Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/firewire/amdtp-stream.c
50901 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4
* with Common Isochronous Packet (IEC 61883-1) headers
5
*
6
* Copyright (c) Clemens Ladisch <[email protected]>
7
*/
8
9
#include <linux/device.h>
10
#include <linux/err.h>
11
#include <linux/firewire.h>
12
#include <linux/firewire-constants.h>
13
#include <linux/module.h>
14
#include <linux/slab.h>
15
#include <sound/pcm.h>
16
#include <sound/pcm_params.h>
17
#include "amdtp-stream.h"
18
19
#define TICKS_PER_CYCLE 3072
20
#define CYCLES_PER_SECOND 8000
21
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23
#define OHCI_SECOND_MODULUS 8
24
25
/* Always support Linux tracing subsystem. */
26
#define CREATE_TRACE_POINTS
27
#include "amdtp-stream-trace.h"
28
29
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
30
31
/* isochronous header parameters */
32
#define ISO_DATA_LENGTH_SHIFT 16
33
#define TAG_NO_CIP_HEADER 0
34
#define TAG_CIP 1
35
36
// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37
#define CIP_HEADER_QUADLETS 2
38
#define CIP_EOH_SHIFT 31
39
#define CIP_EOH (1u << CIP_EOH_SHIFT)
40
#define CIP_EOH_MASK 0x80000000
41
#define CIP_SID_SHIFT 24
42
#define CIP_SID_MASK 0x3f000000
43
#define CIP_DBS_MASK 0x00ff0000
44
#define CIP_DBS_SHIFT 16
45
#define CIP_SPH_MASK 0x00000400
46
#define CIP_SPH_SHIFT 10
47
#define CIP_DBC_MASK 0x000000ff
48
#define CIP_FMT_SHIFT 24
49
#define CIP_FMT_MASK 0x3f000000
50
#define CIP_FDF_MASK 0x00ff0000
51
#define CIP_FDF_SHIFT 16
52
#define CIP_FDF_NO_DATA 0xff
53
#define CIP_SYT_MASK 0x0000ffff
54
#define CIP_SYT_NO_INFO 0xffff
55
#define CIP_SYT_CYCLE_MODULUS 16
56
#define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57
58
#define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
60
/* Audio and Music transfer protocol specific parameters */
61
#define CIP_FMT_AM 0x10
62
#define AMDTP_FDF_NO_DATA 0xff
63
64
// For iso header and tstamp.
65
#define IR_CTX_HEADER_DEFAULT_QUADLETS 2
66
// Add nothing.
67
#define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68
// Add two quadlets CIP header.
69
#define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70
#define HEADER_TSTAMP_MASK 0x0000ffff
71
72
#define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
73
#define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
74
75
// The initial firmware of OXFW970 can postpone transmission of packet during finishing
76
// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77
// overrun. Actual device can skip more, then this module stops the packet streaming.
78
#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
79
80
static void pcm_period_work(struct work_struct *work);
81
82
/**
83
* amdtp_stream_init - initialize an AMDTP stream structure
84
* @s: the AMDTP stream to initialize
85
* @unit: the target of the stream
86
* @dir: the direction of stream
87
* @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
88
* @fmt: the value of fmt field in CIP header
89
* @process_ctx_payloads: callback handler to process payloads of isoc context
90
* @protocol_size: the size to allocate newly for protocol
91
*/
92
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
93
enum amdtp_stream_direction dir, unsigned int flags,
94
unsigned int fmt,
95
amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
96
unsigned int protocol_size)
97
{
98
if (process_ctx_payloads == NULL)
99
return -EINVAL;
100
101
s->protocol = kzalloc(protocol_size, GFP_KERNEL);
102
if (!s->protocol)
103
return -ENOMEM;
104
105
s->unit = unit;
106
s->direction = dir;
107
s->flags = flags;
108
s->context = ERR_PTR(-1);
109
mutex_init(&s->mutex);
110
INIT_WORK(&s->period_work, pcm_period_work);
111
s->packet_index = 0;
112
113
init_waitqueue_head(&s->ready_wait);
114
115
s->fmt = fmt;
116
s->process_ctx_payloads = process_ctx_payloads;
117
118
return 0;
119
}
120
EXPORT_SYMBOL(amdtp_stream_init);
121
122
/**
123
* amdtp_stream_destroy - free stream resources
124
* @s: the AMDTP stream to destroy
125
*/
126
void amdtp_stream_destroy(struct amdtp_stream *s)
127
{
128
/* Not initialized. */
129
if (s->protocol == NULL)
130
return;
131
132
WARN_ON(amdtp_stream_running(s));
133
kfree(s->protocol);
134
mutex_destroy(&s->mutex);
135
}
136
EXPORT_SYMBOL(amdtp_stream_destroy);
137
138
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
139
[CIP_SFC_32000] = 8,
140
[CIP_SFC_44100] = 8,
141
[CIP_SFC_48000] = 8,
142
[CIP_SFC_88200] = 16,
143
[CIP_SFC_96000] = 16,
144
[CIP_SFC_176400] = 32,
145
[CIP_SFC_192000] = 32,
146
};
147
EXPORT_SYMBOL(amdtp_syt_intervals);
148
149
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
150
[CIP_SFC_32000] = 32000,
151
[CIP_SFC_44100] = 44100,
152
[CIP_SFC_48000] = 48000,
153
[CIP_SFC_88200] = 88200,
154
[CIP_SFC_96000] = 96000,
155
[CIP_SFC_176400] = 176400,
156
[CIP_SFC_192000] = 192000,
157
};
158
EXPORT_SYMBOL(amdtp_rate_table);
159
160
static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
161
struct snd_pcm_hw_rule *rule)
162
{
163
struct snd_interval *s = hw_param_interval(params, rule->var);
164
const struct snd_interval *r =
165
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
166
struct snd_interval t = {0};
167
unsigned int step = 0;
168
int i;
169
170
for (i = 0; i < CIP_SFC_COUNT; ++i) {
171
if (snd_interval_test(r, amdtp_rate_table[i]))
172
step = max(step, amdtp_syt_intervals[i]);
173
}
174
175
if (step == 0)
176
return -EINVAL;
177
178
t.min = roundup(s->min, step);
179
t.max = rounddown(s->max, step);
180
t.integer = 1;
181
182
return snd_interval_refine(s, &t);
183
}
184
185
/**
186
* amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
187
* @s: the AMDTP stream, which must be initialized.
188
* @runtime: the PCM substream runtime
189
*/
190
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
191
struct snd_pcm_runtime *runtime)
192
{
193
struct snd_pcm_hardware *hw = &runtime->hw;
194
int err;
195
196
hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
197
SNDRV_PCM_INFO_INTERLEAVED |
198
SNDRV_PCM_INFO_JOINT_DUPLEX |
199
SNDRV_PCM_INFO_MMAP |
200
SNDRV_PCM_INFO_MMAP_VALID |
201
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
202
203
hw->periods_min = 2;
204
hw->periods_max = UINT_MAX;
205
206
/* bytes for a frame */
207
hw->period_bytes_min = 4 * hw->channels_max;
208
209
/* Just to prevent from allocating much pages. */
210
hw->period_bytes_max = hw->period_bytes_min * 2048;
211
hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
212
213
// In IEC 61883-6, one isoc packet can transfer events up to the value
214
// of syt interval. This comes from the interval of isoc cycle. As 1394
215
// OHCI controller can generate hardware IRQ per isoc packet, the
216
// interval is 125 usec.
217
// However, there are two ways of transmission in IEC 61883-6; blocking
218
// and non-blocking modes. In blocking mode, the sequence of isoc packet
219
// includes 'empty' or 'NODATA' packets which include no event. In
220
// non-blocking mode, the number of events per packet is variable up to
221
// the syt interval.
222
// Due to the above protocol design, the minimum PCM frames per
223
// interrupt should be double of the value of syt interval, thus it is
224
// 250 usec.
225
// There is no reason, but up to 250 msec to avoid consuming resources so much.
226
err = snd_pcm_hw_constraint_minmax(runtime,
227
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
228
250, USEC_PER_SEC / 4);
229
if (err < 0)
230
goto end;
231
232
/* Non-Blocking stream has no more constraints */
233
if (!(s->flags & CIP_BLOCKING))
234
goto end;
235
236
/*
237
* One AMDTP packet can include some frames. In blocking mode, the
238
* number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
239
* depending on its sampling rate. For accurate period interrupt, it's
240
* preferrable to align period/buffer sizes to current SYT_INTERVAL.
