Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/pci/sis7019.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Driver for SiS7019 Audio Accelerator
4
*
5
* Copyright (C) 2004-2007, David Dillow
6
* Written by David Dillow <[email protected]>
7
* Inspired by the Trident 4D-WaveDX/NX driver.
8
*
9
* All rights reserved.
10
*/
11
12
#include <linux/init.h>
13
#include <linux/pci.h>
14
#include <linux/time.h>
15
#include <linux/slab.h>
16
#include <linux/module.h>
17
#include <linux/interrupt.h>
18
#include <linux/delay.h>
19
#include <sound/core.h>
20
#include <sound/ac97_codec.h>
21
#include <sound/initval.h>
22
#include "sis7019.h"
23
24
MODULE_AUTHOR("David Dillow <[email protected]>");
25
MODULE_DESCRIPTION("SiS7019");
26
MODULE_LICENSE("GPL");
27
28
static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
29
static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
30
static bool enable = 1;
31
static int codecs = 1;
32
33
module_param(index, int, 0444);
34
MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35
module_param(id, charp, 0444);
36
MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37
module_param(enable, bool, 0444);
38
MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39
module_param(codecs, int, 0444);
40
MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41
42
static const struct pci_device_id snd_sis7019_ids[] = {
43
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44
{ 0, }
45
};
46
47
MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48
49
/* There are three timing modes for the voices.
50
*
51
* For both playback and capture, when the buffer is one or two periods long,
52
* we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53
* to let us know when the periods have ended.
54
*
55
* When performing playback with more than two periods per buffer, we set
56
* the "Stop Sample Offset" and tell the hardware to interrupt us when we
57
* reach it. We then update the offset and continue on until we are
58
* interrupted for the next period.
59
*
60
* Capture channels do not have a SSO, so we allocate a playback channel to
61
* use as a timer for the capture periods. We use the SSO on the playback
62
* channel to clock out virtual periods, and adjust the virtual period length
63
* to maintain synchronization. This algorithm came from the Trident driver.
64
*
65
* FIXME: It'd be nice to make use of some of the synth features in the
66
* hardware, but a woeful lack of documentation is a significant roadblock.
67
*/
68
struct voice {
69
u16 flags;
70
#define VOICE_IN_USE 1
71
#define VOICE_CAPTURE 2
72
#define VOICE_SSO_TIMING 4
73
#define VOICE_SYNC_TIMING 8
74
u16 sync_cso;
75
u16 period_size;
76
u16 buffer_size;
77
u16 sync_period_size;
78
u16 sync_buffer_size;
79
u32 sso;
80
u32 vperiod;
81
struct snd_pcm_substream *substream;
82
struct voice *timing;
83
void __iomem *ctrl_base;
84
void __iomem *wave_base;
85
void __iomem *sync_base;
86
int num;
87
};
88
89
/* We need four pages to store our wave parameters during a suspend. If
90
* we're not doing power management, we still need to allocate a page
91
* for the silence buffer.
92
*/
93
#define SIS_SUSPEND_PAGES 4
94
95
struct sis7019 {
96
unsigned long ioport;
97
void __iomem *ioaddr;
98
int irq;
99
int codecs_present;
100
101
struct pci_dev *pci;
102
struct snd_pcm *pcm;
103
struct snd_card *card;
104
struct snd_ac97 *ac97[3];
105
106
/* Protect against more than one thread hitting the AC97
107
* registers (in a more polite manner than pounding the hardware
108
* semaphore)
109
*/
110
struct mutex ac97_mutex;
111
112
/* voice_lock protects allocation/freeing of the voice descriptions
113
*/
114
spinlock_t voice_lock;
115
116
struct voice voices[64];
117
struct voice capture_voice;
118
119
/* Allocate pages to store the internal wave state during
120
* suspends. When we're operating, this can be used as a silence
121
* buffer for a timing channel.
122
*/
123
void *suspend_state[SIS_SUSPEND_PAGES];
124
125
int silence_users;
126
dma_addr_t silence_dma_addr;
127
};
128
129
/* These values are also used by the module param 'codecs' to indicate
130
* which codecs should be present.
131
*/
132
#define SIS_PRIMARY_CODEC_PRESENT 0x0001
133
#define SIS_SECONDARY_CODEC_PRESENT 0x0002
134
#define SIS_TERTIARY_CODEC_PRESENT 0x0004
135
136
/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
137
* documented range of 8-0xfff8 samples. Given that they are 0-based,
138
* that places our period/buffer range at 9-0xfff9 samples. That makes the
139
* max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
140
* max samples / min samples gives us the max periods in a buffer.
141
*
142
* We'll add a constraint upon open that limits the period and buffer sample
143
* size to values that are legal for the hardware.
