @orig_tclass: target security class
1117
* @avd: access vector decisions
1118
* @xperms: extended permissions
1119
*
1120
* Compute a set of access vector decisions based on the
1121
* SID pair (@ssid, @tsid) for the permissions in @tclass.
1122
*/
1123
void security_compute_av(u32 ssid,
1124
u32 tsid,
1125
u16 orig_tclass,
1126
struct av_decision *avd,
1127
struct extended_perms *xperms)
1128
{
1129
struct selinux_policy *policy;
1130
struct policydb *policydb;
1131
struct sidtab *sidtab;
1132
u16 tclass;
1133
struct context *scontext = NULL, *tcontext = NULL;
1134
1135
rcu_read_lock();
1136
policy = rcu_dereference(selinux_state.policy);
1137
avd_init(policy, avd);
1138
xperms->len = 0;
1139
if (!selinux_initialized())
1140
goto allow;
1141
1142
policydb = &policy->policydb;
1143
sidtab = policy->sidtab;
1144
1145
scontext = sidtab_search(sidtab, ssid);
1146
if (!scontext) {
1147
pr_err("SELinux: %s: unrecognized SID %d\n",
1148
__func__, ssid);
1149
goto out;
1150
}
1151
1152
/* permissive domain? */
1153
if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1154
avd->flags |= AVD_FLAGS_PERMISSIVE;
1155
1156
/* neveraudit domain? */
1157
if (ebitmap_get_bit(&policydb->neveraudit_map, scontext->type))
1158
avd->flags |= AVD_FLAGS_NEVERAUDIT;
1159
1160
/* both permissive and neveraudit => allow */
1161
if (avd->flags == (AVD_FLAGS_PERMISSIVE|AVD_FLAGS_NEVERAUDIT))
1162
goto allow;
1163
1164
tcontext = sidtab_search(sidtab, tsid);
1165
if (!tcontext) {
1166
pr_err("SELinux: %s: unrecognized SID %d\n",
1167
__func__, tsid);
1168
goto out;
1169
}
1170
1171
tclass = unmap_class(&policy->map, orig_tclass);
1172
if (unlikely(orig_tclass && !tclass)) {
1173
if (policydb->allow_unknown)
1174
goto allow;
1175
goto out;
1176
}
1177
context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1178
xperms);
1179
map_decision(&policy->map, orig_tclass, avd,
1180
policydb->allow_unknown);
1181
out:
1182
rcu_read_unlock();
1183
if (avd->flags & AVD_FLAGS_NEVERAUDIT)
1184
avd->auditallow = avd->auditdeny = 0;
1185
return;
1186
allow:
1187
avd->allowed = 0xffffffff;
1188
goto out;
1189
}
1190
1191
void security_compute_av_user(u32 ssid,
1192
u32 tsid,
1193
u16 tclass,
1194
struct av_decision *avd)
1195
{
1196
struct selinux_policy *policy;
1197
struct policydb *policydb;
1198
struct sidtab *sidtab;
1199
struct context *scontext = NULL, *tcontext = NULL;
1200
1201
rcu_read_lock();
1202
policy = rcu_dereference(selinux_state.policy);
1203
avd_init(policy, avd);
1204
if (!selinux_initialized())
1205
goto allow;
1206
1207
policydb = &policy->policydb;
1208
sidtab = policy->sidtab;
1209
1210
scontext = sidtab_search(sidtab, ssid);
1211
if (!scontext) {
1212
pr_err("SELinux: %s: unrecognized SID %d\n",
1213
__func__, ssid);
1214
goto out;
1215
}
1216
1217
/* permissive domain? */
1218
if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1219
avd->flags |= AVD_FLAGS_PERMISSIVE;
1220
1221
/* neveraudit domain? */
1222
if (ebitmap_get_bit(&policydb->neveraudit_map, scontext->type))
1223
avd->flags |= AVD_FLAGS_NEVERAUDIT;
1224
1225
/* both permissive and neveraudit => allow */
1226
if (avd->flags == (AVD_FLAGS_PERMISSIVE|AVD_FLAGS_NEVERAUDIT))
1227
goto allow;
1228
1229
tcontext = sidtab_search(sidtab, tsid);
1230
if (!tcontext) {
1231
pr_err("SELinux: %s: unrecognized SID %d\n",
1232
__func__, tsid);
1233
goto out;
1234
}
1235
1236
if (unlikely(!tclass)) {
1237
if (policydb->allow_unknown)
1238
goto allow;
1239
goto out;
1240
}
1241
1242
context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1243
NULL);
1244
out:
1245
rcu_read_unlock();
1246
if (avd->flags & AVD_FLAGS_NEVERAUDIT)
1247
avd->auditallow = avd->auditdeny = 0;
1248
return;
1249
allow:
1250
avd->allowed = 0xffffffff;
1251
goto out;
1252
}
1253
1254
/*
1255
* Write the security context string representation of
1256
* the context structure `context' into a dynamically
1257
* allocated string of the correct size. Set `*scontext'
1258
* to point to this string and set `*scontext_len' to
1259
* the length of the string.
1260
*/
1261
static int context_struct_to_string(struct policydb *p,
1262
struct context *context,
1263
char **scontext, u32 *scontext_len)
1264
{
1265
char *scontextp;
1266
1267
if (scontext)
1268
*scontext = NULL;
1269
*scontext_len = 0;
1270
1271
if (context->len) {
1272
*scontext_len = context->len;
1273
if (scontext) {
1274
*scontext = kstrdup(context->str, GFP_ATOMIC);
1275
if (!(*scontext))
1276
return -ENOMEM;
1277
}
1278
return 0;
1279
}
1280
1281
/* Compute the size of the context. */
1282
*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1283
*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1284
*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1285
*scontext_len += mls_compute_context_len(p, context);
1286
1287
if (!scontext)
1288
return 0;
1289
1290
/* Allocate space for the context; caller must free this space. */
1291
scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1292
if (!scontextp)
1293
return -ENOMEM;
1294
*scontext = scontextp;
1295
1296
/*
1297
* Copy the user name, role name and type name into the context.
1298
*/
1299
scontextp += sprintf(scontextp, "%s:%s:%s",
1300
sym_name(p, SYM_USERS, context->user - 1),
1301
sym_name(p, SYM_ROLES, context->role - 1),
1302
sym_name(p, SYM_TYPES, context->type - 1));
1303
1304
mls_sid_to_context(p, context, &scontextp);
1305
1306
*scontextp = 0;
1307
1308
return 0;
1309
}
1310
1311
static int sidtab_entry_to_string(struct policydb *p,
1312
struct sidtab *sidtab,
1313
struct sidtab_entry *entry,
1314
char **scontext, u32 *scontext_len)
1315
{
1316
int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1317
1318
if (rc != -ENOENT)
1319
return rc;
1320
1321
rc = context_struct_to_string(p, &entry->context, scontext,
1322
scontext_len);
1323
if (!rc && scontext)
1324
sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1325
return rc;
1326
}
1327
1328
#include "initial_sid_to_string.h"
1329
1330
int security_sidtab_hash_stats(char *page)
1331
{
1332
struct selinux_policy *policy;
1333
int rc;
1334
1335
if (!selinux_initialized()) {
1336
pr_err("SELinux: %s: called before initial load_policy\n",
1337
__func__);
1338
return -EINVAL;
1339
}
1340
1341
rcu_read_lock();
1342
policy = rcu_dereference(selinux_state.policy);
1343
rc = sidtab_hash_stats(policy->sidtab, page);
1344
rcu_read_unlock();
1345
1346
return rc;
1347
}
1348
1349
const char *security_get_initial_sid_context(u32 sid)
1350
{
1351
if (unlikely(sid > SECINITSID_NUM))
1352
return NULL;
1353
return initial_sid_to_string[sid];
1354
}
1355
1356
static int security_sid_to_context_core(u32 sid, char **scontext,
1357
u32 *scontext_len, int force,
1358
int only_invalid)
1359
{
1360
struct selinux_policy *policy;
1361
struct policydb *policydb;
1362
struct sidtab *sidtab;
1363
struct sidtab_entry *entry;
1364
int rc = 0;
1365
1366
if (scontext)
1367
*scontext = NULL;
1368
*scontext_len = 0;
1369
1370
if (!selinux_initialized()) {
1371
if (sid <= SECINITSID_NUM) {
1372
char *scontextp;
1373
const char *s;
1374
1375
/*
1376
* Before the policy is loaded, translate
1377
* SECINITSID_INIT to "kernel", because systemd and
1378
* libselinux < 2.6 take a getcon_raw() result that is
1379
* both non-null and not "kernel" to mean that a policy
1380
* is already loaded.
1381
*/
1382
if (sid == SECINITSID_INIT)
1383
sid = SECINITSID_KERNEL;
1384
1385
s = initial_sid_to_string[sid];
1386
if (!s)
1387
return -EINVAL;
1388
*scontext_len = strlen(s) + 1;
1389
if (!scontext)
1390
return 0;
1391
scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1392
if (!scontextp)
1393
return -ENOMEM;
1394
*scontext = scontextp;
1395
return 0;
1396
}
1397
pr_err("SELinux: %s: called before initial "
1398
"load_policy on unknown SID %d\n", __func__, sid);
1399
return -EINVAL;
1400
}
1401
rcu_read_lock();
1402
policy = rcu_dereference(selinux_state.policy);
1403
policydb = &policy->policydb;
1404
sidtab = policy->sidtab;
1405
1406
if (force)
1407
entry = sidtab_search_entry_force(sidtab, sid);
1408
else
1409
entry = sidtab_search_entry(sidtab, sid);
1410
if (!entry) {
1411
pr_err("SELinux: %s: unrecognized SID %d\n",
1412
__func__, sid);
1413
rc = -EINVAL;
1414
goto out_unlock;
1415
}
1416
if (only_invalid && !entry->context.len)
1417
goto out_unlock;
1418
1419
rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1420
scontext_len);
1421
1422
out_unlock:
1423
rcu_read_unlock();
1424
return rc;
1425
1426
}
1427
1428
/**
1429
* security_sid_to_context - Obtain a context for a given SID.
1430
* @sid: security identifier, SID
1431
* @scontext: security context
1432
* @scontext_len: length in bytes
1433
*
1434
* Write the string representation of the context associated with @sid
1435
* into a dynamically allocated string of the correct size. Set @scontext
1436
* to point to this string and set @scontext_len to the length of the string.
1437
*/
1438
int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1439
{
1440
return security_sid_to_context_core(sid, scontext,
1441
scontext_len, 0, 0);
1442
}
1443
1444
int security_sid_to_context_force(u32 sid,
1445
char **scontext, u32 *scontext_len)
1446
{
1447
return security_sid_to_context_core(sid, scontext,
1448
scontext_len, 1, 0);
1449
}
1450
1451
/**
1452
* security_sid_to_context_inval - Obtain a context for a given SID if it
1453
* is invalid.
1454
* @sid: security identifier, SID
1455
* @scontext: security context
1456
* @scontext_len: length in bytes
1457
*
1458
* Write the string representation of the context associated with @sid
1459
* into a dynamically allocated string of the correct size, but only if the
1460
* context is invalid in the current policy. Set @scontext to point to
1461
* this string (or NULL if the context is valid) and set @scontext_len to
1462
* the length of the string (or 0 if the context is valid).
