Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/cmipci.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Driver for C-Media CMI8338 and 8738 PCI soundcards.
4
* Copyright (c) 2000 by Takashi Iwai <[email protected]>
5
*/
6
7
/* Does not work. Warning may block system in capture mode */
8
/* #define USE_VAR48KRATE */
9
10
#include <linux/io.h>
11
#include <linux/delay.h>
12
#include <linux/interrupt.h>
13
#include <linux/init.h>
14
#include <linux/pci.h>
15
#include <linux/slab.h>
16
#include <linux/gameport.h>
17
#include <linux/module.h>
18
#include <linux/mutex.h>
19
#include <sound/core.h>
20
#include <sound/info.h>
21
#include <sound/control.h>
22
#include <sound/pcm.h>
23
#include <sound/rawmidi.h>
24
#include <sound/mpu401.h>
25
#include <sound/opl3.h>
26
#include <sound/sb.h>
27
#include <sound/asoundef.h>
28
#include <sound/initval.h>
29
30
MODULE_AUTHOR("Takashi Iwai <[email protected]>");
31
MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32
MODULE_LICENSE("GPL");
33
34
#if IS_REACHABLE(CONFIG_GAMEPORT)
35
#define SUPPORT_JOYSTICK 1
36
#endif
37
38
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
39
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
40
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
41
static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42
static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43
static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44
#ifdef SUPPORT_JOYSTICK
45
static int joystick_port[SNDRV_CARDS];
46
#endif
47
48
module_param_array(index, int, NULL, 0444);
49
MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50
module_param_array(id, charp, NULL, 0444);
51
MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52
module_param_array(enable, bool, NULL, 0444);
53
MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54
module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55
MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56
module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57
MODULE_PARM_DESC(fm_port, "FM port.");
58
module_param_array(soft_ac3, bool, NULL, 0444);
59
MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60
#ifdef SUPPORT_JOYSTICK
61
module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63
#endif
64
65
/*
66
* CM8x38 registers definition
67
*/
68
69
#define CM_REG_FUNCTRL0 0x00
70
#define CM_RST_CH1 0x00080000
71
#define CM_RST_CH0 0x00040000
72
#define CM_CHEN1 0x00020000 /* ch1: enable */
73
#define CM_CHEN0 0x00010000 /* ch0: enable */
74
#define CM_PAUSE1 0x00000008 /* ch1: pause */
75
#define CM_PAUSE0 0x00000004 /* ch0: pause */
76
#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
77
#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
78
79
#define CM_REG_FUNCTRL1 0x04
80
#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
81
#define CM_DSFC_SHIFT 13
82
#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
83
#define CM_ASFC_SHIFT 10
84
#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
85
#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
86
#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
87
#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
88
#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
89
#define CM_BREQ 0x00000010 /* bus master enabled */
90
#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
91
#define CM_UART_EN 0x00000004 /* legacy UART */
92
#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
93
#define CM_ZVPORT 0x00000001 /* ZVPORT */
94
95
#define CM_REG_CHFORMAT 0x08
96
97
#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
98
#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
99
#define CM_CHB3D 0x20000000 /* 4 channels */
100
101
#define CM_CHIP_MASK1 0x1f000000
102
#define CM_CHIP_037 0x01000000
103
#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
104
#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
105
#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
106
#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
107
#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
108
#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
109
/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
110
111
#define CM_ADCBITLEN_MASK 0x0000C000
112
#define CM_ADCBITLEN_16 0x00000000
113
#define CM_ADCBITLEN_15 0x00004000
114
#define CM_ADCBITLEN_14 0x00008000
115
#define CM_ADCBITLEN_13 0x0000C000
116
117
#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
118
#define CM_ADCDACLEN_060 0x00000000
119
#define CM_ADCDACLEN_066 0x00001000
120
#define CM_ADCDACLEN_130 0x00002000
121
#define CM_ADCDACLEN_280 0x00003000
122
123
#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
124
#define CM_ADCDLEN_ORIGINAL 0x00000000
125
#define CM_ADCDLEN_EXTRA 0x00001000
126
#define CM_ADCDLEN_24K 0x00002000
127
#define CM_ADCDLEN_WEIGHT 0x00003000
128
129
#define CM_CH1_SRATE_176K 0x00000800
130
#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
131
#define CM_CH1_SRATE_88K 0x00000400
132
#define CM_CH0_SRATE_176K 0x00000200
133
#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
134
#define CM_CH0_SRATE_88K 0x00000100
135
#define CM_CH0_SRATE_128K 0x00000300
136
#define CM_CH0_SRATE_MASK 0x00000300
137
138
#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
139
#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
140
#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
141
#define CM_SPDLOCKED 0x00000010
142
143
#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
144
#define CM_CH1FMT_SHIFT 2
145
#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
146
#define CM_CH0FMT_SHIFT 0
147
148
#define CM_REG_INT_HLDCLR 0x0C
149
#define CM_CHIP_MASK2 0xff000000
150
#define CM_CHIP_8768 0x20000000
151
#define CM_CHIP_055 0x08000000
152
#define CM_CHIP_039 0x04000000
153
#define CM_CHIP_039_6CH 0x01000000
154
#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
155
#define CM_TDMA_INT_EN 0x00040000
156
#define CM_CH1_INT_EN 0x00020000
157
#define CM_CH0_INT_EN 0x00010000
158
159
#define CM_REG_INT_STATUS 0x10
160
#define CM_INTR 0x80000000
161
#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
162
#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
163
#define CM_UARTINT 0x00010000
164
#define CM_LTDMAINT 0x00008000
165
#define CM_HTDMAINT 0x00004000
166
#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
167
#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
168
#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
169
#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
170
#define CM_CH1BUSY 0x00000008
171
#define CM_CH0BUSY 0x00000004
172
#define CM_CHINT1 0x00000002
173
#define CM_CHINT0 0x00000001
174
175
#define CM_REG_LEGACY_CTRL 0x14
176
#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
177
#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
178
#define CM_VMPU_330 0x00000000
179
#define CM_VMPU_320 0x20000000
180
#define CM_VMPU_310 0x40000000
181
#define CM_VMPU_300 0x60000000
182
#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
183
#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
184
#define CM_VSBSEL_220 0x00000000
185
#define CM_VSBSEL_240 0x04000000
186
#define CM_VSBSEL_260 0x08000000
187
#define CM_VSBSEL_280 0x0C000000
188
#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
189
#define CM_FMSEL_388 0x00000000
190
#define CM_FMSEL_3C8 0x01000000
191
#define CM_FMSEL_3E0 0x02000000
192
#define CM_FMSEL_3E8 0x03000000
193
#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
194
#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
195
#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
196
#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
197
#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198
#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
199
#define CM_C_EECS 0x00040000
200
#define CM_C_EEDI46 0x00020000
201
#define CM_C_EECK46 0x00010000
202
#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
203
#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
204
#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
205
#define CM_EXBASEN 0x00001000 /* external bass input enable */
206
207
#define CM_REG_MISC_CTRL 0x18
208
#define CM_PWD 0x80000000 /* power down */
209
#define CM_RESET 0x40000000
210
#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
211
#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
212
#define CM_TXVX 0x08000000 /* model 037? */
213
#define CM_N4SPK3D 0x04000000 /* copy front to rear */
214
#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
215
#define CM_SPDIF48K 0x01000000 /* write */
216
#define CM_SPATUS48K 0x01000000 /* read */
217
#define CM_ENDBDAC 0x00800000 /* enable double dac */
218
#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
219
#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
220
#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
221
#define CM_FM_EN 0x00080000 /* enable legacy FM */
222
#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
223
#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
224
#define CM_VIDWPDSB 0x00010000 /* model 037? */
225
#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
226
#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
227
#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
228
#define CM_VIDWPPRT 0x00002000 /* model 037? */
229
#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
230
#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
231
#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
232
#define CM_ENCENTER 0x00000080
233
#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
234
#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
235
#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
236
#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
237
#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
238
#define CM_UPDDMA_2048 0x00000000
239
#define CM_UPDDMA_1024 0x00000004
240
#define CM_UPDDMA_512 0x00000008
241
#define CM_UPDDMA_256 0x0000000C
242
#define CM_TWAIT_MASK 0x00000003 /* model 037 */
243
#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244
#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
245
246
#define CM_REG_TDMA_POSITION 0x1C
247
#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
248
#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
249
250
/* byte */
251
#define CM_REG_MIXER0 0x20
252
#define CM_REG_SBVR 0x20 /* write: sb16 version */
253
#define CM_REG_DEV 0x20 /* read: hardware device version */
254
255
#define CM_REG_MIXER21 0x21
256
#define CM_UNKNOWN_21_MASK 0x78 /* ? */
257
#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
258
#define CM_PROINV 0x02 /* SBPro left/right channel switching */
259
#define CM_X_SB16 0x01 /* SB16 compatible */
260
261
#define CM_REG_SB16_DATA 0x22
262
#define CM_REG_SB16_ADDR 0x23
263
264
#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
265
#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266
#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
267
#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
268
269
#define CM_REG_MIXER1 0x24
270
#define CM_FMMUTE 0x80 /* mute FM */
271
#define CM_FMMUTE_SHIFT 7
272
#define CM_WSMUTE 0x40 /* mute PCM */
273
#define CM_WSMUTE_SHIFT 6
274
#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
275
#define CM_REAR2LIN_SHIFT 5
276
#define CM_REAR2FRONT 0x10 /* exchange rear/front */
277
#define CM_REAR2FRONT_SHIFT 4
278
#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
279
#define CM_WAVEINL_SHIFT 3
280
#define CM_WAVEINR 0x04 /* digical wave rec. right */
281
#define CM_WAVEINR_SHIFT 2
282
#define CM_X3DEN 0x02 /* 3D surround enable */
283
#define CM_X3DEN_SHIFT 1
284
#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
285
#define CM_CDPLAY_SHIFT 0
286
287
#define CM_REG_MIXER2 0x25
288
#define CM_RAUXREN 0x80 /* AUX right capture */
289
#define CM_RAUXREN_SHIFT 7
290
#define CM_RAUXLEN 0x40 /* AUX left capture */
291
#define CM_RAUXLEN_SHIFT 6
292
#define CM_VAUXRM 0x20 /* AUX right mute */
293
#define CM_VAUXRM_SHIFT 5
294
#define CM_VAUXLM 0x10 /* AUX left mute */
295
#define CM_VAUXLM_SHIFT 4
296
#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
297
#define CM_VADMIC_SHIFT 1
298
#define CM_MICGAINZ 0x01 /* mic boost */
299
#define CM_MICGAINZ_SHIFT 0
300
301
#define CM_REG_AUX_VOL 0x26
302
#define CM_VAUXL_MASK 0xf0
303
#define CM_VAUXR_MASK 0x0f
304
305
#define CM_REG_MISC 0x27
306
#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
307
#define CM_XGPO1 0x20
308
// #define CM_XGPBIO 0x04
309
#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
310
#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
311
#define CM_SPDVALID 0x02 /* spdif input valid check */
312
#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
313
314
#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
315
/*
316
* For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
317
* or identical with AC97 codec?
318
*/
319
#define CM_REG_EXTERN_CODEC CM_REG_AC97
320
321
/*
322
* MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
323
*/
324
#define CM_REG_MPU_PCI 0x40
325
326
/*
327
* FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
328
*/
329
#define CM_REG_FM_PCI 0x50
330
331
/*
332
* access from SB-mixer port
333
*/
334
#define CM_REG_EXTENT_IND 0xf0
335
#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
336
#define CM_VPHONE_SHIFT 5
337
#define CM_VPHOM 0x10 /* Phone mute control */
338
#define CM_VSPKM 0x08 /* Speaker mute control, default high */
339
#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
340
#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
341
#define CM_VADMIC3 0x01 /* Mic record boost */
342
343
/*
344
* CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
345
* the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
346
* unit (readonly?).