144
*/
145
static const struct snd_pcm_hardware sis_playback_hw_info = {
146
.info = (SNDRV_PCM_INFO_MMAP |
147
SNDRV_PCM_INFO_MMAP_VALID |
148
SNDRV_PCM_INFO_INTERLEAVED |
149
SNDRV_PCM_INFO_BLOCK_TRANSFER |
150
SNDRV_PCM_INFO_SYNC_START |
151
SNDRV_PCM_INFO_RESUME),
152
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
153
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
154
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
155
.rate_min = 4000,
156
.rate_max = 48000,
157
.channels_min = 1,
158
.channels_max = 2,
159
.buffer_bytes_max = (0xfff9 * 4),
160
.period_bytes_min = 9,
161
.period_bytes_max = (0xfff9 * 4),
162
.periods_min = 1,
163
.periods_max = (0xfff9 / 9),
164
};
165
166
static const struct snd_pcm_hardware sis_capture_hw_info = {
167
.info = (SNDRV_PCM_INFO_MMAP |
168
SNDRV_PCM_INFO_MMAP_VALID |
169
SNDRV_PCM_INFO_INTERLEAVED |
170
SNDRV_PCM_INFO_BLOCK_TRANSFER |
171
SNDRV_PCM_INFO_SYNC_START |
172
SNDRV_PCM_INFO_RESUME),
173
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
174
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
175
.rates = SNDRV_PCM_RATE_48000,
176
.rate_min = 4000,
177
.rate_max = 48000,
178
.channels_min = 1,
179
.channels_max = 2,
180
.buffer_bytes_max = (0xfff9 * 4),
181
.period_bytes_min = 9,
182
.period_bytes_max = (0xfff9 * 4),
183
.periods_min = 1,
184
.periods_max = (0xfff9 / 9),
185
};
186
187
static void sis_update_sso(struct voice *voice, u16 period)
188
{
189
void __iomem *base = voice->ctrl_base;
190
191
voice->sso += period;
192
if (voice->sso >= voice->buffer_size)
193
voice->sso -= voice->buffer_size;
194
195
/* Enforce the documented hardware minimum offset */
196
if (voice->sso < 8)
197
voice->sso = 8;
198
199
/* The SSO is in the upper 16 bits of the register. */
200
writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
201
}
202
203
static void sis_update_voice(struct voice *voice)
204
{
205
if (voice->flags & VOICE_SSO_TIMING) {
206
sis_update_sso(voice, voice->period_size);
207
} else if (voice->flags & VOICE_SYNC_TIMING) {
208
int sync;
209
210
/* If we've not hit the end of the virtual period, update
211
* our records and keep going.
212
*/
213
if (voice->vperiod > voice->period_size) {
214
voice->vperiod -= voice->period_size;
215
if (voice->vperiod < voice->period_size)
216
sis_update_sso(voice, voice->vperiod);
217
else
218
sis_update_sso(voice, voice->period_size);
219
return;
220
}
221
222
/* Calculate our relative offset between the target and
223
* the actual CSO value. Since we're operating in a loop,
224
* if the value is more than half way around, we can
225
* consider ourselves wrapped.
226
*/
227
sync = voice->sync_cso;
228
sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
229
if (sync > (voice->sync_buffer_size / 2))
230
sync -= voice->sync_buffer_size;
231
232
/* If sync is positive, then we interrupted too early, and
233
* we'll need to come back in a few samples and try again.
234
* There's a minimum wait, as it takes some time for the DMA
235
* engine to startup, etc...
236
*/
237
if (sync > 0) {
238
if (sync < 16)
239
sync = 16;
240
sis_update_sso(voice, sync);
241
return;
242
}
243
244
/* Ok, we interrupted right on time, or (hopefully) just
245
* a bit late. We'll adjst our next waiting period based
246
* on how close we got.
247
*
248
* We need to stay just behind the actual channel to ensure
249
* it really is past a period when we get our interrupt --
250
* otherwise we'll fall into the early code above and have
251
* a minimum wait time, which makes us quite late here,
252
* eating into the user's time to refresh the buffer, esp.
253
* if using small periods.
254
*
255
* If we're less than 9 samples behind, we're on target.
256
* Otherwise, shorten the next vperiod by the amount we've
257
* been delayed.
258
*/
259
if (sync > -9)
260
voice->vperiod = voice->sync_period_size + 1;
261
else
262
voice->vperiod = voice->sync_period_size + sync + 10;
263
264
if (voice->vperiod < voice->buffer_size) {
265
sis_update_sso(voice, voice->vperiod);
266
voice->vperiod = 0;
267
} else
268
sis_update_sso(voice, voice->period_size);
269
270
sync = voice->sync_cso + voice->sync_period_size;
271
if (sync >= voice->sync_buffer_size)
272
sync -= voice->sync_buffer_size;
273
voice->sync_cso = sync;
274
}
275
276
snd_pcm_period_elapsed(voice->substream);
277
}
278
279
static void sis_voice_irq(u32 status, struct voice *voice)
280
{
281
int bit;
282
283
while (status) {
284
bit = __ffs(status);
285
status >>= bit + 1;
286
voice += bit;
287
sis_update_voice(voice);
288
voice++;
289
}
290
}
291
292
static irqreturn_t sis_interrupt(int irq, void *dev)
293
{
294
struct sis7019 *sis = dev;
295
unsigned long io = sis->ioport;
296
struct voice *voice;
297
u32 intr, status;
298
299
/* We only use the DMA interrupts, and we don't enable any other
300
* source of interrupts. But, it is possible to see an interrupt
301
* status that didn't actually interrupt us, so eliminate anything
302
* we're not expecting to avoid falsely claiming an IRQ, and an
303
* ensuing endless loop.