1463
*/
1464
int security_sid_to_context_inval(u32 sid,
1465
char **scontext, u32 *scontext_len)
1466
{
1467
return security_sid_to_context_core(sid, scontext,
1468
scontext_len, 1, 1);
1469
}
1470
1471
/*
1472
* Caveat: Mutates scontext.
1473
*/
1474
static int string_to_context_struct(struct policydb *pol,
1475
struct sidtab *sidtabp,
1476
char *scontext,
1477
struct context *ctx,
1478
u32 def_sid)
1479
{
1480
struct role_datum *role;
1481
struct type_datum *typdatum;
1482
struct user_datum *usrdatum;
1483
char *scontextp, *p, oldc;
1484
int rc = 0;
1485
1486
context_init(ctx);
1487
1488
/* Parse the security context. */
1489
1490
rc = -EINVAL;
1491
scontextp = scontext;
1492
1493
/* Extract the user. */
1494
p = scontextp;
1495
while (*p && *p != ':')
1496
p++;
1497
1498
if (*p == 0)
1499
goto out;
1500
1501
*p++ = 0;
1502
1503
usrdatum = symtab_search(&pol->p_users, scontextp);
1504
if (!usrdatum)
1505
goto out;
1506
1507
ctx->user = usrdatum->value;
1508
1509
/* Extract role. */
1510
scontextp = p;
1511
while (*p && *p != ':')
1512
p++;
1513
1514
if (*p == 0)
1515
goto out;
1516
1517
*p++ = 0;
1518
1519
role = symtab_search(&pol->p_roles, scontextp);
1520
if (!role)
1521
goto out;
1522
ctx->role = role->value;
1523
1524
/* Extract type. */
1525
scontextp = p;
1526
while (*p && *p != ':')
1527
p++;
1528
oldc = *p;
1529
*p++ = 0;
1530
1531
typdatum = symtab_search(&pol->p_types, scontextp);
1532
if (!typdatum || typdatum->attribute)
1533
goto out;
1534
1535
ctx->type = typdatum->value;
1536
1537
rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1538
if (rc)
1539
goto out;
1540
1541
/* Check the validity of the new context. */
1542
rc = -EINVAL;
1543
if (!policydb_context_isvalid(pol, ctx))
1544
goto out;
1545
rc = 0;
1546
out:
1547
if (rc)
1548
context_destroy(ctx);
1549
return rc;
1550
}
1551
1552
static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1553
u32 *sid, u32 def_sid, gfp_t gfp_flags,
1554
int force)
1555
{
1556
struct selinux_policy *policy;
1557
struct policydb *policydb;
1558
struct sidtab *sidtab;
1559
char *scontext2, *str = NULL;
1560
struct context context;
1561
int rc = 0;
1562
1563
/* An empty security context is never valid. */
1564
if (!scontext_len)
1565
return -EINVAL;
1566
1567
/* Copy the string to allow changes and ensure a NUL terminator */
1568
scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1569
if (!scontext2)
1570
return -ENOMEM;
1571
1572
if (!selinux_initialized()) {
1573
u32 i;
1574
1575
for (i = 1; i < SECINITSID_NUM; i++) {
1576
const char *s = initial_sid_to_string[i];
1577
1578
if (s && !strcmp(s, scontext2)) {
1579
*sid = i;
1580
goto out;
1581
}
1582
}
1583
*sid = SECINITSID_KERNEL;
1584
goto out;
1585
}
1586
*sid = SECSID_NULL;
1587
1588
if (force) {
1589
/* Save another copy for storing in uninterpreted form */
1590
rc = -ENOMEM;
1591
str = kstrdup(scontext2, gfp_flags);
1592
if (!str)
1593
goto out;
1594
}
1595
retry:
1596
rcu_read_lock();
1597
policy = rcu_dereference(selinux_state.policy);
1598
policydb = &policy->policydb;
1599
sidtab = policy->sidtab;
1600
rc = string_to_context_struct(policydb, sidtab, scontext2,
1601
&context, def_sid);
1602
if (rc == -EINVAL && force) {
1603
context.str = str;
1604
context.len = strlen(str) + 1;
1605
str = NULL;
1606
} else if (rc)
1607
goto out_unlock;
1608
rc = sidtab_context_to_sid(sidtab, &context, sid);
1609
if (rc == -ESTALE) {
1610
rcu_read_unlock();
1611
if (context.str) {
1612
str = context.str;
1613
context.str = NULL;
1614
}
1615
context_destroy(&context);
1616
goto retry;
1617
}
1618
context_destroy(&context);
1619
out_unlock:
1620
rcu_read_unlock();
1621
out:
1622
kfree(scontext2);
1623
kfree(str);
1624
return rc;
1625
}
1626
1627
/**
1628
* security_context_to_sid - Obtain a SID for a given security context.
1629
* @scontext: security context
1630
* @scontext_len: length in bytes
1631
* @sid: security identifier, SID
1632
* @gfp: context for the allocation
1633
*
1634
* Obtains a SID associated with the security context that
1635
* has the string representation specified by @scontext.
1636
* Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637
* memory is available, or 0 on success.
1638
*/
1639
int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1640
gfp_t gfp)
1641
{
1642
return security_context_to_sid_core(scontext, scontext_len,
1643
sid, SECSID_NULL, gfp, 0);
1644
}
1645
1646
int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1647
{
1648
return security_context_to_sid(scontext, strlen(scontext),
1649
sid, gfp);
1650
}
1651
1652
/**
1653
* security_context_to_sid_default - Obtain a SID for a given security context,
1654
* falling back to specified default if needed.
1655
*
1656
* @scontext: security context
1657
* @scontext_len: length in bytes
1658
* @sid: security identifier, SID
1659
* @def_sid: default SID to assign on error
1660
* @gfp_flags: the allocator get-free-page (GFP) flags
1661
*
1662
* Obtains a SID associated with the security context that
1663
* has the string representation specified by @scontext.
1664
* The default SID is passed to the MLS layer to be used to allow
1665
* kernel labeling of the MLS field if the MLS field is not present
1666
* (for upgrading to MLS without full relabel).
1667
* Implicitly forces adding of the context even if it cannot be mapped yet.
1668
* Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1669
* memory is available, or 0 on success.
1670
*/
1671
int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1672
u32 *sid, u32 def_sid, gfp_t gfp_flags)
1673
{
1674
return security_context_to_sid_core(scontext, scontext_len,
1675
sid, def_sid, gfp_flags, 1);
1676
}
1677
1678
int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1679
u32 *sid)
1680
{
1681
return security_context_to_sid_core(scontext, scontext_len,
1682
sid, SECSID_NULL, GFP_KERNEL, 1);
1683
}
1684
1685
static int compute_sid_handle_invalid_context(
1686
struct selinux_policy *policy,
1687
struct sidtab_entry *sentry,
1688
struct sidtab_entry *tentry,
1689
u16 tclass,
1690
struct context *newcontext)
1691
{
1692
struct policydb *policydb = &policy->policydb;
1693
struct sidtab *sidtab = policy->sidtab;
1694
char *s = NULL, *t = NULL, *n = NULL;
1695
u32 slen, tlen, nlen;
1696
struct audit_buffer *ab;
1697
1698
if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1699
goto out;
1700
if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1701
goto out;
1702
if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1703
goto out;
1704
ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1705
if (!ab)
1706
goto out;
1707
audit_log_format(ab,
1708
"op=security_compute_sid invalid_context=");
1709
/* no need to record the NUL with untrusted strings */
1710
audit_log_n_untrustedstring(ab, n, nlen - 1);
1711
audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1712
s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1713
audit_log_end(ab);
1714
out:
1715
kfree(s);
1716
kfree(t);
1717
kfree(n);
1718
if (!enforcing_enabled())
1719
return 0;
1720
return -EACCES;
1721
}
1722
1723
static void filename_compute_type(struct policydb *policydb,
1724
struct context *newcontext,
1725
u32 stype, u32 ttype, u16 tclass,
1726
const char *objname)
1727
{
1728
struct filename_trans_key ft;
1729
struct filename_trans_datum *datum;
1730
1731
/*
1732
* Most filename trans rules are going to live in specific directories
1733
* like /dev or /var/run. This bitmap will quickly skip rule searches
1734
* if the ttype does not contain any rules.
1735
*/
1736
if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1737
return;
1738
1739
ft.ttype = ttype;
1740
ft.tclass = tclass;
1741
ft.name = objname;
1742
1743
datum = policydb_filenametr_search(policydb, &ft);
1744
while (datum) {
1745
if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1746
newcontext->type = datum->otype;
1747
return;
1748
}
1749
datum = datum->next;
1750
}
1751
}
1752
1753
static int security_compute_sid(u32 ssid,
1754
u32 tsid,
1755
u16 orig_tclass,
1756
u16 specified,
1757
const char *objname,
1758
u32 *out_sid,
1759
bool kern)
1760
{
1761
struct selinux_policy *policy;
1762
struct policydb *policydb;
1763
struct sidtab *sidtab;
1764
struct class_datum *cladatum;
1765
struct context *scontext, *tcontext, newcontext;
1766
struct sidtab_entry *sentry, *tentry;
1767
struct avtab_key avkey;
1768
struct avtab_node *avnode, *node;
1769
u16 tclass;
1770
int rc = 0;
1771
bool sock;
1772
1773
if (!selinux_initialized()) {
1774
switch (orig_tclass) {
1775
case SECCLASS_PROCESS: /* kernel value */
1776
*out_sid = ssid;
1777
break;
1778
default:
1779
*out_sid = tsid;
1780
break;
1781
}
1782
goto out;
1783
}
1784
1785
retry:
1786
cladatum = NULL;
1787
context_init(&newcontext);
1788
1789
rcu_read_lock();
1790
1791
policy = rcu_dereference(selinux_state.policy);
1792
1793
if (kern) {
1794
tclass = unmap_class(&policy->map, orig_tclass);
1795
sock = security_is_socket_class(orig_tclass);
1796
} else {
1797
tclass = orig_tclass;
1798
sock = security_is_socket_class(map_class(&policy->map,
1799
tclass));
1800
}
1801
1802
policydb = &policy->policydb;
1803
sidtab = policy->sidtab;
1804
1805
sentry = sidtab_search_entry(sidtab, ssid);
1806
if (!sentry) {
1807
pr_err("SELinux: %s: unrecognized SID %d\n",
1808
__func__, ssid);
1809
rc = -EINVAL;
1810
goto out_unlock;
1811
}
1812
tentry = sidtab_search_entry(sidtab, tsid);
1813
if (!tentry) {
1814
pr_err("SELinux: %s: unrecognized SID %d\n",
1815
__func__, tsid);
1816
rc = -EINVAL;
1817
goto out_unlock;
1818
}
1819
1820
scontext = &sentry->context;
1821
tcontext = &tentry->context;
1822
1823
if (tclass && tclass <= policydb->p_classes.nprim)
1824
cladatum = policydb->class_val_to_struct[tclass - 1];
1825
1826
/* Set the user identity. */
1827
switch (specified) {
1828
case AVTAB_TRANSITION:
1829
case AVTAB_CHANGE:
1830
if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1831
newcontext.user = tcontext->user;
1832
} else {
1833
/* notice this gets both DEFAULT_SOURCE and unset */
1834
/* Use the process user identity. */
1835
newcontext.user = scontext->user;
1836
}
1837
break;
1838
case AVTAB_MEMBER:
1839
/* Use the related object owner. */
1840
newcontext.user = tcontext->user;
1841
break;
1842
}
1843
1844
/* Set the role to default values. */
1845
if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1846
newcontext.role = scontext->role;
1847
} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1848
newcontext.role = tcontext->role;
1849
} else {
1850
if ((tclass == policydb->process_class) || sock)
1851
newcontext.role = scontext->role;
1852
else
1853
newcontext.role = OBJECT_R_VAL;
1854
}
1855
1856
/* Set the type.
