Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/pcxhr/pcxhr_mix22.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Driver for Digigram pcxhr compatible soundcards
4
*
5
* mixer interface for stereo cards
6
*
7
* Copyright (c) 2004 by Digigram <[email protected]>
8
*/
9
10
#include <linux/delay.h>
11
#include <linux/io.h>
12
#include <linux/pci.h>
13
#include <sound/core.h>
14
#include <sound/control.h>
15
#include <sound/tlv.h>
16
#include <sound/asoundef.h>
17
#include "pcxhr.h"
18
#include "pcxhr_core.h"
19
#include "pcxhr_mix22.h"
20
21
22
/* registers used on the DSP and Xilinx (port 2) : HR stereo cards only */
23
#define PCXHR_DSP_RESET 0x20
24
#define PCXHR_XLX_CFG 0x24
25
#define PCXHR_XLX_RUER 0x28
26
#define PCXHR_XLX_DATA 0x2C
27
#define PCXHR_XLX_STATUS 0x30
28
#define PCXHR_XLX_LOFREQ 0x34
29
#define PCXHR_XLX_HIFREQ 0x38
30
#define PCXHR_XLX_CSUER 0x3C
31
#define PCXHR_XLX_SELMIC 0x40
32
33
#define PCXHR_DSP 2
34
35
/* byte access only ! */
36
#define PCXHR_INPB(mgr, x) inb((mgr)->port[PCXHR_DSP] + (x))
37
#define PCXHR_OUTPB(mgr, x, data) outb((data), (mgr)->port[PCXHR_DSP] + (x))
38
39
40
/* values for PCHR_DSP_RESET register */
41
#define PCXHR_DSP_RESET_DSP 0x01
42
#define PCXHR_DSP_RESET_MUTE 0x02
43
#define PCXHR_DSP_RESET_CODEC 0x08
44
#define PCXHR_DSP_RESET_SMPTE 0x10
45
#define PCXHR_DSP_RESET_GPO_OFFSET 5
46
#define PCXHR_DSP_RESET_GPO_MASK 0x60
47
48
/* values for PCHR_XLX_CFG register */
49
#define PCXHR_CFG_SYNCDSP_MASK 0x80
50
#define PCXHR_CFG_DEPENDENCY_MASK 0x60
51
#define PCXHR_CFG_INDEPENDANT_SEL 0x00
52
#define PCXHR_CFG_MASTER_SEL 0x40
53
#define PCXHR_CFG_SLAVE_SEL 0x20
54
#define PCXHR_CFG_DATA_UER1_SEL_MASK 0x10 /* 0 (UER0), 1(UER1) */
55
#define PCXHR_CFG_DATAIN_SEL_MASK 0x08 /* 0 (ana), 1 (UER) */
56
#define PCXHR_CFG_SRC_MASK 0x04 /* 0 (Bypass), 1 (SRC Actif) */
57
#define PCXHR_CFG_CLOCK_UER1_SEL_MASK 0x02 /* 0 (UER0), 1(UER1) */
58
#define PCXHR_CFG_CLOCKIN_SEL_MASK 0x01 /* 0 (internal), 1 (AES/EBU) */
59
60
/* values for PCHR_XLX_DATA register */
61
#define PCXHR_DATA_CODEC 0x80
62
#define AKM_POWER_CONTROL_CMD 0xA007
63
#define AKM_RESET_ON_CMD 0xA100
64
#define AKM_RESET_OFF_CMD 0xA103
65
#define AKM_CLOCK_INF_55K_CMD 0xA240
66
#define AKM_CLOCK_SUP_55K_CMD 0xA24D
67
#define AKM_MUTE_CMD 0xA38D
68
#define AKM_UNMUTE_CMD 0xA30D
69
#define AKM_LEFT_LEVEL_CMD 0xA600
70
#define AKM_RIGHT_LEVEL_CMD 0xA700
71
72
/* values for PCHR_XLX_STATUS register - READ */
73
#define PCXHR_STAT_SRC_LOCK 0x01
74
#define PCXHR_STAT_LEVEL_IN 0x02
75
#define PCXHR_STAT_GPI_OFFSET 2
76
#define PCXHR_STAT_GPI_MASK 0x0C
77
#define PCXHR_STAT_MIC_CAPS 0x10
78
/* values for PCHR_XLX_STATUS register - WRITE */
79
#define PCXHR_STAT_FREQ_SYNC_MASK 0x01
80
#define PCXHR_STAT_FREQ_UER1_MASK 0x02
81
#define PCXHR_STAT_FREQ_SAVE_MASK 0x80
82
83
/* values for PCHR_XLX_CSUER register */
84
#define PCXHR_SUER1_BIT_U_READ_MASK 0x80
85
#define PCXHR_SUER1_BIT_C_READ_MASK 0x40
86
#define PCXHR_SUER1_DATA_PRESENT_MASK 0x20
87
#define PCXHR_SUER1_CLOCK_PRESENT_MASK 0x10
88
#define PCXHR_SUER_BIT_U_READ_MASK 0x08
89
#define PCXHR_SUER_BIT_C_READ_MASK 0x04
90
#define PCXHR_SUER_DATA_PRESENT_MASK 0x02
91
#define PCXHR_SUER_CLOCK_PRESENT_MASK 0x01
92
93
#define PCXHR_SUER_BIT_U_WRITE_MASK 0x02
94
#define PCXHR_SUER_BIT_C_WRITE_MASK 0x01
95
96
/* values for PCXHR_XLX_SELMIC register - WRITE */
97
#define PCXHR_SELMIC_PREAMPLI_OFFSET 2
98
#define PCXHR_SELMIC_PREAMPLI_MASK 0x0C
99
#define PCXHR_SELMIC_PHANTOM_ALIM 0x80
100
101
102
static const unsigned char g_hr222_p_level[] = {
103
0x00, /* [000] -49.5 dB: AKM[000] = -1.#INF dB (mute) */
104
0x01, /* [001] -49.0 dB: AKM[001] = -48.131 dB (diff=0.86920 dB) */
105
0x01, /* [002] -48.5 dB: AKM[001] = -48.131 dB (diff=0.36920 dB) */
