Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/ppc/pmac.c
26381 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PMac DBDMA lowlevel functions
4
*
5
* Copyright (c) by Takashi Iwai <[email protected]>
6
* code based on dmasound.c.
7
*/
8
9
10
#include <linux/io.h>
11
#include <asm/irq.h>
12
#include <linux/init.h>
13
#include <linux/delay.h>
14
#include <linux/slab.h>
15
#include <linux/interrupt.h>
16
#include <linux/pci.h>
17
#include <linux/dma-mapping.h>
18
#include <linux/of_address.h>
19
#include <linux/of_irq.h>
20
#include <sound/core.h>
21
#include "pmac.h"
22
#include <sound/pcm_params.h>
23
#include <asm/pmac_feature.h>
24
25
26
/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
27
static const int awacs_freqs[8] = {
28
44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
29
};
30
/* fixed frequency table for tumbler */
31
static const int tumbler_freqs[1] = {
32
44100
33
};
34
35
36
/*
37
* we will allocate a single 'emergency' dbdma cmd block to use if the
38
* tx status comes up "DEAD". This happens on some PowerComputing Pmac
39
* clones, either owing to a bug in dbdma or some interaction between
40
* IDE and sound. However, this measure would deal with DEAD status if
41
* it appeared elsewhere.
42
*/
43
static struct pmac_dbdma emergency_dbdma;
44
static int emergency_in_use;
45
46
47
/*
48
* allocate DBDMA command arrays
49
*/
50
static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
51
{
52
unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
53
54
rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
55
&rec->dma_base, GFP_KERNEL);
56
if (rec->space == NULL)
57
return -ENOMEM;
58
rec->size = size;
59
memset(rec->space, 0, rsize);
60
rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
61
rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
62
63
return 0;
64
}
65
66
static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
67
{
68
if (rec->space) {
69
unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
70
71
dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
72
}
73
}
74
75
76
/*
77
* pcm stuff
78
*/
79
80
/*
81
* look up frequency table
82
*/
83
84
unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
85
{
86
int i, ok, found;
87
88
ok = rec->cur_freqs;
89
if (rate > chip->freq_table[0])
90
return 0;
91
found = 0;
92
for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
93
if (! (ok & 1)) continue;
94
found = i;
95
if (rate >= chip->freq_table[i])
96
break;
97
}
98
return found;
99
}
100
101
/*
102
* check whether another stream is active
103
*/
104
static inline int another_stream(int stream)
105
{
106
return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
107
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
108
}
109
110
/*
111
* get a stream of the opposite direction
112
*/
113
static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
114
{
115
switch (stream) {
116
case SNDRV_PCM_STREAM_PLAYBACK:
117
return &chip->playback;
118
case SNDRV_PCM_STREAM_CAPTURE:
119
return &chip->capture;
120
default:
121
snd_BUG();
122
return NULL;
123
}
124
}
125
126
/*
127
* wait while run status is on
128
*/
129
static inline void
130
snd_pmac_wait_ack(struct pmac_stream *rec)
131
{
132
int timeout = 50000;
133
while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
134
udelay(1);
135
}
136
137
/*
138
* set the format and rate to the chip.
139
* call the lowlevel function if defined (e.g. for AWACS).
140
*/
141
static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
142
{
143
/* set up frequency and format */
144
out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
145
out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
146
if (chip->set_format)
147
chip->set_format(chip);
148
}
149
150
/*
151
* stop the DMA transfer
152
*/
153
static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
154
{
155
out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
156
snd_pmac_wait_ack(rec);
157
}
158
159
/*
160
* set the command pointer address
161
*/
162
static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
163
{
164
out_le32(&rec->dma->cmdptr, cmd->addr);
165
}
166
167
/*
168
* start the DMA
169
*/
170
static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
171
{
172
out_le32(&rec->dma->control, status | (status << 16));
173
}
174
175
176
/*
177
* prepare playback/capture stream
178
*/
179
static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
180
{
181
int i;
182
volatile struct dbdma_cmd __iomem *cp;
183
struct snd_pcm_runtime *runtime = subs->runtime;
184
int rate_index;
185
long offset;
186
struct pmac_stream *astr;
187
188
rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
189
rec->period_size = snd_pcm_lib_period_bytes(subs);
190
rec->nperiods = rec->dma_size / rec->period_size;
191
rec->cur_period = 0;
192
rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
193
194
/* set up constraints */
195
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
196
if (! astr)
197
return -EINVAL;
198
astr->cur_freqs = 1 << rate_index;
199
astr->cur_formats = 1 << runtime->format;
200
chip->rate_index = rate_index;
201
chip->format = runtime->format;
202
203
/* We really want to execute a DMA stop command, after the AWACS
204
* is initialized.
205
* For reasons I don't understand, it stops the hissing noise
206
* common to many PowerBook G3 systems and random noise otherwise
207
* captured on iBook2's about every third time. -ReneR
208
*/
209
spin_lock_irq(&chip->reg_lock);
210
snd_pmac_dma_stop(rec);
211
chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
212
snd_pmac_dma_set_command(rec, &chip->extra_dma);
213
snd_pmac_dma_run(rec, RUN);
214
spin_unlock_irq(&chip->reg_lock);
215
mdelay(5);
216
spin_lock_irq(&chip->reg_lock);
217
/* continuous DMA memory type doesn't provide the physical address,
218
* so we need to resolve the address here...