1857
* Look for a type transition/member/change rule.
1858
*/
1859
avkey.source_type = scontext->type;
1860
avkey.target_type = tcontext->type;
1861
avkey.target_class = tclass;
1862
avkey.specified = specified;
1863
avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1864
1865
/* If no permanent rule, also check for enabled conditional rules */
1866
if (!avnode) {
1867
node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1868
for (; node; node = avtab_search_node_next(node, specified)) {
1869
if (node->key.specified & AVTAB_ENABLED) {
1870
avnode = node;
1871
break;
1872
}
1873
}
1874
}
1875
1876
/* If a permanent rule is found, use the type from
1877
* the type transition/member/change rule. Otherwise,
1878
* set the type to its default values.
1879
*/
1880
if (avnode) {
1881
newcontext.type = avnode->datum.u.data;
1882
} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1883
newcontext.type = scontext->type;
1884
} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1885
newcontext.type = tcontext->type;
1886
} else {
1887
if ((tclass == policydb->process_class) || sock) {
1888
/* Use the type of process. */
1889
newcontext.type = scontext->type;
1890
} else {
1891
/* Use the type of the related object. */
1892
newcontext.type = tcontext->type;
1893
}
1894
}
1895
1896
/* if we have a objname this is a file trans check so check those rules */
1897
if (objname)
1898
filename_compute_type(policydb, &newcontext, scontext->type,
1899
tcontext->type, tclass, objname);
1900
1901
/* Check for class-specific changes. */
1902
if (specified & AVTAB_TRANSITION) {
1903
/* Look for a role transition rule. */
1904
struct role_trans_datum *rtd;
1905
struct role_trans_key rtk = {
1906
.role = scontext->role,
1907
.type = tcontext->type,
1908
.tclass = tclass,
1909
};
1910
1911
rtd = policydb_roletr_search(policydb, &rtk);
1912
if (rtd)
1913
newcontext.role = rtd->new_role;
1914
}
1915
1916
/* Set the MLS attributes.
1917
This is done last because it may allocate memory. */
1918
rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1919
&newcontext, sock);
1920
if (rc)
1921
goto out_unlock;
1922
1923
/* Check the validity of the context. */
1924
if (!policydb_context_isvalid(policydb, &newcontext)) {
1925
rc = compute_sid_handle_invalid_context(policy, sentry,
1926
tentry, tclass,
1927
&newcontext);
1928
if (rc)
1929
goto out_unlock;
1930
}
1931
/* Obtain the sid for the context. */
1932
if (context_equal(scontext, &newcontext))
1933
*out_sid = ssid;
1934
else if (context_equal(tcontext, &newcontext))
1935
*out_sid = tsid;
1936
else {
1937
rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1938
if (rc == -ESTALE) {
1939
rcu_read_unlock();
1940
context_destroy(&newcontext);
1941
goto retry;
1942
}
1943
}
1944
out_unlock:
1945
rcu_read_unlock();
1946
context_destroy(&newcontext);
1947
out:
1948
return rc;
1949
}
1950
1951
/**
1952
* security_transition_sid - Compute the SID for a new subject/object.
1953
* @ssid: source security identifier
1954
* @tsid: target security identifier
1955
* @tclass: target security class
1956
* @qstr: object name
1957
* @out_sid: security identifier for new subject/object
1958
*
1959
* Compute a SID to use for labeling a new subject or object in the
1960
* class @tclass based on a SID pair (@ssid, @tsid).
1961
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1962
* if insufficient memory is available, or %0 if the new SID was
1963
* computed successfully.
1964
*/
1965
int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1966
const struct qstr *qstr, u32 *out_sid)
1967
{
1968
return security_compute_sid(ssid, tsid, tclass,
1969
AVTAB_TRANSITION,
1970
qstr ? qstr->name : NULL, out_sid, true);
1971
}
1972
1973
int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1974
const char *objname, u32 *out_sid)
1975
{
1976
return security_compute_sid(ssid, tsid, tclass,
1977
AVTAB_TRANSITION,
1978
objname, out_sid, false);
1979
}
1980
1981
/**
1982
* security_member_sid - Compute the SID for member selection.
1983
* @ssid: source security identifier
1984
* @tsid: target security identifier
1985
* @tclass: target security class
1986
* @out_sid: security identifier for selected member
1987
*
1988
* Compute a SID to use when selecting a member of a polyinstantiated
1989
* object of class @tclass based on a SID pair (@ssid, @tsid).
1990
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1991
* if insufficient memory is available, or %0 if the SID was
1992
* computed successfully.
1993
*/
1994
int security_member_sid(u32 ssid,
1995
u32 tsid,
1996
u16 tclass,
1997
u32 *out_sid)
1998
{
1999
return security_compute_sid(ssid, tsid, tclass,
2000
AVTAB_MEMBER, NULL,
2001
out_sid, false);
2002
}
2003
2004
/**
2005
* security_change_sid - Compute the SID for object relabeling.
2006
* @ssid: source security identifier
2007
* @tsid: target security identifier
2008
* @tclass: target security class
2009
* @out_sid: security identifier for selected member
2010
*
2011
* Compute a SID to use for relabeling an object of class @tclass
2012
* based on a SID pair (@ssid, @tsid).
2013
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
2014
* if insufficient memory is available, or %0 if the SID was
2015
* computed successfully.
2016
*/
2017
int security_change_sid(u32 ssid,
2018
u32 tsid,
2019
u16 tclass,
2020
u32 *out_sid)
2021
{
2022
return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
2023
out_sid, false);
2024
}
2025
2026
static inline int convert_context_handle_invalid_context(
2027
struct policydb *policydb,
2028
struct context *context)
2029
{
2030
char *s;
2031
u32 len;
2032
2033
if (enforcing_enabled())
2034
return -EINVAL;
2035
2036
if (!context_struct_to_string(policydb, context, &s, &len)) {
2037
pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2038
s);
2039
kfree(s);
2040
}
2041
return 0;
2042
}
2043
2044
/**
2045
* services_convert_context - Convert a security context across policies.
2046
* @args: populated convert_context_args struct
2047
* @oldc: original context
2048
* @newc: converted context
2049
* @gfp_flags: allocation flags
2050
*
2051
* Convert the values in the security context structure @oldc from the values
2052
* specified in the policy @args->oldp to the values specified in the policy
2053
* @args->newp, storing the new context in @newc, and verifying that the
2054
* context is valid under the new policy.
2055
*/
2056
int services_convert_context(struct convert_context_args *args,
2057
struct context *oldc, struct context *newc,
2058
gfp_t gfp_flags)
2059
{
2060
struct ocontext *oc;
2061
struct role_datum *role;
2062
struct type_datum *typdatum;
2063
struct user_datum *usrdatum;
2064
char *s;
2065
u32 len;
2066
int rc;
2067
2068
if (oldc->str) {
2069
s = kstrdup(oldc->str, gfp_flags);
2070
if (!s)
2071
return -ENOMEM;
2072
2073
rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2074
if (rc == -EINVAL) {
2075
/*
2076
* Retain string representation for later mapping.
2077
*
2078
* IMPORTANT: We need to copy the contents of oldc->str
2079
* back into s again because string_to_context_struct()
2080
* may have garbled it.
2081
*/
2082
memcpy(s, oldc->str, oldc->len);
2083
context_init(newc);
2084
newc->str = s;
2085
newc->len = oldc->len;
2086
return 0;
2087
}
2088
kfree(s);
2089
if (rc) {
2090
/* Other error condition, e.g. ENOMEM. */
2091
pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2092
oldc->str, -rc);
2093
return rc;
2094
}
2095
pr_info("SELinux: Context %s became valid (mapped).\n",
2096
oldc->str);
2097
return 0;
2098
}
2099
2100
context_init(newc);
2101
2102
/* Convert the user. */
2103
usrdatum = symtab_search(&args->newp->p_users,
2104
sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2105
if (!usrdatum)
2106
goto bad;
2107
newc->user = usrdatum->value;
2108
2109
/* Convert the role. */
2110
role = symtab_search(&args->newp->p_roles,
2111
sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2112
if (!role)
2113
goto bad;
2114
newc->role = role->value;
2115
2116
/* Convert the type. */
2117
typdatum = symtab_search(&args->newp->p_types,
2118
sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2119
if (!typdatum)
2120
goto bad;
2121
newc->type = typdatum->value;
2122
2123
/* Convert the MLS fields if dealing with MLS policies */
2124
if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2125
rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2126
if (rc)
2127
goto bad;
2128
} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2129
/*
2130
* Switching between non-MLS and MLS policy:
2131
* ensure that the MLS fields of the context for all
2132
* existing entries in the sidtab are filled in with a
2133
* suitable default value, likely taken from one of the
2134
* initial SIDs.
