Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/emu10k1/io.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (c) by Jaroslav Kysela <[email protected]>
4
* Lee Revell <[email protected]>
5
* James Courtier-Dutton <[email protected]>
6
* Oswald Buddenhagen <[email protected]>
7
* Creative Labs, Inc.
8
*
9
* Routines for control of EMU10K1 chips
10
*/
11
12
#include <linux/time.h>
13
#include <sound/core.h>
14
#include <sound/emu10k1.h>
15
#include <linux/delay.h>
16
#include <linux/export.h>
17
#include "p17v.h"
18
19
static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
20
{
21
if (snd_BUG_ON(!emu))
22
return false;
23
if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
24
: (0xffff0000 & ~PTR_ADDRESS_MASK))))
25
return false;
26
if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
27
return false;
28
return true;
29
}
30
31
unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
32
{
33
unsigned long flags;
34
unsigned int regptr, val;
35
unsigned int mask;
36
37
regptr = (reg << 16) | chn;
38
if (!check_ptr_reg(emu, regptr))
39
return 0;
40
41
spin_lock_irqsave(&emu->emu_lock, flags);
42
outl(regptr, emu->port + PTR);
43
val = inl(emu->port + DATA);
44
spin_unlock_irqrestore(&emu->emu_lock, flags);
45
46
if (reg & 0xff000000) {
47
unsigned char size, offset;
48
49
size = (reg >> 24) & 0x3f;
50
offset = (reg >> 16) & 0x1f;
51
mask = (1 << size) - 1;
52
53
return (val >> offset) & mask;
54
} else {
55
return val;
56
}
57
}
58
59
EXPORT_SYMBOL(snd_emu10k1_ptr_read);
60
61
void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
62
{
63
unsigned int regptr;
64
unsigned long flags;
65
unsigned int mask;
66
67
regptr = (reg << 16) | chn;
68
if (!check_ptr_reg(emu, regptr))
69
return;
70
71
if (reg & 0xff000000) {
72
unsigned char size, offset;
73
74
size = (reg >> 24) & 0x3f;
75
offset = (reg >> 16) & 0x1f;
76
mask = (1 << size) - 1;
77
if (snd_BUG_ON(data & ~mask))
78
return;
79
mask <<= offset;
80
data <<= offset;
81
82
spin_lock_irqsave(&emu->emu_lock, flags);
83
outl(regptr, emu->port + PTR);
84
data |= inl(emu->port + DATA) & ~mask;
85
} else {
86
spin_lock_irqsave(&emu->emu_lock, flags);
87
outl(regptr, emu->port + PTR);
88
}
89
outl(data, emu->port + DATA);
90
spin_unlock_irqrestore(&emu->emu_lock, flags);
91
}
92
93
EXPORT_SYMBOL(snd_emu10k1_ptr_write);
94
95
void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
96
{
97
va_list va;
98
u32 addr_mask;
99
unsigned long flags;
100
101
if (snd_BUG_ON(!emu))
102
return;
103
if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
104
return;
105
addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
106
107
va_start(va, chn);
108
spin_lock_irqsave(&emu->emu_lock, flags);
109
for (;;) {
110
u32 data;
111
u32 reg = va_arg(va, u32);
112
if (reg == REGLIST_END)
113
break;
114
data = va_arg(va, u32);
115
if (snd_BUG_ON(reg & addr_mask)) // Only raw registers supported here
116
continue;
117
outl((reg << 16) | chn, emu->port + PTR);
118
outl(data, emu->port + DATA);
119
}
120
spin_unlock_irqrestore(&emu->emu_lock, flags);
121
va_end(va);
122
}
123
124
EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
125
126
unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
127
unsigned int reg,
128
unsigned int chn)
129
{
130
unsigned long flags;
131
unsigned int regptr, val;
132
133
regptr = (reg << 16) | chn;
134
135
spin_lock_irqsave(&emu->emu_lock, flags);
136
outl(regptr, emu->port + PTR2);
137
val = inl(emu->port + DATA2);
138
spin_unlock_irqrestore(&emu->emu_lock, flags);
139
return val;
140
}
141
142
void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
143
unsigned int reg,
144
unsigned int chn,
145
unsigned int data)
146
{
147
unsigned int regptr;
148
unsigned long flags;
149
150
regptr = (reg << 16) | chn;
151
152
spin_lock_irqsave(&emu->emu_lock, flags);
153
outl(regptr, emu->port + PTR2);
154
outl(data, emu->port + DATA2);
155
spin_unlock_irqrestore(&emu->emu_lock, flags);
156
}
157
158
int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
159
unsigned int data)
160
{
161
unsigned int reset, set;
162
unsigned int reg, tmp;
163
