Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/echoaudio/midi.c
26442 views
1
/****************************************************************************
2
3
Copyright Echo Digital Audio Corporation (c) 1998 - 2004
4
All rights reserved
5
www.echoaudio.com
6
7
This file is part of Echo Digital Audio's generic driver library.
8
9
Echo Digital Audio's generic driver library is free software;
10
you can redistribute it and/or modify it under the terms of
11
the GNU General Public License as published by the Free Software
12
Foundation.
13
14
This program is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
GNU General Public License for more details.
18
19
You should have received a copy of the GNU General Public License
20
along with this program; if not, write to the Free Software
21
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22
MA 02111-1307, USA.
23
24
*************************************************************************
25
26
Translation from C++ and adaptation for use in ALSA-Driver
27
were made by Giuliano Pochini <[email protected]>
28
29
****************************************************************************/
30
31
32
/******************************************************************************
33
MIDI lowlevel code
34
******************************************************************************/
35
36
/* Start and stop Midi input */
37
static int enable_midi_input(struct echoaudio *chip, char enable)
38
{
39
dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable);
40
41
if (wait_handshake(chip))
42
return -EIO;
43
44
if (enable) {
45
chip->mtc_state = MIDI_IN_STATE_NORMAL;
46
chip->comm_page->flags |=
47
cpu_to_le32(DSP_FLAG_MIDI_INPUT);
48
} else
49
chip->comm_page->flags &=
50
~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
51
52
clear_handshake(chip);
53
return send_vector(chip, DSP_VC_UPDATE_FLAGS);
54
}
55
56
57
58
/* Send a buffer full of MIDI data to the DSP
59
Returns how many actually written or < 0 on error */
60
static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
61
{
62
if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
63
return -EINVAL;
64
65
if (wait_handshake(chip))
66
return -EIO;
67
68
/* HF4 indicates that it is safe to write MIDI output data */
69
if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
70
return 0;
71
72
chip->comm_page->midi_output[0] = bytes;
73
memcpy(&chip->comm_page->midi_output[1], data, bytes);
74
chip->comm_page->midi_out_free_count = 0;
75
clear_handshake(chip);
76
send_vector(chip, DSP_VC_MIDI_WRITE);
77
dev_dbg(chip->card->dev, "write_midi: %d\n", bytes);
78
return bytes;
79
}
80
81
82
83
/* Run the state machine for MIDI input data
84
MIDI time code sync isn't supported by this code right now, but you still need
85
this state machine to parse the incoming MIDI data stream. Every time the DSP
86
sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
87
stream. The DSP sample position is represented as a 32 bit unsigned value,
88
with the high 16 bits first, followed by the low 16 bits. Since these aren't
89
real MIDI bytes, the following logic is needed to skip them. */
90
static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
91
{
92
switch (chip->mtc_state) {
93
case MIDI_IN_STATE_NORMAL:
94
if (midi_byte == 0xF1)
95
chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
96
break;
97
case MIDI_IN_STATE_TS_HIGH:
98
chip->mtc_state = MIDI_IN_STATE_TS_LOW;
99
return MIDI_IN_SKIP_DATA;
100
break;
101
case MIDI_IN_STATE_TS_LOW:
102
chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103
return MIDI_IN_SKIP_DATA;
104
break;
105
case MIDI_IN_STATE_F1_DATA:
106
chip->mtc_state = MIDI_IN_STATE_NORMAL;
107
break;
108
}
109
return 0;
110
}
111
112
113
114
/* This function is called from the IRQ handler and it reads the midi data
115
from the DSP's buffer. It returns the number of bytes received. */
116
static int midi_service_irq(struct echoaudio *chip)
117
{
118
short int count, midi_byte, i, received;
119
120
/* The count is at index 0, followed by actual data */
121
count = le16_to_cpu(chip->comm_page->midi_input[0]);
122
123
if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124
return 0;
125
126
/* Get the MIDI data from the comm page */
127
received = 0;
128
for (i = 1; i <= count; i++) {
129
/* Get the MIDI byte */
130
midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
131
132
/* Parse the incoming MIDI stream. The incoming MIDI data
133
consists of MIDI bytes and timestamps for the MIDI time code
134
0xF1 bytes. mtc_process_data() is a little state machine that
135
parses the stream. If you get MIDI_IN_SKIP_DATA back, then
136
this is a timestamp byte, not a MIDI byte, so don't store it
137
in the MIDI input buffer. */
138
if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
139
continue;
140
141
chip->midi_buffer[received++] = (u8)midi_byte;
142
}
143
144
return received;