304
*/
305
intr = inl(io + SIS_GISR);
306
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
307
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
308
if (!intr)
309
return IRQ_NONE;
310
311
do {
312
status = inl(io + SIS_PISR_A);
313
if (status) {
314
sis_voice_irq(status, sis->voices);
315
outl(status, io + SIS_PISR_A);
316
}
317
318
status = inl(io + SIS_PISR_B);
319
if (status) {
320
sis_voice_irq(status, &sis->voices[32]);
321
outl(status, io + SIS_PISR_B);
322
}
323
324
status = inl(io + SIS_RISR);
325
if (status) {
326
voice = &sis->capture_voice;
327
if (!voice->timing)
328
snd_pcm_period_elapsed(voice->substream);
329
330
outl(status, io + SIS_RISR);
331
}
332
333
outl(intr, io + SIS_GISR);
334
intr = inl(io + SIS_GISR);
335
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
336
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
337
} while (intr);
338
339
return IRQ_HANDLED;
340
}
341
342
static u32 sis_rate_to_delta(unsigned int rate)
343
{
344
u32 delta;
345
346
/* This was copied from the trident driver, but it seems its gotten
347
* around a bit... nevertheless, it works well.
348
*
349
* We special case 44100 and 8000 since rounding with the equation
350
* does not give us an accurate enough value. For 11025 and 22050
351
* the equation gives us the best answer. All other frequencies will
352
* also use the equation. JDW
353
*/
354
if (rate == 44100)
355
delta = 0xeb3;
356
else if (rate == 8000)
357
delta = 0x2ab;
358
else if (rate == 48000)
359
delta = 0x1000;
360
else
361
delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
362
return delta;
363
}
364
365
static void __sis_map_silence(struct sis7019 *sis)
366
{
367
/* Helper function: must hold sis->voice_lock on entry */
368
if (!sis->silence_users)
369
sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
370
sis->suspend_state[0],
371
4096, DMA_TO_DEVICE);
372
sis->silence_users++;
373
}
374
375
static void __sis_unmap_silence(struct sis7019 *sis)
376
{
377
/* Helper function: must hold sis->voice_lock on entry */
378
sis->silence_users--;
379
if (!sis->silence_users)
380
dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
381
DMA_TO_DEVICE);
382
}
383
384
static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
385
{
386
unsigned long flags;
387
388
spin_lock_irqsave(&sis->voice_lock, flags);
389
if (voice->timing) {
390
__sis_unmap_silence(sis);
391
voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
392
VOICE_SYNC_TIMING);
393
voice->timing = NULL;
394
}
395
voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
396
spin_unlock_irqrestore(&sis->voice_lock, flags);
397
}
398
399
static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
400
{
401
/* Must hold the voice_lock on entry */
402
struct voice *voice;
403
int i;
404
405
for (i = 0; i < 64; i++) {
406
voice = &sis->voices[i];
407
if (voice->flags & VOICE_IN_USE)
408
continue;
409
voice->flags |= VOICE_IN_USE;
410
goto found_one;
411
}
412
voice = NULL;
413
414
found_one:
415
return voice;
416
}
417
418
static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
419
{
420
struct voice *voice;
421
unsigned long flags;
422
423
spin_lock_irqsave(&sis->voice_lock, flags);
424
voice = __sis_alloc_playback_voice(sis);
425
spin_unlock_irqrestore(&sis->voice_lock, flags);
426
427
return voice;
428
}
429
430
static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
431
struct snd_pcm_hw_params *hw_params)
432
{
433
struct sis7019 *sis = snd_pcm_substream_chip(substream);
434
struct snd_pcm_runtime *runtime = substream->runtime;
435
struct voice *voice = runtime->private_data;
436
unsigned int period_size, buffer_size;
437
unsigned long flags;
438
int needed;
439
440
/* If there are one or two periods per buffer, we don't need a
441
* timing voice, as we can use the capture channel's interrupts
442
* to clock out the periods.
443
*/
444
period_size = params_period_size(hw_params);
445
buffer_size = params_buffer_size(hw_params);
446
needed = (period_size != buffer_size &&
447
period_size != (buffer_size / 2));
448
449
if (needed && !voice->timing) {
450
spin_lock_irqsave(&sis->voice_lock, flags);
451
voice->timing = __sis_alloc_playback_voice(sis);
452
if (voice->timing)
453
__sis_map_silence(sis);
454
spin_unlock_irqrestore(&sis->voice_lock, flags);
455
if (!voice->timing)
456
return -ENOMEM;
457
voice->timing->substream = substream;
458
} else if (!needed && voice->timing) {
459
sis_free_voice(sis, voice);
460
voice->timing = NULL;
461
}
462
463
return 0;
464
}
465
466
static int sis_playback_open(struct snd_pcm_substream *substream)
467
{
468
struct sis7019 *sis = snd_pcm_substream_chip(substream);
469
struct snd_pcm_runtime *runtime = substream->runtime;
470
struct voice *voice;
471
472
voice = sis_alloc_playback_voice(sis);
473
if (!voice)
474
return -EAGAIN;
475
476
voice->substream = substream;
477
runtime->private_data = voice;
478
runtime->hw = sis_playback_hw_info;
479
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
480
9, 0xfff9);
481
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
482
9, 0xfff9);
483
snd_pcm_set_sync(substream);
484
return 0;
485
}
486
487
static int sis_substream_close(struct snd_pcm_substream *substream)
488
{
489
struct sis7019 *sis = snd_pcm_substream_chip(substream);
490
struct snd_pcm_runtime *runtime = substream->runtime;
491
struct voice *voice = runtime->private_data;
492
493
sis_free_voice(sis, voice);
494
return 0;
495
}
496
497
static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
498
{
499
struct snd_pcm_runtime *runtime = substream->runtime;
500
struct voice *voice = runtime->private_data;
501
void __iomem *ctrl_base = voice->ctrl_base;
502
void __iomem *wave_base = voice->wave_base;
503
u32 format, dma_addr, control, sso_eso, delta, reg;
504
u16 leo;
505
506
/* We rely on the PCM core to ensure that the parameters for this
507
* substream do not change on us while we're programming the HW.