int n, result;
164
int err = 0;
165
166
/* This function is not re-entrant, so protect against it. */
167
spin_lock(&emu->spi_lock);
168
if (emu->card_capabilities->ca0108_chip)
169
reg = P17V_SPI;
170
else {
171
/* For other chip types the SPI register
172
* is currently unknown. */
173
err = 1;
174
goto spi_write_exit;
175
}
176
if (data > 0xffff) {
177
/* Only 16bit values allowed */
178
err = 1;
179
goto spi_write_exit;
180
}
181
182
tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
183
reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
184
set = reset | 0x10000; /* Set xxx1xxxx */
185
snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
186
tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
187
snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
188
result = 1;
189
/* Wait for status bit to return to 0 */
190
for (n = 0; n < 100; n++) {
191
udelay(10);
192
tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
193
if (!(tmp & 0x10000)) {
194
result = 0;
195
break;
196
}
197
}
198
if (result) {
199
/* Timed out */
200
err = 1;
201
goto spi_write_exit;
202
}
203
snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
204
tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
205
err = 0;
206
spi_write_exit:
207
spin_unlock(&emu->spi_lock);
208
return err;
209
}
210
211
/* The ADC does not support i2c read, so only write is implemented */
212
int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
213
u32 reg,
214
u32 value)
215
{
216
u32 tmp;
217
int timeout = 0;
218
int status;
219
int retry;
220
int err = 0;
221
222
if ((reg > 0x7f) || (value > 0x1ff)) {
223
dev_err(emu->card->dev, "i2c_write: invalid values.\n");
224
return -EINVAL;
225
}
226
227
/* This function is not re-entrant, so protect against it. */
228
spin_lock(&emu->i2c_lock);
229
230
tmp = reg << 25 | value << 16;
231
232
/* This controls the I2C connected to the WM8775 ADC Codec */
233
snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
234
tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
235
236
for (retry = 0; retry < 10; retry++) {
237
/* Send the data to i2c */
238
tmp = 0;
239
tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
240
snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
241
242
/* Wait till the transaction ends */
243
while (1) {
244
mdelay(1);
245
status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
246
timeout++;
247
if ((status & I2C_A_ADC_START) == 0)
248
break;
249
250
if (timeout > 1000) {
251
dev_warn(emu->card->dev,
252
"emu10k1:I2C:timeout status=0x%x\n",
253
status);
254
break;
255
}
256
}
257
//Read back and see if the transaction is successful
258
if ((status & I2C_A_ADC_ABORT) == 0)
259
break;
260
}
261
262
if (retry == 10) {
263
dev_err(emu->card->dev, "Writing to ADC failed!\n");
264
dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
265
status, reg, value);
266
/* dump_stack(); */
267
err = -EINVAL;
268
}
269
270
spin_unlock(&emu->i2c_lock);
271
return err;
272
}
273
274
static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
275
{
276
if (snd_BUG_ON(reg > 0x3f))
277
return;
278
reg += 0x40; /* 0x40 upwards are registers. */
279
if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
280
return;
281
outw(reg, emu->port + A_GPIO);
282
udelay(10);
283
outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
284
udelay(10);
285
outw(value, emu->port + A_GPIO);
286
udelay(10);
287
outw(value | 0x80 , emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
288
udelay(10);
289
}
290
291
void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
292
{
293
if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
294
return;
295
snd_emu1010_fpga_write_locked(emu, reg, value);
296
}
297
298
void snd_emu1010_fpga_write_lock(struct snd_emu10k1 *emu, u32 reg, u32 value)
299
{
300
snd_emu1010_fpga_lock(emu);
301
snd_emu1010_fpga_write_locked(emu, reg, value);
302
snd_emu1010_fpga_unlock(emu);
303
}
304
305
void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
306
{
307
// The higest input pin is used as the designated interrupt trigger,
308
// so it needs to be masked out.
