Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/firewire/fireface/ff-protocol-former.c
26451 views
1
// SPDX-License-Identifier: GPL-2.0
2
// ff-protocol-former.c - a part of driver for RME Fireface series
3
//
4
// Copyright (c) 2019 Takashi Sakamoto
5
6
#include <linux/delay.h>
7
8
#include "ff.h"
9
10
#define FORMER_REG_SYNC_STATUS 0x0000801c0000ull
11
/* For block write request. */
12
#define FORMER_REG_FETCH_PCM_FRAMES 0x0000801c0000ull
13
#define FORMER_REG_CLOCK_CONFIG 0x0000801c0004ull
14
15
static int parse_clock_bits(u32 data, unsigned int *rate,
16
enum snd_ff_clock_src *src)
17
{
18
static const struct {
19
unsigned int rate;
20
u32 mask;
21
} *rate_entry, rate_entries[] = {
22
{ 32000, 0x00000002, },
23
{ 44100, 0x00000000, },
24
{ 48000, 0x00000006, },
25
{ 64000, 0x0000000a, },
26
{ 88200, 0x00000008, },
27
{ 96000, 0x0000000e, },
28
{ 128000, 0x00000012, },
29
{ 176400, 0x00000010, },
30
{ 192000, 0x00000016, },
31
};
32
static const struct {
33
enum snd_ff_clock_src src;
34
u32 mask;
35
} *clk_entry, clk_entries[] = {
36
{ SND_FF_CLOCK_SRC_ADAT1, 0x00000000, },
37
{ SND_FF_CLOCK_SRC_ADAT2, 0x00000400, },
38
{ SND_FF_CLOCK_SRC_SPDIF, 0x00000c00, },
39
{ SND_FF_CLOCK_SRC_WORD, 0x00001000, },
40
{ SND_FF_CLOCK_SRC_LTC, 0x00001800, },
41
};
42
int i;
43
44
for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
45
rate_entry = rate_entries + i;
46
if ((data & 0x0000001e) == rate_entry->mask) {
47
*rate = rate_entry->rate;
48
break;
49
}
50
}
51
if (i == ARRAY_SIZE(rate_entries))
52
return -EIO;
53
54
if (data & 0x00000001) {
55
*src = SND_FF_CLOCK_SRC_INTERNAL;
56
} else {
57
for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
58
clk_entry = clk_entries + i;
59
if ((data & 0x00001c00) == clk_entry->mask) {
60
*src = clk_entry->src;
61
break;
62
}
63
}
64
if (i == ARRAY_SIZE(clk_entries))
65
return -EIO;
66
}
67
68
return 0;
69
}
70
71
static int former_get_clock(struct snd_ff *ff, unsigned int *rate,
72
enum snd_ff_clock_src *src)
73
{
74
__le32 reg;
75
u32 data;
76
int err;
77
78
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
79
FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0);
80
if (err < 0)
81
return err;
82
data = le32_to_cpu(reg);
83
84
return parse_clock_bits(data, rate, src);
85
}
86
87
static int former_switch_fetching_mode(struct snd_ff *ff, bool enable)
88
{
89
unsigned int count;
90
__le32 *reg;
91
int i;
92
int err;
93
94
count = 0;
95
for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i)
96
count = max(count, ff->spec->pcm_playback_channels[i]);
97
98
reg = kcalloc(count, sizeof(__le32), GFP_KERNEL);
99
if (!reg)
100
return -ENOMEM;
101
102
if (!enable) {
103
/*
104
* Each quadlet is corresponding to data channels in a data
105
* blocks in reverse order. Precisely, quadlets for available
106
* data channels should be enabled. Here, I take second best
107
* to fetch PCM frames from all of data channels regardless of
108
* stf.