2135
*/
2136
oc = args->newp->ocontexts[OCON_ISID];
2137
while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2138
oc = oc->next;
2139
if (!oc) {
2140
pr_err("SELinux: unable to look up"
2141
" the initial SIDs list\n");
2142
goto bad;
2143
}
2144
rc = mls_range_set(newc, &oc->context[0].range);
2145
if (rc)
2146
goto bad;
2147
}
2148
2149
/* Check the validity of the new context. */
2150
if (!policydb_context_isvalid(args->newp, newc)) {
2151
rc = convert_context_handle_invalid_context(args->oldp, oldc);
2152
if (rc)
2153
goto bad;
2154
}
2155
2156
return 0;
2157
bad:
2158
/* Map old representation to string and save it. */
2159
rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2160
if (rc)
2161
return rc;
2162
context_destroy(newc);
2163
newc->str = s;
2164
newc->len = len;
2165
pr_info("SELinux: Context %s became invalid (unmapped).\n",
2166
newc->str);
2167
return 0;
2168
}
2169
2170
static void security_load_policycaps(struct selinux_policy *policy)
2171
{
2172
struct policydb *p;
2173
unsigned int i;
2174
struct ebitmap_node *node;
2175
2176
p = &policy->policydb;
2177
2178
for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2179
WRITE_ONCE(selinux_state.policycap[i],
2180
ebitmap_get_bit(&p->policycaps, i));
2181
2182
for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2183
pr_info("SELinux: policy capability %s=%d\n",
2184
selinux_policycap_names[i],
2185
ebitmap_get_bit(&p->policycaps, i));
2186
2187
ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2188
if (i >= ARRAY_SIZE(selinux_policycap_names))
2189
pr_info("SELinux: unknown policy capability %u\n",
2190
i);
2191
}
2192
}
2193
2194
static int security_preserve_bools(struct selinux_policy *oldpolicy,
2195
struct selinux_policy *newpolicy);
2196
2197
static void selinux_policy_free(struct selinux_policy *policy)
2198
{
2199
if (!policy)
2200
return;
2201
2202
sidtab_destroy(policy->sidtab);
2203
kfree(policy->map.mapping);
2204
policydb_destroy(&policy->policydb);
2205
kfree(policy->sidtab);
2206
kfree(policy);
2207
}
2208
2209
static void selinux_policy_cond_free(struct selinux_policy *policy)
2210
{
2211
cond_policydb_destroy_dup(&policy->policydb);
2212
kfree(policy);
2213
}
2214
2215
void selinux_policy_cancel(struct selinux_load_state *load_state)
2216
{
2217
struct selinux_state *state = &selinux_state;
2218
struct selinux_policy *oldpolicy;
2219
2220
oldpolicy = rcu_dereference_protected(state->policy,
2221
lockdep_is_held(&state->policy_mutex));
2222
2223
sidtab_cancel_convert(oldpolicy->sidtab);
2224
selinux_policy_free(load_state->policy);
2225
kfree(load_state->convert_data);
2226
}
2227
2228
static void selinux_notify_policy_change(u32 seqno)
2229
{
2230
/* Flush external caches and notify userspace of policy load */
2231
avc_ss_reset(seqno);
2232
selnl_notify_policyload(seqno);
2233
selinux_status_update_policyload(seqno);
2234
selinux_netlbl_cache_invalidate();
2235
selinux_xfrm_notify_policyload();
2236
selinux_ima_measure_state_locked();
2237
}
2238
2239
void selinux_policy_commit(struct selinux_load_state *load_state)
2240
{
2241
struct selinux_state *state = &selinux_state;
2242
struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2243
unsigned long flags;
2244
u32 seqno;
2245
2246
oldpolicy = rcu_dereference_protected(state->policy,
2247
lockdep_is_held(&state->policy_mutex));
2248
2249
/* If switching between different policy types, log MLS status */
2250
if (oldpolicy) {
2251
if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2252
pr_info("SELinux: Disabling MLS support...\n");
2253
else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2254
pr_info("SELinux: Enabling MLS support...\n");
2255
}
2256
2257
/* Set latest granting seqno for new policy. */
2258
if (oldpolicy)
2259
newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2260
else
2261
newpolicy->latest_granting = 1;
2262
seqno = newpolicy->latest_granting;
2263
2264
/* Install the new policy. */
2265
if (oldpolicy) {
2266
sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2267
rcu_assign_pointer(state->policy, newpolicy);
2268
sidtab_freeze_end(oldpolicy->sidtab, &flags);
2269
} else {
2270
rcu_assign_pointer(state->policy, newpolicy);
2271
}
2272
2273
/* Load the policycaps from the new policy */
2274
security_load_policycaps(newpolicy);
2275
2276
if (!selinux_initialized()) {
2277
/*
2278
* After first policy load, the security server is
2279
* marked as initialized and ready to handle requests and
2280
* any objects created prior to policy load are then labeled.
2281
*/
2282
selinux_mark_initialized();
2283
selinux_complete_init();
2284
}
2285
2286
/* Free the old policy */
2287
synchronize_rcu();
2288
selinux_policy_free(oldpolicy);
2289
kfree(load_state->convert_data);
2290
2291
/* Notify others of the policy change */
2292
selinux_notify_policy_change(seqno);
2293
}
2294
2295
/**
2296
* security_load_policy - Load a security policy configuration.
2297
* @data: binary policy data
2298
* @len: length of data in bytes
2299
* @load_state: policy load state
2300
*
2301
* Load a new set of security policy configuration data,
2302
* validate it and convert the SID table as necessary.
2303
* This function will flush the access vector cache after
2304
* loading the new policy.
2305
*/
2306
int security_load_policy(void *data, size_t len,
2307
struct selinux_load_state *load_state)
2308
{
2309
struct selinux_state *state = &selinux_state;
2310
struct selinux_policy *newpolicy, *oldpolicy;
2311
struct selinux_policy_convert_data *convert_data;
2312
int rc = 0;
2313
struct policy_file file = { data, len }, *fp = &file;
2314
2315
newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2316
if (!newpolicy)
2317
return -ENOMEM;
2318
2319
newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2320
if (!newpolicy->sidtab) {
2321
rc = -ENOMEM;
2322
goto err_policy;
2323
}
2324
2325
rc = policydb_read(&newpolicy->policydb, fp);
2326
if (rc)
2327
goto err_sidtab;
2328
2329
newpolicy->policydb.len = len;
2330
rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2331
&newpolicy->map);
2332
if (rc)
2333
goto err_policydb;
2334
2335
rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2336
if (rc) {
2337
pr_err("SELinux: unable to load the initial SIDs\n");
2338
goto err_mapping;
2339
}
2340
2341
if (!selinux_initialized()) {
2342
/* First policy load, so no need to preserve state from old policy */
2343
load_state->policy = newpolicy;
2344
load_state->convert_data = NULL;
2345
return 0;
2346
}
2347
2348
oldpolicy = rcu_dereference_protected(state->policy,
2349
lockdep_is_held(&state->policy_mutex));
2350
2351
/* Preserve active boolean values from the old policy */
2352
rc = security_preserve_bools(oldpolicy, newpolicy);
2353
if (rc) {
2354
pr_err("SELinux: unable to preserve booleans\n");
2355
goto err_free_isids;
2356
}
2357
2358
/*
2359
* Convert the internal representations of contexts
2360
* in the new SID table.
2361
*/
2362
2363
convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2364
if (!convert_data) {
2365
rc = -ENOMEM;
2366
goto err_free_isids;
2367
}
2368
2369
convert_data->args.oldp = &oldpolicy->policydb;
2370
convert_data->args.newp = &newpolicy->policydb;
2371
2372
convert_data->sidtab_params.args = &convert_data->args;
2373
convert_data->sidtab_params.target = newpolicy->sidtab;
2374
2375
rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2376
if (rc) {
2377
pr_err("SELinux: unable to convert the internal"
2378
" representation of contexts in the new SID"
2379
" table\n");
2380
goto err_free_convert_data;
2381
}
2382
2383
load_state->policy = newpolicy;
2384
load_state->convert_data = convert_data;
2385
return 0;
2386
2387
err_free_convert_data:
2388
kfree(convert_data);
2389
err_free_isids:
2390
sidtab_destroy(newpolicy->sidtab);
2391
err_mapping:
2392
kfree(newpolicy->map.mapping);
2393
err_policydb:
2394
policydb_destroy(&newpolicy->policydb);
2395
err_sidtab:
2396
kfree(newpolicy->sidtab);
2397
err_policy:
2398
kfree(newpolicy);
2399
2400
return rc;
2401
}
2402
2403
/**
2404
* ocontext_to_sid - Helper to safely get sid for an ocontext
2405
* @sidtab: SID table
2406
* @c: ocontext structure
2407
* @index: index of the context entry (0 or 1)
2408
* @out_sid: pointer to the resulting SID value
2409
*
2410
* For all ocontexts except OCON_ISID the SID fields are populated
2411
* on-demand when needed. Since updating the SID value is an SMP-sensitive
2412
* operation, this helper must be used to do that safely.
2413
*
2414
* WARNING: This function may return -ESTALE, indicating that the caller
2415
* must retry the operation after re-acquiring the policy pointer!
2416
*/
2417
static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2418
size_t index, u32 *out_sid)
2419
{
2420
int rc;
2421
u32 sid;
2422
2423
/* Ensure the associated sidtab entry is visible to this thread. */
2424
sid = smp_load_acquire(&c->sid[index]);
2425
if (!sid) {
2426
rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2427
if (rc)
2428
return rc;
2429
2430
/*
2431
* Ensure the new sidtab entry is visible to other threads
2432
* when they see the SID.
2433
*/
2434
smp_store_release(&c->sid[index], sid);
2435
}
2436
*out_sid = sid;
2437
return 0;
2438
}
2439
2440
/**
2441
* security_port_sid - Obtain the SID for a port.
2442
* @protocol: protocol number
2443
* @port: port number
2444
* @out_sid: security identifier
2445
*/
2446
int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2447
{
2448
struct selinux_policy *policy;
2449
struct policydb *policydb;
2450
struct sidtab *sidtab;
2451
struct ocontext *c;
2452
int rc;
2453
2454
if (!selinux_initialized()) {
2455
*out_sid = SECINITSID_PORT;
2456
return 0;
2457
}
2458
2459
retry:
2460
rc = 0;
2461
rcu_read_lock();
2462
policy = rcu_dereference(selinux_state.policy);
2463
policydb = &policy->policydb;
2464
sidtab = policy->sidtab;
2465
2466
c = policydb->ocontexts[OCON_PORT];
2467
while (c) {
2468
if (c->u.port.protocol == protocol &&
2469
c->u.port.low_port <= port &&
2470
c->u.port.high_port >= port)
2471
break;
2472
c = c->next;
2473
}
2474
2475
if (c) {
2476
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2477
if (rc == -ESTALE) {
2478
rcu_read_unlock();
2479
goto retry;
2480
}
2481
if (rc)
2482
goto out;
2483
} else {
2484
*out_sid = SECINITSID_PORT;
2485
}
2486
2487
out:
2488
rcu_read_unlock();
2489
return rc;
2490
}
2491
2492
/**
2493
* security_ib_pkey_sid - Obtain the SID for a pkey.
2494
* @subnet_prefix: Subnet Prefix
2495
* @pkey_num: pkey number
2496
* @out_sid: security identifier
2497
*/
2498
int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2499
{
2500
struct selinux_policy *policy;
2501
struct policydb *policydb;
2502
struct sidtab *sidtab;
2503
struct ocontext *c;
2504
int rc;
2505
2506
if (!selinux_initialized()) {
2507
*out_sid = SECINITSID_UNLABELED;
2508
return 0;
2509
}
2510
2511
retry:
2512
rc = 0;
2513
rcu_read_lock();
2514
policy = rcu_dereference(selinux_state.policy);
2515
policydb = &policy->policydb;
2516
sidtab = policy->sidtab;
2517
2518
c = policydb->ocontexts[OCON_IBPKEY];
2519
while (c) {
2520
if (c->u.ibpkey.low_pkey <= pkey_num &&
2521
c->u.ibpkey.high_pkey >= pkey_num &&
2522
c->u.ibpkey.subnet_prefix == subnet_prefix)
2523
break;
2524
2525
c = c->next;
2526
}
2527
2528
if (c) {
2529
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2530
if (rc == -ESTALE) {
2531
rcu_read_unlock();
2532
goto retry;
2533
}
2534
if (rc)
2535
goto out;
2536
} else
2537
*out_sid = SECINITSID_UNLABELED;
2538
2539
out:
2540
rcu_read_unlock();
2541
return rc;
2542
}
2543
2544
/**
2545
* security_ib_endport_sid - Obtain the SID for a subnet management interface.