106
0x01, /* [003] -48.0 dB: AKM[001] = -48.131 dB (diff=0.13080 dB) */
107
0x01, /* [004] -47.5 dB: AKM[001] = -48.131 dB (diff=0.63080 dB) */
108
0x01, /* [005] -46.5 dB: AKM[001] = -48.131 dB (diff=1.63080 dB) */
109
0x01, /* [006] -47.0 dB: AKM[001] = -48.131 dB (diff=1.13080 dB) */
110
0x01, /* [007] -46.0 dB: AKM[001] = -48.131 dB (diff=2.13080 dB) */
111
0x01, /* [008] -45.5 dB: AKM[001] = -48.131 dB (diff=2.63080 dB) */
112
0x02, /* [009] -45.0 dB: AKM[002] = -42.110 dB (diff=2.88980 dB) */
113
0x02, /* [010] -44.5 dB: AKM[002] = -42.110 dB (diff=2.38980 dB) */
114
0x02, /* [011] -44.0 dB: AKM[002] = -42.110 dB (diff=1.88980 dB) */
115
0x02, /* [012] -43.5 dB: AKM[002] = -42.110 dB (diff=1.38980 dB) */
116
0x02, /* [013] -43.0 dB: AKM[002] = -42.110 dB (diff=0.88980 dB) */
117
0x02, /* [014] -42.5 dB: AKM[002] = -42.110 dB (diff=0.38980 dB) */
118
0x02, /* [015] -42.0 dB: AKM[002] = -42.110 dB (diff=0.11020 dB) */
119
0x02, /* [016] -41.5 dB: AKM[002] = -42.110 dB (diff=0.61020 dB) */
120
0x02, /* [017] -41.0 dB: AKM[002] = -42.110 dB (diff=1.11020 dB) */
121
0x02, /* [018] -40.5 dB: AKM[002] = -42.110 dB (diff=1.61020 dB) */
122
0x03, /* [019] -40.0 dB: AKM[003] = -38.588 dB (diff=1.41162 dB) */
123
0x03, /* [020] -39.5 dB: AKM[003] = -38.588 dB (diff=0.91162 dB) */
124
0x03, /* [021] -39.0 dB: AKM[003] = -38.588 dB (diff=0.41162 dB) */
125
0x03, /* [022] -38.5 dB: AKM[003] = -38.588 dB (diff=0.08838 dB) */
126
0x03, /* [023] -38.0 dB: AKM[003] = -38.588 dB (diff=0.58838 dB) */
127
0x03, /* [024] -37.5 dB: AKM[003] = -38.588 dB (diff=1.08838 dB) */
128
0x04, /* [025] -37.0 dB: AKM[004] = -36.090 dB (diff=0.91040 dB) */
129
0x04, /* [026] -36.5 dB: AKM[004] = -36.090 dB (diff=0.41040 dB) */
130
0x04, /* [027] -36.0 dB: AKM[004] = -36.090 dB (diff=0.08960 dB) */
131
0x04, /* [028] -35.5 dB: AKM[004] = -36.090 dB (diff=0.58960 dB) */
132
0x05, /* [029] -35.0 dB: AKM[005] = -34.151 dB (diff=0.84860 dB) */
133
0x05, /* [030] -34.5 dB: AKM[005] = -34.151 dB (diff=0.34860 dB) */
134
0x05, /* [031] -34.0 dB: AKM[005] = -34.151 dB (diff=0.15140 dB) */
135
0x05, /* [032] -33.5 dB: AKM[005] = -34.151 dB (diff=0.65140 dB) */
136
0x06, /* [033] -33.0 dB: AKM[006] = -32.568 dB (diff=0.43222 dB) */
137
0x06, /* [034] -32.5 dB: AKM[006] = -32.568 dB (diff=0.06778 dB) */
138
0x06, /* [035] -32.0 dB: AKM[006] = -32.568 dB (diff=0.56778 dB) */
139
0x07, /* [036] -31.5 dB: AKM[007] = -31.229 dB (diff=0.27116 dB) */
140
0x07, /* [037] -31.0 dB: AKM[007] = -31.229 dB (diff=0.22884 dB) */
141
0x08, /* [038] -30.5 dB: AKM[008] = -30.069 dB (diff=0.43100 dB) */
142
0x08, /* [039] -30.0 dB: AKM[008] = -30.069 dB (diff=0.06900 dB) */
143
0x09, /* [040] -29.5 dB: AKM[009] = -29.046 dB (diff=0.45405 dB) */
144
0x09, /* [041] -29.0 dB: AKM[009] = -29.046 dB (diff=0.04595 dB) */
145
0x0a, /* [042] -28.5 dB: AKM[010] = -28.131 dB (diff=0.36920 dB) */
146
0x0a, /* [043] -28.0 dB: AKM[010] = -28.131 dB (diff=0.13080 dB) */
147
0x0b, /* [044] -27.5 dB: AKM[011] = -27.303 dB (diff=0.19705 dB) */
148
0x0b, /* [045] -27.0 dB: AKM[011] = -27.303 dB (diff=0.30295 dB) */
149
0x0c, /* [046] -26.5 dB: AKM[012] = -26.547 dB (diff=0.04718 dB) */
150
0x0d, /* [047] -26.0 dB: AKM[013] = -25.852 dB (diff=0.14806 dB) */
151
0x0e, /* [048] -25.5 dB: AKM[014] = -25.208 dB (diff=0.29176 dB) */
152
0x0e, /* [049] -25.0 dB: AKM[014] = -25.208 dB (diff=0.20824 dB) */
153
0x0f, /* [050] -24.5 dB: AKM[015] = -24.609 dB (diff=0.10898 dB) */
154
0x10, /* [051] -24.0 dB: AKM[016] = -24.048 dB (diff=0.04840 dB) */
155
0x11, /* [052] -23.5 dB: AKM[017] = -23.522 dB (diff=0.02183 dB) */
156
0x12, /* [053] -23.0 dB: AKM[018] = -23.025 dB (diff=0.02535 dB) */
157
0x13, /* [054] -22.5 dB: AKM[019] = -22.556 dB (diff=0.05573 dB) */