109
*/
110
for (i = 0; i < count; ++i)
111
reg[i] = cpu_to_le32(0x00000001);
112
}
113
114
err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST,
115
FORMER_REG_FETCH_PCM_FRAMES, reg,
116
sizeof(__le32) * count, 0);
117
kfree(reg);
118
return err;
119
}
120
121
static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer)
122
{
123
__le32 reg;
124
u32 data;
125
unsigned int rate;
126
enum snd_ff_clock_src src;
127
const char *label;
128
int err;
129
130
err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
131
FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0);
132
if (err < 0)
133
return;
134
data = le32_to_cpu(reg);
135
136
snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n",
137
(data & 0x00000020) ? "Professional" : "Consumer",
138
str_on_off(data & 0x00000040));
139
140
snd_iprintf(buffer, "Optical output interface format: %s\n",
141
(data & 0x00000100) ? "S/PDIF" : "ADAT");
142
143
snd_iprintf(buffer, "Word output single speed: %s\n",
144
str_on_off(data & 0x00002000));
145
146
snd_iprintf(buffer, "S/PDIF input interface: %s\n",
147
(data & 0x00000200) ? "Optical" : "Coaxial");
148
149
err = parse_clock_bits(data, &rate, &src);
150
if (err < 0)
151
return;
152
label = snd_ff_proc_get_clk_label(src);
153
if (!label)
154
return;
155
156
snd_iprintf(buffer, "Clock configuration: %d %s\n", rate, label);
157
}
158
159
static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
160
{
161
static const struct {
162
char *const label;
163
u32 locked_mask;
164
u32 synced_mask;
165
} *clk_entry, clk_entries[] = {
166
{ "WDClk", 0x40000000, 0x20000000, },
167
{ "S/PDIF", 0x00080000, 0x00040000, },
168
{ "ADAT1", 0x00000400, 0x00001000, },
169
{ "ADAT2", 0x00000800, 0x00002000, },
170
};
171
static const struct {
172
char *const label;
173
u32 mask;
174
} *referred_entry, referred_entries[] = {
175
{ "ADAT1", 0x00000000, },
176
{ "ADAT2", 0x00400000, },
177
{ "S/PDIF", 0x00c00000, },
178
{ "WDclk", 0x01000000, },
179
{ "TCO", 0x01400000, },
180
};
181
static const struct {
182
unsigned int rate;
183
u32 mask;
184
} *rate_entry, rate_entries[] = {
185
{ 32000, 0x02000000, },
186
{ 44100, 0x04000000, },
187
{ 48000, 0x06000000, },
188
{ 64000, 0x08000000, },
189
{ 88200, 0x0a000000, },
190
{ 96000, 0x0c000000, },
191
{ 128000, 0x0e000000, },
192
{ 176400, 0x10000000, },
193
{ 192000, 0x12000000, },
194
};
195
__le32 reg[2];
196
u32 data[2];
197
int i;
198
int err;
199
200
err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
201
FORMER_REG_SYNC_STATUS, reg, sizeof(reg), 0);
202
if (err < 0)
203
return;
204
data[0] = le32_to_cpu(reg[0]);
205
data[1] = le32_to_cpu(reg[1]);
206
207
snd_iprintf(buffer, "External source detection:\n");
208
209
for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
210
const char *state;
211
212
clk_entry = clk_entries + i;
213
if (data[0] & clk_entry->locked_mask) {
214
if (data[0] & clk_entry->synced_mask)
215
state = "sync";
216
else
217
state = "lock";
218
} else {
219
state = "none";
220
}
221
222
snd_iprintf(buffer, "%s: %s\n", clk_entry->label, state);
223
}
224
225
snd_iprintf(buffer, "Referred clock:\n");
226
227
if (data[1] & 0x00000001) {
228
snd_iprintf(buffer, "Internal\n");
229
} else {
230
unsigned int rate;
231
const char *label;
232
233
for (i = 0; i < ARRAY_SIZE(referred_entries); ++i) {
234
referred_entry = referred_entries + i;
235
if ((data[0] & 0x1e0000) == referred_entry->mask) {
236
label = referred_entry->label;
237
break;
238
}
239
}
240
if (i == ARRAY_SIZE(referred_entries))
241
label = "none";
242
243
for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
244
rate_entry = rate_entries + i;
245
if ((data[0] & 0x1e000000) == rate_entry->mask) {
246
rate = rate_entry->rate;
247
break;
248
}
249
}
250
if (i == ARRAY_SIZE(rate_entries))
251
rate = 0;
252
253
snd_iprintf(buffer, "%s %d\n", label, rate);
254
}
255
}
256
257
static void former_dump_status(struct snd_ff *ff,
258
struct snd_info_buffer *buffer)
259
{
260
dump_clock_config(ff, buffer);
261
dump_sync_status(ff, buffer);
262
}
263
264
static int former_fill_midi_msg(struct snd_ff *ff,
265
struct snd_rawmidi_substream *substream,
266
unsigned int port)
267
{
268
u8 *buf = (u8 *)ff->msg_buf[port];
269
int len;
270
int i;
271
272
len = snd_rawmidi_transmit_peek(substream, buf,
273
SND_FF_MAXIMIM_MIDI_QUADS);
274
if (len <= 0)
275
return len;
276
277
// One quadlet includes one byte.