508
*/
509
format = 0;
510
if (snd_pcm_format_width(runtime->format) == 8)
511
format |= SIS_PLAY_DMA_FORMAT_8BIT;
512
if (!snd_pcm_format_signed(runtime->format))
513
format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
514
if (runtime->channels == 1)
515
format |= SIS_PLAY_DMA_FORMAT_MONO;
516
517
/* The baseline setup is for a single period per buffer, and
518
* we add bells and whistles as needed from there.
519
*/
520
dma_addr = runtime->dma_addr;
521
leo = runtime->buffer_size - 1;
522
control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
523
sso_eso = leo;
524
525
if (runtime->period_size == (runtime->buffer_size / 2)) {
526
control |= SIS_PLAY_DMA_INTR_AT_MLP;
527
} else if (runtime->period_size != runtime->buffer_size) {
528
voice->flags |= VOICE_SSO_TIMING;
529
voice->sso = runtime->period_size - 1;
530
voice->period_size = runtime->period_size;
531
voice->buffer_size = runtime->buffer_size;
532
533
control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
534
control |= SIS_PLAY_DMA_INTR_AT_SSO;
535
sso_eso |= (runtime->period_size - 1) << 16;
536
}
537
538
delta = sis_rate_to_delta(runtime->rate);
539
540
/* Ok, we're ready to go, set up the channel.
541
*/
542
writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
543
writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
544
writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
545
writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
546
547
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
548
writel(0, wave_base + reg);
549
550
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
551
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
552
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
553
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
554
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
555
wave_base + SIS_WAVE_CHANNEL_CONTROL);
556
557
/* Force PCI writes to post. */
558
readl(ctrl_base);
559
560
return 0;
561
}
562
563
static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
564
{
565
struct sis7019 *sis = snd_pcm_substream_chip(substream);
566
unsigned long io = sis->ioport;
567
struct snd_pcm_substream *s;
568
struct voice *voice;
569
void *chip;
570
int starting;
571
u32 record = 0;
572
u32 play[2] = { 0, 0 };
573
574
/* No locks needed, as the PCM core will hold the locks on the
575
* substreams, and the HW will only start/stop the indicated voices
576
* without changing the state of the others.
577
*/
578
switch (cmd) {
579
case SNDRV_PCM_TRIGGER_START:
580
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
581
case SNDRV_PCM_TRIGGER_RESUME:
582
starting = 1;
583
break;
584
case SNDRV_PCM_TRIGGER_STOP:
585
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
586
case SNDRV_PCM_TRIGGER_SUSPEND:
587
starting = 0;
588
break;
589
default:
590
return -EINVAL;
591
}
592
593
snd_pcm_group_for_each_entry(s, substream) {
594
/* Make sure it is for us... */
595
chip = snd_pcm_substream_chip(s);
596
if (chip != sis)
597
continue;
598
599
voice = s->runtime->private_data;
600
if (voice->flags & VOICE_CAPTURE) {
601
record |= 1 << voice->num;
602
voice = voice->timing;
603
}
604
605
/* voice could be NULL if this a recording stream, and it
606
* doesn't have an external timing channel.
607
*/
608
if (voice)
609
play[voice->num / 32] |= 1 << (voice->num & 0x1f);
610
611
snd_pcm_trigger_done(s, substream);
612
}
613
614
if (starting) {
615
if (record)
616
outl(record, io + SIS_RECORD_START_REG);
617
if (play[0])
618
outl(play[0], io + SIS_PLAY_START_A_REG);
619
if (play[1])
620
outl(play[1], io + SIS_PLAY_START_B_REG);
621
} else {
622
if (record)
623
outl(record, io + SIS_RECORD_STOP_REG);
624
if (play[0])
625
outl(play[0], io + SIS_PLAY_STOP_A_REG);
626
if (play[1])
627
outl(play[1], io + SIS_PLAY_STOP_B_REG);
628
}
629
return 0;
630
}
631
632
static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
633
{
634
struct snd_pcm_runtime *runtime = substream->runtime;
635
struct voice *voice = runtime->private_data;
636
u32 cso;
637
638
cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
639
cso &= 0xffff;
640
return cso;
641
}
642
643
static int sis_capture_open(struct snd_pcm_substream *substream)
644
{
645
struct sis7019 *sis = snd_pcm_substream_chip(substream);
646
struct snd_pcm_runtime *runtime = substream->runtime;
647
struct voice *voice = &sis->capture_voice;
648
unsigned long flags;
649
650
/* FIXME: The driver only supports recording from one channel
651
* at the moment, but it could support more.
