Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/rme32.c
26377 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
4
*
5
* Copyright (c) 2002-2004 Martin Langer <[email protected]>,
6
* Pilo Chambert <[email protected]>
7
*
8
* Thanks to : Anders Torger <[email protected]>,
9
* Henk Hesselink <[email protected]>
10
* for writing the digi96-driver
11
* and RME for all informations.
12
*
13
* ****************************************************************************
14
*
15
* Note #1 "Sek'd models" ................................... martin 2002-12-07
16
*
17
* Identical soundcards by Sek'd were labeled:
18
* RME Digi 32 = Sek'd Prodif 32
19
* RME Digi 32 Pro = Sek'd Prodif 96
20
* RME Digi 32/8 = Sek'd Prodif Gold
21
*
22
* ****************************************************************************
23
*
24
* Note #2 "full duplex mode" ............................... martin 2002-12-07
25
*
26
* Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
27
* in this mode. Rec data and play data are using the same buffer therefore. At
28
* first you have got the playing bits in the buffer and then (after playing
29
* them) they were overwitten by the captured sound of the CS8412/14. Both
30
* modes (play/record) are running harmonically hand in hand in the same buffer
31
* and you have only one start bit plus one interrupt bit to control this
32
* paired action.
33
* This is opposite to the latter rme96 where playing and capturing is totally
34
* separated and so their full duplex mode is supported by alsa (using two
35
* start bits and two interrupts for two different buffers).
36
* But due to the wrong sequence of playing and capturing ALSA shows no solved
37
* full duplex support for the rme32 at the moment. That's bad, but I'm not
38
* able to solve it. Are you motivated enough to solve this problem now? Your
39
* patch would be welcome!
40
*
41
* ****************************************************************************
42
*
43
* "The story after the long seeking" -- tiwai
44
*
45
* Ok, the situation regarding the full duplex is now improved a bit.
46
* In the fullduplex mode (given by the module parameter), the hardware buffer
47
* is split to halves for read and write directions at the DMA pointer.
48
* That is, the half above the current DMA pointer is used for write, and
49
* the half below is used for read. To mangle this strange behavior, an
50
* software intermediate buffer is introduced. This is, of course, not good
51
* from the viewpoint of the data transfer efficiency. However, this allows
52
* you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
53
*
54
* ****************************************************************************
55
*/
56
57
58
#include <linux/delay.h>
59
#include <linux/gfp.h>
60
#include <linux/init.h>
61
#include <linux/interrupt.h>
62
#include <linux/pci.h>
63
#include <linux/module.h>
64
#include <linux/io.h>
65
66
#include <sound/core.h>
67
#include <sound/info.h>
68
#include <sound/control.h>
69
#include <sound/pcm.h>
70
#include <sound/pcm_params.h>
71
#include <sound/pcm-indirect.h>
72
#include <sound/asoundef.h>
73
#include <sound/initval.h>
74
75
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
76
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
77
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
78
static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
79
80
module_param_array(index, int, NULL, 0444);
81
MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
82
module_param_array(id, charp, NULL, 0444);
83
MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
84
module_param_array(enable, bool, NULL, 0444);
85
MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
86
module_param_array(fullduplex, bool, NULL, 0444);
87
MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
88
MODULE_AUTHOR("Martin Langer <[email protected]>, Pilo Chambert <[email protected]>");
89
MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
90
MODULE_LICENSE("GPL");
91
92
/* Defines for RME Digi32 series */
93
#define RME32_SPDIF_NCHANNELS 2
94
95
/* Playback and capture buffer size */
96
#define RME32_BUFFER_SIZE 0x20000
97
98
/* IO area size */
99
#define RME32_IO_SIZE 0x30000
100
101
/* IO area offsets */
102
#define RME32_IO_DATA_BUFFER 0x0
103
#define RME32_IO_CONTROL_REGISTER 0x20000
104
#define RME32_IO_GET_POS 0x20000
105
#define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
106
#define RME32_IO_RESET_POS 0x20100
107
108
/* Write control register bits */
109
#define RME32_WCR_START (1 << 0) /* startbit */
110
#define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
111
Setting the whole card to mono
112
doesn't seem to be very useful.
113
A software-solution can handle
114
full-duplex with one direction in
115
stereo and the other way in mono.
116
So, the hardware should work all
117
the time in stereo! */
118
#define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
119
#define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
120
#define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
121
#define RME32_WCR_FREQ_1 (1 << 5)
122
#define RME32_WCR_INP_0 (1 << 6) /* input switch */
123
#define RME32_WCR_INP_1 (1 << 7)
124
#define RME32_WCR_RESET (1 << 8) /* Reset address */
125
#define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
126
#define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
127
#define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
128
#define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
129
#define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
130
#define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
131
#define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
132
133
#define RME32_WCR_BITPOS_FREQ_0 4
134
#define RME32_WCR_BITPOS_FREQ_1 5
135
#define RME32_WCR_BITPOS_INP_0 6
136
#define RME32_WCR_BITPOS_INP_1 7
137
138
/* Read control register bits */
139
#define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
140
#define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
141
#define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
142
#define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
143
#define RME32_RCR_FREQ_1 (1 << 28)
144
#define RME32_RCR_FREQ_2 (1 << 29)
145
#define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
146
#define RME32_RCR_IRQ (1 << 31) /* interrupt */
147
148
#define RME32_RCR_BITPOS_F0 27
149
#define RME32_RCR_BITPOS_F1 28
150
#define RME32_RCR_BITPOS_F2 29
151
152
/* Input types */
153
#define RME32_INPUT_OPTICAL 0
154
#define RME32_INPUT_COAXIAL 1
155
#define RME32_INPUT_INTERNAL 2
156
#define RME32_INPUT_XLR 3
157
158
/* Clock modes */
159
#define RME32_CLOCKMODE_SLAVE 0
160
#define RME32_CLOCKMODE_MASTER_32 1
161
#define RME32_CLOCKMODE_MASTER_44 2
162
#define RME32_CLOCKMODE_MASTER_48 3
163
164
/* Block sizes in bytes */
165
#define RME32_BLOCK_SIZE 8192
166
167
/* Software intermediate buffer (max) size */
168
#define RME32_MID_BUFFER_SIZE (1024*1024)
169
170
/* Hardware revisions */
171
#define RME32_32_REVISION 192
172
#define RME32_328_REVISION_OLD 100
173
#define RME32_328_REVISION_NEW 101
174
#define RME32_PRO_REVISION_WITH_8412 192
175
#define RME32_PRO_REVISION_WITH_8414 150
176
177
178
struct rme32 {
179
spinlock_t lock;
180
int irq;
181
unsigned long port;
182
void __iomem *iobase;
183
184
u32 wcreg; /* cached write control register value */
185
u32 wcreg_spdif; /* S/PDIF setup */