241
*/
242
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
243
apply_constraint_to_size, NULL,
244
SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
245
SNDRV_PCM_HW_PARAM_RATE, -1);
246
if (err < 0)
247
goto end;
248
249
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
250
apply_constraint_to_size, NULL,
251
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
252
SNDRV_PCM_HW_PARAM_RATE, -1);
253
if (err < 0)
254
goto end;
255
end:
256
return err;
257
}
258
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
259
260
/**
261
* amdtp_stream_set_parameters - set stream parameters
262
* @s: the AMDTP stream to configure
263
* @rate: the sample rate
264
* @data_block_quadlets: the size of a data block in quadlet unit
265
* @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
266
* events.
267
*
268
* The parameters must be set before the stream is started, and must not be
269
* changed while the stream is running.
270
*/
271
int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
272
unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
273
{
274
unsigned int sfc;
275
276
for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
277
if (amdtp_rate_table[sfc] == rate)
278
break;
279
}
280
if (sfc == ARRAY_SIZE(amdtp_rate_table))
281
return -EINVAL;
282
283
s->sfc = sfc;
284
s->data_block_quadlets = data_block_quadlets;
285
s->syt_interval = amdtp_syt_intervals[sfc];
286
287
// default buffering in the device.
288
s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
289
290
// additional buffering needed to adjust for no-data packets.
291
if (s->flags & CIP_BLOCKING)
292
s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
293
294
s->pcm_frame_multiplier = pcm_frame_multiplier;
295
296
return 0;
297
}
298
EXPORT_SYMBOL(amdtp_stream_set_parameters);
299
300
// The CIP header is processed in context header apart from context payload.
301
static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
302
{
303
unsigned int multiplier;
304
305
if (s->flags & CIP_JUMBO_PAYLOAD)
306
multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
307
else
308
multiplier = 1;
309
310
return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
311
}
312
313
/**
314
* amdtp_stream_get_max_payload - get the stream's packet size
315
* @s: the AMDTP stream
316
*
317
* This function must not be called before the stream has been configured
318
* with amdtp_stream_set_parameters().
319
*/
320
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
321
{
322
unsigned int cip_header_size;
323
324
if (!(s->flags & CIP_NO_HEADER))
325
cip_header_size = CIP_HEADER_SIZE;
326
else
327
cip_header_size = 0;
328
329
return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
330
}
331
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
332
333
/**
334
* amdtp_stream_pcm_prepare - prepare PCM device for running
335
* @s: the AMDTP stream
336
*
337
* This function should be called from the PCM device's .prepare callback.
338
*/
339
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
340
{
341
cancel_work_sync(&s->period_work);
342
s->pcm_buffer_pointer = 0;
343
s->pcm_period_pointer = 0;
344
}
345
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
346
347
#define prev_packet_desc(s, desc) \
348
list_prev_entry_circular(desc, &s->packet_descs_list, link)
349
350
static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
351
unsigned int size, unsigned int pos, unsigned int count)
352
{
353
const unsigned int syt_interval = s->syt_interval;
354
int i;
355
356
for (i = 0; i < count; ++i) {
357
struct seq_desc *desc = descs + pos;
358
359
if (desc->syt_offset != CIP_SYT_NO_INFO)
360
desc->data_blocks = syt_interval;
361
else
362
desc->data_blocks = 0;
363
364
pos = (pos + 1) % size;
365
}
366
}
367
368
static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
369
unsigned int size, unsigned int pos,
370
unsigned int count)
371
{
372
const enum cip_sfc sfc = s->sfc;
373
unsigned int state = s->ctx_data.rx.data_block_state;
374
int i;
375
376
for (i = 0; i < count; ++i) {
377
struct seq_desc *desc = descs + pos;
378
379
if (!cip_sfc_is_base_44100(sfc)) {
380
// Sample_rate / 8000 is an integer, and precomputed.
381
desc->data_blocks = state;
382
} else {
383
unsigned int phase = state;
384
385
/*
386
* This calculates the number of data blocks per packet so that
387
* 1) the overall rate is correct and exactly synchronized to
388
* the bus clock, and
389
* 2) packets with a rounded-up number of blocks occur as early
390
* as possible in the sequence (to prevent underruns of the
391
* device's buffer).
392
*/
393
if (sfc == CIP_SFC_44100)
394
/* 6 6 5 6 5 6 5 ... */
395
desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
396
else
397
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
398
desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
399
if (++phase >= (80 >> (sfc >> 1)))
400
phase = 0;
401
state = phase;
402
}
403
404
pos = (pos + 1) % size;
405
}
406
407
s->ctx_data.rx.data_block_state = state;
408
}
409
410
static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
411
unsigned int *syt_offset_state, enum cip_sfc sfc)
412
{
413
unsigned int syt_offset;
414
415
if (*last_syt_offset < TICKS_PER_CYCLE) {
416
if (!cip_sfc_is_base_44100(sfc))
417
syt_offset = *last_syt_offset + *syt_offset_state;
418
else {
419
/*
420
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
421
* n * SYT_INTERVAL * 24576000 / sample_rate
422
* Modulo TICKS_PER_CYCLE, the difference between successive
423
* elements is about 1386.23. Rounding the results of this
424
* formula to the SYT precision results in a sequence of
425
* differences that begins with:
426
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
427
* This code generates _exactly_ the same sequence.
428
*/
429
unsigned int phase = *syt_offset_state;
430
unsigned int index = phase % 13;
431
432
syt_offset = *last_syt_offset;
433
syt_offset += 1386 + ((index && !(index & 3)) ||
434
phase == 146);
435
if (++phase >= 147)
436
phase = 0;
437
*syt_offset_state = phase;
438
}
439
} else
440
syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
441
*last_syt_offset = syt_offset;
442
443
if (syt_offset >= TICKS_PER_CYCLE)
444
syt_offset = CIP_SYT_NO_INFO;
445
446
return syt_offset;
447
}
448
449
static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
450
unsigned int size, unsigned int pos, unsigned int count)
451
{
452
const enum cip_sfc sfc = s->sfc;
453
unsigned int last = s->ctx_data.rx.last_syt_offset;
454
unsigned int state = s->ctx_data.rx.syt_offset_state;
455
int i;
456
457
for (i = 0; i < count; ++i) {
458
struct seq_desc *desc = descs + pos;
459
460
desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
461
462
pos = (pos + 1) % size;
463
}
464
465
s->ctx_data.rx.last_syt_offset = last;
466
s->ctx_data.rx.syt_offset_state = state;
467
}
468
469
static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
470
unsigned int transfer_delay)
471
{
472
unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
473
unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
474
unsigned int syt_offset;
475
476
// Round up.
477
if (syt_cycle_lo < cycle_lo)
478
syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
479
syt_cycle_lo -= cycle_lo;
480
481
// Subtract transfer delay so that the synchronization offset is not so large
482
// at transmission.
483
syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
484
if (syt_offset < transfer_delay)
485
syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
486
487
return syt_offset - transfer_delay;
488
}
489
490
// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
491
// Additionally, the sequence of tx packets is severely checked against any discontinuity
492
// before filling entries in the queue. The calculation is safe even if it looks fragile by
493
// overrun.