652
*/
653
spin_lock_irqsave(&sis->voice_lock, flags);
654
if (voice->flags & VOICE_IN_USE)
655
voice = NULL;
656
else
657
voice->flags |= VOICE_IN_USE;
658
spin_unlock_irqrestore(&sis->voice_lock, flags);
659
660
if (!voice)
661
return -EAGAIN;
662
663
voice->substream = substream;
664
runtime->private_data = voice;
665
runtime->hw = sis_capture_hw_info;
666
runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
667
snd_pcm_limit_hw_rates(runtime);
668
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
669
9, 0xfff9);
670
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
671
9, 0xfff9);
672
snd_pcm_set_sync(substream);
673
return 0;
674
}
675
676
static int sis_capture_hw_params(struct snd_pcm_substream *substream,
677
struct snd_pcm_hw_params *hw_params)
678
{
679
struct sis7019 *sis = snd_pcm_substream_chip(substream);
680
int rc;
681
682
rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
683
params_rate(hw_params));
684
if (rc)
685
goto out;
686
687
rc = sis_alloc_timing_voice(substream, hw_params);
688
689
out:
690
return rc;
691
}
692
693
static void sis_prepare_timing_voice(struct voice *voice,
694
struct snd_pcm_substream *substream)
695
{
696
struct sis7019 *sis = snd_pcm_substream_chip(substream);
697
struct snd_pcm_runtime *runtime = substream->runtime;
698
struct voice *timing = voice->timing;
699
void __iomem *play_base = timing->ctrl_base;
700
void __iomem *wave_base = timing->wave_base;
701
u16 buffer_size, period_size;
702
u32 format, control, sso_eso, delta;
703
u32 vperiod, sso, reg;
704
705
/* Set our initial buffer and period as large as we can given a
706
* single page of silence.
707
*/
708
buffer_size = 4096 / runtime->channels;
709
buffer_size /= snd_pcm_format_size(runtime->format, 1);
710
period_size = buffer_size;
711
712
/* Initially, we want to interrupt just a bit behind the end of
713
* the period we're clocking out. 12 samples seems to give a good
714
* delay.
715
*
716
* We want to spread our interrupts throughout the virtual period,
717
* so that we don't end up with two interrupts back to back at the
718
* end -- this helps minimize the effects of any jitter. Adjust our
719
* clocking period size so that the last period is at least a fourth
720
* of a full period.
721
*
722
* This is all moot if we don't need to use virtual periods.
723
*/
724
vperiod = runtime->period_size + 12;
725
if (vperiod > period_size) {
726
u16 tail = vperiod % period_size;
727
u16 quarter_period = period_size / 4;
728
729
if (tail && tail < quarter_period) {
730
u16 loops = vperiod / period_size;
731
732
tail = quarter_period - tail;
733
tail += loops - 1;
734
tail /= loops;
735
period_size -= tail;
736
}
737
738
sso = period_size - 1;
739
} else {
740
/* The initial period will fit inside the buffer, so we
741
* don't need to use virtual periods -- disable them.
742
*/
743
period_size = runtime->period_size;
744
sso = vperiod - 1;
745
vperiod = 0;
746
}
747
748
/* The interrupt handler implements the timing synchronization, so
749
* setup its state.
750
*/
751
timing->flags |= VOICE_SYNC_TIMING;
752
timing->sync_base = voice->ctrl_base;
753
timing->sync_cso = runtime->period_size;
754
timing->sync_period_size = runtime->period_size;
755
timing->sync_buffer_size = runtime->buffer_size;
756
timing->period_size = period_size;
757
timing->buffer_size = buffer_size;
758
timing->sso = sso;
759
timing->vperiod = vperiod;
760
761
/* Using unsigned samples with the all-zero silence buffer
762
* forces the output to the lower rail, killing playback.
763
* So ignore unsigned vs signed -- it doesn't change the timing.
764
*/
765
format = 0;
766
if (snd_pcm_format_width(runtime->format) == 8)
767
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
768
if (runtime->channels == 1)
769
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
770
771
control = timing->buffer_size - 1;
772
control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
773
sso_eso = timing->buffer_size - 1;
774
sso_eso |= timing->sso << 16;
775
776
delta = sis_rate_to_delta(runtime->rate);
777
778
/* We've done the math, now configure the channel.
779
*/
780
writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
781
writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
782
writel(control, play_base + SIS_PLAY_DMA_CONTROL);
783
writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
784
785
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
786
writel(0, wave_base + reg);
787
788
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
789
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
790
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
791
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
792
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
793
wave_base + SIS_WAVE_CHANNEL_CONTROL);
794
}
795
796
static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
797
{
798
struct snd_pcm_runtime *runtime = substream->runtime;
799
struct voice *voice = runtime->private_data;
800
void __iomem *rec_base = voice->ctrl_base;
801
u32 format, dma_addr, control;
802
u16 leo;
803
804
/* We rely on the PCM core to ensure that the parameters for this
805
* substream do not change on us while we're programming the HW.
806
*/
807
format = 0;
808
if (snd_pcm_format_width(runtime->format) == 8)
809
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
810
if (!snd_pcm_format_signed(runtime->format))
811
format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
812
if (runtime->channels == 1)
813
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
814
815
dma_addr = runtime->dma_addr;
816
leo = runtime->buffer_size - 1;
817
control = leo | SIS_CAPTURE_DMA_LOOP;
818
819
/* If we've got more than two periods per buffer, then we have
820
* use a timing voice to clock out the periods. Otherwise, we can
821
* use the capture channel's interrupts.