158
0x14, /* [055] -22.0 dB: AKM[020] = -22.110 dB (diff=0.11020 dB) */
159
0x15, /* [056] -21.5 dB: AKM[021] = -21.686 dB (diff=0.18642 dB) */
160
0x17, /* [057] -21.0 dB: AKM[023] = -20.896 dB (diff=0.10375 dB) */
161
0x18, /* [058] -20.5 dB: AKM[024] = -20.527 dB (diff=0.02658 dB) */
162
0x1a, /* [059] -20.0 dB: AKM[026] = -19.831 dB (diff=0.16866 dB) */
163
0x1b, /* [060] -19.5 dB: AKM[027] = -19.504 dB (diff=0.00353 dB) */
164
0x1d, /* [061] -19.0 dB: AKM[029] = -18.883 dB (diff=0.11716 dB) */
165
0x1e, /* [062] -18.5 dB: AKM[030] = -18.588 dB (diff=0.08838 dB) */
166
0x20, /* [063] -18.0 dB: AKM[032] = -18.028 dB (diff=0.02780 dB) */
167
0x22, /* [064] -17.5 dB: AKM[034] = -17.501 dB (diff=0.00123 dB) */
168
0x24, /* [065] -17.0 dB: AKM[036] = -17.005 dB (diff=0.00475 dB) */
169
0x26, /* [066] -16.5 dB: AKM[038] = -16.535 dB (diff=0.03513 dB) */
170
0x28, /* [067] -16.0 dB: AKM[040] = -16.090 dB (diff=0.08960 dB) */
171
0x2b, /* [068] -15.5 dB: AKM[043] = -15.461 dB (diff=0.03857 dB) */
172
0x2d, /* [069] -15.0 dB: AKM[045] = -15.067 dB (diff=0.06655 dB) */
173
0x30, /* [070] -14.5 dB: AKM[048] = -14.506 dB (diff=0.00598 dB) */
174
0x33, /* [071] -14.0 dB: AKM[051] = -13.979 dB (diff=0.02060 dB) */
175
0x36, /* [072] -13.5 dB: AKM[054] = -13.483 dB (diff=0.01707 dB) */
176
0x39, /* [073] -13.0 dB: AKM[057] = -13.013 dB (diff=0.01331 dB) */
177
0x3c, /* [074] -12.5 dB: AKM[060] = -12.568 dB (diff=0.06778 dB) */
178
0x40, /* [075] -12.0 dB: AKM[064] = -12.007 dB (diff=0.00720 dB) */
179
0x44, /* [076] -11.5 dB: AKM[068] = -11.481 dB (diff=0.01937 dB) */
180
0x48, /* [077] -11.0 dB: AKM[072] = -10.984 dB (diff=0.01585 dB) */
181
0x4c, /* [078] -10.5 dB: AKM[076] = -10.515 dB (diff=0.01453 dB) */
182
0x51, /* [079] -10.0 dB: AKM[081] = -9.961 dB (diff=0.03890 dB) */
183
0x55, /* [080] -9.5 dB: AKM[085] = -9.542 dB (diff=0.04243 dB) */
184
0x5a, /* [081] -9.0 dB: AKM[090] = -9.046 dB (diff=0.04595 dB) */
185
0x60, /* [082] -8.5 dB: AKM[096] = -8.485 dB (diff=0.01462 dB) */
186
0x66, /* [083] -8.0 dB: AKM[102] = -7.959 dB (diff=0.04120 dB) */
187
0x6c, /* [084] -7.5 dB: AKM[108] = -7.462 dB (diff=0.03767 dB) */
188
0x72, /* [085] -7.0 dB: AKM[114] = -6.993 dB (diff=0.00729 dB) */
189
0x79, /* [086] -6.5 dB: AKM[121] = -6.475 dB (diff=0.02490 dB) */
190
0x80, /* [087] -6.0 dB: AKM[128] = -5.987 dB (diff=0.01340 dB) */
191
0x87, /* [088] -5.5 dB: AKM[135] = -5.524 dB (diff=0.02413 dB) */
192
0x8f, /* [089] -5.0 dB: AKM[143] = -5.024 dB (diff=0.02408 dB) */
193
0x98, /* [090] -4.5 dB: AKM[152] = -4.494 dB (diff=0.00607 dB) */
194
0xa1, /* [091] -4.0 dB: AKM[161] = -3.994 dB (diff=0.00571 dB) */
195
0xaa, /* [092] -3.5 dB: AKM[170] = -3.522 dB (diff=0.02183 dB) */
196
0xb5, /* [093] -3.0 dB: AKM[181] = -2.977 dB (diff=0.02277 dB) */
197
0xbf, /* [094] -2.5 dB: AKM[191] = -2.510 dB (diff=0.01014 dB) */
198
0xcb, /* [095] -2.0 dB: AKM[203] = -1.981 dB (diff=0.01912 dB) */
199
0xd7, /* [096] -1.5 dB: AKM[215] = -1.482 dB (diff=0.01797 dB) */
200
0xe3, /* [097] -1.0 dB: AKM[227] = -1.010 dB (diff=0.01029 dB) */
201
0xf1, /* [098] -0.5 dB: AKM[241] = -0.490 dB (diff=0.00954 dB) */
202
0xff, /* [099] +0.0 dB: AKM[255] = +0.000 dB (diff=0.00000 dB) */
203
};
204
205
206
static void hr222_config_akm(struct pcxhr_mgr *mgr, unsigned short data)
207
{
208
unsigned short mask = 0x8000;
209
/* activate access to codec registers */
210
PCXHR_INPB(mgr, PCXHR_XLX_HIFREQ);
211
212
while (mask) {
213
PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
214
data & mask ? PCXHR_DATA_CODEC : 0);
215
mask >>= 1;
216
}
217
/* termiate access to codec registers */
218
PCXHR_INPB(mgr, PCXHR_XLX_RUER);
219
}
220
221
222
static int hr222_set_hw_playback_level(struct pcxhr_mgr *mgr,
223
int idx, int level)