278
for (i = len - 1; i >= 0; --i)
279
ff->msg_buf[port][i] = cpu_to_le32(buf[i]);
280
ff->rx_bytes[port] = len;
281
282
return len;
283
}
284
285
#define FF800_STF 0x0000fc88f000
286
#define FF800_RX_PACKET_FORMAT 0x0000fc88f004
287
#define FF800_ALLOC_TX_STREAM 0x0000fc88f008
288
#define FF800_ISOC_COMM_START 0x0000fc88f00c
289
#define FF800_TX_S800_FLAG 0x00000800
290
#define FF800_ISOC_COMM_STOP 0x0000fc88f010
291
292
#define FF800_TX_PACKET_ISOC_CH 0x0000801c0008
293
294
static int allocate_tx_resources(struct snd_ff *ff)
295
{
296
__le32 reg;
297
unsigned int count;
298
unsigned int tx_isoc_channel;
299
int err;
300
301
reg = cpu_to_le32(ff->tx_stream.data_block_quadlets);
302
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
303
FF800_ALLOC_TX_STREAM, &reg, sizeof(reg), 0);
304
if (err < 0)
305
return err;
306
307
// Wait till the format of tx packet is available.
308
count = 0;
309
while (count++ < 10) {
310
u32 data;
311
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
312
FF800_TX_PACKET_ISOC_CH, &reg, sizeof(reg), 0);
313
if (err < 0)
314
return err;
315
316
data = le32_to_cpu(reg);
317
if (data != 0xffffffff) {
318
tx_isoc_channel = data;
319
break;
320
}
321
322
msleep(50);
323
}
324
if (count >= 10)
325
return -ETIMEDOUT;
326
327
// NOTE: this is a makeshift to start OHCI 1394 IR context in the
328
// channel. On the other hand, 'struct fw_iso_resources.allocated' is
329
// not true and it's not deallocated at stop.
330
ff->tx_resources.channel = tx_isoc_channel;
331
332
return 0;
333
}
334
335
static int ff800_allocate_resources(struct snd_ff *ff, unsigned int rate)
336
{
337
u32 data;
338
__le32 reg;
339
int err;
340
341
reg = cpu_to_le32(rate);
342
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
343
FF800_STF, &reg, sizeof(reg), 0);
344
if (err < 0)
345
return err;
346
347
// If starting isochronous communication immediately, change of STF has
348
// no effect. In this case, the communication runs based on former STF.
349
// Let's sleep for a bit.
350
msleep(100);
351
352
// Controllers should allocate isochronous resources for rx stream.
353
err = fw_iso_resources_allocate(&ff->rx_resources,
354
amdtp_stream_get_max_payload(&ff->rx_stream),
355
fw_parent_device(ff->unit)->max_speed);
356
if (err < 0)
357
return err;
358
359
// Set isochronous channel and the number of quadlets of rx packets.
360
// This should be done before the allocation of tx resources to avoid
361
// periodical noise.
362
data = ff->rx_stream.data_block_quadlets << 3;
363
data = (data << 8) | ff->rx_resources.channel;
364
reg = cpu_to_le32(data);
365
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
366
FF800_RX_PACKET_FORMAT, &reg, sizeof(reg), 0);
367
if (err < 0)
368
return err;
369
370
return allocate_tx_resources(ff);
371
}
372
373
static int ff800_begin_session(struct snd_ff *ff, unsigned int rate)
374
{
375
unsigned int generation = ff->rx_resources.generation;
376
__le32 reg;
377
378
if (generation != fw_parent_device(ff->unit)->card->generation) {
379
int err = fw_iso_resources_update(&ff->rx_resources);
380
if (err < 0)
381
return err;
382
}
383
384
reg = cpu_to_le32(0x80000000);
385
reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets);
386
if (fw_parent_device(ff->unit)->max_speed == SCODE_800)
387
reg |= cpu_to_le32(FF800_TX_S800_FLAG);
388
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
389
FF800_ISOC_COMM_START, &reg, sizeof(reg), 0);
390
}
391
392
static void ff800_finish_session(struct snd_ff *ff)
393
{
394
__le32 reg;
395
396
reg = cpu_to_le32(0x80000000);
397
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
398
FF800_ISOC_COMM_STOP, &reg, sizeof(reg), 0);
399
}
400
401
// Fireface 800 doesn't allow drivers to register lower 4 bytes of destination
402
// address.