822
*/
823
if (voice->timing) {
824
sis_prepare_timing_voice(voice, substream);
825
} else {
826
control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
827
if (runtime->period_size != runtime->buffer_size)
828
control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
829
}
830
831
writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
832
writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
833
writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
834
835
/* Force the writes to post. */
836
readl(rec_base);
837
838
return 0;
839
}
840
841
static const struct snd_pcm_ops sis_playback_ops = {
842
.open = sis_playback_open,
843
.close = sis_substream_close,
844
.prepare = sis_pcm_playback_prepare,
845
.trigger = sis_pcm_trigger,
846
.pointer = sis_pcm_pointer,
847
};
848
849
static const struct snd_pcm_ops sis_capture_ops = {
850
.open = sis_capture_open,
851
.close = sis_substream_close,
852
.hw_params = sis_capture_hw_params,
853
.prepare = sis_pcm_capture_prepare,
854
.trigger = sis_pcm_trigger,
855
.pointer = sis_pcm_pointer,
856
};
857
858
static int sis_pcm_create(struct sis7019 *sis)
859
{
860
struct snd_pcm *pcm;
861
int rc;
862
863
/* We have 64 voices, and the driver currently records from
864
* only one channel, though that could change in the future.
865
*/
866
rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
867
if (rc)
868
return rc;
869
870
pcm->private_data = sis;
871
strscpy(pcm->name, "SiS7019");
872
sis->pcm = pcm;
873
874
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
875
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
876
877
/* Try to preallocate some memory, but it's not the end of the
878
* world if this fails.
879
*/
880
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
881
&sis->pci->dev, 64*1024, 128*1024);
882
883
return 0;
884
}
885
886
static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
887
{
888
unsigned long io = sis->ioport;
889
unsigned short val = 0xffff;
890
u16 status;
891
u16 rdy;
892
int count;
893
static const u16 codec_ready[3] = {
894
SIS_AC97_STATUS_CODEC_READY,
895
SIS_AC97_STATUS_CODEC2_READY,
896
SIS_AC97_STATUS_CODEC3_READY,
897
};
898
899
rdy = codec_ready[codec];
900
901
902
/* Get the AC97 semaphore -- software first, so we don't spin
903
* pounding out IO reads on the hardware semaphore...
904
*/
905
mutex_lock(&sis->ac97_mutex);
906
907
count = 0xffff;
908
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
909
udelay(1);
910
911
if (!count)
912
goto timeout;
913
914
/* ... and wait for any outstanding commands to complete ...
915
*/
916
count = 0xffff;
917
do {
918
status = inw(io + SIS_AC97_STATUS);
919
if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
920
break;
921
922
udelay(1);
923
} while (--count);
924
925
if (!count)
926
goto timeout_sema;
927
928
/* ... before sending our command and waiting for it to finish ...
929
*/
930
outl(cmd, io + SIS_AC97_CMD);
931
udelay(10);
932
933
count = 0xffff;
934
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
935
udelay(1);
936
937
/* ... and reading the results (if any).
938
*/
939
val = inl(io + SIS_AC97_CMD) >> 16;
940
941
timeout_sema:
942
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
943
timeout:
944
mutex_unlock(&sis->ac97_mutex);
945
946
if (!count) {
947
dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
948
codec, cmd);
949
}
950
951
return val;
952
}
953
954
static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
955
unsigned short val)
956
{
957
static const u32 cmd[3] = {
958
SIS_AC97_CMD_CODEC_WRITE,
959
SIS_AC97_CMD_CODEC2_WRITE,
960
SIS_AC97_CMD_CODEC3_WRITE,
961
};
962
sis_ac97_rw(ac97->private_data, ac97->num,
963
(val << 16) | (reg << 8) | cmd[ac97->num]);
964
}
965
966
static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
967
{
968
static const u32 cmd[3] = {
969
SIS_AC97_CMD_CODEC_READ,
970
SIS_AC97_CMD_CODEC2_READ,
971
SIS_AC97_CMD_CODEC3_READ,
972
};
973
return sis_ac97_rw(ac97->private_data, ac97->num,
974
(reg << 8) | cmd[ac97->num]);
975
}
976
977
static int sis_mixer_create(struct sis7019 *sis)
978
{
979
struct snd_ac97_bus *bus;
980
struct snd_ac97_template ac97;
981
static const struct snd_ac97_bus_ops ops = {
982
.write = sis_ac97_write,
983
.read = sis_ac97_read,
984
};
985
int rc;
986
987
memset(&ac97, 0, sizeof(ac97));
988
ac97.private_data = sis;
989
990
rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
991
if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
992
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
993
ac97.num = 1;
994
if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
995
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
996
ac97.num = 2;
997
if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
998
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
999
1000
/* If we return an error here, then snd_card_free() should
1001
* free up any ac97 codecs that got created, as well as the bus.
1002
*/
1003
return rc;
1004
}
1005
1006
static void sis_chip_free(struct snd_card *card)
1007
{
1008
struct sis7019 *sis = card->private_data;
1009
1010
/* Reset the chip, and disable all interrputs.
1011
*/
1012
outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1013
udelay(25);
1014
outl(0, sis->ioport + SIS_GCR);
1015
outl(0, sis->ioport + SIS_GIER);
1016
1017
/* Now, free everything we allocated.