224
{
225
unsigned short cmd;
226
if (idx > 1 ||
227
level < 0 ||
228
level >= ARRAY_SIZE(g_hr222_p_level))
229
return -EINVAL;
230
231
if (idx == 0)
232
cmd = AKM_LEFT_LEVEL_CMD;
233
else
234
cmd = AKM_RIGHT_LEVEL_CMD;
235
236
/* conversion from PmBoardCodedLevel to AKM nonlinear programming */
237
cmd += g_hr222_p_level[level];
238
239
hr222_config_akm(mgr, cmd);
240
return 0;
241
}
242
243
244
static int hr222_set_hw_capture_level(struct pcxhr_mgr *mgr,
245
int level_l, int level_r, int level_mic)
246
{
247
/* program all input levels at the same time */
248
unsigned int data;
249
int i;
250
251
if (!mgr->capture_chips)
252
return -EINVAL; /* no PCX22 */
253
254
data = ((level_mic & 0xff) << 24); /* micro is mono, but apply */
255
data |= ((level_mic & 0xff) << 16); /* level on both channels */
256
data |= ((level_r & 0xff) << 8); /* line input right channel */
257
data |= (level_l & 0xff); /* line input left channel */
258
259
PCXHR_INPB(mgr, PCXHR_XLX_DATA); /* activate input codec */
260
/* send 32 bits (4 x 8 bits) */
261
for (i = 0; i < 32; i++, data <<= 1) {
262
PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
263
(data & 0x80000000) ? PCXHR_DATA_CODEC : 0);
264
}
265
PCXHR_INPB(mgr, PCXHR_XLX_RUER); /* close input level codec */
266
return 0;
267
}
268
269
static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level);
270
271
int hr222_sub_init(struct pcxhr_mgr *mgr)
272
{
273
unsigned char reg;
274
275
mgr->board_has_analog = 1; /* analog always available */
276
mgr->xlx_cfg = PCXHR_CFG_SYNCDSP_MASK;
277
278
reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS);
279
if (reg & PCXHR_STAT_MIC_CAPS)
280
mgr->board_has_mic = 1; /* microphone available */
281
dev_dbg(&mgr->pci->dev,
282
"MIC input available = %d\n", mgr->board_has_mic);
283
284
/* reset codec */
285
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET,
286
PCXHR_DSP_RESET_DSP);
287
msleep(5);
288
mgr->dsp_reset = PCXHR_DSP_RESET_DSP |
289
PCXHR_DSP_RESET_MUTE |
290
PCXHR_DSP_RESET_CODEC;
291
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, mgr->dsp_reset);
292
/* hr222_write_gpo(mgr, 0); does the same */
293
msleep(5);
294
295
/* config AKM */
296
hr222_config_akm(mgr, AKM_POWER_CONTROL_CMD);
297
hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
298
hr222_config_akm(mgr, AKM_UNMUTE_CMD);
299
hr222_config_akm(mgr, AKM_RESET_OFF_CMD);
300
301
/* init micro boost */
302
hr222_micro_boost(mgr, 0);
303
304
return 0;
305
}
306
307
308
/* calc PLL register */
309
/* TODO : there is a very similar fct in pcxhr.c */
310
static int hr222_pll_freq_register(unsigned int freq,
311
unsigned int *pllreg,
312
unsigned int *realfreq)
313
{
314
unsigned int reg;
315
316
if (freq < 6900 || freq > 219000)
317
return -EINVAL;
318
reg = (28224000 * 2) / freq;
319
reg = (reg - 1) / 2;
320
if (reg < 0x100)
321
*pllreg = reg + 0xC00;
322
else if (reg < 0x200)
323
*pllreg = reg + 0x800;
324
else if (reg < 0x400)
325
*pllreg = reg & 0x1ff;
326
else if (reg < 0x800) {
327
*pllreg = ((reg >> 1) & 0x1ff) + 0x200;
328
reg &= ~1;
329
} else {
330
*pllreg = ((reg >> 2) & 0x1ff) + 0x400;
331
reg &= ~3;
332
}
333
if (realfreq)
334
*realfreq = (28224000 / (reg + 1));
335
return 0;
336
}
337
338
int hr222_sub_set_clock(struct pcxhr_mgr *mgr,
339
unsigned int rate,
340
int *changed)
341
{
342
unsigned int speed, pllreg = 0;
343
int err;
344
unsigned realfreq = rate;
345
346
switch (mgr->use_clock_type) {
347
case HR22_CLOCK_TYPE_INTERNAL:
348
err = hr222_pll_freq_register(rate, &pllreg, &realfreq);
349
if (err)
350
return err;
351
352
mgr->xlx_cfg &= ~(PCXHR_CFG_CLOCKIN_SEL_MASK |
353
PCXHR_CFG_CLOCK_UER1_SEL_MASK);
354
break;
355
case HR22_CLOCK_TYPE_AES_SYNC:
356
mgr->xlx_cfg |= PCXHR_CFG_CLOCKIN_SEL_MASK;
357