347
*/
348
#define CM_REG_PLL 0xf8
349
350
/*
351
* extended registers
352
*/
353
#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
354
#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
355
#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
356
#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
357
358
#define CM_REG_EXT_MISC 0x90
359
#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
360
#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
361
#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
362
#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
363
#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
364
#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
365
#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
366
#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
367
368
/*
369
* size of i/o region
370
*/
371
#define CM_EXTENT_CODEC 0x100
372
#define CM_EXTENT_MIDI 0x2
373
#define CM_EXTENT_SYNTH 0x4
374
375
376
/*
377
* channels for playback / capture
378
*/
379
#define CM_CH_PLAY 0
380
#define CM_CH_CAPT 1
381
382
/*
383
* flags to check device open/close
384
*/
385
#define CM_OPEN_NONE 0
386
#define CM_OPEN_CH_MASK 0x01
387
#define CM_OPEN_DAC 0x10
388
#define CM_OPEN_ADC 0x20
389
#define CM_OPEN_SPDIF 0x40
390
#define CM_OPEN_MCHAN 0x80
391
#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
392
#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
393
#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
394
#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
395
#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
396
#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
397
398
399
#if CM_CH_PLAY == 1
400
#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
401
#define CM_PLAYBACK_SPDF CM_SPDF_1
402
#define CM_CAPTURE_SPDF CM_SPDF_0
403
#else
404
#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
405
#define CM_PLAYBACK_SPDF CM_SPDF_0
406
#define CM_CAPTURE_SPDF CM_SPDF_1
407
#endif
408
409
410
/*
411
* driver data
412
*/
413
414
struct cmipci_pcm {
415
struct snd_pcm_substream *substream;
416
u8 running; /* dac/adc running? */
417
u8 fmt; /* format bits */
418
u8 is_dac;
419
u8 needs_silencing;
420
unsigned int dma_size; /* in frames */
421
unsigned int shift;
422
unsigned int ch; /* channel (0/1) */
423
unsigned int offset; /* physical address of the buffer */
424
};
425
426
/* mixer elements toggled/resumed during ac3 playback */
427
struct cmipci_mixer_auto_switches {
428
const char *name; /* switch to toggle */
429
int toggle_on; /* value to change when ac3 mode */
430
};
431
static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
432
{"PCM Playback Switch", 0},
433
{"IEC958 Output Switch", 1},
434
{"IEC958 Mix Analog", 0},
435
// {"IEC958 Out To DAC", 1}, // no longer used
436
{"IEC958 Loop", 0},
437
};
438
#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
439
440
struct cmipci {
441
struct snd_card *card;
442
443
struct pci_dev *pci;
444
unsigned int device; /* device ID */
445
int irq;
446
447
unsigned long iobase;
448
unsigned int ctrl; /* FUNCTRL0 current value */
449
450
struct snd_pcm *pcm; /* DAC/ADC PCM */
451
struct snd_pcm *pcm2; /* 2nd DAC */
452
struct snd_pcm *pcm_spdif; /* SPDIF */
453
454
int chip_version;
455
int max_channels;
456
unsigned int can_ac3_sw: 1;
457
unsigned int can_ac3_hw: 1;
458
unsigned int can_multi_ch: 1;
459
unsigned int can_96k: 1; /* samplerate above 48k */
460
unsigned int do_soft_ac3: 1;
461
462
unsigned int spdif_playback_avail: 1; /* spdif ready? */
463
unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
464
int spdif_counter; /* for software AC3 */
465
466
unsigned int dig_status;
467
unsigned int dig_pcm_status;
468
469
struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
470
471
int opened[2]; /* open mode */
472
struct mutex open_mutex;
473
474
unsigned int mixer_insensitive: 1;
475
struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
476
int mixer_res_status[CM_SAVED_MIXERS];
477
478
struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
479
480
/* external MIDI */
481
struct snd_rawmidi *rmidi;
482
483
#ifdef SUPPORT_JOYSTICK
484
struct gameport *gameport;
485
#endif
486
487
spinlock_t reg_lock;
488
489
unsigned int saved_regs[0x20];
490
unsigned char saved_mixers[0x20];
491
};
492
493
494
/* read/write operations for dword register */
495
static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
496
{
497
outl(data, cm->iobase + cmd);
498
}
499
500
static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
501
{
502
return inl(cm->iobase + cmd);
503
}
504
505
/* read/write operations for word register */
506
static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
507
{
508
outw(data, cm->iobase + cmd);
509
}
510
511
static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
512
{
513
return inw(cm->iobase + cmd);
514
}
515
516
/* read/write operations for byte register */
517
static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
518
{
519
outb(data, cm->iobase + cmd);
520
}
521
522
static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
523
{
524
return inb(cm->iobase + cmd);
525
}
526
527
/* bit operations for dword register */
528
static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
529
{
530
unsigned int val, oval;
531
val = oval = inl(cm->iobase + cmd);
532
val |= flag;
533
if (val == oval)
534
return 0;
535
outl(val, cm->iobase + cmd);
536
return 1;
537
}
538
539
static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
540
{
541
unsigned int val, oval;
542
val = oval = inl(cm->iobase + cmd);
543
val &= ~flag;
544
if (val == oval)
545
return 0;
546
outl(val, cm->iobase + cmd);
547
return 1;
548
}
549
550
/* bit operations for byte register */
551
static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
552
{
553
unsigned char val, oval;
554
val = oval = inb(cm->iobase + cmd);
555
val |= flag;
556
if (val == oval)
557
return 0;
558
outb(val, cm->iobase + cmd);
559
return 1;
560
}
561
562
static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
563
{
564
unsigned char val, oval;
565
val = oval = inb(cm->iobase + cmd);
566
val &= ~flag;
567
if (val == oval)
568
return 0;
569
outb(val, cm->iobase + cmd);
570
return 1;
571
}
572
573
574
/*
575
* PCM interface
576
*/
577
578
/*
579
* calculate frequency
580
*/
581
582
static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
583
584
static unsigned int snd_cmipci_rate_freq(unsigned int rate)
585
{
586
unsigned int i;
587
588
for (i = 0; i < ARRAY_SIZE(rates); i++) {
589
if (rates[i] == rate)
590
return i;
591
}
592
snd_BUG();
593
return 0;
594
}
595
596
#ifdef USE_VAR48KRATE
597
/*
598
* Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
599
* does it this way .. maybe not. Never get any information from C-Media about
600
* that <[email protected]>.
601
*/
602
static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
603
{
604
unsigned int delta, tolerance;
605
int xm, xn, xr;
606
607
for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
608
rate <<= 1;
609
*n = -1;
610
if (*r > 0xff)
611
goto out;
612
tolerance = rate*CM_TOLERANCE_RATE;
613
614
for (xn = (1+2); xn < (0x1f+2); xn++) {
615
for (xm = (1+2); xm < (0xff+2); xm++) {
616
xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
617
618
if (xr < rate)
619
delta = rate - xr;
620
else
621
delta = xr - rate;
622
623
/*
624
* If we found one, remember this,
625
* and try to find a closer one
626
*/
627
if (delta < tolerance) {
628
tolerance = delta;
629
*m = xm - 2;
630
*n = xn - 2;
631
}
632
}
633
}
634
out:
635
return (*n > -1);
636
}
637
638
/*
639
* Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
640
* are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
641
* at the register CM_REG_FUNCTRL1 (0x04).
642
* Problem: other ways are also possible (any information about that?)
643
*/
644
static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
645
{
646
unsigned int reg = CM_REG_PLL + slot;
647
/*
648
* Guess that this programs at reg. 0x04 the pos 15:13/12:10
649
* for DSFC/ASFC (000 up to 111).
650
*/
651
652
/* FIXME: Init (Do we've to set an other register first before programming?) */
653
654
/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
655
snd_cmipci_write_b(cm, reg, rate>>8);
656
snd_cmipci_write_b(cm, reg, rate&0xff);
657
658
/* FIXME: Setup (Do we've to set an other register first to enable this?) */
659
}
660
#endif /* USE_VAR48KRATE */
661
662
static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
663
struct snd_pcm_hw_params *hw_params)
664
{
665
struct cmipci *cm = snd_pcm_substream_chip(substream);
666
if (params_channels(hw_params) > 2) {
667
mutex_lock(&cm->open_mutex);
668
if (cm->opened[CM_CH_PLAY]) {
669
mutex_unlock(&cm->open_mutex);
670
return -EBUSY;
671
}
672
/* reserve the channel A */
673
cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
674
mutex_unlock(&cm->open_mutex);
675
}
676
return 0;
677
}
678
679
static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
680
{
681
int reset = CM_RST_CH0 << (cm->channel[ch].ch);
682
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
683
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
684
udelay(10);
685
}
686
687
688
/*
689
*/
690
691
static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
692
static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
693
.count = 3,
694
.list = hw_channels,
695
.mask = 0,
696
};
697
static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
698
.count = 4,
699
.list = hw_channels,
700
.mask = 0,
701
};
702
static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
703
.count = 5,
704
.list = hw_channels,
705
.mask = 0,
706
};
707
708
static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
709
{
710
if (channels > 2) {
711
if (!cm->can_multi_ch || !rec->ch)
712
return -EINVAL;
713
if (rec->fmt != 0x03) /* stereo 16bit only */
714
return -EINVAL;
715
}
716
717
if (cm->can_multi_ch) {
718
spin_lock_irq(&cm->reg_lock);
719
if (channels > 2) {
720
snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
721
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
722
} else {
723
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725
}
726
if (channels == 8)
727
snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
728
else
729
snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
730
if (channels == 6) {
731
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
732
snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
733
} else {
734
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
735
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
736
}
737
if (channels == 4)
738
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
739
else
740
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
741
spin_unlock_irq(&cm->reg_lock);
742
}
743
return 0;
744
}
745
746
747
/*
748
* prepare playback/capture channel
749
* channel to be used must have been set in rec->ch.