494
static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
495
{
496
const unsigned int cache_size = s->ctx_data.tx.cache.size;
497
unsigned int cycles = s->ctx_data.tx.cache.pos;
498
499
if (cycles < head)
500
cycles += cache_size;
501
cycles -= head;
502
503
return cycles;
504
}
505
506
static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
507
{
508
const unsigned int transfer_delay = s->transfer_delay;
509
const unsigned int cache_size = s->ctx_data.tx.cache.size;
510
struct seq_desc *cache = s->ctx_data.tx.cache.descs;
511
unsigned int cache_pos = s->ctx_data.tx.cache.pos;
512
bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
513
int i;
514
515
for (i = 0; i < desc_count; ++i) {
516
struct seq_desc *dst = cache + cache_pos;
517
518
if (aware_syt && src->syt != CIP_SYT_NO_INFO)
519
dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
520
else
521
dst->syt_offset = CIP_SYT_NO_INFO;
522
dst->data_blocks = src->data_blocks;
523
524
cache_pos = (cache_pos + 1) % cache_size;
525
src = amdtp_stream_next_packet_desc(s, src);
526
}
527
528
s->ctx_data.tx.cache.pos = cache_pos;
529
}
530
531
static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
532
unsigned int pos, unsigned int count)
533
{
534
pool_ideal_syt_offsets(s, descs, size, pos, count);
535
536
if (s->flags & CIP_BLOCKING)
537
pool_blocking_data_blocks(s, descs, size, pos, count);
538
else
539
pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
540
}
541
542
static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
543
unsigned int pos, unsigned int count)
544
{
545
struct amdtp_stream *target = s->ctx_data.rx.replay_target;
546
const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
547
const unsigned int cache_size = target->ctx_data.tx.cache.size;
548
unsigned int cache_pos = s->ctx_data.rx.cache_pos;
549
int i;
550
551
for (i = 0; i < count; ++i) {
552
descs[pos] = cache[cache_pos];
553
cache_pos = (cache_pos + 1) % cache_size;
554
pos = (pos + 1) % size;
555
}
556
557
s->ctx_data.rx.cache_pos = cache_pos;
558
}
559
560
static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
561
unsigned int pos, unsigned int count)
562
{
563
struct amdtp_domain *d = s->domain;
564
void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
565
unsigned int pos, unsigned int count);
566
567
if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
568
pool_seq_descs = pool_ideal_seq_descs;
569
} else {
570
if (!d->replay.on_the_fly) {
571
pool_seq_descs = pool_replayed_seq;
572
} else {
573
struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
574
const unsigned int cache_size = tx->ctx_data.tx.cache.size;
575
const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
576
unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
577
578
if (cached_cycles > count && cached_cycles > cache_size / 2)
579
pool_seq_descs = pool_replayed_seq;
580
else
581
pool_seq_descs = pool_ideal_seq_descs;
582
}
583
}
584
585
pool_seq_descs(s, descs, size, pos, count);
586
}
587
588
static void update_pcm_pointers(struct amdtp_stream *s,
589
struct snd_pcm_substream *pcm,
590
unsigned int frames)
591
{
592
unsigned int ptr;
593
594
ptr = s->pcm_buffer_pointer + frames;
595
if (ptr >= pcm->runtime->buffer_size)
596
ptr -= pcm->runtime->buffer_size;
597
WRITE_ONCE(s->pcm_buffer_pointer, ptr);
598
599
s->pcm_period_pointer += frames;
600
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
601
s->pcm_period_pointer -= pcm->runtime->period_size;
602
603
// The program in user process should periodically check the status of intermediate
604
// buffer associated to PCM substream to process PCM frames in the buffer, instead
605
// of receiving notification of period elapsed by poll wait.
606
//
607
// Use another work item for period elapsed event to prevent the following AB/BA
608
// deadlock:
609
//
610
// thread 1 thread 2
611
// ================================= =================================
612
// A.work item (process) pcm ioctl (process)
613
// v v
614
// process_rx_packets() B.PCM stream lock
615
// process_tx_packets() v
616
// v callbacks in snd_pcm_ops
617
// update_pcm_pointers() v
618
// snd_pcm_elapsed() fw_iso_context_flush_completions()
619
// snd_pcm_stream_lock_irqsave() disable_work_sync()
620
// v v
621
// wait until release of B wait until A exits
622
if (!pcm->runtime->no_period_wakeup)
623
queue_work(system_highpri_wq, &s->period_work);
624
}
625
}
626
627
static void pcm_period_work(struct work_struct *work)
628
{
629
struct amdtp_stream *s = container_of(work, struct amdtp_stream,
630
period_work);
631
struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
632
633
if (pcm)
634
snd_pcm_period_elapsed(pcm);
635
}
636
637
static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
638
bool sched_irq)
639
{
640
int err;
641
642
params->interrupt = sched_irq;
643
params->tag = s->tag;
644
params->sy = 0;
645
646
err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
647
s->buffer.packets[s->packet_index].offset);
648
if (err < 0) {
649
dev_err(&s->unit->device, "queueing error: %d\n", err);
650
goto end;
651
}
652
653
if (++s->packet_index >= s->queue_size)
654
s->packet_index = 0;
655
end:
656
return err;
657
}
658
659
static inline int queue_out_packet(struct amdtp_stream *s,
660
struct fw_iso_packet *params, bool sched_irq)
661
{
662
params->skip =
663
!!(params->header_length == 0 && params->payload_length == 0);
664
return queue_packet(s, params, sched_irq);
665
}
666
667
static inline int queue_in_packet(struct amdtp_stream *s,
668
struct fw_iso_packet *params)
669
{
670
// Queue one packet for IR context.
671
params->header_length = s->ctx_data.tx.ctx_header_size;
672
params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
673
params->skip = false;
674
return queue_packet(s, params, false);
675
}
676
677
static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
678
unsigned int data_block_counter, unsigned int syt)
679
{
680
cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
681
(s->data_block_quadlets << CIP_DBS_SHIFT) |
682
((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
683
data_block_counter);
684
cip_header[1] = cpu_to_be32(CIP_EOH |
685
((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
686
((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
687
(syt & CIP_SYT_MASK));
688
}
689
690
static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
691
struct fw_iso_packet *params, unsigned int header_length,
692
unsigned int data_blocks,
693
unsigned int data_block_counter,
694
unsigned int syt, unsigned int index, u32 curr_cycle_time)
695
{
696
unsigned int payload_length;
697
__be32 *cip_header;
698
699
payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
700
params->payload_length = payload_length;
701
702
if (header_length > 0) {
703
cip_header = (__be32 *)params->header;
704
generate_cip_header(s, cip_header, data_block_counter, syt);
705
params->header_length = header_length;
706
} else {
707
cip_header = NULL;
708
}
709
710
trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
711
data_block_counter, s->packet_index, index, curr_cycle_time);
712
}
713
714
static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
715
unsigned int payload_length,
716
unsigned int *data_blocks,
717
unsigned int *data_block_counter, unsigned int *syt)
718
{
719
u32 cip_header[2];
720
unsigned int sph;
721
unsigned int fmt;
722
unsigned int fdf;
723
unsigned int dbc;
724
bool lost;
725
726
cip_header[0] = be32_to_cpu(buf[0]);
727
cip_header[1] = be32_to_cpu(buf[1]);
728
729
/*
730
* This module supports 'Two-quadlet CIP header with SYT field'.
731
* For convenience, also check FMT field is AM824 or not.
732
*/
733
if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
734
((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
735
(!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
736
dev_info_ratelimited(&s->unit->device,
737
"Invalid CIP header for AMDTP: %08X:%08X\n",
738
cip_header[0], cip_header[1]);
739
return -EAGAIN;
740
}
741
742
/* Check valid protocol or not. */
743
sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
744
fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
745
if (sph != s->sph || fmt != s->fmt) {
746
dev_info_ratelimited(&s->unit->device,
747
"Detect unexpected protocol: %08x %08x\n",
748
cip_header[0], cip_header[1]);
749
return -EAGAIN;
750
}
751
752
/* Calculate data blocks */
753
fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
754
if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
755
*data_blocks = 0;
756
} else {
757
unsigned int data_block_quadlets =
758
(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
759
/* avoid division by zero */
760
if (data_block_quadlets == 0) {
761
dev_err(&s->unit->device,
762
"Detect invalid value in dbs field: %08X\n",
763
cip_header[0]);
764
return -EPROTO;
765
}
766
if (s->flags & CIP_WRONG_DBS)
767
data_block_quadlets = s->data_block_quadlets;
768
769
*data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
770
}
771
772
/* Check data block counter continuity */
773
dbc = cip_header[0] & CIP_DBC_MASK;
774
if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
775
*data_block_counter != UINT_MAX)
776
dbc = *data_block_counter;
777
778
if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
779
*data_block_counter == UINT_MAX) {
780
lost = false;
781
} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
782
lost = dbc != *data_block_counter;
783
} else {
784
unsigned int dbc_interval;
785
786
if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) {
787
if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
788
dbc_interval = s->ctx_data.tx.dbc_interval;
789
else
790
dbc_interval = *data_blocks;
791
} else {
792
dbc_interval = payload_length / sizeof(__be32);
793
}
794
795
lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
796
}
797
798
if (lost) {
799
dev_err(&s->unit->device,
800
"Detect discontinuity of CIP: %02X %02X\n",
801
*data_block_counter, dbc);
802
return -EIO;
803
}
804
805
*data_block_counter = dbc;
806
807
if (!(s->flags & CIP_UNAWARE_SYT))
808
*syt = cip_header[1] & CIP_SYT_MASK;
809
810
return 0;
811
}
812
813
static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
814
const __be32 *ctx_header,
815
unsigned int *data_blocks,
816
unsigned int *data_block_counter,
817
unsigned int *syt, unsigned int packet_index, unsigned int index,
818
u32 curr_cycle_time)
819
{
820
unsigned int payload_length;
821
const __be32 *cip_header;
822
unsigned int cip_header_size;
823
824
payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
825
826
if (!(s->flags & CIP_NO_HEADER))
827
cip_header_size = CIP_HEADER_SIZE;
828
else
829
cip_header_size = 0;
830
831
if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
832
dev_err(&s->unit->device,
833
"Detect jumbo payload: %04x %04x\n",
834
payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
835
return -EIO;
836
}
837
838
if (cip_header_size > 0) {
839
if (payload_length >= cip_header_size) {
840
int err;
841
842
cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
843
err = check_cip_header(s, cip_header, payload_length - cip_header_size,
844
data_blocks, data_block_counter, syt);
845
if (err < 0)
846
return err;
847
} else {
848
// Handle the cycle so that empty packet arrives.