219
*/
220
offset = runtime->dma_addr;
221
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
222
cp->phy_addr = cpu_to_le32(offset);
223
cp->req_count = cpu_to_le16(rec->period_size);
224
/*cp->res_count = cpu_to_le16(0);*/
225
cp->xfer_status = cpu_to_le16(0);
226
offset += rec->period_size;
227
}
228
/* make loop */
229
cp->command = cpu_to_le16(DBDMA_NOP | BR_ALWAYS);
230
cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
231
232
snd_pmac_dma_stop(rec);
233
snd_pmac_dma_set_command(rec, &rec->cmd);
234
spin_unlock_irq(&chip->reg_lock);
235
236
return 0;
237
}
238
239
240
/*
241
* PCM trigger/stop
242
*/
243
static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
244
struct snd_pcm_substream *subs, int cmd)
245
{
246
volatile struct dbdma_cmd __iomem *cp;
247
int i, command;
248
249
switch (cmd) {
250
case SNDRV_PCM_TRIGGER_START:
251
case SNDRV_PCM_TRIGGER_RESUME:
252
if (rec->running)
253
return -EBUSY;
254
command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
255
OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
256
spin_lock(&chip->reg_lock);
257
snd_pmac_beep_stop(chip);
258
snd_pmac_pcm_set_format(chip);
259
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
260
out_le16(&cp->command, command);
261
snd_pmac_dma_set_command(rec, &rec->cmd);
262
(void)in_le32(&rec->dma->status);
263
snd_pmac_dma_run(rec, RUN|WAKE);
264
rec->running = 1;
265
spin_unlock(&chip->reg_lock);
266
break;
267
268
case SNDRV_PCM_TRIGGER_STOP:
269
case SNDRV_PCM_TRIGGER_SUSPEND:
270
spin_lock(&chip->reg_lock);
271
rec->running = 0;
272
snd_pmac_dma_stop(rec);
273
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
274
out_le16(&cp->command, DBDMA_STOP);
275
spin_unlock(&chip->reg_lock);
276
break;
277
278
default:
279
return -EINVAL;
280
}
281
282
return 0;
283
}
284
285
/*
286
* return the current pointer
287
*/
288
inline
289
static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
290
struct pmac_stream *rec,
291
struct snd_pcm_substream *subs)
292
{
293
int count = 0;
294
295
#if 1 /* hmm.. how can we get the current dma pointer?? */
296
int stat;
297
volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
298
stat = le16_to_cpu(cp->xfer_status);
299
if (stat & (ACTIVE|DEAD)) {
300
count = in_le16(&cp->res_count);
301
if (count)
302
count = rec->period_size - count;
303
}
304
#endif
305
count += rec->cur_period * rec->period_size;
306
return bytes_to_frames(subs->runtime, count);
307
}
308
309
/*
310
* playback
311
*/
312
313
static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
314
{
315
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
316
return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
317
}
318
319
static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
320
int cmd)
321
{
322
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
323
return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
324
}
325
326
static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
327
{
328
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
329
return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
330
}
331
332
333
/*
334
* capture
335
*/
336
337
static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
338
{
339
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
340
return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
341
}
342
343
static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
344
int cmd)
345
{
346
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
347
return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
348
}
349
350
static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
351
{
352
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
353
return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
354
}
355
356
357
/*
358
* Handle DEAD DMA transfers:
359
* if the TX status comes up "DEAD" - reported on some Power Computing machines
360
* we need to re-start the dbdma - but from a different physical start address
361
* and with a different transfer length. It would get very messy to do this
362
* with the normal dbdma_cmd blocks - we would have to re-write the buffer start
363
* addresses each time. So, we will keep a single dbdma_cmd block which can be
364
* fiddled with.
365
* When DEAD status is first reported the content of the faulted dbdma block is
366
* copied into the emergency buffer and we note that the buffer is in use.
367
* we then bump the start physical address by the amount that was successfully
368
* output before it died.
369
* On any subsequent DEAD result we just do the bump-ups (we know that we are
370
* already using the emergency dbdma_cmd).
371
* CHECK: this just tries to "do it". It is possible that we should abandon
372
* xfers when the number of residual bytes gets below a certain value - I can
373
* see that this might cause a loop-forever if a too small transfer causes
374
* DEAD status. However this is a TODO for now - we'll see what gets reported.
375
* When we get a successful transfer result with the emergency buffer we just
376
* pretend that it completed using the original dmdma_cmd and carry on. The
377
* 'next_cmd' field will already point back to the original loop of blocks.