mgr->xlx_cfg &= ~PCXHR_CFG_CLOCK_UER1_SEL_MASK;
358
break;
359
case HR22_CLOCK_TYPE_AES_1:
360
if (!mgr->board_has_aes1)
361
return -EINVAL;
362
363
mgr->xlx_cfg |= (PCXHR_CFG_CLOCKIN_SEL_MASK |
364
PCXHR_CFG_CLOCK_UER1_SEL_MASK);
365
break;
366
default:
367
return -EINVAL;
368
}
369
hr222_config_akm(mgr, AKM_MUTE_CMD);
370
371
if (mgr->use_clock_type == HR22_CLOCK_TYPE_INTERNAL) {
372
PCXHR_OUTPB(mgr, PCXHR_XLX_HIFREQ, pllreg >> 8);
373
PCXHR_OUTPB(mgr, PCXHR_XLX_LOFREQ, pllreg & 0xff);
374
}
375
376
/* set clock source */
377
PCXHR_OUTPB(mgr, PCXHR_XLX_CFG, mgr->xlx_cfg);
378
379
/* codec speed modes */
380
speed = rate < 55000 ? 0 : 1;
381
if (mgr->codec_speed != speed) {
382
mgr->codec_speed = speed;
383
if (speed == 0)
384
hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
385
else
386
hr222_config_akm(mgr, AKM_CLOCK_SUP_55K_CMD);
387
}
388
389
mgr->sample_rate_real = realfreq;
390
mgr->cur_clock_type = mgr->use_clock_type;
391
392
if (changed)
393
*changed = 1;
394
395
hr222_config_akm(mgr, AKM_UNMUTE_CMD);
396
397
dev_dbg(&mgr->pci->dev, "set_clock to %dHz (realfreq=%d pllreg=%x)\n",
398
rate, realfreq, pllreg);
399
return 0;
400
}
401
402
int hr222_get_external_clock(struct pcxhr_mgr *mgr,
403
enum pcxhr_clock_type clock_type,
404
int *sample_rate)
405
{
406
int rate, calc_rate = 0;
407
unsigned int ticks;
408
unsigned char mask, reg;
409
410
if (clock_type == HR22_CLOCK_TYPE_AES_SYNC) {
411
412
mask = (PCXHR_SUER_CLOCK_PRESENT_MASK |
413
PCXHR_SUER_DATA_PRESENT_MASK);
414
reg = PCXHR_STAT_FREQ_SYNC_MASK;
415
416
} else if (clock_type == HR22_CLOCK_TYPE_AES_1 && mgr->board_has_aes1) {
417
418
mask = (PCXHR_SUER1_CLOCK_PRESENT_MASK |
419
PCXHR_SUER1_DATA_PRESENT_MASK);
420
reg = PCXHR_STAT_FREQ_UER1_MASK;
421
422
} else {
423
dev_dbg(&mgr->pci->dev,
424
"get_external_clock : type %d not supported\n",
425
clock_type);
426
return -EINVAL; /* other clocks not supported */
427
}
428
429
if ((PCXHR_INPB(mgr, PCXHR_XLX_CSUER) & mask) != mask) {
430
dev_dbg(&mgr->pci->dev,
431
"get_external_clock(%d) = 0 Hz\n", clock_type);
432
*sample_rate = 0;
433
return 0; /* no external clock locked */
434
}
435
436
PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* calculate freq */
437
438
/* save the measured clock frequency */
439
reg |= PCXHR_STAT_FREQ_SAVE_MASK;
440
441
if (mgr->last_reg_stat != reg) {
442
udelay(500); /* wait min 2 cycles of lowest freq (8000) */
443
mgr->last_reg_stat = reg;
444
}
445
446
PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* save */
447
448
/* get the frequency */
449
ticks = (unsigned int)PCXHR_INPB(mgr, PCXHR_XLX_CFG);
450
ticks = (ticks & 0x03) << 8;
451
ticks |= (unsigned int)PCXHR_INPB(mgr, PCXHR_DSP_RESET);
452
453
if (ticks != 0)
454
calc_rate = 28224000 / ticks;
455
/* rounding */
456
if (calc_rate > 184200)
457
rate = 192000;
458
else if (calc_rate > 152200)
459
rate = 176400;
460
else if (calc_rate > 112000)
461
rate = 128000;
462
else if (calc_rate > 92100)
463
rate = 96000;
464
else if (calc_rate > 76100)
465
rate = 88200;
466
else if (calc_rate > 56000)
467
rate = 64000;
468
else if (calc_rate > 46050)
469
rate = 48000;
470
else if (calc_rate > 38050)
471
rate = 44100;
472
else if (calc_rate > 28000)
473
rate = 32000;
474
else if (calc_rate > 23025)
475
rate = 24000;
476
else if (calc_rate > 19025)
477
rate = 22050;
478
else if (calc_rate > 14000)
479
rate = 16000;
480
else if (calc_rate > 11512)
481
rate = 12000;
482
else if (calc_rate > 9512)
483
rate = 11025;
484
else if (calc_rate > 7000)
485
rate = 8000;
486
else
487
rate = 0;
488
489
dev_dbg(&mgr->pci->dev, "External clock is at %d Hz (measured %d Hz)\n",
490
rate, calc_rate);
491
*sample_rate = rate;
492
return 0;
493
}
494
495
496
int hr222_read_gpio(struct pcxhr_mgr *mgr, int is_gpi, int *value)