750
*/
751
static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
752
struct snd_pcm_substream *substream)
753
{
754
unsigned int reg, freq, freq_ext, val;
755
unsigned int period_size;
756
struct snd_pcm_runtime *runtime = substream->runtime;
757
758
rec->fmt = 0;
759
rec->shift = 0;
760
if (snd_pcm_format_width(runtime->format) >= 16) {
761
rec->fmt |= 0x02;
762
if (snd_pcm_format_width(runtime->format) > 16)
763
rec->shift++; /* 24/32bit */
764
}
765
if (runtime->channels > 1)
766
rec->fmt |= 0x01;
767
if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
768
dev_dbg(cm->card->dev, "cannot set dac channels\n");
769
return -EINVAL;
770
}
771
772
rec->offset = runtime->dma_addr;
773
/* buffer and period sizes in frame */
774
rec->dma_size = runtime->buffer_size << rec->shift;
775
period_size = runtime->period_size << rec->shift;
776
if (runtime->channels > 2) {
777
/* multi-channels */
778
rec->dma_size = (rec->dma_size * runtime->channels) / 2;
779
period_size = (period_size * runtime->channels) / 2;
780
}
781
782
spin_lock_irq(&cm->reg_lock);
783
784
/* set buffer address */
785
reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
786
snd_cmipci_write(cm, reg, rec->offset);
787
/* program sample counts */
788
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
789
snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
790
snd_cmipci_write_w(cm, reg + 2, period_size - 1);
791
792
/* set adc/dac flag */
793
val = rec->ch ? CM_CHADC1 : CM_CHADC0;
794
if (rec->is_dac)
795
cm->ctrl &= ~val;
796
else
797
cm->ctrl |= val;
798
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
799
/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
800
801
/* set sample rate */
802
freq = 0;
803
freq_ext = 0;
804
if (runtime->rate > 48000)
805
switch (runtime->rate) {
806
case 88200: freq_ext = CM_CH0_SRATE_88K; break;
807
case 96000: freq_ext = CM_CH0_SRATE_96K; break;
808
case 128000: freq_ext = CM_CH0_SRATE_128K; break;
809
default: snd_BUG(); break;
810
}
811
else
812
freq = snd_cmipci_rate_freq(runtime->rate);
813
val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
814
if (rec->ch) {
815
val &= ~CM_DSFC_MASK;
816
val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
817
} else {
818
val &= ~CM_ASFC_MASK;
819
val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
820
}
821
snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
822
dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
823
824
/* set format */
825
val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
826
if (rec->ch) {
827
val &= ~CM_CH1FMT_MASK;
828
val |= rec->fmt << CM_CH1FMT_SHIFT;
829
} else {
830
val &= ~CM_CH0FMT_MASK;
831
val |= rec->fmt << CM_CH0FMT_SHIFT;
832
}
833
if (cm->can_96k) {
834
val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
835
val |= freq_ext << (rec->ch * 2);
836
}
837
snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
838
dev_dbg(cm->card->dev, "chformat = %08x\n", val);
839
840
if (!rec->is_dac && cm->chip_version) {
841
if (runtime->rate > 44100)
842
snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
843
else
844
snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
845
}
846
847
rec->running = 0;
848
spin_unlock_irq(&cm->reg_lock);
849
850
return 0;
851
}
852
853
/*
854
* PCM trigger/stop
855
*/
856
static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
857
int cmd)
858
{
859
unsigned int inthld, chen, reset, pause;
860
int result = 0;
861
862
inthld = CM_CH0_INT_EN << rec->ch;
863
chen = CM_CHEN0 << rec->ch;
864
reset = CM_RST_CH0 << rec->ch;
865
pause = CM_PAUSE0 << rec->ch;
866
867
spin_lock(&cm->reg_lock);
868
switch (cmd) {
869
case SNDRV_PCM_TRIGGER_START:
870
rec->running = 1;
871
/* set interrupt */
872
snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
873
cm->ctrl |= chen;
874
/* enable channel */
875
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
876
dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
877
break;
878
case SNDRV_PCM_TRIGGER_STOP:
879
rec->running = 0;
880
/* disable interrupt */
881
snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
882
/* reset */
883
cm->ctrl &= ~chen;
884
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
885
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
886
rec->needs_silencing = rec->is_dac;
887
break;
888
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
889
case SNDRV_PCM_TRIGGER_SUSPEND:
890
cm->ctrl |= pause;
891
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
892
break;
893
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
894
case SNDRV_PCM_TRIGGER_RESUME:
895
cm->ctrl &= ~pause;
896
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
897
break;
898
default:
899
result = -EINVAL;
900
break;
901
}
902
spin_unlock(&cm->reg_lock);
903
return result;
904
}
905
906
/*
907
* return the current pointer
908
*/
909
static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
910
struct snd_pcm_substream *substream)
911
{
912
size_t ptr;
913
unsigned int reg, rem, tries;
914
915
if (!rec->running)
916
return 0;
917
#if 1 // this seems better..
918
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
919
for (tries = 0; tries < 3; tries++) {
920
rem = snd_cmipci_read_w(cm, reg);
921
if (rem < rec->dma_size)
922
goto ok;
923
}
924
dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
925
return SNDRV_PCM_POS_XRUN;
926
ok:
927
ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
928
#else
929
reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
930
ptr = snd_cmipci_read(cm, reg) - rec->offset;
931
ptr = bytes_to_frames(substream->runtime, ptr);
932
#endif
933
if (substream->runtime->channels > 2)
934
ptr = (ptr * 2) / substream->runtime->channels;
935
return ptr;
936
}
937
938
/*
939
* playback
940
*/
941
942
static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
943
int cmd)
944
{
945
struct cmipci *cm = snd_pcm_substream_chip(substream);
946
return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
947
}
948
949
static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
950
{
951
struct cmipci *cm = snd_pcm_substream_chip(substream);
952
return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
953
}
954
955
956
957
/*
958
* capture
959
*/
960
961
static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
962
int cmd)
963
{
964
struct cmipci *cm = snd_pcm_substream_chip(substream);
965
return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
966
}
967
968
static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
969
{
970
struct cmipci *cm = snd_pcm_substream_chip(substream);
971
return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
972
}
973
974
975
/*
976
* hw preparation for spdif
977
*/
978
979
static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
980
struct snd_ctl_elem_info *uinfo)
981
{
982
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
983
uinfo->count = 1;
984
return 0;
985
}
986
987
static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
988
struct snd_ctl_elem_value *ucontrol)
989
{
990
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
991
int i;
992
993
spin_lock_irq(&chip->reg_lock);
994
for (i = 0; i < 4; i++)
995
ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
996
spin_unlock_irq(&chip->reg_lock);
997
return 0;
998
}
999
1000
static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1001
struct snd_ctl_elem_value *ucontrol)
1002
{
1003
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004
int i, change;
1005
unsigned int val;
1006
1007
val = 0;
1008
spin_lock_irq(&chip->reg_lock);
1009
for (i = 0; i < 4; i++)
1010
val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1011
change = val != chip->dig_status;
1012
chip->dig_status = val;
1013
spin_unlock_irq(&chip->reg_lock);
1014
return change;
1015
}
1016
1017
static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1018
{
1019
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1020
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1021
.info = snd_cmipci_spdif_default_info,
1022
.get = snd_cmipci_spdif_default_get,
1023
.put = snd_cmipci_spdif_default_put
1024
};
1025
1026
static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1027
struct snd_ctl_elem_info *uinfo)
1028
{
1029
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1030
uinfo->count = 1;
1031
return 0;
1032
}
1033
1034
static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1035
struct snd_ctl_elem_value *ucontrol)
1036
{
1037
ucontrol->value.iec958.status[0] = 0xff;
1038
ucontrol->value.iec958.status[1] = 0xff;
1039
ucontrol->value.iec958.status[2] = 0xff;
1040
ucontrol->value.iec958.status[3] = 0xff;
1041
return 0;
1042
}
1043
1044
static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1045
{
1046
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1047
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1048
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1049
.info = snd_cmipci_spdif_mask_info,
1050
.get = snd_cmipci_spdif_mask_get,
1051
};
1052
1053
static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1054
struct snd_ctl_elem_info *uinfo)
1055
{
1056
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1057
uinfo->count = 1;
1058
return 0;
1059
}
1060
1061
static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1062
struct snd_ctl_elem_value *ucontrol)
1063
{
1064
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1065
int i;
1066
1067
spin_lock_irq(&chip->reg_lock);
1068
for (i = 0; i < 4; i++)
1069
ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1070
spin_unlock_irq(&chip->reg_lock);
1071
return 0;
1072
}
1073
1074
static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1075
struct snd_ctl_elem_value *ucontrol)
1076
{
1077
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078
int i, change;
1079
unsigned int val;
1080
1081
val = 0;
1082
spin_lock_irq(&chip->reg_lock);
1083
for (i = 0; i < 4; i++)
1084
val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1085
change = val != chip->dig_pcm_status;
1086
chip->dig_pcm_status = val;
1087
spin_unlock_irq(&chip->reg_lock);
1088
return change;
1089
}
1090
1091
static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1092
{
1093
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1094
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1095
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1096
.info = snd_cmipci_spdif_stream_info,
1097
.get = snd_cmipci_spdif_stream_get,
1098
.put = snd_cmipci_spdif_stream_put
1099
};
1100
1101
/*
1102
*/
1103
1104
/* save mixer setting and mute for AC3 playback */
1105
static int save_mixer_state(struct cmipci *cm)
1106
{
1107
if (! cm->mixer_insensitive) {
1108
struct snd_ctl_elem_value *val;
1109
unsigned int i;
1110
1111
val = kmalloc(sizeof(*val), GFP_KERNEL);
1112
if (!val)
1113
return -ENOMEM;
1114
for (i = 0; i < CM_SAVED_MIXERS; i++) {
1115
struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1116
if (ctl) {
1117
int event;
1118
memset(val, 0, sizeof(*val));
1119
ctl->get(ctl, val);
1120
cm->mixer_res_status[i] = val->value.integer.value[0];
1121
val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1122
event = SNDRV_CTL_EVENT_MASK_INFO;
1123
if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1124
ctl->put(ctl, val); /* toggle */
1125
event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126
}
1127
ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128
snd_ctl_notify(cm->card, event, &ctl->id);
1129
}
1130
}
1131
kfree(val);
1132
cm->mixer_insensitive = 1;
1133
}
1134
return 0;
1135
}
1136
1137
1138
/* restore the previously saved mixer status */
1139
static void restore_mixer_state(struct cmipci *cm)
1140
{
1141
if (cm->mixer_insensitive) {
1142
struct snd_ctl_elem_value *val;
1143
unsigned int i;
1144
1145
val = kmalloc(sizeof(*val), GFP_KERNEL);
1146
if (!val)
1147
return;
1148
cm->mixer_insensitive = 0; /* at first clear this;
1149
otherwise the changes will be ignored */
1150
for (i = 0; i < CM_SAVED_MIXERS; i++) {
1151
struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1152
if (ctl) {
1153
int event;
1154
1155
memset(val, 0, sizeof(*val));
1156
ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1157
ctl->get(ctl, val);
1158
event = SNDRV_CTL_EVENT_MASK_INFO;
1159
if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1160
val->value.integer.value[0] = cm->mixer_res_status[i];
1161
ctl->put(ctl, val);
1162
event |= SNDRV_CTL_EVENT_MASK_VALUE;
1163
}
1164
snd_ctl_notify(cm->card, event, &ctl->id);
1165
}
1166
}
1167
kfree(val);
1168
}
1169
}
1170
1171
/* spinlock held! */
1172
static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1173
{
1174
if (do_ac3) {
1175
/* AC3EN for 037 */
1176
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1177
/* AC3EN for 039 */
1178
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1179
1180
if (cm->can_ac3_hw) {
1181
/* SPD24SEL for 037, 0x02 */
1182
/* SPD24SEL for 039, 0x20, but cannot be set */
1183
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1184
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185
} else { /* can_ac3_sw */
1186
/* SPD32SEL for 037 & 039, 0x20 */
1187
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188
/* set 176K sample rate to fix 033 HW bug */
1189
if (cm->chip_version == 33) {
1190
if (rate >= 48000) {
1191
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1192
} else {
1193
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194
}
1195
}
1196
}
1197
1198
} else {
1199
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201
1202
if (cm->can_ac3_hw) {
1203
/* chip model >= 37 */
1204
if (snd_pcm_format_width(subs->runtime->format) > 16) {
1205
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207
} else {
1208
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210
}
1211
} else {
1212
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215
}
1216
}
1217
}
1218
1219
static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1220
{
1221
int rate, err;
1222
1223
rate = subs->runtime->rate;
1224
1225
if (up && do_ac3) {
1226
err = save_mixer_state(cm);
1227
if (err < 0)
1228
return err;
1229
}
1230
1231
spin_lock_irq(&cm->reg_lock);
1232
cm->spdif_playback_avail = up;
1233
if (up) {
1234
/* they are controlled via "IEC958 Output Switch" */
1235
/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1236
/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1237
if (cm->spdif_playback_enabled)
1238
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1239
setup_ac3(cm, subs, do_ac3, rate);
1240
1241
if (rate == 48000 || rate == 96000)
1242
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1243
else
1244
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245
if (rate > 48000)
1246
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1247
else
1248
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249
} else {
1250
/* they are controlled via "IEC958 Output Switch" */
1251
/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252
/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255
setup_ac3(cm, subs, 0, 0);
1256
}
1257
spin_unlock_irq(&cm->reg_lock);
1258
return 0;
1259
}
1260
1261
1262
/*
1263
* preparation
1264
*/
1265
1266
/* playback - enable spdif only on the certain condition */
1267
static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1268
{
1269
struct cmipci *cm = snd_pcm_substream_chip(substream);
1270
int rate = substream->runtime->rate;
1271
int err, do_spdif, do_ac3 = 0;
1272
1273
do_spdif = (rate >= 44100 && rate <= 96000 &&
1274
substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1275
substream->runtime->channels == 2);
1276
if (do_spdif && cm->can_ac3_hw)
1277
do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1278
err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1279
if (err < 0)
1280
return err;
1281
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1282
}
1283
1284
/* playback (via device #2) - enable spdif always */
1285
static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286
{
1287
struct cmipci *cm = snd_pcm_substream_chip(substream);
1288
int err, do_ac3;
1289
1290
if (cm->can_ac3_hw)
1291
do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292
else
1293
do_ac3 = 1; /* doesn't matter */
1294
err = setup_spdif_playback(cm, substream, 1, do_ac3);
1295
if (err < 0)
1296
return err;
1297
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1298
}
1299
1300
/*
1301
* Apparently, the samples last played on channel A stay in some buffer, even
1302
* after the channel is reset, and get added to the data for the rear DACs when
1303
* playing a multichannel stream on channel B. This is likely to generate
1304
* wraparounds and thus distortions.