378
*/
379
static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
380
volatile struct dbdma_cmd __iomem *cp)
381
{
382
unsigned short req, res ;
383
unsigned int phy ;
384
385
/* to clear DEAD status we must first clear RUN
386
set it to quiescent to be on the safe side */
387
(void)in_le32(&rec->dma->status);
388
out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
389
390
if (!emergency_in_use) { /* new problem */
391
memcpy((void *)emergency_dbdma.cmds, (void *)cp,
392
sizeof(struct dbdma_cmd));
393
emergency_in_use = 1;
394
cp->xfer_status = cpu_to_le16(0);
395
cp->req_count = cpu_to_le16(rec->period_size);
396
cp = emergency_dbdma.cmds;
397
}
398
399
/* now bump the values to reflect the amount
400
we haven't yet shifted */
401
req = le16_to_cpu(cp->req_count);
402
res = le16_to_cpu(cp->res_count);
403
phy = le32_to_cpu(cp->phy_addr);
404
phy += (req - res);
405
cp->req_count = cpu_to_le16(res);
406
cp->res_count = cpu_to_le16(0);
407
cp->xfer_status = cpu_to_le16(0);
408
cp->phy_addr = cpu_to_le32(phy);
409
410
cp->cmd_dep = cpu_to_le32(rec->cmd.addr
411
+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
412
413
cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
414
415
/* point at our patched up command block */
416
out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
417
418
/* we must re-start the controller */
419
(void)in_le32(&rec->dma->status);
420
/* should complete clearing the DEAD status */
421
out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
422
}
423
424
/*
425
* update playback/capture pointer from interrupts
426
*/
427
static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
428
{
429
volatile struct dbdma_cmd __iomem *cp;
430
int c;
431
int stat;
432
433
spin_lock(&chip->reg_lock);
434
if (rec->running) {
435
for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
436
437
if (emergency_in_use) /* already using DEAD xfer? */
438
cp = emergency_dbdma.cmds;
439
else
440
cp = &rec->cmd.cmds[rec->cur_period];
441
442
stat = le16_to_cpu(cp->xfer_status);
443
444
if (stat & DEAD) {
445
snd_pmac_pcm_dead_xfer(rec, cp);
446
break; /* this block is still going */
447
}
448
449
if (emergency_in_use)
450
emergency_in_use = 0 ; /* done that */
451
452
if (! (stat & ACTIVE))
453
break;
454
455
cp->xfer_status = cpu_to_le16(0);
456
cp->req_count = cpu_to_le16(rec->period_size);
457
/*cp->res_count = cpu_to_le16(0);*/
458
rec->cur_period++;
459
if (rec->cur_period >= rec->nperiods) {
460
rec->cur_period = 0;
461
}
462
463
spin_unlock(&chip->reg_lock);
464
snd_pcm_period_elapsed(rec->substream);
465
spin_lock(&chip->reg_lock);
466
}
467
}
468
spin_unlock(&chip->reg_lock);
469
}
470
471
472
/*
473
* hw info
474
*/
475
476
static const struct snd_pcm_hardware snd_pmac_playback =
477
{
478
.info = (SNDRV_PCM_INFO_INTERLEAVED |
479
SNDRV_PCM_INFO_MMAP |
480
SNDRV_PCM_INFO_MMAP_VALID |
481
SNDRV_PCM_INFO_RESUME),
482
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
483
.rates = SNDRV_PCM_RATE_8000_44100,
484
.rate_min = 7350,
485
.rate_max = 44100,
486
.channels_min = 2,
487
.channels_max = 2,
488
.buffer_bytes_max = 131072,
489
.period_bytes_min = 256,
490
.period_bytes_max = 16384,
491
.periods_min = 3,
492
.periods_max = PMAC_MAX_FRAGS,
493
};
494
495
static const struct snd_pcm_hardware snd_pmac_capture =
496
{
497
.info = (SNDRV_PCM_INFO_INTERLEAVED |
498
SNDRV_PCM_INFO_MMAP |
499
SNDRV_PCM_INFO_MMAP_VALID |
500
SNDRV_PCM_INFO_RESUME),
501
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
502
.rates = SNDRV_PCM_RATE_8000_44100,
503
.rate_min = 7350,
504
.rate_max = 44100,
505
.channels_min = 2,
506
.channels_max = 2,
507
.buffer_bytes_max = 131072,
508
.period_bytes_min = 256,
509
.period_bytes_max = 16384,
510
.periods_min = 3,
511
.periods_max = PMAC_MAX_FRAGS,
512
};
513
514
515
#if 0 // NYI
516
static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
517
struct snd_pcm_hw_rule *rule)
518
{
519
struct snd_pmac *chip = rule->private;
520
struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
521
int i, freq_table[8], num_freqs;
522
523
if (! rec)
524
return -EINVAL;
525
num_freqs = 0;
526
for (i = chip->num_freqs - 1; i >= 0; i--) {
527
if (rec->cur_freqs & (1 << i))
528
freq_table[num_freqs++] = chip->freq_table[i];
529
}
530
531
return snd_interval_list(hw_param_interval(params, rule->var),
532
num_freqs, freq_table, 0);
533
}
534
535
static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
536
struct snd_pcm_hw_rule *rule)
537
{
538
struct snd_pmac *chip = rule->private;
539
struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
540
541
if (! rec)
542
return -EINVAL;
543
return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
544
rec->cur_formats);
545
}
546
#endif // NYI
547
548
static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
549
struct snd_pcm_substream *subs)
550
{
551
struct snd_pcm_runtime *runtime = subs->runtime;
552
int i;
553
554
/* look up frequency table and fill bit mask */
555
runtime->hw.rates = 0;
556
for (i = 0; i < chip->num_freqs; i++)
557
if (chip->freqs_ok & (1 << i))
558