2546
* @dev_name: device name
2547
* @port_num: port number
2548
* @out_sid: security identifier
2549
*/
2550
int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2551
{
2552
struct selinux_policy *policy;
2553
struct policydb *policydb;
2554
struct sidtab *sidtab;
2555
struct ocontext *c;
2556
int rc;
2557
2558
if (!selinux_initialized()) {
2559
*out_sid = SECINITSID_UNLABELED;
2560
return 0;
2561
}
2562
2563
retry:
2564
rc = 0;
2565
rcu_read_lock();
2566
policy = rcu_dereference(selinux_state.policy);
2567
policydb = &policy->policydb;
2568
sidtab = policy->sidtab;
2569
2570
c = policydb->ocontexts[OCON_IBENDPORT];
2571
while (c) {
2572
if (c->u.ibendport.port == port_num &&
2573
!strncmp(c->u.ibendport.dev_name,
2574
dev_name,
2575
IB_DEVICE_NAME_MAX))
2576
break;
2577
2578
c = c->next;
2579
}
2580
2581
if (c) {
2582
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2583
if (rc == -ESTALE) {
2584
rcu_read_unlock();
2585
goto retry;
2586
}
2587
if (rc)
2588
goto out;
2589
} else
2590
*out_sid = SECINITSID_UNLABELED;
2591
2592
out:
2593
rcu_read_unlock();
2594
return rc;
2595
}
2596
2597
/**
2598
* security_netif_sid - Obtain the SID for a network interface.
2599
* @name: interface name
2600
* @if_sid: interface SID
2601
*/
2602
int security_netif_sid(const char *name, u32 *if_sid)
2603
{
2604
struct selinux_policy *policy;
2605
struct policydb *policydb;
2606
struct sidtab *sidtab;
2607
int rc;
2608
struct ocontext *c;
2609
bool wildcard_support;
2610
2611
if (!selinux_initialized()) {
2612
*if_sid = SECINITSID_NETIF;
2613
return 0;
2614
}
2615
2616
retry:
2617
rc = 0;
2618
rcu_read_lock();
2619
policy = rcu_dereference(selinux_state.policy);
2620
policydb = &policy->policydb;
2621
sidtab = policy->sidtab;
2622
wildcard_support = ebitmap_get_bit(&policydb->policycaps, POLICYDB_CAP_NETIF_WILDCARD);
2623
2624
c = policydb->ocontexts[OCON_NETIF];
2625
while (c) {
2626
if (wildcard_support) {
2627
if (match_wildcard(c->u.name, name))
2628
break;
2629
} else {
2630
if (strcmp(c->u.name, name) == 0)
2631
break;
2632
}
2633
2634
c = c->next;
2635
}
2636
2637
if (c) {
2638
rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2639
if (rc == -ESTALE) {
2640
rcu_read_unlock();
2641
goto retry;
2642
}
2643
if (rc)
2644
goto out;
2645
} else
2646
*if_sid = SECINITSID_NETIF;
2647
2648
out:
2649
rcu_read_unlock();
2650
return rc;
2651
}
2652
2653
static bool match_ipv6_addrmask(const u32 input[4], const u32 addr[4], const u32 mask[4])
2654
{
2655
int i;
2656
2657
for (i = 0; i < 4; i++)
2658
if (addr[i] != (input[i] & mask[i]))
2659
return false;
2660
2661
return true;
2662
}
2663
2664
/**
2665
* security_node_sid - Obtain the SID for a node (host).
2666
* @domain: communication domain aka address family
2667
* @addrp: address
2668
* @addrlen: address length in bytes
2669
* @out_sid: security identifier
2670
*/
2671
int security_node_sid(u16 domain,
2672
const void *addrp,
2673
u32 addrlen,
2674
u32 *out_sid)
2675
{
2676
struct selinux_policy *policy;
2677
struct policydb *policydb;
2678
struct sidtab *sidtab;
2679
int rc;
2680
struct ocontext *c;
2681
2682
if (!selinux_initialized()) {
2683
*out_sid = SECINITSID_NODE;
2684
return 0;
2685
}
2686
2687
retry:
2688
rcu_read_lock();
2689
policy = rcu_dereference(selinux_state.policy);
2690
policydb = &policy->policydb;
2691
sidtab = policy->sidtab;
2692
2693
switch (domain) {
2694
case AF_INET: {
2695
u32 addr;
2696
2697
rc = -EINVAL;
2698
if (addrlen != sizeof(u32))
2699
goto out;
2700
2701
addr = *((const u32 *)addrp);
2702
2703
c = policydb->ocontexts[OCON_NODE];
2704
while (c) {
2705
if (c->u.node.addr == (addr & c->u.node.mask))
2706
break;
2707
c = c->next;
2708
}
2709
break;
2710
}
2711
2712
case AF_INET6:
2713
rc = -EINVAL;
2714
if (addrlen != sizeof(u64) * 2)
2715
goto out;
2716
c = policydb->ocontexts[OCON_NODE6];
2717
while (c) {
2718
if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2719
c->u.node6.mask))
2720
break;
2721
c = c->next;
2722
}
2723
break;
2724
2725
default:
2726
rc = 0;
2727
*out_sid = SECINITSID_NODE;
2728
goto out;
2729
}
2730
2731
if (c) {
2732
rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2733
if (rc == -ESTALE) {
2734
rcu_read_unlock();
2735
goto retry;
2736
}
2737
if (rc)
2738
goto out;
2739
} else {
2740
*out_sid = SECINITSID_NODE;
2741
}
2742
2743
rc = 0;
2744
out:
2745
rcu_read_unlock();
2746
return rc;
2747
}
2748
2749
#define SIDS_NEL 25
2750
2751
/**
2752
* security_get_user_sids - Obtain reachable SIDs for a user.
2753
* @fromsid: starting SID
2754
* @username: username
2755
* @sids: array of reachable SIDs for user
2756
* @nel: number of elements in @sids
2757
*
2758
* Generate the set of SIDs for legal security contexts
2759
* for a given user that can be reached by @fromsid.
2760
* Set *@sids to point to a dynamically allocated
2761
* array containing the set of SIDs. Set *@nel to the
2762
* number of elements in the array.
2763
*/
2764
2765
int security_get_user_sids(u32 fromsid,
2766
const char *username,
2767
u32 **sids,
2768
u32 *nel)
2769
{
2770
struct selinux_policy *policy;
2771
struct policydb *policydb;
2772
struct sidtab *sidtab;
2773
struct context *fromcon, usercon;
2774
u32 *mysids = NULL, *mysids2, sid;
2775
u32 i, j, mynel, maxnel = SIDS_NEL;
2776
struct user_datum *user;
2777
struct role_datum *role;
2778
struct ebitmap_node *rnode, *tnode;
2779
int rc;
2780
2781
*sids = NULL;
2782
*nel = 0;
2783
2784
if (!selinux_initialized())
2785
return 0;
2786
2787
mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2788
if (!mysids)
2789
return -ENOMEM;
2790
2791
retry:
2792
mynel = 0;
2793
rcu_read_lock();
2794
policy = rcu_dereference(selinux_state.policy);
2795
policydb = &policy->policydb;
2796
sidtab = policy->sidtab;
2797
2798
context_init(&usercon);
2799
2800
rc = -EINVAL;
2801
fromcon = sidtab_search(sidtab, fromsid);
2802
if (!fromcon)
2803
goto out_unlock;
2804
2805
rc = -EINVAL;
2806
user = symtab_search(&policydb->p_users, username);
2807
if (!user)
2808
goto out_unlock;
2809
2810
usercon.user = user->value;
2811
2812
ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2813
role = policydb->role_val_to_struct[i];
2814
usercon.role = i + 1;
2815
ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2816
usercon.type = j + 1;
2817
2818
if (mls_setup_user_range(policydb, fromcon, user,
2819
&usercon))
2820
continue;
2821
2822
rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2823
if (rc == -ESTALE) {
2824
rcu_read_unlock();
2825
goto retry;
2826
}
2827
if (rc)
2828
goto out_unlock;
2829
if (mynel < maxnel) {
2830
mysids[mynel++] = sid;
2831
} else {
2832
rc = -ENOMEM;
2833
maxnel += SIDS_NEL;
2834
mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2835
if (!mysids2)
2836
goto out_unlock;
2837
memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2838
kfree(mysids);
2839
mysids = mysids2;
2840
mysids[mynel++] = sid;
2841
}
2842
}
2843
}
2844
rc = 0;
2845
out_unlock:
2846
rcu_read_unlock();
2847
if (rc || !mynel) {
2848
kfree(mysids);
2849
return rc;
2850
}
2851
2852
rc = -ENOMEM;
2853
mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2854
if (!mysids2) {
2855
kfree(mysids);
2856
return rc;
2857
}
2858
for (i = 0, j = 0; i < mynel; i++) {
2859
struct av_decision dummy_avd;
2860
rc = avc_has_perm_noaudit(fromsid, mysids[i],
2861
SECCLASS_PROCESS, /* kernel value */
2862
PROCESS__TRANSITION, AVC_STRICT,
2863
&dummy_avd);
2864
if (!rc)
2865
mysids2[j++] = mysids[i];
2866
cond_resched();
2867
}
2868
kfree(mysids);
2869
*sids = mysids2;
2870
*nel = j;
2871
return 0;
2872
}
2873
2874
/**
2875
* __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2876
* @policy: policy
2877
* @fstype: filesystem type
2878
* @path: path from root of mount
2879
* @orig_sclass: file security class
2880
* @sid: SID for path
2881
*
2882
* Obtain a SID to use for a file in a filesystem that
2883
* cannot support xattr or use a fixed labeling behavior like
2884
* transition SIDs or task SIDs.
2885
*
2886
* WARNING: This function may return -ESTALE, indicating that the caller
2887
* must retry the operation after re-acquiring the policy pointer!
2888
*/
2889
static inline int __security_genfs_sid(struct selinux_policy *policy,
2890
const char *fstype,
2891
const char *path,
2892
u16 orig_sclass,
2893
u32 *sid)
2894
{
2895
struct policydb *policydb = &policy->policydb;
2896
struct sidtab *sidtab = policy->sidtab;
2897
u16 sclass;
2898
struct genfs *genfs;
2899
struct ocontext *c;
2900
int cmp = 0;
2901
bool wildcard;
2902
2903
while (path[0] == '/' && path[1] == '/')
2904
path++;
2905
2906
sclass = unmap_class(&policy->map, orig_sclass);
2907
*sid = SECINITSID_UNLABELED;
2908
2909
for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2910
cmp = strcmp(fstype, genfs->fstype);
2911
if (cmp <= 0)
2912
break;
2913
}
2914
2915
if (!genfs || cmp)
2916
return -ENOENT;
2917
2918
wildcard = ebitmap_get_bit(&policy->policydb.policycaps,
2919
POLICYDB_CAP_GENFS_SECLABEL_WILDCARD);
2920
for (c = genfs->head; c; c = c->next) {
2921
if (!c->v.sclass || sclass == c->v.sclass) {
2922
if (wildcard) {
2923
if (match_wildcard(c->u.name, path))
2924
break;
2925
} else {
2926
size_t len = strlen(c->u.name);
2927
2928
if ((strncmp(c->u.name, path, len)) == 0)
2929
break;
2930
}
2931
}
2932
}
2933
2934
if (!c)
2935
return -ENOENT;
2936
2937
return ocontext_to_sid(sidtab, c, 0, sid);
2938
}
2939
2940
/**
2941
* security_genfs_sid - Obtain a SID for a file in a filesystem
2942
* @fstype: filesystem type
2943
* @path: path from root of mount
2944
* @orig_sclass: file security class
2945
* @sid: SID for path
2946
*
2947
* Acquire policy_rwlock before calling __security_genfs_sid() and release
2948
* it afterward.