1305
* To avoid this, we play at least one zero sample after the actual stream has
1306
* stopped.
1307
*/
1308
static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1309
{
1310
struct snd_pcm_runtime *runtime = rec->substream->runtime;
1311
unsigned int reg, val;
1312
1313
if (rec->needs_silencing && runtime && runtime->dma_area) {
1314
/* set up a small silence buffer */
1315
memset(runtime->dma_area, 0, PAGE_SIZE);
1316
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1317
val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1318
snd_cmipci_write(cm, reg, val);
1319
1320
/* configure for 16 bits, 2 channels, 8 kHz */
1321
if (runtime->channels > 2)
1322
set_dac_channels(cm, rec, 2);
1323
spin_lock_irq(&cm->reg_lock);
1324
val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1325
val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1326
val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1327
snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1328
val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1329
val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1330
val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1331
if (cm->can_96k)
1332
val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1333
snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1334
1335
/* start stream (we don't need interrupts) */
1336
cm->ctrl |= CM_CHEN0 << rec->ch;
1337
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1338
spin_unlock_irq(&cm->reg_lock);
1339
1340
msleep(1);
1341
1342
/* stop and reset stream */
1343
spin_lock_irq(&cm->reg_lock);
1344
cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1345
val = CM_RST_CH0 << rec->ch;
1346
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1347
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1348
spin_unlock_irq(&cm->reg_lock);
1349
1350
rec->needs_silencing = 0;
1351
}
1352
}
1353
1354
static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1355
{
1356
struct cmipci *cm = snd_pcm_substream_chip(substream);
1357
setup_spdif_playback(cm, substream, 0, 0);
1358
restore_mixer_state(cm);
1359
snd_cmipci_silence_hack(cm, &cm->channel[0]);
1360
return 0;
1361
}
1362
1363
static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1364
{
1365
struct cmipci *cm = snd_pcm_substream_chip(substream);
1366
snd_cmipci_silence_hack(cm, &cm->channel[1]);
1367
return 0;
1368
}
1369
1370
/* capture */
1371
static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1372
{
1373
struct cmipci *cm = snd_pcm_substream_chip(substream);
1374
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1375
}
1376
1377
/* capture with spdif (via device #2) */
1378
static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1379
{
1380
struct cmipci *cm = snd_pcm_substream_chip(substream);
1381
1382
spin_lock_irq(&cm->reg_lock);
1383
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1384
if (cm->can_96k) {
1385
if (substream->runtime->rate > 48000)
1386
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1387
else
1388
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389
}
1390
if (snd_pcm_format_width(substream->runtime->format) > 16)
1391
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1392
else
1393
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394
1395
spin_unlock_irq(&cm->reg_lock);
1396
1397
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1398
}
1399
1400
static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401
{
1402
struct cmipci *cm = snd_pcm_substream_chip(subs);
1403
1404
spin_lock_irq(&cm->reg_lock);
1405
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1407
spin_unlock_irq(&cm->reg_lock);
1408
1409
return 0;
1410
}
1411
1412
1413
/*
1414
* interrupt handler
1415
*/
1416
static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417
{
1418
struct cmipci *cm = dev_id;
1419
unsigned int status, mask = 0;
1420
1421
/* fastpath out, to ease interrupt sharing */
1422
status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1423
if (!(status & CM_INTR))
1424
return IRQ_NONE;
1425
1426
/* acknowledge interrupt */
1427
spin_lock(&cm->reg_lock);
1428
if (status & CM_CHINT0)
1429
mask |= CM_CH0_INT_EN;
1430
if (status & CM_CHINT1)
1431
mask |= CM_CH1_INT_EN;
1432
snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1433
snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1434
spin_unlock(&cm->reg_lock);
1435
1436
if (cm->rmidi && (status & CM_UARTINT))
1437
snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1438
1439
if (cm->pcm) {
1440
if ((status & CM_CHINT0) && cm->channel[0].running)
1441
snd_pcm_period_elapsed(cm->channel[0].substream);
1442
if ((status & CM_CHINT1) && cm->channel[1].running)
1443
snd_pcm_period_elapsed(cm->channel[1].substream);
1444
}
1445
return IRQ_HANDLED;
1446
}
1447
1448
/*
1449
* h/w infos
1450
*/
1451
1452
/* playback on channel A */
1453
static const struct snd_pcm_hardware snd_cmipci_playback =
1454
{
1455
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1456
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1457
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1458
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1459
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1460
.rate_min = 5512,
1461
.rate_max = 48000,
1462
.channels_min = 1,
1463
.channels_max = 2,
1464
.buffer_bytes_max = (128*1024),
1465
.period_bytes_min = 64,
1466
.period_bytes_max = (128*1024),
1467
.periods_min = 2,
1468
.periods_max = 1024,
1469
.fifo_size = 0,
1470
};
1471
1472
/* capture on channel B */
1473
static const struct snd_pcm_hardware snd_cmipci_capture =
1474
{
1475
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1476
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1477
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1478
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1479
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1480
.rate_min = 5512,
1481
.rate_max = 48000,
1482
.channels_min = 1,
1483
.channels_max = 2,
1484
.buffer_bytes_max = (128*1024),
1485
.period_bytes_min = 64,
1486
.period_bytes_max = (128*1024),
1487
.periods_min = 2,
1488
.periods_max = 1024,
1489
.fifo_size = 0,
1490
};
1491
1492
/* playback on channel B - stereo 16bit only? */
1493
static const struct snd_pcm_hardware snd_cmipci_playback2 =
1494
{
1495
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1496
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1497
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1498
.formats = SNDRV_PCM_FMTBIT_S16_LE,
1499
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1500
.rate_min = 5512,
1501
.rate_max = 48000,
1502
.channels_min = 2,
1503
.channels_max = 2,
1504
.buffer_bytes_max = (128*1024),
1505
.period_bytes_min = 64,
1506
.period_bytes_max = (128*1024),
1507
.periods_min = 2,
1508
.periods_max = 1024,
1509
.fifo_size = 0,
1510
};
1511
1512
/* spdif playback on channel A */
1513
static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514
{
1515
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1516
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1517
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1518
.formats = SNDRV_PCM_FMTBIT_S16_LE,
1519
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1520
.rate_min = 44100,
1521
.rate_max = 48000,
1522
.channels_min = 2,
1523
.channels_max = 2,
1524
.buffer_bytes_max = (128*1024),
1525
.period_bytes_min = 64,
1526
.period_bytes_max = (128*1024),
1527
.periods_min = 2,
1528
.periods_max = 1024,
1529
.fifo_size = 0,
1530
};
1531
1532
/* spdif playback on channel A (32bit, IEC958 subframes) */
1533
static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534
{
1535
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1536
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1537
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1538
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1539
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1540
.rate_min = 44100,
1541
.rate_max = 48000,
1542
.channels_min = 2,
1543
.channels_max = 2,
1544
.buffer_bytes_max = (128*1024),
1545
.period_bytes_min = 64,
1546
.period_bytes_max = (128*1024),
1547
.periods_min = 2,
1548
.periods_max = 1024,
1549
.fifo_size = 0,
1550
};
1551
1552
/* spdif capture on channel B */
1553
static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554
{
1555
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1556
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1557
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1558
.formats = SNDRV_PCM_FMTBIT_S16_LE |
1559
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1560
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1561
.rate_min = 44100,
1562
.rate_max = 48000,
1563
.channels_min = 2,
1564
.channels_max = 2,
1565
.buffer_bytes_max = (128*1024),
1566
.period_bytes_min = 64,
1567
.period_bytes_max = (128*1024),
1568
.periods_min = 2,
1569
.periods_max = 1024,
1570
.fifo_size = 0,
1571
};
1572
1573
/*
1574
* check device open/close
1575
*/
1576
static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1577
{
1578
int ch = mode & CM_OPEN_CH_MASK;
1579
1580
/* FIXME: a file should wait until the device becomes free
1581
* when it's opened on blocking mode. however, since the current
1582
* pcm framework doesn't pass file pointer before actually opened,
1583
* we can't know whether blocking mode or not in open callback..