186
u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
187
u32 rcreg; /* cached read control register value */
188
189
u8 rev; /* card revision number */
190
191
struct snd_pcm_substream *playback_substream;
192
struct snd_pcm_substream *capture_substream;
193
194
int playback_frlog; /* log2 of framesize */
195
int capture_frlog;
196
197
size_t playback_periodsize; /* in bytes, zero if not used */
198
size_t capture_periodsize; /* in bytes, zero if not used */
199
200
unsigned int fullduplex_mode;
201
int running;
202
203
struct snd_pcm_indirect playback_pcm;
204
struct snd_pcm_indirect capture_pcm;
205
206
struct snd_card *card;
207
struct snd_pcm *spdif_pcm;
208
struct snd_pcm *adat_pcm;
209
struct pci_dev *pci;
210
struct snd_kcontrol *spdif_ctl;
211
};
212
213
static const struct pci_device_id snd_rme32_ids[] = {
214
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
215
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
216
{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
217
{0,}
218
};
219
220
MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
221
222
#define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
223
#define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
224
225
static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
226
227
static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
228
229
static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
230
231
static void snd_rme32_proc_init(struct rme32 * rme32);
232
233
static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
234
235
static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
236
{
237
return (readl(rme32->iobase + RME32_IO_GET_POS)
238
& RME32_RCR_AUDIO_ADDR_MASK);
239
}
240
241
/* silence callback for halfduplex mode */
242
static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
243
int channel, unsigned long pos,
244
unsigned long count)
245
{
246
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
247
248
memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
249
return 0;
250
}
251
252
/* copy callback for halfduplex mode */
253
static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
254
int channel, unsigned long pos,
255
struct iov_iter *src, unsigned long count)
256
{
257
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
258
259
if (copy_from_iter_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
260
count, src) != count)
261
return -EFAULT;
262
return 0;
263
}
264
265
/* copy callback for halfduplex mode */
266
static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
267
int channel, unsigned long pos,
268
struct iov_iter *dst, unsigned long count)
269
{
270
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
271
272
if (copy_to_iter_fromio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
273
count, dst) != count)
274
return -EFAULT;
275
return 0;
276
}
277
278
/*
279
* SPDIF I/O capabilities (half-duplex mode)
280
*/
281
static const struct snd_pcm_hardware snd_rme32_spdif_info = {
282
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
283
SNDRV_PCM_INFO_MMAP_VALID |
284
SNDRV_PCM_INFO_INTERLEAVED |
285
SNDRV_PCM_INFO_PAUSE |
286
SNDRV_PCM_INFO_SYNC_START |
287
SNDRV_PCM_INFO_SYNC_APPLPTR),
288
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
289
SNDRV_PCM_FMTBIT_S32_LE),
290
.rates = (SNDRV_PCM_RATE_32000 |
291
SNDRV_PCM_RATE_44100 |
292
SNDRV_PCM_RATE_48000),
293
.rate_min = 32000,
294
.rate_max = 48000,
295
.channels_min = 2,
296
.channels_max = 2,
297
.buffer_bytes_max = RME32_BUFFER_SIZE,
298
.period_bytes_min = RME32_BLOCK_SIZE,
299
.period_bytes_max = RME32_BLOCK_SIZE,
300
.periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
301
.periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
302
.fifo_size = 0,
303
};
304
305
/*
306
* ADAT I/O capabilities (half-duplex mode)
307
*/
308
static const struct snd_pcm_hardware snd_rme32_adat_info =
309
{
310
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
311
SNDRV_PCM_INFO_MMAP_VALID |
312
SNDRV_PCM_INFO_INTERLEAVED |
313
SNDRV_PCM_INFO_PAUSE |
314
SNDRV_PCM_INFO_SYNC_START |
315
SNDRV_PCM_INFO_SYNC_APPLPTR),
316
.formats= SNDRV_PCM_FMTBIT_S16_LE,
317
.rates = (SNDRV_PCM_RATE_44100 |
318
SNDRV_PCM_RATE_48000),
319
.rate_min = 44100,
320
.rate_max = 48000,
321
.channels_min = 8,
322
.channels_max = 8,
323
.buffer_bytes_max = RME32_BUFFER_SIZE,
324
.period_bytes_min = RME32_BLOCK_SIZE,
325
.period_bytes_max = RME32_BLOCK_SIZE,
326
.periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
327
.periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
328
.fifo_size = 0,
329
};
330
331
/*
332
* SPDIF I/O capabilities (full-duplex mode)
333
*/
334
static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
335
.info = (SNDRV_PCM_INFO_MMAP |
336
SNDRV_PCM_INFO_MMAP_VALID |
337
SNDRV_PCM_INFO_INTERLEAVED |
338
SNDRV_PCM_INFO_PAUSE |
339
SNDRV_PCM_INFO_SYNC_START |
340
SNDRV_PCM_INFO_SYNC_APPLPTR),
341
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
342
SNDRV_PCM_FMTBIT_S32_LE),
343
.rates = (SNDRV_PCM_RATE_32000 |
344
SNDRV_PCM_RATE_44100 |
345
SNDRV_PCM_RATE_48000),
346
.rate_min = 32000,
347
.rate_max = 48000,
348
.channels_min = 2,
349
.channels_max = 2,
350
.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
351
.period_bytes_min = RME32_BLOCK_SIZE,
352
.period_bytes_max = RME32_BLOCK_SIZE,
353
.periods_min = 2,
354
.periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
355
.fifo_size = 0,
356
};
357
358
/*
359
* ADAT I/O capabilities (full-duplex mode)
360
*/
361
static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
362
{
363
.info = (SNDRV_PCM_INFO_MMAP |
364
SNDRV_PCM_INFO_MMAP_VALID |
365
SNDRV_PCM_INFO_INTERLEAVED |
366
SNDRV_PCM_INFO_PAUSE |
367
SNDRV_PCM_INFO_SYNC_START |
368
SNDRV_PCM_INFO_SYNC_APPLPTR),
369
.formats= SNDRV_PCM_FMTBIT_S16_LE,
370
.rates = (SNDRV_PCM_RATE_44100 |
371
SNDRV_PCM_RATE_48000),
372
.rate_min = 44100,
373
.rate_max = 48000,
374
.channels_min = 8,
375
.channels_max = 8,
376
.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
377
.period_bytes_min = RME32_BLOCK_SIZE,
378
.period_bytes_max = RME32_BLOCK_SIZE,
379
.periods_min = 2,
380
.periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
381
.fifo_size = 0,
382
};
383
384
static void snd_rme32_reset_dac(struct rme32 *rme32)
385
{
386
writel(rme32->wcreg | RME32_WCR_PD,
387
rme32->iobase + RME32_IO_CONTROL_REGISTER);
388
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
389
}
390
391
static int snd_rme32_playback_getrate(struct rme32 * rme32)
392
{
393
int rate;
394
395
rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
396
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
397
switch (rate) {
398
case 1:
399
rate = 32000;
400
break;
401
case 2:
402
rate = 44100;
403
break;
404
case 3:
405
rate = 48000;
406
break;
407
default:
408
return -1;
409
}
410
return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
411
}
412
413
static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
414
{
415
int n;
416
417
*is_adat = 0;
418
if (rme32->rcreg & RME32_RCR_LOCK) {
419
/* ADAT rate */
420
*is_adat = 1;
421
}
422
if (rme32->rcreg & RME32_RCR_ERF) {
423
return -1;
424
}
425
426
/* S/PDIF rate */
427
n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
428
(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
429
(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
430
431
if (RME32_PRO_WITH_8414(rme32))
432