runtime->hw.rates |=
559
snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
560
561
/* check for minimum and maximum rates */
562
for (i = 0; i < chip->num_freqs; i++) {
563
if (chip->freqs_ok & (1 << i)) {
564
runtime->hw.rate_max = chip->freq_table[i];
565
break;
566
}
567
}
568
for (i = chip->num_freqs - 1; i >= 0; i--) {
569
if (chip->freqs_ok & (1 << i)) {
570
runtime->hw.rate_min = chip->freq_table[i];
571
break;
572
}
573
}
574
runtime->hw.formats = chip->formats_ok;
575
if (chip->can_capture) {
576
if (! chip->can_duplex)
577
runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
578
runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
579
}
580
runtime->private_data = rec;
581
rec->substream = subs;
582
583
#if 0 /* FIXME: still under development.. */
584
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
585
snd_pmac_hw_rule_rate, chip, rec->stream, -1);
586
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
587
snd_pmac_hw_rule_format, chip, rec->stream, -1);
588
#endif
589
590
runtime->hw.periods_max = rec->cmd.size - 1;
591
592
/* constraints to fix choppy sound */
593
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
594
return 0;
595
}
596
597
static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
598
struct snd_pcm_substream *subs)
599
{
600
struct pmac_stream *astr;
601
602
snd_pmac_dma_stop(rec);
603
604
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
605
if (! astr)
606
return -EINVAL;
607
608
/* reset constraints */
609
astr->cur_freqs = chip->freqs_ok;
610
astr->cur_formats = chip->formats_ok;
611
612
return 0;
613
}
614
615
static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
616
{
617
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
618
619
subs->runtime->hw = snd_pmac_playback;
620
return snd_pmac_pcm_open(chip, &chip->playback, subs);
621
}
622
623
static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
624
{
625
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
626
627
subs->runtime->hw = snd_pmac_capture;
628
return snd_pmac_pcm_open(chip, &chip->capture, subs);
629
}
630
631
static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
632
{
633
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
634
635
return snd_pmac_pcm_close(chip, &chip->playback, subs);
636
}
637
638
static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
639
{
640
struct snd_pmac *chip = snd_pcm_substream_chip(subs);
641
642
return snd_pmac_pcm_close(chip, &chip->capture, subs);
643
}
644
645
/*
646
*/
647
648
static const struct snd_pcm_ops snd_pmac_playback_ops = {
649
.open = snd_pmac_playback_open,
650
.close = snd_pmac_playback_close,
651
.prepare = snd_pmac_playback_prepare,
652
.trigger = snd_pmac_playback_trigger,
653
.pointer = snd_pmac_playback_pointer,
654
};
655
656
static const struct snd_pcm_ops snd_pmac_capture_ops = {
657
.open = snd_pmac_capture_open,
658
.close = snd_pmac_capture_close,
659
.prepare = snd_pmac_capture_prepare,
660
.trigger = snd_pmac_capture_trigger,
661
.pointer = snd_pmac_capture_pointer,
662
};
663
664
int snd_pmac_pcm_new(struct snd_pmac *chip)
665
{
666
struct snd_pcm *pcm;
667
int err;
668
int num_captures = 1;
669
670
if (! chip->can_capture)
671
num_captures = 0;
672
err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
673
if (err < 0)
674
return err;
675
676
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
677
if (chip->can_capture)
678
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
679
680
pcm->private_data = chip;
681
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
682
strscpy(pcm->name, chip->card->shortname);
683
chip->pcm = pcm;
684
685
chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
686
if (chip->can_byte_swap)
687
chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
688
689
chip->playback.cur_formats = chip->formats_ok;
690
chip->capture.cur_formats = chip->formats_ok;
691
chip->playback.cur_freqs = chip->freqs_ok;
692
chip->capture.cur_freqs = chip->freqs_ok;
693
694
/* preallocate 64k buffer */
695
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
696
&chip->pdev->dev,
697
64 * 1024, 64 * 1024);
698
699
return 0;
700
}
701
702
703
static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
704
{
705
out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
706
snd_pmac_wait_ack(&chip->playback);
707
out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
708
snd_pmac_wait_ack(&chip->capture);
709
}
710
711
712
/*
713
* handling beep
714
*/
715
void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
716
{
717
struct pmac_stream *rec = &chip->playback;
718
719
snd_pmac_dma_stop(rec);
720
chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
721
chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
722
chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
723
chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
724
chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS);
725
out_le32(&chip->awacs->control,
726
(in_le32(&chip->awacs->control) & ~0x1f00)
727
| (speed << 8));
728
out_le32(&chip->awacs->byteswap, 0);
729