1584
*/
1585
mutex_lock(&cm->open_mutex);
1586
if (cm->opened[ch]) {
1587
mutex_unlock(&cm->open_mutex);
1588
return -EBUSY;
1589
}
1590
cm->opened[ch] = mode;
1591
cm->channel[ch].substream = subs;
1592
if (! (mode & CM_OPEN_DAC)) {
1593
/* disable dual DAC mode */
1594
cm->channel[ch].is_dac = 0;
1595
spin_lock_irq(&cm->reg_lock);
1596
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1597
spin_unlock_irq(&cm->reg_lock);
1598
}
1599
mutex_unlock(&cm->open_mutex);
1600
return 0;
1601
}
1602
1603
static void close_device_check(struct cmipci *cm, int mode)
1604
{
1605
int ch = mode & CM_OPEN_CH_MASK;
1606
1607
mutex_lock(&cm->open_mutex);
1608
if (cm->opened[ch] == mode) {
1609
if (cm->channel[ch].substream) {
1610
snd_cmipci_ch_reset(cm, ch);
1611
cm->channel[ch].running = 0;
1612
cm->channel[ch].substream = NULL;
1613
}
1614
cm->opened[ch] = 0;
1615
if (! cm->channel[ch].is_dac) {
1616
/* enable dual DAC mode again */
1617
cm->channel[ch].is_dac = 1;
1618
spin_lock_irq(&cm->reg_lock);
1619
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1620
spin_unlock_irq(&cm->reg_lock);
1621
}
1622
}
1623
mutex_unlock(&cm->open_mutex);
1624
}
1625
1626
/*
1627
*/
1628
1629
static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1630
{
1631
struct cmipci *cm = snd_pcm_substream_chip(substream);
1632
struct snd_pcm_runtime *runtime = substream->runtime;
1633
int err;
1634
1635
err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1636
if (err < 0)
1637
return err;
1638
runtime->hw = snd_cmipci_playback;
1639
if (cm->chip_version == 68) {
1640
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1641
SNDRV_PCM_RATE_96000;
1642
runtime->hw.rate_max = 96000;
1643
} else if (cm->chip_version == 55) {
1644
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1645
SNDRV_PCM_RATE_96000 |
1646
SNDRV_PCM_RATE_128000;
1647
runtime->hw.rate_max = 128000;
1648
}
1649
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1650
cm->dig_pcm_status = cm->dig_status;
1651
return 0;
1652
}
1653
1654
static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1655
{
1656
struct cmipci *cm = snd_pcm_substream_chip(substream);
1657
struct snd_pcm_runtime *runtime = substream->runtime;
1658
int err;
1659
1660
err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1661
if (err < 0)
1662
return err;
1663
runtime->hw = snd_cmipci_capture;
1664
if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1665
runtime->hw.rate_min = 41000;
1666
runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1667
} else if (cm->chip_version == 55) {
1668
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1669
SNDRV_PCM_RATE_96000 |
1670
SNDRV_PCM_RATE_128000;
1671
runtime->hw.rate_max = 128000;
1672
}
1673
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1674
return 0;
1675
}
1676
1677
static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1678
{
1679
struct cmipci *cm = snd_pcm_substream_chip(substream);
1680
struct snd_pcm_runtime *runtime = substream->runtime;
1681
int err;
1682
1683
/* use channel B */
1684
err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1685
if (err < 0)
1686
return err;
1687
runtime->hw = snd_cmipci_playback2;
1688
mutex_lock(&cm->open_mutex);
1689
if (! cm->opened[CM_CH_PLAY]) {
1690
if (cm->can_multi_ch) {
1691
runtime->hw.channels_max = cm->max_channels;
1692
if (cm->max_channels == 4)
1693
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1694
else if (cm->max_channels == 6)
1695
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1696
else if (cm->max_channels == 8)
1697
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1698
}
1699
}
1700
mutex_unlock(&cm->open_mutex);
1701
if (cm->chip_version == 68) {
1702
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1703
SNDRV_PCM_RATE_96000;
1704
runtime->hw.rate_max = 96000;
1705
} else if (cm->chip_version == 55) {
1706
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1707
SNDRV_PCM_RATE_96000 |
1708
SNDRV_PCM_RATE_128000;
1709
runtime->hw.rate_max = 128000;
1710
}
1711
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1712
return 0;
1713
}
1714
1715
static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1716
{
1717
struct cmipci *cm = snd_pcm_substream_chip(substream);
1718
struct snd_pcm_runtime *runtime = substream->runtime;
1719
int err;
1720
1721
/* use channel A */
1722
err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1723
if (err < 0)
1724
return err;
1725
if (cm->can_ac3_hw) {
1726
runtime->hw = snd_cmipci_playback_spdif;
1727
if (cm->chip_version >= 37) {
1728
runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1729
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1730
}
1731
if (cm->can_96k) {
1732
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1733
SNDRV_PCM_RATE_96000;
1734
runtime->hw.rate_max = 96000;
1735
}
1736
} else {
1737
runtime->hw = snd_cmipci_playback_iec958_subframe;
1738
}
1739
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1740
cm->dig_pcm_status = cm->dig_status;
1741
return 0;
1742
}
1743
1744
static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1745
{
1746
struct cmipci *cm = snd_pcm_substream_chip(substream);
1747
struct snd_pcm_runtime *runtime = substream->runtime;
1748
int err;
1749
1750
/* use channel B */
1751
err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1752
if (err < 0)
1753
return err;
1754
runtime->hw = snd_cmipci_capture_spdif;
1755
if (cm->can_96k && !(cm->chip_version == 68)) {
1756
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1757
SNDRV_PCM_RATE_96000;
1758
runtime->hw.rate_max = 96000;
1759
}
1760
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1761
return 0;
1762
}
1763
1764
1765
/*
1766
*/
1767
1768
static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1769
{
1770
struct cmipci *cm = snd_pcm_substream_chip(substream);
1771
close_device_check(cm, CM_OPEN_PLAYBACK);
1772
return 0;
1773
}
1774
1775
static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1776
{
1777
struct cmipci *cm = snd_pcm_substream_chip(substream);
1778
close_device_check(cm, CM_OPEN_CAPTURE);
1779
return 0;
1780
}
1781
1782
static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1783
{
1784
struct cmipci *cm = snd_pcm_substream_chip(substream);
1785
close_device_check(cm, CM_OPEN_PLAYBACK2);
1786
close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1787
return 0;
1788
}
1789
1790
static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1791
{
1792
struct cmipci *cm = snd_pcm_substream_chip(substream);
1793
close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1794
return 0;
1795
}
1796
1797
static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1798
{
1799
struct cmipci *cm = snd_pcm_substream_chip(substream);
1800
close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1801
return 0;
1802
}
1803
1804
1805
/*
1806
*/
1807
1808
static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1809
.open = snd_cmipci_playback_open,
1810
.close = snd_cmipci_playback_close,
1811
.hw_free = snd_cmipci_playback_hw_free,
1812
.prepare = snd_cmipci_playback_prepare,
1813
.trigger = snd_cmipci_playback_trigger,
1814
.pointer = snd_cmipci_playback_pointer,
1815
};
1816
1817
static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1818
.open = snd_cmipci_capture_open,
1819
.close = snd_cmipci_capture_close,
1820
.prepare = snd_cmipci_capture_prepare,
1821
.trigger = snd_cmipci_capture_trigger,
1822
.pointer = snd_cmipci_capture_pointer,
1823
};
1824
1825
static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1826
.open = snd_cmipci_playback2_open,
1827
.close = snd_cmipci_playback2_close,
1828
.hw_params = snd_cmipci_playback2_hw_params,
1829
.hw_free = snd_cmipci_playback2_hw_free,
1830
.prepare = snd_cmipci_capture_prepare, /* channel B */
1831
.trigger = snd_cmipci_capture_trigger, /* channel B */
1832
.pointer = snd_cmipci_capture_pointer, /* channel B */
1833
};
1834
1835
static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1836
.open = snd_cmipci_playback_spdif_open,
1837
.close = snd_cmipci_playback_spdif_close,
1838
.hw_free = snd_cmipci_playback_hw_free,
1839
.prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1840
.trigger = snd_cmipci_playback_trigger,
1841
.pointer = snd_cmipci_playback_pointer,
1842
};
1843
1844
static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1845
.open = snd_cmipci_capture_spdif_open,
1846
.close = snd_cmipci_capture_spdif_close,
1847
.hw_free = snd_cmipci_capture_spdif_hw_free,
1848
.prepare = snd_cmipci_capture_spdif_prepare,
1849
.trigger = snd_cmipci_capture_trigger,
1850
.pointer = snd_cmipci_capture_pointer,
1851
};
1852
1853
1854
/*
1855
*/
1856
1857
static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1858
{
1859
struct snd_pcm *pcm;
1860
int err;
1861
1862
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1863
if (err < 0)
1864
return err;
1865
1866
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1867
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1868
1869
pcm->private_data = cm;
1870
pcm->info_flags = 0;
1871
strscpy(pcm->name, "C-Media PCI DAC/ADC");
1872
cm->pcm = pcm;
1873
1874
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1875
&cm->pci->dev, 64*1024, 128*1024);
1876
1877
return 0;
1878
}
1879
1880
static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1881
{
1882
struct snd_pcm *pcm;
1883
int err;
1884
1885
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1886
if (err < 0)
1887
return err;
1888
1889
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1890
1891
pcm->private_data = cm;
1892
pcm->info_flags = 0;
1893
strscpy(pcm->name, "C-Media PCI 2nd DAC");
1894
cm->pcm2 = pcm;
1895
1896
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1897
&cm->pci->dev, 64*1024, 128*1024);
1898
1899
return 0;
1900
}
1901
1902
static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1903
{
1904
struct snd_pcm *pcm;
1905
int err;
1906
1907
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1908
if (err < 0)
1909
return err;
1910
1911
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1912
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1913
1914
pcm->private_data = cm;
1915
pcm->info_flags = 0;
1916
strscpy(pcm->name, "C-Media PCI IEC958");
1917
cm->pcm_spdif = pcm;
1918
1919
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1920
&cm->pci->dev, 64*1024, 128*1024);
1921
1922
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1923
snd_pcm_alt_chmaps, cm->max_channels, 0,
1924
NULL);
1925
if (err < 0)
1926
return err;
1927
1928
return 0;
1929
}
1930
1931
/*
1932
* mixer interface:
1933
* - CM8338/8738 has a compatible mixer interface with SB16, but
1934
* lack of some elements like tone control, i/o gain and AGC.