switch (n) { /* supporting the CS8414 */
433
case 0:
434
case 1:
435
case 2:
436
return -1;
437
case 3:
438
return 96000;
439
case 4:
440
return 88200;
441
case 5:
442
return 48000;
443
case 6:
444
return 44100;
445
case 7:
446
return 32000;
447
default:
448
return -1;
449
}
450
else
451
switch (n) { /* supporting the CS8412 */
452
case 0:
453
return -1;
454
case 1:
455
return 48000;
456
case 2:
457
return 44100;
458
case 3:
459
return 32000;
460
case 4:
461
return 48000;
462
case 5:
463
return 44100;
464
case 6:
465
return 44056;
466
case 7:
467
return 32000;
468
default:
469
break;
470
}
471
return -1;
472
}
473
474
static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
475
{
476
int ds;
477
478
ds = rme32->wcreg & RME32_WCR_DS_BM;
479
switch (rate) {
480
case 32000:
481
rme32->wcreg &= ~RME32_WCR_DS_BM;
482
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
483
~RME32_WCR_FREQ_1;
484
break;
485
case 44100:
486
rme32->wcreg &= ~RME32_WCR_DS_BM;
487
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
488
~RME32_WCR_FREQ_0;
489
break;
490
case 48000:
491
rme32->wcreg &= ~RME32_WCR_DS_BM;
492
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
493
RME32_WCR_FREQ_1;
494
break;
495
case 64000:
496
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
497
return -EINVAL;
498
rme32->wcreg |= RME32_WCR_DS_BM;
499
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
500
~RME32_WCR_FREQ_1;
501
break;
502
case 88200:
503
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
504
return -EINVAL;
505
rme32->wcreg |= RME32_WCR_DS_BM;
506
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
507
~RME32_WCR_FREQ_0;
508
break;
509
case 96000:
510
if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
511
return -EINVAL;
512
rme32->wcreg |= RME32_WCR_DS_BM;
513
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
514
RME32_WCR_FREQ_1;
515
break;
516
default:
517
return -EINVAL;
518
}
519
if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
520
(ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
521
{
522
/* change to/from double-speed: reset the DAC (if available) */
523
snd_rme32_reset_dac(rme32);
524
} else {
525
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
526
}
527
return 0;
528
}
529
530
static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
531
{
532
switch (mode) {
533
case RME32_CLOCKMODE_SLAVE:
534
/* AutoSync */
535
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
536
~RME32_WCR_FREQ_1;
537
break;
538
case RME32_CLOCKMODE_MASTER_32:
539
/* Internal 32.0kHz */
540
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
541
~RME32_WCR_FREQ_1;
542
break;
543
case RME32_CLOCKMODE_MASTER_44:
544
/* Internal 44.1kHz */
545
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
546
RME32_WCR_FREQ_1;
547
break;
548
case RME32_CLOCKMODE_MASTER_48:
549
/* Internal 48.0kHz */
550
rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
551
RME32_WCR_FREQ_1;
552
break;
553
default:
554
return -EINVAL;
555
}
556
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
557
return 0;
558
}
559
560
static int snd_rme32_getclockmode(struct rme32 * rme32)
561
{
562
return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
563
(((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
564
}
565
566
static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
567
{
568
switch (type) {
569
case RME32_INPUT_OPTICAL:
570
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
571
~RME32_WCR_INP_1;
572
break;
573
case RME32_INPUT_COAXIAL:
574
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
575
~RME32_WCR_INP_1;
576
break;
577
case RME32_INPUT_INTERNAL:
578
rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
579
RME32_WCR_INP_1;
580
break;
581
case RME32_INPUT_XLR:
582
rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
583
RME32_WCR_INP_1;
584
break;
585
default:
586
return -EINVAL;
587
}
588
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
589
return 0;
590
}
591
592
static int snd_rme32_getinputtype(struct rme32 * rme32)
593
{
594
return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
595
(((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
596
}
597
598
static void
599
snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
600
{
601
int frlog;
602
603
if (n_channels == 2) {
604
frlog = 1;
605
} else {
606
/* assume 8 channels */
607
frlog = 3;
608
}
609
if (is_playback) {
610
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
611
rme32->playback_frlog = frlog;
612
} else {
613
frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
614
rme32->capture_frlog = frlog;
615
}
616
}
617
618
static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
619
{
620
switch (format) {
621
case SNDRV_PCM_FORMAT_S16_LE:
622
rme32->wcreg &= ~RME32_WCR_MODE24;
623
break;
624
case SNDRV_PCM_FORMAT_S32_LE:
625
rme32->wcreg |= RME32_WCR_MODE24;
626
break;
627
default:
628
return -EINVAL;
629
}
630
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
631
return 0;
632
}
633
634
static int
635
snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
636
struct snd_pcm_hw_params *params)
637
{
638
int err, rate, dummy;
639
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
640
struct snd_pcm_runtime *runtime = substream->runtime;
641
642
if (!rme32->fullduplex_mode) {
643
runtime->dma_area = (void __force *)(rme32->iobase +
644
RME32_IO_DATA_BUFFER);
645
runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
646
runtime->dma_bytes = RME32_BUFFER_SIZE;
647
}
648
649
spin_lock_irq(&rme32->lock);
650
rate = 0;
651
if (rme32->rcreg & RME32_RCR_KMODE)
652
rate = snd_rme32_capture_getrate(rme32, &dummy);
653
if (rate > 0) {
654
/* AutoSync */
655
if ((int)params_rate(params) != rate) {
656
spin_unlock_irq(&rme32->lock);
657
return -EIO;
658
}
659
} else {
660
err = snd_rme32_playback_setrate(rme32, params_rate(params));
661
if (err < 0) {
662
spin_unlock_irq(&rme32->lock);
663
return err;
664
}
665
}
666
err = snd_rme32_setformat(rme32, params_format(params));
667
if (err < 0) {
668
spin_unlock_irq(&rme32->lock);
669
return err;
670
}
671
672
snd_rme32_setframelog(rme32, params_channels(params), 1);
673
if (rme32->capture_periodsize != 0) {
674
if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
675
spin_unlock_irq(&rme32->lock);
676
return -EBUSY;
677
}
678
}
679
rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
680
/* S/PDIF setup */
681
if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
682
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
683
rme32->wcreg |= rme32->wcreg_spdif_stream;
684
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
685
}
686
spin_unlock_irq(&rme32->lock);
687
688
return 0;
689
}
690
691
static int
692
snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
693
struct snd_pcm_hw_params *params)
694
{
695
int err, isadat, rate;
696
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
697
struct snd_pcm_runtime *runtime = substream->runtime;
698
699
if (!rme32->fullduplex_mode) {
700
runtime->dma_area = (void __force *)rme32->iobase +
701
RME32_IO_DATA_BUFFER;
702
runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
703
runtime->dma_bytes = RME32_BUFFER_SIZE;
704
}
705
706
spin_lock_irq(&rme32->lock);
707
/* enable AutoSync for record-preparing */
708
rme32->wcreg |= RME32_WCR_AUTOSYNC;
709
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
710
711
err = snd_rme32_setformat(rme32, params_format(params));