849
cip_header = NULL;
850
*data_blocks = 0;
851
*syt = 0;
852
}
853
} else {
854
cip_header = NULL;
855
*data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
856
*syt = 0;
857
858
if (*data_block_counter == UINT_MAX)
859
*data_block_counter = 0;
860
}
861
862
trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
863
*data_block_counter, packet_index, index, curr_cycle_time);
864
865
return 0;
866
}
867
868
// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
869
// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
870
// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
871
static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
872
{
873
return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
874
}
875
876
static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
877
{
878
u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
879
return compute_ohci_iso_ctx_cycle_count(tstamp);
880
}
881
882
static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
883
{
884
cycle += addend;
885
if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
886
cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
887
return cycle;
888
}
889
890
static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
891
{
892
if (minuend < subtrahend)
893
minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
894
895
return minuend - subtrahend;
896
}
897
898
static int compare_ohci_cycle_count(u32 lval, u32 rval)
899
{
900
if (lval == rval)
901
return 0;
902
else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
903
return -1;
904
else
905
return 1;
906
}
907
908
// Align to actual cycle count for the packet which is going to be scheduled.
909
// This module queued the same number of isochronous cycle as the size of queue
910
// to kip isochronous cycle, therefore it's OK to just increment the cycle by
911
// the size of queue for scheduled cycle.
912
static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
913
unsigned int queue_size)
914
{
915
u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
916
return increment_ohci_cycle_count(cycle, queue_size);
917
}
918
919
static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
920
const __be32 *ctx_header, unsigned int packet_count,
921
unsigned int *desc_count)
922
{
923
unsigned int next_cycle = s->next_cycle;
924
unsigned int dbc = s->data_block_counter;
925
unsigned int packet_index = s->packet_index;
926
unsigned int queue_size = s->queue_size;
927
u32 curr_cycle_time = 0;
928
int i;
929
int err;
930
931
if (trace_amdtp_packet_enabled())
932
(void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
933
934
*desc_count = 0;
935
for (i = 0; i < packet_count; ++i) {
936
unsigned int cycle;
937
bool lost;
938
unsigned int data_blocks;
939
unsigned int syt;
940
941
cycle = compute_ohci_cycle_count(ctx_header[1]);
942
lost = (next_cycle != cycle);
943
if (lost) {
944
if (s->flags & CIP_NO_HEADER) {
945
// Fireface skips transmission just for an isoc cycle corresponding
946
// to empty packet.
947
unsigned int prev_cycle = next_cycle;
948
949
next_cycle = increment_ohci_cycle_count(next_cycle, 1);
950
lost = (next_cycle != cycle);
951
if (!lost) {
952
// Prepare a description for the skipped cycle for
953
// sequence replay.
954
desc->cycle = prev_cycle;
955
desc->syt = 0;
956
desc->data_blocks = 0;
957
desc->data_block_counter = dbc;
958
desc->ctx_payload = NULL;
959
desc = amdtp_stream_next_packet_desc(s, desc);
960
++(*desc_count);
961
}
962
} else if (s->flags & CIP_JUMBO_PAYLOAD) {
963
// OXFW970 skips transmission for several isoc cycles during
964
// asynchronous transaction. The sequence replay is impossible due
965
// to the reason.
966
unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
967
IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
968
lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0);
969
}
970
if (lost) {
971
dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
972
next_cycle, cycle);
973
return -EIO;
974
}
975
}
976
977
err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
978
packet_index, i, curr_cycle_time);
979
if (err < 0)
980
return err;
981
982
desc->cycle = cycle;
983
desc->syt = syt;
984
desc->data_blocks = data_blocks;
985
desc->data_block_counter = dbc;
986
desc->ctx_payload = s->buffer.packets[packet_index].buffer;
987
988
if (!(s->flags & CIP_DBC_IS_END_EVENT))
989
dbc = (dbc + desc->data_blocks) & 0xff;
990
991
next_cycle = increment_ohci_cycle_count(next_cycle, 1);
992
desc = amdtp_stream_next_packet_desc(s, desc);
993
++(*desc_count);
994
ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
995
packet_index = (packet_index + 1) % queue_size;
996
}
997
998
s->next_cycle = next_cycle;
999
s->data_block_counter = dbc;
1000
1001
return 0;
1002
}
1003
1004
static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
1005
unsigned int transfer_delay)
1006
{
1007
unsigned int syt;
1008
1009
syt_offset += transfer_delay;
1010
syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
1011
(syt_offset % TICKS_PER_CYCLE);
1012
return syt & CIP_SYT_MASK;
1013
}
1014
1015
static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
1016
const __be32 *ctx_header, unsigned int packet_count)
1017
{
1018
struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1019
unsigned int seq_size = s->ctx_data.rx.seq.size;
1020
unsigned int seq_pos = s->ctx_data.rx.seq.pos;
1021
unsigned int dbc = s->data_block_counter;
1022
bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
1023
int i;
1024
1025
pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1026
1027
for (i = 0; i < packet_count; ++i) {
1028
unsigned int index = (s->packet_index + i) % s->queue_size;
1029
const struct seq_desc *seq = seq_descs + seq_pos;
1030
1031
desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
1032
1033
if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1034
desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1035
else
1036
desc->syt = CIP_SYT_NO_INFO;
1037
1038
desc->data_blocks = seq->data_blocks;
1039
1040
if (s->flags & CIP_DBC_IS_END_EVENT)
1041
dbc = (dbc + desc->data_blocks) & 0xff;
1042
1043
desc->data_block_counter = dbc;
1044
1045
if (!(s->flags & CIP_DBC_IS_END_EVENT))
1046
dbc = (dbc + desc->data_blocks) & 0xff;
1047
1048
desc->ctx_payload = s->buffer.packets[index].buffer;
1049
1050
seq_pos = (seq_pos + 1) % seq_size;
1051
desc = amdtp_stream_next_packet_desc(s, desc);
1052
1053
++ctx_header;
1054
}
1055
1056
s->data_block_counter = dbc;
1057
s->ctx_data.rx.seq.pos = seq_pos;
1058
}
1059
1060
static inline void cancel_stream(struct amdtp_stream *s)
1061
{
1062
struct work_struct *work = current_work();
1063
1064
s->packet_index = -1;
1065
1066
// Detect work items for any isochronous context. The work item for pcm_period_work()
1067
// should be avoided since the call of snd_pcm_period_elapsed() can reach via
1068
// snd_pcm_ops.pointer() under acquiring PCM stream(group) lock and causes dead lock at
1069
// snd_pcm_stop_xrun().
1070
if (work && work != &s->period_work)
1071
amdtp_stream_pcm_abort(s);
1072
WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1073
}
1074
1075
static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1076
const struct pkt_desc *desc, unsigned int count)
1077
{
1078
unsigned int data_block_count = 0;
1079
u32 latest_cycle;
1080
u32 cycle_time;
1081
u32 curr_cycle;
1082
u32 cycle_gap;
1083
int i, err;
1084
1085
if (count == 0)
1086
goto end;
1087
1088
// Forward to the latest record.