1935
* - Access to native registers:
1936
* - A 3D switch
1937
* - Output mute switches
1938
*/
1939
1940
static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1941
{
1942
outb(idx, s->iobase + CM_REG_SB16_ADDR);
1943
outb(data, s->iobase + CM_REG_SB16_DATA);
1944
}
1945
1946
static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1947
{
1948
unsigned char v;
1949
1950
outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951
v = inb(s->iobase + CM_REG_SB16_DATA);
1952
return v;
1953
}
1954
1955
/*
1956
* general mixer element
1957
*/
1958
struct cmipci_sb_reg {
1959
unsigned int left_reg, right_reg;
1960
unsigned int left_shift, right_shift;
1961
unsigned int mask;
1962
unsigned int invert: 1;
1963
unsigned int stereo: 1;
1964
};
1965
1966
#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1967
((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1968
1969
#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1970
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1971
.info = snd_cmipci_info_volume, \
1972
.get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1973
.private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1974
}
1975
1976
#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1977
#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1978
#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1979
#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1980
1981
static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1982
{
1983
r->left_reg = val & 0xff;
1984
r->right_reg = (val >> 8) & 0xff;
1985
r->left_shift = (val >> 16) & 0x07;
1986
r->right_shift = (val >> 19) & 0x07;
1987
r->invert = (val >> 22) & 1;
1988
r->stereo = (val >> 23) & 1;
1989
r->mask = (val >> 24) & 0xff;
1990
}
1991
1992
static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1993
struct snd_ctl_elem_info *uinfo)
1994
{
1995
struct cmipci_sb_reg reg;
1996
1997
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1998
uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1999
uinfo->count = reg.stereo + 1;
2000
uinfo->value.integer.min = 0;
2001
uinfo->value.integer.max = reg.mask;
2002
return 0;
2003
}
2004
2005
static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2006
struct snd_ctl_elem_value *ucontrol)
2007
{
2008
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2009
struct cmipci_sb_reg reg;
2010
int val;
2011
2012
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2013
spin_lock_irq(&cm->reg_lock);
2014
val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2015
if (reg.invert)
2016
val = reg.mask - val;
2017
ucontrol->value.integer.value[0] = val;
2018
if (reg.stereo) {
2019
val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2020
if (reg.invert)
2021
val = reg.mask - val;
2022
ucontrol->value.integer.value[1] = val;
2023
}
2024
spin_unlock_irq(&cm->reg_lock);
2025
return 0;
2026
}
2027
2028
static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2029
struct snd_ctl_elem_value *ucontrol)
2030
{
2031
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2032
struct cmipci_sb_reg reg;
2033
int change;
2034
int left, right, oleft, oright;
2035
2036
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2037
left = ucontrol->value.integer.value[0] & reg.mask;
2038
if (reg.invert)
2039
left = reg.mask - left;
2040
left <<= reg.left_shift;
2041
if (reg.stereo) {
2042
right = ucontrol->value.integer.value[1] & reg.mask;
2043
if (reg.invert)
2044
right = reg.mask - right;
2045
right <<= reg.right_shift;
2046
} else
2047
right = 0;
2048
spin_lock_irq(&cm->reg_lock);
2049
oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2050
left |= oleft & ~(reg.mask << reg.left_shift);
2051
change = left != oleft;
2052
if (reg.stereo) {
2053
if (reg.left_reg != reg.right_reg) {
2054
snd_cmipci_mixer_write(cm, reg.left_reg, left);
2055
oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2056
} else
2057
oright = left;
2058
right |= oright & ~(reg.mask << reg.right_shift);
2059
change |= right != oright;
2060
snd_cmipci_mixer_write(cm, reg.right_reg, right);
2061
} else
2062
snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063
spin_unlock_irq(&cm->reg_lock);
2064
return change;
2065
}
2066
2067
/*
2068
* input route (left,right) -> (left,right)
2069
*/
2070
#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2071
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2072
.info = snd_cmipci_info_input_sw, \
2073
.get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2074
.private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2075
}
2076
2077
static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2078
struct snd_ctl_elem_info *uinfo)
2079
{
2080
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2081
uinfo->count = 4;
2082
uinfo->value.integer.min = 0;
2083
uinfo->value.integer.max = 1;
2084
return 0;
2085
}
2086
2087
static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2088
struct snd_ctl_elem_value *ucontrol)
2089
{
2090
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2091
struct cmipci_sb_reg reg;
2092
int val1, val2;
2093
2094
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2095
spin_lock_irq(&cm->reg_lock);
2096
val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2097
val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2098
spin_unlock_irq(&cm->reg_lock);
2099
ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2100
ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2101
ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2102
ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2103
return 0;
2104
}
2105
2106
static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2107
struct snd_ctl_elem_value *ucontrol)
2108
{
2109
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2110
struct cmipci_sb_reg reg;
2111
int change;
2112
int val1, val2, oval1, oval2;
2113
2114
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2115
spin_lock_irq(&cm->reg_lock);
2116
oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2117
oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2118
val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2119
val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2120
val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2121
val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2122
val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2123
val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2124
change = val1 != oval1 || val2 != oval2;
2125
snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2126
snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2127
spin_unlock_irq(&cm->reg_lock);
2128
return change;
2129
}
2130
2131
/*
2132
* native mixer switches/volumes
2133
*/
2134
2135
#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2136
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2137
.info = snd_cmipci_info_native_mixer, \
2138
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2139
.private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2140
}
2141
2142
#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2143
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2144
.info = snd_cmipci_info_native_mixer, \
2145
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2146
.private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2147
}
2148
2149
#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2150
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2151
.info = snd_cmipci_info_native_mixer, \
2152
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2153
.private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2154
}
2155
2156
#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2157
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2158
.info = snd_cmipci_info_native_mixer, \
2159
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2160
.private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2161
}
2162
2163
static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2164
struct snd_ctl_elem_info *uinfo)
2165
{
2166
struct cmipci_sb_reg reg;
2167
2168
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2169
uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2170
uinfo->count = reg.stereo + 1;
2171
uinfo->value.integer.min = 0;
2172
uinfo->value.integer.max = reg.mask;
2173
return 0;
2174
2175
}
2176
2177
static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2178
struct snd_ctl_elem_value *ucontrol)
2179
{
2180
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2181
struct cmipci_sb_reg reg;
2182
unsigned char oreg, val;
2183
2184
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185
spin_lock_irq(&cm->reg_lock);
2186
oreg = inb(cm->iobase + reg.left_reg);
2187
val = (oreg >> reg.left_shift) & reg.mask;
2188
if (reg.invert)
2189
val = reg.mask - val;
2190
ucontrol->value.integer.value[0] = val;
2191
if (reg.stereo) {
2192
val = (oreg >> reg.right_shift) & reg.mask;
2193
if (reg.invert)
2194
val = reg.mask - val;
2195
ucontrol->value.integer.value[1] = val;
2196
}
2197
spin_unlock_irq(&cm->reg_lock);
2198
return 0;
2199
}
2200
2201
static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2202
struct snd_ctl_elem_value *ucontrol)
2203
{
2204
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2205
struct cmipci_sb_reg reg;
2206
unsigned char oreg, nreg, val;
2207
2208
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2209
spin_lock_irq(&cm->reg_lock);
2210
oreg = inb(cm->iobase + reg.left_reg);
2211
val = ucontrol->value.integer.value[0] & reg.mask;
2212
if (reg.invert)
2213
val = reg.mask - val;
2214
nreg = oreg & ~(reg.mask << reg.left_shift);
2215
nreg |= (val << reg.left_shift);
2216
if (reg.stereo) {
2217
val = ucontrol->value.integer.value[1] & reg.mask;
2218
if (reg.invert)
2219
val = reg.mask - val;
2220
nreg &= ~(reg.mask << reg.right_shift);
2221
nreg |= (val << reg.right_shift);
2222
}
2223
outb(nreg, cm->iobase + reg.left_reg);
2224
spin_unlock_irq(&cm->reg_lock);
2225
return (nreg != oreg);
2226
}
2227
2228
/*
2229
* special case - check mixer sensitivity
2230
*/
2231
static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2232
struct snd_ctl_elem_value *ucontrol)
2233
{
2234
//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235
return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2236
}
2237
2238
static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2239
struct snd_ctl_elem_value *ucontrol)
2240
{
2241
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242
if (cm->mixer_insensitive) {
2243
/* ignored */
2244
return 0;
2245
}
2246
return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2247
}
2248
2249
2250
static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2251
CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2252
CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2253
CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2254
//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2255
{ /* switch with sensitivity */
2256
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2257
.name = "PCM Playback Switch",
2258
.info = snd_cmipci_info_native_mixer,
2259
.get = snd_cmipci_get_native_mixer_sensitive,
2260
.put = snd_cmipci_put_native_mixer_sensitive,
2261
.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2262
},
2263
CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2264
CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2265
CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2266
CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2267
CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2268
CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2269
CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2270
CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2271
CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2272
CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2273
CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2274
CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2275
CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2276
CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2277
CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2278
CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2279
CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2280
CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2281
CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2282
CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2283
CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2284
CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2285
CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2286
};
2287
2288
/*
2289
* other switches
2290
*/
2291
2292
struct cmipci_switch_args {
2293
int reg; /* register index */
2294
unsigned int mask; /* mask bits */
2295
unsigned int mask_on; /* mask bits to turn on */
2296
unsigned int is_byte: 1; /* byte access? */
2297
unsigned int ac3_sensitive: 1; /* access forbidden during
2298
* non-audio operation?
2299
*/
2300
};
2301
2302
#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2303
2304
static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2305
struct snd_ctl_elem_value *ucontrol,
2306
struct cmipci_switch_args *args)
2307
{
2308
unsigned int val;
2309
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2310
2311
spin_lock_irq(&cm->reg_lock);
2312
if (args->ac3_sensitive && cm->mixer_insensitive) {
2313
ucontrol->value.integer.value[0] = 0;
2314
spin_unlock_irq(&cm->reg_lock);
2315
return 0;
2316
}
2317
if (args->is_byte)
2318
val = inb(cm->iobase + args->reg);
2319
else
2320
val = snd_cmipci_read(cm, args->reg);
2321
ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2322
spin_unlock_irq(&cm->reg_lock);
2323
return 0;
2324
}
2325
2326
static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2327
struct snd_ctl_elem_value *ucontrol)
2328
{
2329
struct cmipci_switch_args *args;
2330
args = (struct cmipci_switch_args *)kcontrol->private_value;
2331
if (snd_BUG_ON(!args))
2332
return -EINVAL;
2333
return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2334
}
2335
2336
static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2337
struct snd_ctl_elem_value *ucontrol,
2338
struct cmipci_switch_args *args)
2339
{
2340
unsigned int val;
2341
int change;
2342
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2343
2344
spin_lock_irq(&cm->reg_lock);
2345
if (args->ac3_sensitive && cm->mixer_insensitive) {
2346
/* ignored */
2347
spin_unlock_irq(&cm->reg_lock);
2348
return 0;
2349
}
2350
if (args->is_byte)
2351
val = inb(cm->iobase + args->reg);
2352
else
2353
val = snd_cmipci_read(cm, args->reg);
2354
change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2355
args->mask_on : (args->mask & ~args->mask_on));
2356
if (change) {
2357
val &= ~args->mask;
2358
if (ucontrol->value.integer.value[0])
2359
val |= args->mask_on;
2360
else
2361
val |= (args->mask & ~args->mask_on);
2362
if (args->is_byte)
2363
outb((unsigned char)val, cm->iobase + args->reg);
2364
else
2365
snd_cmipci_write(cm, args->reg, val);
2366
}
2367
spin_unlock_irq(&cm->reg_lock);
2368
return change;
2369
}
2370
2371
static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2372
struct snd_ctl_elem_value *ucontrol)
2373
{
2374
struct cmipci_switch_args *args;
2375
args = (struct cmipci_switch_args *)kcontrol->private_value;
2376
if (snd_BUG_ON(!args))
2377
return -EINVAL;
2378
return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2379
}
2380
2381
#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2382
static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2383
.reg = xreg, \
2384
.mask = xmask, \
2385
.mask_on = xmask_on, \
2386
.is_byte = xis_byte, \
2387
.ac3_sensitive = xac3, \
2388
}
2389
2390
#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2391
DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2392
2393
#if 0 /* these will be controlled in pcm device */
2394
DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2395
DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2396
#endif
2397
DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2398
DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2399
DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2400
DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2401
DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2402
DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2403
DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2404
DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2405
// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2406
DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2407
DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2408
/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2409
DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2410
DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2411
#if CM_CH_PLAY == 1
2412
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2413
#else
2414
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2415
#endif
2416
DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2417
// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2418
// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2419
// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2420
DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2421
2422
#define DEFINE_SWITCH(sname, stype, sarg) \
2423
{ .name = sname, \
2424
.iface = stype, \
2425
.info = snd_cmipci_uswitch_info, \
2426
.get = snd_cmipci_uswitch_get, \
2427
.put = snd_cmipci_uswitch_put, \
2428
.private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2429
}
2430
2431
#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2432
#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2433
2434
2435
/*
2436
* callbacks for spdif output switch
2437
* needs toggle two registers..