403
// A write transaction to clear registered higher 4 bytes of destination address
404
// has an effect to suppress asynchronous transaction from device.
405
static void ff800_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
406
size_t length, u32 tstamp)
407
{
408
int i;
409
410
for (i = 0; i < length / 4; i++) {
411
u8 byte = le32_to_cpu(buf[i]) & 0xff;
412
struct snd_rawmidi_substream *substream;
413
414
substream = READ_ONCE(ff->tx_midi_substreams[0]);
415
if (substream)
416
snd_rawmidi_receive(substream, &byte, 1);
417
}
418
}
419
420
const struct snd_ff_protocol snd_ff_protocol_ff800 = {
421
.handle_msg = ff800_handle_midi_msg,
422
.fill_midi_msg = former_fill_midi_msg,
423
.get_clock = former_get_clock,
424
.switch_fetching_mode = former_switch_fetching_mode,
425
.allocate_resources = ff800_allocate_resources,
426
.begin_session = ff800_begin_session,
427
.finish_session = ff800_finish_session,
428
.dump_status = former_dump_status,
429
};
430
431
#define FF400_STF 0x000080100500ull
432
#define FF400_RX_PACKET_FORMAT 0x000080100504ull
433
#define FF400_ISOC_COMM_START 0x000080100508ull
434
#define FF400_TX_PACKET_FORMAT 0x00008010050cull
435
#define FF400_ISOC_COMM_STOP 0x000080100510ull
436
437
// Fireface 400 manages isochronous channel number in 3 bit field. Therefore,
438
// we can allocate between 0 and 7 channel.
439
static int ff400_allocate_resources(struct snd_ff *ff, unsigned int rate)
440
{
441
__le32 reg;
442
enum snd_ff_stream_mode mode;
443
int i;
444
int err;
445
446
// Check whether the given value is supported or not.
447
for (i = 0; i < CIP_SFC_COUNT; i++) {
448
if (amdtp_rate_table[i] == rate)
449
break;
450
}
451
if (i >= CIP_SFC_COUNT)
452
return -EINVAL;
453
454
// Set the number of data blocks transferred in a second.
455
reg = cpu_to_le32(rate);
456
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
457
FF400_STF, &reg, sizeof(reg), 0);
458
if (err < 0)
459
return err;
460
461
msleep(100);
462
463
err = snd_ff_stream_get_multiplier_mode(i, &mode);
464
if (err < 0)
465
return err;
466
467
// Keep resources for in-stream.
468
ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
469
err = fw_iso_resources_allocate(&ff->tx_resources,
470
amdtp_stream_get_max_payload(&ff->tx_stream),
471
fw_parent_device(ff->unit)->max_speed);
472
if (err < 0)
473
return err;
474
475
// Keep resources for out-stream.
476
ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
477
err = fw_iso_resources_allocate(&ff->rx_resources,
478
amdtp_stream_get_max_payload(&ff->rx_stream),
479
fw_parent_device(ff->unit)->max_speed);
480
if (err < 0)
481
fw_iso_resources_free(&ff->tx_resources);
482
483
return err;
484
}
485
486
static int ff400_begin_session(struct snd_ff *ff, unsigned int rate)
487
{
488
unsigned int generation = ff->rx_resources.generation;
489
__le32 reg;
490
int err;
491
492
if (generation != fw_parent_device(ff->unit)->card->generation) {
493
err = fw_iso_resources_update(&ff->tx_resources);
494
if (err < 0)
495
return err;
496
497
err = fw_iso_resources_update(&ff->rx_resources);
498
if (err < 0)
499
return err;
500
}
501
502
// Set isochronous channel and the number of quadlets of received
503
// packets.
504
reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) |
505
ff->rx_resources.channel);
506
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
507
FF400_RX_PACKET_FORMAT, &reg, sizeof(reg), 0);
508
if (err < 0)
509
return err;
510
511
// Set isochronous channel and the number of quadlets of transmitted
512
// packet.
513
// TODO: investigate the purpose of this 0x80.