309
// But note that any other input pin change will also cause an IRQ,
310
// so using this function often causes an IRQ as a side effect.
311
u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
312
313
if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
314
return;
315
if (snd_BUG_ON(reg > 0x3f))
316
return;
317
reg += 0x40; /* 0x40 upwards are registers. */
318
outw(reg, emu->port + A_GPIO);
319
udelay(10);
320
outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
321
udelay(10);
322
*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
323
}
324
325
/* Each Destination has one and only one Source,
326
* but one Source can feed any number of Destinations simultaneously.
327
*/
328
void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
329
{
330
if (snd_BUG_ON(dst & ~0x71f))
331
return;
332
if (snd_BUG_ON(src & ~0x71f))
333
return;
334
snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
335
snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
336
snd_emu1010_fpga_write(emu, EMU_HANA_SRCHI, src >> 8);
337
snd_emu1010_fpga_write(emu, EMU_HANA_SRCLO, src & 0x1f);
338
}
339
340
u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
341
{
342
u32 hi, lo;
343
344
if (snd_BUG_ON(dst & ~0x71f))
345
return 0;
346
snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
347
snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
348
snd_emu1010_fpga_read(emu, EMU_HANA_SRCHI, &hi);
349
snd_emu1010_fpga_read(emu, EMU_HANA_SRCLO, &lo);
350
return (hi << 8) | lo;
351
}
352
353
int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
354
{
355
u32 reg_lo, reg_hi, value, value2;
356
357
switch (src) {
358
case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
359
snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
360
if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
361
return 0;
362
reg_lo = EMU_HANA_WC_SPDIF_LO;
363
reg_hi = EMU_HANA_WC_SPDIF_HI;
364
break;
365
case EMU_HANA_WCLOCK_HANA_ADAT_IN:
366
reg_lo = EMU_HANA_WC_ADAT_LO;
367
reg_hi = EMU_HANA_WC_ADAT_HI;
368
break;
369
case EMU_HANA_WCLOCK_SYNC_BNC:
370
reg_lo = EMU_HANA_WC_BNC_LO;
371
reg_hi = EMU_HANA_WC_BNC_HI;
372
break;
373
case EMU_HANA_WCLOCK_2ND_HANA:
374
reg_lo = EMU_HANA2_WC_SPDIF_LO;
375
reg_hi = EMU_HANA2_WC_SPDIF_HI;
376
break;
377
default:
378
return 0;
379
}
380
snd_emu1010_fpga_read(emu, reg_hi, &value);
381
snd_emu1010_fpga_read(emu, reg_lo, &value2);
382
// FIXME: The /4 is valid for 0404b, but contradicts all other info.
383
return 0x1770000 / 4 / (((value << 5) | value2) + 1);
384
}
385
386
void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
387
{
388
int clock;
389
u32 leds;
390
391
switch (emu->emu1010.wclock) {
392
case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
393
clock = 44100;
394
leds = EMU_HANA_DOCK_LEDS_2_44K;
395
break;
396
case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
397
clock = 48000;
398
leds = EMU_HANA_DOCK_LEDS_2_48K;
399
break;
400
default:
401
clock = snd_emu1010_get_raw_rate(
402
emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
403
// The raw rate reading is rather coarse (it cannot accurately
404
// represent 44.1 kHz) and fluctuates slightly. Luckily, the
405
// clock comes from digital inputs, which use standardized rates.
406
// So we round to the closest standard rate and ignore discrepancies.
407
if (clock < 46000) {
408
clock = 44100;
409
leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
410
} else {
411
clock = 48000;
412
leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
413
}
414
break;
415
}
416
emu->emu1010.word_clock = clock;
417
418
// FIXME: this should probably represent the AND of all currently
419
// used sources' lock status. But we don't know how to get that ...