1089
for (i = 0; i < count - 1; ++i)
1090
desc = amdtp_stream_next_packet_desc(s, desc);
1091
latest_cycle = desc->cycle;
1092
1093
err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1094
if (err < 0)
1095
goto end;
1096
1097
// Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1098
// format of 1394 OHCI isochronous context.
1099
curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1100
1101
if (s->direction == AMDTP_IN_STREAM) {
1102
// NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1103
// it corresponds to arrived isochronous packet.
1104
if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1105
goto end;
1106
cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1107
1108
// NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1109
// value expectedly corresponds to a few packets (0-2) since the packet arrived at
1110
// the most recent isochronous cycle has been already processed.
1111
for (i = 0; i < cycle_gap; ++i) {
1112
desc = amdtp_stream_next_packet_desc(s, desc);
1113
data_block_count += desc->data_blocks;
1114
}
1115
} else {
1116
// NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1117
// since it was already scheduled.
1118
if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1119
goto end;
1120
cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1121
1122
// NOTE: use history of scheduled packets.
1123
for (i = 0; i < cycle_gap; ++i) {
1124
data_block_count += desc->data_blocks;
1125
desc = prev_packet_desc(s, desc);
1126
}
1127
}
1128
end:
1129
return data_block_count * s->pcm_frame_multiplier;
1130
}
1131
1132
static void process_ctx_payloads(struct amdtp_stream *s,
1133
const struct pkt_desc *desc,
1134
unsigned int count)
1135
{
1136
struct snd_pcm_substream *pcm;
1137
int i;
1138
1139
pcm = READ_ONCE(s->pcm);
1140
s->process_ctx_payloads(s, desc, count, pcm);
1141
1142
if (pcm) {
1143
unsigned int data_block_count = 0;
1144
1145
pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1146
1147
for (i = 0; i < count; ++i) {
1148
data_block_count += desc->data_blocks;
1149
desc = amdtp_stream_next_packet_desc(s, desc);
1150
}
1151
1152
update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1153
}
1154
}
1155
1156
static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1157
void *header, void *private_data)
1158
{
1159
struct amdtp_stream *s = private_data;
1160
const struct amdtp_domain *d = s->domain;
1161
const __be32 *ctx_header = header;
1162
const unsigned int events_per_period = d->events_per_period;
1163
unsigned int event_count = s->ctx_data.rx.event_count;
1164
struct pkt_desc *desc = s->packet_descs_cursor;
1165
unsigned int pkt_header_length;
1166
unsigned int packets;
1167
u32 curr_cycle_time;
1168
bool need_hw_irq;
1169
int i;
1170
1171
if (s->packet_index < 0)
1172
return;
1173
1174
// Calculate the number of packets in buffer and check XRUN.
1175
packets = header_length / sizeof(*ctx_header);
1176
1177
generate_rx_packet_descs(s, desc, ctx_header, packets);
1178
1179
process_ctx_payloads(s, desc, packets);
1180
1181
if (!(s->flags & CIP_NO_HEADER))
1182
pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1183
else
1184
pkt_header_length = 0;
1185
1186
if (s == d->irq_target) {
1187
// At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1188
// the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1189
// with some requests, instead of scheduled hardware IRQ of an IT context.
1190
struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1191
need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1192
} else {
1193
need_hw_irq = false;
1194
}
1195
1196
if (trace_amdtp_packet_enabled())
1197
(void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1198
1199
for (i = 0; i < packets; ++i) {
1200
DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS);
1201
bool sched_irq = false;
1202
1203
build_it_pkt_header(s, desc->cycle, template, pkt_header_length,
1204
desc->data_blocks, desc->data_block_counter,
1205
desc->syt, i, curr_cycle_time);
1206
1207
if (s == s->domain->irq_target) {
1208
event_count += desc->data_blocks;
1209
if (event_count >= events_per_period) {
1210
event_count -= events_per_period;
1211
sched_irq = need_hw_irq;
1212
}
1213
}
1214
1215
if (queue_out_packet(s, template, sched_irq) < 0) {
1216
cancel_stream(s);
1217
return;
1218
}
1219
1220
desc = amdtp_stream_next_packet_desc(s, desc);
1221
}
1222
1223
s->ctx_data.rx.event_count = event_count;
1224
s->packet_descs_cursor = desc;
1225
}
1226
1227
static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1228
void *header, void *private_data)
1229
{
1230
struct amdtp_stream *s = private_data;
1231
struct amdtp_domain *d = s->domain;
1232
const __be32 *ctx_header = header;
1233
unsigned int packets;
1234
unsigned int cycle;
1235
int i;
1236
1237
if (s->packet_index < 0)
1238
return;
1239
1240
packets = header_length / sizeof(*ctx_header);
1241
1242
cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1243
s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1244
1245
for (i = 0; i < packets; ++i) {
1246
struct fw_iso_packet params = {
1247
.header_length = 0,
1248
.payload_length = 0,
1249
};
1250
bool sched_irq = (s == d->irq_target && i == packets - 1);
1251
1252
if (queue_out_packet(s, &params, sched_irq) < 0) {
1253
cancel_stream(s);
1254
return;
1255
}
1256
}
1257
}
1258
1259
static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1260
void *header, void *private_data);
1261
1262
static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1263
size_t header_length, void *header, void *private_data)
1264
{
1265
struct amdtp_stream *s = private_data;
1266
struct amdtp_domain *d = s->domain;
1267
__be32 *ctx_header = header;
1268
const unsigned int queue_size = s->queue_size;
1269
unsigned int packets;
1270
unsigned int offset;
1271
1272
if (s->packet_index < 0)
1273
return;
1274
1275
packets = header_length / sizeof(*ctx_header);
1276
1277
offset = 0;
1278
while (offset < packets) {
1279
unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1280
1281
if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1282
break;
1283
1284
++offset;
1285
}
1286
1287
if (offset > 0) {
1288
unsigned int length = sizeof(*ctx_header) * offset;
1289
1290
skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1291
if (amdtp_streaming_error(s))
1292
return;
1293
1294
ctx_header += offset;
1295
header_length -= length;
1296
}
1297
1298
if (offset < packets) {
1299
s->ready_processing = true;
1300
wake_up(&s->ready_wait);
1301
1302
if (d->replay.enable)
1303
s->ctx_data.rx.cache_pos = 0;
1304
1305
process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1306
if (amdtp_streaming_error(s))
1307
return;
1308
1309
if (s == d->irq_target)
1310
s->context->callback.sc = irq_target_callback;
1311
else
1312
s->context->callback.sc = process_rx_packets;
1313
}
1314
}
1315
1316
static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1317
void *header, void *private_data)
1318
{
1319
struct amdtp_stream *s = private_data;
1320
__be32 *ctx_header = header;
1321
struct pkt_desc *desc = s->packet_descs_cursor;
1322
unsigned int packet_count;
1323
unsigned int desc_count;
1324
int i;
1325
int err;
1326
1327
if (s->packet_index < 0)
1328
return;
1329
1330
// Calculate the number of packets in buffer and check XRUN.