497
{
498
if (is_gpi) {
499
unsigned char reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS);
500
*value = (int)(reg & PCXHR_STAT_GPI_MASK) >>
501
PCXHR_STAT_GPI_OFFSET;
502
} else {
503
*value = (int)(mgr->dsp_reset & PCXHR_DSP_RESET_GPO_MASK) >>
504
PCXHR_DSP_RESET_GPO_OFFSET;
505
}
506
return 0;
507
}
508
509
510
int hr222_write_gpo(struct pcxhr_mgr *mgr, int value)
511
{
512
unsigned char reg = mgr->dsp_reset & ~PCXHR_DSP_RESET_GPO_MASK;
513
514
reg |= (unsigned char)(value << PCXHR_DSP_RESET_GPO_OFFSET) &
515
PCXHR_DSP_RESET_GPO_MASK;
516
517
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, reg);
518
mgr->dsp_reset = reg;
519
return 0;
520
}
521
522
int hr222_manage_timecode(struct pcxhr_mgr *mgr, int enable)
523
{
524
if (enable)
525
mgr->dsp_reset |= PCXHR_DSP_RESET_SMPTE;
526
else
527
mgr->dsp_reset &= ~PCXHR_DSP_RESET_SMPTE;
528
529
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET, mgr->dsp_reset);
530
return 0;
531
}
532
533
int hr222_update_analog_audio_level(struct snd_pcxhr *chip,
534
int is_capture, int channel)
535
{
536
dev_dbg(chip->card->dev,
537
"hr222_update_analog_audio_level(%s chan=%d)\n",
538
snd_pcm_direction_name(is_capture), channel);
539
if (is_capture) {
540
int level_l, level_r, level_mic;
541
/* we have to update all levels */
542
if (chip->analog_capture_active) {
543
level_l = chip->analog_capture_volume[0];
544
level_r = chip->analog_capture_volume[1];
545
} else {
546
level_l = HR222_LINE_CAPTURE_LEVEL_MIN;
547
level_r = HR222_LINE_CAPTURE_LEVEL_MIN;
548
}
549
if (chip->mic_active)
550
level_mic = chip->mic_volume;
551
else
552
level_mic = HR222_MICRO_CAPTURE_LEVEL_MIN;
553
return hr222_set_hw_capture_level(chip->mgr,
554
level_l, level_r, level_mic);
555
} else {
556
int vol;
557
if (chip->analog_playback_active[channel])
558
vol = chip->analog_playback_volume[channel];
559
else
560
vol = HR222_LINE_PLAYBACK_LEVEL_MIN;
561
return hr222_set_hw_playback_level(chip->mgr, channel, vol);
562
}
563
}
564
565
566
/*texts[5] = {"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"}*/
567
#define SOURCE_LINE 0
568
#define SOURCE_DIGITAL 1
569
#define SOURCE_DIGISRC 2
570
#define SOURCE_MIC 3
571
#define SOURCE_LINEMIC 4
572
573
int hr222_set_audio_source(struct snd_pcxhr *chip)
574
{
575
int digital = 0;
576
/* default analog source */
577
chip->mgr->xlx_cfg &= ~(PCXHR_CFG_SRC_MASK |
578
PCXHR_CFG_DATAIN_SEL_MASK |
579
PCXHR_CFG_DATA_UER1_SEL_MASK);
580
581
if (chip->audio_capture_source == SOURCE_DIGISRC) {
582
chip->mgr->xlx_cfg |= PCXHR_CFG_SRC_MASK;
583
digital = 1;
584
} else {
585
if (chip->audio_capture_source == SOURCE_DIGITAL)
586
digital = 1;
587
}
588
if (digital) {
589
chip->mgr->xlx_cfg |= PCXHR_CFG_DATAIN_SEL_MASK;
590
if (chip->mgr->board_has_aes1) {
591
/* get data from the AES1 plug */
592
chip->mgr->xlx_cfg |= PCXHR_CFG_DATA_UER1_SEL_MASK;
593
}
594
/* chip->mic_active = 0; */
595
/* chip->analog_capture_active = 0; */
596
} else {
597
int update_lvl = 0;
598
chip->analog_capture_active = 0;
599
chip->mic_active = 0;
600
if (chip->audio_capture_source == SOURCE_LINE ||
601
chip->audio_capture_source == SOURCE_LINEMIC) {
602
if (chip->analog_capture_active == 0)
603
update_lvl = 1;
604
chip->analog_capture_active = 1;
605
}
606
if (chip->audio_capture_source == SOURCE_MIC ||
607
chip->audio_capture_source == SOURCE_LINEMIC) {
608
if (chip->mic_active == 0)
609
update_lvl = 1;
610
chip->mic_active = 1;
611
}
612
if (update_lvl) {
613
/* capture: update all 3 mutes/unmutes with one call */
614
hr222_update_analog_audio_level(chip, 1, 0);
615
}
616
}
617
/* set the source infos (max 3 bits modified) */
618
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CFG, chip->mgr->xlx_cfg);
619
return 0;
620