420
leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
421
422
snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
423
}
424
425
void snd_emu1010_load_firmware_entry(struct snd_emu10k1 *emu, int dock,
426
const struct firmware *fw_entry)
427
{
428
__always_unused u16 write_post;
429
430
// On E-MU 1010 rev1 the FPGA is a Xilinx Spartan IIE XC2S50E.
431
// On E-MU 0404b it is a Xilinx Spartan III XC3S50.
432
// The wiring is as follows:
433
// GPO7 -> FPGA input & 1K resistor -> FPGA /PGMN <- FPGA output
434
// In normal operation, the active low reset line is held up by
435
// an FPGA output, while the GPO pin performs its duty as control
436
// register access strobe signal. Writing the respective bit to
437
// EMU_HANA_FPGA_CONFIG puts the FPGA output into high-Z mode, at
438
// which point the GPO pin can control the reset line through the
439
// resistor.
440
// GPO6 -> FPGA CCLK & FPGA input
441
// GPO5 -> FPGA DIN (dual function)
442
443
// If the FPGA is already programmed, return it to programming mode
444
snd_emu1010_fpga_write(emu, EMU_HANA_FPGA_CONFIG,
445
dock ? EMU_HANA_FPGA_CONFIG_AUDIODOCK :
446
EMU_HANA_FPGA_CONFIG_HANA);
447
448
// Assert reset line for 100uS
449
outw(0x00, emu->port + A_GPIO);
450
write_post = inw(emu->port + A_GPIO);
451
udelay(100);
452
outw(0x80, emu->port + A_GPIO);
453
write_post = inw(emu->port + A_GPIO);
454
udelay(100); // Allow FPGA memory to clean
455
456
// Upload the netlist. Keep reset line high!
457
for (int n = 0; n < fw_entry->size; n++) {
458
u8 value = fw_entry->data[n];
459
for (int i = 0; i < 8; i++) {
460
u16 reg = 0x80;
461
if (value & 1)
462
reg |= 0x20;
463
value >>= 1;
464
outw(reg, emu->port + A_GPIO);
465
write_post = inw(emu->port + A_GPIO);
466
outw(reg | 0x40, emu->port + A_GPIO);
467
write_post = inw(emu->port + A_GPIO);
468
}
469
}
470
471
// After programming, set GPIO bit 4 high again.
472
// This appears to be a config word that the rev1 Hana
473
// firmware reads; weird things happen without this.
474
outw(0x10, emu->port + A_GPIO);
475
write_post = inw(emu->port + A_GPIO);
476
}
477
478
void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
479
{
480
unsigned long flags;
481
unsigned int enable;
482
483
spin_lock_irqsave(&emu->emu_lock, flags);
484
enable = inl(emu->port + INTE) | intrenb;
485
outl(enable, emu->port + INTE);
486
spin_unlock_irqrestore(&emu->emu_lock, flags);
487
}
488
489
void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
490
{
491
unsigned long flags;
492
unsigned int enable;
493
494
spin_lock_irqsave(&emu->emu_lock, flags);
495
enable = inl(emu->port + INTE) & ~intrenb;
496
outl(enable, emu->port + INTE);
497
spin_unlock_irqrestore(&emu->emu_lock, flags);
498
}
499
500
void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
501
{
502
unsigned long flags;
503
unsigned int val;
504
505
spin_lock_irqsave(&emu->emu_lock, flags);
506
if (voicenum >= 32) {
507
outl(CLIEH << 16, emu->port + PTR);
508
val = inl(emu->port + DATA);
509
val |= 1 << (voicenum - 32);
510
} else {
511
outl(CLIEL << 16, emu->port + PTR);
512
val = inl(emu->port + DATA);
513
val |= 1 << voicenum;
514
}
515
outl(val, emu->port + DATA);
516
spin_unlock_irqrestore(&emu->emu_lock, flags);
517
}
518
519
void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
520
{
521
unsigned long flags;
522
unsigned int val;
523
524
spin_lock_irqsave(&emu->emu_lock, flags);
525
if (voicenum >= 32) {
526
outl(CLIEH << 16, emu->port + PTR);
527
val = inl(emu->port + DATA);