1331
packet_count = header_length / s->ctx_data.tx.ctx_header_size;
1332
1333
desc_count = 0;
1334
err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
1335
if (err < 0) {
1336
if (err != -EAGAIN) {
1337
cancel_stream(s);
1338
return;
1339
}
1340
} else {
1341
struct amdtp_domain *d = s->domain;
1342
1343
process_ctx_payloads(s, desc, desc_count);
1344
1345
if (d->replay.enable)
1346
cache_seq(s, desc, desc_count);
1347
1348
for (i = 0; i < desc_count; ++i)
1349
desc = amdtp_stream_next_packet_desc(s, desc);
1350
s->packet_descs_cursor = desc;
1351
}
1352
1353
for (i = 0; i < packet_count; ++i) {
1354
struct fw_iso_packet params = {0};
1355
1356
if (queue_in_packet(s, &params) < 0) {
1357
cancel_stream(s);
1358
return;
1359
}
1360
}
1361
}
1362
1363
static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1364
void *header, void *private_data)
1365
{
1366
struct amdtp_stream *s = private_data;
1367
const __be32 *ctx_header = header;
1368
unsigned int packets;
1369
unsigned int cycle;
1370
int i;
1371
1372
if (s->packet_index < 0)
1373
return;
1374
1375
packets = header_length / s->ctx_data.tx.ctx_header_size;
1376
1377
ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1378
cycle = compute_ohci_cycle_count(ctx_header[1]);
1379
s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1380
1381
for (i = 0; i < packets; ++i) {
1382
struct fw_iso_packet params = {0};
1383
1384
if (queue_in_packet(s, &params) < 0) {
1385
cancel_stream(s);
1386
return;
1387
}
1388
}
1389
}
1390
1391
static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1392
size_t header_length, void *header, void *private_data)
1393
{
1394
struct amdtp_stream *s = private_data;
1395
struct amdtp_domain *d = s->domain;
1396
__be32 *ctx_header;
1397
unsigned int packets;
1398
unsigned int offset;
1399
1400
if (s->packet_index < 0)
1401
return;
1402
1403
packets = header_length / s->ctx_data.tx.ctx_header_size;
1404
1405
offset = 0;
1406
ctx_header = header;
1407
while (offset < packets) {
1408
unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1409
1410
if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1411
break;
1412
1413
ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1414
++offset;
1415
}
1416
1417
ctx_header = header;
1418
1419
if (offset > 0) {
1420
size_t length = s->ctx_data.tx.ctx_header_size * offset;
1421
1422
drop_tx_packets(context, tstamp, length, ctx_header, s);
1423
if (amdtp_streaming_error(s))
1424
return;
1425
1426
ctx_header += length / sizeof(*ctx_header);
1427
header_length -= length;
1428
}
1429
1430
if (offset < packets) {
1431
s->ready_processing = true;
1432
wake_up(&s->ready_wait);
1433
1434
process_tx_packets(context, tstamp, header_length, ctx_header, s);
1435
if (amdtp_streaming_error(s))
1436
return;
1437
1438
context->callback.sc = process_tx_packets;
1439
}
1440
}
1441
1442
static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1443
size_t header_length, void *header, void *private_data)
1444
{
1445
struct amdtp_stream *s = private_data;
1446
struct amdtp_domain *d = s->domain;
1447
__be32 *ctx_header;
1448
unsigned int count;
1449
unsigned int events;
1450
int i;
1451
1452
if (s->packet_index < 0)
1453
return;
1454
1455
count = header_length / s->ctx_data.tx.ctx_header_size;
1456
1457
// Attempt to detect any event in the batch of packets.
1458
events = 0;
1459
ctx_header = header;
1460
for (i = 0; i < count; ++i) {
1461
unsigned int payload_quads =
1462
(be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1463
unsigned int data_blocks;
1464
1465
if (s->flags & CIP_NO_HEADER) {
1466
data_blocks = payload_quads / s->data_block_quadlets;
1467
} else {
1468
__be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1469
1470
if (payload_quads < CIP_HEADER_QUADLETS) {
1471
data_blocks = 0;
1472
} else {
1473
payload_quads -= CIP_HEADER_QUADLETS;
1474
1475
if (s->flags & CIP_UNAWARE_SYT) {
1476
data_blocks = payload_quads / s->data_block_quadlets;
1477
} else {
1478
u32 cip1 = be32_to_cpu(cip_headers[1]);
1479
1480
// NODATA packet can includes any data blocks but they are
1481
// not available as event.
1482
if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1483
data_blocks = 0;
1484
else
1485
data_blocks = payload_quads / s->data_block_quadlets;
1486
}
1487
}
1488
}
1489
1490
events += data_blocks;
1491
1492
ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1493
}
1494
1495
drop_tx_packets(context, tstamp, header_length, header, s);
1496
1497
if (events > 0)
1498
s->ctx_data.tx.event_starts = true;
1499
1500
// Decide the cycle count to begin processing content of packet in IR contexts.
1501
{
1502
unsigned int stream_count = 0;
1503
unsigned int event_starts_count = 0;
1504
unsigned int cycle = UINT_MAX;
1505
1506
list_for_each_entry(s, &d->streams, list) {
1507
if (s->direction == AMDTP_IN_STREAM) {
1508
++stream_count;
1509
if (s->ctx_data.tx.event_starts)
1510
++event_starts_count;
1511
}
1512
}
1513
1514
if (stream_count == event_starts_count) {
1515
unsigned int next_cycle;
1516
1517
list_for_each_entry(s, &d->streams, list) {
1518
if (s->direction != AMDTP_IN_STREAM)
1519
continue;
1520
1521
next_cycle = increment_ohci_cycle_count(s->next_cycle,
1522
d->processing_cycle.tx_init_skip);
1523
if (cycle == UINT_MAX ||
1524
compare_ohci_cycle_count(next_cycle, cycle) > 0)
1525
cycle = next_cycle;
1526
1527
s->context->callback.sc = process_tx_packets_intermediately;
1528
}
1529
1530
d->processing_cycle.tx_start = cycle;
1531
}
1532
}
1533
}
1534
1535
static void process_ctxs_in_domain(struct amdtp_domain *d)
1536
{
1537
struct amdtp_stream *s;
1538
1539
list_for_each_entry(s, &d->streams, list) {
1540
if (s != d->irq_target && amdtp_stream_running(s))
1541
fw_iso_context_flush_completions(s->context);
1542
1543
if (amdtp_streaming_error(s))
1544
goto error;
1545
}
1546
1547
return;
1548
error:
1549
if (amdtp_stream_running(d->irq_target))
1550
cancel_stream(d->irq_target);
1551
1552
list_for_each_entry(s, &d->streams, list) {
1553
if (amdtp_stream_running(s))
1554
cancel_stream(s);
1555
}
1556
}
1557
1558
static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1559
void *header, void *private_data)
1560
{
1561
struct amdtp_stream *s = private_data;
1562
struct amdtp_domain *d = s->domain;
1563
1564
process_rx_packets(context, tstamp, header_length, header, private_data);
1565
process_ctxs_in_domain(d);
1566
}
1567
1568
static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1569
size_t header_length, void *header, void *private_data)
1570
{
1571
struct amdtp_stream *s = private_data;
1572
struct amdtp_domain *d = s->domain;
1573
1574
process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1575
process_ctxs_in_domain(d);
1576
}
1577
1578
static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1579
size_t header_length, void *header, void *private_data)
1580
{
1581
struct amdtp_stream *s = private_data;
1582
struct amdtp_domain *d = s->domain;
1583
bool ready_to_start;
1584
1585
skip_rx_packets(context, tstamp, header_length, header, private_data);
1586
process_ctxs_in_domain(d);
1587
1588
if (d->replay.enable && !d->replay.on_the_fly) {
1589
unsigned int rx_count = 0;
1590
unsigned int rx_ready_count = 0;
1591
struct amdtp_stream *rx;
1592
1593
list_for_each_entry(rx, &d->streams, list) {
1594
struct amdtp_stream *tx;
1595
unsigned int cached_cycles;
1596
1597
if (rx->direction != AMDTP_OUT_STREAM)
1598
continue;
1599
++rx_count;
1600
1601
tx = rx->ctx_data.rx.replay_target;
1602
cached_cycles = calculate_cached_cycle_count(tx, 0);
1603
if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1604
++rx_ready_count;
1605
}
1606
1607
ready_to_start = (rx_count == rx_ready_count);
1608
} else {
1609
ready_to_start = true;
1610
}
1611
1612
// Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1613
// contexts are expected to start and get callback when reaching here.
1614
if (ready_to_start) {
1615
unsigned int cycle = s->next_cycle;
1616
list_for_each_entry(s, &d->streams, list) {
1617
if (s->direction != AMDTP_OUT_STREAM)
1618
continue;
1619
1620
if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1621
cycle = s->next_cycle;
1622
1623
if (s == d->irq_target)
1624
s->context->callback.sc = irq_target_callback_intermediately;
1625
else
1626
s->context->callback.sc = process_rx_packets_intermediately;
1627
}
1628
1629
d->processing_cycle.rx_start = cycle;
1630
}
1631
}
1632
1633
// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1634
// transmit first packet.
