Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/firewire/fireface/ff-protocol-latter.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
// ff-protocol-latter.c - a part of driver for RME Fireface series
3
//
4
// Copyright (c) 2019 Takashi Sakamoto
5
6
#include <linux/delay.h>
7
8
#include "ff.h"
9
10
#define LATTER_STF 0xffff00000004ULL
11
#define LATTER_ISOC_CHANNELS 0xffff00000008ULL
12
#define LATTER_ISOC_START 0xffff0000000cULL
13
#define LATTER_FETCH_MODE 0xffff00000010ULL
14
#define LATTER_SYNC_STATUS 0x0000801c0000ULL
15
16
// The content of sync status register differs between models.
17
//
18
// Fireface UCX:
19
// 0xf0000000: (unidentified)
20
// 0x0f000000: effective rate of sampling clock
21
// 0x00f00000: detected rate of word clock on BNC interface
22
// 0x000f0000: detected rate of ADAT or S/PDIF on optical interface
23
// 0x0000f000: detected rate of S/PDIF on coaxial interface
24
// 0x00000e00: effective source of sampling clock
25
// 0x00000e00: Internal
26
// 0x00000800: (unidentified)
27
// 0x00000600: Word clock on BNC interface
28
// 0x00000400: ADAT on optical interface
29
// 0x00000200: S/PDIF on coaxial or optical interface
30
// 0x00000100: Optical interface is used for ADAT signal
31
// 0x00000080: (unidentified)
32
// 0x00000040: Synchronized to word clock on BNC interface
33
// 0x00000020: Synchronized to ADAT or S/PDIF on optical interface
34
// 0x00000010: Synchronized to S/PDIF on coaxial interface
35
// 0x00000008: (unidentified)
36
// 0x00000004: Lock word clock on BNC interface
37
// 0x00000002: Lock ADAT or S/PDIF on optical interface
38
// 0x00000001: Lock S/PDIF on coaxial interface
39
//
40
// Fireface 802 (and perhaps UFX):
41
// 0xf0000000: effective rate of sampling clock
42
// 0x0f000000: detected rate of ADAT-B on 2nd optical interface
43
// 0x00f00000: detected rate of ADAT-A on 1st optical interface
44
// 0x000f0000: detected rate of AES/EBU on XLR or coaxial interface
45
// 0x0000f000: detected rate of word clock on BNC interface
46
// 0x00000e00: effective source of sampling clock
47
// 0x00000e00: internal
48
// 0x00000800: ADAT-B
49
// 0x00000600: ADAT-A
50
// 0x00000400: AES/EBU
51
// 0x00000200: Word clock
52
// 0x00000080: Synchronized to ADAT-B on 2nd optical interface
53
// 0x00000040: Synchronized to ADAT-A on 1st optical interface
54
// 0x00000020: Synchronized to AES/EBU on XLR or 2nd optical interface
55
// 0x00000010: Synchronized to word clock on BNC interface
56
// 0x00000008: Lock ADAT-B on 2nd optical interface
57
// 0x00000004: Lock ADAT-A on 1st optical interface
58
// 0x00000002: Lock AES/EBU on XLR or 2nd optical interface
59
// 0x00000001: Lock word clock on BNC interface
60
//
61
// The pattern for rate bits:
62
// 0x00: 32.0 kHz
63
// 0x01: 44.1 kHz
64
// 0x02: 48.0 kHz
65
// 0x04: 64.0 kHz
66
// 0x05: 88.2 kHz
67
// 0x06: 96.0 kHz
68
// 0x08: 128.0 kHz
69
// 0x09: 176.4 kHz
70
// 0x0a: 192.0 kHz
71
static int parse_clock_bits(u32 data, unsigned int *rate,
72
enum snd_ff_clock_src *src,
73
enum snd_ff_unit_version unit_version)
74
{
75
static const struct {
76
unsigned int rate;
77
u32 flag;
78
} *rate_entry, rate_entries[] = {
79
{ 32000, 0x00, },
80
