Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/security/selinux/ss/sidtab.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Implementation of the SID table type.
4
*
5
* Original author: Stephen Smalley, <[email protected]>
6
* Author: Ondrej Mosnacek, <[email protected]>
7
*
8
* Copyright (C) 2018 Red Hat, Inc.
9
*/
10
11
#include <linux/errno.h>
12
#include <linux/kernel.h>
13
#include <linux/list.h>
14
#include <linux/rcupdate.h>
15
#include <linux/slab.h>
16
#include <linux/sched.h>
17
#include <linux/spinlock.h>
18
#include <asm/barrier.h>
19
#include "flask.h"
20
#include "security.h"
21
#include "sidtab.h"
22
#include "services.h"
23
24
struct sidtab_str_cache {
25
struct rcu_head rcu_member;
26
struct list_head lru_member;
27
struct sidtab_entry *parent;
28
u32 len;
29
char str[] __counted_by(len);
30
};
31
32
#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
33
#define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
34
35
int sidtab_init(struct sidtab *s)
36
{
37
u32 i;
38
39
memset(s->roots, 0, sizeof(s->roots));
40
41
for (i = 0; i < SECINITSID_NUM; i++)
42
s->isids[i].set = 0;
43
44
s->frozen = false;
45
s->count = 0;
46
s->convert = NULL;
47
hash_init(s->context_to_sid);
48
49
spin_lock_init(&s->lock);
50
51
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
52
s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
53
INIT_LIST_HEAD(&s->cache_lru_list);
54
spin_lock_init(&s->cache_lock);
55
#endif
56
57
return 0;
58
}
59
60
static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
61
{
62
struct sidtab_entry *entry;
63
u32 sid = 0;
64
65
rcu_read_lock();
66
hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
67
if (entry->hash != hash)
68
continue;
69
if (context_equal(&entry->context, context)) {
70
sid = entry->sid;
71
break;
72
}
73
}
74
rcu_read_unlock();
75
return sid;
76
}
77
78
int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
79
{
80
struct sidtab_isid_entry *isid;
81
u32 hash;
82
int rc;
83
84
if (sid == 0 || sid > SECINITSID_NUM)
85
return -EINVAL;
86
87
isid = &s->isids[sid - 1];
88
89
rc = context_cpy(&isid->entry.context, context);
90
if (rc)
91
return rc;
92
93
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
94
isid->entry.cache = NULL;
95
#endif
96
isid->set = 1;
97
98
hash = context_compute_hash(context);
99
100
/*
101
* Multiple initial sids may map to the same context. Check that this
102
* context is not already represented in the context_to_sid hashtable
103
* to avoid duplicate entries and long linked lists upon hash
104
* collision.
105
*/
106
if (!context_to_sid(s, context, hash)) {
107
isid->entry.sid = sid;
108
isid->entry.hash = hash;
109
hash_add(s->context_to_sid, &isid->entry.list, hash);
110
}
111
112
return 0;
113
}
114
115
int sidtab_hash_stats(struct sidtab *sidtab, char *page)
116
{
117
unsigned int i;
118
int chain_len = 0;
119
int slots_used = 0;
120
int entries = 0;
121
int max_chain_len = 0;
122
unsigned int cur_bucket = 0;
123
struct sidtab_entry *entry;
124
125
rcu_read_lock();
126
hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
127
entries++;
128
if (i == cur_bucket) {
129
chain_len++;
130
if (chain_len == 1)
131
slots_used++;
132
} else {
133
cur_bucket = i;
134
if (chain_len > max_chain_len)
135
max_chain_len = chain_len;
136
chain_len = 0;
137
}
138
}
139
rcu_read_unlock();
140
141
if (chain_len > max_chain_len)
142
max_chain_len = chain_len;
143
144
return scnprintf(page, PAGE_SIZE,
145
"entries: %d\nbuckets used: %d/%d\n"
146
"longest chain: %d\n",
147
entries, slots_used, SIDTAB_HASH_BUCKETS,
148
max_chain_len);
149
}
150
151
static u32 sidtab_level_from_count(u32 count)