514
reg = cpu_to_le32((0x80 << 24) |
515
(ff->tx_resources.channel << 5) |
516
(ff->tx_stream.data_block_quadlets));
517
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
518
FF400_TX_PACKET_FORMAT, &reg, sizeof(reg), 0);
519
if (err < 0)
520
return err;
521
522
// Allow to transmit packets.
523
reg = cpu_to_le32(0x00000001);
524
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
525
FF400_ISOC_COMM_START, &reg, sizeof(reg), 0);
526
}
527
528
static void ff400_finish_session(struct snd_ff *ff)
529
{
530
__le32 reg;
531
532
reg = cpu_to_le32(0x80000000);
533
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
534
FF400_ISOC_COMM_STOP, &reg, sizeof(reg), 0);
535
}
536
537
static void parse_midi_msg(struct snd_ff *ff, u32 quad, unsigned int port)
538
{
539
struct snd_rawmidi_substream *substream = READ_ONCE(ff->tx_midi_substreams[port]);
540
541
if (substream != NULL) {
542
u8 byte = (quad >> (16 * port)) & 0x000000ff;
543
544
snd_rawmidi_receive(substream, &byte, 1);
545
}
546
}
547
548
#define FF400_QUEUE_SIZE 32
549
550
struct ff400_msg_parser {
551
struct {
552
u32 msg;
553
u32 tstamp;
554
} msgs[FF400_QUEUE_SIZE];
555
size_t push_pos;
556
size_t pull_pos;
557
};
558
559
static bool ff400_has_msg(struct snd_ff *ff)
560
{
561
struct ff400_msg_parser *parser = ff->msg_parser;
562
563
return (parser->push_pos != parser->pull_pos);
564
}
565
566
// For Fireface 400, lower 4 bytes of destination address is configured by bit
567
// flag in quadlet register (little endian) at 0x'0000'801'0051c. Drivers can
568
// select one of 4 options:
569
//
570
// bit flags: offset of destination address
571
// - 0x04000000: 0x'....'....'0000'0000
572
// - 0x08000000: 0x'....'....'0000'0080
573
// - 0x10000000: 0x'....'....'0000'0100
574
// - 0x20000000: 0x'....'....'0000'0180
575
//
576
// Drivers can suppress the device to transfer asynchronous transactions by
577
// using below 2 bits.
578
// - 0x01000000: suppress transmission
579
// - 0x02000000: suppress transmission
580
//
581
// Actually, the register is write-only and includes the other options such as
582
// input attenuation. This driver allocates destination address with '0000'0000
583
// in its lower offset and expects userspace application to configure the
584
// register for it.
585
586
// When the message is for signal level operation, the upper 4 bits in MSB expresses the pair of
587
// stereo physical port.
588
// - 0: Microphone input 0/1
589
// - 1: Line input 0/1
590
// - [2-4]: Line output 0-5
591
// - 5: Headphone output 0/1
592
// - 6: S/PDIF output 0/1
593
// - [7-10]: ADAT output 0-7
594
//
595
// The value of signal level can be detected by mask of 0x00fffc00. For signal level of microphone
596
// input:
597
//
598
// - 0: 0.0 dB
599
// - 10: +10.0 dB
600
// - 11: +11.0 dB
601
// - 12: +12.0 dB
602
// - ...
603
// - 63: +63.0 dB:
604
// - 64: +64.0 dB:
605
// - 65: +65.0 dB:
606
//
607
// For signal level of line input:
608
//
609
// - 0: 0.0 dB
610
// - 1: +0.5 dB
611
// - 2: +1.0 dB
612
// - 3: +1.5 dB
613
// - ...
614
// - 34: +17.0 dB:
615
// - 35: +17.5 dB:
616
// - 36: +18.0 dB:
617
//
618
// For signal level of any type of output:
619
//
620
// - 63: -infinite
621
// - 62: -58.0 dB
622
// - 61: -56.0 dB
623
// - 60: -54.0 dB
624
// - 59: -53.0 dB
625
// - 58: -52.0 dB
626
// - ...
627
// - 7: -1.0 dB
628
// - 6: 0.0 dB
629
// - 5: +1.0 dB
630
// - ...
631
// - 2: +4.0 dB
632
// - 1: +5.0 dB
633
// - 0: +6.0 dB
634
//
635
// When the message is not for signal level operation, it's for MIDI bytes. When matching to
636
// FF400_MSG_FLAG_IS_MIDI_PORT_0, one MIDI byte can be detected by mask of 0x000000ff. When
637
// matching to FF400_MSG_FLAG_IS_MIDI_PORT_1, one MIDI byte can be detected by mask of 0x00ff0000.