{ 44100, 0x01, },
81
{ 48000, 0x02, },
82
{ 64000, 0x04, },
83
{ 88200, 0x05, },
84
{ 96000, 0x06, },
85
{ 128000, 0x08, },
86
{ 176400, 0x09, },
87
{ 192000, 0x0a, },
88
};
89
static const struct {
90
enum snd_ff_clock_src src;
91
u32 flag;
92
} *clk_entry, *clk_entries, ucx_clk_entries[] = {
93
{ SND_FF_CLOCK_SRC_SPDIF, 0x00000200, },
94
{ SND_FF_CLOCK_SRC_ADAT1, 0x00000400, },
95
{ SND_FF_CLOCK_SRC_WORD, 0x00000600, },
96
{ SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, },
97
}, ufx_ff802_clk_entries[] = {
98
{ SND_FF_CLOCK_SRC_WORD, 0x00000200, },
99
{ SND_FF_CLOCK_SRC_SPDIF, 0x00000400, },
100
{ SND_FF_CLOCK_SRC_ADAT1, 0x00000600, },
101
{ SND_FF_CLOCK_SRC_ADAT2, 0x00000800, },
102
{ SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, },
103
};
104
u32 rate_bits;
105
unsigned int clk_entry_count;
106
int i;
107
108
if (unit_version == SND_FF_UNIT_VERSION_UCX) {
109
rate_bits = (data & 0x0f000000) >> 24;
110
clk_entries = ucx_clk_entries;
111
clk_entry_count = ARRAY_SIZE(ucx_clk_entries);
112
} else {
113
rate_bits = (data & 0xf0000000) >> 28;
114
clk_entries = ufx_ff802_clk_entries;
115
clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries);
116
}
117
118
for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
119
rate_entry = rate_entries + i;
120
if (rate_bits == rate_entry->flag) {
121
*rate = rate_entry->rate;
122
break;
123
}
124
}
125
if (i == ARRAY_SIZE(rate_entries))
126
return -EIO;
127
128
for (i = 0; i < clk_entry_count; ++i) {
129
clk_entry = clk_entries + i;
130
if ((data & 0x000e00) == clk_entry->flag) {
131
*src = clk_entry->src;
132
break;
133
}
134
}
135
if (i == clk_entry_count)
136
return -EIO;
137
138
return 0;
139
}
140
141
static int latter_get_clock(struct snd_ff *ff, unsigned int *rate,
142
enum snd_ff_clock_src *src)
143
{
144
__le32 reg;
145
u32 data;
146
int err;
147
148
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
149
LATTER_SYNC_STATUS, &reg, sizeof(reg), 0);
150
if (err < 0)
151
return err;
152
data = le32_to_cpu(reg);
153
154
return parse_clock_bits(data, rate, src, ff->unit_version);
155
}
156
157
static int latter_switch_fetching_mode(struct snd_ff *ff, bool enable)
158
{
159
u32 data;
160
__le32 reg;
161
162
if (enable)
163
data = 0x00000000;
164
else
165
data = 0xffffffff;
166
reg = cpu_to_le32(data);
167
168
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
169
LATTER_FETCH_MODE, &reg, sizeof(reg), 0);
170
}
171
172
static int latter_allocate_resources(struct snd_ff *ff, unsigned int rate)
173
{
174
enum snd_ff_stream_mode mode;
175
unsigned int code;
176
__le32 reg;
177
unsigned int count;
178
int i;
179
int err;
180
181
// Set the number of data blocks transferred in a second.
182
if (rate % 48000 == 0)
183
code = 0x04;
184
else if (rate % 44100 == 0)
185
code = 0x02;
186
else if (rate % 32000 == 0)
187
code = 0x00;
188
else
189
return -EINVAL;
190
191
if (rate >= 64000 && rate < 128000)
192
code |= 0x08;
193
else if (rate >= 128000)
194
code |= 0x10;
195
196
reg = cpu_to_le32(code);
197
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
198
LATTER_STF, &reg, sizeof(reg), 0);
199
if (err < 0)
200
return err;
201
202
// Confirm to shift transmission clock.