712
if (err < 0) {
713
spin_unlock_irq(&rme32->lock);
714
return err;
715
}
716
err = snd_rme32_playback_setrate(rme32, params_rate(params));
717
if (err < 0) {
718
spin_unlock_irq(&rme32->lock);
719
return err;
720
}
721
rate = snd_rme32_capture_getrate(rme32, &isadat);
722
if (rate > 0) {
723
if ((int)params_rate(params) != rate) {
724
spin_unlock_irq(&rme32->lock);
725
return -EIO;
726
}
727
if ((isadat && runtime->hw.channels_min == 2) ||
728
(!isadat && runtime->hw.channels_min == 8)) {
729
spin_unlock_irq(&rme32->lock);
730
return -EIO;
731
}
732
}
733
/* AutoSync off for recording */
734
rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
735
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
736
737
snd_rme32_setframelog(rme32, params_channels(params), 0);
738
if (rme32->playback_periodsize != 0) {
739
if (params_period_size(params) << rme32->capture_frlog !=
740
rme32->playback_periodsize) {
741
spin_unlock_irq(&rme32->lock);
742
return -EBUSY;
743
}
744
}
745
rme32->capture_periodsize =
746
params_period_size(params) << rme32->capture_frlog;
747
spin_unlock_irq(&rme32->lock);
748
749
return 0;
750
}
751
752
static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
753
{
754
if (!from_pause) {
755
writel(0, rme32->iobase + RME32_IO_RESET_POS);
756
}
757
758
rme32->wcreg |= RME32_WCR_START;
759
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
760
}
761
762
static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
763
{
764
/*
765
* Check if there is an unconfirmed IRQ, if so confirm it, or else
766
* the hardware will not stop generating interrupts
767
*/
768
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
769
if (rme32->rcreg & RME32_RCR_IRQ) {
770
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
771
}
772
rme32->wcreg &= ~RME32_WCR_START;
773
if (rme32->wcreg & RME32_WCR_SEL)
774
rme32->wcreg |= RME32_WCR_MUTE;
775
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
776
if (! to_pause)
777
writel(0, rme32->iobase + RME32_IO_RESET_POS);
778
}
779
780
static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
781
{
782
struct rme32 *rme32 = (struct rme32 *) dev_id;
783
784
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
785
if (!(rme32->rcreg & RME32_RCR_IRQ)) {
786
return IRQ_NONE;
787
} else {
788
if (rme32->capture_substream) {
789
snd_pcm_period_elapsed(rme32->capture_substream);
790
}
791
if (rme32->playback_substream) {
792
snd_pcm_period_elapsed(rme32->playback_substream);
793
}
794
writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
795
}
796
return IRQ_HANDLED;
797
}
798
799
static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
800
801
static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
802
.count = ARRAY_SIZE(period_bytes),
803
.list = period_bytes,
804
.mask = 0
805
};
806
807
static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
808
{
809
if (! rme32->fullduplex_mode) {
810
snd_pcm_hw_constraint_single(runtime,
811
SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
812
RME32_BUFFER_SIZE);
813
snd_pcm_hw_constraint_list(runtime, 0,
814
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
815
&hw_constraints_period_bytes);
816
}
817
}
818
819
static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
820
{
821
int rate, dummy;
822
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
823
struct snd_pcm_runtime *runtime = substream->runtime;
824
825
snd_pcm_set_sync(substream);
826
827
spin_lock_irq(&rme32->lock);
828
if (rme32->playback_substream != NULL) {
829
spin_unlock_irq(&rme32->lock);
830
return -EBUSY;
831
}
832
rme32->wcreg &= ~RME32_WCR_ADAT;
833
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
834
rme32->playback_substream = substream;
835
spin_unlock_irq(&rme32->lock);
836
837
if (rme32->fullduplex_mode)
838
runtime->hw = snd_rme32_spdif_fd_info;
839
else
840
runtime->hw = snd_rme32_spdif_info;
841
if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
842
runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
843
runtime->hw.rate_max = 96000;
844
}
845
rate = 0;
846
if (rme32->rcreg & RME32_RCR_KMODE)
847
rate = snd_rme32_capture_getrate(rme32, &dummy);
848
if (rate > 0) {
849
/* AutoSync */
850
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
851
runtime->hw.rate_min = rate;
852
runtime->hw.rate_max = rate;
853
}
854
855
snd_rme32_set_buffer_constraint(rme32, runtime);
856
857
rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
858
rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
859
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
860
SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
861
return 0;
862
}
863
864
static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
865
{
866
int isadat, rate;
867
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
868
struct snd_pcm_runtime *runtime = substream->runtime;
869
870
snd_pcm_set_sync(substream);
871
872
spin_lock_irq(&rme32->lock);
873
if (rme32->capture_substream != NULL) {
874
spin_unlock_irq(&rme32->lock);
875
return -EBUSY;
876
}
877
rme32->capture_substream = substream;
878
spin_unlock_irq(&rme32->lock);
879
880
if (rme32->fullduplex_mode)
881
runtime->hw = snd_rme32_spdif_fd_info;
882
else
883
runtime->hw = snd_rme32_spdif_info;
884
if (RME32_PRO_WITH_8414(rme32)) {
885
runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
886
runtime->hw.rate_max = 96000;
887
}
888
rate = snd_rme32_capture_getrate(rme32, &isadat);
889
if (rate > 0) {
890
if (isadat) {
891
return -EIO;
892
}
893
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
894
runtime->hw.rate_min = rate;
895
runtime->hw.rate_max = rate;
896
}
897
898
snd_rme32_set_buffer_constraint(rme32, runtime);
899
900
return 0;
901
}
902
903
static int
904
snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
905
{
906
int rate, dummy;
907
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
908
struct snd_pcm_runtime *runtime = substream->runtime;
909
910
snd_pcm_set_sync(substream);
911
912
spin_lock_irq(&rme32->lock);
913
if (rme32->playback_substream != NULL) {
914
spin_unlock_irq(&rme32->lock);
915
return -EBUSY;
916
}
917
rme32->wcreg |= RME32_WCR_ADAT;
918
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
919
rme32->playback_substream = substream;
920
spin_unlock_irq(&rme32->lock);
921
922
if (rme32->fullduplex_mode)
923
runtime->hw = snd_rme32_adat_fd_info;
924
else
925
runtime->hw = snd_rme32_adat_info;
926
rate = 0;
927
if (rme32->rcreg & RME32_RCR_KMODE)
928
rate = snd_rme32_capture_getrate(rme32, &dummy);
929
if (rate > 0) {
930
/* AutoSync */
931
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
932
runtime->hw.rate_min = rate;
933
runtime->hw.rate_max = rate;
934
}
935
936
snd_rme32_set_buffer_constraint(rme32, runtime);
937
return 0;
938
}
939
940
static int
941
snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
942
{
943
int isadat, rate;
944
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
945
struct snd_pcm_runtime *runtime = substream->runtime;
946
947
if (rme32->fullduplex_mode)
948
runtime->hw = snd_rme32_adat_fd_info;
949
else
950
runtime->hw = snd_rme32_adat_info;
951
rate = snd_rme32_capture_getrate(rme32, &isadat);
952
if (rate > 0) {
953
if (!isadat) {
954
return -EIO;
955
}
956
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
957
runtime->hw.rate_min = rate;
958
runtime->hw.rate_max = rate;
959
}
960
961
snd_pcm_set_sync(substream);
962
963
spin_lock_irq(&rme32->lock);
964
