Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/ctxfi/ctvmem.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
4
*
5
* @File ctvmem.c
6
*
7
* @Brief
8
* This file contains the implementation of virtual memory management object
9
* for card device.
10
*
11
* @Author Liu Chun
12
* @Date Apr 1 2008
13
*/
14
15
#include "ctvmem.h"
16
#include "ctatc.h"
17
#include <linux/slab.h>
18
#include <linux/mm.h>
19
#include <linux/io.h>
20
#include <sound/pcm.h>
21
22
#define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
23
#define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
24
25
/* *
26
* Find or create vm block based on requested @size.
27
* @size must be page aligned.
28
* */
29
static struct ct_vm_block *
30
get_vm_block(struct ct_vm *vm, unsigned int size, struct ct_atc *atc)
31
{
32
struct ct_vm_block *block = NULL, *entry;
33
struct list_head *pos;
34
35
size = CT_PAGE_ALIGN(size);
36
if (size > vm->size) {
37
dev_err(atc->card->dev,
38
"Fail! No sufficient device virtual memory space available!\n");
39
return NULL;
40
}
41
42
mutex_lock(&vm->lock);
43
list_for_each(pos, &vm->unused) {
44
entry = list_entry(pos, struct ct_vm_block, list);
45
if (entry->size >= size)
46
break; /* found a block that is big enough */
47
}
48
if (pos == &vm->unused)
49
goto out;
50
51
if (entry->size == size) {
52
/* Move the vm node from unused list to used list directly */
53
list_move(&entry->list, &vm->used);
54
vm->size -= size;
55
block = entry;
56
goto out;
57
}
58
59
block = kzalloc(sizeof(*block), GFP_KERNEL);
60
if (!block)
61
goto out;
62
63
block->addr = entry->addr;
64
block->size = size;
65
list_add(&block->list, &vm->used);
66
entry->addr += size;
67
entry->size -= size;
68
vm->size -= size;
69
70
out:
71
mutex_unlock(&vm->lock);
72
return block;
73
}
74
75
static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
76
{
77
struct ct_vm_block *entry, *pre_ent;
78
struct list_head *pos, *pre;
79
80
block->size = CT_PAGE_ALIGN(block->size);
81
82
mutex_lock(&vm->lock);
83
list_del(&block->list);
84
vm->size += block->size;
85
86
list_for_each(pos, &vm->unused) {
87
entry = list_entry(pos, struct ct_vm_block, list);
88
if (entry->addr >= (block->addr + block->size))
89
break; /* found a position */
90
}
91
if (pos == &vm->unused) {
92
list_add_tail(&block->list, &vm->unused);
93
entry = block;
94
} else {
95
if ((block->addr + block->size) == entry->addr) {
96
entry->addr = block->addr;
97
entry->size += block->size;
98
kfree(block);
99
} else {
100
__list_add(&block->list, pos->prev, pos);
101
entry = block;
102
}
103
}
104
105
pos = &entry->list;
106
pre = pos->prev;
107
while (pre != &vm->unused) {
108
entry = list_entry(pos, struct ct_vm_block, list);
109
pre_ent = list_entry(pre, struct ct_vm_block, list);
110
if ((pre_ent->addr + pre_ent->size) > entry->addr)
111
break;
112
113
pre_ent->size += entry->size;
114
list_del(pos);
115
kfree(entry);
116
pos = pre;
117
pre = pos->prev;
118
}
119
mutex_unlock(&vm->lock);
120
}
121
122
/* Map host addr (kmalloced/vmalloced) to device logical addr. */
123
static struct ct_vm_block *
124
ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
125
{
126
struct ct_vm_block *block;
127
unsigned int pte_start;
128
unsigned i, pages;
129
unsigned long *ptp;
130
struct ct_atc *atc = snd_pcm_substream_chip(substream);
131
132
block = get_vm_block(vm, size, atc);
133
if (block == NULL) {
134
dev_err(atc->card->dev,
135
"No virtual memory block that is big enough to allocate!\n");
136
return NULL;
137
}
138
139
ptp = (unsigned long *)vm->ptp[0].area;
140
pte_start = (block->addr >> CT_PAGE_SHIFT);
141
pages = block->size >> CT_PAGE_SHIFT;
142
for (i = 0; i < pages; i++) {
143
unsigned long addr;
144
addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
145
ptp[pte_start + i] = addr;
146
}
147
148
block->size = size;
149
return block;
150
}
151
152
static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
153
{
154
/* do unmapping */
155
put_vm_block(vm, block);
156
}
157
158
/* *
159
* return the host physical addr of the @index-th device
160
* page table page on success, or ~0UL on failure.
161
* The first returned ~0UL indicates the termination.
162
* */
163
static dma_addr_t
164
ct_get_ptp_phys(struct ct_vm *vm, int index)
165
{
166
return (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
167
}
168
169
int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
170
{
171
struct ct_vm *vm;
172
struct ct_vm_block *block;
173
int i, err = 0;
174
175
*rvm = NULL;
176
177
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
178
if (!vm)
179
return -ENOMEM;
180
181
mutex_init(&vm->lock);
182
183
/* Allocate page table pages */
184
for (i = 0; i < CT_PTP_NUM; i++) {
185
err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
186
&pci->dev,
187
PAGE_SIZE, &vm->ptp[i]);
188
if (err < 0)
189
break;
190
}
191
if (err < 0) {
192
/* no page table pages are allocated */
193
ct_vm_destroy(vm);
194
return -ENOMEM;
195
}
196
vm->size = CT_ADDRS_PER_PAGE * i;
197
vm->map = ct_vm_map;
198
vm->unmap = ct_vm_unmap;
199
vm->get_ptp_phys = ct_get_ptp_phys;
200
INIT_LIST_HEAD(&vm->unused);
201
INIT_LIST_HEAD(&vm->used);
202
block = kzalloc(sizeof(*block), GFP_KERNEL);
203
if (NULL != block) {
204
block->addr = 0;
205
block->size = vm->size;
206
list_add(&block->list, &vm->unused);
207
}
208
209
*rvm = vm;
210
return 0;
211
}
212
213
/* The caller must ensure no mapping pages are being used
214
* by hardware before calling this function */
215
void ct_vm_destroy(struct ct_vm *vm)
216
{
217
int i;
218
struct list_head *pos;
219
struct ct_vm_block *entry;
220
221
/* free used and unused list nodes */
222
while (!list_empty(&vm->used)) {
223
pos = vm->used.next;
224
list_del(pos);
225
entry = list_entry(pos, struct ct_vm_block, list);
226
kfree(entry);
227
}
228
while (!list_empty(&vm->unused)) {
229
pos = vm->unused.next;
230
list_del(pos);
231
entry = list_entry(pos, struct ct_vm_block, list);
232
kfree(entry);
233
}
234
235
/* free allocated page table pages */
236
for (i = 0; i < CT_PTP_NUM; i++)
237
snd_dma_free_pages(&vm->ptp[i]);
238
239
vm->size = 0;
240
241
kfree(vm);
242
}
243
244