203
count = 0;
204
while (count++ < 10) {
205
unsigned int curr_rate;
206
enum snd_ff_clock_src src;
207
208
err = latter_get_clock(ff, &curr_rate, &src);
209
if (err < 0)
210
return err;
211
212
if (curr_rate == rate)
213
break;
214
}
215
if (count > 10)
216
return -ETIMEDOUT;
217
218
for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); ++i) {
219
if (rate == amdtp_rate_table[i])
220
break;
221
}
222
if (i == ARRAY_SIZE(amdtp_rate_table))
223
return -EINVAL;
224
225
err = snd_ff_stream_get_multiplier_mode(i, &mode);
226
if (err < 0)
227
return err;
228
229
// Keep resources for in-stream.
230
ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
231
err = fw_iso_resources_allocate(&ff->tx_resources,
232
amdtp_stream_get_max_payload(&ff->tx_stream),
233
fw_parent_device(ff->unit)->max_speed);
234
if (err < 0)
235
return err;
236
237
// Keep resources for out-stream.
238
ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
239
err = fw_iso_resources_allocate(&ff->rx_resources,
240
amdtp_stream_get_max_payload(&ff->rx_stream),
241
fw_parent_device(ff->unit)->max_speed);
242
if (err < 0)
243
fw_iso_resources_free(&ff->tx_resources);
244
245
return err;
246
}
247
248
static int latter_begin_session(struct snd_ff *ff, unsigned int rate)
249
{
250
unsigned int generation = ff->rx_resources.generation;
251
unsigned int flag;
252
u32 data;
253
__le32 reg;
254
int err;
255
256
if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) {
257
// For Fireface UCX. Always use the maximum number of data
258
// channels in data block of packet.
259
if (rate >= 32000 && rate <= 48000)
260
flag = 0x92;
261
else if (rate >= 64000 && rate <= 96000)
262
flag = 0x8e;
263
else if (rate >= 128000 && rate <= 192000)
264
flag = 0x8c;
265
else
266
return -EINVAL;
267
} else {
268
// For Fireface UFX and 802. Due to bandwidth limitation on
269
// IEEE 1394a (400 Mbps), Analog 1-12 and AES are available
270
// without any ADAT at quadruple speed.
271
if (rate >= 32000 && rate <= 48000)
272
flag = 0x9e;
273
else if (rate >= 64000 && rate <= 96000)
274
flag = 0x96;
275
else if (rate >= 128000 && rate <= 192000)
276
flag = 0x8e;
277
else
278
return -EINVAL;
279
}
280
281
if (generation != fw_parent_device(ff->unit)->card->generation) {
282
err = fw_iso_resources_update(&ff->tx_resources);
283
if (err < 0)
284
return err;
285
286
err = fw_iso_resources_update(&ff->rx_resources);
287
if (err < 0)
288
return err;
289
}
290
291
data = (ff->tx_resources.channel << 8) | ff->rx_resources.channel;
292
reg = cpu_to_le32(data);
293
err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
294
LATTER_ISOC_CHANNELS, &reg, sizeof(reg), 0);
295
if (err < 0)
296
return err;
297
298
reg = cpu_to_le32(flag);
299
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
300
LATTER_ISOC_START, &reg, sizeof(reg), 0);
301
}
302
303
static void latter_finish_session(struct snd_ff *ff)
304
{
305
__le32 reg;
306
307
reg = cpu_to_le32(0x00000000);
308
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
309
LATTER_ISOC_START, &reg, sizeof(reg), 0);
310
}
311
312
static void latter_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
313
{
314
static const struct {
315
char *const label;
316
u32 locked_mask;
317
u32 synced_mask;
318
} *clk_entry, *clk_entries, ucx_clk_entries[] = {
319
{ "S/PDIF", 0x00000001, 0x00000010, },
320
{ "ADAT", 0x00000002, 0x00000020, },
321
{ "WDClk", 0x00000004, 0x00000040, },
322
}, ufx_ff802_clk_entries[] = {