528
val &= ~(1 << (voicenum - 32));
529
} else {
530
outl(CLIEL << 16, emu->port + PTR);
531
val = inl(emu->port + DATA);
532
val &= ~(1 << voicenum);
533
}
534
outl(val, emu->port + DATA);
535
spin_unlock_irqrestore(&emu->emu_lock, flags);
536
}
537
538
void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
539
{
540
unsigned long flags;
541
542
spin_lock_irqsave(&emu->emu_lock, flags);
543
if (voicenum >= 32) {
544
outl(CLIPH << 16, emu->port + PTR);
545
voicenum = 1 << (voicenum - 32);
546
} else {
547
outl(CLIPL << 16, emu->port + PTR);
548
voicenum = 1 << voicenum;
549
}
550
outl(voicenum, emu->port + DATA);
551
spin_unlock_irqrestore(&emu->emu_lock, flags);
552
}
553
554
void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
555
{
556
unsigned long flags;
557
unsigned int val;
558
559
spin_lock_irqsave(&emu->emu_lock, flags);
560
if (voicenum >= 32) {
561
outl(HLIEH << 16, emu->port + PTR);
562
val = inl(emu->port + DATA);
563
val |= 1 << (voicenum - 32);
564
} else {
565
outl(HLIEL << 16, emu->port + PTR);
566
val = inl(emu->port + DATA);
567
val |= 1 << voicenum;
568
}
569
outl(val, emu->port + DATA);
570
spin_unlock_irqrestore(&emu->emu_lock, flags);
571
}
572
573
void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
574
{
575
unsigned long flags;
576
unsigned int val;
577
578
spin_lock_irqsave(&emu->emu_lock, flags);
579
if (voicenum >= 32) {
580
outl(HLIEH << 16, emu->port + PTR);
581
val = inl(emu->port + DATA);
582
val &= ~(1 << (voicenum - 32));
583
} else {
584
outl(HLIEL << 16, emu->port + PTR);
585
val = inl(emu->port + DATA);
586
val &= ~(1 << voicenum);
587
}
588
outl(val, emu->port + DATA);
589
spin_unlock_irqrestore(&emu->emu_lock, flags);
590
}
591
592
void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
593
{
594
unsigned long flags;
595
596
spin_lock_irqsave(&emu->emu_lock, flags);
597
if (voicenum >= 32) {
598
outl(HLIPH << 16, emu->port + PTR);
599
voicenum = 1 << (voicenum - 32);
600
} else {
601
outl(HLIPL << 16, emu->port + PTR);
602
voicenum = 1 << voicenum;
603
}
604
outl(voicenum, emu->port + DATA);
605
spin_unlock_irqrestore(&emu->emu_lock, flags);
606
}
607
608
#if 0
609
void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
610
{
611
unsigned long flags;
612
unsigned int sol;
613
614
spin_lock_irqsave(&emu->emu_lock, flags);
615
if (voicenum >= 32) {
616
outl(SOLEH << 16, emu->port + PTR);
617
sol = inl(emu->port + DATA);
618
sol |= 1 << (voicenum - 32);
619
} else {
620
outl(SOLEL << 16, emu->port + PTR);
621
sol = inl(emu->port + DATA);
622
sol |= 1 << voicenum;
623
}
624
outl(sol, emu->port + DATA);
625
spin_unlock_irqrestore(&emu->emu_lock, flags);
626
}
627
628
void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
629
{
630
unsigned long flags;
631
unsigned int sol;
632
633
spin_lock_irqsave(&emu->emu_lock, flags);
634
if (voicenum >= 32) {
635
outl(SOLEH << 16, emu->port + PTR);
636
sol = inl(emu->port + DATA);
637
sol &= ~(1 << (voicenum - 32));
638
} else {
639
outl(SOLEL << 16, emu->port + PTR);
640
sol = inl(emu->port + DATA);
641
sol &= ~(1 << voicenum);
642
}
643
outl(sol, emu->port + DATA);
644
spin_unlock_irqrestore(&emu->emu_lock, flags);
645
}
646
#endif
647
648
void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
649
{
650
unsigned long flags;
651
652
spin_lock_irqsave(&emu->emu_lock, flags);
653
outl(SOLEL << 16, emu->port + PTR);
654
outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
655
outl(SOLEH << 16, emu->port + PTR);
656
outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
657
spin_unlock_irqrestore(&emu->emu_lock, flags);
658
}
659
660
void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
661
{
662
unsigned long flags;
663
664
spin_lock_irqsave(&emu->emu_lock, flags);
665
outl(SOLEL << 16, emu->port + PTR);
666
outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
667
outl(SOLEH << 16, emu->port + PTR);
668
outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
669
spin_unlock_irqrestore(&emu->emu_lock, flags);
670
}
671
672
int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
673
{
674
unsigned long flags;
675
u32 soll, solh;
676
int ret = -EIO;
677
678
spin_lock_irqsave(&emu->emu_lock, flags);
679
680
outl(SOLEL << 16, emu->port + PTR);
681
soll = inl(emu->port + DATA);
682
outl(SOLEH << 16, emu->port + PTR);
683
solh = inl(emu->port + DATA);
684
685
soll &= (u32)~voices;
686
solh &= (u32)(~voices >> 32);
687
688
for (int tries = 0; tries < 1000; tries++) {
689
const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
690
// First we wait for the third quarter of the sample cycle ...
691
u32 wc = inl(emu->port + WC);
692
u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
693
if (cc >= quart * 2 && cc < quart * 3) {
694
// ... and release the low voices, while the high ones are serviced.
695
outl(SOLEL << 16, emu->port + PTR);
696
outl(soll, emu->port + DATA);
697
// Then we wait for the first quarter of the next sample cycle ...
698
for (; tries < 1000; tries++) {
699
cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
700
if (cc < quart)
701
goto good;
702
// We will block for 10+ us with interrupts disabled. This is
703
// not nice at all, but necessary for reasonable reliability.
704
udelay(1);
705
}
706
break;
707
good:
708
// ... and release the high voices, while the low ones are serviced.
709
outl(SOLEH << 16, emu->port + PTR);
710
outl(solh, emu->port + DATA);
711
// Finally we verify that nothing interfered in fact.
712
if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
713
((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
714
ret = 0;
715
} else {
716
ret = -EAGAIN;
717
}
718
break;
719
}
720
// Don't block for too long
721
spin_unlock_irqrestore(&emu->emu_lock, flags);
722
udelay(1);
723
spin_lock_irqsave(&emu->emu_lock, flags);
724
}
725
726
spin_unlock_irqrestore(&emu->emu_lock, flags);
727
return ret;
728
}
729
730
void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
731
{
732
volatile unsigned count;
733
unsigned int newtime = 0, curtime;
734
735
curtime = inl(emu->port + WC) >> 6;
736
while (wait-- > 0) {
737
count = 0;
738
while (count++ < 16384) {
739
newtime = inl(emu->port + WC) >> 6;
740
if (newtime != curtime)
741
break;
742
}
743
if (count > 16384)
744
break;
745
curtime = newtime;
746
}
747
}
748
749
unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
750
{
751
struct snd_emu10k1 *emu = ac97->private_data;
752
unsigned long flags;
753
unsigned short val;
754
755
spin_lock_irqsave(&emu->emu_lock, flags);
756
outb(reg, emu->port + AC97ADDRESS);
757
val = inw(emu->port + AC97DATA);
758
spin_unlock_irqrestore(&emu->emu_lock, flags);
759
return val;
760
}
761
762
void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
763
{
764
struct snd_emu10k1 *emu = ac97->private_data;
765
unsigned long flags;
766
767
spin_lock_irqsave(&emu->emu_lock, flags);
768
outb(reg, emu->port + AC97ADDRESS);
769
outw(data, emu->port + AC97DATA);
770
spin_unlock_irqrestore(&emu->emu_lock, flags);
771
}
772
773