145
}
146
147
148
149
150
/******************************************************************************
151
MIDI interface
152
******************************************************************************/
153
154
static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
155
{
156
struct echoaudio *chip = substream->rmidi->private_data;
157
158
chip->midi_in = substream;
159
return 0;
160
}
161
162
163
164
static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
165
int up)
166
{
167
struct echoaudio *chip = substream->rmidi->private_data;
168
169
if (up != chip->midi_input_enabled) {
170
spin_lock_irq(&chip->lock);
171
enable_midi_input(chip, up);
172
spin_unlock_irq(&chip->lock);
173
chip->midi_input_enabled = up;
174
}
175
}
176
177
178
179
static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
180
{
181
struct echoaudio *chip = substream->rmidi->private_data;
182
183
chip->midi_in = NULL;
184
return 0;
185
}
186
187
188
189
static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
190
{
191
struct echoaudio *chip = substream->rmidi->private_data;
192
193
chip->tinuse = 0;
194
chip->midi_full = 0;
195
chip->midi_out = substream;
196
return 0;
197
}
198
199
200
201
static void snd_echo_midi_output_write(struct timer_list *t)
202
{
203
struct echoaudio *chip = timer_container_of(chip, t, timer);
204
unsigned long flags;
205
int bytes, sent, time;
206
unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
207
208
/* No interrupts are involved: we have to check at regular intervals
209
if the card's output buffer has room for new data. */
210
sent = 0;
211
spin_lock_irqsave(&chip->lock, flags);
212
chip->midi_full = 0;
213
if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
214
bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
215
MIDI_OUT_BUFFER_SIZE - 1);
216
dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes);
217
sent = write_midi(chip, buf, bytes);
218
if (sent < 0) {
219
dev_err(chip->card->dev,
220
"write_midi() error %d\n", sent);
221
/* retry later */
222
sent = 9000;
223
chip->midi_full = 1;
224
} else if (sent > 0) {
225
dev_dbg(chip->card->dev, "%d bytes sent\n", sent);
226
snd_rawmidi_transmit_ack(chip->midi_out, sent);
227
} else {
228
/* Buffer is full. DSP's internal buffer is 64 (128 ?)
229
bytes long. Let's wait until half of them are sent */
230
dev_dbg(chip->card->dev, "Full\n");
231
sent = 32;
232
chip->midi_full = 1;
233
}
234
}
235
236
/* We restart the timer only if there is some data left to send */
237
if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
238
/* The timer will expire slightly after the data has been
239
sent */
240
time = (sent << 3) / 25 + 1; /* 8/25=0.32ms to send a byte */
241
mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
242
dev_dbg(chip->card->dev,
243
"Timer armed(%d)\n", ((time * HZ + 999) / 1000));
244
}
245
spin_unlock_irqrestore(&chip->lock, flags);
246
}
247
248
249
250
static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
251
int up)
252
{
253
struct echoaudio *chip = substream->rmidi->private_data;
254
255
dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up);
256
spin_lock_irq(&chip->lock);
257
if (up) {
258
if (!chip->tinuse) {
259
timer_setup(&chip->timer, snd_echo_midi_output_write,
260
0);
261
chip->tinuse = 1;
262
}
263
} else {
264
if (chip->tinuse) {
265
chip->tinuse = 0;
266
spin_unlock_irq(&chip->lock);
267
timer_delete_sync(&chip->timer);
268
dev_dbg(chip->card->dev, "Timer removed\n");
269
return;
270
}
271
}
272
spin_unlock_irq(&chip->lock);
273
274
if (up && !chip->midi_full)
275
snd_echo_midi_output_write(&chip->timer);
276
}
277
278
279
280
static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
281
{
282
struct echoaudio *chip = substream->rmidi->private_data;
283
284
chip->midi_out = NULL;
285
return 0;
286
}
287
288
289
290
static const struct snd_rawmidi_ops snd_echo_midi_input = {
291
.open = snd_echo_midi_input_open,
292
.close = snd_echo_midi_input_close,
293
.trigger = snd_echo_midi_input_trigger,
294
};
295
296
static const struct snd_rawmidi_ops snd_echo_midi_output = {
297
.open = snd_echo_midi_output_open,
298
.close = snd_echo_midi_output_close,
299
.trigger = snd_echo_midi_output_trigger,
300
};
301
302
303
304
/* <--snd_echo_probe() */
305
static int snd_echo_midi_create(struct snd_card *card,
306
struct echoaudio *chip)
307
{
308
int err;
309
310
err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi);
311
if (err < 0)
312
return err;
313
314
strscpy(chip->rmidi->name, card->shortname);
315
chip->rmidi->private_data = chip;
316
317
snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
318
&snd_echo_midi_input);
319
snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
320
&snd_echo_midi_output);
321
322
chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
323
SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
324
return 0;
325
}
326
327