snd_pmac_dma_set_command(rec, &chip->extra_dma);
730
snd_pmac_dma_run(rec, RUN);
731
}
732
733
void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
734
{
735
snd_pmac_dma_stop(&chip->playback);
736
chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
737
snd_pmac_pcm_set_format(chip); /* reset format */
738
}
739
740
741
/*
742
* interrupt handlers
743
*/
744
static irqreturn_t
745
snd_pmac_tx_intr(int irq, void *devid)
746
{
747
struct snd_pmac *chip = devid;
748
snd_pmac_pcm_update(chip, &chip->playback);
749
return IRQ_HANDLED;
750
}
751
752
753
static irqreturn_t
754
snd_pmac_rx_intr(int irq, void *devid)
755
{
756
struct snd_pmac *chip = devid;
757
snd_pmac_pcm_update(chip, &chip->capture);
758
return IRQ_HANDLED;
759
}
760
761
762
static irqreturn_t
763
snd_pmac_ctrl_intr(int irq, void *devid)
764
{
765
struct snd_pmac *chip = devid;
766
int ctrl = in_le32(&chip->awacs->control);
767
768
if (ctrl & MASK_PORTCHG) {
769
/* do something when headphone is plugged/unplugged? */
770
if (chip->update_automute)
771
chip->update_automute(chip, 1);
772
}
773
if (ctrl & MASK_CNTLERR) {
774
int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
775
if (err && chip->model <= PMAC_SCREAMER)
776
dev_dbg(chip->card->dev, "%s: error %x\n", __func__, err);
777
}
778
/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
779
out_le32(&chip->awacs->control, ctrl);
780
return IRQ_HANDLED;
781
}
782
783
784
/*
785
* a wrapper to feature call for compatibility
786
*/
787
static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
788
{
789
if (ppc_md.feature_call)
790
ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
791
}
792
793
/*
794
* release resources
795
*/
796
797
static int snd_pmac_free(struct snd_pmac *chip)
798
{
799
/* stop sounds */
800
if (chip->initialized) {
801
snd_pmac_dbdma_reset(chip);
802
/* disable interrupts from awacs interface */
803
out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
804
}
805
806
if (chip->node)
807
snd_pmac_sound_feature(chip, 0);
808
809
/* clean up mixer if any */
810
if (chip->mixer_free)
811
chip->mixer_free(chip);
812
813
snd_pmac_detach_beep(chip);
814
815
/* release resources */
816
if (chip->irq >= 0)
817
free_irq(chip->irq, (void*)chip);
818
if (chip->tx_irq >= 0)
819
free_irq(chip->tx_irq, (void*)chip);
820
if (chip->rx_irq >= 0)
821
free_irq(chip->rx_irq, (void*)chip);
822
snd_pmac_dbdma_free(chip, &chip->playback.cmd);
823
snd_pmac_dbdma_free(chip, &chip->capture.cmd);
824
snd_pmac_dbdma_free(chip, &chip->extra_dma);
825
snd_pmac_dbdma_free(chip, &emergency_dbdma);
826
iounmap(chip->macio_base);
827
iounmap(chip->latch_base);
828
iounmap(chip->awacs);
829
iounmap(chip->playback.dma);
830
iounmap(chip->capture.dma);
831
832
if (chip->node) {
833
int i;
834
for (i = 0; i < 3; i++) {
835
if (chip->requested & (1 << i))
836
release_mem_region(chip->rsrc[i].start,
837
resource_size(&chip->rsrc[i]));
838
}
839
}
840
841
pci_dev_put(chip->pdev);
842
of_node_put(chip->node);
843
kfree(chip);
844
return 0;
845
}
846
847
848
/*
849
* free the device
850
*/
851
static int snd_pmac_dev_free(struct snd_device *device)
852
{
853
struct snd_pmac *chip = device->device_data;
854
return snd_pmac_free(chip);
855
}
856
857
858
/*
859
* check the machine support byteswap (little-endian)
860
*/
861
862
static void detect_byte_swap(struct snd_pmac *chip)
863
{
864
struct device_node *mio;
865
866
/* if seems that Keylargo can't byte-swap */
867
for (mio = chip->node->parent; mio; mio = mio->parent) {
868
if (of_node_name_eq(mio, "mac-io")) {
869
if (of_device_is_compatible(mio, "Keylargo"))
870
chip->can_byte_swap = 0;
871
break;
872
}
873
}
874
875
/* it seems the Pismo & iBook can't byte-swap in hardware. */
876
if (of_machine_is_compatible("PowerBook3,1") ||
877
of_machine_is_compatible("PowerBook2,1"))
878
chip->can_byte_swap = 0 ;
879
880
if (of_machine_is_compatible("PowerBook2,1"))
881
chip->can_duplex = 0;
882
}
883
884
885
/*
886
* detect a sound chip
887
*/
888
static int snd_pmac_detect(struct snd_pmac *chip)
889
{
890
struct device_node *sound;
891
struct device_node *dn;
892
const unsigned int *prop;
893
unsigned int l;
894
struct macio_chip* macio;
895
896
if (!machine_is(powermac))
897
return -ENODEV;
898
899
chip->subframe = 0;
900
chip->revision = 0;
901
chip->freqs_ok = 0xff; /* all ok */
902
chip->model = PMAC_AWACS;
903
chip->can_byte_swap = 1;
904
chip->can_duplex = 1;
905
chip->can_capture = 1;
906
chip->num_freqs = ARRAY_SIZE(awacs_freqs);
907
chip->freq_table = awacs_freqs;
908
chip->pdev = NULL;
909
910
chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
911
912
/* check machine type */
913
if (of_machine_is_compatible("AAPL,3400/2400")
914
|| of_machine_is_compatible("AAPL,3500"))
915
chip->is_pbook_3400 = 1;
916
else if (of_machine_is_compatible("PowerBook1,1")
917
|| of_machine_is_compatible("AAPL,PowerBook1998"))
918
chip->is_pbook_G3 = 1;
919
chip->node = of_find_node_by_name(NULL, "awacs");
920
sound = of_node_get(chip->node);
921
922
/*
923
* powermac G3 models have a node called "davbus"
924
* with a child called "sound".