if (rme32->capture_substream != NULL) {
965
spin_unlock_irq(&rme32->lock);
966
return -EBUSY;
967
}
968
rme32->capture_substream = substream;
969
spin_unlock_irq(&rme32->lock);
970
971
snd_rme32_set_buffer_constraint(rme32, runtime);
972
return 0;
973
}
974
975
static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
976
{
977
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
978
int spdif = 0;
979
980
spin_lock_irq(&rme32->lock);
981
rme32->playback_substream = NULL;
982
rme32->playback_periodsize = 0;
983
spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
984
spin_unlock_irq(&rme32->lock);
985
if (spdif) {
986
rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
987
snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
988
SNDRV_CTL_EVENT_MASK_INFO,
989
&rme32->spdif_ctl->id);
990
}
991
return 0;
992
}
993
994
static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
995
{
996
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
997
998
spin_lock_irq(&rme32->lock);
999
rme32->capture_substream = NULL;
1000
rme32->capture_periodsize = 0;
1001
spin_unlock_irq(&rme32->lock);
1002
return 0;
1003
}
1004
1005
static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
1006
{
1007
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1008
1009
spin_lock_irq(&rme32->lock);
1010
if (rme32->fullduplex_mode) {
1011
memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
1012
rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1013
rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1014
} else {
1015
writel(0, rme32->iobase + RME32_IO_RESET_POS);
1016
}
1017
if (rme32->wcreg & RME32_WCR_SEL)
1018
rme32->wcreg &= ~RME32_WCR_MUTE;
1019
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1020
spin_unlock_irq(&rme32->lock);
1021
return 0;
1022
}
1023
1024
static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
1025
{
1026
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1027
1028
spin_lock_irq(&rme32->lock);
1029
if (rme32->fullduplex_mode) {
1030
memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1031
rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1032
rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1033
rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1034
} else {
1035
writel(0, rme32->iobase + RME32_IO_RESET_POS);
1036
}
1037
spin_unlock_irq(&rme32->lock);
1038
return 0;
1039
}
1040
1041
static int
1042
snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1043
{
1044
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1045
struct snd_pcm_substream *s;
1046
1047
spin_lock(&rme32->lock);
1048
snd_pcm_group_for_each_entry(s, substream) {
1049
if (s != rme32->playback_substream &&
1050
s != rme32->capture_substream)
1051
continue;
1052
switch (cmd) {
1053
case SNDRV_PCM_TRIGGER_START:
1054
rme32->running |= (1 << s->stream);
1055
if (rme32->fullduplex_mode) {
1056
/* remember the current DMA position */
1057
if (s == rme32->playback_substream) {
1058
rme32->playback_pcm.hw_io =
1059
rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1060
} else {
1061
rme32->capture_pcm.hw_io =
1062
rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1063
}
1064
}
1065
break;
1066
case SNDRV_PCM_TRIGGER_STOP:
1067
rme32->running &= ~(1 << s->stream);
1068
break;
1069
}
1070
snd_pcm_trigger_done(s, substream);
1071
}
1072
1073
switch (cmd) {
1074
case SNDRV_PCM_TRIGGER_START:
1075
if (rme32->running && ! RME32_ISWORKING(rme32))
1076
snd_rme32_pcm_start(rme32, 0);
1077
break;
1078
case SNDRV_PCM_TRIGGER_STOP:
1079
if (! rme32->running && RME32_ISWORKING(rme32))
1080
snd_rme32_pcm_stop(rme32, 0);
1081
break;
1082
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1083
if (rme32->running && RME32_ISWORKING(rme32))
1084
snd_rme32_pcm_stop(rme32, 1);
1085
break;
1086
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1087
if (rme32->running && ! RME32_ISWORKING(rme32))
1088
snd_rme32_pcm_start(rme32, 1);
1089
break;
1090
}
1091
spin_unlock(&rme32->lock);
1092
return 0;
1093
}
1094
1095
/* pointer callback for halfduplex mode */
1096
static snd_pcm_uframes_t
1097
snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1098
{
1099
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1100
return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1101
}
1102
1103
static snd_pcm_uframes_t
1104
snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1105
{
1106
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1107
return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1108
}
1109
1110
1111
/* ack and pointer callbacks for fullduplex mode */
1112
static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1113
struct snd_pcm_indirect *rec, size_t bytes)
1114
{
1115
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1116
memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1117
substream->runtime->dma_area + rec->sw_data, bytes);
1118
}
1119
1120
static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1121
{
1122
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1123
struct snd_pcm_indirect *rec, *cprec;
1124
1125
rec = &rme32->playback_pcm;
1126
cprec = &rme32->capture_pcm;
1127
spin_lock(&rme32->lock);
1128
rec->hw_queue_size = RME32_BUFFER_SIZE;
1129
if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1130
rec->hw_queue_size -= cprec->hw_ready;
1131
spin_unlock(&rme32->lock);
1132
return snd_pcm_indirect_playback_transfer(substream, rec,
1133
snd_rme32_pb_trans_copy);
1134
}
1135
1136
static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1137
struct snd_pcm_indirect *rec, size_t bytes)
1138
{
1139
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1140
memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1141
rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1142
bytes);
1143
}
1144
1145
static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1146
{
1147
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1148
return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1149
snd_rme32_cp_trans_copy);
1150
}
1151
1152
static snd_pcm_uframes_t
1153
snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1154
{
1155
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1156
return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1157
snd_rme32_pcm_byteptr(rme32));
1158
}
1159
1160
static snd_pcm_uframes_t
1161
snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1162
{
1163
struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1164
return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1165
snd_rme32_pcm_byteptr(rme32));
1166
}
1167
1168
/* for halfduplex mode */
1169
static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1170
.open = snd_rme32_playback_spdif_open,
1171
.close = snd_rme32_playback_close,
1172
.hw_params = snd_rme32_playback_hw_params,
1173
.prepare = snd_rme32_playback_prepare,
1174
.trigger = snd_rme32_pcm_trigger,
1175
.pointer = snd_rme32_playback_pointer,
1176
.copy = snd_rme32_playback_copy,
1177
.fill_silence = snd_rme32_playback_silence,
1178
.mmap = snd_pcm_lib_mmap_iomem,
1179
};
1180
1181
static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1182
.open = snd_rme32_capture_spdif_open,
1183
.close = snd_rme32_capture_close,
1184
.hw_params = snd_rme32_capture_hw_params,
1185
.prepare = snd_rme32_capture_prepare,
1186
.trigger = snd_rme32_pcm_trigger,
1187
.pointer = snd_rme32_capture_pointer,
1188
.copy = snd_rme32_capture_copy,
1189
.mmap = snd_pcm_lib_mmap_iomem,