1018
*/
1019
if (sis->irq >= 0)
1020
free_irq(sis->irq, sis);
1021
}
1022
1023
static int sis_chip_init(struct sis7019 *sis)
1024
{
1025
unsigned long io = sis->ioport;
1026
void __iomem *ioaddr = sis->ioaddr;
1027
unsigned long timeout;
1028
u16 status;
1029
int count;
1030
int i;
1031
1032
/* Reset the audio controller
1033
*/
1034
outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1035
udelay(25);
1036
outl(0, io + SIS_GCR);
1037
1038
/* Get the AC-link semaphore, and reset the codecs
1039
*/
1040
count = 0xffff;
1041
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1042
udelay(1);
1043
1044
if (!count)
1045
return -EIO;
1046
1047
outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1048
udelay(250);
1049
1050
count = 0xffff;
1051
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1052
udelay(1);
1053
1054
/* Command complete, we can let go of the semaphore now.
1055
*/
1056
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1057
if (!count)
1058
return -EIO;
1059
1060
/* Now that we've finished the reset, find out what's attached.
1061
* There are some codec/board combinations that take an extremely
1062
* long time to come up. 350+ ms has been observed in the field,
1063
* so we'll give them up to 500ms.
1064
*/
1065
sis->codecs_present = 0;
1066
timeout = msecs_to_jiffies(500) + jiffies;
1067
while (time_before_eq(jiffies, timeout)) {
1068
status = inl(io + SIS_AC97_STATUS);
1069
if (status & SIS_AC97_STATUS_CODEC_READY)
1070
sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1071
if (status & SIS_AC97_STATUS_CODEC2_READY)
1072
sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1073
if (status & SIS_AC97_STATUS_CODEC3_READY)
1074
sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1075
1076
if (sis->codecs_present == codecs)
1077
break;
1078
1079
msleep(1);
1080
}
1081
1082
/* All done, check for errors.
1083
*/
1084
if (!sis->codecs_present) {
1085
dev_err(&sis->pci->dev, "could not find any codecs\n");
1086
return -EIO;
1087
}
1088
1089
if (sis->codecs_present != codecs) {
1090
dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1091
sis->codecs_present, codecs);
1092
}
1093
1094
/* Let the hardware know that the audio driver is alive,
1095
* and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1096
* record channels. We're going to want to use Variable Rate Audio
1097
* for recording, to avoid needlessly resampling from 48kHZ.
1098
*/
1099
outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1100
outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1101
SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1102
SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1103
SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1104
1105
/* All AC97 PCM slots should be sourced from sub-mixer 0.
1106
*/
1107
outl(0, io + SIS_AC97_PSR);
1108
1109
/* There is only one valid DMA setup for a PCI environment.
1110
*/
1111
outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1112
1113
/* Reset the synchronization groups for all of the channels
1114
* to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1115
* we'll need to change how we handle these. Until then, we just
1116
* assign sub-mixer 0 to all playback channels, and avoid any
1117
* attenuation on the audio.
1118
*/
1119
outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1120
outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1121
outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1122
outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1123
outl(0, io + SIS_MIXER_SYNC_GROUP);
1124
1125
for (i = 0; i < 64; i++) {
1126
writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1127
writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1128
SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1129
}
1130
1131
/* Don't attenuate any audio set for the wave amplifier.
1132
*
1133
* FIXME: Maximum attenuation is set for the music amp, which will
1134
* need to change if we start using the synth engine.
1135
*/
1136
outl(0xffff0000, io + SIS_WEVCR);
1137
1138
/* Ensure that the wave engine is in normal operating mode.
1139
*/
1140
outl(0, io + SIS_WECCR);
1141
1142
/* Go ahead and enable the DMA interrupts. They won't go live
1143
* until we start a channel.
1144
*/
1145
outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1146
SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1147
1148
return 0;
1149
}
1150
1151
static int sis_suspend(struct device *dev)
1152
{
1153
struct snd_card *card = dev_get_drvdata(dev);
1154
struct sis7019 *sis = card->private_data;
1155
void __iomem *ioaddr = sis->ioaddr;
1156
int i;
1157
1158
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1159
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1160
snd_ac97_suspend(sis->ac97[0]);
1161
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1162
snd_ac97_suspend(sis->ac97[1]);
1163
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1164
snd_ac97_suspend(sis->ac97[2]);
1165
1166
/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1167
*/
1168
if (sis->irq >= 0) {
1169
free_irq(sis->irq, sis);
1170
sis->irq = -1;
1171
}
1172
1173
/* Save the internal state away
1174
*/
1175
for (i = 0; i < 4; i++) {
1176
memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1177
ioaddr += 4096;
1178
}
1179
1180
return 0;
1181
}
1182
1183
static int sis_resume(struct device *dev)
1184
{
1185
struct pci_dev *pci = to_pci_dev(dev);
1186
struct snd_card *card = dev_get_drvdata(dev);
1187
struct sis7019 *sis = card->private_data;
1188
void __iomem *ioaddr = sis->ioaddr;
1189
int i;
1190
1191
if (sis_chip_init(sis)) {
1192
dev_err(&pci->dev, "unable to re-init controller\n");
1193
goto error;
1194
}
1195
1196
if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1197
KBUILD_MODNAME, sis)) {
1198
dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1199
goto error;
1200
}
1201
1202
/* Restore saved state, then clear out the page we use for the
1203
* silence buffer.