925
*/
926
if (!chip->node)
927
chip->node = of_find_node_by_name(NULL, "davbus");
928
/*
929
* if we didn't find a davbus device, try 'i2s-a' since
930
* this seems to be what iBooks have
931
*/
932
if (! chip->node) {
933
chip->node = of_find_node_by_name(NULL, "i2s-a");
934
if (chip->node && chip->node->parent &&
935
chip->node->parent->parent) {
936
if (of_device_is_compatible(chip->node->parent->parent,
937
"K2-Keylargo"))
938
chip->is_k2 = 1;
939
}
940
}
941
if (! chip->node)
942
return -ENODEV;
943
944
if (!sound) {
945
for_each_node_by_name(sound, "sound")
946
if (sound->parent == chip->node)
947
break;
948
}
949
if (! sound) {
950
of_node_put(chip->node);
951
chip->node = NULL;
952
return -ENODEV;
953
}
954
prop = of_get_property(sound, "sub-frame", NULL);
955
if (prop && *prop < 16)
956
chip->subframe = *prop;
957
prop = of_get_property(sound, "layout-id", NULL);
958
if (prop) {
959
/* partly deprecate snd-powermac, for those machines
960
* that have a layout-id property for now */
961
dev_info(chip->card->dev,
962
"snd-powermac no longer handles any machines with a layout-id property in the device-tree, use snd-aoa.\n");
963
of_node_put(sound);
964
of_node_put(chip->node);
965
chip->node = NULL;
966
return -ENODEV;
967
}
968
/* This should be verified on older screamers */
969
if (of_device_is_compatible(sound, "screamer")) {
970
chip->model = PMAC_SCREAMER;
971
// chip->can_byte_swap = 0; /* FIXME: check this */
972
}
973
if (of_device_is_compatible(sound, "burgundy")) {
974
chip->model = PMAC_BURGUNDY;
975
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
976
}
977
if (of_device_is_compatible(sound, "daca")) {
978
chip->model = PMAC_DACA;
979
chip->can_capture = 0; /* no capture */
980
chip->can_duplex = 0;
981
// chip->can_byte_swap = 0; /* FIXME: check this */
982
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
983
}
984
if (of_device_is_compatible(sound, "tumbler")) {
985
chip->model = PMAC_TUMBLER;
986
chip->can_capture = of_machine_is_compatible("PowerMac4,2")
987
|| of_machine_is_compatible("PowerBook3,2")
988
|| of_machine_is_compatible("PowerBook3,3")
989
|| of_machine_is_compatible("PowerBook4,1")
990
|| of_machine_is_compatible("PowerBook4,2")
991
|| of_machine_is_compatible("PowerBook4,3");
992
chip->can_duplex = 0;
993
// chip->can_byte_swap = 0; /* FIXME: check this */
994
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
995
chip->freq_table = tumbler_freqs;
996
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
997
}
998
if (of_device_is_compatible(sound, "snapper")) {
999
chip->model = PMAC_SNAPPER;
1000
// chip->can_byte_swap = 0; /* FIXME: check this */
1001
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1002
chip->freq_table = tumbler_freqs;
1003
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1004
}
1005
prop = of_get_property(sound, "device-id", NULL);
1006
if (prop)
1007
chip->device_id = *prop;
1008
dn = of_find_node_by_name(NULL, "perch");
1009
chip->has_iic = (dn != NULL);
1010
of_node_put(dn);
1011
1012
/* We need the PCI device for DMA allocations, let's use a crude method
1013
* for now ...