152
{
153
u32 capacity = SIDTAB_LEAF_ENTRIES;
154
u32 level = 0;
155
156
while (count > capacity) {
157
capacity <<= SIDTAB_INNER_SHIFT;
158
++level;
159
}
160
return level;
161
}
162
163
static int sidtab_alloc_roots(struct sidtab *s, u32 level)
164
{
165
u32 l;
166
167
if (!s->roots[0].ptr_leaf) {
168
s->roots[0].ptr_leaf =
169
kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
170
if (!s->roots[0].ptr_leaf)
171
return -ENOMEM;
172
}
173
for (l = 1; l <= level; ++l)
174
if (!s->roots[l].ptr_inner) {
175
s->roots[l].ptr_inner =
176
kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
177
if (!s->roots[l].ptr_inner)
178
return -ENOMEM;
179
s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
180
}
181
return 0;
182
}
183
184
static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
185
int alloc)
186
{
187
union sidtab_entry_inner *entry;
188
u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
189
190
/* find the level of the subtree we need */
191
level = sidtab_level_from_count(index + 1);
192
capacity_shift = level * SIDTAB_INNER_SHIFT;
193
194
/* allocate roots if needed */
195
if (alloc && sidtab_alloc_roots(s, level) != 0)
196
return NULL;
197
198
/* lookup inside the subtree */
199
entry = &s->roots[level];
200
while (level != 0) {
201
capacity_shift -= SIDTAB_INNER_SHIFT;
202
--level;
203
204
entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
205
leaf_index &= ((u32)1 << capacity_shift) - 1;
206
207
if (!entry->ptr_inner) {
208
if (alloc)
209
entry->ptr_inner = kzalloc(
210
SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
211
if (!entry->ptr_inner)
212
return NULL;
213
}
214
}
215
if (!entry->ptr_leaf) {
216
if (alloc)
217
entry->ptr_leaf =
218
kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
219
if (!entry->ptr_leaf)
220
return NULL;
221
}
222
return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
223
}
224
225
static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
226
{
227
/* read entries only after reading count */
228
u32 count = smp_load_acquire(&s->count);
229
230
if (index >= count)
231
return NULL;
232
233
return sidtab_do_lookup(s, index, 0);
234
}
235
236
static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
237
{
238
return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
239
}
240
241
static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
242
int force)
243
{
244
if (sid != 0) {
245
struct sidtab_entry *entry;
246
247
if (sid > SECINITSID_NUM)
248
entry = sidtab_lookup(s, sid_to_index(sid));
249
else
250
entry = sidtab_lookup_initial(s, sid);
251
if (entry && (!entry->context.len || force))
252
return entry;
253
}
254
255
return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
256
}
257
258
struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
259
{
260
return sidtab_search_core(s, sid, 0);
261
}
262
263
struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
264
{
265
return sidtab_search_core(s, sid, 1);
266
}
267
268
int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
269
{
270
unsigned long flags;
271
u32 count, hash = context_compute_hash(context);
272
struct sidtab_convert_params *convert;
273
struct sidtab_entry *dst, *dst_convert;
274
int rc;
275
276
*sid = context_to_sid(s, context, hash);
277
if (*sid)
278
return 0;
279
280
/* lock-free search failed: lock, re-search, and insert if not found */
281
spin_lock_irqsave(&s->lock, flags);
282
283
rc = 0;
284
*sid = context_to_sid(s, context, hash);
285
if (*sid)
286
goto out_unlock;
287
288
if (unlikely(s->frozen)) {
289
/*
290
* This sidtab is now frozen - tell the caller to abort and
291
* get the new one.