1635
static void amdtp_stream_first_callback(struct fw_iso_context *context,
1636
u32 tstamp, size_t header_length,
1637
void *header, void *private_data)
1638
{
1639
struct amdtp_stream *s = private_data;
1640
struct amdtp_domain *d = s->domain;
1641
1642
if (s->direction == AMDTP_IN_STREAM) {
1643
context->callback.sc = drop_tx_packets_initially;
1644
} else {
1645
if (s == d->irq_target)
1646
context->callback.sc = irq_target_callback_skip;
1647
else
1648
context->callback.sc = skip_rx_packets;
1649
}
1650
1651
context->callback.sc(context, tstamp, header_length, header, s);
1652
}
1653
1654
/**
1655
* amdtp_stream_start - start transferring packets
1656
* @s: the AMDTP stream to start
1657
* @channel: the isochronous channel on the bus
1658
* @speed: firewire speed code
1659
* @queue_size: The number of packets in the queue.
1660
* @idle_irq_interval: the interval to queue packet during initial state.
1661
*
1662
* The stream cannot be started until it has been configured with
1663
* amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1664
* device can be started.
1665
*/
1666
static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1667
unsigned int queue_size, unsigned int idle_irq_interval)
1668
{
1669
bool is_irq_target = (s == s->domain->irq_target);
1670
unsigned int ctx_header_size;
1671
unsigned int max_ctx_payload_size;
1672
enum dma_data_direction dir;
1673
struct pkt_desc *descs;
1674
int i, type, tag, err;
1675
1676
guard(mutex)(&s->mutex);
1677
1678
if (WARN_ON(amdtp_stream_running(s) ||
1679
(s->data_block_quadlets < 1)))
1680
return -EBADFD;
1681
1682
if (s->direction == AMDTP_IN_STREAM) {
1683
// NOTE: IT context should be used for constant IRQ.
1684
if (is_irq_target)
1685
return -EINVAL;
1686
1687
s->data_block_counter = UINT_MAX;
1688
} else {
1689
s->data_block_counter = 0;
1690
}
1691
1692
// initialize packet buffer.
1693
if (s->direction == AMDTP_IN_STREAM) {
1694
dir = DMA_FROM_DEVICE;
1695
type = FW_ISO_CONTEXT_RECEIVE;
1696
if (!(s->flags & CIP_NO_HEADER))
1697
ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1698
else
1699
ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1700
} else {
1701
dir = DMA_TO_DEVICE;
1702
type = FW_ISO_CONTEXT_TRANSMIT;
1703
// Although no effect for IT context, this value is required to compute the size
1704
// of header storage correctly.
1705
ctx_header_size = sizeof(__be32);
1706
}
1707
max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1708
1709
err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1710
if (err < 0)
1711
return err;
1712
s->queue_size = queue_size;
1713
1714
s->context = fw_iso_context_create_with_header_storage_size(
1715
fw_parent_device(s->unit)->card, type, channel, speed, ctx_header_size,
1716
ctx_header_size * queue_size, amdtp_stream_first_callback, s);
1717
if (IS_ERR(s->context)) {
1718
err = PTR_ERR(s->context);
1719
if (err == -EBUSY)
1720
dev_err(&s->unit->device,
1721
"no free stream on this controller\n");
1722
goto err_buffer;
1723
}
1724
1725
amdtp_stream_update(s);
1726
1727
if (s->direction == AMDTP_IN_STREAM) {
1728
s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1729
s->ctx_data.tx.ctx_header_size = ctx_header_size;
1730
s->ctx_data.tx.event_starts = false;
1731
1732
if (s->domain->replay.enable) {
1733
// struct fw_iso_context.drop_overflow_headers is false therefore it's
1734
// possible to cache much unexpectedly.
1735
s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1736
queue_size * 3 / 2);
1737
s->ctx_data.tx.cache.pos = 0;
1738
s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1739
sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1740
if (!s->ctx_data.tx.cache.descs) {
1741
err = -ENOMEM;
1742
goto err_context;
1743
}
1744
}
1745
} else {
1746
static const struct {
1747
unsigned int data_block;
1748
unsigned int syt_offset;
1749
} *entry, initial_state[] = {
1750
[CIP_SFC_32000] = { 4, 3072 },
1751
[CIP_SFC_48000] = { 6, 1024 },
1752
[CIP_SFC_96000] = { 12, 1024 },
1753
[CIP_SFC_192000] = { 24, 1024 },
1754
[CIP_SFC_44100] = { 0, 67 },
1755
[CIP_SFC_88200] = { 0, 67 },
1756
[CIP_SFC_176400] = { 0, 67 },
1757
};
1758
1759
s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1760
if (!s->ctx_data.rx.seq.descs) {
1761
err = -ENOMEM;
1762
goto err_context;
1763
}
1764
s->ctx_data.rx.seq.size = queue_size;
1765
s->ctx_data.rx.seq.pos = 0;
1766
1767
entry = &initial_state[s->sfc];
1768
s->ctx_data.rx.data_block_state = entry->data_block;
1769
s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1770
s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1771
1772
s->ctx_data.rx.event_count = 0;
1773
}
1774
1775
if (s->flags & CIP_NO_HEADER)
1776
s->tag = TAG_NO_CIP_HEADER;
1777
else
1778
s->tag = TAG_CIP;
1779
1780
// NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1781
// for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1782
// could take a round over queue of AMDTP packet descriptors and small loss of history. For
1783
// safe, keep more 8 elements for the queue, equivalent to 1 ms.
1784
descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
1785
if (!descs) {
1786
err = -ENOMEM;
1787
goto err_context;
1788
}
1789
s->packet_descs = descs;
1790
1791
INIT_LIST_HEAD(&s->packet_descs_list);
1792
for (i = 0; i < s->queue_size; ++i) {
1793
INIT_LIST_HEAD(&descs->link);
1794
list_add_tail(&descs->link, &s->packet_descs_list);
1795
++descs;
1796
}
1797
s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
1798
1799
s->packet_index = 0;
1800
do {
1801
struct fw_iso_packet params;
1802
1803
if (s->direction == AMDTP_IN_STREAM) {
1804
err = queue_in_packet(s, &params);
1805
} else {
1806
bool sched_irq = false;
1807
1808
params.header_length = 0;
1809
params.payload_length = 0;
1810
1811
if (is_irq_target) {
1812
sched_irq = !((s->packet_index + 1) %
1813
idle_irq_interval);
1814
}
1815
1816
err = queue_out_packet(s, &params, sched_irq);
1817
}
1818
if (err < 0)
1819
goto err_pkt_descs;
1820
} while (s->packet_index > 0);
1821
1822
/* NOTE: TAG1 matches CIP. This just affects in stream. */
1823
tag = FW_ISO_CONTEXT_MATCH_TAG1;
1824
if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1825
tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1826
1827
s->ready_processing = false;
1828
err = fw_iso_context_start(s->context, -1, 0, tag);
1829
if (err < 0)
1830
goto err_pkt_descs;
1831
1832
return 0;
1833
err_pkt_descs:
1834
kfree(s->packet_descs);
1835
s->packet_descs = NULL;
1836
err_context:
1837
if (s->direction == AMDTP_OUT_STREAM) {
1838
kfree(s->ctx_data.rx.seq.descs);
1839
} else {
1840
if (s->domain->replay.enable)
1841
kfree(s->ctx_data.tx.cache.descs);
1842
}
1843
fw_iso_context_destroy(s->context);
1844
s->context = ERR_PTR(-1);
1845
err_buffer:
1846
iso_packets_buffer_destroy(&s->buffer, s->unit);
1847
1848
return err;
1849
}
1850
1851
/**
1852
* amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1853
* @d: the AMDTP domain.
1854
* @s: the AMDTP stream that transports the PCM data
1855
*
1856
* Returns the current buffer position, in frames.
1857
*/
1858
unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1859
struct amdtp_stream *s)
1860
{
1861
struct amdtp_stream *irq_target = d->irq_target;
1862
1863
if (irq_target && amdtp_stream_running(irq_target)) {
1864
// The work item to call snd_pcm_period_elapsed() can reach here by the call of
1865
// snd_pcm_ops.pointer(), however less packets would be available then. Therefore
1866
// the following call is just for user process contexts.
1867
if (current_work() != &s->period_work)
1868
fw_iso_context_flush_completions(irq_target->context);
1869
}
1870
1871
return READ_ONCE(s->pcm_buffer_pointer);
1872
}
1873
EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1874
1875
/**
1876
* amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1877
* @d: the AMDTP domain.