1014
*/
1015
macio = macio_find(chip->node, macio_unknown);
1016
if (macio == NULL)
1017
dev_warn(chip->card->dev, "snd-powermac: can't locate macio !\n");
1018
else {
1019
struct pci_dev *pdev = NULL;
1020
1021
for_each_pci_dev(pdev) {
1022
struct device_node *np = pci_device_to_OF_node(pdev);
1023
if (np && np == macio->of_node) {
1024
chip->pdev = pdev;
1025
break;
1026
}
1027
}
1028
}
1029
if (chip->pdev == NULL)
1030
dev_warn(chip->card->dev,
1031
"snd-powermac: can't locate macio PCI device !\n");
1032
1033
detect_byte_swap(chip);
1034
1035
/* look for a property saying what sample rates
1036
are available */
1037
prop = of_get_property(sound, "sample-rates", &l);
1038
if (! prop)
1039
prop = of_get_property(sound, "output-frame-rates", &l);
1040
if (prop) {
1041
int i;
1042
chip->freqs_ok = 0;
1043
for (l /= sizeof(int); l > 0; --l) {
1044
unsigned int r = *prop++;
1045
/* Apple 'Fixed' format */
1046
if (r >= 0x10000)
1047
r >>= 16;
1048
for (i = 0; i < chip->num_freqs; ++i) {
1049
if (r == chip->freq_table[i]) {
1050
chip->freqs_ok |= (1 << i);
1051
break;
1052
}
1053
}
1054
}
1055
} else {
1056
/* assume only 44.1khz */
1057
chip->freqs_ok = 1;
1058
}
1059
1060
of_node_put(sound);
1061
return 0;
1062
}
1063
1064
#ifdef PMAC_SUPPORT_AUTOMUTE
1065
/*
1066
* auto-mute
1067
*/
1068
static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1069
struct snd_ctl_elem_value *ucontrol)
1070
{
1071
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1072
ucontrol->value.integer.value[0] = chip->auto_mute;
1073
return 0;
1074
}
1075
1076
static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1077
struct snd_ctl_elem_value *ucontrol)
1078
{
1079
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1080
if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1081
chip->auto_mute = !!ucontrol->value.integer.value[0];
1082
if (chip->update_automute)
1083
chip->update_automute(chip, 1);
1084
return 1;
1085
}
1086
return 0;
1087
}
1088
1089
static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1090
struct snd_ctl_elem_value *ucontrol)
1091
{
1092
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1093
if (chip->detect_headphone)
1094
ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1095
else
1096
ucontrol->value.integer.value[0] = 0;
1097
return 0;
1098
}
1099
1100
static const struct snd_kcontrol_new auto_mute_controls[] = {
1101
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1102
.name = "Auto Mute Switch",
1103
.info = snd_pmac_boolean_mono_info,
1104
.get = pmac_auto_mute_get,
1105
.put = pmac_auto_mute_put,
1106
},
1107
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1108
.name = "Headphone Detection",
1109
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1110
.info = snd_pmac_boolean_mono_info,
1111
.get = pmac_hp_detect_get,
1112
},
1113
};
1114
1115
int snd_pmac_add_automute(struct snd_pmac *chip)
1116
{
1117
int err;
1118
chip->auto_mute = 1;
1119
err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1120
if (err < 0) {
1121
dev_err(chip->card->dev,
1122
"snd-powermac: Failed to add automute control\n");
1123
return err;
1124
}
1125
chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1126
return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1127
}
1128
#endif /* PMAC_SUPPORT_AUTOMUTE */
1129
1130
/*
1131
* create and detect a pmac chip record
1132
*/
1133
int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1134
{
1135
struct snd_pmac *chip;
1136
struct device_node *np;
1137
int i, err;
1138
unsigned int irq;
1139
unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1140
static const struct snd_device_ops ops = {
1141
.dev_free = snd_pmac_dev_free,
1142
};
1143
1144
*chip_return = NULL;
1145
1146
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1147
if (chip == NULL)
1148
return -ENOMEM;
1149
chip->card = card;
1150
1151
spin_lock_init(&chip->reg_lock);
1152
chip->irq = chip->tx_irq = chip->rx_irq = -1;
1153
1154
chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1155
chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1156
1157
err = snd_pmac_detect(chip);
1158
if (err < 0)
1159
goto __error;
1160
1161
if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1162
snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1163
snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1164
snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1165
err = -ENOMEM;
1166
goto __error;
1167
}
1168
1169
np = chip->node;
1170
chip->requested = 0;
1171
if (chip->is_k2) {
1172
static const char * const rnames[] = {
1173
"Sound Control", "Sound DMA" };
1174
for (i = 0; i < 2; i ++) {
1175
if (of_address_to_resource(np->parent, i,
1176
&chip->rsrc[i])) {
1177
dev_err(chip->card->dev,
1178
"snd: can't translate rsrc %d (%s)\n",
1179
i, rnames[i]);
1180
err = -ENODEV;
1181
goto __error;
1182
}
1183
if (request_mem_region(chip->rsrc[i].start,
1184
resource_size(&chip->rsrc[i]),
1185
rnames[i]) == NULL) {
1186
dev_err(chip->card->dev,
1187
"snd: can't request rsrc %d (%s: %pR)\n",
1188
i, rnames[i], &chip->rsrc[i]);
1189
err = -ENODEV;
1190
goto __error;