2438
*/
2439
static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2440
struct snd_ctl_elem_value *ucontrol)
2441
{
2442
int changed;
2443
changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2444
changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2445
return changed;
2446
}
2447
2448
static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2449
struct snd_ctl_elem_value *ucontrol)
2450
{
2451
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2452
int changed;
2453
changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2454
changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2455
if (changed) {
2456
if (ucontrol->value.integer.value[0]) {
2457
if (chip->spdif_playback_avail)
2458
snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2459
} else {
2460
if (chip->spdif_playback_avail)
2461
snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2462
}
2463
}
2464
chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2465
return changed;
2466
}
2467
2468
2469
static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2470
struct snd_ctl_elem_info *uinfo)
2471
{
2472
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2473
static const char *const texts[3] = {
2474
"Line-In", "Rear Output", "Bass Output"
2475
};
2476
2477
return snd_ctl_enum_info(uinfo, 1,
2478
cm->chip_version >= 39 ? 3 : 2, texts);
2479
}
2480
2481
static inline unsigned int get_line_in_mode(struct cmipci *cm)
2482
{
2483
unsigned int val;
2484
if (cm->chip_version >= 39) {
2485
val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2486
if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2487
return 2;
2488
}
2489
val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2490
if (val & CM_REAR2LIN)
2491
return 1;
2492
return 0;
2493
}
2494
2495
static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2496
struct snd_ctl_elem_value *ucontrol)
2497
{
2498
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2499
2500
spin_lock_irq(&cm->reg_lock);
2501
ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2502
spin_unlock_irq(&cm->reg_lock);
2503
return 0;
2504
}
2505
2506
static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2507
struct snd_ctl_elem_value *ucontrol)
2508
{
2509
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510
int change;
2511
2512
spin_lock_irq(&cm->reg_lock);
2513
if (ucontrol->value.enumerated.item[0] == 2)
2514
change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2515
else
2516
change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2517
if (ucontrol->value.enumerated.item[0] == 1)
2518
change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2519
else
2520
change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2521
spin_unlock_irq(&cm->reg_lock);
2522
return change;
2523
}
2524
2525
static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2526
struct snd_ctl_elem_info *uinfo)
2527
{
2528
static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2529
2530
return snd_ctl_enum_info(uinfo, 1, 2, texts);
2531
}
2532
2533
static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2534
struct snd_ctl_elem_value *ucontrol)
2535
{
2536
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2537
/* same bit as spdi_phase */
2538
spin_lock_irq(&cm->reg_lock);
2539
ucontrol->value.enumerated.item[0] =
2540
(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2541
spin_unlock_irq(&cm->reg_lock);
2542
return 0;
2543
}
2544
2545
static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2546
struct snd_ctl_elem_value *ucontrol)
2547
{
2548
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2549
int change;
2550
2551
spin_lock_irq(&cm->reg_lock);
2552
if (ucontrol->value.enumerated.item[0])
2553
change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2554
else
2555
change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2556
spin_unlock_irq(&cm->reg_lock);
2557
return change;
2558
}
2559
2560
/* both for CM8338/8738 */
2561
static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2562
DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2563
{
2564
.name = "Line-In Mode",
2565
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2566
.info = snd_cmipci_line_in_mode_info,
2567
.get = snd_cmipci_line_in_mode_get,
2568
.put = snd_cmipci_line_in_mode_put,
2569
},
2570
};
2571
2572
/* for non-multichannel chips */
2573
static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2574
DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2575
2576
/* only for CM8738 */
2577
static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2578
#if 0 /* controlled in pcm device */
2579
DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2580
DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2581
DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2582
#endif
2583
// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2584
{ .name = "IEC958 Output Switch",
2585
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2586
.info = snd_cmipci_uswitch_info,
2587
.get = snd_cmipci_spdout_enable_get,
2588
.put = snd_cmipci_spdout_enable_put,
2589
},
2590
DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2591
DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2592
DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2593
// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2594
DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2595
DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2596
};
2597
2598
/* only for model 033/037 */
2599
static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2600
DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2601
DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2602
DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2603
};
2604
2605
/* only for model 039 or later */
2606
static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2607
DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2608
DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2609
{
2610
.name = "Mic-In Mode",
2611
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2612
.info = snd_cmipci_mic_in_mode_info,
2613
.get = snd_cmipci_mic_in_mode_get,
2614
.put = snd_cmipci_mic_in_mode_put,
2615
}
2616
};
2617
2618
/* card control switches */
2619
static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2620
DEFINE_CARD_SWITCH("Modem", modem);
2621
2622
2623
static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2624
{
2625
struct snd_card *card;
2626
const struct snd_kcontrol_new *sw;
2627
struct snd_kcontrol *kctl;
2628
unsigned int idx;
2629
int err;
2630
2631
if (snd_BUG_ON(!cm || !cm->card))
2632
return -EINVAL;
2633
2634
card = cm->card;
2635
2636
strscpy(card->mixername, "CMedia PCI");
2637
2638
spin_lock_irq(&cm->reg_lock);
2639
snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2640
spin_unlock_irq(&cm->reg_lock);
2641
2642
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2643
if (cm->chip_version == 68) { // 8768 has no PCM volume
2644
if (!strcmp(snd_cmipci_mixers[idx].name,
2645
"PCM Playback Volume"))
2646
continue;
2647
}
2648
err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2649
if (err < 0)
2650
return err;
2651
}
2652
2653
/* mixer switches */
2654
sw = snd_cmipci_mixer_switches;
2655
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2656
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2657
if (err < 0)
2658
return err;
2659
}
2660
if (! cm->can_multi_ch) {
2661
err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2662
if (err < 0)
2663
return err;
2664
}
2665
if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2666
cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2667
sw = snd_cmipci_8738_mixer_switches;
2668
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2669
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2670
if (err < 0)
2671
return err;
2672
}
2673
if (cm->can_ac3_hw) {
2674
kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2675
kctl->id.device = pcm_spdif_device;
2676
err = snd_ctl_add(card, kctl);
2677
if (err < 0)
2678
return err;
2679
kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2680
kctl->id.device = pcm_spdif_device;
2681
err = snd_ctl_add(card, kctl);
2682
if (err < 0)
2683
return err;
2684
kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2685
kctl->id.device = pcm_spdif_device;
2686
err = snd_ctl_add(card, kctl);
2687
if (err < 0)
2688
return err;
2689
}
2690
if (cm->chip_version <= 37) {
2691
sw = snd_cmipci_old_mixer_switches;
2692
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2693
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2694
if (err < 0)
2695
return err;
2696
}
2697
}
2698
}
2699
if (cm->chip_version >= 39) {
2700
sw = snd_cmipci_extra_mixer_switches;
2701
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2702
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2703
if (err < 0)
2704
return err;
2705
}
2706
}
2707
2708
/* card switches */
2709
/*
2710
* newer chips don't have the register bits to force modem link
2711
* detection; the bit that was FLINKON now mutes CH1
2712
*/
2713
if (cm->chip_version < 39) {
2714
err = snd_ctl_add(cm->card,
2715
snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2716
if (err < 0)
2717
return err;
2718
}
2719
2720
for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2721
struct snd_kcontrol *ctl;
2722
ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2723
if (ctl)
2724
cm->mixer_res_ctl[idx] = ctl;
2725
}
2726
2727
return 0;
2728
}
2729
2730
2731
/*
2732
* proc interface
2733
*/
2734
2735
static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2736
struct snd_info_buffer *buffer)
2737
{
2738
struct cmipci *cm = entry->private_data;
2739
int i, v;
2740
2741
snd_iprintf(buffer, "%s\n", cm->card->longname);
2742
for (i = 0; i < 0x94; i++) {
2743
if (i == 0x28)
2744
i = 0x90;
2745
v = inb(cm->iobase + i);
2746
if (i % 4 == 0)
2747
snd_iprintf(buffer, "\n%02x:", i);
2748
snd_iprintf(buffer, " %02x", v);
2749
}
2750
snd_iprintf(buffer, "\n");
2751
}
2752
2753
static void snd_cmipci_proc_init(struct cmipci *cm)
2754
{
2755
snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2756
}
2757
2758
static const struct pci_device_id snd_cmipci_ids[] = {
2759
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2760
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2761
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2762
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2763
{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2764
{0,},
2765
};
2766
2767
2768
/*
2769
* check chip version and capabilities
2770
* driver name is modified according to the chip model
2771
*/
2772
static void query_chip(struct cmipci *cm)
2773
{
2774
unsigned int detect;
2775
2776
/* check reg 0Ch, bit 24-31 */
2777
detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2778
if (! detect) {
2779
/* check reg 08h, bit 24-28 */
2780
detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2781
switch (detect) {
2782
case 0:
2783
cm->chip_version = 33;
2784
if (cm->do_soft_ac3)
2785
cm->can_ac3_sw = 1;
2786
else
2787
cm->can_ac3_hw = 1;
2788
break;
2789
case CM_CHIP_037:
2790
cm->chip_version = 37;
2791
cm->can_ac3_hw = 1;
2792
break;
2793
default:
2794
cm->chip_version = 39;
2795
cm->can_ac3_hw = 1;
2796
break;
2797
}
2798
cm->max_channels = 2;
2799
} else {
2800
if (detect & CM_CHIP_039) {
2801
cm->chip_version = 39;
2802
if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2803
cm->max_channels = 6;
2804
else
2805
cm->max_channels = 4;
2806
} else if (detect & CM_CHIP_8768) {
2807
cm->chip_version = 68;
2808
cm->max_channels = 8;
2809
cm->can_96k = 1;
2810
} else {
2811
cm->chip_version = 55;
2812
cm->max_channels = 6;
2813
cm->can_96k = 1;
2814
}
2815
cm->can_ac3_hw = 1;
2816
cm->can_multi_ch = 1;
2817
}
2818
}
2819
2820
#ifdef SUPPORT_JOYSTICK
2821
static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2822
{
2823
static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2824
struct gameport *gp;
2825
struct resource *r = NULL;
2826
int i, io_port = 0;
2827
2828
if (joystick_port[dev] == 0)
2829
return -ENODEV;
2830
2831
if (joystick_port[dev] == 1) { /* auto-detect */
2832
for (i = 0; ports[i]; i++) {
2833
io_port = ports[i];
2834
r = devm_request_region(&cm->pci->dev, io_port, 1,
2835
"CMIPCI gameport");
2836
if (r)
2837
break;
2838
}
2839
} else {
2840
io_port = joystick_port[dev];
2841
r = devm_request_region(&cm->pci->dev, io_port, 1,
2842
"CMIPCI gameport");
2843
}
2844
2845
if (!r) {
2846
dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2847
return -EBUSY;
2848
}
2849
2850
cm->gameport = gp = gameport_allocate_port();
2851
if (!gp) {
2852
dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2853
return -ENOMEM;
2854
}
2855
gameport_set_name(gp, "C-Media Gameport");
2856
gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2857
gameport_set_dev_parent(gp, &cm->pci->dev);
2858
gp->io = io_port;
2859
2860
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2861
2862
gameport_register_port(cm->gameport);
2863
2864
return 0;
2865
}
2866
2867
static void snd_cmipci_free_gameport(struct cmipci *cm)
2868
{
2869
if (cm->gameport) {
2870
gameport_unregister_port(cm->gameport);
2871
cm->gameport = NULL;
2872
2873