1190
};
1191
1192
static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1193
.open = snd_rme32_playback_adat_open,
1194
.close = snd_rme32_playback_close,
1195
.hw_params = snd_rme32_playback_hw_params,
1196
.prepare = snd_rme32_playback_prepare,
1197
.trigger = snd_rme32_pcm_trigger,
1198
.pointer = snd_rme32_playback_pointer,
1199
.copy = snd_rme32_playback_copy,
1200
.fill_silence = snd_rme32_playback_silence,
1201
.mmap = snd_pcm_lib_mmap_iomem,
1202
};
1203
1204
static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1205
.open = snd_rme32_capture_adat_open,
1206
.close = snd_rme32_capture_close,
1207
.hw_params = snd_rme32_capture_hw_params,
1208
.prepare = snd_rme32_capture_prepare,
1209
.trigger = snd_rme32_pcm_trigger,
1210
.pointer = snd_rme32_capture_pointer,
1211
.copy = snd_rme32_capture_copy,
1212
.mmap = snd_pcm_lib_mmap_iomem,
1213
};
1214
1215
/* for fullduplex mode */
1216
static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1217
.open = snd_rme32_playback_spdif_open,
1218
.close = snd_rme32_playback_close,
1219
.hw_params = snd_rme32_playback_hw_params,
1220
.prepare = snd_rme32_playback_prepare,
1221
.trigger = snd_rme32_pcm_trigger,
1222
.pointer = snd_rme32_playback_fd_pointer,
1223
.ack = snd_rme32_playback_fd_ack,
1224
};
1225
1226
static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1227
.open = snd_rme32_capture_spdif_open,
1228
.close = snd_rme32_capture_close,
1229
.hw_params = snd_rme32_capture_hw_params,
1230
.prepare = snd_rme32_capture_prepare,
1231
.trigger = snd_rme32_pcm_trigger,
1232
.pointer = snd_rme32_capture_fd_pointer,
1233
.ack = snd_rme32_capture_fd_ack,
1234
};
1235
1236
static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1237
.open = snd_rme32_playback_adat_open,
1238
.close = snd_rme32_playback_close,
1239
.hw_params = snd_rme32_playback_hw_params,
1240
.prepare = snd_rme32_playback_prepare,
1241
.trigger = snd_rme32_pcm_trigger,
1242
.pointer = snd_rme32_playback_fd_pointer,
1243
.ack = snd_rme32_playback_fd_ack,
1244
};
1245
1246
static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1247
.open = snd_rme32_capture_adat_open,
1248
.close = snd_rme32_capture_close,
1249
.hw_params = snd_rme32_capture_hw_params,
1250
.prepare = snd_rme32_capture_prepare,
1251
.trigger = snd_rme32_pcm_trigger,
1252
.pointer = snd_rme32_capture_fd_pointer,
1253
.ack = snd_rme32_capture_fd_ack,
1254
};
1255
1256
static void snd_rme32_free(struct rme32 *rme32)
1257
{
1258
if (rme32->irq >= 0)
1259
snd_rme32_pcm_stop(rme32, 0);
1260
}
1261
1262
static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1263
{
1264
struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1265
rme32->spdif_pcm = NULL;
1266
}
1267
1268
static void
1269
snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1270
{
1271
struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1272
rme32->adat_pcm = NULL;
1273
}
1274
1275
static int snd_rme32_create(struct rme32 *rme32)
1276
{
1277
struct pci_dev *pci = rme32->pci;
1278
int err;
1279
1280
rme32->irq = -1;
1281
spin_lock_init(&rme32->lock);
1282
1283
err = pcim_enable_device(pci);
1284
if (err < 0)
1285
return err;
1286
1287
err = pcim_request_all_regions(pci, "RME32");
1288
if (err < 0)
1289
return err;
1290
rme32->port = pci_resource_start(rme32->pci, 0);
1291
1292
rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
1293
if (!rme32->iobase) {
1294
dev_err(rme32->card->dev,
1295
"unable to remap memory region 0x%lx-0x%lx\n",
1296
rme32->port, rme32->port + RME32_IO_SIZE - 1);
1297
return -ENOMEM;
1298
}
1299
1300
if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
1301
IRQF_SHARED, KBUILD_MODNAME, rme32)) {
1302
dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1303
return -EBUSY;
1304
}
1305
rme32->irq = pci->irq;
1306
rme32->card->sync_irq = rme32->irq;
1307
1308
/* read the card's revision number */
1309
pci_read_config_byte(pci, 8, &rme32->rev);
1310
1311
/* set up ALSA pcm device for S/PDIF */
1312
err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
1313
if (err < 0)
1314
return err;
1315
rme32->spdif_pcm->private_data = rme32;
1316
rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1317
strscpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1318
if (rme32->fullduplex_mode) {
1319
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1320
&snd_rme32_playback_spdif_fd_ops);
1321
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1322
&snd_rme32_capture_spdif_fd_ops);
1323
snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1324
NULL, 0, RME32_MID_BUFFER_SIZE);
1325
rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1326
} else {
1327
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1328
&snd_rme32_playback_spdif_ops);
1329
snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1330
&snd_rme32_capture_spdif_ops);
1331
rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1332
}
1333
1334
/* set up ALSA pcm device for ADAT */
1335
if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1336
(pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1337
/* ADAT is not available on DIGI32 and DIGI32 Pro */
1338
rme32->adat_pcm = NULL;
1339
}
1340
else {
1341
err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1342
1, 1, &rme32->adat_pcm);
1343
if (err < 0)
1344
return err;
1345
rme32->adat_pcm->private_data = rme32;
1346
rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1347
strscpy(rme32->adat_pcm->name, "Digi32 ADAT");
1348
if (rme32->fullduplex_mode) {
1349
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1350
&snd_rme32_playback_adat_fd_ops);
1351
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1352
&snd_rme32_capture_adat_fd_ops);
1353
snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1354
NULL,
1355
0, RME32_MID_BUFFER_SIZE);
1356
rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1357
} else {
1358
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1359
&snd_rme32_playback_adat_ops);
1360
snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1361
&snd_rme32_capture_adat_ops);
1362
rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1363
}
1364
}
1365
1366
1367
rme32->playback_periodsize = 0;
1368
rme32->capture_periodsize = 0;
1369
1370
/* make sure playback/capture is stopped, if by some reason active */
1371
snd_rme32_pcm_stop(rme32, 0);
1372
1373
/* reset DAC */
1374
snd_rme32_reset_dac(rme32);
1375
1376
/* reset buffer pointer */
1377
writel(0, rme32->iobase + RME32_IO_RESET_POS);
1378
1379
/* set default values in registers */
1380
rme32->wcreg = RME32_WCR_SEL | /* normal playback */
1381
RME32_WCR_INP_0 | /* input select */
1382
RME32_WCR_MUTE; /* muting on */
1383
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1384
1385
1386
/* init switch interface */
1387
err = snd_rme32_create_switches(rme32->card, rme32);
1388
if (err < 0)
1389
return err;
1390
1391
/* init proc interface */
1392
snd_rme32_proc_init(rme32);
1393
1394
rme32->capture_substream = NULL;
1395
rme32->playback_substream = NULL;
1396
1397
return 0;
1398
}
1399
1400
/*
1401
* proc interface
1402
*/
1403
1404
static void
1405
snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1406
{
1407
int n;
1408
struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1409
1410
rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1411
1412
snd_iprintf(buffer, rme32->card->longname);
1413
snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1414
1415