1191
}
1192
chip->requested |= (1 << i);
1193
}
1194
ctrl_addr = chip->rsrc[0].start;
1195
txdma_addr = chip->rsrc[1].start;
1196
rxdma_addr = txdma_addr + 0x100;
1197
} else {
1198
static const char * const rnames[] = {
1199
"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1200
for (i = 0; i < 3; i ++) {
1201
if (of_address_to_resource(np, i,
1202
&chip->rsrc[i])) {
1203
dev_err(chip->card->dev,
1204
"snd: can't translate rsrc %d (%s)\n",
1205
i, rnames[i]);
1206
err = -ENODEV;
1207
goto __error;
1208
}
1209
if (request_mem_region(chip->rsrc[i].start,
1210
resource_size(&chip->rsrc[i]),
1211
rnames[i]) == NULL) {
1212
dev_err(chip->card->dev,
1213
"snd: can't request rsrc %d (%s: %pR)\n",
1214
i, rnames[i], &chip->rsrc[i]);
1215
err = -ENODEV;
1216
goto __error;
1217
}
1218
chip->requested |= (1 << i);
1219
}
1220
ctrl_addr = chip->rsrc[0].start;
1221
txdma_addr = chip->rsrc[1].start;
1222
rxdma_addr = chip->rsrc[2].start;
1223
}
1224
1225
chip->awacs = ioremap(ctrl_addr, 0x1000);
1226
chip->playback.dma = ioremap(txdma_addr, 0x100);
1227
chip->capture.dma = ioremap(rxdma_addr, 0x100);
1228
if (chip->model <= PMAC_BURGUNDY) {
1229
irq = irq_of_parse_and_map(np, 0);
1230
if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1231
"PMac", (void*)chip)) {
1232
dev_err(chip->card->dev,
1233
"pmac: unable to grab IRQ %d\n", irq);
1234
err = -EBUSY;
1235
goto __error;
1236
}
1237
chip->irq = irq;
1238
}
1239
irq = irq_of_parse_and_map(np, 1);
1240
if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1241
dev_err(chip->card->dev, "pmac: unable to grab IRQ %d\n", irq);
1242
err = -EBUSY;
1243
goto __error;
1244
}
1245
chip->tx_irq = irq;
1246
irq = irq_of_parse_and_map(np, 2);
1247
if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1248
dev_err(chip->card->dev, "pmac: unable to grab IRQ %d\n", irq);
1249
err = -EBUSY;
1250
goto __error;
1251
}
1252
chip->rx_irq = irq;
1253
1254
snd_pmac_sound_feature(chip, 1);
1255
1256
/* reset & enable interrupts */
1257
if (chip->model <= PMAC_BURGUNDY)
1258
out_le32(&chip->awacs->control, chip->control_mask);
1259
1260
/* Powerbooks have odd ways of enabling inputs such as
1261
an expansion-bay CD or sound from an internal modem
1262
or a PC-card modem. */
1263
if (chip->is_pbook_3400) {
1264
/* Enable CD and PC-card sound inputs. */
1265
/* This is done by reading from address
1266
* f301a000, + 0x10 to enable the expansion-bay
1267
* CD sound input, + 0x80 to enable the PC-card
1268
* sound input. The 0x100 enables the SCSI bus
1269
* terminator power.
1270
*/
1271
chip->latch_base = ioremap (0xf301a000, 0x1000);
1272
in_8(chip->latch_base + 0x190);
1273
} else if (chip->is_pbook_G3) {
1274
struct device_node* mio;
1275
for (mio = chip->node->parent; mio; mio = mio->parent) {
1276
if (of_node_name_eq(mio, "mac-io")) {
1277
struct resource r;
1278
if (of_address_to_resource(mio, 0, &r) == 0)
1279
chip->macio_base =
1280
ioremap(r.start, 0x40);
1281
break;
1282
}
1283
}
1284
/* Enable CD sound input. */
1285
/* The relevant bits for writing to this byte are 0x8f.
1286
* I haven't found out what the 0x80 bit does.
1287
* For the 0xf bits, writing 3 or 7 enables the CD
1288
* input, any other value disables it. Values
1289
* 1, 3, 5, 7 enable the microphone. Values 0, 2,
1290
* 4, 6, 8 - f enable the input from the modem.
1291
*/
1292
if (chip->macio_base)
1293
out_8(chip->macio_base + 0x37, 3);
1294
}
1295
1296
/* Reset dbdma channels */
1297
snd_pmac_dbdma_reset(chip);
1298
1299
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1300
if (err < 0)
1301
goto __error;
1302
1303
*chip_return = chip;
1304
return 0;
1305
1306
__error:
1307
snd_pmac_free(chip);
1308
return err;
1309
}
1310
1311
1312
/*
1313
* sleep notify for powerbook
1314
*/
1315
1316
#ifdef CONFIG_PM
1317
1318
/*
1319
* Save state when going to sleep, restore it afterwards.
1320
*/
1321
1322
void snd_pmac_suspend(struct snd_pmac *chip)
1323
{
1324
unsigned long flags;
1325
1326
snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1327
if (chip->suspend)
1328
chip->suspend(chip);
1329
spin_lock_irqsave(&chip->reg_lock, flags);
1330
snd_pmac_beep_stop(chip);
1331
spin_unlock_irqrestore(&chip->reg_lock, flags);
1332
if (chip->irq >= 0)
1333
disable_irq(chip->irq);
1334
if (chip->tx_irq >= 0)
1335
disable_irq(chip->tx_irq);
1336
if (chip->rx_irq >= 0)
1337
disable_irq(chip->rx_irq);
1338
snd_pmac_sound_feature(chip, 0);
1339
}
1340
1341
void snd_pmac_resume(struct snd_pmac *chip)
1342
{
1343
snd_pmac_sound_feature(chip, 1);
1344
if (chip->resume)
1345
chip->resume(chip);
1346
/* enable CD sound input */
1347
if (chip->macio_base && chip->is_pbook_G3)
1348
out_8(chip->macio_base + 0x37, 3);
1349
else if (chip->is_pbook_3400)
1350
in_8(chip->latch_base + 0x190);
1351
1352
snd_pmac_pcm_set_format(chip);
1353
1354
if (chip->irq >= 0)
1355
enable_irq(chip->irq);
1356
if (chip->tx_irq >= 0)
1357
enable_irq(chip->tx_irq);
1358
if (chip->rx_irq >= 0)
1359
enable_irq(chip->rx_irq);
1360
1361
snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1362
}
1363
1364
#endif /* CONFIG_PM */
1365
1366
1367