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2874
}
2875
}
2876
#else
2877
static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2878
static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2879
#endif
2880
2881
static void snd_cmipci_free(struct snd_card *card)
2882
{
2883
struct cmipci *cm = card->private_data;
2884
2885
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2886
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2887
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2888
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2889
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2890
snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2891
snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2892
2893
/* reset mixer */
2894
snd_cmipci_mixer_write(cm, 0, 0);
2895
2896
snd_cmipci_free_gameport(cm);
2897
}
2898
2899
static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2900
{
2901
long iosynth;
2902
unsigned int val;
2903
struct snd_opl3 *opl3;
2904
int err;
2905
2906
if (!fm_port)
2907
goto disable_fm;
2908
2909
if (cm->chip_version >= 39) {
2910
/* first try FM regs in PCI port range */
2911
iosynth = cm->iobase + CM_REG_FM_PCI;
2912
err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2913
OPL3_HW_OPL3, 1, &opl3);
2914
} else {
2915
err = -EIO;
2916
}
2917
if (err < 0) {
2918
/* then try legacy ports */
2919
val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2920
iosynth = fm_port;
2921
switch (iosynth) {
2922
case 0x3E8: val |= CM_FMSEL_3E8; break;
2923
case 0x3E0: val |= CM_FMSEL_3E0; break;
2924
case 0x3C8: val |= CM_FMSEL_3C8; break;
2925
case 0x388: val |= CM_FMSEL_388; break;
2926
default:
2927
goto disable_fm;
2928
}
2929
snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2930
/* enable FM */
2931
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2932
2933
if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934
OPL3_HW_OPL3, 0, &opl3) < 0) {
2935
dev_err(cm->card->dev,
2936
"no OPL device at %#lx, skipping...\n",
2937
iosynth);
2938
goto disable_fm;
2939
}
2940
}
2941
err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2942
if (err < 0) {
2943
dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2944
return err;
2945
}
2946
return 0;
2947
2948
disable_fm:
2949
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2950
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2951
return 0;
2952
}
2953
2954
static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2955
int dev)
2956
{
2957
struct cmipci *cm = card->private_data;
2958
int err;
2959
unsigned int val;
2960
long iomidi = 0;
2961
int integrated_midi = 0;
2962
char modelstr[16];
2963
int pcm_index, pcm_spdif_index;
2964
static const struct pci_device_id intel_82437vx[] = {
2965
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2966
{ },
2967
};
2968
2969
err = pcim_enable_device(pci);
2970
if (err < 0)
2971
return err;
2972
2973
spin_lock_init(&cm->reg_lock);
2974
mutex_init(&cm->open_mutex);
2975
cm->device = pci->device;
2976
cm->card = card;
2977
cm->pci = pci;
2978
cm->irq = -1;
2979
cm->channel[0].ch = 0;
2980
cm->channel[1].ch = 1;
2981
cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2982
2983
err = pcim_request_all_regions(pci, card->driver);
2984
if (err < 0)
2985
return err;
2986
cm->iobase = pci_resource_start(pci, 0);
2987
2988
if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
2989
IRQF_SHARED, KBUILD_MODNAME, cm)) {
2990
dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
2991
return -EBUSY;
2992
}
2993
cm->irq = pci->irq;
2994
card->sync_irq = cm->irq;
2995
card->private_free = snd_cmipci_free;
2996
2997
pci_set_master(cm->pci);
2998
2999
/*
3000
* check chip version, max channels and capabilities
3001
*/
3002
3003
cm->chip_version = 0;
3004
cm->max_channels = 2;
3005
cm->do_soft_ac3 = soft_ac3[dev];
3006
3007
if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3008
pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3009
query_chip(cm);
3010
/* added -MCx suffix for chip supporting multi-channels */
3011
if (cm->can_multi_ch) {
3012
int l = strlen(cm->card->driver);
3013
scnprintf(cm->card->driver + l, sizeof(cm->card->driver) - l,
3014
"-MC%d", cm->max_channels);
3015
} else if (cm->can_ac3_sw)
3016
strlcat(cm->card->driver, "-SWIEC", sizeof(cm->card->driver));
3017
3018
cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3019
cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3020
3021
#if CM_CH_PLAY == 1
3022
cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3023
#else
3024
cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3025
#endif
3026
3027
/* initialize codec registers */
3028
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3029
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3030
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3031
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3032
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3033
snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3034
snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3035
3036
snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3037
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3038
#if CM_CH_PLAY == 1
3039
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3040
#else
3041
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3042
#endif
3043
if (cm->chip_version) {
3044
snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3045
snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3046
}
3047
/* Set Bus Master Request */
3048
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3049
3050
/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3051
switch (pci->device) {
3052
case PCI_DEVICE_ID_CMEDIA_CM8738:
3053
case PCI_DEVICE_ID_CMEDIA_CM8738B:
3054
if (!pci_dev_present(intel_82437vx))
3055
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3056
break;
3057
default:
3058
break;
3059
}
3060
3061
if (cm->chip_version < 68) {
3062
val = pci->device < 0x110 ? 8338 : 8738;
3063
} else {
3064
switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3065
case 0:
3066
val = 8769;
3067
break;
3068
case 2:
3069
val = 8762;
3070
break;
3071
default:
3072
switch ((pci->subsystem_vendor << 16) |
3073
pci->subsystem_device) {
3074
case 0x13f69761:
3075
case 0x584d3741:
3076
case 0x584d3751:
3077
case 0x584d3761:
3078
case 0x584d3771:
3079
case 0x72848384:
3080
val = 8770;
3081
break;
3082
default:
3083
val = 8768;
3084
break;
3085
}
3086
}
3087
}
3088
sprintf(card->shortname, "C-Media CMI%u", val);
3089
if (cm->chip_version < 68)
3090
scnprintf(modelstr, sizeof(modelstr),
3091
" (model %d)", cm->chip_version);
3092
else
3093
modelstr[0] = '\0';
3094
scnprintf(card->longname, sizeof(card->longname),
3095
"%s%s at %#lx, irq %i",
3096
card->shortname, modelstr, cm->iobase, cm->irq);
3097
3098
if (cm->chip_version >= 39) {
3099
val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3100
if (val != 0x00 && val != 0xff) {
3101
if (mpu_port[dev])
3102
iomidi = cm->iobase + CM_REG_MPU_PCI;
3103
integrated_midi = 1;
3104
}
3105
}
3106
if (!integrated_midi) {
3107
val = 0;
3108
iomidi = mpu_port[dev];
3109
switch (iomidi) {
3110
case 0x320: val = CM_VMPU_320; break;
3111
case 0x310: val = CM_VMPU_310; break;
3112
case 0x300: val = CM_VMPU_300; break;
3113
case 0x330: val = CM_VMPU_330; break;
3114
default:
3115
iomidi = 0; break;
3116
}
3117
if (iomidi > 0) {
3118
snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3119
/* enable UART */
3120
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3121
if (inb(iomidi + 1) == 0xff) {
3122
dev_err(cm->card->dev,
3123
"cannot enable MPU-401 port at %#lx\n",
3124
iomidi);
3125
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3126
CM_UART_EN);
3127
iomidi = 0;
3128
}
3129
}
3130
}
3131
3132
if (cm->chip_version < 68) {
3133
err = snd_cmipci_create_fm(cm, fm_port[dev]);
3134
if (err < 0)
3135
return err;
3136
}
3137
3138
/* reset mixer */
3139
snd_cmipci_mixer_write(cm, 0, 0);
3140
3141
snd_cmipci_proc_init(cm);
3142
3143
/* create pcm devices */
3144
pcm_index = pcm_spdif_index = 0;
3145
err = snd_cmipci_pcm_new(cm, pcm_index);
3146
if (err < 0)
3147
return err;
3148
pcm_index++;
3149
err = snd_cmipci_pcm2_new(cm, pcm_index);
3150
if (err < 0)
3151
return err;
3152
pcm_index++;
3153
if (cm->can_ac3_hw || cm->can_ac3_sw) {
3154
pcm_spdif_index = pcm_index;
3155
err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3156
if (err < 0)
3157
return err;
3158
}
3159
3160
/* create mixer interface & switches */
3161
err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3162
if (err < 0)
3163
return err;
3164
3165
if (iomidi > 0) {
3166
err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3167
iomidi,
3168
(integrated_midi ?
3169
MPU401_INFO_INTEGRATED : 0) |
3170
MPU401_INFO_IRQ_HOOK,
3171
-1, &cm->rmidi);
3172
if (err < 0)
3173
dev_err(cm->card->dev,
3174
"no UART401 device at 0x%lx\n", iomidi);
3175
}
3176
3177
#ifdef USE_VAR48KRATE
3178
for (val = 0; val < ARRAY_SIZE(rates); val++)
3179
snd_cmipci_set_pll(cm, rates[val], val);
3180
3181
/*
3182
* (Re-)Enable external switch spdo_48k
3183
*/
3184
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3185
#endif /* USE_VAR48KRATE */
3186
3187
if (snd_cmipci_create_gameport(cm, dev) < 0)
3188
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3189
3190
return 0;
3191
}
3192
3193
/*
3194
*/
3195
3196
MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3197
3198
static int snd_cmipci_probe(struct pci_dev *pci,
3199
const struct pci_device_id *pci_id)
3200
{
3201
static int dev;
3202
struct snd_card *card;
3203
int err;
3204
3205
if (dev >= SNDRV_CARDS)
3206
return -ENODEV;
3207
if (! enable[dev]) {
3208
dev++;
3209
return -ENOENT;
3210
}
3211
3212
err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3213
sizeof(struct cmipci), &card);
3214
if (err < 0)
3215
return err;
3216
3217
switch (pci->device) {
3218
case PCI_DEVICE_ID_CMEDIA_CM8738:
3219
case PCI_DEVICE_ID_CMEDIA_CM8738B:
3220
strscpy(card->driver, "CMI8738");
3221
break;
3222
case PCI_DEVICE_ID_CMEDIA_CM8338A:
3223
case PCI_DEVICE_ID_CMEDIA_CM8338B:
3224
strscpy(card->driver, "CMI8338");
3225
break;
3226
default:
3227
strscpy(card->driver, "CMIPCI");
3228
break;
3229
}
3230
3231
err = snd_cmipci_create(card, pci, dev);
3232
if (err < 0)
3233
goto error;
3234
3235
err = snd_card_register(card);
3236
if (err < 0)
3237
goto error;
3238
3239
pci_set_drvdata(pci, card);
3240
dev++;
3241
return 0;
3242
3243
error:
3244
snd_card_free(card);
3245
return err;
3246
}
3247
3248
/*
3249
* power management
3250
*/
3251
static const unsigned char saved_regs[] = {
3252
CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3253
CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3254
CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3255
CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3256
CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3257
};
3258
3259
static const unsigned char saved_mixers[] = {
3260
SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3261
SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3262
SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3263
SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3264
SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3265
SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3266
CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3267
SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3268
};
3269
3270
static int snd_cmipci_suspend(struct device *dev)
3271
{
3272
struct snd_card *card = dev_get_drvdata(dev);
3273
struct cmipci *cm = card->private_data;
3274
int i;
3275
3276
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3277
3278
/* save registers */
3279
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3280
cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3281
for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3282
cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3283
3284
/* disable ints */
3285
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3286
return 0;
3287
}
3288
3289
static int snd_cmipci_resume(struct device *dev)
3290
{
3291
struct snd_card *card = dev_get_drvdata(dev);
3292
struct cmipci *cm = card->private_data;
3293
int i;
3294
3295
/* reset / initialize to a sane state */
3296
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3297
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3298
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3299
snd_cmipci_mixer_write(cm, 0, 0);
3300
3301
/* restore registers */
3302
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3303
snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3304
for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3305
snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3306
3307
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3308
return 0;
3309
}
3310
3311
static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3312
3313
static struct pci_driver cmipci_driver = {
3314
.name = KBUILD_MODNAME,
3315
.id_table = snd_cmipci_ids,
3316
.probe = snd_cmipci_probe,
3317
.driver = {
3318
.pm = &snd_cmipci_pm,
3319
},
3320
};
3321
3322
module_pci_driver(cmipci_driver);
3323
3324