292
*/
293
rc = -ESTALE;
294
goto out_unlock;
295
}
296
297
count = s->count;
298
299
/* bail out if we already reached max entries */
300
rc = -EOVERFLOW;
301
if (count >= SIDTAB_MAX)
302
goto out_unlock;
303
304
/* insert context into new entry */
305
rc = -ENOMEM;
306
dst = sidtab_do_lookup(s, count, 1);
307
if (!dst)
308
goto out_unlock;
309
310
dst->sid = index_to_sid(count);
311
dst->hash = hash;
312
313
rc = context_cpy(&dst->context, context);
314
if (rc)
315
goto out_unlock;
316
317
/*
318
* if we are building a new sidtab, we need to convert the context
319
* and insert it there as well
320
*/
321
convert = s->convert;
322
if (convert) {
323
struct sidtab *target = convert->target;
324
325
rc = -ENOMEM;
326
dst_convert = sidtab_do_lookup(target, count, 1);
327
if (!dst_convert) {
328
context_destroy(&dst->context);
329
goto out_unlock;
330
}
331
332
rc = services_convert_context(convert->args, context,
333
&dst_convert->context,
334
GFP_ATOMIC);
335
if (rc) {
336
context_destroy(&dst->context);
337
goto out_unlock;
338
}
339
dst_convert->sid = index_to_sid(count);
340
dst_convert->hash = context_compute_hash(&dst_convert->context);
341
target->count = count + 1;
342
343
hash_add_rcu(target->context_to_sid, &dst_convert->list,
344
dst_convert->hash);
345
}
346
347
if (context->len)
348
pr_info("SELinux: Context %s is not valid (left unmapped).\n",
349
context->str);
350
351
*sid = index_to_sid(count);
352
353
/* write entries before updating count */
354
smp_store_release(&s->count, count + 1);
355
hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
356
357
rc = 0;
358
out_unlock:
359
spin_unlock_irqrestore(&s->lock, flags);
360
return rc;
361
}
362
363
static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
364
{
365
struct sidtab_entry *entry;
366
u32 i;
367
368
for (i = 0; i < count; i++) {
369
entry = sidtab_do_lookup(s, i, 0);
370
entry->sid = index_to_sid(i);
371
entry->hash = context_compute_hash(&entry->context);
372
373
hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
374
}
375
}
376
377
static int sidtab_convert_tree(union sidtab_entry_inner *edst,
378
union sidtab_entry_inner *esrc, u32 *pos,
379
u32 count, u32 level,
380
struct sidtab_convert_params *convert)
381
{
382
int rc;
383
u32 i;
384
385
if (level != 0) {
386
if (!edst->ptr_inner) {
387
edst->ptr_inner =
388
kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
389
if (!edst->ptr_inner)
390
return -ENOMEM;
391
}
392
i = 0;
393
while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
394
rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
395
&esrc->ptr_inner->entries[i],
396
pos, count, level - 1,
397
convert);
398
if (rc)
399
return rc;
400
i++;
401
}
402
} else {
403
if (!edst->ptr_leaf) {
404
edst->ptr_leaf =
405
kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
406
if (!edst->ptr_leaf)
407
return -ENOMEM;
408
}
409
i = 0;
410
while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
411
rc = services_convert_context(
412
convert->args,
413
&esrc->ptr_leaf->entries[i].context,
414
&edst->ptr_leaf->entries[i].context,
415
GFP_KERNEL);
416
if (rc)
417
return rc;
418
(*pos)++;
419
i++;
420
}
421
cond_resched();
422
}
423
return 0;
424
}
425
426
int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
427
{
428
unsigned long flags;
429
u32 count, level, pos;
430
int rc;
431
432
spin_lock_irqsave(&s->lock, flags);
433
434
/* concurrent policy loads are not allowed */
435
if (s->convert) {
436
spin_unlock_irqrestore(&s->lock, flags);
437
return -EBUSY;
438
}
439
440
count = s->count;
441
level = sidtab_level_from_count(count);
442
443
/* allocate last leaf in the new sidtab (to avoid race with
444
* live convert)
445
*/
446
rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
447
if (rc) {
448
spin_unlock_irqrestore(&s->lock, flags);
449
return rc;
450
}
451
452
/* set count in case no new entries are added during conversion */
453
params->target->count = count;
454
455
/* enable live convert of new entries */
456
s->convert = params;
457
458
/* we can safely convert the tree outside the lock */
459
spin_unlock_irqrestore(&s->lock, flags);
460
461
pr_info("SELinux: Converting %u SID table entries...\n", count);
462
463
/* convert all entries not covered by live convert */
464
pos = 0;
465
rc = sidtab_convert_tree(&params->target->roots[level],
466
&s->roots[level], &pos, count, level, params);
467
if (rc) {
468
/* we need to keep the old table - disable live convert */
469
spin_lock_irqsave(&s->lock, flags);
470
s->convert = NULL;
471
spin_unlock_irqrestore(&s->lock, flags);
472
return rc;
473
}
474
/*
475
* The hashtable can also be modified in sidtab_context_to_sid()
476
* so we must re-acquire the lock here.