638
#define FF400_MSG_FLAG_IS_SIGNAL_LEVEL 0x04000000
639
#define FF400_MSG_FLAG_IS_RIGHT_CHANNEL 0x08000000
640
#define FF400_MSG_FLAG_IS_STEREO_PAIRED 0x02000000
641
#define FF400_MSG_MASK_STEREO_PAIR 0xf0000000
642
#define FF400_MSG_MASK_SIGNAL_LEVEL 0x00fffc00
643
#define FF400_MSG_FLAG_IS_MIDI_PORT_0 0x00000100
644
#define FF400_MSG_MASK_MIDI_PORT_0 0x000000ff
645
#define FF400_MSG_FLAG_IS_MIDI_PORT_1 0x01000000
646
#define FF400_MSG_MASK_MIDI_PORT_1 0x00ff0000
647
648
static void ff400_handle_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
649
size_t length, u32 tstamp)
650
{
651
bool need_hwdep_wake_up = false;
652
int i;
653
654
for (i = 0; i < length / 4; i++) {
655
u32 quad = le32_to_cpu(buf[i]);
656
657
if (quad & FF400_MSG_FLAG_IS_SIGNAL_LEVEL) {
658
struct ff400_msg_parser *parser = ff->msg_parser;
659
660
parser->msgs[parser->push_pos].msg = quad;
661
parser->msgs[parser->push_pos].tstamp = tstamp;
662
++parser->push_pos;
663
if (parser->push_pos >= FF400_QUEUE_SIZE)
664
parser->push_pos = 0;
665
666
need_hwdep_wake_up = true;
667
} else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_0) {
668
parse_midi_msg(ff, quad, 0);
669
} else if (quad & FF400_MSG_FLAG_IS_MIDI_PORT_1) {
670
parse_midi_msg(ff, quad, 1);
671
}
672
}
673
674
if (need_hwdep_wake_up)
675
wake_up(&ff->hwdep_wait);
676
}
677
678
static long ff400_copy_msg_to_user(struct snd_ff *ff, char __user *buf, long count)
679
{
680
struct snd_firewire_event_ff400_message ev = {
681
.type = SNDRV_FIREWIRE_EVENT_FF400_MESSAGE,
682
.message_count = 0,
683
};
684
struct ff400_msg_parser *parser = ff->msg_parser;
685
long consumed = 0;
686
long ret = 0;
687
688
if (count < sizeof(ev) || parser->pull_pos == parser->push_pos)
689
return 0;
690
691
count -= sizeof(ev);
692
consumed += sizeof(ev);
693
694
while (count >= sizeof(*parser->msgs) && parser->pull_pos != parser->push_pos) {
695
spin_unlock_irq(&ff->lock);
696
if (copy_to_user(buf + consumed, parser->msgs + parser->pull_pos,
697
sizeof(*parser->msgs)))
698
ret = -EFAULT;
699
spin_lock_irq(&ff->lock);
700
if (ret)
701
return ret;
702
703
++parser->pull_pos;
704
if (parser->pull_pos >= FF400_QUEUE_SIZE)
705
parser->pull_pos = 0;
706
++ev.message_count;
707
count -= sizeof(*parser->msgs);
708
consumed += sizeof(*parser->msgs);
709
}
710
711
spin_unlock_irq(&ff->lock);
712
if (copy_to_user(buf, &ev, sizeof(ev)))
713
ret = -EFAULT;
714
spin_lock_irq(&ff->lock);
715
if (ret)
716
return ret;
717
718
return consumed;
719
}
720
721
const struct snd_ff_protocol snd_ff_protocol_ff400 = {
722
.msg_parser_size = sizeof(struct ff400_msg_parser),
723
.has_msg = ff400_has_msg,
724
.copy_msg_to_user = ff400_copy_msg_to_user,
725
.handle_msg = ff400_handle_msg,
726
.fill_midi_msg = former_fill_midi_msg,
727
.get_clock = former_get_clock,
728
.switch_fetching_mode = former_switch_fetching_mode,
729
.allocate_resources = ff400_allocate_resources,
730
.begin_session = ff400_begin_session,
731
.finish_session = ff400_finish_session,
732
.dump_status = former_dump_status,
733
};
734
735