1204
*/
1205
for (i = 0; i < 4; i++) {
1206
memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1207
ioaddr += 4096;
1208
}
1209
1210
memset(sis->suspend_state[0], 0, 4096);
1211
1212
sis->irq = pci->irq;
1213
1214
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1215
snd_ac97_resume(sis->ac97[0]);
1216
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1217
snd_ac97_resume(sis->ac97[1]);
1218
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1219
snd_ac97_resume(sis->ac97[2]);
1220
1221
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1222
return 0;
1223
1224
error:
1225
snd_card_disconnect(card);
1226
return -EIO;
1227
}
1228
1229
static DEFINE_SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1230
1231
static int sis_alloc_suspend(struct sis7019 *sis)
1232
{
1233
int i;
1234
1235
/* We need 16K to store the internal wave engine state during a
1236
* suspend, but we don't need it to be contiguous, so play nice
1237
* with the memory system. We'll also use this area for a silence
1238
* buffer.
1239
*/
1240
for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1241
sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1242
GFP_KERNEL);
1243
if (!sis->suspend_state[i])
1244
return -ENOMEM;
1245
}
1246
memset(sis->suspend_state[0], 0, 4096);
1247
1248
return 0;
1249
}
1250
1251
static int sis_chip_create(struct snd_card *card,
1252
struct pci_dev *pci)
1253
{
1254
struct sis7019 *sis = card->private_data;
1255
struct voice *voice;
1256
int rc;
1257
int i;
1258
1259
rc = pcim_enable_device(pci);
1260
if (rc)
1261
return rc;
1262
1263
rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1264
if (rc < 0) {
1265
dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1266
return -ENXIO;
1267
}
1268
1269
mutex_init(&sis->ac97_mutex);
1270
spin_lock_init(&sis->voice_lock);
1271
sis->card = card;
1272
sis->pci = pci;
1273
sis->irq = -1;
1274
sis->ioport = pci_resource_start(pci, 0);
1275
1276
rc = pcim_request_all_regions(pci, "SiS7019");
1277
if (rc) {
1278
dev_err(&pci->dev, "unable request regions\n");
1279
return rc;
1280
}
1281
1282
sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1283
if (!sis->ioaddr) {
1284
dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1285
return -EIO;
1286
}
1287
1288
rc = sis_alloc_suspend(sis);
1289
if (rc < 0) {
1290
dev_err(&pci->dev, "unable to allocate state storage\n");
1291
return rc;
1292
}
1293
1294
rc = sis_chip_init(sis);
1295
if (rc)
1296
return rc;
1297
card->private_free = sis_chip_free;
1298
1299
rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1300
sis);
1301
if (rc) {
1302
dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1303
return rc;
1304
}
1305
1306
sis->irq = pci->irq;
1307
card->sync_irq = sis->irq;
1308
pci_set_master(pci);
1309
1310
for (i = 0; i < 64; i++) {
1311
voice = &sis->voices[i];
1312
voice->num = i;
1313
voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1314
voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1315
}
1316
1317
voice = &sis->capture_voice;
1318
voice->flags = VOICE_CAPTURE;
1319
voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1320
voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1321
1322
return 0;
1323
}
1324
1325
static int __snd_sis7019_probe(struct pci_dev *pci,
1326
const struct pci_device_id *pci_id)
1327
{
1328
struct snd_card *card;
1329
struct sis7019 *sis;
1330
int rc;
1331
1332
if (!enable)
1333
return -ENOENT;
1334
1335
/* The user can specify which codecs should be present so that we
1336
* can wait for them to show up if they are slow to recover from
1337
* the AC97 cold reset. We default to a single codec, the primary.
1338
*
1339
* We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1340
*/
1341
codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1342
SIS_TERTIARY_CODEC_PRESENT;
1343
if (!codecs)
1344
codecs = SIS_PRIMARY_CODEC_PRESENT;
1345
1346
rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1347
sizeof(*sis), &card);
1348
if (rc < 0)
1349
return rc;
1350
1351
strscpy(card->driver, "SiS7019");
1352
strscpy(card->shortname, "SiS7019");
1353
rc = sis_chip_create(card, pci);
1354
if (rc)
1355
return rc;
1356
1357
sis = card->private_data;
1358
1359
rc = sis_mixer_create(sis);
1360
if (rc)
1361
return rc;
1362
1363
rc = sis_pcm_create(sis);
1364
if (rc)
1365
return rc;
1366
1367
snprintf(card->longname, sizeof(card->longname),
1368
"%s Audio Accelerator with %s at 0x%lx, irq %d",
1369
card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1370
sis->ioport, sis->irq);
1371
1372
rc = snd_card_register(card);
1373
if (rc)
1374
return rc;
1375
1376
pci_set_drvdata(pci, card);
1377
return 0;
1378
}
1379
1380
static int snd_sis7019_probe(struct pci_dev *pci,
1381
const struct pci_device_id *pci_id)
1382
{
1383
return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1384
}
1385
1386
static struct pci_driver sis7019_driver = {
1387
.name = KBUILD_MODNAME,
1388
.id_table = snd_sis7019_ids,
1389
.probe = snd_sis7019_probe,
1390
.driver = {
1391
.pm = &sis_pm,
1392
},
1393
};
1394
1395
module_pci_driver(sis7019_driver);
1396
1397