snd_iprintf(buffer, "\nGeneral settings\n");
1416
if (rme32->fullduplex_mode)
1417
snd_iprintf(buffer, " Full-duplex mode\n");
1418
else
1419
snd_iprintf(buffer, " Half-duplex mode\n");
1420
if (RME32_PRO_WITH_8414(rme32)) {
1421
snd_iprintf(buffer, " receiver: CS8414\n");
1422
} else {
1423
snd_iprintf(buffer, " receiver: CS8412\n");
1424
}
1425
if (rme32->wcreg & RME32_WCR_MODE24) {
1426
snd_iprintf(buffer, " format: 24 bit");
1427
} else {
1428
snd_iprintf(buffer, " format: 16 bit");
1429
}
1430
if (rme32->wcreg & RME32_WCR_MONO) {
1431
snd_iprintf(buffer, ", Mono\n");
1432
} else {
1433
snd_iprintf(buffer, ", Stereo\n");
1434
}
1435
1436
snd_iprintf(buffer, "\nInput settings\n");
1437
switch (snd_rme32_getinputtype(rme32)) {
1438
case RME32_INPUT_OPTICAL:
1439
snd_iprintf(buffer, " input: optical");
1440
break;
1441
case RME32_INPUT_COAXIAL:
1442
snd_iprintf(buffer, " input: coaxial");
1443
break;
1444
case RME32_INPUT_INTERNAL:
1445
snd_iprintf(buffer, " input: internal");
1446
break;
1447
case RME32_INPUT_XLR:
1448
snd_iprintf(buffer, " input: XLR");
1449
break;
1450
}
1451
if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1452
snd_iprintf(buffer, "\n sample rate: no valid signal\n");
1453
} else {
1454
if (n) {
1455
snd_iprintf(buffer, " (8 channels)\n");
1456
} else {
1457
snd_iprintf(buffer, " (2 channels)\n");
1458
}
1459
snd_iprintf(buffer, " sample rate: %d Hz\n",
1460
snd_rme32_capture_getrate(rme32, &n));
1461
}
1462
1463
snd_iprintf(buffer, "\nOutput settings\n");
1464
if (rme32->wcreg & RME32_WCR_SEL) {
1465
snd_iprintf(buffer, " output signal: normal playback");
1466
} else {
1467
snd_iprintf(buffer, " output signal: same as input");
1468
}
1469
if (rme32->wcreg & RME32_WCR_MUTE) {
1470
snd_iprintf(buffer, " (muted)\n");
1471
} else {
1472
snd_iprintf(buffer, "\n");
1473
}
1474
1475
/* master output frequency */
1476
if (!
1477
((!(rme32->wcreg & RME32_WCR_FREQ_0))
1478
&& (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1479
snd_iprintf(buffer, " sample rate: %d Hz\n",
1480
snd_rme32_playback_getrate(rme32));
1481
}
1482
if (rme32->rcreg & RME32_RCR_KMODE) {
1483
snd_iprintf(buffer, " sample clock source: AutoSync\n");
1484
} else {
1485
snd_iprintf(buffer, " sample clock source: Internal\n");
1486
}
1487
if (rme32->wcreg & RME32_WCR_PRO) {
1488
snd_iprintf(buffer, " format: AES/EBU (professional)\n");
1489
} else {
1490
snd_iprintf(buffer, " format: IEC958 (consumer)\n");
1491
}
1492
if (rme32->wcreg & RME32_WCR_EMP) {
1493
snd_iprintf(buffer, " emphasis: on\n");
1494
} else {
1495
snd_iprintf(buffer, " emphasis: off\n");
1496
}
1497
}
1498
1499
static void snd_rme32_proc_init(struct rme32 *rme32)
1500
{
1501
snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
1502
}
1503
1504
/*
1505
* control interface
1506
*/
1507
1508
#define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
1509
1510
static int
1511
snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1512
struct snd_ctl_elem_value *ucontrol)
1513
{
1514
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1515
1516
spin_lock_irq(&rme32->lock);
1517
ucontrol->value.integer.value[0] =
1518
rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1519
spin_unlock_irq(&rme32->lock);
1520
return 0;
1521
}
1522
static int
1523
snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1524
struct snd_ctl_elem_value *ucontrol)
1525
{
1526
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1527
unsigned int val;
1528
int change;
1529
1530
val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1531
spin_lock_irq(&rme32->lock);
1532
val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1533
change = val != rme32->wcreg;
1534
if (ucontrol->value.integer.value[0])
1535
val &= ~RME32_WCR_MUTE;
1536
else
1537
val |= RME32_WCR_MUTE;
1538
rme32->wcreg = val;
1539
writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1540
spin_unlock_irq(&rme32->lock);
1541
return change;
1542
}
1543
1544
static int
1545
snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1546
struct snd_ctl_elem_info *uinfo)
1547
{
1548
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1549
static const char * const texts[4] = {
1550
"Optical", "Coaxial", "Internal", "XLR"
1551
};
1552
int num_items;
1553
1554
switch (rme32->pci->device) {
1555
case PCI_DEVICE_ID_RME_DIGI32:
1556
case PCI_DEVICE_ID_RME_DIGI32_8:
1557
num_items = 3;
1558
break;
1559
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1560
num_items = 4;
1561
break;
1562
default:
1563
snd_BUG();
1564
return -EINVAL;
1565
}
1566
return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1567
}
1568
static int
1569
snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1570
struct snd_ctl_elem_value *ucontrol)
1571
{
1572
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1573
unsigned int items = 3;
1574
1575
spin_lock_irq(&rme32->lock);
1576
ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1577
1578
switch (rme32->pci->device) {
1579
case PCI_DEVICE_ID_RME_DIGI32:
1580
case PCI_DEVICE_ID_RME_DIGI32_8:
1581
items = 3;
1582
break;
1583
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1584
items = 4;
1585
break;
1586
default:
1587
snd_BUG();
1588
break;
1589
}
1590
if (ucontrol->value.enumerated.item[0] >= items) {
1591
ucontrol->value.enumerated.item[0] = items - 1;
1592
}
1593
1594
spin_unlock_irq(&rme32->lock);
1595
return 0;
1596
}
1597
static int
1598
snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1599
struct snd_ctl_elem_value *ucontrol)
1600
{
1601
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1602
unsigned int val;
1603
int change, items = 3;
1604
1605
switch (rme32->pci->device) {
1606
case PCI_DEVICE_ID_RME_DIGI32:
1607
case PCI_DEVICE_ID_RME_DIGI32_8:
1608
items = 3;
1609
break;
1610
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1611
items = 4;
1612
break;
1613
default:
1614
snd_BUG();
1615
break;
1616
}
1617
val = ucontrol->value.enumerated.item[0] % items;
1618
1619
spin_lock_irq(&rme32->lock);
1620
change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1621
snd_rme32_setinputtype(rme32, val);
1622
spin_unlock_irq(&rme32->lock);
1623
return change;
1624
}
1625
1626
static int
1627
snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1628
struct snd_ctl_elem_info *uinfo)
1629
{
1630
static const char * const texts[4] = { "AutoSync",
1631
"Internal 32.0kHz",
1632
"Internal 44.1kHz",
1633
"Internal 48.0kHz" };
1634
1635
return snd_ctl_enum_info(uinfo, 1, 4, texts);
1636
}
1637
static int
1638
snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1639
struct snd_ctl_elem_value *ucontrol)
1640
{
1641
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1642
1643
spin_lock_irq(&rme32->lock);
1644
ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1645
spin_unlock_irq(&rme32->lock);
1646
return 0;
1647
}
1648
static int
1649
snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1650
struct snd_ctl_elem_value *ucontrol)
1651
{
1652
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1653
unsigned int val;
1654
int change;
1655
1656
val = ucontrol->value.enumerated.item[0] % 3;
1657
spin_lock_irq(&rme32->lock);
1658
change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1659
snd_rme32_setclockmode(rme32, val);
1660
spin_unlock_irq(&rme32->lock);
1661
return change;
1662
}
1663
1664
static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1665
{
1666
u32 val = 0;
1667
val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1668