323
{ "WDClk", 0x00000001, 0x00000010, },
324
{ "AES/EBU", 0x00000002, 0x00000020, },
325
{ "ADAT-A", 0x00000004, 0x00000040, },
326
{ "ADAT-B", 0x00000008, 0x00000080, },
327
};
328
__le32 reg;
329
u32 data;
330
unsigned int rate;
331
enum snd_ff_clock_src src;
332
const char *label;
333
unsigned int clk_entry_count;
334
int i;
335
int err;
336
337
err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
338
LATTER_SYNC_STATUS, &reg, sizeof(reg), 0);
339
if (err < 0)
340
return;
341
data = le32_to_cpu(reg);
342
343
snd_iprintf(buffer, "External source detection:\n");
344
345
if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) {
346
clk_entries = ucx_clk_entries;
347
clk_entry_count = ARRAY_SIZE(ucx_clk_entries);
348
} else {
349
clk_entries = ufx_ff802_clk_entries;
350
clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries);
351
}
352
353
for (i = 0; i < clk_entry_count; ++i) {
354
clk_entry = clk_entries + i;
355
snd_iprintf(buffer, "%s: ", clk_entry->label);
356
if (data & clk_entry->locked_mask) {
357
if (data & clk_entry->synced_mask)
358
snd_iprintf(buffer, "sync\n");
359
else
360
snd_iprintf(buffer, "lock\n");
361
} else {
362
snd_iprintf(buffer, "none\n");
363
}
364
}
365
366
err = parse_clock_bits(data, &rate, &src, ff->unit_version);
367
if (err < 0)
368
return;
369
label = snd_ff_proc_get_clk_label(src);
370
if (!label)
371
return;
372
373
snd_iprintf(buffer, "Referred clock: %s %d\n", label, rate);
374
}
375
376
// NOTE: transactions are transferred within 0x00-0x7f in allocated range of
377
// address. This seems to be for check of discontinuity in receiver side.
378
//
379
// Like Fireface 400, drivers can select one of 4 options for lower 4 bytes of
380
// destination address by bit flags in quadlet register (little endian) at
381
// 0x'ffff'0000'0014:
382
//
383
// bit flags: offset of destination address
384
// - 0x00002000: 0x'....'....'0000'0000
385
// - 0x00004000: 0x'....'....'0000'0080
386
// - 0x00008000: 0x'....'....'0000'0100
387
// - 0x00010000: 0x'....'....'0000'0180
388
//
389
// Drivers can suppress the device to transfer asynchronous transactions by
390
// clear these bit flags.
391
//
392
// Actually, the register is write-only and includes the other settings such as
393
// input attenuation. This driver allocates for the first option
394
// (0x'....'....'0000'0000) and expects userspace application to configure the
395
// register for it.
396
static void latter_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf,
397
size_t length, u32 tstamp)
398
{
399
u32 data = le32_to_cpu(*buf);
400
unsigned int index = (data & 0x000000f0) >> 4;
401
u8 byte[3];
402
struct snd_rawmidi_substream *substream;
403
unsigned int len;
404
405
if (index >= ff->spec->midi_in_ports)
406
return;
407
408
switch (data & 0x0000000f) {
409
case 0x00000008:
410
case 0x00000009:
411
case 0x0000000a:
412
case 0x0000000b:
413
case 0x0000000e:
414
len = 3;
415
break;
416
case 0x0000000c:
417
case 0x0000000d:
418
len = 2;
419
break;
420
default:
421
len = data & 0x00000003;
422
if (len == 0)
423
len = 3;
424
break;
425
}
426
427
byte[0] = (data & 0x0000ff00) >> 8;
428
byte[1] = (data & 0x00ff0000) >> 16;
429
byte[2] = (data & 0xff000000) >> 24;
430
431
substream = READ_ONCE(ff->tx_midi_substreams[index]);
432
if (substream)
433
snd_rawmidi_receive(substream, byte, len);
434
}
435
436
/*
437
* When return minus value, given argument is not MIDI status.