477
*/
478
spin_lock_irqsave(&s->lock, flags);
479
sidtab_convert_hashtable(params->target, count);
480
spin_unlock_irqrestore(&s->lock, flags);
481
482
return 0;
483
}
484
485
void sidtab_cancel_convert(struct sidtab *s)
486
{
487
unsigned long flags;
488
489
/* cancelling policy load - disable live convert of sidtab */
490
spin_lock_irqsave(&s->lock, flags);
491
s->convert = NULL;
492
spin_unlock_irqrestore(&s->lock, flags);
493
}
494
495
void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags)
496
__acquires(&s->lock)
497
{
498
spin_lock_irqsave(&s->lock, *flags);
499
s->frozen = true;
500
s->convert = NULL;
501
}
502
void sidtab_freeze_end(struct sidtab *s, unsigned long *flags)
503
__releases(&s->lock)
504
{
505
spin_unlock_irqrestore(&s->lock, *flags);
506
}
507
508
static void sidtab_destroy_entry(struct sidtab_entry *entry)
509
{
510
context_destroy(&entry->context);
511
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
512
kfree(rcu_dereference_raw(entry->cache));
513
#endif
514
}
515
516
static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
517
{
518
u32 i;
519
520
if (level != 0) {
521
struct sidtab_node_inner *node = entry.ptr_inner;
522
523
if (!node)
524
return;
525
526
for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
527
sidtab_destroy_tree(node->entries[i], level - 1);
528
kfree(node);
529
} else {
530
struct sidtab_node_leaf *node = entry.ptr_leaf;
531
532
if (!node)
533
return;
534
535
for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
536
sidtab_destroy_entry(&node->entries[i]);
537
kfree(node);
538
}
539
}
540
541
void sidtab_destroy(struct sidtab *s)
542
{
543
u32 i, level;
544
545
for (i = 0; i < SECINITSID_NUM; i++)
546
if (s->isids[i].set)
547
sidtab_destroy_entry(&s->isids[i].entry);
548
549
level = SIDTAB_MAX_LEVEL;
550
while (level && !s->roots[level].ptr_inner)
551
--level;
552
553
sidtab_destroy_tree(s->roots[level], level);
554
/*
555
* The context_to_sid hashtable's objects are all shared
556
* with the isids array and context tree, and so don't need
557
* to be cleaned up here.
558
*/
559
}
560
561
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
562
563
void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
564
const char *str, u32 str_len)
565
{
566
struct sidtab_str_cache *cache, *victim = NULL;
567
unsigned long flags;
568
569
/* do not cache invalid contexts */
570
if (entry->context.len)
571
return;
572
573
spin_lock_irqsave(&s->cache_lock, flags);
574
575
cache = rcu_dereference_protected(entry->cache,
576
lockdep_is_held(&s->cache_lock));
577
if (cache) {
578
/* entry in cache - just bump to the head of LRU list */
579
list_move(&cache->lru_member, &s->cache_lru_list);
580
goto out_unlock;
581
}
582
583
cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
584
if (!cache)
585
goto out_unlock;
586
587
if (s->cache_free_slots == 0) {
588
/* pop a cache entry from the tail and free it */
589
victim = container_of(s->cache_lru_list.prev,
590
struct sidtab_str_cache, lru_member);
591
list_del(&victim->lru_member);
592
rcu_assign_pointer(victim->parent->cache, NULL);
593
} else {
594
s->cache_free_slots--;
595
}
596
cache->parent = entry;
597
cache->len = str_len;
598
memcpy(cache->str, str, str_len);
599
list_add(&cache->lru_member, &s->cache_lru_list);
600
601
rcu_assign_pointer(entry->cache, cache);
602
603
out_unlock:
604
spin_unlock_irqrestore(&s->cache_lock, flags);
605
kfree_rcu(victim, rcu_member);
606
}
607
608
int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out,
609
u32 *out_len)
610
{
611
struct sidtab_str_cache *cache;
612
int rc = 0;
613
614
if (entry->context.len)
615
return -ENOENT; /* do not cache invalid contexts */
616
617
rcu_read_lock();
618
619
cache = rcu_dereference(entry->cache);
620
if (!cache) {
621
rc = -ENOENT;
622
} else {
623
*out_len = cache->len;
624
if (out) {
625
*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
626
if (!*out)
627
rc = -ENOMEM;
628
}
629
}
630
631
rcu_read_unlock();
632
633
if (!rc && out)
634
sidtab_sid2str_put(s, entry, *out, *out_len);
635
return rc;
636
}
637
638
#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
639
640