2949
*/
2950
int security_genfs_sid(const char *fstype,
2951
const char *path,
2952
u16 orig_sclass,
2953
u32 *sid)
2954
{
2955
struct selinux_policy *policy;
2956
int retval;
2957
2958
if (!selinux_initialized()) {
2959
*sid = SECINITSID_UNLABELED;
2960
return 0;
2961
}
2962
2963
do {
2964
rcu_read_lock();
2965
policy = rcu_dereference(selinux_state.policy);
2966
retval = __security_genfs_sid(policy, fstype, path,
2967
orig_sclass, sid);
2968
rcu_read_unlock();
2969
} while (retval == -ESTALE);
2970
return retval;
2971
}
2972
2973
int selinux_policy_genfs_sid(struct selinux_policy *policy,
2974
const char *fstype,
2975
const char *path,
2976
u16 orig_sclass,
2977
u32 *sid)
2978
{
2979
/* no lock required, policy is not yet accessible by other threads */
2980
return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2981
}
2982
2983
/**
2984
* security_fs_use - Determine how to handle labeling for a filesystem.
2985
* @sb: superblock in question
2986
*/
2987
int security_fs_use(struct super_block *sb)
2988
{
2989
struct selinux_policy *policy;
2990
struct policydb *policydb;
2991
struct sidtab *sidtab;
2992
int rc;
2993
struct ocontext *c;
2994
struct superblock_security_struct *sbsec = selinux_superblock(sb);
2995
const char *fstype = sb->s_type->name;
2996
2997
if (!selinux_initialized()) {
2998
sbsec->behavior = SECURITY_FS_USE_NONE;
2999
sbsec->sid = SECINITSID_UNLABELED;
3000
return 0;
3001
}
3002
3003
retry:
3004
rcu_read_lock();
3005
policy = rcu_dereference(selinux_state.policy);
3006
policydb = &policy->policydb;
3007
sidtab = policy->sidtab;
3008
3009
c = policydb->ocontexts[OCON_FSUSE];
3010
while (c) {
3011
if (strcmp(fstype, c->u.name) == 0)
3012
break;
3013
c = c->next;
3014
}
3015
3016
if (c) {
3017
sbsec->behavior = c->v.behavior;
3018
rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3019
if (rc == -ESTALE) {
3020
rcu_read_unlock();
3021
goto retry;
3022
}
3023
if (rc)
3024
goto out;
3025
} else {
3026
rc = __security_genfs_sid(policy, fstype, "/",
3027
SECCLASS_DIR, &sbsec->sid);
3028
if (rc == -ESTALE) {
3029
rcu_read_unlock();
3030
goto retry;
3031
}
3032
if (rc) {
3033
sbsec->behavior = SECURITY_FS_USE_NONE;
3034
rc = 0;
3035
} else {
3036
sbsec->behavior = SECURITY_FS_USE_GENFS;
3037
}
3038
}
3039
3040
out:
3041
rcu_read_unlock();
3042
return rc;
3043
}
3044
3045
int security_get_bools(struct selinux_policy *policy,
3046
u32 *len, char ***names, int **values)
3047
{
3048
struct policydb *policydb;
3049
u32 i;
3050
int rc;
3051
3052
policydb = &policy->policydb;
3053
3054
*names = NULL;
3055
*values = NULL;
3056
3057
rc = 0;
3058
*len = policydb->p_bools.nprim;
3059
if (!*len)
3060
goto out;
3061
3062
rc = -ENOMEM;
3063
*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3064
if (!*names)
3065
goto err;
3066
3067
rc = -ENOMEM;
3068
*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3069
if (!*values)
3070
goto err;
3071
3072
for (i = 0; i < *len; i++) {
3073
(*values)[i] = policydb->bool_val_to_struct[i]->state;
3074
3075
rc = -ENOMEM;
3076
(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3077
GFP_ATOMIC);
3078
if (!(*names)[i])
3079
goto err;
3080
}
3081
rc = 0;
3082
out:
3083
return rc;
3084
err:
3085
if (*names) {
3086
for (i = 0; i < *len; i++)
3087
kfree((*names)[i]);
3088
kfree(*names);
3089
}
3090
kfree(*values);
3091
*len = 0;
3092
*names = NULL;
3093
*values = NULL;
3094
goto out;
3095
}
3096
3097
3098
int security_set_bools(u32 len, const int *values)
3099
{
3100
struct selinux_state *state = &selinux_state;
3101
struct selinux_policy *newpolicy, *oldpolicy;
3102
int rc;
3103
u32 i, seqno = 0;
3104
3105
if (!selinux_initialized())
3106
return -EINVAL;
3107
3108
oldpolicy = rcu_dereference_protected(state->policy,
3109
lockdep_is_held(&state->policy_mutex));
3110
3111
/* Consistency check on number of booleans, should never fail */
3112
if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3113
return -EINVAL;
3114
3115
newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3116
if (!newpolicy)
3117
return -ENOMEM;
3118
3119
/*
3120
* Deep copy only the parts of the policydb that might be
3121
* modified as a result of changing booleans.
3122
*/
3123
rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3124
if (rc) {
3125
kfree(newpolicy);
3126
return -ENOMEM;
3127
}
3128
3129
/* Update the boolean states in the copy */
3130
for (i = 0; i < len; i++) {
3131
int new_state = !!values[i];
3132
int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3133
3134
if (new_state != old_state) {
3135
audit_log(audit_context(), GFP_ATOMIC,
3136
AUDIT_MAC_CONFIG_CHANGE,
3137
"bool=%s val=%d old_val=%d auid=%u ses=%u",
3138
sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3139
new_state,
3140
old_state,
3141
from_kuid(&init_user_ns, audit_get_loginuid(current)),
3142
audit_get_sessionid(current));
3143
newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3144
}
3145
}
3146
3147
/* Re-evaluate the conditional rules in the copy */
3148
evaluate_cond_nodes(&newpolicy->policydb);
3149
3150
/* Set latest granting seqno for new policy */
3151
newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3152
seqno = newpolicy->latest_granting;
3153
3154
/* Install the new policy */
3155
rcu_assign_pointer(state->policy, newpolicy);
3156
3157
/*
3158
* Free the conditional portions of the old policydb
3159
* that were copied for the new policy, and the oldpolicy
3160
* structure itself but not what it references.
3161
*/
3162
synchronize_rcu();
3163
selinux_policy_cond_free(oldpolicy);
3164
3165
/* Notify others of the policy change */
3166
selinux_notify_policy_change(seqno);
3167
return 0;
3168
}
3169
3170
int security_get_bool_value(u32 index)
3171
{
3172
struct selinux_policy *policy;
3173
struct policydb *policydb;
3174
int rc;
3175
u32 len;
3176
3177
if (!selinux_initialized())
3178
return 0;
3179
3180
rcu_read_lock();
3181
policy = rcu_dereference(selinux_state.policy);
3182
policydb = &policy->policydb;
3183
3184
rc = -EFAULT;
3185
len = policydb->p_bools.nprim;
3186
if (index >= len)
3187
goto out;
3188
3189
rc = policydb->bool_val_to_struct[index]->state;
3190
out:
3191
rcu_read_unlock();
3192
return rc;
3193
}
3194
3195
static int security_preserve_bools(struct selinux_policy *oldpolicy,
3196
struct selinux_policy *newpolicy)
3197
{
3198
int rc, *bvalues = NULL;
3199
char **bnames = NULL;
3200
struct cond_bool_datum *booldatum;
3201
u32 i, nbools = 0;
3202
3203
rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3204
if (rc)
3205
goto out;
3206
for (i = 0; i < nbools; i++) {
3207
booldatum = symtab_search(&newpolicy->policydb.p_bools,
3208
bnames[i]);
3209
if (booldatum)
3210
booldatum->state = bvalues[i];
3211
}
3212
evaluate_cond_nodes(&newpolicy->policydb);
3213
3214
out:
3215
if (bnames) {
3216
for (i = 0; i < nbools; i++)
3217
kfree(bnames[i]);
3218
}
3219
kfree(bnames);
3220
kfree(bvalues);
3221
return rc;
3222
}
3223
3224
/*
3225
* security_sid_mls_copy() - computes a new sid based on the given
3226
* sid and the mls portion of mls_sid.
3227
*/
3228
int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3229
{
3230
struct selinux_policy *policy;
3231
struct policydb *policydb;
3232
struct sidtab *sidtab;
3233
struct context *context1;
3234
struct context *context2;
3235
struct context newcon;
3236
char *s;
3237
u32 len;
3238
int rc;
3239
3240
if (!selinux_initialized()) {
3241
*new_sid = sid;
3242
return 0;
3243
}
3244
3245
retry:
3246
rc = 0;
3247
context_init(&newcon);
3248
3249
rcu_read_lock();
3250
policy = rcu_dereference(selinux_state.policy);
3251
policydb = &policy->policydb;
3252
sidtab = policy->sidtab;
3253
3254
if (!policydb->mls_enabled) {
3255
*new_sid = sid;
3256
goto out_unlock;
3257
}
3258
3259
rc = -EINVAL;
3260
context1 = sidtab_search(sidtab, sid);
3261
if (!context1) {
3262
pr_err("SELinux: %s: unrecognized SID %d\n",
3263
__func__, sid);
3264
goto out_unlock;
3265
}
3266
3267
rc = -EINVAL;
3268
context2 = sidtab_search(sidtab, mls_sid);
3269
if (!context2) {
3270
pr_err("SELinux: %s: unrecognized SID %d\n",
3271
__func__, mls_sid);
3272
goto out_unlock;
3273
}
3274
3275
newcon.user = context1->user;
3276
newcon.role = context1->role;
3277
newcon.type = context1->type;
3278
rc = mls_context_cpy(&newcon, context2);
3279
if (rc)
3280
goto out_unlock;
3281
3282
/* Check the validity of the new context. */
3283
if (!policydb_context_isvalid(policydb, &newcon)) {
3284
rc = convert_context_handle_invalid_context(policydb,
3285
&newcon);
3286
if (rc) {
3287
if (!context_struct_to_string(policydb, &newcon, &s,
3288
&len)) {
3289
struct audit_buffer *ab;
3290
3291
ab = audit_log_start(audit_context(),
3292
GFP_ATOMIC,
3293
AUDIT_SELINUX_ERR);
3294
audit_log_format(ab,
3295
"op=security_sid_mls_copy invalid_context=");
3296
/* don't record NUL with untrusted strings */
3297
audit_log_n_untrustedstring(ab, s, len - 1);
3298
audit_log_end(ab);
3299
kfree(s);
3300
}
3301
goto out_unlock;
3302
}
3303
}
3304
rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3305
if (rc == -ESTALE) {
3306
rcu_read_unlock();
3307
context_destroy(&newcon);
3308
goto retry;
3309
}
3310
out_unlock:
3311
rcu_read_unlock();
3312
context_destroy(&newcon);
3313
return rc;
3314
}
3315
3316
/**
3317
* security_net_peersid_resolve - Compare and resolve two network peer SIDs
3318
* @nlbl_sid: NetLabel SID
3319
* @nlbl_type: NetLabel labeling protocol type
3320
* @xfrm_sid: XFRM SID
3321
* @peer_sid: network peer sid
3322
*
3323
* Description:
3324
* Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3325
* resolved into a single SID it is returned via @peer_sid and the function
3326
* returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3327
* returns a negative value. A table summarizing the behavior is below:
3328
*
3329
* | function return | @sid
3330
* ------------------------------+-----------------+-----------------
3331
* no peer labels | 0 | SECSID_NULL
3332
* single peer label | 0 | <peer_label>
3333
* multiple, consistent labels | 0 | <peer_label>
3334
* multiple, inconsistent labels | -<errno> | SECSID_NULL
3335
*
3336
*/
3337
int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3338
u32 xfrm_sid,
3339
u32 *peer_sid)
3340
{
3341
struct selinux_policy *policy;
3342
struct policydb *policydb;
3343
struct sidtab *sidtab;
3344
int rc;
3345
struct context *nlbl_ctx;
3346
struct context *xfrm_ctx;
3347
3348
*peer_sid = SECSID_NULL;
3349
3350
/* handle the common (which also happens to be the set of easy) cases
3351
* right away, these two if statements catch everything involving a
3352
* single or absent peer SID/label */
3353
if (xfrm_sid == SECSID_NULL) {
3354
*peer_sid = nlbl_sid;
3355
return 0;
3356
}
3357
/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3358
* and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3359
* is present */
3360
if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3361
*peer_sid = xfrm_sid;
3362
return 0;
3363
}
3364
3365
if (!selinux_initialized())
3366
return 0;
3367
3368
rcu_read_lock();
3369
policy = rcu_dereference(selinux_state.policy);
3370
policydb = &policy->policydb;
3371
sidtab = policy->sidtab;
3372
3373
/*
3374
* We don't need to check initialized here since the only way both
3375
* nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3376
* security server was initialized and state->initialized was true.