}
621
622
623
int hr222_iec958_capture_byte(struct snd_pcxhr *chip,
624
int aes_idx, unsigned char *aes_bits)
625
{
626
unsigned char idx = (unsigned char)(aes_idx * 8);
627
unsigned char temp = 0;
628
unsigned char mask = chip->mgr->board_has_aes1 ?
629
PCXHR_SUER1_BIT_C_READ_MASK : PCXHR_SUER_BIT_C_READ_MASK;
630
int i;
631
for (i = 0; i < 8; i++) {
632
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx++); /* idx < 192 */
633
temp <<= 1;
634
if (PCXHR_INPB(chip->mgr, PCXHR_XLX_CSUER) & mask)
635
temp |= 1;
636
}
637
dev_dbg(chip->card->dev, "read iec958 AES %d byte %d = 0x%x\n",
638
chip->chip_idx, aes_idx, temp);
639
*aes_bits = temp;
640
return 0;
641
}
642
643
644
int hr222_iec958_update_byte(struct snd_pcxhr *chip,
645
int aes_idx, unsigned char aes_bits)
646
{
647
int i;
648
unsigned char new_bits = aes_bits;
649
unsigned char old_bits = chip->aes_bits[aes_idx];
650
unsigned char idx = (unsigned char)(aes_idx * 8);
651
for (i = 0; i < 8; i++) {
652
if ((old_bits & 0x01) != (new_bits & 0x01)) {
653
/* idx < 192 */
654
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx);
655
/* write C and U bit */
656
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CSUER, new_bits&0x01 ?
657
PCXHR_SUER_BIT_C_WRITE_MASK : 0);
658
}
659
idx++;
660
old_bits >>= 1;
661
new_bits >>= 1;
662
}
663
chip->aes_bits[aes_idx] = aes_bits;
664
return 0;
665
}
666
667
static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level)
668
{
669
unsigned char boost_mask;
670
boost_mask = (unsigned char) (level << PCXHR_SELMIC_PREAMPLI_OFFSET);
671
if (boost_mask & (~PCXHR_SELMIC_PREAMPLI_MASK))
672
return; /* only values form 0 to 3 accepted */
673
674
mgr->xlx_selmic &= ~PCXHR_SELMIC_PREAMPLI_MASK;
675
mgr->xlx_selmic |= boost_mask;
676
677
PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
678
679
dev_dbg(&mgr->pci->dev, "hr222_micro_boost : set %x\n", boost_mask);
680
}
681
682
static void hr222_phantom_power(struct pcxhr_mgr *mgr, int power)
683
{
684
if (power)
685
mgr->xlx_selmic |= PCXHR_SELMIC_PHANTOM_ALIM;
686
else
687
mgr->xlx_selmic &= ~PCXHR_SELMIC_PHANTOM_ALIM;
688
689
PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
690
691
dev_dbg(&mgr->pci->dev, "hr222_phantom_power : set %d\n", power);
692
}
693
694
695
/* mic level */
696
static const DECLARE_TLV_DB_SCALE(db_scale_mic_hr222, -9850, 50, 650);
697
698
static int hr222_mic_vol_info(struct snd_kcontrol *kcontrol,
699
struct snd_ctl_elem_info *uinfo)
700
{
701
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
702
uinfo->count = 1;
703
uinfo->value.integer.min = HR222_MICRO_CAPTURE_LEVEL_MIN; /* -98 dB */
704
/* gains from 9 dB to 31.5 dB not recommended; use micboost instead */
705
uinfo->value.integer.max = HR222_MICRO_CAPTURE_LEVEL_MAX; /* +7 dB */
706
return 0;
707
}
708
709
static int hr222_mic_vol_get(struct snd_kcontrol *kcontrol,
710
struct snd_ctl_elem_value *ucontrol)
711
{
712
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
713
mutex_lock(&chip->mgr->mixer_mutex);
714
ucontrol->value.integer.value[0] = chip->mic_volume;
715
mutex_unlock(&chip->mgr->mixer_mutex);
716
return 0;
717
}
718
719
static int hr222_mic_vol_put(struct snd_kcontrol *kcontrol,
720
struct snd_ctl_elem_value *ucontrol)
721
{
722
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
723
int changed = 0;
724
mutex_lock(&chip->mgr->mixer_mutex);
725
if (chip->mic_volume != ucontrol->value.integer.value[0]) {
726
changed = 1;
727
chip->mic_volume = ucontrol->value.integer.value[0];
728
hr222_update_analog_audio_level(chip, 1, 0);
729
}
730
mutex_unlock(&chip->mgr->mixer_mutex);
731
return changed;
732
}
733
734
static const struct snd_kcontrol_new hr222_control_mic_level = {
735
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
736