if (val & RME32_WCR_PRO)
1669
val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1670
else
1671
val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1672
return val;
1673
}
1674
1675
static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1676
{
1677
aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1678
if (val & RME32_WCR_PRO)
1679
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1680
else
1681
aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1682
}
1683
1684
static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1685
struct snd_ctl_elem_info *uinfo)
1686
{
1687
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1688
uinfo->count = 1;
1689
return 0;
1690
}
1691
1692
static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1693
struct snd_ctl_elem_value *ucontrol)
1694
{
1695
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1696
1697
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1698
rme32->wcreg_spdif);
1699
return 0;
1700
}
1701
1702
static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1703
struct snd_ctl_elem_value *ucontrol)
1704
{
1705
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1706
int change;
1707
u32 val;
1708
1709
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1710
spin_lock_irq(&rme32->lock);
1711
change = val != rme32->wcreg_spdif;
1712
rme32->wcreg_spdif = val;
1713
spin_unlock_irq(&rme32->lock);
1714
return change;
1715
}
1716
1717
static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1718
struct snd_ctl_elem_info *uinfo)
1719
{
1720
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1721
uinfo->count = 1;
1722
return 0;
1723
}
1724
1725
static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1726
struct snd_ctl_elem_value *
1727
ucontrol)
1728
{
1729
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1730
1731
snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1732
rme32->wcreg_spdif_stream);
1733
return 0;
1734
}
1735
1736
static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1737
struct snd_ctl_elem_value *
1738
ucontrol)
1739
{
1740
struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1741
int change;
1742
u32 val;
1743
1744
val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1745
spin_lock_irq(&rme32->lock);
1746
change = val != rme32->wcreg_spdif_stream;
1747
rme32->wcreg_spdif_stream = val;
1748
rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1749
rme32->wcreg |= val;
1750
writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1751
spin_unlock_irq(&rme32->lock);
1752
return change;
1753
}
1754
1755
static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1756
struct snd_ctl_elem_info *uinfo)
1757
{
1758
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1759
uinfo->count = 1;
1760
return 0;
1761
}
1762
1763
static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1764
struct snd_ctl_elem_value *
1765
ucontrol)
1766
{
1767
ucontrol->value.iec958.status[0] = kcontrol->private_value;
1768
return 0;
1769
}
1770
1771
static const struct snd_kcontrol_new snd_rme32_controls[] = {
1772
{
1773
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1774
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1775
.info = snd_rme32_control_spdif_info,
1776
.get = snd_rme32_control_spdif_get,
1777
.put = snd_rme32_control_spdif_put
1778
},
1779
{
1780
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1781
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1782
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1783
.info = snd_rme32_control_spdif_stream_info,
1784
.get = snd_rme32_control_spdif_stream_get,
1785
.put = snd_rme32_control_spdif_stream_put
1786
},
1787
{
1788
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1789
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1790
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1791
.info = snd_rme32_control_spdif_mask_info,
1792
.get = snd_rme32_control_spdif_mask_get,
1793
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1794
},
1795
{
1796
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1797
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1798
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1799
.info = snd_rme32_control_spdif_mask_info,
1800
.get = snd_rme32_control_spdif_mask_get,
1801
.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1802
},
1803
{
1804
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1805
.name = "Input Connector",
1806
.info = snd_rme32_info_inputtype_control,
1807
.get = snd_rme32_get_inputtype_control,
1808
.put = snd_rme32_put_inputtype_control
1809
},
1810
{
1811
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1812
.name = "Loopback Input",
1813
.info = snd_rme32_info_loopback_control,
1814
.get = snd_rme32_get_loopback_control,
1815
.put = snd_rme32_put_loopback_control
1816
},
1817
{
1818
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1819
.name = "Sample Clock Source",
1820
.info = snd_rme32_info_clockmode_control,
1821
.get = snd_rme32_get_clockmode_control,
1822
.put = snd_rme32_put_clockmode_control
1823
}
1824
};
1825
1826
static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1827
{
1828
int idx, err;
1829
struct snd_kcontrol *kctl;
1830
1831
for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1832
kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
1833
err = snd_ctl_add(card, kctl);
1834
if (err < 0)
1835
return err;
1836
if (idx == 1) /* IEC958 (S/PDIF) Stream */
1837
rme32->spdif_ctl = kctl;
1838
}
1839
1840
return 0;
1841
}
1842
1843
/*
1844
* Card initialisation
1845
*/
1846
1847
static void snd_rme32_card_free(struct snd_card *card)
1848
{
1849
snd_rme32_free(card->private_data);
1850
}
1851
1852
static int
1853
__snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1854
{
1855
static int dev;
1856
struct rme32 *rme32;
1857
struct snd_card *card;
1858
int err;
1859
1860
if (dev >= SNDRV_CARDS) {
1861
return -ENODEV;
1862
}
1863
if (!enable[dev]) {
1864
dev++;
1865
return -ENOENT;
1866
}
1867
1868
err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1869
sizeof(*rme32), &card);
1870
if (err < 0)
1871
return err;
1872
card->private_free = snd_rme32_card_free;
1873
rme32 = (struct rme32 *) card->private_data;
1874
rme32->card = card;
1875
rme32->pci = pci;
1876
if (fullduplex[dev])
1877
rme32->fullduplex_mode = 1;
1878
err = snd_rme32_create(rme32);
1879
if (err < 0)
1880
return err;
1881
1882
strscpy(card->driver, "Digi32");
1883
switch (rme32->pci->device) {
1884
case PCI_DEVICE_ID_RME_DIGI32:
1885
strscpy(card->shortname, "RME Digi32");
1886
break;
1887
case PCI_DEVICE_ID_RME_DIGI32_8:
1888
strscpy(card->shortname, "RME Digi32/8");
1889
break;
1890
case PCI_DEVICE_ID_RME_DIGI32_PRO:
1891
strscpy(card->shortname, "RME Digi32 PRO");
1892
break;
1893
}
1894
sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1895
card->shortname, rme32->rev, rme32->port, rme32->irq);
1896
1897
err = snd_card_register(card);
1898
if (err < 0)
1899
return err;
1900
pci_set_drvdata(pci, card);
1901
dev++;
1902
return 0;
1903
}
1904
1905
static int
1906
snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1907
{
1908
return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
1909
}
1910
1911
static struct pci_driver rme32_driver = {
1912
.name = KBUILD_MODNAME,
1913
.id_table = snd_rme32_ids,
1914
.probe = snd_rme32_probe,
1915
};
1916
1917
module_pci_driver(rme32_driver);
1918
1919