3377
*/
3378
if (!policydb->mls_enabled) {
3379
rc = 0;
3380
goto out;
3381
}
3382
3383
rc = -EINVAL;
3384
nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3385
if (!nlbl_ctx) {
3386
pr_err("SELinux: %s: unrecognized SID %d\n",
3387
__func__, nlbl_sid);
3388
goto out;
3389
}
3390
rc = -EINVAL;
3391
xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3392
if (!xfrm_ctx) {
3393
pr_err("SELinux: %s: unrecognized SID %d\n",
3394
__func__, xfrm_sid);
3395
goto out;
3396
}
3397
rc = (mls_context_equal(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3398
if (rc)
3399
goto out;
3400
3401
/* at present NetLabel SIDs/labels really only carry MLS
3402
* information so if the MLS portion of the NetLabel SID
3403
* matches the MLS portion of the labeled XFRM SID/label
3404
* then pass along the XFRM SID as it is the most
3405
* expressive */
3406
*peer_sid = xfrm_sid;
3407
out:
3408
rcu_read_unlock();
3409
return rc;
3410
}
3411
3412
static int get_classes_callback(void *k, void *d, void *args)
3413
{
3414
struct class_datum *datum = d;
3415
char *name = k, **classes = args;
3416
u32 value = datum->value - 1;
3417
3418
classes[value] = kstrdup(name, GFP_ATOMIC);
3419
if (!classes[value])
3420
return -ENOMEM;
3421
3422
return 0;
3423
}
3424
3425
int security_get_classes(struct selinux_policy *policy,
3426
char ***classes, u32 *nclasses)
3427
{
3428
struct policydb *policydb;
3429
int rc;
3430
3431
policydb = &policy->policydb;
3432
3433
rc = -ENOMEM;
3434
*nclasses = policydb->p_classes.nprim;
3435
*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3436
if (!*classes)
3437
goto out;
3438
3439
rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3440
*classes);
3441
if (rc) {
3442
u32 i;
3443
3444
for (i = 0; i < *nclasses; i++)
3445
kfree((*classes)[i]);
3446
kfree(*classes);
3447
}
3448
3449
out:
3450
return rc;
3451
}
3452
3453
static int get_permissions_callback(void *k, void *d, void *args)
3454
{
3455
struct perm_datum *datum = d;
3456
char *name = k, **perms = args;
3457
u32 value = datum->value - 1;
3458
3459
perms[value] = kstrdup(name, GFP_ATOMIC);
3460
if (!perms[value])
3461
return -ENOMEM;
3462
3463
return 0;
3464
}
3465
3466
int security_get_permissions(struct selinux_policy *policy,
3467
const char *class, char ***perms, u32 *nperms)
3468
{
3469
struct policydb *policydb;
3470
u32 i;
3471
int rc;
3472
struct class_datum *match;
3473
3474
policydb = &policy->policydb;
3475
3476
rc = -EINVAL;
3477
match = symtab_search(&policydb->p_classes, class);
3478
if (!match) {
3479
pr_err("SELinux: %s: unrecognized class %s\n",
3480
__func__, class);
3481
goto out;
3482
}
3483
3484
rc = -ENOMEM;
3485
*nperms = match->permissions.nprim;
3486
*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3487
if (!*perms)
3488
goto out;
3489
3490
if (match->comdatum) {
3491
rc = hashtab_map(&match->comdatum->permissions.table,
3492
get_permissions_callback, *perms);
3493
if (rc)
3494
goto err;
3495
}
3496
3497
rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3498
*perms);
3499
if (rc)
3500
goto err;
3501
3502
out:
3503
return rc;
3504
3505
err:
3506
for (i = 0; i < *nperms; i++)
3507
kfree((*perms)[i]);
3508
kfree(*perms);
3509
return rc;
3510
}
3511
3512
int security_get_reject_unknown(void)
3513
{
3514
struct selinux_policy *policy;
3515
int value;
3516
3517
if (!selinux_initialized())
3518
return 0;
3519
3520
rcu_read_lock();
3521
policy = rcu_dereference(selinux_state.policy);
3522
value = policy->policydb.reject_unknown;
3523
rcu_read_unlock();
3524
return value;
3525
}
3526
3527
int security_get_allow_unknown(void)
3528
{
3529
struct selinux_policy *policy;
3530
int value;
3531
3532
if (!selinux_initialized())
3533
return 0;
3534
3535
rcu_read_lock();
3536
policy = rcu_dereference(selinux_state.policy);
3537
value = policy->policydb.allow_unknown;
3538
rcu_read_unlock();
3539
return value;
3540
}
3541
3542
/**
3543
* security_policycap_supported - Check for a specific policy capability
3544
* @req_cap: capability
3545
*
3546
* Description:
3547
* This function queries the currently loaded policy to see if it supports the
3548
* capability specified by @req_cap. Returns true (1) if the capability is
3549
* supported, false (0) if it isn't supported.
3550
*
3551
*/
3552
int security_policycap_supported(unsigned int req_cap)
3553
{
3554
struct selinux_policy *policy;
3555
int rc;
3556
3557
if (!selinux_initialized())
3558
return 0;
3559
3560
rcu_read_lock();
3561
policy = rcu_dereference(selinux_state.policy);
3562
rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3563
rcu_read_unlock();
3564
3565
return rc;
3566
}
3567
3568
struct selinux_audit_rule {
3569
u32 au_seqno;
3570
struct context au_ctxt;
3571
};
3572
3573
void selinux_audit_rule_free(void *vrule)
3574
{
3575
struct selinux_audit_rule *rule = vrule;
3576
3577
if (rule) {
3578
context_destroy(&rule->au_ctxt);
3579
kfree(rule);
3580
}
3581
}
3582
3583
int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3584
gfp_t gfp)
3585
{
3586
struct selinux_state *state = &selinux_state;
3587
struct selinux_policy *policy;
3588
struct policydb *policydb;
3589
struct selinux_audit_rule *tmprule;
3590
struct role_datum *roledatum;
3591
struct type_datum *typedatum;
3592
struct user_datum *userdatum;
3593
struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3594
int rc = 0;
3595
3596
*rule = NULL;
3597
3598
if (!selinux_initialized())
3599
return -EOPNOTSUPP;
3600
3601
switch (field) {
3602
case AUDIT_SUBJ_USER:
3603
case AUDIT_SUBJ_ROLE:
3604
case AUDIT_SUBJ_TYPE:
3605
case AUDIT_OBJ_USER:
3606
case AUDIT_OBJ_ROLE:
3607
case AUDIT_OBJ_TYPE:
3608
/* only 'equals' and 'not equals' fit user, role, and type */
3609
if (op != Audit_equal && op != Audit_not_equal)
3610
return -EINVAL;
3611
break;
3612
case AUDIT_SUBJ_SEN:
3613
case AUDIT_SUBJ_CLR:
3614
case AUDIT_OBJ_LEV_LOW:
3615
case AUDIT_OBJ_LEV_HIGH:
3616
/* we do not allow a range, indicated by the presence of '-' */
3617
if (strchr(rulestr, '-'))
3618
return -EINVAL;
3619
break;
3620
default:
3621
/* only the above fields are valid */
3622
return -EINVAL;
3623
}
3624
3625
tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3626
if (!tmprule)
3627
return -ENOMEM;
3628
context_init(&tmprule->au_ctxt);
3629
3630
rcu_read_lock();
3631
policy = rcu_dereference(state->policy);
3632
policydb = &policy->policydb;
3633
tmprule->au_seqno = policy->latest_granting;
3634
switch (field) {
3635
case AUDIT_SUBJ_USER:
3636
case AUDIT_OBJ_USER:
3637
userdatum = symtab_search(&policydb->p_users, rulestr);
3638
if (!userdatum) {
3639
rc = -EINVAL;
3640
goto err;
3641
}
3642
tmprule->au_ctxt.user = userdatum->value;
3643
break;
3644
case AUDIT_SUBJ_ROLE:
3645
case AUDIT_OBJ_ROLE:
3646
roledatum = symtab_search(&policydb->p_roles, rulestr);
3647
if (!roledatum) {
3648
rc = -EINVAL;
3649
goto err;
3650
}
3651
tmprule->au_ctxt.role = roledatum->value;
3652
break;
3653
case AUDIT_SUBJ_TYPE:
3654
case AUDIT_OBJ_TYPE:
3655
typedatum = symtab_search(&policydb->p_types, rulestr);
3656
if (!typedatum) {
3657
rc = -EINVAL;
3658
goto err;
3659
}
3660
tmprule->au_ctxt.type = typedatum->value;
3661
break;
3662
case AUDIT_SUBJ_SEN:
3663
case AUDIT_SUBJ_CLR:
3664
case AUDIT_OBJ_LEV_LOW:
3665
case AUDIT_OBJ_LEV_HIGH:
3666
rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3667
GFP_ATOMIC);
3668
if (rc)
3669
goto err;
3670
break;
3671
}
3672
rcu_read_unlock();
3673
3674
*rule = tmprule;
3675
return 0;
3676
3677
err:
3678
rcu_read_unlock();
3679
selinux_audit_rule_free(tmprule);
3680
*rule = NULL;
3681
return rc;
3682
}
3683
3684
/* Check to see if the rule contains any selinux fields */
3685
int selinux_audit_rule_known(struct audit_krule *rule)
3686
{
3687
u32 i;
3688
3689
for (i = 0; i < rule->field_count; i++) {
3690
struct audit_field *f = &rule->fields[i];
3691
switch (f->type) {
3692
case AUDIT_SUBJ_USER:
3693
case AUDIT_SUBJ_ROLE:
3694
case AUDIT_SUBJ_TYPE:
3695
case AUDIT_SUBJ_SEN:
3696
case AUDIT_SUBJ_CLR:
3697
case AUDIT_OBJ_USER:
3698
case AUDIT_OBJ_ROLE:
3699
case AUDIT_OBJ_TYPE:
3700
case AUDIT_OBJ_LEV_LOW:
3701
case AUDIT_OBJ_LEV_HIGH:
3702
return 1;
3703
}
3704
}
3705
3706
return 0;
3707
}
3708
3709
int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3710
{
3711
struct selinux_state *state = &selinux_state;
3712
struct selinux_policy *policy;
3713
struct context *ctxt;
3714
struct mls_level *level;
3715
struct selinux_audit_rule *rule = vrule;
3716
int match = 0;
3717
3718
if (unlikely(!rule)) {
3719
WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3720
return -ENOENT;
3721
}
3722
3723
if (!selinux_initialized())
3724
return 0;
3725
3726
rcu_read_lock();
3727
3728
policy = rcu_dereference(state->policy);
3729
3730
if (rule->au_seqno < policy->latest_granting) {
3731
match = -ESTALE;
3732
goto out;
3733
}
3734
3735
ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3736
if (unlikely(!ctxt)) {
3737
WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3738
prop->selinux.secid);
3739
match = -ENOENT;
3740
goto out;
3741
}
3742
3743
/* a field/op pair that is not caught here will simply fall through
3744
without a match */
3745
switch (field) {
3746
case AUDIT_SUBJ_USER:
3747
case AUDIT_OBJ_USER:
3748
switch (op) {
3749
case Audit_equal:
3750
match = (ctxt->user == rule->au_ctxt.user);
3751
break;
3752
case Audit_not_equal:
3753
match = (ctxt->user != rule->au_ctxt.user);
3754
break;
3755
}
3756
break;
3757
case AUDIT_SUBJ_ROLE:
3758
case AUDIT_OBJ_ROLE:
3759
switch (op) {
3760
case Audit_equal:
3761
match = (ctxt->role == rule->au_ctxt.role);
3762
break;
3763
case Audit_not_equal:
3764
match = (ctxt->role != rule->au_ctxt.role);
3765
break;
3766
}
3767
break;
3768
case AUDIT_SUBJ_TYPE:
3769
case AUDIT_OBJ_TYPE:
3770
switch (op) {
3771
case Audit_equal:
3772
match = (ctxt->type == rule->au_ctxt.type);
3773
break;
3774
case Audit_not_equal:
3775
match = (ctxt->type != rule->au_ctxt.type);
3776
break;
3777
}
3778
break;
3779
case AUDIT_SUBJ_SEN:
3780
case AUDIT_SUBJ_CLR:
3781
case AUDIT_OBJ_LEV_LOW:
3782
case AUDIT_OBJ_LEV_HIGH:
3783
level = ((field == AUDIT_SUBJ_SEN ||
3784
field == AUDIT_OBJ_LEV_LOW) ?