438
* When return 0, given argument is a beginning of system exclusive.
439
* When return the others, given argument is MIDI data.
440
*/
441
static inline int calculate_message_bytes(u8 status)
442
{
443
switch (status) {
444
case 0xf6: /* Tune request. */
445
case 0xf8: /* Timing clock. */
446
case 0xfa: /* Start. */
447
case 0xfb: /* Continue. */
448
case 0xfc: /* Stop. */
449
case 0xfe: /* Active sensing. */
450
case 0xff: /* System reset. */
451
return 1;
452
case 0xf1: /* MIDI time code quarter frame. */
453
case 0xf3: /* Song select. */
454
return 2;
455
case 0xf2: /* Song position pointer. */
456
return 3;
457
case 0xf0: /* Exclusive. */
458
return 0;
459
case 0xf7: /* End of exclusive. */
460
break;
461
case 0xf4: /* Undefined. */
462
case 0xf5: /* Undefined. */
463
case 0xf9: /* Undefined. */
464
case 0xfd: /* Undefined. */
465
break;
466
default:
467
switch (status & 0xf0) {
468
case 0x80: /* Note on. */
469
case 0x90: /* Note off. */
470
case 0xa0: /* Polyphonic key pressure. */
471
case 0xb0: /* Control change and Mode change. */
472
case 0xe0: /* Pitch bend change. */
473
return 3;
474
case 0xc0: /* Program change. */
475
case 0xd0: /* Channel pressure. */
476
return 2;
477
default:
478
break;
479
}
480
break;
481
}
482
483
return -EINVAL;
484
}
485
486
static int latter_fill_midi_msg(struct snd_ff *ff,
487
struct snd_rawmidi_substream *substream,
488
unsigned int port)
489
{
490
u32 data = {0};
491
u8 *buf = (u8 *)&data;
492
int consumed;
493
494
buf[0] = port << 4;
495
consumed = snd_rawmidi_transmit_peek(substream, buf + 1, 3);
496
if (consumed <= 0)
497
return consumed;
498
499
if (!ff->on_sysex[port]) {
500
if (buf[1] != 0xf0) {
501
if (consumed < calculate_message_bytes(buf[1]))
502
return 0;
503
} else {
504
// The beginning of exclusives.
505
ff->on_sysex[port] = true;
506
}
507
508
buf[0] |= consumed;
509
} else {
510
if (buf[1] != 0xf7) {
511
if (buf[2] == 0xf7 || buf[3] == 0xf7) {
512
// Transfer end code at next time.
513
consumed -= 1;
514
}
515
516
buf[0] |= consumed;
517
} else {
518
// The end of exclusives.
519
ff->on_sysex[port] = false;
520
consumed = 1;
521
buf[0] |= 0x0f;
522
}
523
}
524
525
ff->msg_buf[port][0] = cpu_to_le32(data);
526
ff->rx_bytes[port] = consumed;
527
528
return 1;
529
}
530
531
const struct snd_ff_protocol snd_ff_protocol_latter = {
532
.handle_msg = latter_handle_midi_msg,
533
.fill_midi_msg = latter_fill_midi_msg,
534
.get_clock = latter_get_clock,
535
.switch_fetching_mode = latter_switch_fetching_mode,
536
.allocate_resources = latter_allocate_resources,
537
.begin_session = latter_begin_session,
538
.finish_session = latter_finish_session,
539
.dump_status = latter_dump_status,
540
};
541
542