1878
* @s: the AMDTP stream that transfers the PCM frames
1879
*
1880
* Returns zero always.
1881
*/
1882
int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1883
{
1884
struct amdtp_stream *irq_target = d->irq_target;
1885
1886
// Process isochronous packets for recent isochronous cycle to handle
1887
// queued PCM frames.
1888
if (irq_target && amdtp_stream_running(irq_target))
1889
fw_iso_context_flush_completions(irq_target->context);
1890
1891
return 0;
1892
}
1893
EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1894
1895
/**
1896
* amdtp_stream_update - update the stream after a bus reset
1897
* @s: the AMDTP stream
1898
*/
1899
void amdtp_stream_update(struct amdtp_stream *s)
1900
{
1901
/* Precomputing. */
1902
WRITE_ONCE(s->source_node_id_field,
1903
(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1904
}
1905
EXPORT_SYMBOL(amdtp_stream_update);
1906
1907
/**
1908
* amdtp_stream_stop - stop sending packets
1909
* @s: the AMDTP stream to stop
1910
*
1911
* All PCM and MIDI devices of the stream must be stopped before the stream
1912
* itself can be stopped.
1913
*/
1914
static void amdtp_stream_stop(struct amdtp_stream *s)
1915
{
1916
guard(mutex)(&s->mutex);
1917
1918
if (!amdtp_stream_running(s))
1919
return;
1920
1921
cancel_work_sync(&s->period_work);
1922
fw_iso_context_stop(s->context);
1923
fw_iso_context_destroy(s->context);
1924
s->context = ERR_PTR(-1);
1925
iso_packets_buffer_destroy(&s->buffer, s->unit);
1926
kfree(s->packet_descs);
1927
s->packet_descs = NULL;
1928
1929
if (s->direction == AMDTP_OUT_STREAM) {
1930
kfree(s->ctx_data.rx.seq.descs);
1931
} else {
1932
if (s->domain->replay.enable)
1933
kfree(s->ctx_data.tx.cache.descs);
1934
}
1935
}
1936
1937
/**
1938
* amdtp_stream_pcm_abort - abort the running PCM device
1939
* @s: the AMDTP stream about to be stopped
1940
*
1941
* If the isochronous stream needs to be stopped asynchronously, call this
1942
* function first to stop the PCM device.
1943
*/
1944
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1945
{
1946
struct snd_pcm_substream *pcm;
1947
1948
pcm = READ_ONCE(s->pcm);
1949
if (pcm)
1950
snd_pcm_stop_xrun(pcm);
1951
}
1952
EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1953
1954
/**
1955
* amdtp_domain_init - initialize an AMDTP domain structure
1956
* @d: the AMDTP domain to initialize.
1957
*/
1958
int amdtp_domain_init(struct amdtp_domain *d)
1959
{
1960
INIT_LIST_HEAD(&d->streams);
1961
1962
d->events_per_period = 0;
1963
1964
return 0;
1965
}
1966
EXPORT_SYMBOL_GPL(amdtp_domain_init);
1967
1968
/**
1969
* amdtp_domain_destroy - destroy an AMDTP domain structure
1970
* @d: the AMDTP domain to destroy.
1971
*/
1972
void amdtp_domain_destroy(struct amdtp_domain *d)
1973
{
1974
// At present nothing to do.
1975
return;
1976
}
1977
EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1978
1979
/**
1980
* amdtp_domain_add_stream - register isoc context into the domain.
1981
* @d: the AMDTP domain.
1982
* @s: the AMDTP stream.
1983
* @channel: the isochronous channel on the bus.
1984
* @speed: firewire speed code.
1985
*/
1986
int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1987
int channel, int speed)
1988
{
1989
struct amdtp_stream *tmp;
1990
1991
list_for_each_entry(tmp, &d->streams, list) {
1992
if (s == tmp)
1993
return -EBUSY;
1994
}
1995
1996
list_add(&s->list, &d->streams);
1997
1998
s->channel = channel;
1999
s->speed = speed;
2000
s->domain = d;
2001
2002
return 0;
2003
}
2004
EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
2005
2006
// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
2007
// is less than the number of rx streams, the first tx stream is selected.
2008
static int make_association(struct amdtp_domain *d)
2009
{
2010
unsigned int dst_index = 0;
2011
struct amdtp_stream *rx;
2012
2013
// Make association to replay target.
2014
list_for_each_entry(rx, &d->streams, list) {
2015
if (rx->direction == AMDTP_OUT_STREAM) {
2016
unsigned int src_index = 0;
2017
struct amdtp_stream *tx = NULL;
2018
struct amdtp_stream *s;
2019
2020
list_for_each_entry(s, &d->streams, list) {
2021
if (s->direction == AMDTP_IN_STREAM) {
2022
if (dst_index == src_index) {
2023
tx = s;
2024
break;
2025
}
2026
2027
++src_index;
2028
}
2029
}
2030
if (!tx) {
2031
// Select the first entry.
2032
list_for_each_entry(s, &d->streams, list) {
2033
if (s->direction == AMDTP_IN_STREAM) {
2034
tx = s;
2035
break;
2036
}
2037
}
2038
// No target is available to replay sequence.
2039
if (!tx)
2040
return -EINVAL;
2041
}
2042
2043
rx->ctx_data.rx.replay_target = tx;
2044
2045
++dst_index;
2046
}
2047
}
2048
2049
return 0;
2050
}
2051
2052
/**
2053
* amdtp_domain_start - start sending packets for isoc context in the domain.
2054
* @d: the AMDTP domain.
2055
* @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2056
* contexts.
2057
* @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2058
* IT context.
2059
* @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2060
* according to arrival of events in tx packets.
2061
*/
2062
int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2063
bool replay_on_the_fly)
2064
{
2065
unsigned int events_per_buffer = d->events_per_buffer;
2066
unsigned int events_per_period = d->events_per_period;
2067
unsigned int queue_size;
2068
struct amdtp_stream *s;
2069
bool found = false;
2070
int err;
2071
2072
if (replay_seq) {
2073
err = make_association(d);
2074
if (err < 0)
2075
return err;
2076
}
2077
d->replay.enable = replay_seq;
2078
d->replay.on_the_fly = replay_on_the_fly;
2079
2080
// Select an IT context as IRQ target.
2081
list_for_each_entry(s, &d->streams, list) {
2082
if (s->direction == AMDTP_OUT_STREAM) {
2083
found = true;
2084
break;
2085
}
2086
}
2087
if (!found)
2088
return -ENXIO;
2089
d->irq_target = s;
2090
2091
d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2092
2093
// This is a case that AMDTP streams in domain run just for MIDI
2094
// substream. Use the number of events equivalent to 10 msec as
2095
// interval of hardware IRQ.
2096
if (events_per_period == 0)
2097
events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2098
if (events_per_buffer == 0)
2099
events_per_buffer = events_per_period * 3;
2100
2101
queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2102
amdtp_rate_table[d->irq_target->sfc]);
2103
2104
list_for_each_entry(s, &d->streams, list) {
2105
unsigned int idle_irq_interval = 0;
2106
2107
if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2108
idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2109
amdtp_rate_table[d->irq_target->sfc]);
2110
}
2111
2112
// Starts immediately but actually DMA context starts several hundred cycles later.
2113
err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2114
if (err < 0)
2115
goto error;
2116
}
2117
2118
return 0;
2119
error:
2120
list_for_each_entry(s, &d->streams, list)
2121
amdtp_stream_stop(s);
2122
return err;
2123
}
2124
EXPORT_SYMBOL_GPL(amdtp_domain_start);
2125
2126
/**
2127
* amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2128
* @d: the AMDTP domain to which the isoc contexts belong.
2129
*/
2130
void amdtp_domain_stop(struct amdtp_domain *d)
2131
{
2132
struct amdtp_stream *s, *next;
2133
2134
if (d->irq_target)
2135
amdtp_stream_stop(d->irq_target);
2136
2137
list_for_each_entry_safe(s, next, &d->streams, list) {
2138
list_del(&s->list);
2139
2140
if (s != d->irq_target)
2141
amdtp_stream_stop(s);
2142
}
2143
2144
d->events_per_period = 0;
2145
d->irq_target = NULL;
2146
}
2147
EXPORT_SYMBOL_GPL(amdtp_domain_stop);
2148
2149