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
737
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
738
.name = "Mic Capture Volume",
739
.info = hr222_mic_vol_info,
740
.get = hr222_mic_vol_get,
741
.put = hr222_mic_vol_put,
742
.tlv = { .p = db_scale_mic_hr222 },
743
};
744
745
746
/* mic boost level */
747
static const DECLARE_TLV_DB_SCALE(db_scale_micboost_hr222, 0, 1800, 5400);
748
749
static int hr222_mic_boost_info(struct snd_kcontrol *kcontrol,
750
struct snd_ctl_elem_info *uinfo)
751
{
752
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
753
uinfo->count = 1;
754
uinfo->value.integer.min = 0; /* 0 dB */
755
uinfo->value.integer.max = 3; /* 54 dB */
756
return 0;
757
}
758
759
static int hr222_mic_boost_get(struct snd_kcontrol *kcontrol,
760
struct snd_ctl_elem_value *ucontrol)
761
{
762
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
763
mutex_lock(&chip->mgr->mixer_mutex);
764
ucontrol->value.integer.value[0] = chip->mic_boost;
765
mutex_unlock(&chip->mgr->mixer_mutex);
766
return 0;
767
}
768
769
static int hr222_mic_boost_put(struct snd_kcontrol *kcontrol,
770
struct snd_ctl_elem_value *ucontrol)
771
{
772
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
773
int changed = 0;
774
mutex_lock(&chip->mgr->mixer_mutex);
775
if (chip->mic_boost != ucontrol->value.integer.value[0]) {
776
changed = 1;
777
chip->mic_boost = ucontrol->value.integer.value[0];
778
hr222_micro_boost(chip->mgr, chip->mic_boost);
779
}
780
mutex_unlock(&chip->mgr->mixer_mutex);
781
return changed;
782
}
783
784
static const struct snd_kcontrol_new hr222_control_mic_boost = {
785
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
786
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
787
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
788
.name = "MicBoost Capture Volume",
789
.info = hr222_mic_boost_info,
790
.get = hr222_mic_boost_get,
791
.put = hr222_mic_boost_put,
792
.tlv = { .p = db_scale_micboost_hr222 },
793
};
794
795
796
/******************* Phantom power switch *******************/
797
#define hr222_phantom_power_info snd_ctl_boolean_mono_info
798
799
static int hr222_phantom_power_get(struct snd_kcontrol *kcontrol,
800
struct snd_ctl_elem_value *ucontrol)
801
{
802
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
803
mutex_lock(&chip->mgr->mixer_mutex);
804
ucontrol->value.integer.value[0] = chip->phantom_power;
805
mutex_unlock(&chip->mgr->mixer_mutex);
806
return 0;
807
}
808
809
static int hr222_phantom_power_put(struct snd_kcontrol *kcontrol,
810
struct snd_ctl_elem_value *ucontrol)
811
{
812
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
813
int power, changed = 0;
814
815
mutex_lock(&chip->mgr->mixer_mutex);
816
power = !!ucontrol->value.integer.value[0];
817
if (chip->phantom_power != power) {
818
hr222_phantom_power(chip->mgr, power);
819
chip->phantom_power = power;
820
changed = 1;
821
}
822
mutex_unlock(&chip->mgr->mixer_mutex);
823
return changed;
824
}
825
826
static const struct snd_kcontrol_new hr222_phantom_power_switch = {
827
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
828
.name = "Phantom Power Switch",
829
.info = hr222_phantom_power_info,
830
.get = hr222_phantom_power_get,
831
.put = hr222_phantom_power_put,
832
};
833
834
835
int hr222_add_mic_controls(struct snd_pcxhr *chip)
836
{
837
int err;
838
if (!chip->mgr->board_has_mic)
839
return 0;
840
841
/* controls */
842
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_level,
843
chip));
844
if (err < 0)
845
return err;
846
847
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_boost,
848
chip));
849
if (err < 0)
850
return err;
851
852
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_phantom_power_switch,
853
chip));
854
return err;
855
}
856
857