3785
&ctxt->range.level[0] : &ctxt->range.level[1]);
3786
switch (op) {
3787
case Audit_equal:
3788
match = mls_level_eq(&rule->au_ctxt.range.level[0],
3789
level);
3790
break;
3791
case Audit_not_equal:
3792
match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3793
level);
3794
break;
3795
case Audit_lt:
3796
match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3797
level) &&
3798
!mls_level_eq(&rule->au_ctxt.range.level[0],
3799
level));
3800
break;
3801
case Audit_le:
3802
match = mls_level_dom(&rule->au_ctxt.range.level[0],
3803
level);
3804
break;
3805
case Audit_gt:
3806
match = (mls_level_dom(level,
3807
&rule->au_ctxt.range.level[0]) &&
3808
!mls_level_eq(level,
3809
&rule->au_ctxt.range.level[0]));
3810
break;
3811
case Audit_ge:
3812
match = mls_level_dom(level,
3813
&rule->au_ctxt.range.level[0]);
3814
break;
3815
}
3816
}
3817
3818
out:
3819
rcu_read_unlock();
3820
return match;
3821
}
3822
3823
static int aurule_avc_callback(u32 event)
3824
{
3825
if (event == AVC_CALLBACK_RESET)
3826
return audit_update_lsm_rules();
3827
return 0;
3828
}
3829
3830
static int __init aurule_init(void)
3831
{
3832
int err;
3833
3834
err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3835
if (err)
3836
panic("avc_add_callback() failed, error %d\n", err);
3837
3838
return err;
3839
}
3840
__initcall(aurule_init);
3841
3842
#ifdef CONFIG_NETLABEL
3843
/**
3844
* security_netlbl_cache_add - Add an entry to the NetLabel cache
3845
* @secattr: the NetLabel packet security attributes
3846
* @sid: the SELinux SID
3847
*
3848
* Description:
3849
* Attempt to cache the context in @ctx, which was derived from the packet in
3850
* @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3851
* already been initialized.
3852
*
3853
*/
3854
static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3855
u32 sid)
3856
{
3857
u32 *sid_cache;
3858
3859
sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3860
if (sid_cache == NULL)
3861
return;
3862
secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3863
if (secattr->cache == NULL) {
3864
kfree(sid_cache);
3865
return;
3866
}
3867
3868
*sid_cache = sid;
3869
secattr->cache->free = kfree;
3870
secattr->cache->data = sid_cache;
3871
secattr->flags |= NETLBL_SECATTR_CACHE;
3872
}
3873
3874
/**
3875
* security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3876
* @secattr: the NetLabel packet security attributes
3877
* @sid: the SELinux SID
3878
*
3879
* Description:
3880
* Convert the given NetLabel security attributes in @secattr into a
3881
* SELinux SID. If the @secattr field does not contain a full SELinux
3882
* SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3883
* 'cache' field of @secattr is set and the CACHE flag is set; this is to
3884
* allow the @secattr to be used by NetLabel to cache the secattr to SID
3885
* conversion for future lookups. Returns zero on success, negative values on
3886
* failure.
3887
*
3888
*/
3889
int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3890
u32 *sid)
3891
{
3892
struct selinux_policy *policy;
3893
struct policydb *policydb;
3894
struct sidtab *sidtab;
3895
int rc;
3896
struct context *ctx;
3897
struct context ctx_new;
3898
3899
if (!selinux_initialized()) {
3900
*sid = SECSID_NULL;
3901
return 0;
3902
}
3903
3904
retry:
3905
rc = 0;
3906
rcu_read_lock();
3907
policy = rcu_dereference(selinux_state.policy);
3908
policydb = &policy->policydb;
3909
sidtab = policy->sidtab;
3910
3911
if (secattr->flags & NETLBL_SECATTR_CACHE)
3912
*sid = *(u32 *)secattr->cache->data;
3913
else if (secattr->flags & NETLBL_SECATTR_SECID)
3914
*sid = secattr->attr.secid;
3915
else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3916
rc = -EIDRM;
3917
ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3918
if (ctx == NULL)
3919
goto out;
3920
3921
context_init(&ctx_new);
3922
ctx_new.user = ctx->user;
3923
ctx_new.role = ctx->role;
3924
ctx_new.type = ctx->type;
3925
mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3926
if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3927
rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3928
if (rc)
3929
goto out;
3930
}
3931
rc = -EIDRM;
3932
if (!mls_context_isvalid(policydb, &ctx_new)) {
3933
ebitmap_destroy(&ctx_new.range.level[0].cat);
3934
goto out;
3935
}
3936
3937
rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3938
ebitmap_destroy(&ctx_new.range.level[0].cat);
3939
if (rc == -ESTALE) {
3940
rcu_read_unlock();
3941
goto retry;
3942
}
3943
if (rc)
3944
goto out;
3945
3946
security_netlbl_cache_add(secattr, *sid);
3947
} else
3948
*sid = SECSID_NULL;
3949
3950
out:
3951
rcu_read_unlock();
3952
return rc;
3953
}
3954
3955
/**
3956
* security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3957
* @sid: the SELinux SID
3958
* @secattr: the NetLabel packet security attributes
3959
*
3960
* Description:
3961
* Convert the given SELinux SID in @sid into a NetLabel security attribute.
3962
* Returns zero on success, negative values on failure.
3963
*
3964
*/
3965
int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3966
{
3967
struct selinux_policy *policy;
3968
struct policydb *policydb;
3969
int rc;
3970
struct context *ctx;
3971
3972
if (!selinux_initialized())
3973
return 0;
3974
3975
rcu_read_lock();
3976
policy = rcu_dereference(selinux_state.policy);
3977
policydb = &policy->policydb;
3978
3979
rc = -ENOENT;
3980
ctx = sidtab_search(policy->sidtab, sid);
3981
if (ctx == NULL)
3982
goto out;
3983
3984
rc = -ENOMEM;
3985
secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3986
GFP_ATOMIC);
3987
if (secattr->domain == NULL)
3988
goto out;
3989
3990
secattr->attr.secid = sid;
3991
secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3992
mls_export_netlbl_lvl(policydb, ctx, secattr);
3993
rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3994
out:
3995
rcu_read_unlock();
3996
return rc;
3997
}
3998
#endif /* CONFIG_NETLABEL */
3999
4000
/**
4001
* __security_read_policy - read the policy.
4002
* @policy: SELinux policy
4003
* @data: binary policy data
4004
* @len: length of data in bytes
4005
*
4006
*/
4007
static int __security_read_policy(struct selinux_policy *policy,
4008
void *data, size_t *len)
4009
{
4010
int rc;
4011
struct policy_file fp;
4012
4013
fp.data = data;
4014
fp.len = *len;
4015
4016
rc = policydb_write(&policy->policydb, &fp);
4017
if (rc)
4018
return rc;
4019
4020
*len = (unsigned long)fp.data - (unsigned long)data;
4021
return 0;
4022
}
4023
4024
/**
4025
* security_read_policy - read the policy.
4026
* @data: binary policy data
4027
* @len: length of data in bytes
4028
*
4029
*/
4030
int security_read_policy(void **data, size_t *len)
4031
{
4032
struct selinux_state *state = &selinux_state;
4033
struct selinux_policy *policy;
4034
4035
policy = rcu_dereference_protected(
4036
state->policy, lockdep_is_held(&state->policy_mutex));
4037
if (!policy)
4038
return -EINVAL;
4039
4040
*len = policy->policydb.len;
4041
*data = vmalloc_user(*len);
4042
if (!*data)
4043
return -ENOMEM;
4044
4045
return __security_read_policy(policy, *data, len);
4046
}
4047
4048
/**
4049
* security_read_state_kernel - read the policy.
4050
* @data: binary policy data
4051
* @len: length of data in bytes
4052
*
4053
* Allocates kernel memory for reading SELinux policy.
4054
* This function is for internal use only and should not
4055
* be used for returning data to user space.
4056
*
4057
* This function must be called with policy_mutex held.
4058
*/
4059
int security_read_state_kernel(void **data, size_t *len)
4060
{
4061
int err;
4062
struct selinux_state *state = &selinux_state;
4063
struct selinux_policy *policy;
4064
4065
policy = rcu_dereference_protected(
4066
state->policy, lockdep_is_held(&state->policy_mutex));
4067
if (!policy)
4068
return -EINVAL;
4069
4070
*len = policy->policydb.len;
4071
*data = vmalloc(*len);
4072
if (!*data)
4073
return -ENOMEM;
4074
4075
err = __security_read_policy(policy, *data, len);
4076
if (err) {
4077
vfree(*data);
4078
*data = NULL;
4079
*len = 0;
4080
}
4081
return err;
4082
}
4083
4084